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Abstract 
Over panel stress non-uniformity strongly limits the detection 

accuracy of piezo based force sensing in interactive displays. In 

this work, nested artificial neural networks based technique is 

presented to address the issue of stress non-uniformity. High 

detection accuracy in terms of touch position and force amplitude 

is demonstrated by the proposed technique. 
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1. Introduction 
Force sensing in interactive displays based on thin film piezo has 

attracted broad interests due to its simple panel structure, high 

detection sensitivity and low power consumption [1]. However, 

stress non-uniformity [2], arising from the mechanical behaviour 

of the touch panel [3], can have adverse effects on sensitivity. In 

particular, the non-uniformity over the panel can lead to the same 

force amplitude resulting in different force induced voltage levels 

when the touch location changes [2], hence degrading the force 

touch detection accuracy in terms of both touch position and force 

amplitude.  

In previous work [2-3], we reported theoretical analysis and 

simulation/experimental results of force detection along with the 

challenge of establishing mathematical models that are able to 

describe the inner connections between force touch factors and 

observed data using conventional statistical methods. This was 

due to the complex mechanical property and boundary conditions 

of the touch panel [3]. To solve the non-uniformity issue, this 

work reports supervised neural networks that are applied to learn 

from training data samples and to extract potential features 

automatically. A set of nested neural networks is applied to 

analyze potential connections among touch position, force 

amplitude, and data displayed as conceptually shown in Fig. 1. 

The inner layer network is for position estimation. The original 

sensing data along with the position coordinates estimated from 

the inner network are concatenated as input to train the outer layer 

network to classify force amplitude. Simulation results 

demonstrate that the estimated touch position only shifts 0.56 mm 

on average from the original touch position, and accuracies of 

force amplitude are 94.2% when the amplitude of force resolution 

is 1N. 

2. Simulation Results of Force Induced Electrical 
Signal 

To obtain the training data for the nested neural network, a touch 

panel (conceptually shown in Fig. 2 a) with 3×3 touch pads and 

9×9 touch locations eventually distributed among the touch panel 

is simulated. The area of each touch pad is 5×5 mm2 with 2.5 mm 

spacing. The contact touch area is a circle with radius 5 mm, 

mimicking the geometry of a human finger. The touch panel’s top 

view and cross section are described in Fig. 2 b. Mechanical 

properties such as Young’s modulus and boundary conditions are 

the same as reported in our previous work [3].  

After each force touch simulation, 9 voltage values are obtained 

through the 9 touch pads. These 9 voltage vales are treated as a set 

of training data for the neural networks. As we have 81 touch 

positions, and at each touch position 9 force amplitudes (1N to 

5N, spacing at 0.5N) are simulated, hence we obtain 729 sets of 

training data in total (as shown in Fig. 2 d). 

3. Neural Networks Process 
Artificial neural networks are composed of multiple layers to 

learn feature representations of data with multiple levels of 

abstraction [4]. Each layer computes a non-linear transformation 

of the previous layer, which transforms the data into a more 

abstract representation. In our experiment, a nested neural 

network structure is established for both locating touch position 

and detecting force amplitude given the data displayed on the 

sensing device. This nested structure mainly contains two 4-layer 

networks. The inner network is for position estimation. It uses 729 

sets of simulation data obtained from 9 as input, and considers a 

specific touch position set corresponding to each simulation 

process as desired output for training. The outer network inputs 

both sensor data displayed on touch panel and position 

information obtained from the inner network for force amplitude 

estimation. We simulate 125 sets of data that are different from 

training data with force amplitude varying from 1N to 5N to test 

the performance of our networks. The two graphs in Fig. 3 reflect 

the changing trends of loss and classification accuracy in the 

training process of the force estimation network. The training 

process stops at around 250 epochs to prevent over-fitting. 

4. Results of Interpreted Touch Position and 
Force Amplitude 

Fig. 4 shows the error distribution of touch position over the 

simulated touch panel. The overall estimated touch position shifts 

around 0.56 mm. Five groups of testing samples along with their 

corresponding estimated positions are presented as well. It can be 

observed from the figure that testing samples that are close to the 

position of training samples can be positioned more accurately. 

Therefore, the increase in number of training samples should have 

positive influence on touch position locating accuracy. 

Simulation results shown in Fig. 5a illustrate that the accuracy of 

force amplitude classification is 94.2% when the network is 

trained to classify force amplitudes from 1N to 5N with a 1N 

resolution into 5 levels. When trying to classify force amplitude 

with finer resolution (0.5N) using the same network, as shown in 

Fig. 5b, the accuracy drops to 53.2%, and the neighbouring-3 

accuracy is 93.6%. Fig. 5c shows the force correlation map with 



 

0.5N resolution using a neural network trained with simulation 

data of the same resolution. The accuracy raises to 74.3%, and the 

neighbouring-3 accuracy also increases to 97.5%.  

5. Summary 
High force touch detection accuracy in piezoelectric based 

interactive displays involves both high detection sensitivity and 

stable force-voltage responsivity. While the former has been 

reported [1][3], the latter, due to the over panel stress non-

uniformity, hasn’t been addressed properly.  

In this work, stable over panel force-voltage uniformity is 

obtained by utilizing artificial neural networks. A high force 

detection resolution (1N) with detection accuracy of 94.2% is 

achieved. Our results also demonstrate that with the increment of 

training data, the force detection resolution can be further 

improved. The presented work has significant implications in 

terms of advancing user experience in force touch interactivity. 

6. Acknowledgement 
The authors thanks Cambridge Touch Technologies (Cambridge, 

UK) for their generous provision of the touch panel stack-up and 

readout circuit architectures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. References 
[1] Gao, S., Wu, X., Ma, H., Robertson, J. and Nathan, A., 

2017. Ultrathin Multifunctional Graphene-PVDF Layers for 

Multidimensional Touch Interactivity for Flexible Displays. 

ACS Applied Materials & Interfaces, 9(22), pp.18410-

18416. 

[2] Gao, S. and Nathan, A., 2017, May. P‐209: Augmenting 

Capacitive Touch with Piezoelectric Force Sensing. SID 

Symposium Digest of Technical Papers 48(1), pp. 2068-

2071. 

[3] Gao, S., Arcos, V. and Nathan, A., 2016. Piezoelectric vs. 

Capacitive Based Force Sensing in Capacitive Touch 

Panels. IEEE Access, 4, pp.3769-3774. 

[4] LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. 

Nature, 521(7553), pp.436-444. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 1. Conceptual description of force touch detection in piezoelectric based interactive displays by Nested Neural 
Networks. “mpl(x,’Y’)” stands for multi-layer perceptron with hidden size x and activation function Y. 

 

Figure 2. (a) Structure of simulated touch panel with 9 touch pads; (b) top view of the simulated touch panel and geometries 
(numbers indicate locations of touch pads) and thickness of layers of the touch panel. (c) Simulated touch positions. (d) Force 

touch-generated training data. 



 

 

 

              

                                             (a)                                                                          (b) 

 

Figure 3. Force estimation network training process. (a) Training loss per epoch (b) Training accuracy 
per epoch. 

 

 

 

 

 

Figure 4. Touch position error distribution map. 

 

 

     

                        (a)                                                   (b)                                                  (c) 

 

Figure 5. Correlation maps of force amplitude level. (a) Input force classified into five force amplitude 
levels using neural network trained with 5 force amplitude levels (b) Input force classified into 9 force 

amplitude levels using neural network trained with 5 force amplitude levels (c) Input force classified into 

9 force amplitude levels using neural network trained with 9 force amplitude levels. 

 


