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Abstract 

Osteoporosis is characterised by reduced bone mass and aberrant bone micro-

architecture; thus increasing susceptibility to fracture due to reduced strength and quality. 

The aims of this study were to investigate the role of CXCR4 transfected on stem cell 

homing and osteogenic characteristics in osteopenic rats; particularly elucidating the effect 

on cell migration. 

Methods: MSCs were harvested from young, adult and ovarectomized animals and 

transfected with CXCR4; these cells were administered intravenously in ovarectomized 

rats. Micro CT and mechanical testing was completed after 12 weeks. 

Results: rats injected with young CXCR4 transfected cells had significantly higher BMD 

compared to placebo injected rats (p<0.05). Rats injected with ovarectomized CXCR4 

transfected cells, had higher BMD compared to those injected with saline or non-

transfected cells (p<0.04). L4 vertebral stiffness was significantly higher in rats treated with 

young CXCR4 transfected cells compared to all other groups (p<0.05). 

Conclusions:  CXCR4 genetically modified cells from young and ovarectomized sources 

improve some aspects of bone formation in the ovarectomized model of osteoporosis; and 

thus, may play a role in patient treatment regimens. 

  

D
ow

nl
oa

de
d 

by
 U

C
L

 /S
W

E
T

S/
28

90
80

77
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
27

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 4 of 26 
 
 
 

4 

Ti
ss

ue
 E

ng
in

ee
rin

g 
CX

CR
4 

HA
S 

TH
E 

PO
TE

NT
IA

L T
O 

EN
HA

NC
E 

BO
NE

 F
OR

M
AT

IO
N 

IN
 O

ST
EO

PE
NI

C 
RA

TS
 (D

OI
: 1

0.
10

89
/t

en
.T

EA
.2

01
8.

01
21

) 
Th

is 
pa

pe
r h

as
 b

ee
n 

pe
er

-re
vi

ew
ed

 a
nd

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 co

py
ed

iti
ng

 a
nd

 p
ro

of
 co

rr
ec

tio
n.

 T
he

 fi
na

l p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

iff
er

 fr
om

 th
is 

pr
oo

f. 

1.1 Introduction 

Post-menopausal oestrogen deficiency leads to an uncoupling of the bone remodelling 

cycle, whereby upregulated osteoclast activity, goes either unmatched or is coupled with 

aberrant osteoblast activity; thus leading overall net bone resorption. Defined as a skeletal 

disorder characterised by reduced bone strength and thus increased fracture risk (1); type 

one oestrogen deficient osteoporosis is a result of both a reduction in bone density and 

bone quality.  

Long term treatments aim to improve both bone strength and quality, be they anabolic or 

anti-catabolic in nature, interventions aim to in part restore a balance remodelling cycle 

(2); yet, as well as problems inherent to osteoporosis alone, the patient age will also 

hinder remodelling and regeneration efficacies. Bone formation may be compromised due 

to the number of mesenchymal stem cells (MSCs) within bone marrow diminishing with 

age (3-6), the ability of  these cells  to differentiate into osteoprogenitor cells and mature 

osteoblasts (7-10), and the ability of MSCs from aged sources to mobilise from their niche, 

home across the tissue endothelium and mature into active cell types that modulate the 

fracture environment. Bone healing following injury is in part modulated by quiescent 

MSCs at the fracture site, but also by the ability of latent cells to home/migrate to the site 

of injury; as such a number of preclinical studies have investigated the role of transplanted 

MSCs in fracture healing and in increasing bone mass (11). For a MSC transplantation to 

generate a clinical benefit, MSCs must engraft at the site of bone injury or the bone 

marrow. Chemokines play significant roles in controlling cellular migration; Granero-Molto 

identified the importance of the stromal derived factor-1/chemokine receptor type 4 (SDF-

1/CXCR4) axis in modulating cell migration from bone marrow. SDF-1/(11, 12). 

Transplantation of MSCs over-expressing RANK Fc(an antagonist of RANK L)  or CXCR4 (13) 

as well as, CXCR4 and Cbfa1 (14)  have been shown to restore bone mass and strength in 

osteopenic mice. In both these studies, MSCs were intravenously introduced into the mice 

through the tail vein, and MSCs over-expressing CXCR4 promoted in vivo cell trafficking to 

bone in OVX mice. This therapeutic effect of CXCR4 transfected MSCs therefore protects 

against bone loss and increases bone formation. 
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In this study we make a comparison of bone formation when MSCs from young rats and 

OVX rats transfected with CXCR4 as well as un-transfected OVX MSCs was used in an 

osteopenic rat model. The comparison between the two cell types investigates the 

beneficial effects of autologous cells from osteoporotic patients and may allude to the 

efficacy of CXCR4 modification in osteoporotic treatments;  as such, we hypothesis that 

CXCR4 transfected MSCs when administered intravenously, would migrate to the bone 

marrow and improve bone formation in an osteopenic rat model of osteoporosis.  

1.2 Methodology 

1.2.1 Animal model  

6 to 9-month old female ex-breeder wistar rats were purchased following ovariectomy. At 

16 weeks post-ovariectomy and following euthanasia, femoral bone mineral density was 

measured using peripheral quantitative computed tomography pQCT (Stratec XCT1000) to 

confirm osteopenia and this was compared with control non-ovariectomised rats. As such, 

cells from these animals were used experimentally at 10-13months 

1.2.2 Cell culture 

Rat bone marrow mesenchymal stem cells (rBMCs) were harvested from 2-4 week old 

young and the aforementioned ovariectomised Wistar rat femora (n=6 per group). Bone 

marrow cells were harvested by flushing the femora with Dulbecco's modified Eagle 

medium (DMEM), 20% fetal calf serum, 1% Penicillin Streptomycin (P/S) in a 25 cm2 flask. 

Cells were cultured at 37C at 5% CO2. Cells were characterised using tri-lineage 

differentiation and flow cytometry and used at passage 3. 

1.2.3 Preparation of the recombinant adenoviruses 

The human CXCR4 cDNA (pCMV-XL5-CXCR4 Origene) was digested by restriction 

endonucleases NotI and XhoI and then inserted into pShuttle-CMV (AdEasy XL Adenoviral 

vector system; Stratagene) to form pShuttle-CMV-CXCR4. The human CXCR4 gene and the 

pShuttle-CMV vector were both cut by restriction endonuclease NotI and XhoI and were 

then repaired to form blunt ends. Human CXCR4 cDNA was then cloned into the pShuttle-

CMV vector using DNA ligase. The presence of the insert was confirmed by restriction 

digest as well as Sanger sequencing. The incorporated shuttle vector was then linearised 
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with PmeI restriction endonuclease and transformed into BJ5183-AD-1 competent cells 

using electroporation. A scrambled plasmid was created by inserting no gene into the 

pShuttle-CMV vector.  

Following selection of the smallest colonies, the recombinant plasmid was collected and 

cut using the PacI restriction enzyme. The correctly identified copies were then largely 

expanded in bulk using the recombinant-deficient XL10-Gold strain. Purified recombinant 

plasmid DNA, cut with PacI was then used to transfect AD-293 cells. The viral particles 

were generated by alternate freezing and thawing of the infected AD293 cells and 

collecting the supernatant. An anti-hexon antibody stain was used to determine the plaque 

forming units/ml (pfu/ml) of the infected cells by counting the number of dark infected 

cells.  

1.2.4 Analysis of CXCR4 over-expression on infected cells 

Young and OVX MSCs from the third passage were infected with the CXCR4 adenovirus at a 

MOI of 800, trypsinised and centrifuged at 2000 rpm for 10 minutes before being 

resuspended at 100,000 cells in phosphate buffered saline (PBS). Cell aliquots were 

permeabilised in ice cold methanol for 10 minutes and incubated with primary CXCR4 

antibody (Abcam) for 1 hour at room temperature. The cells were washed in PBS and then 

incubated in secondary goat anti-rabbit antibody (Abcam) for 30 minutes at room 

temperature. The negative control consisted of cells incubated in the secondary antibody 

only. 100,000 cells were then analysed using a flow cytometry machine (Cytoflex, Beckman 

Coulter). The results were compared to uninfected MSCs from the same rats.   

1.2.5 Intravenous administration of CXCR4 transfected MSCs 

30 female ovariectomised rats (average weight 494.2±53.8 g) were injected with 0.5ml 

Sodium Nitroprusside (25mg/ml), followed by 1 million cells suspended in 2ml sterile saline 

and finally 0.2ml of saline to clear any cells left in the syringe. Successful injections were 

confirmed when the fluid was injected without any resistance and there was no swelling of 

the tail. The rats in this study were divided into two parts (Figure 6.1): 
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a. Cell tracker group: 6 rats were injected with Vybrant-1,1'-Dioctadecyl-3,3,3',3'-

Tetramethylindocarbocyanine Perchlorate (Dii) labelled cells (ThermoFisher 

Scientific, UK). This group of rats was used to track the cells 7 days after injection in 

order to illustrate effective mobilisation.. This was the ‘cell tracker group’ (Day 0 

control rats). The rats were euthanised 7 days post-injection and the samples 

retrieved from these rats were also used to obtain baseline histological, 

micro/pQCT and mechanical data. The rats were divided into 2 groups: 

 DiI labelled Young MSCs + Empty Plasmid (n=3) 

 DiI labelled Young MSCs + CXCR4 (n=3) 

To investigate the homing ability of MSCs, cells were labelled with DiI cell-labelling solution 

1x106 and plated in a T225 flask. 100ul of the DiI solution was suspended in 5ml of serum 

free media, cells were incubated in this for 30minutes at 37C.  

The rats were euthanised 7 days (Day 0 controls) post-injection and their femurs and tibias 

retrieved. The bone specimens were fixed in 10% buffered Formaldehyde, and decalcified 

in 12.5% ethylenediaminetetraacetic acid (EDTA), pH 8. Decalcification was confirmed by 

radiography, after which the specimens were dehydrated in increasing alcohol 

concentrations, treated with chloroform for 2 days to de-fat the tissue and then 

embedded in wax. Sections measuring 5µm thick were made using a microtome (Shandon 

Finesse 325, ThermoFisher Scientific, UK).  

Sections were de-waxed twice in xylene, placed in two changes of 100% alcohol and then 

hydrated in serial dilutions of alcohol. After hydration, samples were stained in 

haematoxylin, a nuclear stain, for 5-10 minutes. The excess stain was washed off by 

immersing the slides in water for 5 minutes. Samples were then differentiated in 0.5% HCL 

acid (made up in 70% alcohol) and washed using water. After removing the acid-alcohol, 

samples were counterstained in 1% eosin for 3-4 minutes, washed in water and 

dehydrated by serial dilutions of alcohol. Finally, samples were cleaned by xylene and 

mounted under coverslips using Pertex Mounting Medium (CellPath plc, UK). Samples 

were observed under a light microscope (KS-300 Zeiss, UK). This was used to observe the 

DiI labelled cells that had migrated to the bone (See section 6.2.6 below). The H&E images 
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observed under a light microscope allowed the location of the fluorescent cells to be 

identified in the bone. Slices were then imaged under a fluorescent microscope (Zeiss 

Apatome 2). The slides were stained with Hoechst 3342 (Thermofisher Scientific, UK) and 

mounted with FluoromountTM Aqueous Mounting Medium (Sigma Aldrich, UK) and viewed 

under an emission wavelength of 617nm.  

b. Experimental treatment group: OVX rats were divided into 4 groups; Groups A, B 

and C were injected with cells and Group D received saline injection. The rats in this 

group were euthanized after 11 weeks. The treatment groups were divided as 

follows: 

 Group A – Young MSCs + CXCR4 (n=6) 

 Group B – OVX MSCs (n=6) 

 Group C – OVX MSCs + CXCR4 (n=6) 

 Group D – Saline (n=6) 

From all the rats in both groups, the following samples were retrieved; the femora, tibiae, 

left humerus and L4 and L5 vertebrae for mechanical testing, micro CT and pQCT only..  

1.2.6 Vertebral compression 

L4 and L5 vertebra were separated from the rest of the vertebral column by halving the 

discs and cutting the ligaments. The facet joints and spinous processes were preserved to 

maintain physiological motion of the vertebrae during compression. Each vertebra was 

individually compressed at a speed of 0.75mm/min using a Zwick LFM machine, until 

failure and the ultimate compressive strength was measured.  

1.2.7 Three-point bending test of humerus, tibia and femur 

From the retrieved long bones all tissue and muscle attachments were cleared. The length 

of the bones was measured, the loading pin was set up at the bone’s mid shaft and the 

bones were loaded at a speed of 0.5mm/min using a Zwick LFM machine, until failure 

point when the bone fractured. The span between the two lower supports was set 10 mm 

apart. A force displacement graph was generated and used to calculate the stiffness and 

maximum load of the bones manually.  
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1.2.8   Peripheral Quantitative Computed Tomography (pQCT) of the tibia and femur 

The skin and soft tissue around the right and left femur were removed and BMD 

measured within the femoral condyles using pQCT (XCT 2000, Stratec, Pforzheim, 

Germany). The samples were fixed in formalin before scanning and were placed in a 

sealed 50ml Falcon tube during the scan. The total length of the bone was obtained prior 

to scanning and the femoral head of each sample was scanned symmetrically at slice 

intervals of 0.5mm. 3 slices were acquired at 10% and 1 slice was acquired at 20% (of the 

femoral length) from the proximal femur end. The samples were analysed using XCT 

software.  

1.2.9  MicroCT of the femoral metaphysis 

Samples were transported in PBS and wrapped in cling film for scanning (SkyScan 1172, 

Bruker, Belgium). The x-ray source was set at 70kV with a current of 120uA. To reduce 

beam hardening, a 0.5mm aluminium filter was used during the scan. During the scan a 

rotation degree of 0.6°, a frame averaging of 2 and a voxel size of 6um was applied. The 

NRecon software (Bruker, Belgium) was used to reconstruct the scanned images with the 

following parameters: smoothing = 2, beam hardening factor correction = 12% and ring 

artefact reduction = 41%.  

The trabecular bone was analysed using a CtAn software (Bruker, Belgium). The growth 

plate was selected as a reference point and a volume of 150 slices were selected, 200 

slices above the growth plate (Figure 2). For analysis, a volume of interest (VOI) was 

chosen by selecting the metaphyseal trabecular region and excluding the cortical bone and 

this region was used to measure the Bone Volume (BV) and Bone surface (BS).  

1.2.10 Statistical analysis 

The normality was checked using a Shapiro Wilkinson test and found to be non-

parametric; as such,  comparisons were made using a Mann-Whitney U test with a 

Bonferroni correction. All data was analysed using SPSS version 24 (Chicago, USA).  
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1.3 Results 

1.3.1 Establishment of the osteopenic rat model 

The mean femoral BMD measured in the OVX rat group was significantly lower (538.2 ± 

23.3g/cm3) when compared with control rats (666.9 ± 46 g/cm3) (p=0.0002).  BMD was 

seen to reduce by 19.3 ± 9%.  

1.3.2 CXCR4 expression of infected and uninfected cells 

After transfection with the CXCR4, 92±2.6% and 40±16.1% of young and OVX MSCs 

respectively over-expressed CXCR4. CXCR4 expression significantly increased (p=<0.05) 

from 19.4 ± 9.8% in non-transfected OVX cells to 40.0 ± 16.1% in transfected cells. In young 

MSCs CXCR4 expression only increased by 5% after transfection although non transfected 

young MSCs expressed high endogenous levels of CXCR4 (Figure 3).       

1.3.3 Fate of systemically injected MSCs 

At day 7, numerous DiI labelled nucleated cells were observed in the blood vessels in the 

cortical and trabecular bone of the femoral condyles, confirmed on H+E and fluorescent 

imaging (Figure 4). No fluorescent cells were visible in slides from rats that were injected 

with unlabelled cells. 

1.3.4 Vertebral compression   

The stiffness of the L4 vertebrae was significantly higher for the group that received the 

Young-CXCR4 MSCs (251.5 ± 61.7 N/mm) in comparison to the rats that received a sham 

saline injection (99.2 ± 16.2 N/mm) (Figure 5). 

1.3.5 Three-point bending test of the humerus, tibia and femur 

The stiffness of the humerus, tibia and femur were obtained by calculating the gradient of 

the force displacement graph. No significance difference was seen between the different 

groups. However, the rats receiving the saline injections had the lowest stiffness compared 

to those that received CXCR4-OVX MSCs and CXCR4-young MSCs.  
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1.3.6 PQCT of the tibia and femur 

Young MSCs transfected with CXCR4 significantly improved the BMD of the bone in the 

femoral condyles of the OVX rats. This significant difference in BMD was seen for the 

trabecular bone, cortical/subcortical bone and total BMD (Figure 6).  

There was no significant difference between OVX rats injected with young MSCs 

transfected with CXCR4 or injected with saline (transfected-trabecular BMD of 716.4 ± 

105.7 mg/ccm, total BMD of 694±80.1mg/ccm and Cort/sub cort BMD of 715.2 ± 45.4 

mg/ccm, saline-trabecular BMD of 535.5±61.6mg/ccm, 563.4±82.9mg/ccm and 576.2±11 

mg/ccm respectively. 

  

1.3.7 Micro CT and Histomorphometric Analysis of the metaphysis  

The effect of stem cell injection on the bone volume was subtle compared to saline 

injection but the groups injected with saline and the OVX group (the group prior to any 

intervention) showed fewer inter-connected trabeculae compared to the animals injected 

with transfected young stem cells (Figure 7).  

 

Rats treated with young-CXCR4 MSCs had the highest BS area (9.5x107 ± 5.3x107 µm2) 

compared to rats treated with OVX-CXCR4 MSCs (7.6x107 ± 5.0x107 µm2), OVX MSCs 

(7.1x107 ± 1.7x107 µm2) and saline (7.3x107 ± 5.5x107 µm2). As expected the Time 0 

controls had the highest bone surface area because they were euthanised 7-days post-

injection while the other groups of rats were euthanised 5-weeks post-injection. 

Of the experimental groups, rats injected with saline (p=0.03), OVX MSCs (p = 0.004) and 

OVX-CXCR4 (p = 0.02) MSCs had a significantly lower bone surface area compared to the 

rats injected with Young-CXCR4 MSCs (p = 0.07) (Figure 8). 

In all groups injected with stem cells bone volume (BV) was increased in comparison to 

saline injection. The rats treated with OVX-CXCR4 MSCs had the highest BV (1.7x 109 ± 1.4 

x 109 µm2) compared to rats treated with Young-CXCR4 MSCs (1.5 x 109 ± 7.0 x 108 µm2), 

OVX MSCs (1.4 x 109 ± 2.8 x 108 µm2) and saline (1.1 x 109 ± 8.5 x 108 µm2).  
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1.4 Discussion 

The hypothesis of this study was that CXCR4 transfected MSCs when administered 

intravenously, would migrate to the bone marrow and improve bone density and 

architecture.  In this paper we reinforced the effective migration of intravenously labelled 

MSCs to long bones, as well as the poor CXCR4 expression as well as migration of MSCs 

from OVX rat, we further demonstrated that injecting young MSCs transfected with CXCR4 

significantly enhanced BMD and L4 vertebral strength compared to rats who received 

placebo saline intravenously (Figures 5 and 6). It was also highlighted that injection of OVX 

and OVX-CXCR4 MSCs helped improve the BMD and trabeculae structure in the femoral 

condyles of the OVX rats compared to controls. These findings allude to possible 

applications of modified stem cells to enhance the bone properties in osteoporotic 

populations. The deteriorating changes of bone in the OVX rats injected with saline was 

reflected by the thinning of the trabeculae, reduced bone surface area and bone volume in 

the proximal femur. These micro-structural changes are common problems in osteoporotic 

patients, causing fragility fractures (15, 19). The small sample number of only 6 rats per 

group means that trends towards increased trabecular thickness in the femora of OVX rats 

injected with CXCR4 modified cells, were not clinically significant compared to untreated 

counterparts. Thus one wonders, if a larger number may actually prove significance, and 

thus add to the weight of evidence suggesting the utility of CXCR4 modification.  

The deteriorating bone structure of the OVX rat model was clearly observed as the Time 0 

control rats had the most bone volume and density compared to the rest of the OVX rats 

which were treated for a further 10 weeks. However, the rats injected with cells had a 

higher bone surface area and volume compared to the rats injected with saline. There was 

an increased BMD in the animals injected with cells using pQCT which seemed to 

contradict the modest increase in bone volume observed by microCT. This is similar to 

results by Huang and co-workers, 2016 that injected allogeneic MSCs from 8 week old rats 

into OVX rats and looked at their bone formation. They concluded that although the 

systemic transfusion of allogeneic MSC is a safe procedure, administering cells only may 

not be the most effective procedure for preventing osteoporosis. They also observed an 

increase in BMD using PQCT but no difference in trabeculae structure using microCT (20). 
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These differences could be because PQCT measures global bone formation while microCT 

is more specific as it measures slices specifically for analysing trabeculae structure.  

Regenerating the trabeculae to provide structural competence may not be difficult 

especially where continuity has been lost. Cunningham et al, 2005 investigated the 

recovery of the trabeculae in the right os-calcis in an ovine model. After removal of the 

trabeculae in the os-calcis animals were returned to their normal daily activities. However, 

the trabeculae did not regenerate and the os-calcis remained hollow but with increased 

density in the cortical bone. This could be because the load was distributed to the upper 

and lower beams of the bone, hence the increase in density and thickness of the cortical 

bone (21-23). Once interconnectivity between trabeculae has been compromised it is 

difficult to reform cross-links because of the mechanisms of load transfer which is altered 

due to reduced number of bridging elements.   

Injecting MSCs, irrespective of the fact that they were from OVX or young rats or 

uninfected or infected protected against bone loss associated with ovariectomy in rats 

compared to rats injected with saline. These results are similar to those reported by Lien 

and co-workers who injected CXCR4-infected cells in OVX rats and observed increased 

BMD in rats injected with cells compared to sham injections (13). However, they showed 

even more improved bone formation when they injected cells co-transfected with cbfa-1. 

Sheyn and co-workers, 2016 injected a combinational therapy of MSCs and PTH and 

showed that PTH aided with the migration of MSCs and also played an anabolic role in 

bone formation in vertebral defects in pigs (24). This highlights the importance of 

improving migration of cells and also stimulating their ability to form bone. It is important 

for cells to home and engraft into the marrow cavity (25) as well as help with the bone 

loss. Cho and co-workers, 2009 highlighted the role of transfecting the cells with RANK-Fc 

to improve the BMD in ovariectomised mice  and also improved their homing capability to 

the bone marrow (14, 25). Studies by Lien and Cho showed significantly improved BMD 

after injection of MSCs, however these results were based on pQCT data and unlike this 

work did not look at changes in the trabeculae using MicroCT. Additionally, they induced 

osteopenia in younger mice (around 3-4 months old) compared to this study where rats at 
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the time of experiments were upto 13months old; as such delineations are required 

between the sole effect of increased age as well as osteopenia.  

Although significant differences were seen in this study, there were a number of trends 

noted that were not significant. The number of significant differences seen in this study 

may have been increased by increasing the number of animals in each group.  

However, the novelty and significance of the work in this study is that it investigates the 

prospect of injecting autologous stem cells in osteoporotic patients. Injecting OVX-MSCs 

may not be as beneficial as injecting Young-MSCs or Young-CXCR4 MSCs, but we still 

found trends towards improvements in bone formation parameters with cells derived 

from ovarectomized rats. As such, our results indicate the possible clinical utility of stem 

cells from both young and osteopenic populations and may be further enhanced by the 

modification of CXCR4 expression. Further work is required to fully elucidate this effect, 

and should also assess in more detail the fate of injected cells-assessing the percentage 

retained at other sites through haematogenous spread. Ultimately, this work builds on 

the body of literature supporting stem cell use in bone regeneration and the promise 

modified cells provide  
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Figure 1: A schematic illustration showing the different groups of rats in the in vivo study. 

Cell tracker group (day 0 controls), were euthanised after 7 days, while the rest of the rats 

were euthanised after 11 weeks.  
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Figure 1: The sagittal, coronal and transaxial display of a reconstructed image of the 

growth plate, whereby a reference point was selected for analysis of bone morphometry. 

To avoid the growth plate, analysis was done 150 slices above the growth plate. 
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Figure 2:  FACS analysis of CXCR4 infected cells and uninfected cells of young MSCs (a); 

adult control (b) and OVX MSCs (c). The secondary isotype is represented by red, CXCR4 

expression in MSCs is represented by green and pink represents the CXCR4 over-

expression in the infected MSCs 
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Figure 3: DiI labelled cells located in the femur (A), H & E staining of these cells of wax 

histology slides of the femur (B & C).    
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Figure 4: The stiffness of the L4 and L5 vertebrae calculated from the gradient of the 

compression graph (n=6). Significant differences were found between Young-CXCR4 and 

Saline groups; as well as between Control and Saline groups. * shows significance p < 0.05 
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Figure 5: The mean BMD of the femur measured using PQCT. The BMD was measured for 

the femur and tibia and trabecular, cortical and total bone density was analysed for both 

bones. Difference was found between Young-CXCR4 and Saline groups in *trabecular 

bone, **cortical bone, **and for total bone density.  
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Figure 6: Three dimensional images of the femoral heads to illustrate the trabeculae 

structure of the metaphysis and epiphysis. 
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Figure 7: Bone Surface (µm2) of the femur obtained from rats treated with saline, OVX 

MSCs, OVX-CXCR4 MSCs and young CXCR4 MSCs. The error bars represent standard error 

of the mean. 
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Figure 8: Bone Volume (µm3) of the femur obtained from rats treated with saline, OVX 

MSCs, OVX-CXCR4 MSCs and young CXCR4 MSCs. The error bars represent standard error 

of the mean 
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