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Abstract
Purpose of Review The lung research field has pioneered the
use of organoids for the study of cell-cell interactions.
Recent Findings The use of organoids for airway basal cells is
routine. However, the development of organoids for the other
regions of the lung is still in its infancy. Such cultures usually
rely on cell-cell interactions between the stem cells and a
putative niche cell for their growth and differentiation.
Summary The use of co-culture organoid systems has facili-
tated the in vitro cultivation of previously inaccessible stem
cell populations, providing a novel method for dissecting the
molecular requirements of these cell-cell interactions. Future
technology development will allow the growth of epithelial-
only organoids in more defined media and also the introduc-
tion of specific non-epithelial cells for the study of cell inter-
actions. These developments will require an improved under-
standing of the epithelial and non-epithelial cell types present
in the lung and their lineage relationships.
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Introduction

Organoids are defined as three-dimensional (3D) structures
derived from stem cells and consist of organ-specific cell

types which self-organise through cell sorting and spatially
restricted lineage commitment in a manner reminiscent of
the native organ with some degree of organ functionality [1,
2]. Organoids have also been referred to as “mini-organs” and
enable in vitro modelling of organ development, disease
modelling and drug screening. The 3D culture preserves na-
tive DNA integrity and prevents the cells from being trans-
formed [13]. Organoids were first successfully derived from
mouse small intestine using single Lgr5+ stem cells [3]. These
organoids were entirely epithelial illustrating that organoids
can be built without a non-epithelial cellular niche. The
organoid was structured as crypt-villus units, with a similar
stem cell hierarchy to in vivo, showing epithelial cell interac-
tions are sufficient for the creation of crypt-villus units.
Further work on cell-cell interactions using these intestinal
organoids showed that essential niche signals are provided
by Paneth cells, which are found interspersed between Lgr5+

stem cells [4].
Organoid growth requires the initiating stem cell popula-

tion to self-renew, to increase organoid size, and to differenti-
ate. Organoids have been successfully cultured from multiple
endoderm-derived organs including the adult mouse stomach
[5], mouse colon [6], human colon [7], mouse pancreas [8],
mouse liver [9], mouse prostate [10], human prostate [10],
human intestine [11], and mouse embryonic pancreas [12].
In most of these studies, the same tissue culture medium sup-
ported both stem cell self-renewal and differentiation, for ex-
ample intestinal stem cells self-organise efficiently into
organoids and differentiate [3, 4]. By contrast, the adult liver
and pancreas organoids can be expanded but do not differen-
tiate easily yet [13, 14]. Similarly, mouse embryonic pancreas
progenitors were expanded in a self-renewing medium and
then switched to a differentiation medium for maturation
[12, 15, 16]. This switch in medium composition may be
particularly important for organoids derived from embryonic
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progenitors as such cells are typically reliant on extrinsic sig-
nalling from the adjacent mesenchyme in vivo [17, 18]. Cell-
cell interactions within organoid cultures are likely to be just
as important for differentiation as they are in vivo, through a
process termed the “community effect”. This is now a well-
established phenomenon in which the differentiation ability of
a cell is enhanced by neighbouring cells differentiating in the
same way simultaneously [19].

Lung organoids have been successfully grown from the
embryonic lungs [20–24], mouse adult lungs [25, 26, 27••,
28], human adult lungs [25, 28], and human iPSC (induced
pluripotent stem cell) derived lung progenitors [29, 30, 31••].
This review will first introduce the lung as an organ with its
various cell types and then evaluate the literature involving 3D
cultures derived from lung stem cells, which we are referring
to as organoids if they have demonstrated self-renewal capac-
ity, or spheroids if self-renewal has not yet been achieved. We
focus particularly on their currently widespread use for study-
ing cell-cell interactions.

The Lung and Its Cell Types

Lung diseases account for the third highest mortality of non-
infectious disease deaths and lung cancer is the most common
cancer worldwide [32]. The mortality is partly due to irrevers-
ible destruction of lung tissue and the associated inability to
meet the demands for lung transplantation. In order to address
this, characterising the growth requirements of the different
stem cell populations in both the adult and developing lungs

is essential. One approach is by studying cell-cell interactions
in organoids.

The lung is a complex structure of branched epithelial-lined
airways and endothelial-lined blood vessels which unite at the
alveoli for gas exchange. The lung is surrounded by pleura;
referred to as the mesothelium in mouse [33, 34]. The trachea
divides at the carina forming the left and right main stem
bronchi. Each of which divides further into secondary, or lo-
bar, bronchi and subsequently into progressively smaller bron-
chi and bronchioles, until the smallest bronchioles connect to
the alveoli [35].

The human tracheobronchial airway is mostly lined by
pseudostratified epithelium in which each cell type makes
contact with the basement membrane. Below the basement
membrane, blood vessels, smooth muscle, cartilage, extracel-
lular matrix-producing fibroblasts, and nerves are found. The
height of luminal epithelial cells and the proportion and den-
sity of the different cell types vary along the proximal-distal
axis and between human and mouse [33]. The major airway
epithelial cell types are basal, secretory (primarily goblet in
human and club in mice), and ciliated cells, although neuro-
endocrine and brush cells form a more minor component
(Fig. 1). Basal cells are present throughout human conducting
airways but are confined to the trachea and primary bronchi of
mice [36, 37].

The alveolar epithelium consists of type I and type II alve-
olar cells (AC1 and AC2) which are surrounded by capillaries
and multiple different types of fibroblasts [38–40]. AC1 cells
are flat, highly extended, and specialised for gas exchange as
they cover more than 95% of the gas exchange surface area;
whereas, AC2 cells are cuboidal, are more common, and are

Fig. 1 Cellular organisation of the human lung. The cellular complexity
of the human lung epithelium. a Section through large human intra-lobar
airway stained to show ciliated cell nuclei (FOXJ1+; green) and mucous-
producing Goblet cells (SCGB1A1+; red). It should be noted that Goblet
cells are less prominent than Ciliated cells. The third major airway
epithelial cell type (Basal cells) is shown in green in the inset as
TRP63+ cells (arrowheads). The green background (due to auto-
fluorescence from the tissue) nicely illustrates the airway-associated
mesenchyme which has yet to be extensively characterised. b

Section through a smaller human airway also showing the adjacent
alveolar region. Here, cilia are visualised using an acetylated-tubulin
antibody (green). Goblet cells are not shown, but are found at similar
frequency to a. Note that the airway-associated mesenchyme is less
extensive than in that in a. Type II alveolar cells are visualised using
pro-SFTPC staining (red). The mesenchyme in the alveolar region is
even less extensive and tightly associated with the epithelium. Scale
bars: a 100 μm; b 50 μm (inset)
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specialised for surfactant protein production [33, 38, 40, 41]
(Fig. 1). Blood vessels are lined with vascular endothelial cells
and also contain pericytes and vascular smooth muscle de-
pending on size. The lymphatic system of the lung is poorly
characterised and consists of lymphatic endothelial cells and
associated stroma. The cellular interactions between alveolar
macrophages, lung dendritic cells, and epithelial cells are
thought to be crucial in restraining immune damage after in-
fection or any other kind of damage to the epithelial barrier
[42]. Controversy exists about the function of myofibroblasts
and lipofibroblasts and other putative mesenchymal fibroblast
populations. Their markers have not yet been defined, but they
are thought to play important roles in lung alveolar develop-
ment and maintenance [43].

The lung is a complex organ with numerous distinct cell
types. How these cells interact in development, homeostasis,
and disease is a key research question and organoids provide a
platform for investigating some of these cell-cell interactions
(Table 1).

Organoids Derived from Embryonic Lungs

In the mouse, lung development starts after establishment of
the primary germ layers with the two primary endoderm buds
becoming visible at around E9.5 [33]. Molecularly, the respi-
ratory lineage can be first identified by expression of the tran-
scription factor Nkx2.1 in the ventral anterior foregut endo-
derm [34, 47] as early as E8.25 [48]. The mouse lung then
develops, similar to a human’s, as a blind-ended tube which
branches multiple times, a process governed by a complex
network of transcription factors and signalling pathways.
The important stem cell, or progenitor, population in the de-
veloping embryonic mouse lung is found in the distal
branching tip [49]. These epithelial tip cells comprise a
multipotent progenitor population giving rise to both bronchi-
olar and alveolar cells [49–51].

Whole E12.5 mouse lungs can be cultured in vitro on an
air-liquid interface in 2D where they will both grow and dif-
ferentiate [52–54]. These explant cultures could be described
as the “ultimate mini-organs” as they contain all of the cells
needed for normal lung development. However, their size,
cellular complexity, and growth in a 2D plane, rather than in
a 3D, makes them unsuitable for many experiments.

Mixed cell populations obtained from dissociated whole
E17.5 mouse lungs have been grown in 3D on various matri-
ces [20–22]. Such cultures self-organise into spheroids con-
taining branched epithelial structures surrounded by mesen-
chyme grow and show signs of alveolar and bronchiolar dif-
ferentiation. However, self-renewal has not been tested and
detailed cellular phenotyping has not been performed. These
cultures have been used to test the effects of growth factors,
such as FGFs and VEGF-A [20, 21], or for direct

differentiation to alveolar structures [22]. Since whole foetal
lungs were minced and then grown as spheroids, the culture is
limited by the lack of a defined starting population. However,
these spheroids could be useful as a tool for studying morpho-
genesis in vitro.

A recent advance is the formation of mesenchymal
organoids consisting of human foetal lung (18- to 20-week
gestation) fibroblasts grown on collagen-coated alginate beads
in 3D units [23]. These were exposed to varying oxygen con-
centrations to mimic the oxygen tension experienced by pre-
mature neonates for disease modelling. Proof of concept ex-
periments suggest that this system has the potential to incor-
porate additional lung cell types, including airway epithelial
and endothelial cells [24]. It will be interesting to see if this
bioengineering approach with defined cell types will be able
to accurately recapitulate cell interactions and potentially even
disease phenotypes.

Organoids from iPSC-Derived Lung Epithelial Cells

iPSCs are derived through reprogramming adult somatic cells
by introducing pluripotency transcription factors [55]. The dif-
ferentiation of patient-specific iPSCs into any relevant cell type
can provide a platform for disease modelling, drug screening,
and cell-based therapies. Several groups have successfully dif-
ferentiated iPSCs into lung progenitors [56, 57] and more dif-
ferentiated alveolar and bronchiolar lung epithelial cells
[58–63]. All of these protocols used directed differentiation of
iPSCs as monolayers in 2D culture systems and attempted to
recapitulate normal development as described in the mouse lung
developmental literature. Briefly, this involves differentiation
into definitive endoderm, followed by anterior and ventral fore-
gut endoderm. Ventral anterior foregut endoderm (VAFE)
Nkx2.1+ lung progenitors are subsequently differentiated into
bronchiolar or alveolar cell fates using a stage-specific combi-
nation of growth factors. Recent efforts have been made to
increase the maturity of iPS-derived differentiated cells by 3D
differentiation as organoids [31••, 64]. This approach has been
successful to some extent for both alveolar [29] and bronchiolar
differentiation, where there was evidence of effective differenti-
ation into ciliated cells with beating cilia [30].

The first published attempt at deriving alveolar organoids
from iPSC-produced human lung progenitors used carboxy-
peptidase M (CPM) as a cell-surface marker to specifically
isolate VAFE iPSC-derived lung progenitors. These were then
seeded into Matrigel with human foetal lung fibroblasts ob-
tained at 17.5 weeks of gestation and an alveolar-specific
combination of growth factors [29]. These NKX2.1+

organoids contained small numbers of Aquaporin5+ AC1 cells
and pro-SFTPC+ (SPC) AC2 cells, the latter of which
contained some structures reminiscent of lamellar bodies
when analysed by transmission electron microscopy.
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Interestingly, CPM+ iPSC-derived lung progenitors cultured
without human foetal lung fibroblasts were unable to produce
SPC+ cells, suggesting that the fibroblasts produce essential
signal(s) for alveolar identity. Although the AC2-like cells
were produced at low efficiency and are likely to be very
immature, this co-culture is an encouraging strategy which
could be improved upon by improved characterisation of the
fibroblast cell type(s) and optimised culture conditions.

The same group used a similar strategy of isolating CPM+

iPSC-derived lung progenitors followed by organoid culture
to produce bronchiolar lung organoids. In this case, there was
evidence of differentiation into ciliated cells with beating cilia,
as well as neuroendocrine, secretory, and basal cells [30].
Interestingly, there was no ciliated cell differentiation in 2D
culture, suggesting that 3D organoid culture enabled success-
ful differentiation into functional ciliated cells. However, cil-
iary beating was not fully synchronised as required for unidi-
rectional flow and mucociliary clearance. This suggests func-
tional immaturity, similar to the previous studies, or the lack of
a directional cue. Organoids consisted only of epithelial cells
without any evidence for mesenchymal differentiation.

Another study differentiated human pluripotent cells into
VAFE spheroids [31••]. These foregut spheroids were then
differentiated into lung organoids with both bronchiolar and
alveolar regions and maintained in culture for over 3 months.
Bronchiolar structures included basal, club, and ciliated cells
and were often partially surrounded by smooth muscle actin-
expressing and other uncharacterized, mesenchymal cells.
The functional significance of the mesenchyme in these cul-
tures has not yet been determined. Nevertheless, the proximity
of epithelial and mesenchymal cells in these organoids may
provide an in vitro platform to study the complex epithelial-
mesenchymal cell interactions in the developing embryonic
lung. Alveolar structures in these organoids co-expressed
HOPX and SOX9, or SPC and SOX9, consistent with early
bipotent alveolar progenitors observed in mice, rather than
differentiated alveolar cells [51, 65]. Transcriptome analysis
of these human iPSC-derived lung organoids suggested that
they are comparable to human foetal lung tissue despite long-
term culture of over 3 months [31••]. The future study of
epithelial-mesenchymal interactions will likely address this
limitation. The same group has recently shown that xenotrans-
plantation of human iPSC-derived lung organoids grown on
poly(lactide-co-glycolide) (PLG) scaffolds into the kidney
capsule of immunocompromised mice led to enhanced bron-
chiolar epithelial and mesenchymal organisation compared to
organoids grown in vitro. Moreover, in vivo transplanted
organoids had improved cellular differentiation of secretory
and mesenchymal lineages and associated vasculature [44].

All of these studies illustrate that bronchiolar and alveolar
iPSC-derived organoids can be grown in vitro to a degree of
maturity which equates to foetal lung tissue. The most suc-
cessful studies were those which produced organoids

consisting of both epithelial and mesenchymal lineages, sug-
gesting that epithelial-mesenchymal cell interaction is crucial
for differentiation. Similar results have been found in the dif-
ferentiation of other organs from human PSCs, including the
kidney and intestine [66–68]. Further, maturation and valida-
tion by comparison to human adult tissue will be key to deter-
mining whether these lung organoids are suitable for future
use in disease modelling, modelling of human lung develop-
ment, and regenerative attempts. Similarly, human iPSC-
derived cardiomyocytes display a comparable degree of cel-
lular immaturity (foetal phenotypes), despite 3D culture lead-
ing to higher levels of maturity than standard 2D culture.
Approaches proposed for improving cardiomyocyte maturity
include prolonging the culture period, high oxygen levels, and
various combinations of either co-culture or growth factors
[69]. Similar approaches could be used for lung organoids.
The recent finding that in vivo transplanted lung organoids
show improved signs of maturation is highly promising [44].
Although, one hypothesis that remains to be tested is whether
the improved epithelial organisation depended on the mesen-
chyme differentiation or vice versa.

Organoids Derived from the Adult Lungs

Organoid culture has also been used to investigate stemcell iden-
tity and dissect cellular and molecular interactions for the adult
lung.Singlebasalcells isolatedfromtheadultmouse tracheahave
been grown into organoids, known as tracheospheres, in which
the basal cells expand and, following a change in medium com-
position, differentiate [25]. These cultures could be passaged at
least twice, demonstrating the basal cell’s self-renewing ability,
andformedpartoftheevidencethatbasalcellsareadultstemcells.
Theyhave subsequently beenused successfully to interrogate the
rolesofNotch,BMP,andIL6signallingandspecific transcription
factors in adult basal cells [26, 70, 71•, 72].Moreover, an elegant
in vivo lineage-tracing strategy, combined with tracheosphere
derivation, has been used to investigate basal-club cell interac-
tionsanddemonstrate that invitrobasal cells areable to inhibit the
de-differentiation of club cells [73]. The initial derivation of
tracheospheres used media compositions that were optimised
for expansion and differentiation of basal cells in 2D conditions
at air-liquid interface [74]. These are still not completely defined
and typically contain serum and bovine pituitary extract. More
recently, attempts have beenmade to improve the growth condi-
tions for basal cells in 2D which would subsequently facilitate
organoid experiments.Oneapproachhasbeen to co-culturebasal
cells with fibroblast cells lines previously used for expansion of
epidermis [75]. Another has been to inhibit SMAD signalling
which apparently allows the expansion of basal cells frommulti-
ple organs, including the mouse and human trachea [76]. These
publications raise interesting questions about the signalling inter-
actions of airway basal cells in their in vivo niche which could
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be partly answered using organoids for co-culture
experiments.

The smaller mouse airways consist of secretory club and
ciliated cells. Attempts to grow club cells as spheroids rely
exclusively on co-culture with underlying stromal popula-
tions. For example, isolated club cells could not be grown as
spheres alone, only when co-cultured with an ill-defined fi-
broblast population [77]. Subsequent studies have used simi-
lar co-culture techniques and also highlighted the role of
FGFR signalling, likely between the mesenchymal and epi-
thelial cells in these co-cultures, demonstrating the utility of
such organoid-based co-culture systems for analysing cell-cell
signalling in vitro [45]. However, in all cases, the specific
identity of the mesenchymal component of these co-cultures
is lacking, making systematic analysis of the crosstalk difficult
to achieve. By contrast, it has been definitively shown in vitro
that co-culture as organoids with lung endothelial cells is suf-
ficient to support the growth and differentiation of the putative
BASC stem cells, epithelial cells located in the terminal bron-
chioles that co-express markers of bronchiolar and alveolar
lineages [27••]. This co-culture system has been used to dis-
sect a BMP4-based signalling interaction between the epithe-
lial and endothelial cell types which is sufficient to promote
alveolar linage differentiation. Multiple in vivo experiments
suggest an intimate relationship between alveolar epithelial,
endothelial, and haematopoietic cells, particularly for alveolar
repair, which could be dissected in organoid-based systems
[78–80].

Multiple in vivo and in vitro experiments have shown that,
at steady state, the AC2 cells are the primary stem cell for the
alveolar epithelium [28, 51]. Alveolar epithelial organoids,
“alveolospheres”, have been generated by co-culturing isolat-
ed AC2 cells with a PDGFRA+ fibroblast population, which
possibly corresponds to the currently ill-defined alveolar
lipofibroblasts [28]. This organoid co-culture system has con-
tributed to work showing that AC2 cells are more sensitive to
decreases in telomere length than their supporting stromal
population and that epithelial stem cell failure is the primary
defect in lung diseases caused by telomere syndromes [81].
Further analysis of alveolar organoid co-culture systems will
allow the signalling requirements for alveolar epithelial cell
growth and differentiation to be determined.

An additional, less well-characterised, distal lung stem
cell population contributes to mouse alveolar repair follow-
ing severe injury, for example that caused by influenza in-
fection. The steady-state characteristics of these cells are not
thoroughly defined. However, they have been expanded in
2D, there is consensus that they upregulate the basal cell
markers keratin5 (KRT5) and p63 following injury, they
are likely to be Sox2-positive, and there is some evidence
for multilineage differentiation in organoid culture in vitro
[82–85]. A recent publication has characterised a similar,
probably identical or over-lapping, distal stem cell

population as highly infected by influenza virus, capable of
upregulating KRT5 and p63, and highly proliferative in
spheroid culture when media was supplemented with FGF
ligands, or in the presence of, currently uncharacterised,
mesenchymal cells [46]. This is the first description of a
spheroid co-culture system for the distal lung stem cell pop-
ulation and, although it has not yet been demonstrated to
support self-renewal or differentiation, it is likely to prove
highly useful for future mechanistic studies.

For disease modelling, generating mature disease-specific
human lung cells is particularly important because murine
models often do not completely phenocopy human lung dis-
ease. Methods for culturing human airway basal stem cells at
air-liquid interface to recapitulate airway epithelial organisa-
tion are well-established [86] and have been adapted to in-
clude supporting cells, for example fibroblasts and vascular
endothelium [87, 88]. Human airway basal cells are also high-
ly amenable to growth and differentiation as organoids [25].
They can be efficiently genetically manipulated in organoid
culture [71•], although attempts to further optimise these tech-
niques remain ongoing in multiple labs. Culture of human
AC2 cells as organoids has so far been less successful than
that for mouse [28] and it is not yet possible to self-renew and
differentiate human AC2 cells in 3D cultures.

Conclusions: The Future of Lung Organoid
Research

Organoids have already proved extremely useful for lung
research particularly for the study of adult mouse basal cells.
In this case, they have provided an initial screening tool
prior to pathway functional validation in vivo [26, 70, 72]
and also for working out mechanistic details in a simplified
model system [73]. It is likely that the transition between
using in vitro organoids and in vivo mouse work for differ-
ent aspects of a project will increase in the future. The new
ability to genetically modify organoids in vitro using modern
gene-editing techniques, such as CRISPR-Cas9, will enable
the functional analysis of genes involved in stem/progenitor
self-renewal, differentiation, tissue morphogenesis, and even
disease phenotypes [71•]. The rapid and ongoing application
of organoid technologies to adult lung stem cells and lung
development will undoubtedly facilitate human disease
modelling and the more rapid cellular and molecular analy-
sis of genetic variants that have so far only been identified
as LOD scores in GWAS studies. Moreover, the develop-
ment of using simple assays in intestinal organoids to study
the response of individual cystic fibrosis patients to specific
drugs [89] opens up the possibility of the development of
similar assays for some of the highly heterogenous lung
diseases, such as idiopathic pulmonary fibrosis. These
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exciting possibilities are leading to a renaissance in the study
of human development and human disease.

One question which still needs to be answered is how
complex do we need to make lung organoids for them to
be useful? Throughout this review, we have highlighted the
use of organoid technology for studying epithelial-epithelial
and mesenchymal-epithelial cell interaction. But, should we
be using these experiments to develop defined growth media
which supports epithelial-only organoids? Or, should we be
focusing on the inclusion of multiple cell types in a quest to
more completely model the in vivo situation? The answers
will most likely depend on the specific research question.
However, we are particularly intrigued by the possibilities of
using organoid technology to study the relationship between
the epithelium and innate immune system or even to model
the response to infection. Indeed, a recent report has used
human intestinal organoids both as the first in vitro culture
system for human norovirus and to study the epithelial re-
sponse to infection [90]. A similar approach to study
Pseudomonas infections in lung organoids that model as-
pects of cystic fibrosis, or bronchiectasis, may be highly
fruitful.

The most significant limitations of current research using
lung organoids are the lack of reliable validation by com-
parison to the in vivo cell types and the lack of defined
starting populations. Particularly for human, differentiated
organoids have been validated by marker expression from
the mouse lung literature. An improved understanding of the
numerous cell types in the developing and adult human lung
is required to improve the validation and maturation at-
tempts for lung organoids and will likely require more
single-cell transcriptomics [65, 91]. In particular, a more
reliable survey of the various mesenchymal lung cell types
will facilitate the use of organoids for studying cell-cell
interactions.
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