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Abstract
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We describe the Library Event Matching classification alfpon implemented for use in the N@ v, — ve oscillation measure-
() ment. Library Event Matching, developed in dfdient form by the earlier MINOS experiment, is a powerfulmggh in which
— input trial events are compared to a large library of simadagvents to find those that best match the input event. A layrfe
I_of the algorithm is that the comparisons are based on aliteermnation available in the event, as opposed to highestiderived

+= 'quantities. The final event classifier is formed by examirtiregdetails of the best-matched library events. We disd¢wessdncept,

% definition, optimization, and broader applications of tkgoeithm as implemented here. Library Event Matching islvgeited to
I the monolithic, segmented detectors of MCand thus provides a powerful technique for event discration.
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'O 1. Introduction /L‘—/ Z1l_7 1Lz

g\ Classifying images into a small number of categories is a

_C~ ‘common task in scientific and industrial fields. In particle j D E

O _physics, this task usually involves interpreting partiditec-

“—tor data to determine the type of particles, interactionsjes
cays present. Given the sheer volume of information thabean

~ collected, the data is often first reduced to a set of deriveche

00 tities by running algorithms that pull out key features:stérs,

(O tracks, showers, jets, etc. While this form of lossy comgies

O) .is acceptable in some applications, it is worth exploringthier

O aclassification scheme that uses all of the available irdition

O_ is feasible, even in cases where the data volume is high.

« ~ Inthis article we describe such a classification scheme de-
(O Vveloped to categorize neutrino scattering events recardé®  Figure 1: A sketch of the structure of the N®@detectors. 4 cnx 6 cm cells
LO) ‘NOvA detectors. In the Library Event Matching (LEM) algo- run the length of each 16 m 16 m plane. The alternating vertical and hori-
« rithm, a trial event of unknown type is compared toa |argenumzonta! orientations can be seen. Thgy are filled with quuidtﬂlato_r and_each

.. s " . contains a looped wavelength-shifting fiber (not shown)described in the
ber of known I|brary events to find those events that arernostext. This cut-away sketch is diagrammatic only. The redit deve rounded

= similar to the trial event. The properties of those bestetmad  corners and the ends of the cells are capped for instruniemtid oil contain-
>5 library events reveal the likely nature of the trial eventdiétin- ~ ment purposes. The neutrino beam is incident from the left.

] guishing feature of LEM is that the comparisons are madegusin
the energy depositions directly, to avoid any informatiossl
from calculating higher-level variables. This fundaméptas-
losophy of LEM was developed within the MINOS collabora-
tion for its own neutrino event categorization needs[1},2]3
The LEM version described in this article has substantigédi
ences from its predecessor, many of which are motivateddy th
higher spatial resolution of the N@ detectors.

While we use NOQA as our case study, the approach dis-2. The NOvA experiment
cussed is generalizable and could be usefully applied to any
highly segmented detector, from hadron calorimeters deter The NO/A (NuMI Off-axisve Appearance) experiment stud-
ing jet multiplicity to cubic kilometer arrays collectingntri-  ies the phenomenon of neutrino flavor oscillation [5]. Nigwts

nos from astrophysical sources. As with many machine learn-
ing algorithms, LEM requires a large number of known exam-
ples from each classification category. In particle phyajzs
plications, these would typically come either from an adwh
Monte Carlo simulation or from calibration sources.

Preprint submitted to Nuclear Instruments and Methods A April 20, 2018


http://arxiv.org/abs/1501.00968v2

80 T T 140 T T T T T T 500
- @ ] OE I
B L] 1 B =
B 4 L . F= 400
70~ = — 1301~
- n i I - - -
- I I - I u , L I | | p — 300
= B ] ] 1 = B
o) I ¥ 4 o -
O 607 e I.. ] 01207 I.
B " [ ] m T B R n n — 200
s - | 110 In;l. ': . - =
— ] — - EE_n ||
- T - w . u 100
L . I ] i "
B N B [ ]
| ‘ ‘ ‘ | ‘ ‘ ‘ I | ‘ ‘ ‘ | ‘ ‘ ‘ | ‘ ‘
4980 800 820 840 100 460 480 500 0
Plane Plane
260— ‘ ‘
L (C) ]
L M i
240? Ik | Figure 2: Example simulated events in the MOdetectors. Only one of the
I . 1 two views is shown in each case. Each box represents onenckit gositioned
| B .." 1 according to its plane number (horizontal axis) and cell bem(vertical axis).
T 220l H B The color scale indicates the charge deposited in photoefe; and is common
O B . ” | to all three panels. (a) A CC event, with the electron-induced electromagnetic
I _.-" 1 shower clearly visible. (b) A neutral current event witld The upper track
B - . is due to a proton. This event shows that the two showers fidm yy are not
200l— H always distinct. (c) Av, CC event, with the usual tell-tale long, straight muon
I i | track. Note that the axis ranges are approximately douldethfs panel relative
' p to the first two.
L . i
- .I -
gol L 0t
60 80 100 120 140 160 180
Plane

produced by the NuMI beamline at Fermilab [6] are observedeutrino’s flavor. In the 1 to 3 GeV energy range of MQthis
by a Near Detector on the Fermilab site and by a Far Detectaglectron will be accompanied, with similar probabilitiésy, a
of identical construction located 810 km downstream in Ashproton (quasi-elastic scattering), a nucleon plus a piesomant
River, Minnesota. For the purposes of this article, themieoit  scattering), or a richer hadronic shower (deep inelastttesc
oscillation mode of interest ig, — ve, and the goal of the clas- ing). While nuclear fects blur these crisp definitions, these
sification algorithm is to obtain a sample of electron newtri three scattering types are useful for conveying the vaéty
interactions in the Far Detector with the highest possilfiie e shapes that signal events in M®can take. The-1 GeV elec-
ciency and purity. tron in the final state produces an electromagnetic showhein
The NO/A detectors are constructed from long PVC cellsdetector that has a width of a few cells and runs longitudiinal
filled with scintillator-doped mineral oil. Each of the FaeD an average distance of 2.5 m (40 planes). Figlre 2a shows a
tector's 344,064 cells is 16 m long with rectangular cross se simulatedve CC interaction in the N@A Far Detector.
tion 4 cmx 6 cm. A loop of wavelength-shifting fiber runsthe  The primary mis-identification background comes from
length of each cell, with both ends of the fiber terminating atneutral-current (NC) interactions, particularly thoseendthe
one pixel of a 32-pixel APD array. The body of the 14-kiloton recoil hadronic system containst& Thex® decays quickly to
detector consists of 896 layers, or “planes”, each with 38¥c  two photons, each of which induces an electromagnetic showe
Each plane is 16 mt 16 m square, and the depth of the detectorthat is essentially indistinguishable from an electrodeiced
along the beam direction is 60 m. Alternate planes are afigneshower. NCz° events, taken as a whole, lookfBciently dif-
vertically and horizontally so that three-dimensionabimha-  ferent from signabe. CC events that we can reject them well,
tion can be obtained through combination of the two “views”.but the diferences are sometimes obscured:
The detector has unprecedented granularity for its sizéh wi
one radiation length (38 cm) extending over many cells, ¥e gi
a detailed view of neutrino-induced electromagnetic shiewe
Figure[1 shows a cut-away diagram of the detector’s construc

e The presence of two electromagnetic showers, rather than
one, can reveal a° in the final state. However, if one of
the showers has low energy or overlaps the other in the
detector, it can be missed.

tion.
The signal for thev, — ve oscillation analysis in N@A is e Photon-induced showers are separated from the neutrino
ve charged-current (CC) scattering, which yields a high-gyer interaction point due to the distance traveled by the pho-

electron in the final state that allows one to tag the incident  ton prior to its conversion. This gap is a tell-tale sign of
2
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T 3. Library Event Matching concept
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At the heart of the LEM algorithm is the comparison of each
unknown trial event to a large number of known library events
with the comparisons based on low-level information caédc
by the detector. For N@A, this means using the calibrated en-
ergy depositions in all the detector cells directly ratheant
forming higher-level objects such as showers and tracks fro
those.

Once the very best matches are found (here, the best 0.0001%
of all library events), their known properties are used ti- es
mate the properties of the trial event. In the simplest eersif
— LEM, the fraction of the best matches that are signal eveanis ¢

1 2 ‘ é 4 i imi A A I
True visible energy (GeV) be used as the discriminafit. Appendix A.1 discusses the rela
tionship between LEM and other machine learning techniques
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Figure 3: Signal and background distributions of visiblergry expected in the ) ] o
Far Detector sample. Thefect of neutrino oscillations is included. Visible 3.1. The matching metric: motivation

energy is defined as the inciden_t neutrin(_) energy ex_cepieirmbe of neL_JtraI When Comparing two events. a metric is needed to quantify
current events where the outgoing neutrino energy is sttbetta Theve Sig- N - '
nal to be identified by LEM is shown in red. The neutral curreptcharged ~ how similar they are. Itis instructive to look at the MINOSsea
current, and intrinsic beam charged current components are blue, black, andbriefly, as the situation there is somewhat simpler|[1| 2].3, 4
magenta respectively. The MINOS detector has a segmented structure analogous to
that of the NQA detector, but theféective spatial resolution for
i ) events of interest is significantly lower. A CC signal event in
a photon, but in some cases the gap will be too small tq,N0s involves only a couple dozen active “strips” (the ana-
resolve. The conversion length in M@is 50 cm. logue of NO/A’s cells), and these active strips are clustered in a
relatively compact pattern. Thus, two events with the same u
e Photon-induced showers begin with two particles (an elecderlying particle kinematics have a good chance of havieg-d
trorypositron pair) rather than one, but these cases can erttal (or near-identical) arrangements of active stripse Tead-
up indistinguishable given the energy resolution of the de-out electronics report the number of photoelectrons detkict
tector. each active strip. Since this charge measuremdftersufrom
shot noise (typical charge8 photoelectrons), strips with iden-
_tical energy depositions may reportférent charges. The level
d)'f difference is governed by Poisson statistics.

These details guided the form of matching metric used by
MINQOS, which can be thought of as the likelihogtthat the
two events’ recorded charges represent the same undeelying
ergy depositions:

e The energy lost to the outgoing neutrino in NC scatter
ing leads to reconstructed energies lower than those of si
nal events. However, interactions from dfitiently high-
energy neutrino or with a large energy transfer can fall in
the signal region of 1 to 3 GeV reconstructed energy.

Figure2b shows a simulated NC event with%a strips
Additional background comes fromy CC scattering, which log L = Z log [f P(ai|/l)P(bi|/1)d/1] , 1)
produces a muon in the final state. The muon leaves a long track i
of actiyity in the detector with a char:_;\cteristic energyalson wherea; is number of photoelectrons registered by ithetrip
per unit pathlength. These are readily removed from the 8Mp ¢ o\ ent A,b; is the same for event ER(n|.0) is the Poisson
due to the clear muon track except in cases where the muon ﬂﬁobability of observing given meant, and the sum runs over
low in energy or is lost amongst other activity. In these 6ase 4| girips active in at least one of the events. A higherfog
the t_)ackground is S|m|Ia_r to NC interactions, with neutiahs 5, 4 pair of events means a better match. Bef6ris calcu-
playing the same role. Figuiié 2c shows,&CC example. lated, the events, which in general occur iffefient parts of
The NuMI beam also includes a 2% contaminationv@f  the detector, are spatially aligned by shifting them so their
Thesev, interact identically to there from oscillations and  charge-weighted mean strip positions, rounded to the seare
thus constitute a background to the— ve oscillation measure-  strip, overlap.
ment. However, their rate is low and their energies are some- |n the MINOS metricZ, displaced energy depositions in the
what higher. Figurgl3 illustrates the energffeliences among two events do not get their charges directly compared. Taiobt
allthe event classes before any selection cuts have beée@pp good matches for a trial event, the library must be large ghou
Since theve CC signal falls within a known energy range, to span minor variations in active strip positions for noatiy
we can safely remove lower and higher energy events up fronequivalent events. This is possible in MINOS given the ladit
For all figures and tables that follow, we require events weha spatial resolution of the detectors fay CC events. That is,
reconstructed visible energies between 0.5 GeV and 4 GeV. the library can be expected to give reasonable coverage of al
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possibilities. Requiring exachargeagreement across the0
active strips, though, would be combinatorically overvahielg.
The Poisson factors take care of this, with acceptalffgidint
charges able to contribute appropriately to the match score
The NO/A detectors are significantly more finely-grained
than those of MINOS. This makes event discrimination easier
principle since more details are visible, but it makes thevab
matching metric impractical. It is much less likely that teep-
lent” activity in the trial and library events will fall on thsame
cells. What is needed is a matching metric that rewardsigctiv
in nearby cells without requiring them to lie directly on top

matched pair with charges far away from one another will have
large energyE ~ Ea + Eg.

Eq. (4) can be recast in terms of one set of charges embedded

in the field of the other:

cells

Eag = _Zaivi 5)
i
cells bij
whereV, = Z T (6)

J

one another. A library event identical to the trial eventidtdo  The advantage of this formulation is thatan be precalculated

still be a perfect match, but events with similar chargfset
by a cell or so should still score well.

for each trial event, along with the self-energies of thal tind
library events. When matching against a large number of li-

The metric we use draws its motivation from electrostaticsbrary events usind[5), the complexity is linear in the nundfe
Two Coulomb charge distributions of similar shape, but withcharges rather than requiring a double sum over both tridil an

opposite signs, will have a low electrostatic potentialrggpe
when overlaid and examined together, as the attractiondsatw
the opposite signed charges counters the internal repudgio
the like-signed charges. Two overlaid charge distribigiaith
dissimilar shape gter the internal repulsion but lack the benefit
of mutual attraction, leading to a large potential energye®

library charges.

3.2. The matching metric in N@&

While the NO’A matching metric is inspired by electrostat-
ics, there is no reason to expect that the precise form abitive w

the electrostatic analogue to what follows, we use “enetgy” yield the best sensitivity. We incorporate the followingnge
refer to the LEM match score for the remainder of the articlegjizations.

unless otherwise stated. Lower energies correspond terbett
matches.
The match energy is defined as

EZEA+EB+EAB, (2)

whereE, is the self-energy (repulsion) of event A's chardges,

is the self-energy of event B's charges, &g is the (negative)
energy due to the the/B attraction. The charges are taken to
be the recorded energy depositions in thevd@ells. Treating
the electrostatic analogue as exact for a moment, the setfyg
terms are given by

cells

1 3a;
Ea== —_—, E
A ZZJ.: Fij B

with & (b;) the recorded deposition in ti& cell of event A
(event B) and witlrj; the distance between cellandj. The

rij = 0 case is handled again with an electrostatic analogue by
distributing all charges uniformly across their individigalls.

(Seq Appendix AP.)

The interaction term is given by

~ 1ce||s b|bJ
2 g Fij ’

®3)

cells 'bj

EAB=—Z:a|

4
N @
Before evaluating this sum, the events are globally aligmi¢ial
one another according to a separately reconstructed atitzma
vertext]

A perfect match, in which events A and B have identical de-
positions in identical cell positions, would yiele=0. A poorly

1alignment by charge-weighted mean cell position was alseliet and

e Above,rj; is calculated as the Euclidean distance in terms
of the number of planeap;; and number of celldc;;.
However, NGQA events are boosted forward and cover
many planes longitudinally but relatively few cells trans-
versely, so we assignfiiérent relative importance to sep-
arations in the two directions.

e Ther~! falloff with distance is generalized to®.

e The importance of larger charges relative to smaller ones
is adjusted by raising all charges to a poywer

The resulting form of the matching metric still follows E)(
but the self-energy and interaction terms are now given by

cells

% Z biBTijb[jf (7)
i

1 cells
22.4T. B
ij

cells

_Zagui

Ea

(8)

Eas

with the transfer matriX;; and fieldU; given by

AP2 A\ 2

Tij [—2” + 2” ] (9)
O'p ¢

cells

U = > Tyt (10)

j
The electrostatics version is recovered by setting
op=0c=a=8=1. (12)

gives similar classification performance.
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Figure 4: Example of LEM matching. On the left is a trigl CC event, on the right the best match found. The central paf@ws the potentid) in which the
library events are placed in order to calculate the matchggn&he upper panels show one view, and the lower panels gfoather.

We ran toy experiments with fierent values of these parame- ilar to it, as quantified by the metric abcﬂreFigureIZ shows
ters and calculated a figure-of-merit for each to optimize pe an example trial event along with its event potentiahnd its

formance. The parameters chosen were: best-matched library event.

The library events are generated ahead of time using the full
op = 0286 (12) NOvA Monte Carlo simulation chain including realistic neu-
oe = 0095 (13)  trino flux, cross sections, and detector components. The flux

o = 025 (14) is calculated using a FLUKALUGG implementation of the

beamline elements|[7], the neutrino interactions are sited|
by GENIE @], and particle propagation through the detector
geometry is handled by GEANTY4 [9]. Simulated energy depo-
sitions in the liquid scintillator are converted into exjegtsig-
Hals by NQ'A electronics and data acquisition simulation code.

B 05. (15)

The first two parameters validate the intuition that transse
differences should be considered more significant than longit

d!nal ones. The third parameter spe_cmes/ d/d falloff with The registered signals are corrected for light attenuatiahe
?r:;a&%e,siil]ovlver than the elec;rostatlc ?nalpgue_. B (rroﬁe cells’ fibers using standard N@ calibration procedures.

) pi€ presence or absence o actl\_/|ty In-a cell CoN- N events containing neutral pions are the dominant mis-
veys mfo_rmanon rega_rdlt—*_:ss of‘|‘ts cf,}arge. Hav'@al MOVES i dentification background owing to the electromagnetiorsho
the metric towards this binary “goff” interpretation and away ers fromn® — yy. Thus, we supplement the base background

from a charge-proportional weighting. library sample with ar®-enriched library sample. To build this
enriched sample, we apply a cut that selects out only thase ne

. tral current events with 2° present in the final state as reported

4. The library by GENIE.
The library events are generated according to the expected
The library consists of 77M simulated neutrino events, ofy, flux (for background) or a 100%, — ve transmutation (for

which 18M are signale CC events, 29M are backgroumgd  signal), without regard to any actual probabilities for e
CC and NC events, and 30M axé-enriched NC background
events. Each trial event that LEM classifies is compareddseh 2This statement is modified in S€CT7.1 when we discuss speidiop-
77M events to find the 1,000 library events that are most simtions.
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flavor change. Oscillations are introduced into the librarywheren is the match indexE, is the energy of the" best

later by event weighting. This is discussed in 9éc. 5 belowmatch for the trial event, anBioqo is the energy of the final

describes the oscillation probabilities used (1000") best match. The optimized values used.fandy in
While increasing the library size beyond the 77M eventsNOvA are

would provide incremental improvement in classificatiom-pe

formance, we observe that these gains enter logarithmicall 4 = 667 17

with the number of library events once the library igfstiently v = 10. (18)

large. In an earlier version of the algorithm, we found thai-d

bling the library size provided only 1% gain in physics sensi

tivity. In light of the computational requirements discegsn

The typical ratio of weightsv; /W, is ~0.1%, indicating that
the most important matches are captured within the first-thou

Sectior, additional library events are not worthwhileéor ~ Sand- _ _ o

application. In practice, the weight must also include the oscillatiooipr
abilities alluded to earlier:

4.1. Event flipping Wn = W POSC (19)

To good approximation, flipping an event transversely in one
or both views produces an equally valid event. We use sucWwhereP;*¢is the oscillation probability of mataf, as described
flipping to efectively quadruple the size of the library when the in[Appendix_A.3.
matching is performed. Each library eventis used in eacheft  All sums below that are indexed Ioyrun over the match list.
four possible configurations, and the best of the fourismeth ~ For notational convenience we also defive= },w,. This
This symmetry is not quite perfect in the N® detectors. At-  weighting scheme is used for all five quantities formed from
tenuation in the readout fibers leads to subtiffedient charge the best-match list. The first is the weighted fraction ofsig
resolutions and thresholdfects on transversely opposing sides matches,
of an event, and NuMI neutrinos at the Far Detector enter at a 1
3° upwards angle. Nevertheless, the best-scoring matches com  fsig = — Z Wi , (20)
from the four possible flipped configurations with nearly &qu w n, sig

robability: 26% from unflipped events, 50% from events with . . :

zither ongof the two viewspﬁipped, and 24% from events Withwhere this sum includes only those terms due to signal maitche
both views flipped. 5.2. Mean hadronic y

Signal events in which the outgoing electron carries only a
small fraction of the incident neutrino’s energy will lookny

As library size increases, the fraction of an event's bestuch like NC background events. The kinematic quantiigr
matches that are truly signal tends toward the probabtiigy t rather, 1-y) measures this fraction:-ly = Ke/K,, where we've
the trial event itself is signal. Further, all of the infortiem  US€dKe andK, as the outgoing and incoming lepton energies
available in the trial event is used when determining thisbpr ~ t0 avoid confusion with the match energiés If a trial event
ability. Itis in this sense that LEM is optimal. matches well to signal events with highthis can suggest that

For a library of finite and practical size, though, this signa the trial event is in fact a high-NC event. A second input is
fraction alone does not contain the full information extate. ~ the meary for the best matches:

Other statistics constructed from the details of the bestines 1

may, for example, indicate that the matches are drawn froman ) = {y Z WhYn - (21)
area of sparse library coverage and are thus less reliable. T n

most powerful approach given a finite library is to construct
several statistics describing the matches and to feed these
one of the standard multivariate analysis techniques t@eixt Matched charge fraction is an independent measure of the
the final classifier. In LEM, five variables are constructeahfr  quality of the library matches, separate from the matchagner
the 1,000 best library matches and are used as inputs to-a de€or each triginatch pair, this is the quantity of charge that has
sion tree, along with the calorimetric energy of the triadety  a counterpart on identical cells in the two events dividedhay

as a sixth input. total charge in the two events:

5. Decision tree

5.3. Mean matched charge fraction

5.1. Weighted fraction of signal matches fo = 2 Y min(a;, by) ‘ 22)
The basic quantity measuring what fraction of the best Y + by)

matches are signal events can be improved upon by We'ght'_nﬂwe weighted average of the matched charge fraction over all
up the truly best matches over the lesser ones when catoylati the matches yields the next input:

the signal fraction. We use the weighting

1
Y —
W, = exp(—ﬂ( & ) ) : (16) o) = Z Wnfon. (23)

1000
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Figure 5: The six decision tree inputs described in the t€ke red curves show the distribution of signal events. The,bblack, and magenta curves show the
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these quantities as tani{ fsig) and tanh®(fen;) to keep the signal and background curves visible on the sentieal scale.

5.4. Match energy gierence 5.7. Choice of a decision tree, and figure of merit

. . , There are many multivariate techniques capable of combin-
This quantity measures whether the signal or backgroung,q these six input quantities into a single classifier otitite
maiches are the better maiches on average. Itis ffefice investigated artificial neural networks, support vectochiaes,

of the weighted mean energy of each class of matches: and decision trees. An ensemble decision tree yielded tsie be

S WEn Y WoE performance of the approaches tried. One problem with other
_ n, sig V¥n n_ n, bkg YW¥ntn

D = (24)  techniques is that the figure of merit (f.0.m.) that, for epten
2in, sig Wn 2, bkg Wh artificial neural network training aims to minimize is the ame
squared-error of the classifier varialle
5.5. Enriched fraction sig bkg

fom = >\(1-0?+ > &, 27)

The final match list quantity, similar in constructionftg,, is
the weighted fraction of signal matches present among the si

nal andr°-enriched matches.¢., excluding the non-enriched where the sums run over the signal and background training

samples. However, the figure of merit relevant to an experime

background), ; . .
g ) measuring the magnitude of a signal excesger a background
S sigWh b with Poisson fluctuations is
fenr = - . (25) S
Zn, enrWn + Zn, sian f.om. = . (28)
Vs+b
5.6. Total calorimetric energy If events are binned according to, say, the classifier outpat

generalization is simply to sum in quadrature the signifiesn
NC backgrounds skew heavily to low visible energy thanksn the individual bins:
to the energy removed by the exiting neutrino. The sum of all
depositionga;} recorded in the trial event,

f.om. = (29)
cells
Ecal = Z g, (26)  While training a decision tree classifier, if the sample igad
i at each step into subsamples 1 and 2 so as to maximize
is included as a final input so that the classifier knows ther pri § §

expectations of signal and background. s tb  Saby (30)



L
— Vv, signal
—— Neutral current
—V, CcC
—— Beamv, CC

100

Purity (%)

Events / 1.8x10%* POT

20f—

L x ==

o 0.2 0.4 0.6 0.8 T T, E—T 80 100
LEM output Efficiency (%)

=
o

Figure 6: The distribution of the LEM output variable fay CC signal events  Figure 7: Hiciency and purity of thes candidate sample selected by LEM
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(black) and intrinsic beanve CC (magenta). In order to make the details s/ /5 b, and the solid circle indicates the result of the optimum cut

in the signal-like region visible, thg-axis truncates much of the background
peak. 95% of neutral current events and 98%pfcharged current events
have LEM< 0.15. The distributions are scaled to a nominal 3-year NuMI ex-

posure([5] of 18x10?° protons-on-target. 7. Computational optimization

7.1. Speed
then the performance of the full classifier is trivially aptzed While each individual energy calculation can be performed
with respect to the figure of merit in EG_{29). very quickly, classifying a single event takes some timesgiv

The final classifier output is a voting ensemble of 1,000 de:[he large size of the library. For the N@ application, a sin-

- . le event must be treated in a second or so, which is the time
cision trees each trained on a randomly chosen half of the fu ; ;
. . . scale required by other steps already performed during™NO
training sample. The ensemble technique protects agaiest o

- . . . event processing. Without specialized hardware to runrihe i
training, a feature that we confirmed by evaluating the diass . L
) ner loop, techniques to manage the LEM matching time focus
performance on independent control samples.

on reducing the number of energies that need to be calculated
We achieve a significant speed-up by introducing a library
“index”. If trial event A matches well to library everi, A will
o likely match well to other library events that are, themsslv
6. Classification performance good matches t®. Similarly, if A andB match poorly, ther
will likely match poorly to library events similar tB.
A library index is formed by drawing 10,000 events uni-

Figure[® shows the distribution of the six input variables fo formly from the full library and matching each of these to the
all event classes in the N@® v, — ve analysis. Figurgl6 shows full library. For each index event, a list of its 1,000,00Gte
the final LEM classifier output. Figufé 7 shows the sigrfate Matched library events is saved. This process happens ahead
ciency and purity obtained with various cuts on the LEM out-Of time, at library creation. When a trial event is classifiéds
put. All curves come from Monte Carlo simulation of the ex- compared first to the 10,000 index events to find the single bes
pected NQA data set. We choose the cut on the LEM outputmatching index event. The trial event is then compared anly t
variable that maximizes the figure-of-merit in EG.](28). Whe the 1M sibling events of that index event, reducing the total
applying LEM in a full experimental setting, one can fit the-ou number of energies calculated per trial event from 77,000,0

put distribution to gain additional discrimination power. to 1,010,000 — a significant speed improvement that takes the

. r trial matching time from 97 s down to 1.7 s on a 2.3 GHz
Table1 sh th ted ber of I and back i, ;
a SHOWS the expecied NUMPDEr o signa” and backgrou D Opteron processor. Empirically, we find that 85% of the

events selected by the optimum LEM cut. The sigratiency ial s “true” th dt tch it
is 55% for a background mis-identification rate of 2.0%. The flal events frue- one-thousand top matches are captui

muon track ofy, CC events keeps their mis-identification rate this |nde>.<ed approach, and we find no noticeable degradation
particulary low. Background beam events are selected with a the physics performance.

lower dficiency than signal, events. This is possible due to the
different underlying energy spectra of the two classes. As the
is no absolute metric by which to judge the performance of the The speed optimization above is what allows the use of a
LEM classification algorithm described here, we note simply77M event library. However, such a large library strains mem
that the performance shown is excellent for the physicssgmfal ory resources. The full library is too large3 GB each for
NOvA [B]. the library and index) to read from disk for each event, yet it

r&2. Memory



vesignal Tot. bkgd., NC v, CC Beamv,CC
No selection 105 1332 | 734 573 25
LEM 58 27 14 4.6 7.9
Efficiency 55% 20% | 2.0% 0.8% 32%

Table 1: Number of events expected in each event categdiglliniand again after an optimal LEM cut assuming a nomingear NuMI exposure of 8 x 107
protons-on-target. The background is shown both as a tetakdl as broken down into NG, CC, and intrinsic beame CC components. The bottom row shows
the dficiencies for selecting events in each category. The “nasete row and the ficiencies derived from it count only those events with retmiesed visible
energy between 0.5 GeV and 4 GeV.

is larger than the typical per-core memory allocation om gri described above. More broadly, LEM can be applied to com-

computing nodes. pletely diferent particle detectors or imaging systems in an ar-
Thus, the library is converted from its original high-lef@l-  ray of fields and industries, wherever one needs to classiy fi

mat into the memory representation used by a running jots Thigrained images of objects whose visual characteristicg imar

representation includes the self-energy of each eventcdhe known ways.

version inflates the library slightly to 131 GB, but the adveaye

is that it can now be shared between running processes. Eag@y. aAcknowledgments

parallel matching job uses thmap () system call to make the

contents of this file visible in its address space. The mapisin ~ The authors thank the N@ collaboration for use of its

marked read-only, so the kernel shares the pages betweba all Monte Carlo simulation software and related tools. Thiskvor

running processes. For example, on a 64-core server, the metyas supported by the the US DOE under award de-sc0006543.

ory requirement to run 64 matching jobs is still only 131 GB,

equivalent to an unshared 2 GB per core. In case of memorgppendix A. Additional technical notes

pressure, the kernel will discard pages, knowing that theey c

be retrieved from disk (that is, the library file essentialbts A few technical notes are included in this Appendix so as not

as swap space) although this will significantly impact perfo to break up the discussion in the main text.

mance. _ . T .
Appendix A.1l. Relation to other classification techniques

If fsig and fenr were calculated unweighted, then those vari-
8. Other information available in the match list ables would bé&-nearest-neighbors classifiers, albeit with very
large input vectors. With the weightg, applied, they act as

In addition to signal-or-background classification, the de kernel density estimators. Note that

tailed truth information available in the list of best magstal- = Ig | B T B3 | B
Z( i i) i ( i j)
ij

lows other information about the trial event to be inferr@de (A1)

could extract probabilities for fferent interaction modes, the

inelasticity, and so on, without requiring any independeat is a metric for the space of possible event images. Thatss, di

construction. An application that has been pursued is ttie es tances defined in this way obey the triangle inequality. For a

mation of the incident neutrino energy fiyCC events. Simply  Gaussian kernel in this space one would expgct exp(-E),

by averaging the true neutrino energies of the best sigmalrly ~ which contrasts with the optimal value £ 10 found in prac-

matches and calibrating the resulting estimator, we aehéev  tice. Similarly(y) is an estimator for the true value giusing

energy resolution of 8.8% on signal events selected by the oshe same kernel.

cillation analysis, competitive with other energy estioratin Methods exist to ficiently find nearest-neighbors in general

NOvA. metric spaces without having to rely on heuristics such as th
library index in Sectiofi 711. Testing of a vantage-poing{rE)]
indicated its performance wa#fected by the curse of dimen-

9. Summary sionality. A large fraction of the nodes would have to be srde
during a typical search.

The Library Event Matching algorithm compares input trial _ _

events to a large library of known events using all the infor-APP€Ndix A.2. Energy calculation when# 0

mation available, making LEM an optimal classifier given a The transfer matrix elemenk; as written in Eq.[(9) di-

sufficiently large library. The N@A implementation of LEM ~ Verges when= j sinceAp; andAc; are zero. Thus, for nearby

has demonstrated excellent performance in separagimig- ~ Cell pairs &p;; <5 andAc;; <5), the energy calculation is per-

nal from the key backgrounds, and a few simple optimizationdormed as if the charge is distributed uniformly over eadh ce

have maintained practical computational requirementpities With

the large number of library events used. Within thexd@on- 1111

text, the LEM technique has potential applications fronorec Tij = f ff [rij(X,y, u V)]fadxdydu dy (A2)

struction of the hadronic system to the event energy measure

9
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where &, y) and {,v) scan over the areas of celland j and
wherer;; here is a generalization of the discrete distance used
in the main text:

Apij +x—Uu\?> (A +y—V\?
rj(%y, u,v) = \/( Pij * X u) +( CJ:;y V) (A3)

O—p o]

For more distant pairs the simplified form of the transfernxat
givenin Eq.[(9) is sfiicient.

Appendix A.3. Neutrino oscillation weights

The retained matches are weighted according to [EG. (19),
which includes the probability for flavor oscillation. Theop-
abilities used are

P(v,—ve) = sir?6p3sin?26;3sin? (127;;“2") (A.4)
P(ve—v,) = sir6msir? 2913sin2(1‘27;;mzl‘) (A.5)
P(v,—v,) = 1-Sir?20;3sir? (&ém&) (A.6)
P(ve—ve) = 0, (A.7)

whereL =810 km is the oscillation baseling, is the neutrino
energy in GeV, and the oscillation parameters are taken to be

613 = 9.2° (A.8)
03 = 385° (A.9)
AP = 235x107°%eV?. (A.10)

These oscillation probabilities are first-order approxiotes to

the full expressions. This is both for practical reasonse- th
second-orderféects are poorly determined and are in fact what
NOvA aims to measure — and because there is no requirement
for the library have any particular distribution of eventsit.
The second orderfiects can pull the probabilities higher or
lower, making this weighting a reasonable middle ground for
the library. The library is also made devoid of intrinsicfrom

the NuMI beam by setting that survival probability to zero.
The overall prefactor on the, — ve (signal) line relative to
the background lines actually does not enter in practiceesin
the signal, background, amfi-enriched background classes are
scaled to have equal total weight in the library.
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