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ABSTRACT 37 

 38 

 Little is known about the fractionation of Li isotopes during formation of biogenic 39 

carbonates, which form the most promising geological archives of past seawater composition. 40 

Here we investigated the Li isotope composition (δ7Li) and Li/Ca ratios of organisms that are 41 

abundant in the Phanerozoic record, mollusks (mostly bivalves), echinoderms, and 42 

brachiopods. The measured samples include (i) modern calcite and aragonite shells from 43 

variable species and natural environments (13 mollusk samples, 5 brachiopods and 3 44 

echinoderms), and (ii) shells from organisms grown under controlled conditions at various 45 

temperatures. When possible, the mollusk shell ultrastructure was micro-sampled in order to 46 

assess intra-shell heterogeneity. In this paper, we systematically characterize the respective 47 

influence of mineralogy, temperature, and biological processes on the δ7Li and Li/Ca of these 48 

shells and compare with published data for other taxa (foraminifera and corals). 49 

 Aragonitic mollusks have the lowest δ7Li, ranging from +16 to +22‰, echinoderms have 50 

constant δ7Li of about +24‰, brachiopods have δ7Li of +25 to +28‰, and finally calcitic 51 

mollusks have the largest range and highest δ7Li values, ranging from +25‰ to +40‰. 52 

Measured brachiopods have similar δ7Li compared to inorganic calcite precipitated from 53 

seawater (δ7Li of +27 to +29‰), indicating minimum influence of vital effects, as also observed 54 

for other isotope systems and making them a potentially viable proxy of past seawater 55 

composition. Calcitic mollusks, on the contrary, are not a good archive for seawater paleo–δ7Li 56 

because many samples have significantly higher δ7Li values than inorganic calcite and display 57 

large inter-species variability, which suggest large vital effects. In addition, we observe very 58 

large intra-shell variability, in particular for mixed calcite-aragonite shells (over 20‰ 59 

variability), but also in mono-mineralic shells (up to 12‰ variability). Aragonitic bivalves have 60 

less variable δ7Li (7‰ variability) compared to calcitic mollusks, but with significantly lower 61 

δ7Li compared to inorganic aragonite, indicating the existence of vital effects. Bivalves grown 62 

at various temperatures show that temperature has only a minor influence on fractionation of 63 

Li isotopes during shell precipitation. Interestingly, we observe a strong correlation (R2=0.83) 64 

between the Li/Mg ratio in bivalve Mytilus edulis and temperature with potential implications 65 

for paleo-temperature reconstructions. 66 

 Finally, we observe a negative correlation between the δ7Li and both the Li/Ca and 67 

Mg/Ca ratio of calcite mollusks, which we relate to biomineralization processes. To explain 68 

this correlation, we propose preferential removal of 6Li from the calcification site of calcite 69 
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mollusks by physiological processes corresponding to the regulation of the amount of Mg in the 70 

calcifying medium. We calculate that up to 80% of the initial Li within the calcification site is 71 

removed by this process, leading to high δ7Li and low Li/Ca in some calcite mollusks 72 

specimens. Collectively, these results suggest that Mg (and thus [Li]) are strongly biologically 73 

controlled within the calcifying medium of calcite mollusks. More generally, the results of this 74 

study show that brachiopods are suitable targets for future work on the determination of paleo-75 

seawater Li isotope composition—an emerging proxy for past weathering and hydrothermal 76 

processes. 77 

 78 

 79 

1. INTRODUCTION 80 

 81 

 A growing body of evidence suggests that the Li isotope composition of seawater may be 82 

a promising proxy for tracing past weathering and hydrothermal conditions at the Earth’s 83 

surface, because the primary inputs of Li to the oceans are from rivers and the high-temperature 84 

hydrothermal flux from ocean ridges (Chan et al., 1992; Hathorne and James, 2006; Huh et 85 

al., 1998; Misra and Froelich, 2012). Furthermore, the residence time of Li in the ocean is 86 

about 1–3 Ma, and the marine Li isotopic composition (δ7Li = [(7Li/6Li)/(7Li/6Li)L-SVEC – 1] 87 

×1000; expressed in ‰) and concentration are spatially uniform (Angino and Billings 1966). 88 

Published Li isotope records in foraminifera (Hathorne and James, 2006; Misra and Froelich, 89 

2012) and bulk carbonates (Lechler et al., 2015; Pogge von Strandmann et al., 2013; Pogge von 90 

Strandmann et al., 2017) are characterized by large (several per mil) δ7Li variations. These 91 

changes have been attributed to past changes in weathering congruency, intensity, or rates 92 

(Bouchez et al., 2013; Froelich and Misra, 2014; Li and West, 2014; Wanner et al., 2014). 93 

 The relationship between Li isotope fractionation and chemical weathering on continents 94 

has been well-studied, and although details are still debated, general trends are understood 95 

(Bagard et al., 2015; Dellinger et al., 2015; Dellinger et al., 2017; Huh et al., 2001; Pogge von 96 

Strandmann and Henderson, 2015; Wanner et al., 2014). Dissolved Li transported to the 97 

oceans is primarily derived from the weathering of silicate rocks (Huh et al., 2001; Kısakűrek 98 

et al., 2005), which generates alkalinity and, unlike carbonate weathering, sequesters CO2 in 99 

carbonate rocks over geologic timescales (>10-100 kyrs). Li isotopes are strongly fractionated 100 

during water-rock interaction, with 6Li being preferentially incorporated into clay minerals 101 

while 7Li is concentrated in the dissolved phase (Huh et al., 1998; Pistiner and Henderson, 102 
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2003; Chan et al., 1992). As a result, dissolved riverine δ7Li varies as a function of the ratio of 103 

primary mineral dissolution to secondary mineral formation (e.g. Pogge von Strandmann and 104 

Henderson, 2015), and the evolution of δ7Li and Li/Ca ratios of the ocean may provide 105 

information about paleo-weathering regimes.  106 

 Reconstructing Li isotopic composition of seawater requires a sedimentary archive and 107 

carbonates have been a preferred target so far (e.g. Misra and Froelich, 2012; Pogge von 108 

Strandmann et al., 2013; Vigier et al., 2007). However, the fractionation of Li isotopes during 109 

biogenic carbonate precipitation has been explored mainly in foraminifera and corals but is less 110 

understood in other organisms. Laboratory experiments inform general understanding of Li 111 

incorporation into inorganic carbonates. In aragonite, Li+ is thought to substitute for Ca2+ in 112 

the mineral lattice, whereas in calcite, Li+ occupies an interstitial location (Okumura and 113 

Kitano, 1986). The Li/Ca ratio of inorganic carbonates is influenced by the Li/Ca ratio and/or 114 

the Li concentration of the fluid from which it precipitates (Gabitov et al., 2011; Marriott et al., 115 

2004b, 2004a). The Li/Ca ratio of inorganic calcite decreases with increasing temperature 116 

(Marriott et al., 2004a,b). An increase in Li/Ca with salinity was also observed for calcite but 117 

not for aragonite (Marriott et al., 2004b) but the Li/Ca ratio of inorganic aragonite increases 118 

with precipitation rate (Gabitov et al., 2011). In addition, the isotopic fractionation factor 119 

between inorganic calcium carbonate and solution is strongly dependent upon the carbonate 120 

mineralogy, with the fractionation factor between inorganic aragonite and seawater, αaragonite-121 

seawater = 0.988 to 0.993 (corresponding to a Δaragonite-seawater of –7 to –12‰) and the fractionation 122 

factor between inorganic calcite and seawater αcalcite-seawater = 0.998 to 0.995 (Δcalcite-seawater of –123 

2 to –5‰; Marriott et al., 2004a,b; Gabitov et al., 2011).  124 

  A number of studies have investigated the Li/Ca ratio of biogenic carbonates, showing 125 

that the incorporation of lithium depends upon various parameters that include temperature, 126 

salinity, growth rate, carbonate ion concentration, dissolved Li concentration, and biology (also 127 

called “vital effects”). Temperature appears to be a major control on the Li/Ca ratio of 128 

brachiopods, which show increasing Li/Ca with decreasing temperature (Delaney et al., 1989), 129 

similar to that observed for inorganic calcite. However, no systematic trend between Li/Ca 130 

and temperature has been observed for other biogenic carbonates. Instead, culture experiments 131 

and core top studies have shown that the Li/Ca ratio of foraminifera is influenced by the 132 

solution Li/Ca ratio, DIC concentration, and possibly the growth rate (Delaney et al., 1985; 133 

Hall and Chan, 2004; Hathorne and James, 2006; Lear and Rosenthal, 2006; Vigier et al., 134 

2015). In contrast, the Li/Mg ratio of corals and foraminifera is more strongly related to 135 
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temperature than Li/Ca and has been recently proposed as being a reliable proxy for ocean 136 

temperature (Bryan and Marchitto, 2008; Case et al., 2010; Montagna et al., 2014; Rollion-137 

Bard and Blamart, 2015; Fowell et al., 2016). The Li/Ca ratio of mollusks might be controlled 138 

by a combination of vital effects, growth rate, changes in ocean productivity, and/or dissolution 139 

of riverine fine sediments within the ocean (Füllenbach et al., 2015; Thébault et al., 2009; 140 

Thébault and Chauvaud, 2013). 141 

 In contrast to Li elemental ratios, Li isotope ratios have been investigated only in modern 142 

foraminifera and corals. Modern corals have Li isotopic composition ranging from +17 to 143 

+25‰ (Marriott et al., 2004a,b; Rollion-Bard et al., 2009), significantly fractionated relative to 144 

seawater but with an average δ7Li similar to inorganic aragonite (around +19‰). The intra-145 

specimen variability for corals is relatively low, less than ±2‰, but small systematic differences 146 

exists between species (Rollion-Bard et al., 2009). Present-day planktic foraminifera δ7Li range 147 

between +27 and +31‰ (Hall et al., 2005; Hathorne and James, 2006; Misra and Froelich, 148 

2012) with a median value of 30‰, very close to modern seawater (31‰), making them targets 149 

for past work reconstructing the Li isotope composition of the Cenozoic ocean (Hathorne and 150 

James, 2006; Misra and Froelich, 2012). However, Li isotopic fractionation in foraminifera 151 

may depend upon seawater dissolved inorganic carbon (DIC) concentration of seawater (Vigier 152 

et al., 2015). In addition, well-preserved planktic foraminifera are not very abundant in the 153 

geological record prior to the Cenozoic (Wilkinson, 1979). Finally, Ullmann et al. (2013b) for 154 

belemnite and Pogge von Strandmann et al., (2017) for brachiopods have shown that the shell 155 

of these organisms may preserve Li isotope composition of the ocean over geological timescales.  156 

 In this study, we focus mainly on characterizing the δ7Li and Li/Ca of these organisms 157 

(particularly bivalves and brachiopods), since these may be some of the most important 158 

Phanerozoic paleoenvironmental bioarchives, and, also present a few measurements of 159 

echinoderm. Bivalves, brachiopods, and echinoderms are present in widely distributed habitats 160 

in the modern-day ocean, are often well-preserved during diagenesis, and are abundant in the 161 

Phanerozoic record (Immenhauser et al., 2016; Veizer et al., 1999; Wilkinson, 1979). Prior 162 

studies have reported Li isotope data on Ordovician brachiopods (Pogge von Strandmann et 163 

al., 2017), Li/Ca values of modern bivalves and brachiopods (Delaney et al., 1989; Füllenbach 164 

et al., 2015; Thébault et al., 2009; Thébault and Chauvaud, 2013), but no Li isotope data on 165 

modern bivalves and brachiopods. Here we test the influence of temperature, mineralogy and 166 

biology on Li isotopic composition and Li/Ca ratio on a set of mollusk, brachiopod and 167 

echinoderm samples from various environments, in order to evaluate the suitability of these 168 

taxa to reconstructing past δ7Liseawater.  169 
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 170 

2. ORIGIN OF THE SAMPLES AND SAMPLING STRATEGY 171 

 172 

 Two types of samples have been investigated: (i) shells from modern marine organisms 173 

corresponding to a wide range of mineralogy, species, and locations; and (ii) shells grown from 174 

controlled culture experiments at various temperatures.  175 

 176 

2.1. Field-collected modern shells 177 

 Modern shell samples were retrieved from the LA County Natural History Museum 178 

collections, supplemented with miscellaneous other specimens. All mollusk samples from this 179 

study, except the gastropod Turritella, are bivalves (n=17 specimens). They come from 13 180 

species comprising oysters, clams, mussels, and scallops. We also analyzed 5 brachiopod and 3 181 

echinoderm specimens, each from different species. These shells come from a wide range of 182 

marine environments from cold to warm sea surface temperature (–1 to 30°C). The location 183 

and characteristics of the specimens are summarized in Table (1) and Fig (1). We extracted the 184 

main seawater parameters (sea surface temperature – SST, salinity, alkalinity), including both 185 

annual averages and, when possible, specifically for the growth interval of the shells (average of 186 

the 3 months having the highest SST). We used the World Ocean Atlas 2013 for SST and 187 

salinity (Locarnini et al., 2013) and GLODAPv2 database for the alkalinity (Olsen et al., 2016), 188 

or specified references when more accurate data were available. Because of uncertainty 189 

regarding the sampling location, we attribute a relatively large uncertainty to these ocean 190 

parameters.  191 

 Field-collected shells were cleaned in an ultrasonic bath with distilled water, cut, and 192 

drilled. The sampling strategy was intended to simultaneously sample a large (20-30 mg), 193 

representative “bulk” sample in the middle of the shell while also targeting some micro-scale 194 

samples, using a micro-mill, in order to investigate possible intra-shell variability (Fig. 2).  195 

 We studied four different specimens of oysters (Crassostrea gigas) from four different 196 

localities spanning a wide range of ocean temperature (12 to 27°C). The shell of Crassostrea gigas 197 

is predominantly composed of calcite with two types of mineralogical structure, the "chalky 198 

structure" and "foliate layers" (Carriker et al., 1980; Carriker and Palmer, 1979; Ullmann et 199 

al., 2010, 2013a). The chalky structure is composed of a 3D network while foliate layers are 200 

elongated calcite crystals. "Bulk" samples of about 20 mg of mixed calcite were sampled in the 201 

middle and outer layer of specimens collected in Washington and California (USA) and 202 
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Ecuador. The fourth specimen was collected in the North Sea in the List basin and has been 203 

previously investigated at small scale for other chemical proxies (Ullmann et al., 2013a, 2010). 204 

Specific foliate layers and chalky structure were micro-sampled (see Ullmann et al., 2010 for 205 

details about the sampling protocol). We also determined the growth temperature for the North 206 

Sea oyster sample using calcite δ18O, following Ullmann et al. (2010; 2013a) using an average 207 

δ18O value for the List basin seawater of –1.3‰ (V-SMOW). 208 

 Scallop samples are from two distinct genera (Chlamys and Adamussium). Three different 209 

Chlamys species were investigated: Chlamys cheritata (Alaska), Chlamys hastata (California), and 210 

Laevichlamys squamosa (Philippines). For Adamussium, we studied one specimen of Adamussium 211 

colbecki from Antarctica (partly described in Eagle et al., (2013). One sample of 20 mg for each 212 

of these species was collected by milling the middle of the shell, and these samples thus 213 

correspond to a mix of the prismatic and nacreous layers.  214 

 Two Mytilus californianus mussel specimens but from different locations, the USA 215 

(Washington State) and Mexico, were also studied. The shell of Mytilus californianus is composed 216 

of a calcite prismatic outer layer and an aragonite nacreous inner layer. Because of this 217 

mineralogical heterogeneity, both specimens were micro-drilled at various locations of the shell 218 

in order to sample the inner or outer layer separately. 219 

 Clam specimens studied here comprise three genera (Chione, Tridacna and Laternula). Chione 220 

specimens (mostly composed of aragonite) are from three different species: Chione californiensis 221 

(California), Chione subimbricata (Costa Rica), and Chione subrugosa (Peru). The two Tridacna species 222 

studied were Tridacna gigas (Costa Rica) and Tridacna maxima (Mariana island), both with a shell 223 

of pure aragonite. One shell sample of 20 mg for each of these species was collected by milling 224 

the middle of the shell, and specific inner and outer layers were also sampled to test for intra-225 

shell variability.  226 

 Five specimens each from different species of calcitic brachiopods were investigated in 227 

this study. These samples include the species Campages mariae (Aliguay Island, Philippines), 228 

Laqueus rubellus (Sagami Bay, Japan), Terebratalia transversa (Friday Harbor, Washington State, 229 

USA), Notosaria nigricans (South Island, New Zealand), and Frenulina sanguinolenta (Mactan Island, 230 

Philippines). These Brachiopods have primary and secondary shell layers (both calcite, with 231 

different ultrastructure). Unlike the primary layer and the outer part of the secondary layer, the 232 

innermost part of the secondary layer is characterized by negligible vital effects for C and O 233 

isotopes (Cusack et al., 2012; Penman et al., 2013; Ullmann et al., 2017; Auclair et al., 2003; 234 

Parkinson et al., 2005). We primarily sampled bulk mixed layer samples (corresponding mostly 235 

to the secondary layer) in this study. Approximately 20 mg of bulk powder was collected from 236 
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each species except for Terebratulina retusa, which was sampled from various portions of the shell 237 

to test for intra-shell variability of Li isotope composition. 238 

 Three species of sea urchins (High-Mg calcite) were collected from California waters, 239 

Strongylocentrotus fransiscanus, Strongylocentrotus purpuratus and Dendraster sp. and a large 30 mg bulk 240 

powder was collected for each of the samples. 241 

 242 

2.2. Cultured shells 243 

 Two calcite bivalve species, Mytilus edulis and Pecten maximus (Freitas et al., 2008) and one 244 

aragonite bivalve (Mercenaria mercenaria) were experimentally grown at various temperatures. 245 

Details about the culture experiments for Mytilus edulis and Pecten maximus are available in 246 

(Freitas et al., 2012, 2008, 2006). Mercenaria mercenaria was grown at temperature between 15 247 

and 30°C, Mytilus edulis between 10.7 and 20.2°C and Pecten maximus between 10.8 and 20.2°C. 248 

Only the outer layer of the shells was sampled. The thin inner layer of Mytilus edulis was milled 249 

out when present (from the pallial line towards the umbo) before sampling from the outer 250 

surface. For Pecten maximus, the shell was sampled from the outer cross-lamellar layer, close to 251 

the margin and away from the inner layer and myostracum. Surface features like growth 252 

disturbances and the striae that tend to show a disturbed arrangement of crystals and high 253 

Mg/Ca, Sr/Ca and Mn/Ca ratios (Freitas et al., 2006) were included in the sampling. 254 

 255 

3. ANALYTICAL METHODS 256 

 257 

3.1. Mineralogy 258 

 The proportion of aragonite versus calcite for the vast majority of the powdered samples 259 

was measured at the Natural History Museum of Los Angeles County with a R-AXIS RAPID 260 

II X-ray diffraction system. Whole-pattern-fitting, implemented in JADE 2010 (Materials Data, 261 

Inc.), was used to analyze the X-ray powder diffraction patterns. The precision for this method 262 

is about ±5%.  263 

 264 

3.2. Leaching and dissolution of the samples 265 

 Since lithium concentrations in carbonates are generally very low (lower than 1 ppm), 266 

carbonate samples are sensitive to contamination by other phases during dissolution, 267 

particularly silicate minerals (Vigier et al., 2007). All samples were therefore subjected to a pre-268 

leach following a method modified from Saenger and Wang (2014), to remove exchangeable 269 
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ions using 1N ammonium acetate followed by 3 rinses with milliQ (millipore) water. The 270 

samples were then digested in dilute hydrochloric acid (HCl 0.05N) for 1 hour. The volume of 271 

acid used for digestion was calculated to dissolve about 95% of the sample in order to minimize 272 

the leaching of non-carbonate phases. After 1 hour, the supernatant was collected while the 273 

sample residue was weighed in order to determine the yield of the digestion. For the great 274 

majority of samples, the yield for the digestion was between 90 and 100%. As discussed below, 275 

Al/Ca ratios were measured in order to confirm the absence of aluminosilicate-derived solutes 276 

in the leachate. 277 

 278 

3.3. Trace element measurements 279 

 Ratios of trace elements Li, Mg, Sr, Al, Mn, Fe relative to Ca were measured using a 280 

Thermo Scientic Element 2 inductively coupled plasma mass spectrometer (ICP-MS) at the 281 

University of Southern California (USC) following a method adapted from Misra et al., (2014). 282 

All samples and standards were measured at a Ca concentration of 50 ppm. Li, Mg, Sr, Al 283 

concentrations were measured at low mass resolution whereas Fe and Mn were measured at 284 

medium mass resolution. The instrument was first conditioned for 1 hour with a solution of 50 285 

ppm Ca. A set of 10 multi-elemental calibration standards was measured at the beginning of 286 

the run, and a bracketing standard solution was measured every 5 to 10 samples to correct for 287 

the drift of the signal. Accuracy and precision of analyses were checked using the aragonite 288 

reference material FEBS-1 (NRC) and in-house prepared standard solutions matching typical 289 

calcium carbonate chemical composition. Analytical precision was between 5 and 15%, 290 

depending on the element and the concentration (see details in supplementary materials). 291 

 292 

3.4. Lithium isotopes 293 

 Lithium was separated from the matrix by ion-exchange chromatography using a method 294 

modified from James and Palmer, (2000). The dissolved calcium carbonate fraction was passed 295 

through a column containing 4mL of Biorad AG50W X-12 (200–400 mesh) resin. The Li 296 

fraction was eluted with 0.5N HCl (elution volume of about 13.5 mL) and evaporated to dryness 297 

at a temperature of 90-100°C. Purified samples were kept until measurement as solid salts in 298 

Teflon beakers and subsequently dissolved in 5% HNO3 for mass spectrometry analysis. 299 

Lithium isotope ratios were measured on a Thermo Neptune MC ICP-MS at Caltech, using a 300 

Cetac Aridus desolvator as an introduction system. Samples were measured following a 301 

standard-sample bracketing method with the commonly used L-SVEC standard (Flesch et al., 302 

1973). The method comprised 50 cycles of 4 seconds for both standards and samples. Typical 303 
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sensitivity was ~30 pA (about 3V) for 10 ng/g Li solution. Most of the samples were measured 304 

at concentrations ranging from 5 to 10 ng/g, the smallest samples measured at 1 or 2 ng/g. A 305 

clean acid measurement was measured before and after each sample and standard and 306 

subtracted to correct for the background contribution. Each sample was typically measured 307 

twice in a row. Accuracy and reproducibility of the isotopic measurements were checked 308 

through repeated analyses of seawater, with long-term average δ7Li = +30.9 ± 0.8‰ (2s, n=63 309 

separations and measurements) and L-SVEC solutions passed through columns giving δ7Li = 310 

-0.1 ± 0.8‰ (2s, n=25 separations and measurements). We therefore consider that the external 311 

measurement precision is ±1‰. More informations about the analytical method are available 312 

in the supplementary materials. 313 

 The samples of the oyster Crassostrea gigas from the List Basin were purified using a similar 314 

technique (Pogge von Strandmann et al., 2013, Pogge von Strandmann and Henderson, 2015), 315 

where the dissolved calcium carbonate fraction was passed through a 2-stage cation exchange 316 

procedure with columns containing Biorad AG50W X-12 (200-400 mesh) resin. The first 317 

column contained 2.4ml resin, and the second column 0.5ml. In both cases the Li fraction was 318 

eluted using 0.2M HCl. Analyses were performed on a Nu Instruments HR MC-ICP-MS at 319 

Oxford, with a 7Li sensitivity of ~18 pA for a 20 ng/ml solution at an uptake rate of 75 µl/min.  320 

Analyses consisted of three separate repeats of 10 ratios (10 s total integration time), for a total 321 

duration of 300 s/sample during each analytical session. Precision and accuracy were assessed 322 

by multiple analyses of N. Atlantic seawater, with a long-term value and reproducibility of 323 

+31.2 ± 0.6‰ (2 s.d. n=61). Other carbonate (JLs-1 and in-house marl standard) and rock 324 

(BCR-2 and SGR-1) standards are reported in Pogge von Strandmann et al. (2013, 2017). The 325 

total procedural blank for Li isotopes is effectively undetectable (<0.005 ng Li). 326 

 327 

4. RESULTS 328 

 329 

4.1. Sample mineralogy 330 

 The sample set from this study included shells composed of pure calcite, aragonite, high-331 

Mg calcite and mixtures of these minerals. Mineralogy was measured when possible on the 332 

same powder used for Li isotope analysis (see table 1). Pure calcite specimens (over 95% calcite) 333 

included oysters (C. gigas), scallops (P. maximus, C. cheritata and C. hastata), and brachiopod 334 

samples. Pure aragonitic skeletal material from this study included clams (T. gigas and T. maxima) 335 

and gastropods (Turritella). All other measured specimens had a mixed mineralogy, and, for this 336 
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reason, were micro-sampled at specific locations on the shells to obtain mineralogically pure 337 

phases. The drilled C. squamosa sample contained about 30% aragonite. Chione samples were 338 

primarly composed of aragonite, with a lesser proportion of calcite (1 to 46%). The mineralogy 339 

of Mytilus californianus shell samples ranged from pure calcite to pure aragonite. The mineralogy 340 

of experiment culture samples was not measured but inferred from previous studies (e.g., Ries, 341 

2011; Freitas et al., 2006, 2008) to be either pure calcite (Mytilus edulis, Pecten maximus) or pure 342 

aragonite (Mercenaria mercenaria). The mineralogy for specific layers of the oyster sample was not 343 

measured either but is assumed to be pure calcite (Ullmann et al., 2010). In the following, we 344 

refer to “calcite” or “aragonite” for samples having more than 95% calcite and aragonite, 345 

respectively, with other samples being classified as "mixed".  346 

 347 

4.2. Major and trace element ratios 348 

 We use minor and major element ratios, along with mineralogical data, to characterize 349 

the samples from this study. In general, aragonite has higher Sr and lower Mg concentrations 350 

than calcite (Dodd, 1967; Milliman et al., 1974). Our dataset is consistent with these 351 

observations. The Mg/Ca ratios of the current dataset span over two orders of magnitude, 352 

ranging from 0.3 to 109 mmol.mol-1 (Fig 3). Aragonite and mixed shell samples have lower 353 

Mg/Ca values (0.3 to 8.0 mmol.mol-1) compared to low-magnesium calcite (LMC; with Mg/Ca 354 

of 1.0 to 20.0 mmol.mol-1). The sea urchin samples (HMC) have the highest Mg/Ca ratios 355 

within this dataset, ranging from 80 to 109 mmol.mol-1. The Mg/Ca values of the shells of 356 

Pecten maximus and Mytilus edulis agree well with previously published values from the literature 357 

(Freitas et al., 2009, 2008, 2006). The Sr/Ca values range from 0.5 to 2.5 mmol.mol-1, with 358 

aragonite and high-magnesium calcite (HMC) samples from this study having higher Sr/Ca 359 

compared to LMC. The Mg/Ca and Sr/Ca values of our samples are in the range of previously 360 

published values for modern mollusks (Steuber, 1999), brachiopods (Brand et al., 2003; 361 

Delaney et al., 1989; Ullmann et al., 2017) and sea urchins (Carpenter and Lohmann, 1992; 362 

LaVigne et al., 2013).  363 

 The Li/Ca ratios of bivalve mollusk from this study range between 3.7 to 52.0 μmol.mol-364 
1, while the only gastropod, Turritella, has the lowest Li/Ca value (1.7 μmol.mol-1) of all the 365 

samples. Brachiopods have Li/Ca ratios ranging from 20 to 43 μmol.mol-1, while the high-Mg 366 

calcite echinoderm specimens have the highest Li/Ca of this dataset, ranging from 60 to 81 367 

μmol.mol-1. The Li/Ca of our samples are within the range of previously published Li/Ca from 368 

the literature (see Fig. 4). If we consider all reported measurements (including measurements 369 

made at various parts on a single shell), the range of Li/Ca ratio of biogenic calcite is very high 370 
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with values up to 250 μmol.mol-1 measured on some part of the Bivalve Pecten maximus (Thébault 371 

and Chauvaud, 2013). However, if we consider only the average value for each specimen, 372 

Li/Ca ratio ranges from 10 to 50 μmol.mol-1 for LMC organisms, between 1 and 30 μmol.mol-373 
1.for aragonitic speciments, and between 60 and 90 μmol.mol-1 for High-Mg calcite biogenic 374 

carbonates, showing that there is a mineralogical control on the Li/Ca of biogenic carbonate 375 

(Fig. 4b). Furthermore, there is an overall correlation between Li/Ca and Mg/Ca (Fig. 3) for 376 

all biogenic carbonates, suggesting that these two elements are impacted by one or more 377 

common processes during biomineralization. 378 

 The elemental compositions of cultured experiment samples (for which the mineralogy 379 

was not measured) are in agreement with other samples and plot inside the field defined by 380 

each polymorph mineral (Fig. 4). For the oyster sample from List Tidal Basin (assumed to be 381 

pure calcite), we observe that 3 samples have much higher Sr/Ca ratio and lower Li/Ca than 382 

surrounding samples and plot well outside the trend defined by the mixture between aragonite 383 

and calcite. Whether these samples contain some aragonite or high-Mg calcite, or perhaps have 384 

been altered, has not be determined. In the absence of additional information, these samples 385 

will not be further considered in our interpretation. 386 

 387 

4.3. Lithium isotopes 388 

 For the entire dataset (Table 1), the Li isotope composition ranges between +14.9 and 389 

+40.7‰, indicating that these biogenic carbonates have both lower and higher δ7Li compared 390 

to modern seawater (+31‰). For the modern biogenic carbonates, the pure aragonitic mollusks 391 

have the lowest δ7Li values, ranging from +14.9 to +21.7‰, whereas the pure calcitic mollusks 392 

have higher δ7Li, ranging from +20.5 to +40.7‰ (Fig. 4). Mixed aragonite-calcite samples 393 

have intermediate values. For the extensively micro-sampled North Sea oyster sample, the δ7Li 394 

ranges from 20.5 to 37.8‰ with no significant systematic differences between the chalky and 395 

foliate layers. The 8 brachiopod and 3 echinoderm samples have relatively uniform δ7Li, 396 

ranging respectively from +24.7 to +27.8‰ and from +24.1 to +24.4‰ (Fig. 4). The field 397 

collected specimens from this study come from various locations that span a wide range of 398 

ocean temperatures (–1 to 30°C). As discussed before, because the location of most of the 399 

samples is not known precisely, and because natural temperatures may vary seasonally, we 400 

assign a 2°C uncertainty to estimated growth temperatures and only look to identify any large 401 

first order relationships. We find no effect of temperature on the measured δ7Li using this 402 

approach (Fig. 5B). This lack of correlation is particularly clear for the four specimens of 403 
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Crassostrea gigas, with temperatures ranging from +10 to +22°C (points labelled C.G.1 to C.G.4 404 

in Fig. 5B). In addition, we can also consider the influence of short timescale (weekly to monthly) 405 

temperature variation on the Li isotope composition of Crassostrea gigas specimen from the North 406 

Sea. For this specimen, we establish time series along foliate structure and chalky using growth 407 

strata, and calcification temperatures were calculated using the δ18O of each sample (Ullmann 408 

et al., 2013a, 2010). No correlation was observed between the calcification temperature and 409 

δ7Li for either the chalky substance or foliate layers, despite the large range of δ7Li values. 410 

 For the samples from growth experiments at various temperatures, the δ7Li ranges from 411 

+32.1 to +35.2‰ from Pecten maximus samples, from +33.3 to +39.7‰ for Mytilus edulis, and 412 

from +17.2 to +19.2‰ for Mercenaria mercenaria. Experimental temperatures ranged from 10 to 413 

22°C for the calcitic bivalve mollusks and from 15 to 30°C for the aragonitic bivalves. For the 414 

two calcitic calcifiers (Mytilus edulis and Pecten maximus), we observe a weak positive correlation 415 

between measured δ7Li and temperature for the studied range (r2=0.3; Fig. 5a). The Li isotope 416 

composition is slightly higher at high temperature than at lower temperature with a δ7Li-417 

temperature relationship of about +0.2‰/°C. For the aragonitic bivalve (Mercenaria mercenaria), 418 

the opposite relation is observed, with slightly higher δ7Li at low temperature than at to high 419 

temperature (δ7Li-temperature relationship of –0.1‰/°C).  420 

 421 

5. DISCUSSION 422 

 423 

 The δ7Li range for biogenic carbonates from this study (+14.9 to +40.7‰) is much larger 424 

that the range of previously-reported Li isotope compositions for both inorganic carbonates 425 

and modern seawater (Marriott et al., 2004a, 2004b; Misra and Froelich, 2012). This suggests 426 

an environmental and/or biological control on the Li isotope composition of these biogenic 427 

carbonates. In this discussion, we explore the influence of mineralogy, temperature, and biology 428 

(taxonomic differences, inter-species, and intra-specimen variability) on the Li isotope 429 

fractionation of mollusks, brachiopods and sea urchins. We show that biological processes 430 

significantly influence the Li isotope composition and Li/Ca ratio of mollusk shells, but not the 431 

compositions of the secondary layer (the only one measured in this study) of brachiopods. 432 

 433 

5.1. Influence of mineralogy 434 

 Experimental inorganic calcium carbonate precipitates have lower δ7Li values compared 435 

to the solution from which they precipitate (Marriott et al., 2004a,b; Gabitov et al., 2011), with 436 
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aragonite more fractionated (Δ7Liaragonite-solution = –7 to –12‰) than calcite (Δ7Licalcite-solution = 437 

–2 to –5‰). Biogenic carbonates also are fractionated differently according to their mineralogy 438 

with δ7Li of calcite shells (excluding samples “ofl04, 05 and 06”) from +25 to +40‰ whereas 439 

aragonitic shells have δ7Li from +15 to +24‰ (Fig. 4a), with bi-mineralic shells exhibiting 440 

intermediate δ7Li. These observations are consistent with other types of biogenic carbonates. 441 

as the δ7Li of modern calcitic planktic foraminifera is systematically higher than 26‰ 442 

(Hathorne and James, 2006; Misra and Froelich, 2009) whereas corals (aragonite) have δ7Li 443 

consistently lower than +25‰ (Rollion-Bard et al., 2009). Interestingly, the three high-Mg 444 

calcite samples (echinoderms) of this study have an intermediate δ7Li of +24‰. We also note 445 

systematic differences in Li/Ca ratio amongst aragonite, calcite and high-Mg calcite samples. 446 

The inorganic partition coefficient for Li (relative to Ca) between inorganic carbonates and 447 

solution (referred here as KdLi), determined in abiogenic experiments, is slightly higher for 448 

aragonite compared to calcite (Marriott et al., 2004a,b). However, the Li/Ca ratio of aragonitic 449 

skeletons is generally lower than biogenic calcite (see the compilation by Hathorne et al., 2013) 450 

and this difference is confirmed by this study (Fig. 4b).  451 

 The reasons for the differential incorporation of Li and its isotopes between the various 452 

inorganic carbonate minerals are not clear. Previous studies have proposed that Li+ substitutes 453 

for the Ca2+ site in aragonite, whereas in calcite, Li is incorporated interstitially (Marriott et 454 

al., 2004a,b). The larger isotope fractionation observed in inorganic aragonite compared to 455 

calcite could be due to the fact that there is less fractionation of Li isotopes during incorporation 456 

in the interstitial position in calcite compared to substitution Li+ for Ca2+ in aragonite 457 

(Okumura and Kitano, 1986; Tomascak et al., 2016). Additionally, because of their similar 458 

ionic radii, Li often substitutes for Mg in silicate minerals (Tomascak et al., 2016). Hence, 459 

differences in Mg binding environment between calcite and aragonite could also potentially 460 

explain the different Li isotope composition between these minerals.  461 

 462 

5.2. Influence of temperature  463 

 The three bivalve species (Pecten maximus, Mytilus edulis and Mercenaria mercenaria) grown at 464 

different temperatures, keeping other parameters constant, show only weak correlation (r2 = 465 

0.3 to 0.5) with temperature (Fig. 5a). The δ7Li of field-collected specimens from various 466 

locations show no relationship with temperature. Collectively, these data indicate that 467 

temperature has minor influences on δ7Li within mollusk species but is not the first order 468 

control on δ7Li variability across the mollusk species investigated in this study. This conclusion 469 



 

15 

is consistent with results from inorganic carbonate precipitation experiments (see Fig. 5a) that 470 

show no temperature-dependence of carbonate δ7Li (Marriott et al., 2004a). The same 471 

observation was made for experimentally-grown foraminifera Amphistegina lessonnii (Vigier et al., 472 

2015). We note that the field-collected coral samples also showed no correlation between 473 

temperature and δ7Li (Marriott et al., 2004a; Rollion-Bard et al., 2009).  474 

 In contrast to δ7Li values, relationships between carbonate Li/Mg, and to a lesser extent 475 

Li/Ca, and temperature have been reported in other studies (Marriott et al., 2004a; Montagna 476 

et al., 2014; Case et al., 2010; Bryan and Marchitto 2008; Fowell et al., 2016; Hathorne et al., 477 

2013). For inorganic calcite (Marriott et al., 2004a) and brachiopods (Delaney et al., 1989), 478 

Li/Ca ratios exhibit a negative relationship with temperature. For corals and foraminifera, very 479 

good correlations have been observed between temperature and Li/Mg ratio, suggesting that 480 

the latter might be a promising proxy for reconstructing past ocean temperature. We observe 481 

that although some samples from this study plot close to the inorganic trend, most samples have 482 

higher Li/Ca than inorganic carbonate for a given temperature (not shown). Similar to the case 483 

for Li isotopes, temperature does not seem to be the first-order control on Li/Ca of mollusks 484 

across species, although it does influence Li/Ca within mollusk species. On the other hand, the 485 

brachiopods from this study plot on the same Li/Ca vs. temperature regression as the 486 

brachiopods from Delaney et al., (1989) confirming the temperature control of Li/Ca for 487 

brachiopods (Fig. 5c). 488 

 Considering the relationship between the Li/Mg ratio in mollusks and water 489 

temperature, several observations can be made. First, for the growth experiments, for which 490 

the temperature has been monitored, we observe a strong correlation between Li/Mg and T 491 

for the species Mytilus edulis (r2 = 0.83; Fig 5D) but no correlation for Pecten maximus and 492 

Mercenaria mercenaria. This is the first time that a correlation between the Li/Mg in a marine 493 

bivalve and temperature is reported. This suggests that the Li/Mg ratio in Mytilus edulis has 494 

great potential for paleo-temperature reconstruction in the ocean. However, more data testing 495 

the influence of other parameters are necessary to definitely validate such a calibration. 496 

Secondly, the relationship between Li/Mg and T for Mytilus edulis is different from the 497 

relationships defined by other organisms (e.g. Montagna et al., 2014; Case et al., 2010; Bryan 498 

and Marchitto 2008; Fowell et al., 2016), indicating that the relationship between Li/Mg and 499 

temperature is taxon-dependent. Finally, if we report also field-collected organisms on the 500 

Li/Mg temperature plot (see figure in supplementary materials), we observe that although there 501 

is a global trend of decreasing Li/Mg with temperature, the correlation between these two 502 

parameters is highly scattered. Thus, contrary to corals, the relationship between Li/Mg and 503 
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temperature is overall quite weak and therefore it appears difficult to use mollusk Li/Mg to 504 

estimate water temperature unless targeting specific species (like Mytilus edulis). 505 

 506 

5.3. Intra-shell variability 507 

 A large intra-shell Li isotope variability (up to 25‰) is observed for bi-mineralic mollusk 508 

shells. This is best exemplified by Mytilus californianus, for which the inner aragonitic nacreous 509 

layer has a δ7Li as low as 15‰, while the δ7Li of the outer calcite prismatic layer is about 40‰. 510 

All Mytilus californianus samples plot on the same negative regression between δ7Li and the 511 

proportion of aragonite measured by XRD (Fig. 6). Interestingly, no variation is observed 512 

across the horizontal length of the outer layer (rectangles in Fig. 6). This result indicates that 513 

the Li isotope composition of the calcite part of the shell of Mytilus californianus is relatively 514 

homogenous and independent of shell growth rate or age. In contrast, for the Chione shells, 515 

dominantly composed of aragonite with a small proportion of calcite (in general < 20%, one 516 

sample at 55%), the observed intra-shell variability is much lower (less than 3‰), although the 517 

samples with the highest proportion of calcite have systematically highest δ7Li for each species.  518 

 Intra-shell variability was also investigated on a calcitic oyster (Crassostrea gigas) and 519 

aragonitic clam (Tridacna maxima). The observed intra-shell variability of the aragonitic clam is 520 

small, less than 2‰ between the outer and inner layer. In contrast, relatively large δ7Li 521 

variability (about 12‰; excluding the anomalous Mg/Ca and Sr/Ca samples) was observed 522 

for Crassostrea gigas in at least 3 specimens. However, no significant differences were noticed 523 

between the chalky and foliate layers, indicating that Li isotope variability in this oyster is not 524 

controlled by the chalky vs. foliate nature of the calcite shell. Finally, intra-shell variability was 525 

also tested for a brachiopod shell (Terebratulina transversa), for which we observe a limited 526 

variability of 2.5‰ between anterior and posterior valves. However, we did not attempt to 527 

determine whether the secondary and primary layers of brachiopod shells have similar δ7Li, as 528 

has been done for others isotope proxies (Auclair et al., 2003; Cusack et al., 2012; Parkinson et 529 

al., 2005; Penman et al., 2013; Ullmann et al., 2017), and this question remains to be 530 

investigated. 531 

 In summary, there is significant but not systematic intra-shell variability for some 532 

skeletons. The largest intra-shell δ7Li variability (> 25‰) is controlled by mineralogical mixing 533 

between calcite and aragonite, but up to 12‰ variability is also observed in some 534 

mineralogically pure species (e.g., the oyster C. gigas) while intra-shell variability of less than 535 

2.5‰ is observed in other taxa (Chione, Tridacna, Terebratulina). 536 
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 537 

5.4. Influence of biological processes 538 

 5.4.1. Evidence for vital effects 539 

 Here, we compare our biogenic samples to inorganic carbonates. Precipitation 540 

experiments have shown that the carbonate phase is enriched in 6Li compared to the fluid from 541 

which it precipitates (Marriott et al., 2004a,b). Following Planchon et al. (2013), we can define 542 

the deviation from inorganic values as Δ7Liphysiol = δ7Licarbonate biogenic – δ7Licarbonate inorganic with 543 

“δ7Licarbonate inorganic” being the δ7Li value of the corresponding inorganic carbonate precipitated 544 

from modern seawater (δ7Liseawater = 31‰), as derived from the experiments by Marriott et al. 545 

(2004a,b). We use a Δ7Licalcite-solution value of –3‰ for the δ7Li of inorganic calcite and a 546 

Δ7Liaragonite-solution value of –12‰ for inorganic aragonite (Marriott et al., 2004b, 2004a). The 547 

Δ7Liphysiol values of mollusk shells range from –4 to +14‰ (Fig. 7). This suggests a strong vital 548 

effect on the incorporation of Li isotopes in mollusk shells. The Δ7Liphysiol of brachiopods ranges 549 

between 0 and –3‰ (average of –1.4‰, n = 8 measurements), suggesting a limited influence 550 

of vital effects for this group of organisms. Interestingly, the Δ7Liphysiol values are larger and 551 

more positive for calcitic mollusk shells (i.e. they preferentially incorporate the heavy isotope 552 
7Li) compared to aragonitic shells. This result indicates that physiological processes favor the 553 

utilization of the light isotope for aragonitic mollusks and the heavy isotope for calcitic mollusks.  554 

The influence of vital effects on Li isotope composition have also been identified for benthic 555 

foraminifera by Vigier et al. (2015) who showed that the δ7Li of cultured Amphistegina benthic 556 

foraminifera can be as low as 21‰ and as high as 38‰, depending upon the DIC concentration 557 

of seawater. 558 

 Regarding the Li/Ca values, as observed by Hathorne et al. (2013) and described in 559 

section 5.2., biogenic calcite has higher average Li/Ca than biogenic aragonite, the opposite of 560 

what is observed for inorganic carbonates (Marriott et al., 2004a,b). This apparent conundrum 561 

may be explained by the influence of physiological processes that either favor Li incorporation 562 

for calcite relative to aragonite through the involvement of specific cellular processes or if there 563 

is a strong influence of the pH and/or calcification rate (as suggested by the study of Gabitov 564 

et al., 2011) on the inorganic equilibrium partition coefficients. This stresses the need for more 565 

experiments looking at the controls on the inorganic partition coefficients and specifically the 566 

role of pH and calcification rates.  567 

 In order to remove variability arising from differences between partition coefficient of 568 

inorganic calcite and aragonite, we normalize the observed partition coefficient of Li between 569 
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biogenic carbonate and seawater [DLi = (Li/Ca)biogenic carb. / (Li/Ca)seawater] to the partition 570 

coefficient between inorganic carbonates and seawater [KdLi = (Li/Ca)inorganic carb. / 571 

(Li/Ca)seawater]. We define this parameter as βLi = DLi/KdLi to express the enrichment or 572 

depletion in Li (relative to Ca) in the biogenic carbonate relative to inorganic carbonate, i.e., 573 

the enrichment or depletion in Li in shells due to physiological processes only. As discussed 574 

previously, inorganic experiments have shown that KdLi (defined as “DLi” in Marriott et al., 575 

2004 but referred to here as “KdLi”) for calcite is a function of temperature. Hence for each 576 

sample, the βLi value should be calculated with the KdLi corresponding to the growing 577 

temperature of the shell. However, as discussed before, there is a large uncertainty on the 578 

growth temperature of field-collected shells from this study. In addition, the relationship 579 

between KdLi and temperature for aragonite has yet to be experimentally investigated. 580 

Therefore, we consider both (i) βLi values normalized to the KdLi determined at 25°C, which 581 

we will refer to as “βLi 25°C” and (ii) βLiT calculated with the KdLi value corresponding to the 582 

associated growth temperature and applied to aragonite using the same relationship to 583 

temperature as determined for calcite. Considering the data from both this study and from the 584 

literature (on other biogenic carbonates), the calculated βLi values are between 0.2 and 3 for 585 

aragonite skeletons and between 2 and more than 10 for calcite skeletons (Fig. 7). Hence, calcite 586 

organisms are systematically enriched in Li relative to inorganic calcite, lilely as a result of 587 

Biologically-controlled processes. 588 

 589 

 5.4.2. Taxonomic differences in δ7Li and Li/Ca 590 

 Comparison of our results with published data reveals important differences in the δ7Li 591 

and Li/Ca ratios between various species, genera and phyla. At the phylum level, the largest 592 

differences in Li isotope composition are observed within the group of calcite organisms for 593 

which each phylum has a specific pair of Δ7Liphysiol and βLi values (Fig. 7). The range of 594 

Δ7Liphysiol of modern field-collected calcitic mollusks (–2 to +13‰) is significantly larger 595 

compared to modern planktic foraminifera (–2 to +4‰), brachiopods (–3 to 0‰), and benthic 596 

foraminifera (–7 to –1‰). Aragonitic calcifiers, including corals (Δ7Liphysio = 0 to +4‰), and 597 

aragonitic bivalves (–4 to +1‰), have a smaller range of Δ7Liphysiol. We also observe that for a 598 

given Δ7Liphysiol value, sea urchins, brachiopods, and mollusks have the highest βLi, followed by 599 

planktic and benthic foraminifera, followed by aragonite calcifiers. This shows that 600 

physiological processes significantly influence the proportion of Li incorporated into the shell 601 

of various types of calcifiers. 602 
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 In addition, we also investigated the importance of inter-genera and inter-species 603 

variability by comparing the δ7Li of shells from various species grown in similar thermal 604 

environments. Our dataset reveals large inter-species differences in Li isotope composition of 605 

mollusk shells (for a given mineralogy), in contrast to foraminifera and brachiopods. Shells of 606 

mollusk species Mytilus edulis and Pecten maximus, grown at various temperature, all other 607 

parameters constant, exhibit systematic Li isotope differences of 4 to 5‰ for seawater 608 

temperatures ranging from 10 to 20°C (Fig. 5B). Furthermore, we observe that the two species 609 

of Chlamys have higher δ7Li compared to species of other mollusk genera grown at similar 610 

temperature. Up to 7‰ variability between species of equivalent mineralogy is observed at a 611 

given temperature (Fig. 5B).  612 

 613 

 5.4.3. Origin of the vital effect for calcite mollusks 614 

 When Δ7Liphysiol values are compared to βLi25°C for mollusks (Fig.7), we observe a negative 615 

correlation between Δ7Liphysiol and βLi25°C for Mytilus edulis specimens grown at various 616 

temperature (r2=0.85). Interestingly, this relationship is also observed for all calcitic mollusks 617 

(r2=0.63) from this study. For the temperature-normalized inorganic Li/Ca ratios (βLiT), the 618 

correlation is less good but still holds for calcite mollusks (r2=0.45) but not for Mytilus edulis 619 

specimens (r2=0.21). For aragonite mollusks, we also observe a negative correlation between 620 

Δ7Liphysiol and βLi25°C (r2=0.47) but no correlation is observed with βLiT. In this section, we 621 

discuss several hypotheses for explaining this correlation and relate these observations to 622 

potential mechanisms of Li isotope fractionation during biomineralization.  623 

 Most skeletal organisms calcify in a reservoir isolated from external seawater. They favor 624 

calcification by either (i) increasing saturation state (by increasing their internal pH, DIC 625 

and/or internal Ca concentration), (ii) reducing their internal fluid Mg/Ca ratio (in particular 626 

for modern calcite organisms), or (iii) using a complex organic template to control orientation 627 

and distribution of crystals during nucleation (Immenhauser et al., 2016; Ries, 2010). These 628 

pathways are not mutually exclusive. Mollusks have an extracellular-type process of 629 

biomineralization (Immenhauser et al., 2016; Weiner and Addadi, 2011; Weiner and Dove, 630 

2003). Precipitation of the inner layer is inferred to take place somewhere in the extrapallial 631 

space (which contains extrapallial fluid or EPF), located between the inner shell surface and the 632 

outer mantle epithelium. For the outer layer, the EPF is located between the prismatic layer 633 

and the mantle epithelium. The EPF contains inorganic ions and various organic molecules 634 

that interact to form the biominerals. Precipitation is controlled by specialized cells of the outer 635 

mantle epithelium that release complex organic macromolecules that are used as organic 636 
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templates for controlling the morphology of precipitated crystals. Usually, a precursor 637 

amorphous carbonate phase (ACC) is first precipitated and then transformed to calcite or 638 

aragonite (Baronnet et al., 2008, Weiner and Addadi, 2011). It has been suggested that 639 

precursor amorphous phases are also used by echinoderms (Beniash et al., 1997). 640 

 The negative relationship between Δ7Liphysiol and βLi for calcite mollusks cannot be 641 

produced by carbonate precipitation alone (e.g., by varying proportions of Li incorporated into 642 

carbonates) because (i) the partitioning of Li between the carbonates and the fluid strongly 643 

favors the fluid (KdLi<<1), hence very small amount of Li is incorporated into carbonate 644 

minerals and therefore carbonate precipitation does not change the δ7Li of the fluid and (ii) 645 

carbonates would have δ7Li lower than seawater, not higher as observed for most of the mollusk 646 

samples, because 6Li is preferentially incorporated into inorganic carbonates. Furthermore, it 647 

has been argued that in bivalves, passive ion transport through ion channels to the calcification 648 

site results in similar composition in the extrapallial space as in the seawater (Immenhauser et 649 

al., 2016). Hence, the most likely explanation for the observed trends is that the δ7Li and Li 650 

concentration of the calcification fluid is modified prior to carbonate precipitation by 651 

physiological processes leading to addition or removal of Li in the internal calcification medium 652 

and that this process also fractionates Li isotopes.  653 

 This type of mechanism was recently proposed by Vigier et al. (2015) for explaining the 654 

range of Li/Ca and δ7Li of cultured foraminifera of the genus Amphistegina at low and high DIC 655 

concentrations. In this conceptual model, elevation of pH within the seawater vacuoles is 656 

achieved by a Na/proton exchanger that removes protons from the vacuoles and transports 657 

Na (and Li) inside the vacuoles (Bentov et al., 2009; Erez, 2003). These vacuoles are then 658 

transported into the calcification site of foraminifera where the organic matrix is present 659 

(Bentov et al., 2009; Erez, 2003). At low DIC concentration, the activity of the Na/proton 660 

exchanger would be more intense and more Li would be transported into the calcification site 661 

(Vigier et al., 2015). Assuming this process fractionates Li isotopes (for example by kinetic or 662 

enzymatic isotope fractionation), the result would be an increase in the Li/Ca ratio and a 663 

decrease in the δ7Li of the calcification reservoir relative to seawater (i.e. negative Δ7Liphysiol 664 

values). This is what we observe for aragonite mollusks as most of the samples have negative 665 

Δ7Liphysiol values. Moreover, benthic foraminifera and some calcite mollusks and brachiopods 666 

also have slightly negative Δ7Liphysiol values (Fig. 7). Hence, this process could potentially explain 667 

their variability in Li isotope and Li/Ca ratios. However, the great majority of calcitic mollusks 668 

and foraminifera have positive Δ7Liphysiol values, which implies the need for a different 669 

explanation. 670 
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 Another possibility, is that Li is actively removed from the calcification site, with an 671 

isotope fractionation leading to preferential removal of 6Li (Vigier et al., 2015). This process 672 

would lead to high δ7Li (high Δ7Liphysiol) and low Li/Ca (low βLi) of carbonates. Removal of Mg 673 

from the calcification reservoir through Mg specific channels has previously been suggested for 674 

foraminifera (Bentov and Erez, 2006; Zeebe and Sanyal, 2002) to explain their low Mg/Ca 675 

value relative to seawater, even if the relevance of this process is debated (Pogge von 676 

Strandmann et al., 2014; Wombacher et al., 2011). Indeed, high Mg content in fluids inhibits 677 

calcite precipitation (e.g. Berner, 1975), so removal of Mg is one possible strategy to favor calcite 678 

precipitation (Ries, 2010; Wang et al., 2013; Bentov and Erez, 2006; Zeebe and Sanyal, 2002). 679 

As Li is often associated with Mg, we suggest that similarly to Mg, Li could be transported out 680 

of the calcification site by specific channels and/or pumps (Bentov and Erez, 2006). This 681 

hypothesis is supported by the negative correlation between δ7Li and Mg/Ca for calcitic 682 

mollusks (Fig. 8B), indicating that, indeed, mollusks having the highest δ7Li also have the lowest 683 

Mg/Ca ratio. 684 

 The process of Li removal from the calcification site can be modeled in a simple way as 685 

either (i) an open system at steady-state (input fluxes are balanced by output fluxes) or (ii) a 686 

closed or semi-enclosed system, corresponding to non-steady-state conditions with output fluxes 687 

being higher than input fluxes (requiring periodic ‘batch’ replenishment of the calcifying 688 

medium). For the latter, the Li/Ca and Li isotope composition of the fluid inside the 689 

calcification reservoir evolves following a Rayleigh distillation as a function of the proportion 690 

of Ca and Li removed.  691 

 692 

The corresponding equation for the open system at steady-state is: 693 

Δ"#$%&'( = −Δ"+,"-.(+&/×(1 − γ.(+&/4& )              (1) 694 

 695 

and for the closed system: 696 

Δ"#$%&'( = Δ"+,"-.(+&/×ln(γ.(+&/4& )                  (2) 697 

 698 

with Δ7Lipump-fluid being the fractionation factor (Δ7Lipump-fluid = 1000 ln(αpump-fluid)) between the 699 

Li removed and the Li within the calcification site, and 	γ.(+&/4&  being the proportion of Li 700 

remaining in the fluid in the calcification reservoir after Li extrusion, calculated as the ratio 701 

between the concentration of Li remaining in the reservoir after extrusion divided by the initial 702 
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concentration of Li before extrusion. Assuming that there is no Ca removal by this process, 703 

then we can express γ.(+&/4&  as: 704 

γ.(+&/4& =
4&

9: ;<=>?
4&

9: @
=

4&
9: ABCD

4&
9: ABCDE@

= FG>

F@G>
                (3) 705 

With the subscript “fluid” corresponding to the fluid in the calcification reservoir, “0” to initial 706 

fluid in the calcification reservoir before Li removal, “carb” to carbonate and “carb-0” to the 707 

composition of the carbonate formed in the absence of Li extrusion (i.e. when (Li/Ca)res = 708 

(Li/Ca)0). Hence, equations 1 and 2 can be combined to give: 709 

Δ"#$%&'( = −Δ"+,"-.(+&/× 1 − FG>

F@G>
             (4) 710 

Δ"#$%&'( = Δ"+,"-.(+&/×ln
FG>

F@G>
              (5) 711 

 The Δ7Liphysiol and βLi25°C data for calcite mollusks can be fitted by equations (4) and (5) 712 

assuming that (i) all the mollusks have a relatively similar initial βI4& at the calcification site and 713 

(ii) there is unique associated isotope fractionation factor (Δ7Lipump-fluid) for all mollusks. The 714 

best fits (both giving r2 = 0.64) corresponding to both the closed and open system isotope 715 

fractionation for calcite mollusks are represented on Fig. (8). The trends intercept the grey line 716 

corresponding to the absence of vital effects (Δ7Liphysiol = 0) at a βJK°94&  value of 7±1 for the open 717 

system and at 7.5±1.0 for the closed system (Fig. 8A). Hence, the initial Li/Ca ratio of the 718 

mollusks, in the absence of Li extrusion, is about 7 times higher than the Li/Ca ratio of 719 

inorganic calcite. Investigation of the reasons for such high βJK°94&  values for mollusks is beyond 720 

the scope of this study but preferential incorporation of Ca in carbonates (e.g., Elderfield et al., 721 

1996) and/or specific Ca input or removal from the calcification site through channel pump or 722 

exchange enzyme transporter (Carré et al., 2006) could potentially explain βJK°94&  higher than 723 

1. Regarding the fractionation factor, we obtain a Δ7Lipump-fluid value of –15‰ (αpump-fluid = 724 

0.985) for the open system and –9‰ (αpump-fluid = 0.991) for the closed system model. We 725 

hypothesize that this fractionation corresponds to a kinetic isotope fractionation where the 6Li 726 

is preferentially extruded from the calcification site by diffusion or active transport through 727 

membranes. For diffusion in water at low temperature, the Li isotope fractionation is relatively 728 

small (about 0.997; Richter et al., 2006) whereas the fractionation factor through a membrane 729 

at 22°C was determined to be 0.989 by Fritz (1992). The latter value is close to the fractionation 730 

factor corresponding to closed system (Rayleigh) fractionation inferred in our model. As 731 

represented in Fig. (8), we calculate that up to 80% of the Li initially present at the calcification 732 

site is removed before precipitation of calcite for mollusks. We note that this mechanism could 733 
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also explain the high Δ7Liphysiol and low βLi25°C values of Amphistegina benthic foraminifera 734 

growth at high DIC concentration from Vigier et al. (2015). Indeed, we can speculate that in 735 

foraminifera both addition of Li (through the Na+/H+ transporter) and removal of Li 736 

(coincident with Mg removal) exist. At high DIC concentration, the activity of the Na+/H+ 737 

transporter (leading to low Δ7Liphysiol) is lowered, so removal of Li becomes dominant with 738 

resulting Δ7Liphysiol value being higher. Ultimately, the Li isotope composition of biogenic 739 

carbonates is probably controlled by the balance between processes removing and adding 740 

dissolved Li to the calcification medium. 741 

 742 

6. Implications for reconstructing past seawater composition 743 

 One goal of this study is to test whether and how different biocalcifying organisms may 744 

be used to reconstruct the past δ7Li of seawater. The secondary layers of brachiopods analyzed 745 

here have homogeneous δ7Li, with little apparent influence from vital effects, temperature, and 746 

inter-species differences. In addition, as previously observed by Delaney et al. (1989), the Li/Ca 747 

of brachiopods may be a reliable proxy for tracing past ocean temperature if Li/Ca of the ocean 748 

is known or, conversely, determining past Li/Ca of the ocean if the calcification temperature 749 

is known through other proxies. Collectively, these observations suggest that brachiopods are 750 

promising candidates as archives of past Li isotope composition of seawater. However, as we 751 

only analyzed 5 different specimens from 5 different species, we suggest caution in interpreting 752 

these results and urge more analyses of present-day brachiopods (including considering intra-753 

shell variability) to confirm these conclusions. 754 

 Unlike brachiopods, the range of δ7Li and Li/Ca values of modern calcitic mollusks is 755 

large and significantly influenced by physiological processes, inter-species and inter-specimen 756 

differences. Therefore, fossil shells of calcitic mollusks are probably not good targets for 757 

inferring the past Li isotope composition or temperature of the oceans, unless the 758 

reconstructions are limited to single species. As mollusks can constitute a significant component 759 

of bulk carbonates (Wilkinson, 1979), it is important to take them into account to understand 760 

the Li isotope composition of bulk carbonates (Lechler et al., 2015; Pogge von Strandmann et 761 

al., 2013), at least when these are fossiliferous. The δ7Li and Li/Ca values of aragonitic mollusks 762 

are similar to inorganic aragonite composition. Therefore, they are likely to be better archives 763 

for marine δ7Li that calcitic mollusks. However, aragonite mollusks are also more prone to 764 

diagenetic transformation and, at this stage, it is not known how diagenesis affects primary δ7Li 765 

signatures. The small subset of echinoderm skeletons analyzed here point to a relatively narrow 766 
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range of values, but more work would need to be done to establish whether these observations 767 

are systematic and the extent to which the signal in high-Mg calcite is preserved during 768 

diagenesis.  769 

 The results of this study have important implications for the interpretation of Li isotope 770 

and Li/Ca data from bulk Phanerozoic carbonates. Over time, the δ7Li of bulk carbonates is 771 

potentially influenced by several parameters including seawater Li isotope composition, 772 

mineralogy, diagenesis, the proportion of skeletal to non-skeletal carbonates, taxonomy, 773 

temperature of the skeletal carbonates. We have found that different genera have distinct δ7Li 774 

(ranging by several tens of per mil) and distinct Li/Ca ratio, and therefore it is likely that the 775 

Li/Ca and Li isotope variability of bulk carbonates can be controlled to some extent by the 776 

relative contributions of different taxonomic groups (Fig. 7c). This effect may be most 777 

pronounced at times of major change in ecosystem structure, for example, during extinction 778 

events. There is also evidence that the overall pattern of biomineralization has significantly 779 

changed during Phanerozoic time with an increase in the proportion of skeletal to non-skeletal 780 

carbonates over time, together with large changes in the type of skeletal carbonates (Kiessling 781 

et al., 2003; Milliman, 1993; Wilkinson, 1979). Additionally, any global change of the main 782 

carbonate mineralogy over time (e.g. calcite and aragonite seas during the Phanerozoic, Stanley 783 

and Hardie, 1998) would likely have influenced bulk carbonate δ7Li because calcite has higher 784 

δ7Li than aragonite for both inorganic and biogenic carbonates. Hence, any long-term 785 

reconstruction of past δ7Li of seawater using bulk carbonates must take into account the 786 

influence of secular changes in mineralogy and taxonomic origin of the carbonate that is 787 

preserved.   788 

  789 

7. Conclusions 790 

 In this study, we measured for the first time the Li isotope composition of modern 791 

mollusks, brachiopods, and echinoderms in order to test whether these samples are viable 792 

targets for determining the past δ7Li of the ocean and to provide further insight into the 793 

geochemistry of biomineralization. We investigated both modern field-collected shells from 794 

various environments and shells experimentally grown at various temperatures. We considered 795 

the influence of mineralogy, temperature, taxonomy, and vital effects on the Li isotope and 796 

Li/Ca composition of biogenic carbonates. The major conclusions are: 797 

1. Brachiopods are promising targets for tracing past Li isotope composition of the ocean 798 

because they have similar δ7Li compared to inorganic calcite precipitated from seawater, 799 
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(i.e. not significantly affected by vital effects) and exist since the Cambrian, (i.e. available 800 

for study in deep time). 801 

2. There is a strong mineralogical control on the δ7Li of biogenic carbonates. Calcite shells 802 

have δ7Li between +25 to +40‰ while aragonitic organisms have δ7Li systematically lower 803 

than 25‰. High-Mg calcite echinoderm shells have intermediate δ7Li of +24‰.  804 

3. Only a small influence of temperature is observed in mollusks from growth experiments, 805 

and no relation between temperature and δ7Li is observed for modern field-collected 806 

mollusks. 807 

4. There is strong physiological control on the δ7Li of mollusks. When normalized to inorganic 808 

fractionation (Δ7Liphysiol = δ7Licarbonate biogenic – δ7Licarbonate inorganic), calcite mollusks display 809 

positive and widely ranging Δ7Liphysiol values, between –1 and +14‰, which indicates 810 

influence of physiological effects. Aragonite mollusks exhibit less variability than calcite 811 

mollusks, with Δ7Liphysiol ranging from +1 to –4‰, with most of the values being negative. 812 

5. Different species collected from thermally equivalent vary by up to 7‰ indicating 813 

substantial inter-species and inter-genera variability. In addition, intra-shell variability can 814 

be very high for bi-mineralic mollusk shells. Hence, systematically measuring the 815 

mineralogy of samples from mineralogical from multi-mineralic shells, is an important pre-816 

requisite for inferring a representative δ7Li. 817 

6. Interestingly, the Li isotope composition of calcite mollusks is negatively correlated with 818 

shell Li/Ca ratio. This is best explained by a simple fractionation model driven by Li 819 

removal from the calcification site and an associated single isotope fractionation. We 820 

propose that this process is related to combined Mg and Li removal from the calcification 821 

site of calcite mollusk in order to lower Mg/Ca of the calcifying medium in support of 822 

calcite precipitation. 823 

 824 

Acknowledgements: 825 

This work was primarily supported by the American Chemical Society Petroleum Research 826 

Fund (award 53418-DNI2 to AJW). We thank the Los Angeles County Museum of Natural 827 

History for providing bivalve samples. We thank Jonathan Erez and an anonymous reviewer 828 

for their constructive comments on the manuscript. RAE and JBR acknowledge support from 829 

NSF grants OCE #1437166 and 1437371. PPvS and CVU analyses of C. gigas were funded by 830 

NERC Advanced Fellowship NE/I020571/2 and ERC Consolidator grant 682760 - 831 

CONTROLPASTCO2. 832 



 

26 

 833 

References: 834 
Angino, E. E., & Billings, G. K. (1966). Lithium content of sea water by atomic absorption spectrometry. 835 

Geochimica et Cosmochimica Acta, 30(2), 153-158. 836 
Auclair, A. C., Joachimski, M. M., & Lécuyer, C. (2003). Deciphering kinetic, metabolic and environmental 837 

controls on stable isotope fractionations between seawater and the shell of Terebratalia transversa 838 
(Brachiopoda). Chemical Geology, 202(1-2), 59-78. 839 

Bagard, M.-L., West, A.J., Newman, K., Basu, A.R., 2015. Lithium isotope fractionation in the Ganges–840 
Brahmaputra floodplain and implications for groundwater impact on seawater isotopic composition. 841 
Earth Planet. Sci. Lett. 432, 404–414. doi:10.1016/j.epsl.2015.08.036. 842 

Beniash, E., Aizenberg, J., Addadi, L., & Weiner, S. (1997). Amorphous calcium carbonate transforms into 843 
calcite during sea urchin larval spicule growth. Proceedings of the Royal Society of London B: Biological Sciences, 844 
264(1380), 461-465. 845 

Bentov, S., Brownlee, C., & Erez, J. (2009). The role of seawater endocytosis in the biomineralization process in 846 
calcareous foraminifera. Proceedings of the National Academy of Sciences, 106(51), 21500-21504. 847 

Bentov, S., & Erez, J. (2006). Impact of biomineralization processes on the Mg content of foraminiferal shells: A 848 
biological perspective. Geochemistry, Geophysics, Geosystems, 7(1). 849 

Berner, R. A. (1975). The role of magnesium in the crystal growth of calcite and aragonite from sea water. 850 
Geochimica et Cosmochimica Acta, 39(4), 489-504. 851 

Bouchez, J., Blanckenburg, F. von, Schuessler, J.A., 2013. Modeling novel stable isotope ratios in the weathering 852 
zone. Am. J. Sci. 313, 267–308. doi:10.2475/04.2013.01. 853 

Brand, U., Logan, A., Hiller, N., & Richardson, J. (2003). Geochemistry of modern brachiopods: applications 854 
and implications for oceanography and paleoceanography. Chemical Geology, 198(3-4), 305-334. 855 

Bryan, S.P., Marchitto, T.M., 2008. Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from 856 
the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 23, n/a-n/a. 857 
doi:10.1029/2007PA001553 858 

Carpenter, S.J., Lohmann, K.C., 1992. ratios of modern marine calcite: Empirical indicators of ocean chemistry 859 
and precipitation rate. Geochim. Cosmochim. Acta 56, 1837–1849. doi:10.1016/0016-7037(92)90314-860 
9 861 

Carré, M., Bentaleb, I., Bruguier, O., Ordinola, E., Barrett, N.T., Fontugne, M., 2006. Calcification rate 862 
influence on trace element concentrations in aragonitic bivalve shells: Evidences and mechanisms. 863 
Geochim. Cosmochim. Acta 70, 4906–4920. doi:10.1016/j.gca.2006.07.019. 864 

Carriker, M. R., & Palmer, R. E. (1979). A new mineralized layer in the hinge of the oyster. Science, 206(4419), 865 
691-693. 866 

Carriker, M. R., Palmer, R. E., Sick, L. V., & Johnson, C. C. (1980). Interaction of mineral elements in sea 867 
water and shell of oysters (Crassostrea virginica (Gmelin)) cultured in controlled and natural systems. 868 
Journal of experimental marine biology and ecology, 46(2), 279-296. 869 

Case, D.H., Robinson, L.F., Auro, M.E., Gagnon, A.C., 2010. Environmental and biological controls on Mg 870 
and Li in deep-sea scleractinian corals. Earth Planet. Sci. Lett. 300, 215–225. 871 
doi:10.1016/j.epsl.2010.09.029 872 

Chan, L.H., Edmond, J.M., Thompson, G., Gillis, K., 1992. Lithium isotopic composition of submarine basalts: 873 
implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett. 108, 151–160. 874 
doi:10.1016/0012-821X(92)90067-6 875 

Cusack, M., & Huerta, A. P. (2012). Brachiopods recording seawater temperature—A matter of class or 876 
maturation?. Chem. Geol., 334, 139-143. 877 

Darrenougue, N., De Deckker, P., Eggins, S., Payri, C., 2014. Sea-surface temperature reconstruction from 878 
trace elements variations of tropical coralline red algae. Quat. Sci. Rev. 93, 34–46. 879 
doi:10.1016/j.quascirev.2014.03.005 880 

Delaney, M.L., Popp, B.N., Lepzelter, C.G., Anderson, T.F., 1989. Lithium-to-calcium ratios in Modern, 881 
Cenozoic, and Paleozoic articulate brachiopod shells. Paleoceanography 4, 681–691. 882 
doi:10.1029/PA004i006p00681 883 

Delaney, M.L., W.H.Bé, A., Boyle, E.A., 1985. Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory 884 
culture, sediment traps, and sediment cores. Geochim. Cosmochim. Acta 49, 1327–1341. 885 
doi:10.1016/0016-7037(85)90284-4 886 

Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Louvat, P., Dosseto, A., Gorge, C., Alanoca, L., Maurice, 887 
L., 2015. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering 888 
regimes. Geochim. Cosmochim. Acta 164, 71–93. doi:10.1016/j.gca.2015.04.042. 889 

Dellinger, M., Bouchez, J., Gaillardet, J., Faure, L., & Moureau, J. (2017). Tracing weathering regimes using the 890 
lithium isotope composition of detrital sediments. Geology, 45(5), 411-414. 891 



 

27 

Dodd, J.R., 1967. Magnesium and Strontium in Calcareous Skeletons: A Review. J. Paleontol. 41, 1313–1329. 892 
Eagle, R.A., Eiler, J.M., Tripati, A.K., Ries, J.B., Freitas, P.S., Hiebenthal, C., Wanamaker Jr., A.D., Taviani, 893 

M., Elliot, M., Marenssi, S., Nakamura, K., Ramirez, P., Roy, K., 2013. The influence of temperature 894 
and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks. 895 
Biogeosciences 10, 4591–4606. doi:10.5194/bg-10-4591-2013. 896 

Elderfield, H., Bertram, C.J., Erez, J., 1996. A biomineralization model for the incorporation of trace elements 897 
into foraminiferal calcium carbonate. Earth Planet. Sci. Lett. 142, 409–423. doi:10.1016/0012-898 
821X(96)00105-7 899 

Erez, J., 2003. The Source of Ions for Biomineralization in Foraminifera and Their Implications for 900 
Paleoceanographic Proxies. Rev. Mineral. Geochem. 54, 115–149. doi:10.2113/0540115 901 

Flesch, G. D., Anderson Jr, A. R., & Svec, H. J. (1973). A secondary isotopic standard for 6Li/7Li 902 
determinations. International Journal of Mass Spectrometry and Ion Physics, 12(3), 265-272 903 

Fowell, S.E., Sandford, K., Stewart, J. A., Castillo, K.D., Ries, J.B., Foster, G.L., 2016, Intrareef variations in 904 
Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea 905 
siderea. Paleoceanography 31: PA002968. doi: 10.1002/2016PA002968 906 

Freitas, P. S., Clarke, L. J., Kennedy, H., & Richardson, C. A. (2012). The potential of combined Mg/Ca and 907 
δ18O measurements within the shell of the bivalve Pecten maximus to estimate seawater δ18O 908 
composition. Chemical Geology, 291, 286-293 909 

Freitas, P.S., Clarke, L.J., Kennedy, H., Richardson, C.A., 2009. Ion microprobe assessment of the 910 
heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia) shell 911 
calcite precipitated at constant temperature. Biogeosciences 6, 1209–1227. doi:10.5194/bg-6-1209-912 
2009 913 

Freitas, P.S., Clarke, L.J., Kennedy, H., Richardson, C.A., Abrantes, F., 2006. Environmental and biological 914 
controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus. 915 
Geochim. Cosmochim. Acta 70, 5119–5133. doi:10.1016/j.gca.2006.07.029 916 

Freitas, P.S., Clarke, L.J., Kennedy, H.A., Richardson, C.A., 2008. Inter- and intra-specimen variability masks 917 
reliable temperature control on shell Mg/Ca ratios in laboratory- and field-cultured Mytilus edulis and 918 
Pecten maximus (bivalvia). Biogeosciences 5, 1245–1258. doi:10.5194/bg-5-1245-2008 919 

Fritz, S. J. (1992). Measuring the ratio of aqueous diffusion coefficients between 6Li+ Cl− and 7Li+ Cr− by 920 
osmometry. Geochimica et Cosmochimica Acta, 56(10), 3781-3789 921 

Froelich, F., Misra, 2014. Was the Late Paleocene-Early Eocene Hot Because Earth Was Flat? An Ocean 922 
Lithium Isotope View of Mountain Building, Continental Weathering, Carbon Dioxide, and Earth’s 923 
Cenozoic Clima. Oceanography 27, 36–49. doi:10.5670/oceanog.2014.06 924 

Füllenbach, C.S., Schöne, B.R., Mertz-Kraus, R., 2015. Strontium/lithium ratio in aragonitic shells of 925 
Cerastoderma edule (Bivalvia) — A new potential temperature proxy for brackish environments. 926 
Chem. Geol. 417, 341–355. doi:10.1016/j.chemgeo.2015.10.030 927 

Gabitov, R.I., Schmitt, A.K., Rosner, M., McKeegan, K.D., Gaetani, G.A., Cohen, A.L., Watson, E.B., 928 
Harrison, T.M., 2011. In situ δ7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites. Geochem. 929 
Geophys. Geosystems 12, Q03001. doi:10.1029/2010GC003322 930 

Hall, J.M., Chan, L.-H., 2004. Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, 931 
latitudinal, and glacial-interglacial variation. Geochim. Cosmochim. Acta 68, 529–545. 932 
doi:10.1016/S0016-7037(03)00451-4 933 

Hall, J.M., Chan, L.-H., McDonough, W.F., Turekian, K.K., 2005. Determination of the lithium isotopic 934 
composition of planktic foraminifera and its application as a paleo-seawater proxy. Mar. Geol., Ocean 935 
Chemistry over the Phanerozoic and its links to Geological Processes 217, 255–265. 936 
doi:10.1016/j.margeo.2004.11.015 937 

Hathorne, E.C., Felis, T., Suzuki, A., Kawahata, H., Cabioch, G., 2013. Lithium in the aragonite skeletons of 938 
massive Porites corals: A new tool to reconstruct tropical sea surface temperatures. Paleoceanography 939 
28, 143–152. doi:10.1029/2012PA002311 940 

Hathorne, E.C., James, R.H., 2006. Temporal record of lithium in seawater: A tracer for silicate weathering? 941 
Earth Planet. Sci. Lett. 246, 393–406. doi:10.1016/j.epsl.2006.04.020 942 

Huh, Y., Chan, L.-H., Edmond, J.M., 2001. Lithium isotopes as a probe of weathering processes: Orinoco 943 
River. Earth Planet. Sci. Lett. 194, 189–199. doi:10.1016/S0012-821X(01)00523-4 944 

Huh, Y., Chan, L.-H., Zhang, L., Edmond, J.M., 1998. Lithium and its isotopes in major world rivers: 945 
implications for weathering and the oceanic budget. Geochim. Cosmochim. Acta 62, 2039–2051. 946 
doi:10.1016/S0016-7037(98)00126-4 947 

Immenhauser, A., Schöne, B.R., Hoffmann, R., Niedermayr, A., 2016. Mollusc and brachiopod skeletal hard 948 
parts: Intricate archives of their marine environment. Sedimentology 63, 1–59. doi:10.1111/sed.12231 949 

James, R.H., Palmer, M.R., 2000. The lithium isotope composition of international rock standards. Chem. 950 
Geol. 166, 319–326. doi:10.1016/S0009-2541(99)00217-X 951 

Kiessling, W., Flügel, E., Golonka, J., 2003. Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 952 



 

28 

36, 195–225. doi:10.1080/00241160310004648 953 
Kısakűrek, B., James, R.H., Harris, N.B.W., 2005. Li and δ7Li in Himalayan rivers: Proxies for silicate 954 

weathering? Earth Planet. Sci. Lett. 237, 387–401. doi:10.1016/j.epsl.2005.07.019 955 
LaVigne, M., Hill, T. M., Sanford, E., Gaylord, B., Russell, A. D., Lenz, E. A., ... & Young, M. K. (2013). The 956 

elemental composition of purple sea urchin (Strongylocentrotus purpuratus) calcite and potential effects 957 
of pCO2 during early life stages. Biogeosciences, 10(6), 3465. 958 

Lear, C.H., Rosenthal, Y., 2006. Benthic foraminiferal Li/Ca: Insights into Cenozoic seawater carbonate 959 
saturation state. Geology 34, 985–988. doi:10.1130/G22792A.1 960 

Lechler, M., Pogge von Strandmann, P.A.E., Jenkyns, H.C., Prosser, G., Parente, M., 2015. Lithium-isotope 961 
evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth Planet. Sci. 962 
Lett. 432, 210–222. doi:10.1016/j.epsl.2015.09.052 963 

Li, G., West, A.J., 2014. Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime 964 
and shifting seawater sinks. Earth Planet. Sci. Lett. 401, 284–293. doi:10.1016/j.epsl.2014.06.011 965 

Marriott, C.S., Henderson, G.M., Belshaw, N.S., Tudhope, A.W., 2004a. Temperature dependence of δ7Li, 966 
δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet. Sci. Lett. 222, 615–624. 967 
doi:10.1016/j.epsl.2004.02.031 968 

Marriott, C.S., Henderson, G.M., Crompton, R., Staubwasser, M., Shaw, S., 2004b. Effect of mineralogy, 969 
salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chem. Geol., 970 
Lithium Isotope Geochemistry 212, 5–15. doi:10.1016/j.chemgeo.2004.08.002 971 

Milliman, J., Müller, G., Förstner, F., 1974. Recent Sedimentary Carbonates: Part 1 Marine Carbonates. 972 
Springer Science & Business Media. 973 

Milliman, J.D., 1993. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady 974 
state. Glob. Biogeochem. Cycles 7, 927–957. doi:10.1029/93GB02524 975 

Misra, S., Froelich, P.N., 2012. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and 976 
reverse weathering. Science 335, 818–823. 977 

Misra, S., Froelich, P.N., 2009. Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to 978 
seawater and natural carbonates. J. Anal. At. Spectrom. 24, 1524–1533. doi:10.1039/B907122A 979 

Misra, S., Greaves, M., Owen, R., Kerr, J., Elmore, A.C., Elderfield, H., 2014. Determination of B/Ca of 980 
natural carbonates by HR-ICP-MS. Geochem. Geophys. Geosystems 15, 1617–1628. 981 
doi:10.1002/2013GC005049 982 

Montagna, P., McCulloch, M., Douville, E., López Correa, M., Trotter, J., Rodolfo-Metalpa, R., Dissard, D., 983 
Ferrier-Pagès, C., Frank, N., Freiwald, A., Goldstein, S., Mazzoli, C., Reynaud, S., Rüggeberg, A., 984 
Russo, S., Taviani, M., 2014. Li/Mg systematics in scleractinian corals: Calibration of the 985 
thermometer. Geochim. Cosmochim. Acta 132, 288–310. doi:10.1016/j.gca.2014.02.005 986 

Okumura, M., Kitano, Y., 1986. Coprecipitation of alkali metal ions with calcium carbonate. Geochim. 987 
Cosmochim. Acta 50, 49–58. doi:10.1016/0016-7037(86)90047-5 988 

Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., 989 
Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The 990 
Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for 991 
the world ocean, Earth Syst. Sci. Data, 8, 297-323, doi:10.5194/essd-8-297-2016, 2016. 992 

Penman, D.E., Hönisch, B., Rasbury, E.T., Hemming, N.G., Spero, H.J., 2013. Boron, carbon, and oxygen 993 
isotopic composition of brachiopod shells: Intra-shell variability, controls, and potential as a paleo-pH 994 
recorder. Chem. Geol. 340, 32–39. doi:10.1016/j.chemgeo.2012.11.016 995 

Pistiner, J.S., Henderson, G.M., 2003. Lithium-isotope fractionation during continental weathering processes. 996 
Earth Planet. Sci. Lett. 214, 327–339. doi:10.1016/S0012-821X(03)00348-0 997 

Planchon, F., Poulain, C., Langlet, D., Paulet, Y.-M., André, L., 2013. Mg-isotopic fractionation in the manila 998 
clam (Ruditapes philippinarum): New insights into Mg incorporation pathway and calcification process 999 
of bivalves. Geochim. Cosmochim. Acta 121, 374–397. doi:10.1016/j.gca.2013.07.002 1000 

Pogge von Strandmann, P.A.E., Desrochers, A., Murphy, M.J., Finlay, A.J., Selby, D., Lenton, T.M., 2017. 1001 
Global climate stabilisation by chemical weathering during the Hirnantian glaciation. Geochem. 1002 
Perspect. Lett. 230–237. doi:10.7185/geochemlet.1726 1003 

Pogge von Strandmann, P.A.E., Forshaw, J., Schmidt, D.N., 2014. Modern and Cenozoic records of seawater 1004 
magnesium from foraminiferal Mg isotopes. Biogeosciences 11, 5155–5168. doi:10.5194/bg-11-5155-1005 
2014 1006 

Pogge von Strandmann, P.A.E., Jenkyns, H.C., Woodfine, R.G., 2013. Lithium isotope evidence for enhanced 1007 
weathering during Oceanic Anoxic Event 2. Nat. Geosci. 6, 668–672. doi:10.1038/ngeo1875 1008 

Pogge von Strandmann, P.A.P., Henderson, G.M., 2015. The Li isotope response to mountain uplift. Geology 1009 
43, 67–70. 1010 

Richter, F. M., Mendybaev, R. A., Christensen, J. N., Hutcheon, I. D., Williams, R. W., Sturchio, N. C., & 1011 
Beloso Jr, A. D. (2006). Kinetic isotopic fractionation during diffusion of ionic species in water. 1012 
Geochimica et Cosmochimica Acta, 70(2), 277-289. 1013 



 

29 

Ries, J.B., Cohen, A.L., McCorkle, D.C., 2009, Marine calcifiers exhibit mixed responses to CO2-induced 1014 
ocean acidification. Geology 34: 1131-1134. 1015 

Ries, J.B., 2010. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-1016 
aragonite seas) and its effects on marine biological calcification. Biogeosciences. Biogeosciences 7. 1017 
doi:10.5194/bg-7-2795-2010 1018 

Ries, J.B., 2011, Skeletal mineralogy in a high-CO2 world. Journal of Experimental Marine Biology and 1019 
Ecology 403: 54-64. 1020 

Rollion-Bard, C., Blamart, D., 2015. Possible controls on Li, Na, and Mg incorporation into aragonite coral 1021 
skeletons. Chem. Geol. 396, 98–111. doi:10.1016/j.chemgeo.2014.12.011 1022 

Rollion-Bard, C., Vigier, N., Meibom, A., Blamart, D., Reynaud, S., Rodolfo-Metalpa, R., Martin, S., Gattuso, 1023 
J.-P., 2009. Effect of environmental conditions and skeletal ultrastructure on the Li isotopic 1024 
composition of scleractinian corals. Earth Planet. Sci. Lett. 286, 63–70. doi:10.1016/j.epsl.2009.06.015 1025 

Saenger, C., Wang, Z., 2014. Magnesium isotope fractionation in biogenic and abiogenic carbonates: 1026 
implications for paleoenvironmental proxies. Quat. Sci. Rev. 90, 1–21. 1027 
doi:10.1016/j.quascirev.2014.01.014 1028 

Stanley, S.M., Hardie, L.A., 1998. Hypercalcification: Paleontology links plate tectonics and geochemistry to 1029 
sedimentology. GSA Today. 1030 

Thébault, J., Chauvaud, L., 2013. Li/Ca enrichments in great scallop shells (Pecten maximus) and their 1031 
relationship with phytoplankton blooms. Palaeogeogr. Palaeoclimatol. Palaeoecol., Unraveling 1032 
environmental histories from skeletal diaries - advances in sclerochronology 373, 108–122. 1033 
doi:10.1016/j.palaeo.2011.12.014 1034 

Thébault, J., Schöne, B.R., Hallmann, N., Barth, M., Nunn, E.V., 2009. Investigation of Li/Ca variations in 1035 
aragonitic shells of the ocean quahog Arctica islandica, northeast Iceland. Geochem. Geophys. 1036 
Geosystems 10, Q12008. doi:10.1029/2009GC002789 1037 

Tomascak, P. B., Magna, T., & Dohmen, R. (2016). Advances in lithium isotope geochemistry (pp. 119-146). Berlin: 1038 
Springer. 1039 

Ullmann, C.V., Böhm, F., Rickaby, R.E.M., Wiechert, U., Korte, C., 2013a. The Giant Pacific Oyster 1040 
(Crassostrea gigas) as a modern analog for fossil ostreoids: Isotopic (Ca, O, C) and elemental (Mg/Ca, 1041 
Sr/Ca, Mn/Ca) proxies. Geochem. Geophys. Geosystems 14, 4109–4120. doi:10.1002/ggge.20257 1042 

Ullmann, C.V., Campbell, H.J., Frei, R., Hesselbo, S.P., Pogge von Strandmann, P.A.E., Korte, C., 2013b. 1043 
Partial diagenetic overprint of Late Jurassic belemnites from New Zealand: Implications for the 1044 
preservation potential of δ7Li values in calcite fossils. Geochim. Cosmochim. Acta 120, 80–96. 1045 
doi:10.1016/j.gca.2013.06.029 1046 

Ullmann, C.V., Frei, R., Korte, C., Lüter, C., 2017. Element/Ca, C and O isotope ratios in modern 1047 
brachiopods: Species-specific signals of biomineralization. Chem. Geol. 460, 15–24. 1048 
doi:10.1016/j.chemgeo.2017.03.034 1049 

Ullmann, C.V., Wiechert, U., Korte, C., 2010. Oxygen isotope fluctuations in a modern North Sea oyster 1050 
(Crassostrea gigas) compared with annual variations in seawater temperature: Implications for 1051 
palaeoclimate studies. Chem. Geol. 277, 160–166. doi:10.1016/j.chemgeo.2010.07.019 1052 

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., 1053 
Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., Strauss, H., 1999. 87Sr/86Sr, δ13C 1054 
and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88. doi:10.1016/S0009-1055 
2541(99)00081-9 1056 

Vigier, N., Rollion-Bard, C., Levenson, Y., & Erez, J. (2015). Lithium isotopes in foraminifera shells as a novel 1057 
proxy for the ocean dissolved inorganic carbon (DIC). Comptes Rendus Geoscience, 347(1), 43-51. 1058 

Vigier, N., Rollion-Bard, C., Spezzaferri, S., Brunet, F., 2007. In situ measurements of Li isotopes in 1059 
foraminifera. Geochem. Geophys. Geosystems 8, Q01003. doi:10.1029/2006GC001432 1060 

Wang, D., Hamm, L.M., Giuffre, A.J., Echigo, T., Rimstidt, J.D., Yoreo, J.J.D., Grotzinger, J., Dove, P.M., 1061 
2013. Revisiting geochemical controls on patterns of carbonate deposition through the lens of multiple 1062 
pathways to mineralization. Faraday Discuss. 159, 371–386. doi:10.1039/C2FD20077E 1063 

Wanner, C., Sonnenthal, E.L., Liu, X.-M., 2014. Seawater δ7Li: A direct proxy for global CO2 consumption 1064 
by continental silicate weathering? Chem. Geol. 381, 154–167. doi:10.1016/j.chemgeo.2014.05.005 1065 

Wefer, G., Berger, W.H., 1991. Isotope paleontology: growth and composition of extant calcareous species. 1066 
Mar. Geol., Anoxic Basins and Sapropel Deposition in the Eastern Mediterranean: Past and Present 1067 
100, 207–248. doi:10.1016/0025-3227(91)90234-U 1068 

Weiner, S., Addadi, L., 2011. Crystallization Pathways in Biomineralization. Annu. Rev. Mater. Res. 41, 21–40. 1069 
doi:10.1146/annurev-matsci-062910-095803 1070 

Weiner, S., Dove, P.M., 2003. An overview of biomineralization processes and the problem of the vital effect. 1071 
Rev. Mineral. Geochem. 54, 1–29. 1072 

Wilkinson, B.H., 1979. Biomineralization, paleoceanography, and the evolution of calcareous marine 1073 
organisms. Geology 7, 524–527. doi:10.1130/0091-7613(1979)7<524:BPATEO>2.0.CO;2 1074 



 

30 

Wombacher, F., Eisenhauer, A., Böhm, F., Gussone, N., Regenberg, M., Dullo, W.-C., Rüggeberg, A., 2011. 1075 
Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim. 1076 
Cosmochim. Acta 75, 5797–5818. doi:10.1016/j.gca.2011.07.017 1077 

Zeebe, R. E., & Sanyal, A. (2002). Comparison of two potential strategies of planktonic foraminifera for house 1078 
building: Mg2+ or H+ removal?. Geochimica et Cosmochimica Acta, 66(7), 1159-1169. 1079 

 1080 
 1081 
 1082 
 1083 
 1084 
 1085 
 1086 
 1087 
 1088 
 1089 
 1090 
 1091 
 1092 
 1093 
 1094 
 1095 
 1096 
 1097 
Table 1: Data for modern field-collected and growth experiment biogenic carbonates from 1098 
this study. 1099 



 

31 

 1100 
1Dominant mineralogy: A refers to 100% aragonite, A >> C to more than 90% aragonite, A 1101 
> C between 90 and 50% aragonite, A=C equivalent proportion of aragonite and calcite, C 1102 
> A between 50 and 10% aragonite, C >> A less than 10% aragonite and C to 100% calcite. 1103 
2For field collected specimens, growth temperatures (in °C) correspond to average temperatures 1104 
for the three warmest months. 1105 

Sample 
name Sample type Phyllum Species Speci

men #
Common 
name Sampling location Dominant 

mineralogy1
7Li Aragonite Calcite Li/Ca Mg/Ca Al/Ca Sr/Ca 18O

Growth 
temperature2

Annual 
temperature3

(‰) (%)  (%) ( mol/mol) (mmol/mol) ( mol/mol) (mmol/mol) (‰) (°C) (°C)
Field-collected Mollusk samples
57-12 Mixed Mollusk Chlamys cheritata Scallops Alaska (Kachemak Bay) USA C 39.3 0 100 19.5 5.7 < LD 1.27 9.9 6.74
167501 Mixed Mollusk Chlamys hastata Scallops Newport Beach, CA USA C 40.7 0 100 11.0 2.9 < LD 1.00 19.6 18.86
53819 Mixed Mollusk Chlamys squamosus Scallops Zamboanga, Philippine Islands C > A 38.7 30 70 12.1 11.3 < LD 1.22 28.2 28.15
170315 Mixed Mollusk Chione californiensis Clams San Pedro, CA USA A > C 18.2 79 21 6.8 0.5 < LD 1.30 19.6 18.86
170315 Inner Layer Mollusk Chione californiensis Clams San Pedro, CA USA A >> C 15.7 94 6 19.6 18.86
170315 Interm Layer Mollusk Chione californiensis Clams San Pedro, CA USA A 15.5 100 0 19.6 18.86
86-29 Mixed (ext) Mollusk Chione subimbricata Clams Costa Rica (Golfo de Papagayo) A > C 22.1 84 16 6.1 0.5 < LD 1.39 28.4 27.47
86-29 Outer Layer Mollusk Chione subimbricata Clams Costa Rica (Golfo de Papagayo) A 21.7 99 1 28.4 27.47
72-84 Mixed Mollusk Chione subrugosa Clams Peru (Puerto Pizzaro) C = A 24.4 55 46 7.7 0.3 < LD 1.45 25.0 22.15
72-84 Inner Layer Mollusk Chione subrugosa Clams Peru (Puerto Pizzaro) A 21.9 25.0 22.15
72-84 Outer Layer Mollusk Chione subrugosa Clams Peru (Puerto Pizzaro) A > C 21.6 88 12 25.0 22.15
50338 Inner Layer Mollusk Tridacna Maxima Clams Guam, Mariana Islands A >> C 17.6 98 2 28.6 28.63
50338 Outer Layer Mollusk Tridacna Maxima Clams Guam, Mariana Islands A >> C 19.5 98 2 28.6 28.63
MT1 PNG Mollusk Tridacna Gigas Clams Cocos, Island, Costa Rica A 19.3 100 0 3.7 0.4 < LD 2.02 28.1 27.56
83-26 Inner Layer Mollusk Mytilus californianus 1 Mussel Washington state, USA A >> C 16.0 98 2 8.7 0.7 < LD 2.38 11.0
83-26 Outer Layer Mollusk Mytilus californianus 1 Mussel Washington state, USA C = A 28.7 46 54 11.0
76-39 Front (outer) Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico C 39.0 0 100 9.9 5.4 < LD 1.15 19.5 16.32
76-39 Mixed Middle Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico C > A 35.1 9 91 7.0 4.4 < LD 1.14 19.5 16.32
76-39 Mixed Hinge Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico A > C 27.7 71 29 8.2 1.3 < LD 1.15 19.5 16.32
76-39 Inner Layer Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico A >> C 14.9 90 10 19.5 16.32
76-39 Outer Layer Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico C 39.4 0 100 19.5 16.32
AN88 Mixed Mollusk Laternula Elliptica Clams Terra Nova Bay, Antarctica A 16.3 100 0 9.0 0.7 < LD 2.37 -1.0 -1.34

Mixed Mollusk Adamussium Colbecki Scallop Ross sea, Edmundson, Antarctica C 34.6 0 100 12.9 1.0 < LD 1.36 -1.0 -1.34
Mixed Top Mollusk Turritella Gastropod 19.8 100 0 2.0 0.5 < LD 2.05
Mixed Back Mollusk Turritella Gastropod 19.8 100 0 1.7 0.3 < LD 2.21

112-72 Mollusk Crassostrea gigas 1 Oyster Washington state, USA C 32.9 0 100 25.1 3.1 < LD 0.75 14.0 11
112-72 Inner Layer Mollusk Crassostrea gigas 1 Oyster Washington state, USA C 36.9 0 100 14.0 11
112-72 Outer Layer Mollusk Crassostrea gigas 1 Oyster Washington state, USA C 33.2 0 100 14.0 11
110-50 Mollusk Crassostrea gigas 2 Oyster Tomales Bay, CA, USA C 34.0 0 100 16.0 6.9 < LD 0.77 13.0 12
110-50 Outer Layer Mollusk Crassostrea gigas 2 Oyster Tomales Bay, CA, USA C 31.7 0 100 13.0 12
66-117 Mollusk Crassostrea gigas 3 Oyster Gulf of Guayaquil, Ecuador C 34.5 0 100 25.4 20.6 < LD 0.60 24.8 23.04
ofl01 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 29.9 44.4 10.9 1.19 -1.5 18.6*
ofl02 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 30.6 30.1 12.3 1.52 -0.7 15.2*
ofl03 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 34.3 29.5 7.3 1.12 -1.3 17.7*
ofl04 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 23.8 21.4 13.8 2.08 -1.6 19.0*
ofl05 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 22.0 -1.4 18.3*
ofl06 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 20.5 22.9 7.5 2.58 -0.7 15.2*
ofl07 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.0 40.9 10.8 0.90 -0.1 12.6*
ofl08 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 29.7 29.6 10.4 1.70 0.0 12.2*
ofl09 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 34.0 35.9 3.5 1.08 -0.9 16.1*
ofl10 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 37.8 32.3 9.1 0.93 -1.8 20.3*
ofl11 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 25.5 21.5 8.7 1.44 -1.4 18.2*
och01 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 25.6 34.4 14.3 0.87 12.1*
och02 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.7 30.8 12.4 0.83 -1.1 16.9*
och03 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.1 31.2 13.9 0.83 -1.6 19.1*
och04 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.4 34.5 11.0 0.86 -1.9 20.4*
och05 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.0 24.0 13.3 2.35 -1.6 19.4*
och06 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.9 35.6 9.1 0.79 -1.7 19.6*
och07 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 28.9 -2.0 21.1*
och08 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 34.7 52.5 13.4 0.87 -2.1 21.5*
och09 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 28.2 43.2 10.7 1.00 -1.4 18.3*
och10 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 29.5 -1.4 18.4*
och11 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 28.8 42.3 10.6 0.96 -0.7 15.2*

Field-collected Brachiopod samples
Mixed Brachiopoda Campages mariae Brachiopod Aliguay Island, Philippines C 26.1 25.9 9.0 < LD 1.12 28.8 28.23
Mixed Brachiopoda Laqueus Rubellus Brachiopod Sagami Bay, Japan C 27.8 24.8 4.9 < LD 1.05 18.0 15.87
Mixed Brachiopoda Terebratulina Transversa Brachiopod Puget Sound, Nr. Friday, Harbor, Washington, USA C 24.7 29.3 15.4 < LD 1.41 9.0 9.00
Back-Dorsal Brachiopoda Terebratulina Transversa Brachiopod Puget Sound, Nr. Friday, Harbor, Washington, USA C 26.7
Back-Ventral Brachiopoda Terebratulina Transversa Brachiopod Puget Sound, Nr. Friday, Harbor, Washington, USA C 26.7
Front-Dorsal Brachiopoda Terebratulina Transversa Brachiopod Puget Sound, Nr. Friday, Harbor, Washington, USA C 27.3
Mixed Brachiopoda Notosaria nigricans Brachiopod South Island, New Zealand C 26.0 0 100 43.0 10.5 < LD 1.41 9.0 9.00
Mixed Brachiopoda Frenulina sanguinolenta Brachiopod Mactan Island, Philippines C 27.7 20.1 17.4 < LD 1.27 29.3 29.3

Field-collected Echinoderm samples
Mixed Sea Urchin Strongylocentrotus fransiscanus Urchins Leo Carillo, CA, USA C 24.4 0 100 69.2 88.2 < LD 2.62 18.6
Mixed Sea Urchin Strongylocentrotus purpuratus Urchins Leo Carillo, CA, USA C 24.1 60.3 80.7 0.064 2.50 18.6
Mixed Sea Urchin Dendraster Urchins Morro Bay, CA, USA C 24.2 0 100 81.3 109.1 0.086 2.4 14.7

Growth experiment mollusks samples
15A2 Nac Mollusk Mercenaria Mercenaria 1 Clams Growth experiment A >> C 19.2 8.8 1.1 0.032 1.56 15.0
15C1 Nac Mollusk Mercenaria Mercenaria 2 Clams Growth experiment A >> C 18.7 9.1 1.3 < LD 1.58 15.0
23A1 Nac Mollusk Mercenaria Mercenaria 3 Clams Growth experiment A >> C 18.8 7.4 1.2 0.028 1.58 23.0
23C1 Nac Mollusk Mercenaria Mercenaria 4 Clams Growth experiment A >> C 17.2 8.3 1.7 < LD 1.69 23.0
30A1 Nac Mollusk Mercenaria Mercenaria 5 Clams Growth experiment A >> C 18.1 7.1 1.0 < LD 2.02 30.0
30C2 Nac Mollusk Mercenaria Mercenaria 6 Clams Growth experiment A >> C 17.3 7.4 0.9 0.027 1.63 30.0
30C1 Nac Mollusk Mercenaria Mercenaria 7 Clams Growth experiment A >> C 17.6 7.3 1.6 0.021 1.83 30.0

PM1 Outer Layer Mollusk Pecten Maximus 1 Scallop Growth experiment C >> A 32.1 25.3 6.5 < LD 1.37 10.8
PM2 Outer Layer Mollusk Pecten Maximus 2 Scallop Growth experiment C >> A 32.8 10.8
PM3 Outer Layer Mollusk Pecten Maximus 3 Scallop Growth experiment C >> A 34.5 21.1 6.3 < LD 1.55 10.8
PM4 Outer Layer Mollusk Pecten Maximus 4 Scallop Growth experiment C >> A 32.6 20.0 9.5 < LD 1.44 15.5
PM5 Outer Layer Mollusk Pecten Maximus 5 Scallop Growth experiment C >> A 32.1 24.9 5.8 0.025 1.31 15.5
PM6 Outer Layer Mollusk Pecten Maximus 6 Scallop Growth experiment C >> A 32.6 20.8 5.2 < LD 1.49 15.5
PM7 Outer Layer Mollusk Pecten Maximus 7 Scallop Growth experiment C >> A 18.0
PM8 Outer Layer Mollusk Pecten Maximus 8 Scallop Growth experiment C >> A 35.1 15.4 9.8 < LD 1.54 18.0
PM9 Outer Layer Mollusk Pecten Maximus 9 Scallop Growth experiment C >> A 35.2 22.8 10.9 < LD 1.39 18.0
PM10 Outer Layer Mollusk Pecten Maximus 10 Scallop Growth experiment C >> A 34.5 24.1 8.2 < LD 1.64 20.2
PM11 Outer Layer Mollusk Pecten Maximus 11 Scallop Growth experiment C >> A 34.1 22.9 8.3 0.047 1.34 20.2
PM12 Outer Layer Mollusk Pecten Maximus 12 Scallop Growth experiment C >> A 34.3 19.4 9.3 < LD 1.27 20.2

ME1 Outer Layer Mollusk Mytilus Eduli 1 Mussel Growth experiment C >> A 37.1 21.4 3.0 < LD 1.48 10.7
ME2 Outer Layer Mollusk Mytilus Eduli 2 Mussel Growth experiment C >> A 34.9 22.7 2.7 < LD 1.60 10.7
ME3 Outer Layer Mollusk Mytilus Eduli 3 Mussel Growth experiment C >> A 33.3 23.0 3.6 < LD 1.39 10.7
ME4 Outer Layer Mollusk Mytilus Eduli 4 Mussel Growth experiment C >> A 37.1 18.4 2.8 < LD 1.17 12.0
ME5 Outer Layer Mollusk Mytilus Eduli 5 Mussel Growth experiment C >> A 12.4 2.9 < LD 1.02 12.0
ME6 Outer Layer Mollusk Mytilus Eduli 6 Mussel Growth experiment C >> A 12.0
ME7 Outer Layer Mollusk Mytilus Eduli 7 Mussel Growth experiment C >> A 36.5 15.6
ME8 Outer Layer Mollusk Mytilus Eduli 8 Mussel Growth experiment C >> A 37.0 18.8 4.6 < LD 1.08 15.5
ME9 Outer Layer Mollusk Mytilus Eduli 9 Mussel Growth experiment C >> A 15.5
ME10 Outer Layer Mollusk Mytilus Eduli 10 Mussel Growth experiment C >> A 38.2 15.4 4.3 < LD 1.18 18.4
ME11 Outer Layer Mollusk Mytilus Eduli 11 Mussel Growth experiment C >> A 38.2 15.8 4.0 < LD 1.33 18.4
ME12 Outer Layer Mollusk Mytilus Eduli 12 Mussel Growth experiment C >> A 39.1 13.1 5.3 < LD 1.24 18.0
ME13 Outer Layer Mollusk Mytilus Eduli 13 Mussel Growth experiment C >> A 37.5 16.8 6.5 < LD 1.31 18.0
ME14 Outer Layer Mollusk Mytilus Eduli 14 Mussel Growth experiment C >> A 35.4 20.8 9.8 < LD 1.10 20.2
ME15 Outer Layer Mollusk Mytilus Eduli 15 Mussel Growth experiment C >> A 36.8 19.1 7.2 < LD 1.28 20.2
ME16 Outer Layer Mollusk Mytilus Eduli 16 Mussel Growth experiment C >> A 39.6 12.8 6.2 < LD 1.15 20.2
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3Average annual temperature (in °C) 1106 
* Temperature calculated using Oxygen isotope data and the relationship between d18O and 1107 
temperature from Ullmann et al., (2010) 1108 
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Figure captions: 1111 

 1112 
Figure 1: Map representing the location and name of all the field-collected samples from this 1113 

study. A. America, B. East Asia, Oceania and Antarctica, and C. Europe 1114 

 1115 

Figure 2: Schematic showing the various types of sampling used in this study (bulk and specific 1116 

layers) for mussels, clams, oysters, and brachiopods. 1117 

 1118 

Figure 3: A) Sr/Ca of the biogenic carbonates from this study as a function of Mg/Ca. Corals 1119 

(Sr/Ca > 8) are not plotted on this figure. Data collected in this study are consistent with 1120 

expectations based on mineralogy (higher Sr/Ca and lower Mg/Ca for aragonite compared to 1121 

calcite). The three points surrounded by a circle have very high Sr/Ca compared to other 1122 

samples and are excluded from further discussion because the exact mineralogical composition 1123 

of these samples is not known. B) Li/Ca of the biogenic carbonates as a function of Mg/Ca. 1124 

 1125 

Figure 4: (A) Li isotope composition of modern carbonates, organized by phylum and 1126 

mineralogy. Small transparent points (for mollusks and corals) correspond to all data for each 1127 

phylum. Each large data marker corresponds to the average value for one specimen. Data from 1128 

corals (Marriott et al., 2004a; Rollion-Bard et al., 2009), planktic foraminifera (Hathorne and 1129 

James, 2006; Marriott et al., 2004a; Misra and Froelich, 2009; Rollion-Bard et al., 2009), and 1130 

benthic foraminifera (Marriott et al., 2004b) are from previously published literature. (B) Li/Ca 1131 

ratio of modern carbonates, organized by phylum and mineralogy. Each large data marker 1132 

corresponds to the average value for one specimen. Each small data marker corresponds to an 1133 

individual measurement. Horizontal bars correspond to the maximum and minimum value for 1134 

all data for each phylum. Data for corals (Hathorne et al., 2013; Marriott et al., 2004b; 1135 

Montagna et al., 2014; Rollion-Bard et al., 2009; Rollion-Bard and Blamart, 2015), planktic 1136 

and benthic foraminifera (Hall et al., 2005; Hall and Chan, 2004; Hathorne and James, 2006; 1137 

Misra and Froelich, 2012), and red algae (Darrenougue et al., 2014) are from previous studies. 1138 

Data from mollusks and brachiopods also include previously published data in addition to 1139 

results from this study (Delaney et al., 1989; Füllenbach et al., 2015; Thébault et al., 2009; 1140 

Thébault and Chauvaud, 2013). Skeletal organisms with the highest Li/Ca ratio are high-Mg 1141 
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calcite like red algae (60 to 110 μmol.mol-1; Darrenougue et al., 2014), low-Mg calcitic mollusks 1142 

(20 to 250 μmol.mol-1; Füllenbach et al., 2015; Thébault and Chauvaud, 2013), and 1143 

brachiopods (20 to 50 μmol.mol-1; Delaney et al., 1989). Aragonitic mollusks and benthic 1144 

foraminifera have the lowest reported Li/Ca ratios among skeletal organisms, between 2 and 1145 

11 μmol.mol-1 (Hall and Chan, 2004; Thébault et al., 2009).  1146 

 1147 

 1148 

Figure 5: A) Li isotope composition as a function of the temperature for mollusks grown at 1149 

various temperatures. The small black markers correspond to the inorganic calcite precipitation 1150 

experiments at various temperature while the small red ones represent abiogenic precipitation 1151 

experiments at varying salinity (Marriott et al., 2004a). B) Li isotope composition as a function 1152 

of the growth temperature for modern field-collected biogenic mollusks, brachiopods, and 1153 

echinoderms from this study. All data correspond to the mean of all the measurements of a 1154 

single specimen. The initials correspond to the genera and species name. C) Li/Ca ratio of 1155 

brachiopods as a function of the annual temperature. Data from Delaney et al. (1989) for 1156 

brachiopods and inorganic experimental data from Marriott et al. (2004) are also represented. 1157 

 1158 

Figure 6: Example of intra-shell Li isotope variability for the species Mytilus californianus. (A) 1159 

Sampling locations shown by the red dots on left figure. (B) δ7Li varies as a function of aragonite 1160 

percentage in the shell  1161 

 1162 

Figure 7: Δ7Liphysiol values as a function of A) βLi 25°C values (Li/Ca ratio normalized to Li/Ca 1163 

of inorganic carbonate at 25°C) and B) βLi T values (Li/Ca ratio normalized to Li/Ca of 1164 

inorganic carbonate at the corresponding growth temperature). The hand-drawn dotted circles 1165 

correspond to each taxonomic group. C) Also shown for comparison the δ7Li as a function of 1166 

the Li/Ca (in μmol.mol-1) for biogenic, inorganic and cultured experiment carbonates. 1167 

 1168 

Figure 8: (A) Δ7Liphysio values as a function of βLi 25°C values (Li/Ca ratio normalized to Li/Ca 1169 

of inorganic carbonate at 25°C) for mollusks. Calcite mollusks define a negative trend in this 1170 

space and this trend can be fitted with either a steady-state open system fractionation (black 1171 

line) or a Rayleigh fractionation model (grey line), both with an r2 = 0.64 (excluding the sample 1172 

having the highest βLi 25°C value). The numbers along the model curves correspond to the 1173 

proportion of Li remaining in the calcification reservoir before precipitation of the shell. (B) 1174 
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Negative relationship between Δ7Liphysio and Mg/Ca in calcitic mollusks. Shells having the 1175 

highest Δ7Liphysio values also have the lowest Mg/Ca ratio. 1176 
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2For field collected specimens, growth temperatures (in °C) correspond to average 1120 
temperatures for the three warmest months. 1121 
3Average annual temperature (in °C) 1122 
* Temperature calculated using Oxygen isotope data and the relationship between d18O and 1123 
temperature from Ullmann et al., (2010) 1124 
 1125 
 1126 
Figure captions: 1127 

 1128 
Figure 1: Map representing the location and name of all the field-collected samples from this 1129 

study. A. America, B. East Asia, Oceania and Antarctica, and C. Europe 1130 

 1131 

Figure 2: Schematic showing the various types of sampling used in this study (bulk and 1132 

specific layers) for mussels, clams, oysters, and brachiopods. 1133 

 1134 

Figure 3: A) Sr/Ca of the biogenic carbonates from this study as a function of Mg/Ca. Corals 1135 

(Sr/Ca > 8) are not plotted on this figure. Data collected in this study are consistent with 1136 

expectations based on mineralogy (higher Sr/Ca and lower Mg/Ca for aragonite compared to 1137 

calcite). The three points surrounded by a circle have very high Sr/Ca compared to other 1138 

samples and are excluded from further discussion because the exact mineralogical 1139 

composition of these samples is not known. B) Li/Ca of the biogenic carbonates as a function 1140 

of Mg/Ca. 1141 

 1142 

Figure 4: (A) Li isotope composition of modern carbonates, organized by phylum and 1143 

mineralogy. Small transparent points (for mollusks and corals) correspond to all data for each 1144 

phylum. Each large data marker corresponds to the average value for one specimen. Data 1145 

from corals (Marriott et al., 2004a; Rollion-Bard et al., 2009), planktic foraminifera 1146 

(Hathorne and James, 2006; Marriott et al., 2004a; Misra and Froelich, 2009; Rollion-Bard et 1147 

al., 2009), and benthic foraminifera (Marriott et al., 2004b) are from previously published 1148 

literature. (B) Li/Ca ratio of modern carbonates, organized by phylum and mineralogy. Each 1149 

large data marker corresponds to the average value for one specimen. Each small data marker 1150 

corresponds to an individual measurement. Horizontal bars correspond to the maximum and 1151 

minimum value for all data for each phylum. Data for corals (Hathorne et al., 2013; Marriott 1152 

et al., 2004b; Montagna et al., 2014; Rollion-Bard et al., 2009; Rollion-Bard and Blamart, 1153 

2015), planktic and benthic foraminifera (Hall et al., 2005; Hall and Chan, 2004; Hathorne 1154 

and James, 2006; Misra and Froelich, 2012), and red algae (Darrenougue et al., 2014) are 1155 
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from previous studies. Data from mollusks and brachiopods also include previously 1156 

published data in addition to results from this study (Delaney et al., 1989; Füllenbach et al., 1157 

2015; Thébault et al., 2009; Thébault and Chauvaud, 2013). Skeletal organisms with the 1158 

highest Li/Ca ratio are high-Mg calcite like red algae (60 to 110 μmol.mol-1; Darrenougue et 1159 

al., 2014), low-Mg calcitic mollusks (20 to 250 μmol.mol-1; Füllenbach et al., 2015; Thébault 1160 

and Chauvaud, 2013), and brachiopods (20 to 50 μmol.mol-1; Delaney et al., 1989). 1161 

Aragonitic mollusks and benthic foraminifera have the lowest reported Li/Ca ratios among 1162 

skeletal organisms, between 2 and 11 μmol.mol-1 (Hall and Chan, 2004; Thébault et al., 1163 

2009).  1164 

 1165 

 1166 

Figure 5: A) Li isotope composition as a function of the temperature for mollusks grown at 1167 

various temperatures. The small black markers correspond to the inorganic calcite 1168 

precipitation experiments at various temperature while the small red ones represent abiogenic 1169 

precipitation experiments at varying salinity (Marriott et al., 2004a). B) Li isotope 1170 

composition as a function of the growth temperature for modern field-collected biogenic 1171 

mollusks, brachiopods, and echinoderms from this study. All data correspond to the mean of 1172 

all the measurements of a single specimen. The initials correspond to the genera and species 1173 

name. C) Li/Ca ratio of brachiopods as a function of the annual temperature. Data from 1174 

Delaney et al. (1989) for brachiopods and inorganic experimental data from Marriott et al. 1175 

(2004) are also represented. 1176 

 1177 

Figure 6: Example of intra-shell Li isotope variability for the species Mytilus californianus. 1178 

(A) Sampling locations shown by the red dots on left figure. (B) δ7Li varies as a function of 1179 

aragonite percentage in the shell  1180 

 1181 

Figure 7: Δ7Liphysiol values as a function of A) βLi
 25°C values (Li/Ca ratio normalized to Li/Ca 1182 

of inorganic carbonate at 25°C) and B) βLi
 T values (Li/Ca ratio normalized to Li/Ca of 1183 

inorganic carbonate at the corresponding growth temperature). The hand-drawn dotted circles 1184 

correspond to each taxonomic group. C) Also shown for comparison the δ7Li as a function of 1185 

the Li/Ca (in μmol.mol-1) for biogenic, inorganic and cultured experiment carbonates. 1186 

 1187 
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Figure 8: (A) Δ7Liphysio values as a function of βLi
 25°C values (Li/Ca ratio normalized to Li/Ca 1188 

of inorganic carbonate at 25°C) for mollusks. Calcite mollusks define a negative trend in this 1189 

space and this trend can be fitted with either a steady-state open system fractionation (black 1190 

line) or a Rayleigh fractionation model (grey line), both with an r2 = 0.64 (excluding the 1191 

sample having the highest βLi
 25°C value). The numbers along the model curves correspond to 1192 

the proportion of Li remaining in the calcification reservoir before precipitation of the shell. 1193 

(B) Negative relationship between Δ7Liphysio and Mg/Ca in calcitic mollusks. Shells having 1194 

the highest Δ7Liphysio values also have the lowest Mg/Ca ratio. 1195 



Sample 
name Sample type Phyllum Species Speci

men #
Common 
name Sampling location

Dominant 
mineralogy1 δ7Li Aragonite Calcite Li/Ca Mg/Ca Al/Ca Sr/Ca δ18O

Growth 
temperature2

Annual 
temperature3

(‰) (%)  (%) (μmol/mol) (mmol/mol) (μmol/mol) (mmol/mol) (‰) (°C) (°C)
Field-collected Mollusk samples
57-12 Mixed Mollusk Chlamys cheritata Scallops Alaska (Kachemak Bay) USA C 39.3 0 100 19.5 5.7 < LD 1.27 9.9 6.74
167501 Mixed Mollusk Chlamys hastata Scallops Newport Beach, CA USA C 40.7 0 100 11.0 2.9 < LD 1.00 19.6 18.86
53819 Mixed Mollusk Chlamys squamosus Scallops Zamboanga, Philippine Islands C > A 38.7 30 70 12.1 11.3 < LD 1.22 28.2 28.15
170315 Mixed Mollusk Chione californiensis Clams San Pedro, CA USA A > C 18.2 79 21 6.8 0.5 < LD 1.30 19.6 18.86
170315 Inner Layer Mollusk Chione californiensis Clams San Pedro, CA USA A >> C 15.7 94 6 19.6 18.86
170315 Interm Layer Mollusk Chione californiensis Clams San Pedro, CA USA A 15.5 100 0 19.6 18.86
86-29 Mixed (ext) Mollusk Chione subimbricata Clams Costa Rica (Golfo de Papagayo) A > C 22.1 84 16 6.1 0.5 < LD 1.39 28.4 27.47
86-29 Outer Layer Mollusk Chione subimbricata Clams Costa Rica (Golfo de Papagayo) A 21.7 99 1 28.4 27.47
72-84 Mixed Mollusk Chione subrugosa Clams Peru (Puerto Pizzaro) C = A 24.4 55 46 7.7 0.3 < LD 1.45 25.0 22.15
72-84 Inner Layer Mollusk Chione subrugosa Clams Peru (Puerto Pizzaro) A 21.9 25.0 22.15
72-84 Outer Layer Mollusk Chione subrugosa Clams Peru (Puerto Pizzaro) A > C 21.6 88 12 25.0 22.15
50338 Inner Layer Mollusk Tridacna Maxima Clams Guam, Mariana Islands A >> C 17.6 98 2 28.6 28.63
50338 Outer Layer Mollusk Tridacna Maxima Clams Guam, Mariana Islands A >> C 19.5 98 2 28.6 28.63
MT1 PNG Mollusk Tridacna Gigas Clams Cocos, Island, Costa Rica A 19.3 100 0 3.7 0.4 < LD 2.02 28.1 27.56
83-26 Inner Layer Mollusk Mytilus californianus 1 Mussel Washington state, USA A >> C 16.0 98 2 8.7 0.7 < LD 2.38 11.0
83-26 Outer Layer Mollusk Mytilus californianus 1 Mussel Washington state, USA C = A 28.7 46 54 11.0
76-39 Front (outer) Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico C 39.0 0 100 9.9 5.4 < LD 1.15 19.5 16.32
76-39 Mixed Middle Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico C > A 35.1 9 91 7.0 4.4 < LD 1.14 19.5 16.32
76-39 Mixed Hinge Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico A > C 27.7 71 29 8.2 1.3 < LD 1.15 19.5 16.32
76-39 Inner Layer Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico A >> C 14.9 90 10 19.5 16.32
76-39 Outer Layer Mollusk Mytilus californianus 2 Mussel Baja Calif, Mexico C 39.4 0 100 19.5 16.32
AN88 Mixed Mollusk Laternula Elliptica Clams Terra Nova Bay, Antarctica A 16.3 100 0 9.0 0.7 < LD 2.37 -1.0 -1.34

Mixed Mollusk Adamussium Colbecki Scallop Ross sea, Edmundson, Antarctica C 34.6 0 100 12.9 1.0 < LD 1.36 -1.0 -1.34
Mixed Top Mollusk Turritella Gastropod 19.8 100 0 2.0 0.5 < LD 2.05
Mixed Back Mollusk Turritella Gastropod 19.8 100 0 1.7 0.3 < LD 2.21

112-72 Mollusk Crassostrea gigas 1 Oyster Washington state, USA C 32.9 0 100 25.1 3.1 < LD 0.75 14.0 11
112-72 Inner Layer Mollusk Crassostrea gigas 1 Oyster Washington state, USA C 36.9 0 100 14.0 11
112-72 Outer Layer Mollusk Crassostrea gigas 1 Oyster Washington state, USA C 33.2 0 100 14.0 11
110-50 Mollusk Crassostrea gigas 2 Oyster Tomales Bay, CA, USA C 34.0 0 100 16.0 6.9 < LD 0.77 13.0 12
110-50 Outer Layer Mollusk Crassostrea gigas 2 Oyster Tomales Bay, CA, USA C 31.7 0 100 13.0 12
66-117 Mollusk Crassostrea gigas 3 Oyster Gulf of Guayaquil, Ecuador C 34.5 0 100 25.4 20.6 < LD 0.60 24.8 23.04
ofl01 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 29.9 44.4 10.9 1.19 -1.5 18.6*
ofl02 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 30.6 30.1 12.3 1.52 -0.7 15.2*
ofl03 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 34.3 29.5 7.3 1.12 -1.3 17.7*
ofl04 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 23.8 21.4 13.8 2.08 -1.6 19.0*
ofl05 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 22.0 -1.4 18.3*
ofl06 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 20.5 22.9 7.5 2.58 -0.7 15.2*
ofl07 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.0 40.9 10.8 0.90 -0.1 12.6*
ofl08 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 29.7 29.6 10.4 1.70 0.0 12.2*
ofl09 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 34.0 35.9 3.5 1.08 -0.9 16.1*
ofl10 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 37.8 32.3 9.1 0.93 -1.8 20.3*
ofl11 foliate layers Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 25.5 21.5 8.7 1.44 -1.4 18.2*
och01 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 25.6 34.4 14.3 0.87 12.1*
och02 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.7 30.8 12.4 0.83 -1.1 16.9*
och03 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.1 31.2 13.9 0.83 -1.6 19.1*
och04 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.4 34.5 11.0 0.86 -1.9 20.4*
och05 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.0 24.0 13.3 2.35 -1.6 19.4*
och06 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 26.9 35.6 9.1 0.79 -1.7 19.6*
och07 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 28.9 -2.0 21.1*
och08 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 34.7 52.5 13.4 0.87 -2.1 21.5*
och09 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 28.2 43.2 10.7 1.00 -1.4 18.3*
och10 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 29.5 -1.4 18.4*
och11 chalky substance Mollusk Crassostrea gigas 4 Oyster List Tidal Basin Germany C >> A 28.8 42.3 10.6 0.96 -0.7 15.2*

Field-collected Brachiopod samples
Mixed Brachiopoda Campages mariae Brachiopod Aliguay Island, Philippines C 26.1 25.9 9.0 < LD 1.12 28.8 28.23
Mixed Brachiopoda Laqueus Rubellus Brachiopod Sagami Bay, Japan C 27.8 24.8 4.9 < LD 1.05 18.0 15.87
Mixed Brachiopoda Terebratulina Transversa Brachiopod Puget Sound, Nr. Friday, Harbor, Washington, USA C 24.7 29.3 15.4 < LD 1.41 9.0 9.00
Back-Dorsal Brachiopoda Terebratulina Transversa Brachiopod Puget Sound, Nr. Friday, Harbor, Washington, USA C 26.7
Back-Ventral Brachiopoda Terebratulina Transversa Brachiopod Puget Sound, Nr. Friday, Harbor, Washington, USA C 26.7
Front-Dorsal Brachiopoda Terebratulina Transversa Brachiopod Puget Sound, Nr. Friday, Harbor, Washington, USA C 27.3
Mixed Brachiopoda Notosaria nigricans Brachiopod South Island, New Zealand C 26.0 0 100 43.0 10.5 < LD 1.41 9.0 9.00
Mixed Brachiopoda Frenulina sanguinolenta Brachiopod Mactan Island, Philippines C 27.7 20.1 17.4 < LD 1.27 29.3 29.3

Field-collected Echinoderm samples
Mixed Sea Urchin Strongylocentrotus fransiscanus Urchins Leo Carillo, CA, USA HMC 24.4 0 100 69.2 88.2 < LD 2.62 18.6
Mixed Sea Urchin Strongylocentrotus purpuratus Urchins Leo Carillo, CA, USA HMC 24.1 60.3 80.7 0.064 2.50 18.6
Mixed Sea Urchin Dendraster Urchins Morro Bay, CA, USA HMC 24.2 0 100 81.3 109.1 0.086 2.4 14.7

Growth experiment mollusks samples
15A2 Nac Mollusk Mercenaria Mercenaria 1 Clams Growth experiment A >> C 19.2 8.8 1.1 0.032 1.56 15.0
15C1 Nac Mollusk Mercenaria Mercenaria 2 Clams Growth experiment A >> C 18.7 9.1 1.3 < LD 1.58 15.0
23A1 Nac Mollusk Mercenaria Mercenaria 3 Clams Growth experiment A >> C 18.8 7.4 1.2 0.028 1.58 23.0
23C1 Nac Mollusk Mercenaria Mercenaria 4 Clams Growth experiment A >> C 17.2 8.3 1.7 < LD 1.69 23.0
30A1 Nac Mollusk Mercenaria Mercenaria 5 Clams Growth experiment A >> C 18.1 7.1 1.0 < LD 2.02 30.0
30C2 Nac Mollusk Mercenaria Mercenaria 6 Clams Growth experiment A >> C 17.3 7.4 0.9 0.027 1.63 30.0
30C1 Nac Mollusk Mercenaria Mercenaria 7 Clams Growth experiment A >> C 17.6 7.3 1.6 0.021 1.83 30.0

PM1 Outer Layer Mollusk Pecten Maximus 1 Scallop Growth experiment C >> A 32.1 25.3 6.5 < LD 1.37 10.8
PM2 Outer Layer Mollusk Pecten Maximus 2 Scallop Growth experiment C >> A 32.8 10.8
PM3 Outer Layer Mollusk Pecten Maximus 3 Scallop Growth experiment C >> A 34.5 21.1 6.3 < LD 1.55 10.8
PM4 Outer Layer Mollusk Pecten Maximus 4 Scallop Growth experiment C >> A 32.6 20.0 9.5 < LD 1.44 15.5
PM5 Outer Layer Mollusk Pecten Maximus 5 Scallop Growth experiment C >> A 32.1 24.9 5.8 0.025 1.31 15.5
PM6 Outer Layer Mollusk Pecten Maximus 6 Scallop Growth experiment C >> A 32.6 20.8 5.2 < LD 1.49 15.5
PM7 Outer Layer Mollusk Pecten Maximus 7 Scallop Growth experiment C >> A 18.0
PM8 Outer Layer Mollusk Pecten Maximus 8 Scallop Growth experiment C >> A 35.1 15.4 9.8 < LD 1.54 18.0
PM9 Outer Layer Mollusk Pecten Maximus 9 Scallop Growth experiment C >> A 35.2 22.8 10.9 < LD 1.39 18.0
PM10 Outer Layer Mollusk Pecten Maximus 10 Scallop Growth experiment C >> A 34.5 24.1 8.2 < LD 1.64 20.2
PM11 Outer Layer Mollusk Pecten Maximus 11 Scallop Growth experiment C >> A 34.1 22.9 8.3 0.047 1.34 20.2
PM12 Outer Layer Mollusk Pecten Maximus 12 Scallop Growth experiment C >> A 34.3 19.4 9.3 < LD 1.27 20.2

ME1 Outer Layer Mollusk Mytilus Eduli 1 Mussel Growth experiment C >> A 37.1 21.4 3.0 < LD 1.48 10.7
ME2 Outer Layer Mollusk Mytilus Eduli 2 Mussel Growth experiment C >> A 34.9 22.7 2.7 < LD 1.60 10.7
ME3 Outer Layer Mollusk Mytilus Eduli 3 Mussel Growth experiment C >> A 33.3 23.0 3.6 < LD 1.39 10.7
ME4 Outer Layer Mollusk Mytilus Eduli 4 Mussel Growth experiment C >> A 37.1 18.4 2.8 < LD 1.17 12.0
ME5 Outer Layer Mollusk Mytilus Eduli 5 Mussel Growth experiment C >> A 12.4 2.9 < LD 1.02 12.0
ME6 Outer Layer Mollusk Mytilus Eduli 6 Mussel Growth experiment C >> A 12.0
ME7 Outer Layer Mollusk Mytilus Eduli 7 Mussel Growth experiment C >> A 36.5 15.6
ME8 Outer Layer Mollusk Mytilus Eduli 8 Mussel Growth experiment C >> A 37.0 18.8 4.6 < LD 1.08 15.5
ME9 Outer Layer Mollusk Mytilus Eduli 9 Mussel Growth experiment C >> A 15.5
ME10 Outer Layer Mollusk Mytilus Eduli 10 Mussel Growth experiment C >> A 38.2 15.4 4.3 < LD 1.18 18.4
ME11 Outer Layer Mollusk Mytilus Eduli 11 Mussel Growth experiment C >> A 38.2 15.8 4.0 < LD 1.33 18.4
ME12 Outer Layer Mollusk Mytilus Eduli 12 Mussel Growth experiment C >> A 39.1 13.1 5.3 < LD 1.24 18.0
ME13 Outer Layer Mollusk Mytilus Eduli 13 Mussel Growth experiment C >> A 37.5 16.8 6.5 < LD 1.31 18.0
ME14 Outer Layer Mollusk Mytilus Eduli 14 Mussel Growth experiment C >> A 35.4 20.8 9.8 < LD 1.10 20.2
ME15 Outer Layer Mollusk Mytilus Eduli 15 Mussel Growth experiment C >> A 36.8 19.1 7.2 < LD 1.28 20.2
ME16 Outer Layer Mollusk Mytilus Eduli 16 Mussel Growth experiment C >> A 39.6 12.8 6.2 < LD 1.15 20.2
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