
 1

Fig. 1. Spike sorting process for determining single unit activity. Data is
progressively reduced over processing blocks (Z <K< N).

Analog
Front End

Detection &
Alignment FE & DR Clustering

X(N) X(K) X(Z)Neural Signal

Clusters

Multi-Unit
Activity

Single-Unit
Activity

Abstract—There is a need for integrated spike sorting

processors in implantable devices with low power consumption
that have improved accuracy. Learning the characteristics of the
variable input neural signals and adapting the functionality of
the sorting process can improve the accuracy. An adaptive spike
sorting processor is presented accounting for the variation in the
input signal noise characteristics and the variable difficulty in the
selection of the spike characteristics, which significantly improves
the accuracy. The adaptive spike processor was fabricated in 180-
nm CMOS technology for proof of concept. It performs
conditional detection, alignment, adaptive feature extraction and
online clustering with sorting threshold self-tuning capability.
The chip was tested under different input signal conditions to
demonstrate its adaptation capability providing a median
classification accuracy of 84.5% and consuming 148 µW from a
1.8 V supply voltage.

Index Terms—Adaptive decomposition, brain machine
interface, feature extraction, processor, reconfigurable embedded
frames, signal model learning, spike sorting, unsupervised
clustering.

I.INTRODUCTION
NTERACTIONS between neurons are performed via
electrical signals known as action potentials or spikes. The

information of spikes from neurons has led to the development
of miniaturized and implantable brain machine interfaces.
These have been introduced for therapeutic applications using
the neural modulation of a particular pathway [1], [2], as a
communication bridge for control of assistive devices for
patients with damaged sensory/motor functions (e.g. hand
prosthesis [3], [4]) and restoration of lost cognitive function
[5]. Such neural interfaces have benefited from advances in
both electrode technology and microelectronics [6]-[8].
 The detection of spikes by electrodes may involve the
combined activity of typically 5 to 10 neurons [9]. Spike
sorting is the process of grouping the recorded spikes into
clusters based on the similarity of their shapes. As shown in
Fig. 1, it comprises the following steps: 1) detection and

Manuscript submitted November 20, 2017, revised, 27 February, 2018.

This work was supported in part by a UCL PhD scholarship to M. Zamani.
M. Zamani, D. Jiang and A. Demosthenous are with the Department of

Electronic and Electrical Engineering, University College London, Torrington
Place, London WC1E 7JE, UK. (e-mail: m.zamani@ucl.ac.uk,
d.jiang@ucl.ax.uk, a.demosthenous@ucl.ac.uk).

alignment, separating spikes from noise and aligning the
spikes to a common point, 2) feature extraction, extracting
features of the spike shapes which gives a dimensionality
reduction, i.e., going from a space of dimension N (with N the
number of datapoints per spike) to a low dimensional space of
a few features (K), and 3) clustering, grouping spikes with
similar features into clusters (Z), corresponding to the different
neurons. Spike sorting must account for the variety of spike
shapes, different firing rates and noise [10]. This involves
significant processing and therefore power which is a serious
constraint in implant applications.

Future spike sorting processors aim to improve accuracy
and reduce power consumption suitable for implantable
devices [11]. Integrated spike sorting processors have been
developed [12]-[16]. In [12], the spike sorting processor
performs detection, alignment and feature extraction but
online clustering is not included. One of the most complete
spike sorting processors is described in [13]. The design is
multichannel, online and unsupervised and is compatible with
the constraints of implantable devices. It achieves a median
clustering accuracy of 75%. Note that the clustering accuracy
decreases when there are close similarities between the
recorded spikes [17]. A multichannel spike sorting processor
that performs detection and feature extraction is described in
[14]. Despite the use of a parallel-folding structure to reduce
the hardware resources, it is not suited to implantable
applications due to a power density which exceeds the safe
limits for implants. An asynchronous spike sorting processor
is described in [15]. The asynchronous self-timed
methodology has inherent latency adjustment due to process
variations but it provides a low power design. It consists of
detection, alignment and feature extraction, but the clustering
uses an external circuit. In [16] a real-time spike sorting
processor is presented. It consists of spike detection, feature
extraction and an improved clustering algorithm. The
efficiency of this approach degrades with time due to the

An Adaptive Neural Spike Processor With
Embedded Active Learning for Improved

Unsupervised Sorting Accuracy
Majid Zamani, Member, IEEE, Dai Jiang, Member, IEEE, and Andreas Demosthenous, Fellow, IEEE

I

 2

variation of noise and spike similarity. When the number of
clusters is set manually its clustering accuracy is 87% and
drops to 72% in online mode which is less than the reported
median clustering accuracy in [13].
 The common challenge in all the spike sorting processors in
[12]-[16] is that they are not capable of adapting to the varying
recorded neural signal characteristics such as background
noise variations, electrode drift and appearance/disappearance
of active neurons [18]. There is a need for a processor that
adapts (learns) and embeds the high order signal models in the
conventional spike sorting chain. In [19], the architecture and
preliminary design of an adaptive spike sorting processor was
introduced in which the signal model is captured through
embedded frames and the processing chain is intermittently
reconfigured to maintain optimal clustering performance.
 This paper is a further development of [19]. The complete
design, implementation and testing of the adaptive spike
processor is presented, including confirmation of its successful
adaptation providing high clustering accuracy. The remainder
of this paper is organized as follows. Section II presents the
general concept of adaptive spike sorting featuring embedded
frames. Section III provides the architecture and system level
details of an unsupervised, adaptive spike sorting processor for
implantable applications. The measured results of the
fabricated chip based on 180-nm CMOS technology are
presented in Section IV. Section V concludes the paper.

II.PRINCIPLE OF EMBEDDED FRAMES FOR ADAPTIVE SPIKE
SORTING

The general concept of embedding frames into a
synchronous processor (SYNC DSP) to provide adaptive
features is shown in Fig. 2(a). Intelligence (active learning) is
incorporated into the SYNC DSP by embedding frames
(Frame a … Frame z) which provide information about the
captured model h(x) of the input signal (x1, x2, … xw). The
frame information may be distributed to individual processing
blocks of the SYNC DSP to allow dynamic adaptation.

Figs 2(b)-(e) show application of this concept to spike
sorting. The two key factors in spike sorting performance
degradation are the noise of the recorded data and the
similarity index between the spike waveforms. The aim is to
develop a spike processor in which the performance is
automatically adjusted to an optimal level (maintaining lowest
clustering error) accounting for different noise levels and the
varying difficulty between the recorded spike waveforms. Fig.
2(b) is the block diagram of a conventional synchronous spike
processor whose performance varies as a function of noise
[f(Noise)] and similarity of extracted spikes [f(Similarity)].
Fig. 2(c) shows the spike sorting concept developed with
added reverse-adjustment flow where the clustering
performance (CACC) is independent (⊥) of noise and spike
shape similarity. As shown in Fig. 2(d) this is captured in two
frames (Frame 1 and Frame 2) for two variable parameters:

input noise standard deviation (σN) and the similarity pattern
(SP) of the spikes. Adding the frames to the traditional spike
processor presents a fundamentally new approach for mapping
the recorded spikes to the individual neurons. Fig. 2(e) shows
the two frames added to the spike sorting described in [20] to
realize an adaptive spike processor. The adaptive processing
provides an on-chip tuning mechanism for programming the
key coefficients in the relevant building blocks. For Frame 1,
σN can be evaluated by median processing of the recorded
neural data. Frame 2 models the localized difference
extraction of the aligned spikes as in [21]. SP is intermittently
updated with the similarity information of the latest spike
waveforms.

III.ADAPTIVE SPIKE SORTING PROCESSOR

A. System Architecture

Fig. 2. (a) Conversion of a classical synchronous processor (SYNC DSP) to
a processor with adaptive features. The characteristics of the captured model
h(x) of the input signal (x1, x2, … xw) are embedded into the SYNC DSP
using frames. (b) Conventional spike processor in which the clustering
accuracy (CACC) is a function of input data noise [f(noise)] and spike
similarity [f(similarity)]. (c) A spike processor independent (⊥) of input data
noise and spike similarity. Here CACC remains approximately constant with
varying noise and spike similarities. (d) Input noise standard deviation (σN)
is captured in Frame 1 and the similarity pattern (SP) of the spikes in Frame
2. (e) Frame 1 is embedded into three blocks of the synchronous spike
processor (detection and alignment, feature extraction and clustering) and
Frame 2 is embedded into the feature extraction block only.

Neural-Signal
Simulator

Spike
Processor

CACC

CACC

Noise

Similarity

Reverse-Adjustment

(c)

Frame 1

Frame 2

(d)

Noise STD

Similarity
Pattern

1 ms

A
m

pl
itu

de

Peak
Alignment

Ground Truth

⊥
⊥

Neural-Signal
Simulator

Spike
Processor

CACC

CACC

f (Noise)
(b)

Ground Truth

=

f (Similarity)=

Frame 2

Clusters
Neural
Signal

(a)

σN

SP

Synchronous Spike Processor

Frames

Detection &
Alignment

Feature
Extraction

Dimensionality
Reduction

Clustering

CLK

(e)

Frame 1

CLK

SYNC
ADC

SYNC
DAC

SYNC DSP
Frame z

Frame a

Embedding h(x)x1, x2 , ... xw

 3

Fig. 3. Adaptive spike sorting architecture. The frames in Fig. 2 are
embedded into the spike processor (Frame1 = σN; Frame 2 = SP). It is
designed to distinguish up to six (k = 6) active neurons in the recording
channel.

Detection
(ωNEO)

Alingment
(Peak)

Adaptive FE

SThr

SThr
LUT

Assignment

Training

Performance
Check

FV
-M

on
ito

rin
g

Self-Tuning Clustering

D
em

ux

Adaptive Spike
Processor

Cluster

#1
Cluster

 #2

Cluster
 #k

Train ing
Control

N
eu

ra
l

S
ig

na
l

Buffering

Monitoring

Ext
Tune

ADDs
C #1 C #k

Frequency
Synthesizer

FV

Frame 2 SP

Frame 1
(σN)

Fig. 5. Implementation of ωNEO with conditional control. Conditional
enable is initiated by SThr = 4·σN. The moving-average filter (MAF) reduces
the noise effect from the ωNEO output signal and improves the accuracy of
the calculation of the detection threshold Thr. ω = 2 in this design.

Neural
Signal

Conditional Enable

MAF Thr

x(n)

x(n-ω)

x(n+ω)
RR

SThr

(ωNEO)

R

Fig. 4. Adaptive processing hierarchy. Robustness is increased via the red
path for noise and via the green path for the variation in the spike
waveforms. Layer 1 (L1): sensing frames; Layer 2 (L2): allocation of frame
functions for detection, feature extraction and clustering; Layer 3 (L3):
features associated with each allocation.

Adaptive Spike
Sorting Processor

Detection Feature Extraction Clustering

Adaptive FE
(SP→FS→ ADDs)

Dual-thresholding
SThr & ωNEO

Modified
O-Sort

3- Robustness to electrode drift
& variation of spike shapes in time

1- Detection accuracy

2- Power saving

1- Self-tuning (Topt)

2- Active neurons sensing

Frame 1 Frame 2L1

L2

L3

2- Robustness to spike waveforms
similarity level

1- Noise robustness

3- Cluster shift sensing

Fig. 3 shows the architecture of the adaptive spike processor
using the embedded frames. The amplified, band-pass filtered
and digitized neural data is sent to the adaptive spike
processor. Frame 1 monitors the noise standard deviation (σN)
of the neural data and defines the sorting threshold
SThr = 4·σN [22] which is distributed to the detection block,
adaptive feature extraction (FE) block and sorting threshold
look-up-table (SThr LUT). The SP extracted in Frame 2 is sent
to the frequency synthesizer (FS) for tuning the decomposition
lines. Each spike is extracted using a 2.5 ms window and
aligned to a common temporal reference. In the detection
block, the SThr is considered as a conditional activation
function of the modified version of a nonlinear energy
operator (ωNEO) [23]. The authenticity of spikes are
examined with SThr and ωNEO. The spike detection power
used is significantly reduced by masking the worthless data
and inhibiting the asynchronous initiation of the detection
block.

In the adaptive feature extraction block, extrema sampling
[20] of adaptive discrete derivatives (ADDs) provides an
efficient method not only in computational simplicity but also
in accuracy to transform the recorded spikes to a feature space
that better separates the different neurons. Selective spike
decomposition is performed using the aligned spike
waveforms and FS. SP is updated over time to monitor the
similarity level between the extracted and peak-aligned spikes.
Feature extraction is adjusted to the appropriate sub-bands
(decomposition sub-bands) with the most informative samples
based on the FS output. The maximum separation between the
spikes is achieved by extrema sampling of selected sub-bands.
The feature vectors (FVs) are sent to the features monitoring
block (FV-monitoring) and subsequently to the clustering
block.

The modified version of the online sorting algorithm (O-
Sort) in [24] is used for real-time and unsupervised clustering
of neurons. The cluster means identified in the training phase
(C#1 … C#k) are saved in the memory of the assignment
block. During the cluster-mapping phase, the input FVs are
mapped based on their minimum distance to one of the
identified cluster means saved during the training phase. The
performance check and training control blocks are exploited in
the clustering block to enhance the clustering median accuracy
by incorporating a sorting threshold self-tuning scheme. The
performance check block monitors and evaluates the clustered
FVs based on the defined performance metrics. It decides

whether the level of the sorting threshold should be iteratively
adjusted to an optimal level (Topt) [20] in the SThr LUT block,
and if needed triggers retraining to re-compute the cluster
means.

Fig. 4 shows the hierarchy of the functions providing the
derived features from the adaptive spike processor. In the
following sections further details of the operational aspects are
described.

B. Detection and Alignment
The nonlinear energy operator (NEO) [23] is an

unsupervised method for calculating the energy variation of
the original signal to interpret the spike events in time. NEO is
defined as:

 𝜓(𝑛) = 𝑥((𝑛) − 𝑥(𝑛 + 1) ∙ 𝑥(𝑛 − 1) (1)

where x(n) is the input digitized signal and 𝜓(𝑛) is the NEO
value at sampling point n. This operator highlights the large
variations in power and frequency. The characteristic of spike
activity is instantaneous. The NEO operator emphasizes the
amplitude-energy variation of the spikes and improves the
signal to noise ratio (SNR) in a noisy environment.
 However, NEO is poor in the detection of spikes with low
frequency components. To increase robustness to spike
amplitude variations and reduce out-of-band noise sensitivity,
(1) is changed to 𝜓(𝑛) = 𝑥((𝑛) − 𝑥(𝑛 + 𝜔) ∙ 𝑥(𝑛 − 𝜔),

 4

Fig. 7. Adaptive feature extraction architecture. The MAF suppresses the
effect of random high frequency noise of the aligned spike waveform
alsp(n). The Frame 2, frequency synthesizer and ADDs provide adaptive
decomposition. Three decomposition lines are selected based on scaling1,
scaling2 and scaling3. The dimensionality reduction (DR) block uses
extrema (max/min) sampling of the decomposed spike waveform s(n).

Si
m

ila
rit

y
R

ob
us

tn
es

s

MAFAligned
Spike

FV

ADDs
Tuning

DR
(max/min)

alsp(n)

s(n)

C
A C

C

MAF ADDs DR

N
oi

se

R
ob

us
tn

es
s

In
cr

ea
si

ng
Se

pa
ra

bi
lit

y

SNR=Vp-p /σN
Frame 2 (SP)

Frequency
Synthesizer

sc
al

in
g1

sc
al

in
g2

sc
al

in
g3

ADDs

Fig. 6. (a) Architecture of the detection and alignment block. (b) Timing
diagram.

Neural
Signal

Preamble
Buffer

ωNEO

Detection
Threshold

Comp

Energy
Filter

Spike
Detected

Delayed
Data

Timing
Control

Peak
Detector

wr-index rd-index

Peak-
ID

Circular Buffer
Writing

Reading

Extraction
Window
Length

Conditional
Enable

External Adjustment

Spike_det

Spike_det

Peak_en

Peak_en

wr-index

Peak_det

Align_en
A
lig
n_
en

rd-index

wr-clk

rd-clk

(a)

(b)

alsp(n)

ωNEO Processor

SThr

wr-clk

rd-clk

where ω is between 1 and 3 by experiment. This is defined as
ωNEO.
 Fig. 5 shows the block diagram of the ωNEO conditional
control function. This approach has two advantages. Firstly,
conditional enabling is directly applied to the ωNEO block,
thus when the input exceeds the clustering threshold (SThr),
dual-thresholding (SThr and ωNEO) is executed providing a
double check on accuracy. Secondly, dual-thresholding
provides a power reduction of ~30% (based on Cadence
synthesis simulations).
 The conventional method used for threshold calculation at
the output of ωNEO is energy accumulation divided by the
window sample numbers. The power variations in different
simulations show that the output of the ωNEO is sensitive to
noise disturbances. Normally the input signal to the ωNEO is
composed of spike events which exhibit localized energy of a
specific duration and other samples as a result of noise
interference. The output of ωNEO can be sensitive to
breakthrough of noise from the input signal. To minimize this
effect a simple moving average filter (MAF) is applied in Fig.
5. The detection threshold Thr is calculated as:

 𝑇ℎ𝑟 = 1
2
∑ 𝜆(𝑛)2
567 (2)

where 𝜆(𝑛) is the filtered signal energy, N is the number of
samples per window, and α is a constant (empirically chosen
to be 8 in this implementation). To reduce the buffering of the
threshold calculation, the detection threshold is updated per
window rather than per sample. The calculated threshold is

used for the next segment of data; the accumulator is reset and
starts again for the next data window.
 Fig. 6 shows the detection and alignment block architecture.
The input neural data is sent to both a preamble buffer and the
ωNEO block. The preamble buffer is a digital delay line of 24
cells. It synchronizes the ωNEO output with the starting point
of a spike and buffers the samples before the spike exceeds the
threshold level. The delayed data is continuously written to a
circular buffer. When a spike is detected, the corresponding
writing index (wr-index) is sent to the peak detector block and
thus the sample counting and peak address are synchronized.
The output of the peak detector (peak-ID) is used to define the
extraction window length. The peak-ID is the fifteenth sample
of the 45 samples in the aligned window. The read index (rd-
index) representing the first sample in the window, is sent to
the reading block of the circular buffer and the aligned spike
samples alsp(n) are transferred to the adaptive feature
extraction block. The reading clock rate is 4x faster than the
writing clock rate to ensure capturing spikes that are close in
time.

C. Adaptive Feature Extraction
Feature extraction transforms the aligned spikes to a low-

dimensional space and emphasizes the spike waveform
differences. Fig. 7 shows the adaptive feature extraction block,
a modified version of [20]. It consists of a MAF, frequency
synthesizer (FS), adaptive discrete derivatives (ADDs) and
dimensionality reduction (DR) blocks. The MAF acts as a
denoising filter to improve feature extraction robustness to
random noise (out-of-band noise) while retaining the crucial
encoded information buried in the spikes. The SNR = Vp-p/σN
obtained from Frame 1 is used to decrease noise sensitivity
and increase feature extraction separability by adjusting the
length of MAF.

MAF averages a specific number of samples of the
incoming aligned spikes alsp(n) to produce the smoothed
output signal s(n) expressed as:

 𝑠(𝑛) = 7
9
∑ 𝑎𝑙𝑠𝑝(𝑛 − 𝑗)9>7
?6@ (3)

where M is the filter length. M is defined based on SNR for
different 𝜎2:	𝑀|FGH6IJKJ LM6@.7,@.7P,@.(⁄ = 1,2,4.

 5

Fig. 8. (a) Illustration of sub-band selection using the sensing path SP→FS.
Three sub-bands that accommodate the most separable feature are chosen by
scaling1, scaling2 and scaling3. (b) Feature extraction employing spectral
analysis in the ADDs. Decomposition intensity range is shown with
different colors from high (δ=1) to low (δ=7). (c) Illustration of ADDs as an
adaptive filter.

DR
(max/min)

(a)SPAD
D

s

FS δ=
1

δ=
2

δ=
6

δ=
7

δ=
2

δ=
3

δ=
4

δ=
5

δ=
6

δ=
7

Decomposition Line Selector

Decomposition Sub-bands

(b)

δ=1 δ=
2

δ=
6 δ=7

High
Frequency

Low
Frequency

Medium
Frequency

Window Length (δ)

am
p

δ=1

δ=2

δ=7

(c)

δ=2 δ=3 δ=4 δ=5 δ=6 δ=7

Decomposition Processor

am
p =

 1s(n) s(n - δ)

δ=1
δ=2 δ=7

Multimodal Sub-bands Selector

Decomposition Sub-bands

scaling1

scaling2

scaling3

]|)()([ADDs 7...1=--= ddnsnsamp

Fig. 9. Frequency synthesizer (FS) and scaling factor (δ) tuning. The process
is illustrated using the C_Difficult1 dataset [26]. (a) Peak aligned mean
waveforms in C_Difficult1. Local differences are identified in LD1 and
LD2. (b) Generated similarity pattern (SP = Frame 2) from the accumulated
local differences. ZD1 and ZD2 identify the zero differences. The first
derivative of the local differences (seven samples around each peak)
provides the active frequencies in SP. (c) Weight assignment to the absolute
value of ǀFD(SP)ǀ corresponding to the sample numbers in LD1 and LD2. The
decomposition intensity is shown in different colors from high (δ=1) to low
(δ=7). The winner sub-bands represented by scaling1, scaling2 and scaling3
are used to tune the decomposition processor.

C

G δ=7
δ=6
δ=5
δ=4
δ=3

δ=2

δ=1

F

E

D

B

A

SP

W
ei

gh
t A

ss
ig

nm
en

t

FV
R

7
sa

m
pl

es

ar
ou

nd
 e

ac
h

pe
ak

 Peak Alignment)1(SP)(SPFD(SP) --= nn

(SP)FD

 The ADDs block calculates the slope at each sample point
over a number of different time scales:

 ADDs = 𝑎𝑚𝑝[𝑠(𝑛) − 𝑠(𝑛 − 𝛿)|Z67…\] (4)

where amp is the amplitude of the decomposition window
(here set to 1), s is the spike waveform, n is the sample point
and δ is the scaling factor (time delay). Adjustment of the
scaling factors (scaling1, scaling2, scaling3) is based on three
frequency sub-bands from δ = 1 to δ = 7 corresponding to the
most informative features (non-Gaussian features) for
clustering as shown in Fig. 8. A sensing path (SP → FS)
monitors the localized differences between the spike
waveforms and distinguishes the three informative sub-bands
for tuning in the decomposition processor
(SP → FS→ ADDs). The sensing path inserts robustness to
high degrees of similarity in the spikes. Placing the sensing
chain before the decomposition processor reduces the
hardware resources and improves the effectiveness of spike
waveform disintegration. The path SP → FS → ADDs can be
implemented by considering all parallel decomposition sub-
bands from δ = 1 to δ = 7 and applying multimodal metric in
each decomposition line to retain the separable features.

The frequency synthesizer (FS) converts the extracted
localized differences pattern to the sub-bands with the most
informative parameters for clustering. The frequency
synthesizer operation is shown in Fig. 9. Having generated SP
as shown in Fig. 9(b), analysis of its slope variations is
performed to assign weights to the range of variations from
high (δ = 1) to low (δ = 7). The slope uses the first derivative:

 FD(F_) = SP(𝑛) − SP(𝑛 − 1) (5)

The frequency variation range (FVR) of SP is defined as:

 FVR = dFD(F_,efg) − FD(F_,ehi)d (6)

where FD(SP,max) and FD(SP,min) are the maximum and minimum
of the FD(SP). FVR is divided into seven scales to cover all the
possible frequency range [high (A) to low (G)] as shown in
Fig. 9(c)-(d). The absolute value of ǀFD(SP)ǀ is then synthesized
into the defined frequency ranges. Once the weight allocation

process has been performed, the three scaling factors
(scaling1, scaling2 and scaling3) with the highest weights are
chosen for tuning the ADDs.
 The proposed approach for adaptive decomposition of spike
waveforms is similar in operation to the methods in [20] and
[22]. The feature extraction method in [22] employs four-level
multi-resolution decomposition using Haar wavelets which
result in 64 wavelet coefficients for each spike. Then the
Kolmogorov–Smirnov (K-S) test [25] for normality is applied
to select the first 10 informative features in the examined
datasets [26] as shown in Fig. 10(a). The combination of Haar
wavelets and K-S test is developed for offline processing and
it requires large amount of hardware resources. The feature
extraction method in [20] [Fig. 10(b)] uses discrete derivatives
and extrema sampling for on-chip hardware realization
purposes.
 In the new proposed method for informative decomposition,
Haar wavelets are replaced by parameterized ADDs and the
K-S test is replaced by the sensing path SP → FS which is
simply tuned over time. Different combinations are introduced
in [20] by sweeping the decomposition window length (δ) to
explore the frequency sub-bands (from δ = 1 to δ = 7) which
accommodate the most informative features for the examined
datasets [26]. By applying the multimodality metric it
maintains the features exhibiting multiple peaks and valleys in
their distributions. In [20], the process of choosing the
combination with the highest clustering accuracy is performed
offline. It is replaced here with the online and tunable
informative sub-bands selector (SP →FS → ADDs). The
hardware implementation of ADDs is shown in Fig. 10(c). It
comprises adjustable delay lines, subtractors and
dimensionality reduction blocks. They perform extrema

 6

Fig. 10. Feature extraction methods in [22] (a), and [20] (b). (c) Block
diagram of adaptive feature extractor. Three decomposition lines are
activated and six features are selected for clustering. In this feature
extractor, the multimodality metric is moved before the decomposition
block to achieve high performance via selection of the decomposition sub-
bands with multimodal features while keeping the complexity low.

Aligned
Spike

FV

DR
(max/min)

DR
(max/min)

DR
(max/min)

Tunable Delay Lines (δ)

SP

FS

FV0
FV1
FV2
FV3
FV4
FV5

(c)
scaling1

scaling2

scaling3

Haar DWT K-S Test

DDs
Combinations

10 Multimodal
Features

 Combination With
Most Deviation
 From Normality

Extrema
Sampling

(a)

(b)Multimodality
Metric

Z-1 Z-1 Z-1

Z-1 Z-1 Z-1

Z-1 Z-1 Z-1

MAF

Fig. 11. Implementation of configurable online sorting (C-Sort). C-Sort
enhances clustering performance robustness with little energy and hardware
overhead. The blocks highlighted in the grey area determine the optimal
sorting threshold (Topt). The C-Sort is an “error-aware model” since it adapts
the noise level and iteratively tunes it to an optimal value by undoing the
effects of non-idealities in feature space.

C
-S

or
t

σN

SThr

assigned_FV

Clustering Status Analysis

Finalized
 Cluster Means

D
et

ec
tio

n

Al
ig

nm
en

t

Fe
at

ur
e

Ex
tra

ct
io

n

SThr

+

-

Training
ControlT o

pt

Training

Assignment
FV

Neural
Signal assign-notvalid

C#1 C#k

FP
G
A

Splitting

Artificial
Merge

Split Merge Cluster
Change

assigned-FV

assign-notvalid
C#FV

0
FV

1
FV

2
FV

3
FV

4
FV

5

not-
validFV

0
FV

1
FV

2
FV

3
FV

4
FV

5

(a)

(b)
Correlator Spike Rate (SR)

Integrator

Inputs

En
gi

ne
1

En
gi

ne
2

A B CA&
B

C

FS
→

SP

SNR

SThr-tune

Performance Check

On-chip

C
#1 C
#k

Fig. 12. Illustration of multi-phase clustering.

Training Data

Data Streaming

Feature
Extraction

Feature
Extraction

{FV1, FV2, ... }1 ms

A
m

pl
itu

de

Peak Alignment

alsp(n)

1 ms
A

m
pl

itu
de

Peak Alignment

alsp(n)

Training

Assignment

Hold Time

Frame 1

Frame 2

t0

t1

t2

Va
lid

at
io

n
T o

pt

t3

C #1 C #k

Frame 1
Frame 2t >t3

R
et

ra
inRetrain

Cluster
Change

as
si

gn
ed

_F
V

as
si

gn
-n

ot
va

lid

En
gi

ne
2-

A
&

B

En
gi

ne
2-

C

Al
ig

ne
d

Sp
ik

es

selection of the decomposition lines to create a feature vector
(FV). The proposed feature extraction is flexible in terms of
frequency band selection and extraction of a wide range of
features. These processes result in robustness to spike
similarity and noise level in the feature extraction operation.

D. Clustering
Clustering provides classification of spikes into different

groups, corresponding to different neurons. The clustering
algorithm (O-Sort) in [24] is well suited for real-time neuron
mapping. However, for cases where neurons are hardly
distinguishable or there is significant background noise, the
clustering accuracy in [24] when the sorting threshold (SThr)
is at a non-optimum level, is severely degraded. This results in
cluster splitting and artificial clustering causing errors in
classification. To boost the clustering accuracy configurable
online sorting (C-Sort) is proposed here (see Fig. 11) by
including adaptive tuning of SThr to an optimal level (Topt).
The principles used include active embedded sensing of noise
variations (Frame 1) for clustering error tolerance
enhancement which defines SThr, and the detection of the
clustered feature space non-idealities, for example, cluster
split (Engine2-A in Fig. 11) to achieve error-aware clustering.
To identify the number of active neurons in the recorded data,
C-Sort includes a cluster change block (Engine2-C in Fig. 11).
The added functions boost the clustering reliability providing
resilience against statistical errors with little overhead in terms
of power requirements and hardware.

1) Clustering State Machine and Operation:

A single-channel clustering function is shown in Fig. 12. It
is divided into five time intervals: hold (t0), training (t1),
validation (t2), assignment (t3) and cluster change (t > t3). The
clustering execution begins with t0. The embedding frames
(Frame 1 = σN; Frame 2 = SP) are initiated to calculate the
signal characteristics and other parameters such as SThr.
Training begins at t1 when the initial value of SThr is
identified. SThr is sent to the sorting SThr LUT (see Fig. 3) as

the initial value for training. The training period is tunable and
is defined based on the number of feature vectors (FV1, FV2
…) to identify the cluster means in the recording channel.
After training to evaluate the mapped data to the converged
cluster means, t2 is initiated. During this time interval, the
performance check block (grey section in Fig. 11) is used to
distinguish the clustered feature space non-idealities (e.g.
cluster split) and adaptively fine-tune SThr to an optimal level
(Topt). Once the validation is performed (a maximum of three
iterations) the identified cluster means (C#1 … C#k) are
transferred to the assignment block as shown in Fig. 11. At t3
the recorded spikes are continuously mapped to their origins.
At t > t3 Frame 1 and Frame 2 are updated intermittently to
project either the trajectory movements of the existing active
neurons in feature space (due to the noise or spike template
amplitude fluctuations) or to reflect the
appearance/disappearance of active neurons in feature space.
After training the frames, the performance check block tracks
and evaluates the updated feature space projection to decide
whether or not channel re-training is required.

2) Performance Check:

The performance check block (see Fig. 11) identifies Topt in

 7

Fig. 13. 2-D illustration of cluster feature space for (a) cluster split, (b)
cluster merge, (c) cluster disappearance/appearance and (d) cluster shift due
to the noise or spike template amplitude fluctuations. If dc < SThr the cluster
mean (Cluster 3) is shifted to a new position in feature space; if dc > SThr
the case of appearance of a new cluster (Cluster 4) is valid. dc is the distance
between the cluster means (centroids).

Decreasing SThr

Topt

Cluster 1

Spurious
Cluster

Cluster Merge

Cluster 4

Increasing SThr

Topt

Cluster Split

Cluster 4

Topt

Topt

Cluster Shift

Cluster 4

(a) (b)

(d)
(c)

Cluster Mean Appear/Disappear

Cluster 5

Split
Cluster A

Cluster 4

SThr <Topt

Split
Cluster B

SThr >Topt

Clusters when SThr =Topt

Split Cluster
Clusters when SThr =Topt

Spurious Cluster

Cluster Shift
Clusters when SThr =Topt

Disappeared Cluster

Split Clusters

Fe
at

ur
e

II
Fe

at
ur

e
II

Fe
at

ur
e

II
Fe

at
ur

e
II

Feature I Feature I

Feature I Feature I

Appeared Cluster

dc > SThr
dc < SThr

t2 t2

t >t3 t >t3

Fig. 14. Structure of the training unit (see Fig. 12) which comprises a
training memory and peripheral processing engines (1-7); see also Fig. 15.
Each row of training memory consists of six columns (C0-C5) for
accommodating the extracted feature vectors (FV0-FV5), a 1 bit status flag
(C6) for dynamic power saving, 6 bits (C7) for the number of spikes per
cluster (NOSPC) for cluster mean update in (4) and (6) (C7 is also used for
cluster generation and checking the finalized cluster means in the training
phase), and a 1 bit finalized flag (C8) for conditional initiation of (4) and (6).
The number of interleaved processing in ℓ1-norm (2) and merging (5)
engines is chosen 8 to minimize the power-area product.

Cluster
Generator

Finalized
Clusters

Merging
Engine

Status
Engine

Training Memory

row0

C0 C1 C2 C3 C4 C5 C6 C7 C8

ℓ1-norm
Engine

Update
Engine

1b 6b 1b

row1

row2

row63

(2)(5)

(3)

(4) & (6)

(1)

(7)

FV0 Status NOSPC FinalizedFV1 FV2 FV3 FV4 FV5

FV0 Status NOSPC FinalizedFV1 FV2 FV3 FV4 FV5

FV0 Status NOSPC FinalizedFV1 FV2 FV3 FV4 FV5

FV0 Status NOSPC FinalizedFV1 FV2 FV3 FV4 FV5

t2 and cluster change analysis in t > t3. The inputs to the
clustering status analysis block are the finalized cluster means
(C#1 … C#k), assigned-FV and assign-notvalid as shown in
Fig. 11(a). The structure of assigned-FV and assign-notvalid
are shown in Fig. 11(b); assigned-FV comprises FV and the
cluster number (C#) while assign-notvalid comprises FV and
not-valid flag to monitor the assignment error rate (not-valid
flag is set when FV is not matched with any converged
clusters in t1). Engine1 comprises a correlator and a spike rate
(SR) integrator. Its output provides the state of the clustered
feature space to trigger Engine2. The latter has cluster split
(A), cluster merge (B) and cluster change (C) blocks. Their
operations are summarized as follows:

• Artificial splitting (Engine2-A): In the case of artificial
splitting into multiple clusters [Fig. 13(a)], the
correlation between the split clusters identified in the
cluster means (C#1 … C#k) is high (> 0.9) and their SR
is less than other active neurons. SThr is increased to
establish a hyperplane that forms an optimal clustering
boundary between the existing clusters.

• Artificial clustering (Engine2-B): In the case of artificial
clustering [Fig. 13(b)], a spurious cluster is created. SThr
is decreased for corrected clustering.

• Variations in recorded neural data (Engine2-C): When
there is appearance/disappearance of active neurons [Fig.
13(c)] or cluster shift [Fig. 13(d)] as a result of noise or
spike amplitude variation over time (e.g. due to electrode
drift), the performance check block (Fig. 12) detects
them. It then reinitializes training for detection of
changes in the recorded neural data.

Adjustment of SThr is performed over three different runs
where the value of SThr is modified from the initial value by
10% in each run (Δ = ±0.1). This provides an improvement in
median clustering performance of 5-8%. The performance
check block also tracks changes in the number of active
neurons and cluster shifts.

3) Training Unit Structure:

The training memory and the main processing engines are
shown in Fig. 14. The flowchart of the operations performed
by the engines is summarized in Fig. 15 using the adapted O-
Sort algorithm. The training memory in Fig. 14 is
implemented in a matrix format to provide highly flexible
access to the memory locations. Status engine screens the
activity of training and monitors the duration of training.
When a FV is sent to the training block, it is compared to the
existing transient cluster means in the ℓ1-norm engine whose
block diagram is shown in Fig. 16. The minimum distance dmin
between the FV(n) and the created transient cluster ci(n) is
computed using the ℓ1-norm metric:

 𝑑ehi = argehi ∑ ∑ |FV(𝑛) − 𝑐o(𝑛)|
2p
567o (7)

where NS is the number of features and i (= 0, …, 63) is the
number of rows in the training memory as shown in Fig. 14. If
dmin < SThr, the FV is assigned to the existing cluster and the
cluster mean is updated to be the weighted average of the first
two spikes, otherwise a new cluster is automatically created
and FV is assigned to it. When dmin > SThr, cluster creation
engine provides an ID for a new transient cluster and if
dmin < SThr the on-hold FV is used for cluster mean update
Cupdate:

 𝐶rstfuv =
w∙x(5)yz{(5)

wy7
 (8)

where W is the number of spikes in a specific cluster (NOSPC-
C7).

 8

Fig. 15. Flowchart of unsupervised clustering algorithm C-Sort. Operation
functions are annotated (1-7) based on the training engines in Fig. 14. The
procedure is iterative.

Determine cluster
 ID with closest distance

Update cluster with
weighted average

 Cluster ID
Generation

 Cluster
Creation

Calculate distance to all
cluster means

Calculate distance between
cluster means

Determine cluster
 means with

closest distance

Update cluster with
weighted average

Yes

No

No

Ye
s

 Cluster Creation

Mean Update

Merge Clusters

(2)

(3)

(4)

(5)

(6)

 dmin
<

SThr

 dc
<

SThr

Feature Vectors
(FV1, FV2 , …)

(1)

C#1 C#6C#2(7)

Training
Duration

Fig. 16. Details of the ℓ1-norm engine. It consists of eight parallel
processors and it is reused eight times to calculate the ℓ1-norm difference
accumulation for all the 64 rows (row0-row63) as shown in Fig. 14. When a
FV (blue line) is sent to the training block (see Fig. 11), initially it is
compared to the transient cluster means created in the previous phases
(Data_0 to Data_7). The minimum update distance (dmin) is calculated
sequentially on the transient values in the search block to either activate the
cluster generation (cluster_gen) or to revise the mean update value
(mean_update).

eng0

eng1

eng2

eng7

ℓ1-norm

ℓ1-norm

ℓ1-norm

ℓ1-norm

{diffacc, engID}

{diffacc, engID}

{diffacc, engID}

{diffacc, engID}

Search Memory
Search

cl
us

te
r_

ge
n

m
ea

n_
up

da
te

cl
us

te
r_

ID

Search
EngineControl

Evaluation

ℓ1
-n

or
m

 E
na

bl
e

FV

Data_0

Data_1

Data_2

Data_7

lo
ca

tio
n0

addr acc-diff

ℓ1-norm
Engine (2)

lo
ca

tio
n1

lo

ca
tio

n2

lo
ca

tio
n3

lo

ca
tio

n4

lo
ca

tio
n6

3

(dmin)

 d
m

in
 <

S
Th

r

 d
m

in
 >

S
Th

r

(3) (4)

Fig. 17. (a) Details of merging engine (5). Two clusters with dc< SThr are indistinguishable and are merged. Interleaving of 8 parallel merging-check units is
used to access the 64 matrix memory rows. At the end of the merging process, either merging update (merge_ini) is initiated or training is terminated for the
current FV (training_done). In the case of merging update, the appropriate content of the memory rows based on the chosen IDs (first_ID and second_ID) are
accessed. (b) 2-D illustration of distance between the cluster centroids.

Feature I

Fe
at

ur
e

II
training_done

first_ID

second_ID

(4)

(2)

M
er

gi
ng

C

on
tro

l

Tr
an

si
en

t
M

em
or

y
re

ad
_e

n

Data_0
Data_7

Status_0
Status_7

 d
c

 < S
Thr

Training Memory Matrix
row0

row7row8

row15

row63

row56

Interleaved
Processing

Merging
Matrix

D
at

a

 d
c

 > S
Thr

m
in

7

FV
0

FV
1

FV
63

St
at

us
St

at
us

St
at

us

 dc > SThr
dc < SThr

(4) (2)

(a) (b)

 Due to the cluster shift, there might be overlap between the
clusters. In this case, two clusters with distance between their
means (centroids) of dc < SThr in the feature space are
indistinguishable and they are merged. To evaluate the
merging possibility, the distance between all cluster means are
calculated in the merging engine as shown in Fig. 17 and the
selected candidates (first_ID and second_ID) are sent to the
update engine. The centroid of the new merged cluster is
calculated as a weighted mean:

 𝐶ev|}v_rstfuv =
w�∙x�(5)yw�∙x�(5)

w�yw�
 (9)

where c1 and c2 are the centroids, and W1 and W2 are the
respective spike populations of each cluster. Cmerge_update is
stored in one memory location and the content of other
locations is erased to be reused for subsequent cluster
generation.
 To reduce area-power circuit techniques such as
interleaving, logic reusing and transient memory allocation

 9

Fig. 18. Die photo of the adaptive spike sorting processor chip with
processing blocks identified. The area is dominated by the training function
for clustering. In a multi-channel processor, the training block would be
shared between the recording channels.

D
et

ec
tio

n
&

A
lig

nm
en

t

Feature
Extraction

ST
hr

 L
U

T
&

FV
-m

on
ito

rin
g

M
A

F/
A

DD
s/

D
R

Fr
am

e
1

 (σ
N
)

SP
 FS

A
ss

ig
nm

en
t

Training
(Clustering)

Fig. 19. Illustration of extrema features using different sets of scaling
factors. The scaling factors are selected based on the frequency synthesizer
output for (a) C_Easy2_0.05 and (b) C_Difficult1_0.05. 2-D projection of
clusters for (c) C_Easy1_0.05, (d) C_Easy2_0.05, (e) C_Difficult1_0.05 and
(f) C_Difficult2_0.05. (Spikes have been colored according to the ground
truth). The number of features allocated to each cluster in the assignment
phase takes 7 seconds. The 2-D projection plots are based on the most
informative features (Feature I and Feature II).

δ=3
δ=5

δ=6

δmax
δmax
δmax

δmin δmin
δmin

Feature I

Fe
at

ur
e

II

(c)

Feature I

Fe
at

ur
e

II

#3
#2 #1

(d)

Feature I

Fe
at

ur
e

II

(e)

Feature I

Fe
at

ur
e

II

(f)

#1

#2
#3

#1

#2

#3
#1

#3#2

(a)

(b)

C_Easy2 Decomposition Scales

C_Difficult1 Decomposition Scales

δ=4

δ=5

δ=6

δmax

δmax

δmin
δmin
δmin

ï
î

ï
í

ì

--
--
--

=
)3()(
)5()(
)6()(

ADDs
nsns
nsns
nsns

ï
î

ï
í

ì

--
--
--

=
)4()(
)5()(
)6()(

ADDs
nsns
nsns
nsns

TABLE I
ADAPTIVE SPIKE PROCESSOR PERFORMANCE AND FEATURES

Chip Summary
Technology 180 nm

Supply Voltage 1.8 V
Power Consumption 148 µW

Core Size 6 mm2
Clock Frequencies 30, 120, 240, 960 kHz

Processor Type Adaptive
Median PD, PFA 92%, 1%
Median CACC 84.5%

Compression Factor* 150X**, 240X
Memory Size 10 kB

Input Data Rate 240 kbps
Active Learning Features

Training Model Embedded Frames

Function of Frames Frame 1 = Noise Standard Deviation (σN)
Frame 2 = Similarly Pattern (SP)

Frame Training Interval Every 1 min**
Active Tuning Features

Detection SThr & ωNEO

Feature Extraction SNR → MAF Length (M)
SP → FS → ADDs

Clustering C-Sort

* Ratio between the spike processor input data rate and its output data rate.
** Compression factor in error monitoring mode.
** The training time can also be tuned externally.

reusing were used in the training block of the clustering (see
Figs 14, 16, 17).

IV.CHIP MEASURED RESULTS
The adaptive spike sorting processor was fabricated in a

180-nm CMOS technology for proof-of-concept. The die
micrograph is shown in Fig. 18. The chip core area 1 occupies
6 mm2. The processor uses four different clock rates (30 kHz,

1 It comprises 2.7 mm2 non-training area and 3.3 mm2 training area. The
logic cells occupy 55% of the core area and the rest is for routing (only 4
metal layers are available in the 180-nm CMOS technology used). If the
design was implemented in a deep sub-micron technology, e.g. TSMC 65-nm
(9 metal layers), the logic area would scale down to 0.44 mm2 (the area
scaling factor form 180-nm to 65-nm is 7.67 [27]) and the routing area would
be also much reduced.

120 kHz, 240 kHz, 960 kHz) to obtain the best processing
efficiency and consumes 148 µW from a 1.8 V supply voltage.
To evaluate the spike detection performance the following
metrics are used: 1) probability of detection, PD = TDS/TNS
where TDS is the number of truly detected spikes and TNS is
the total number of spikes; 2) probability of false alarm,
PFA = FD/TDS where FD is the number of false detections and
TDS are the true positives. Table I summarizes the features
and performance of the adaptive spike processor chip.

In the following sections, various testing methodologies are
used to evaluate the chip performance under different
conditions including confirmation of its successful adaptation
providing high clustering accuracy.

A. Static Test
The static test examines the processor performance different

spike shapes and different noise levels with a known ground
truth. The spike datasets in [26] (Easy1, Easy2, Difficult1 and
Difficult2) were used. Each dataset has three different types of
spike shape and four different noise levels with standard
deviations of 0.05, 0.1, 0.015 and 0.2 (each dataset contains
1.44 million samples). Fig. 19(a)-(b) shows cases for different
scaling factors (δ) used for decomposition of spike
waveforms. Scaling factors in the ADDs provides enhanced
clustering discrimination. Extrema sampling provides six
features for clustering. Fig. 19(c)-(f) shows the two-
dimensional (2-D) projection of the clusters in all datasets.
The boundaries of the clusters are identified by dotted lines.
An overall median clustering accuracy of 84.5% is achieved.

B. Dynamic Test
A dynamic test to evaluate the adaptivity of the processor

was used. To simulate dynamic variations in the data over
time a random data selection procedure was used. The neural
simulator employed the 4 standard datasets (a: Easy1, b:
Easy2, c: Difficult1, d: Difficult2) each with its 4 noise
standard deviations (a': 0.05, b': 0.1, c': 0.015, d': 0.2) - i.e. 16
different combinations. Five minutes of data was chosen

 10

Fig. 20. Set-up for comparing the performance between model A (error-
affected) and model B (error-aware) spike processors. The error-aware
model employs adaptation of the input signal model enabled by the
embedded sensing frames.

Random
Data

Selection

CACC
Comparison

ωNEO DDs

ADDs

δǀ1,3,7

O-Sort Detection &
Alignment

FE & DR

Detection &
Alignment

FE & DR C-Sort

Clustering

Clustering

1-Cluster change sensing

1-Cluster change sensing
1-Optimal SThr

SThr SNR SThr

SP FS
SThr &
ωNEO

(Model A)

(Model B)

(error-affected spike processor)

(error-aware spike processor)

Topt

Frames

TABLE II
ERROR-AWARE SPIKE PROCESSOR PARAMETERS

Random
Data δ Convergence

Time NOIs CCST
(t > t3)

Comb.(a, a') δǀ6,5,4 0.11 s (W = 12) 1 -
Comb.(b, c') δǀ7,6,4 0.67 s (W = 29) 2 (M) aa'→ bc' (1.8 s)
Comb.(b, d') δǀ7,6,3 0.67 s (W = 29) 3 (M) -
Comb.(c, b') δǀ6,4,5 0.69 s (W = 32) 2(S) bd'→cb' (1.92 s)
Comb.(d, a') δǀ6,5,4 0.84 s (W = 36) 1 cb'→ da' (1.67 s)
Comb.(c, a') δǀ6,5,4 0.48 s (W = 27) 1 da'→ ca' (1.88 s)
Comb.(a, b') δǀ6,5,4 0.18 s (W = 13) 1 ca'→ ab' (1.95 s)
Comb.(b, a') δǀ6,5,3 0.14 s (W = 11) 1 ab'→ ba' (2.15 s)
Comb.(d, b') δǀ6,5,4 0.74 s (W = 36) 1 ba'→ db' (1.58 s)
Comb.(d, d') δǀ7,6,2 0.98 s (W = 40) 3 (M) -
Comb.(a, c') δǀ6,4,5 0.25 s (W = 14) 2 (M) dd'→ ac' (1.63 s)
Comb.(b, b') δǀ6,7,3 0.23 s (W = 20) 2 (S) ac'→ bb' (2.22 s)
Comb.(a, d') δǀ6,4,5 0.41 s (W = 21) 3 (M) bb'→ ad' (1.78 s)
Comb.(d, c') δǀ5,7,6 0.83 s (W = 39) 1 ad'→ dc' (1.38 s)
Comb.(c, d') δǀ7,6,2 0.92 s (W = 35) 3 (M) dc'→ cd' (1.43 s)
Comb.(c, c') δǀ6,4,5 0.61 s (W = 32) 2 (M) -

Under column NOIs: M = Merge, S = Split.

Fig. 21. Clustering accuracy (CACC) comparison between the model A
(error-affected) and model B (error-aware) spike processors. The input data
to the processors was randomly selected. For example, Comb.(a, a') is Easy1
with the lowest noise level (0.05). Model B is less affected by the dynamic
changes in the input data.

randomly from each of the combinations and concatenated
into a continuous stream of data providing variable data
conditions over time.

Fig. 20 shows the alternative models of operation of the
spike processor. In model A (error-affected model), the spike
processor was configured to operate without the embedded
frames. The constituent building blocks in this model are NEO
based detection, multi-resolution decomposition utilizing fixed
decomposition lines (δǀ1,3,7) [12] and O-Sort with incorporated
clustering change sensing. In model B (error-aware model),
the spike processor operates adaptively with the embedded
frames 2.

The clustering performance of both error-affected and error-
aware processors, is shown in Fig. 21 for a sequence of
randomly selected input data. It demonstrates the clustering
performance superiority of the adaptive spike processor under
variable input signal conditions. Averaging the results in Fig.
21, yields an 84.5% median clustering accuracy for Model B

2 If only Frame 1 or only Frame 2 are used in the adaptive spike processor,
the latter provides almost 5% higher median clustering accuracy compared to
the former.

compared to 73.3% for Model A.
Table II shows the automatic choice of the decomposition

scaling factors (δ) for the 16 different combinations in Fig. 21,
and details the training convergence time (also quantified in
spike numbers W), number of iterations (NOIs) for defining
the optimal threshold (Topt) in the validation phase (t2) and
cluster change sensing time (CCST) for retraining initiation
when there is cluster change in the recording path.

C. Case Study
This section provides a detailed multi-aspect analysis of

Comb.(c, d'). Fig. 22(a) shows the clustering performance
(CACC) versus the cluster mean convergence weight in (8).
Ttransient average performance does not significantly change
when the update weight W (NOSPC in Fig. 14) is higher than
35. The iterative-update procedure initially introduces error in
cluster mean convergence and eventually converges to its true
value. Fig. 22(b) shows the cluster border rotation in the
sorting threshold (SThr) tuning phases 1-3; the cluster border
is rotated by θ1 and θ2 degrees. This rotation is due to
decreasing the initial value of SThr with a fixed step (Δ = 0.1)
in the validation phase (t2). To qualitatively show the
effectiveness of C-Sort, Fig. 22(c) shows the 2-D projection
test [28] of two merging clusters and the improvement over
three iterations. Moving towards Topt is the same as separating
merged clusters in feature space.

D. Comparison
Table III compares this work with other integrated spike

processors featuring on-chip clustering. The processor in this
paper is the first adaptive sorting chip that provides on-chip
parametric tunability via the inclusion of the embedded
frames (Frame 1 and Frame 2). Since the spike processor can
be implemented in different technologies, a figure-of-merit
(FOM) is required to characterize relative efficiencies. The
proposed FOM relates the spike processor power dissipation
to its performance and is defined as:

 FOM = ��������
(����∙7@@)∙�z|���� �������⁄

					(µW) (10)

 11

Fig. 22. (a) Cluster convergence illustration for Comb.(c, d') versus W
(NOSPC in Fig. 14). W = 35 forms a reliable feature space for clustering
and CACC saturates beyond this value. (b) Iteration phases. In each iteration
the cluster border rotates by θ degrees. 2-D projection plots are based on
clustered FVs in assignment phase for the duration of 30 seconds. (c) 2-D
projection test for different iterations (1-3). The merging degrades with
tuning the sorting threshold to Topt.

TABLE III
COMPARISON WITH OTHER WORK

Reference [13] [16] This Work (TW)
Detection Absolute (4s N) ICD (a) SThr & ωNEO
Alignment Slope Peak Peak

Feature Extraction Spike Template ICFE (b) ADDs
Clustering O-Sort k-means C-Sort

Compression Factor 240X 257X 150X/240X
CMOS Process (nm) 65 65 180
Supply Voltage (V) 0.27 0.54 1.8
Power (µW/channel) 4.68 0.175 148 (c)
Area (mm2/channel) 0.07 0.003 2.7

Clustering Accuracy
(CCAC)

(d) U: 97%
M: 75%
L: 45%

U: 83-99%
M: 72-87% (e)

L: 68-77%

U: 92.8%
M: 84.5%

L: 67%
FOM|DF (µW)
DF|Base / Scaling

624´10–4

DF|[13]/[13] = 1

(f) 6.07´10–4

DF|[16]/[13] = 4
142´10–4

DF|[TW]/[13] = 123
Adaptive Design No No Yes

(a) Integer coefficient detector (ICD).
(b) Integer coefficient feature extraction (ICFE).
(c) In 45-nm NAN-GATE the power consumption is 20 µW (1.1 V supply voltage).
(d) Upper (U), Mean (M), Lower (L).
(e) 87% average accuracy when the number of clusters are set manually.
(f) Based on the unsupervised clustering accuracy.

where Pchannel is the power dissipation per channel, CACC·100

is the clustering accuracy score, and DF| Base/Scaling is the
downscaling factor which adjusts for dynamic power
characteristics of the spike processor in different technologies
where [29]:

 DF|�f�v F�f�hi}⁄ =
1∙2�∙����∙I��J� ∙��J�d����
1∙2�∙����∙I��J� ∙��J�d�������

 (11)

where α is the switching probability, Nt is the number of
transistors in the design, Cavg is the MOSFET capacitance
value, Vsup is the supply voltage in a particular technology, and
fopt is the operating clock frequency. For the spike processor
Base is the reference technology and Scaling is the target
technology. For example, for FOM evaluation of the spike
processor in this work, from Base technology (180 nm, 1.8 V)
to Scaling technology (65 nm, 0.27 V), both operating at the
same fopt and having the same αNt factor, using (11) with
Cavg|Base / Cavg|Scaling = 2.7, yields DF| Base/Scaling = 123.
 As reported in Table III, when the effect of different
technology dimensions are accounted, this adaptive spike
processor has 4.4X lower FOM compared with [13] and
achieves almost 10% higher clustering accuracy in online
clustering. Although the spike processor in [16] has
approximately 23.3X lower FOM compared to the adaptive
spike processor in this work, the latter achieves almost 13%
higher clustering performance in unsupervised mode, which
allows for accurate interpretation of neural activities.

V.CONCLUSION
An adaptive processing methodology has been introduced to

enhance the performance of synchronous processing systems.
It embeds reconfigurable sensing frames into the synchronous
processing path that learn the characteristics of the variable
input neural signals and adapts the functionality accordingly to

improve the accuracy. As proof of concept, an adaptive spike
processor has been designed, fabricated and evaluated. In
addition, a configurable online sorting method (C-Sort) has
been proposed which incorporates defining optimal threshold
level (Topt) and sensing active neurons in the recording
channel. The chip prototype provides 84.5% accuracy and
consumes 148 µW from a 1.8 V supply voltage. A dynamic
testing methodology has been used to demonstrate the effect
of signal model learning on clustering performance under
variable conditions. Improved accuracy performance has been
achieved compared to the state-of-the-art online clustering
processors. The focus of future work will be towards the
development of a multichannel spike sorting processor based
on the adaptive processing methodology implemented in an
advanced digital CMOS technology.

REFERENCES
[1] A. Mohammed, M. Zamani, R. Bayford, and A. Demosthenous,

“Towards on-demand deep brain stimulation using online Parkinson’s
disease prediction driven by dynamic detection,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 25, no. 12, pp. 2441–2452, Dec. 2017.

[2] A. Beuter, J.P. Lefaucheur, and J. Modolo, “Closed-loop cortical
neuromodulation in Parkinson’s disease: An alternative to deep brain
stimulation?,” Clin Neurophysiol, vol. 125, no. 5, pp. 874–85, May
2014.

[3] T. S. Davis, H. Wark, and D. T. Hutchinson, “Restoring motor control
and sensory feedback in people with upper extremity amputations using
arrays of 96 microelectrodes implanted in the median and ulnar
nerves,” J Neural Eng., vol. 13, no. 3, pp. 036001, Mar. 2016.

[4] T. Yanagisawa, M. Hirata, Y. Saitoh, T. Goto, H. Kishima, R. Fukuma,
H. Yokoi, Y. Kamitani, and T. Yoshimine, “Real-time control of a
prosthetic hand using human electrocorticography signals,” J.
Neurosurg., vol. 114, no. 6, pp. 1715–1722, Jun. 2011.

[5] T. W. Bergeret al., “Restoring lost cognitive function: Hippocampal-
cortical neural prostheses,” IEEE Eng. Med. Biol. Mag., vol. 24, no. 5,
pp. 30–44, Sep./Oct. 2005.

[6] R. J. Vetter, J. C. Williams, J. F. Hetke, E. A. Nunamaker, and D. R.
Kipke, “Chronic neural recording using silicon-substrate
microelectrode arrays implanted in cerebral cortex,” IEEE Trans.
Biomed. Eng., vol. 51, no. 6, pp. 896–904, Jun. 2004.

 12

[7] A. Rodriguez-Perez, J. Ruiz-Amaya, M. Delgado-Restituto, and A.
Rodriguez-Vazquez, “A low-power programmable neural spike
detection channel with embedded calibration and data compression,”
IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 2, pp. 87–100, Apr.
2012.

[8] Y. Liu, S. Luan, I. Williams, A. Rapeaux, and T. G. Constandinou, “A
64-channel versatile neural recording SoC with activity-dependent data
throughput,” IEEE Trans. Biomed. Circuits Syst., pp. 1–12, doi:
10.1109/TBCAS.2017.2759339, Nov. 2017.

[9] G. Buzsáki, A. Draguhn, “Neuronal oscillations in cortical networks,”
Science, vol. 304, no. 5679, pp. 1926–1929, Jun. 2004.

[10] H. G. Rey, M. J. Ison, C. Pedreira, A. Valentin, G. Alarcon, R. Selway,
M. P. Richardson, and R. Quian Quiroga, “Single-cell recordings in the
human medial temporal lobe,” J. Anat., vol. 227, no. 4, pp. 394–408,
Oct. 2015.

[11] Y. Yang, S. Boling, and A. Mason, “A hardware-efficient scalable
spike sorting neural signal processor module for implantable high-
channel-count brain machine interfaces,” IEEE Trans. Biomed. Circuits
Syst., vol. 11, no. 4, pp. 743-754, Aug. 2017.

[12] V. Karkare, S. Gibson, and D. Markovic, “A 130 W, 64-channel neural
spike-sorting DSP chip,” IEEE J. Solid-State Circuits, vol. 46, no. 5,
pp. 1214–1222, May 2011.

[13] V. Karkare, S. Gibson, and D. Markovic´, “A 75-µW, 16-channel
neural spike-sorting processor with unsupervised clustering,” IEEE J.
Solid-State Circuits, vol. 48, no. 9, pp. 2230–2238, Sep 2013.

[14] T.-C. Chen, W. Liu, and L.G. Chenet, “128-channel spike sorting
processor with a parallel-folding structure in 90 nm process,” in Proc.
ISCAS, Taipei, Taiwan, 2009, pp. 1253–1256.

[15] T.-T. Liu and J. M. Rabaey, “A 0.25 V 460 nW asynchronous neural
signal processor with inherent leakage suppression,” IEEE J. Solid-
State Circuits, vol. 48, no. 4, pp. 897–906, Apr. 2013.

[16] S. M. A. Zeinolabedin, A. T. Do, D. Jeon, D. Sylvester, and T. T. Kim,
“A 128-channel spike sorting processor featuring 0.175 µW and 0.0033
mm2 per channel in 65-nm CMOS,” VLSI-Circuits Dig. Tech. Papers,
Honolulu, HI, Jun. 2016.

[17] Y. Yuan, C. Yang, and J. Si, “The m-sorter: an automatic and robust
spike detection and classification system,” J. Neurosci. Methods, vol.
210, no. 2, pp. 281–290, Sep. 2012.

[18] M. Lewicki, “A review of methods for spike sorting: The detection and
classification of neural action potentials,” Network, vol. 9, no. 4, pp.
R53–78, Nov. 1998.

[19] M. Zamani, D. Jiang, and A. Demosthenous, “A highly accurate spike
processor with reconfigurable embedded frames for unsupervised and
adaptive analysis of neural signals,” in Proc. ESSCIRC, Leuven,
Belgium, Sep. 2017.

[20] M. Zamani and A. Demosthenous, “Feature extraction using extrema
sampling of discrete derivatives for spike sorting in implantable upper
limb neural prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng., vol.
22, no. 4, pp. 716–726, Jul. 2014.

[21] M. Zamani, and A. Demosthenous, “Dimensionality reduction using
asynchronous sampling of first derivative features for real-time and
computationally efficient neural spike sorting,” in Proc. ICECS, Abu
Dhabi, United Arab Emirates, Dec. 2013, pp. 237–240.

[22] Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike de-
tection and sorting with wavelets and superparamagnetic clustering,”
Neural. Comp., vol. 16, no. 8, pp. 1661–1687, Aug. 2004.

[23] S. Mukhopadhyay and G. Ray, “A new interpretation of nonlinear
energy operator and its efficacy in spike detection,” IEEE Trans.
Biomed. Eng., vol. 45, no. 2, pp. 180–187, Feb. 1998.

[24] U. Rutishauser, E. M. Schuman, and A. N. Mamelak, “Online detection
and sorting of extracellularly recorded action potentials in human
medial temporal lobe recordings, in vivo,” J. Neurosci. Methods, vol.
154, no. 1-2, pp. 204–224, Jun. 2006.

[25] H. W. Lilliefors, “On the Kolmogorov-Smirnov test for normality with
mean and variance unknown,” J. Amer. Statist. Assoc., vol. 62, no. 318,
pp. 399–402, Jun. 1967.

[26] [Online]Available: https://www2.le.ac.uk/centres/csn/software/software
[27] D. Bol, R. Ambroise, D. Flandre, and J.-D. Legat, “Impact of

technology scaling on digital subthreshold circuits,” Symposium on
VLSI (ISVLSI’08), Montpellier, France, 2008, pp. 179–184.

[28] C. Pouzat, O. Mazor, and G. Laurent, “Quality metrics to accompany
spike sorting of extracellular signals,” J. Neurosci. Methods, vol. 31,
no. 24, pp. 8699–8705, Jun. 2011.

[29] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power
consumption in digital CMOS circuits,” Proc. IEEE, vol. 83, no. 4, pp.
498–523, Apr. 1995.

