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Fig. 1. Spike sorting process for determining single unit activity. Data is 
progressively reduced over processing blocks (Z <K< N). 
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Abstract—There is a need for integrated spike sorting 

processors in implantable devices with low power consumption 
that have improved accuracy. Learning the characteristics of the 
variable input neural signals and adapting the functionality of 
the sorting process can improve the accuracy. An adaptive spike 
sorting processor is presented accounting for the variation in the 
input signal noise characteristics and the variable difficulty in the 
selection of the spike characteristics, which significantly improves 
the accuracy. The adaptive spike processor was fabricated in 180-
nm CMOS technology for proof of concept. It performs 
conditional detection, alignment, adaptive feature extraction and 
online clustering with sorting threshold self-tuning capability. 
The chip was tested under different input signal conditions to 
demonstrate its adaptation capability providing a median 
classification accuracy of 84.5% and consuming 148 µW from a 
1.8 V supply voltage. 
 

Index Terms—Adaptive decomposition, brain machine 
interface, feature extraction, processor, reconfigurable embedded 
frames, signal model learning, spike sorting, unsupervised 
clustering. 
 

I.INTRODUCTION 
NTERACTIONS between neurons are performed via 
electrical signals known as action potentials or spikes. The 

information of spikes from neurons has led to the development 
of miniaturized and implantable brain machine interfaces. 
These have been introduced for therapeutic applications using 
the neural modulation of a particular pathway [1], [2], as a 
communication bridge for control of assistive devices for 
patients with damaged sensory/motor functions (e.g. hand 
prosthesis [3], [4]) and restoration of lost cognitive function 
[5]. Such neural interfaces have benefited from advances in 
both electrode technology and microelectronics [6]-[8]. 
 The detection of spikes by electrodes may involve the 
combined activity of typically 5 to 10 neurons [9]. Spike 
sorting is the process of grouping the recorded spikes into 
clusters based on the similarity of their shapes. As shown in 
Fig. 1, it comprises the following steps: 1) detection and 
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alignment, separating spikes from noise and aligning the 
spikes to a common point, 2) feature extraction, extracting 
features of the spike shapes which gives a dimensionality 
reduction, i.e., going from a space of dimension N (with N the 
number of datapoints per spike) to a low dimensional space of 
a few features (K), and 3) clustering, grouping spikes with 
similar features into clusters (Z), corresponding to the different 
neurons. Spike sorting must account for the variety of spike 
shapes, different firing rates and noise [10]. This involves 
significant processing and therefore power which is a serious 
constraint in implant applications. 

Future spike sorting processors aim to improve accuracy 
and reduce power consumption suitable for implantable 
devices [11]. Integrated spike sorting processors have been 
developed [12]-[16]. In [12], the spike sorting processor 
performs detection, alignment and feature extraction but 
online clustering is not included. One of the most complete 
spike sorting processors is described in [13]. The design is 
multichannel, online and unsupervised and is compatible with 
the constraints of implantable devices. It achieves a median 
clustering accuracy of 75%. Note that the clustering accuracy 
decreases when there are close similarities between the 
recorded spikes [17]. A multichannel spike sorting processor 
that performs detection and feature extraction is described in 
[14]. Despite the use of a parallel-folding structure to reduce 
the hardware resources, it is not suited to implantable 
applications due to a power density which exceeds the safe 
limits for implants. An asynchronous spike sorting processor 
is described in [15]. The asynchronous self-timed 
methodology has inherent latency adjustment due to process 
variations but it provides a low power design. It consists of 
detection, alignment and feature extraction, but the clustering 
uses an external circuit. In [16] a real-time spike sorting 
processor is presented. It consists of spike detection, feature 
extraction and an improved clustering algorithm. The 
efficiency of this approach degrades with time due to the 
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variation of noise and spike similarity. When the number of 
clusters is set manually its clustering accuracy is 87% and 
drops to 72% in online mode which is less than the reported 
median clustering accuracy in [13]. 
 The common challenge in all the spike sorting processors in 
[12]-[16] is that they are not capable of adapting to the varying 
recorded neural signal characteristics such as background 
noise variations, electrode drift and appearance/disappearance 
of active neurons [18]. There is a need for a processor that 
adapts (learns) and embeds the high order signal models in the 
conventional spike sorting chain. In [19], the architecture and 
preliminary design of an adaptive spike sorting processor was 
introduced in which the signal model is captured through 
embedded frames and the processing chain is intermittently 
reconfigured to maintain optimal clustering performance. 
 This paper is a further development of [19]. The complete 
design, implementation and testing of the adaptive spike 
processor is presented, including confirmation of its successful 
adaptation providing high clustering accuracy. The remainder 
of this paper is organized as follows. Section II presents the 
general concept of adaptive spike sorting featuring embedded 
frames. Section III provides the architecture and system level 
details of an unsupervised, adaptive spike sorting processor for 
implantable applications. The measured results of the 
fabricated chip based on 180-nm CMOS technology are 
presented in Section IV. Section V concludes the paper. 

II.PRINCIPLE OF EMBEDDED FRAMES FOR ADAPTIVE SPIKE 
SORTING 

The general concept of embedding frames into a 
synchronous processor (SYNC DSP) to provide adaptive 
features is shown in Fig. 2(a). Intelligence (active learning) is 
incorporated into the SYNC DSP by embedding frames 
(Frame a … Frame z) which provide information about the 
captured model h(x) of the input signal (x1, x2, … xw). The 
frame information may be distributed to individual processing 
blocks of the SYNC DSP to allow dynamic adaptation. 

Figs 2(b)-(e) show application of this concept to spike 
sorting. The two key factors in spike sorting performance 
degradation are the noise of the recorded data and the 
similarity index between the spike waveforms. The aim is to 
develop a spike processor in which the performance is 
automatically adjusted to an optimal level (maintaining lowest 
clustering error) accounting for different noise levels and the 
varying difficulty between the recorded spike waveforms. Fig. 
2(b) is the block diagram of a conventional synchronous spike 
processor whose performance varies as a function of noise 
[f(Noise)] and similarity of extracted spikes [f(Similarity)]. 
Fig. 2(c) shows the spike sorting concept developed with 
added reverse-adjustment flow where the clustering 
performance (CACC) is independent (⊥) of noise and spike 
shape similarity. As shown in Fig. 2(d) this is captured in two 
frames (Frame 1 and Frame 2) for two variable parameters: 

input noise standard deviation (σN) and the similarity pattern 
(SP) of the spikes. Adding the frames to the traditional spike 
processor presents a fundamentally new approach for mapping 
the recorded spikes to the individual neurons. Fig. 2(e) shows 
the two frames added to the spike sorting described in [20] to 
realize an adaptive spike processor. The adaptive processing 
provides an on-chip tuning mechanism for programming the 
key coefficients in the relevant building blocks. For Frame 1, 
σN can be evaluated by median processing of the recorded 
neural data. Frame 2 models the localized difference 
extraction of the aligned spikes as in [21]. SP is intermittently 
updated with the similarity information of the latest spike 
waveforms. 

III.ADAPTIVE SPIKE SORTING PROCESSOR 

A. System Architecture 

 

Fig. 2. (a) Conversion of a classical synchronous processor (SYNC DSP) to 
a processor with adaptive features. The characteristics of the captured model 
h(x) of the input signal (x1, x2, … xw) are embedded into the SYNC DSP 
using frames. (b) Conventional spike processor in which the clustering 
accuracy (CACC) is a function of input data noise [f(noise)] and spike 
similarity [f(similarity)]. (c) A spike processor independent (⊥) of input data 
noise and spike similarity. Here CACC remains approximately constant with 
varying noise and spike similarities. (d) Input noise standard deviation (σN) 
is captured in Frame 1 and the similarity pattern (SP) of the spikes in Frame 
2. (e) Frame 1 is embedded into three blocks of the synchronous spike 
processor (detection and alignment, feature extraction and clustering) and 
Frame 2 is embedded into the feature extraction block only. 
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Fig. 3. Adaptive spike sorting architecture. The frames in Fig. 2 are 
embedded into the spike processor (Frame1 = σN; Frame 2 = SP). It is 
designed to distinguish up to six (k = 6) active neurons in the recording 
channel. 
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Fig. 5. Implementation of ωNEO with conditional control. Conditional 
enable is initiated by SThr = 4·σN. The moving-average filter (MAF) reduces 
the noise effect from the ωNEO output signal and improves the accuracy of 
the calculation of the detection threshold Thr. ω = 2 in this design. 
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Fig. 4. Adaptive processing hierarchy. Robustness is increased via the red 
path for noise and via the green path for the variation in the spike 
waveforms. Layer 1 (L1): sensing frames; Layer 2 (L2): allocation of frame 
functions for detection, feature extraction and clustering; Layer 3 (L3): 
features associated with each allocation. 
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Fig. 3 shows the architecture of the adaptive spike processor 
using the embedded frames. The amplified, band-pass filtered 
and digitized neural data is sent to the adaptive spike 
processor. Frame 1 monitors the noise standard deviation (σN) 
of the neural data and defines the sorting threshold 
SThr = 4·σN [22] which is distributed to the detection block, 
adaptive feature extraction (FE) block and sorting threshold 
look-up-table (SThr LUT). The SP extracted in Frame 2 is sent 
to the frequency synthesizer (FS) for tuning the decomposition 
lines. Each spike is extracted using a 2.5 ms window and 
aligned to a common temporal reference. In the detection 
block, the SThr is considered as a conditional activation 
function of the modified version of a nonlinear energy 
operator (ωNEO) [23]. The authenticity of spikes are 
examined with SThr and ωNEO. The spike detection power 
used is significantly reduced by masking the worthless data 
and inhibiting the asynchronous initiation of the detection 
block. 

In the adaptive feature extraction block, extrema sampling 
[20] of adaptive discrete derivatives (ADDs) provides an 
efficient method not only in computational simplicity but also 
in accuracy to transform the recorded spikes to a feature space 
that better separates the different neurons. Selective spike 
decomposition is performed using the aligned spike 
waveforms and FS. SP is updated over time to monitor the 
similarity level between the extracted and peak-aligned spikes. 
Feature extraction is adjusted to the appropriate sub-bands 
(decomposition sub-bands) with the most informative samples 
based on the FS output. The maximum separation between the 
spikes is achieved by extrema sampling of selected sub-bands. 
The feature vectors (FVs) are sent to the features monitoring 
block (FV-monitoring) and subsequently to the clustering 
block. 

The modified version of the online sorting algorithm (O-
Sort) in [24] is used for real-time and unsupervised clustering 
of neurons. The cluster means identified in the training phase 
(C#1 … C#k) are saved in the memory of the assignment 
block. During the cluster-mapping phase, the input FVs are 
mapped based on their minimum distance to one of the 
identified cluster means saved during the training phase. The 
performance check and training control blocks are exploited in 
the clustering block to enhance the clustering median accuracy 
by incorporating a sorting threshold self-tuning scheme. The 
performance check block monitors and evaluates the clustered 
FVs based on the defined performance metrics. It decides 

whether the level of the sorting threshold should be iteratively 
adjusted to an optimal level (Topt) [20] in the SThr LUT block, 
and if needed triggers retraining to re-compute the cluster 
means. 

Fig. 4 shows the hierarchy of the functions providing the 
derived features from the adaptive spike processor. In the 
following sections further details of the operational aspects are 
described. 

B. Detection and Alignment 
The nonlinear energy operator (NEO) [23] is an 

unsupervised method for calculating the energy variation of 
the original signal to interpret the spike events in time. NEO is 
defined as: 

 𝜓(𝑛) = 𝑥((𝑛) − 𝑥(𝑛 + 1) ∙ 𝑥(𝑛 − 1) (1) 

where x(n) is the input digitized signal and 𝜓(𝑛) is the NEO 
value at sampling point n. This operator highlights the large 
variations in power and frequency. The characteristic of spike 
activity is instantaneous. The NEO operator emphasizes the 
amplitude-energy variation of the spikes and improves the 
signal to noise ratio (SNR) in a noisy environment. 
 However, NEO is poor in the detection of spikes with low 
frequency components. To increase robustness to spike 
amplitude variations and reduce out-of-band noise sensitivity, 
(1) is changed to 𝜓(𝑛) = 𝑥((𝑛) − 𝑥(𝑛 + 𝜔) ∙ 𝑥(𝑛 − 𝜔), 
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Fig. 7. Adaptive feature extraction architecture. The MAF suppresses the 
effect of random high frequency noise of the aligned spike waveform 
alsp(n). The Frame 2, frequency synthesizer and ADDs provide adaptive 
decomposition. Three decomposition lines are selected based on scaling1, 
scaling2 and scaling3. The dimensionality reduction (DR) block uses 
extrema (max/min) sampling of the decomposed spike waveform s(n). 
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Fig. 6. (a) Architecture of the detection and alignment block. (b) Timing 
diagram. 
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where ω is between 1 and 3 by experiment. This is defined as 
ωNEO. 
 Fig. 5 shows the block diagram of the ωNEO conditional 
control function. This approach has two advantages. Firstly, 
conditional enabling is directly applied to the ωNEO block, 
thus when the input exceeds the clustering threshold (SThr), 
dual-thresholding (SThr and ωNEO) is executed providing a 
double check on accuracy. Secondly, dual-thresholding 
provides a power reduction of ~30% (based on Cadence 
synthesis simulations). 
 The conventional method used for threshold calculation at 
the output of ωNEO is energy accumulation divided by the 
window sample numbers. The power variations in different 
simulations show that the output of the ωNEO is sensitive to 
noise disturbances. Normally the input signal to the ωNEO is 
composed of spike events which exhibit localized energy of a 
specific duration and other samples as a result of noise 
interference. The output of ωNEO can be sensitive to 
breakthrough of noise from the input signal. To minimize this 
effect a simple moving average filter (MAF) is applied in Fig. 
5. The detection threshold Thr is calculated as: 

 𝑇ℎ𝑟 = 1
2
∑ 𝜆(𝑛)2
567  (2) 

where 𝜆(𝑛) is the filtered signal energy, N is the number of 
samples per window, and α is a constant (empirically chosen 
to be 8 in this implementation). To reduce the buffering of the 
threshold calculation, the detection threshold is updated per 
window rather than per sample. The calculated threshold is 

used for the next segment of data; the accumulator is reset and 
starts again for the next data window. 
 Fig. 6 shows the detection and alignment block architecture.  
The input neural data is sent to both a preamble buffer and the 
ωNEO block. The preamble buffer is a digital delay line of 24 
cells. It synchronizes the ωNEO output with the starting point 
of a spike and buffers the samples before the spike exceeds the 
threshold level. The delayed data is continuously written to a 
circular buffer. When a spike is detected, the corresponding 
writing index (wr-index) is sent to the peak detector block and 
thus the sample counting and peak address are synchronized. 
The output of the peak detector (peak-ID) is used to define the 
extraction window length. The peak-ID is the fifteenth sample 
of the 45 samples in the aligned window. The read index (rd-
index) representing the first sample in the window, is sent to 
the reading block of the circular buffer and the aligned spike 
samples alsp(n) are transferred to the adaptive feature 
extraction block. The reading clock rate is 4x faster than the 
writing clock rate to ensure capturing spikes that are close in 
time. 

C. Adaptive Feature Extraction 
Feature extraction transforms the aligned spikes to a low-

dimensional space and emphasizes the spike waveform 
differences. Fig. 7 shows the adaptive feature extraction block, 
a modified version of [20]. It consists of a MAF, frequency 
synthesizer (FS), adaptive discrete derivatives (ADDs) and 
dimensionality reduction (DR) blocks. The MAF acts as a 
denoising filter to improve feature extraction robustness to 
random noise (out-of-band noise) while retaining the crucial 
encoded information buried in the spikes. The SNR = Vp-p/σN 
obtained from Frame 1 is used to decrease noise sensitivity 
and increase feature extraction separability by adjusting the 
length of MAF. 

MAF averages a specific number of samples of the 
incoming aligned spikes alsp(n) to produce the smoothed 
output signal s(n) expressed as: 

 𝑠(𝑛) = 7
9
∑ 𝑎𝑙𝑠𝑝(𝑛 − 𝑗)9>7
?6@  (3) 

where M is the filter length. M is defined based on SNR for 
different 𝜎2:	𝑀|FGH6IJKJ LM6@.7,@.7P,@.(⁄ = 1,2,4. 
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Fig. 8. (a) Illustration of sub-band selection using the sensing path SP→FS. 
Three sub-bands that accommodate the most separable feature are chosen by 
scaling1, scaling2 and scaling3. (b) Feature extraction employing spectral 
analysis in the ADDs. Decomposition intensity range is shown with 
different colors from high (δ=1) to low (δ=7). (c) Illustration of ADDs as an 
adaptive filter. 
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Fig. 9. Frequency synthesizer (FS) and scaling factor (δ) tuning. The process 
is illustrated using the C_Difficult1 dataset [26]. (a) Peak aligned mean 
waveforms in C_Difficult1. Local differences are identified in LD1 and 
LD2. (b) Generated similarity pattern (SP = Frame 2) from the accumulated 
local differences. ZD1 and ZD2 identify the zero differences. The first 
derivative of the local differences (seven samples around each peak) 
provides the active frequencies in SP. (c) Weight assignment to the absolute 
value of ǀFD(SP)ǀ corresponding to the sample numbers in LD1 and LD2. The 
decomposition intensity is shown in different colors from high (δ=1) to low 
(δ=7). The winner sub-bands represented by scaling1, scaling2 and scaling3 
are used to tune the decomposition processor. 
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 The ADDs block calculates the slope at each sample point 
over a number of different time scales: 

 ADDs = 𝑎𝑚𝑝[𝑠(𝑛) − 𝑠(𝑛 − 𝛿)|Z67…\] (4) 

where amp is the amplitude of the decomposition window 
(here set to 1), s is the spike waveform, n is the sample point 
and δ is the scaling factor (time delay). Adjustment of the 
scaling factors (scaling1, scaling2, scaling3) is based on three 
frequency sub-bands from δ = 1 to δ = 7 corresponding to the 
most informative features (non-Gaussian features) for 
clustering as shown in Fig. 8. A sensing path (SP → FS) 
monitors the localized differences between the spike 
waveforms and distinguishes the three informative sub-bands 
for tuning in the decomposition processor 
(SP → FS→ ADDs). The sensing path inserts robustness to 
high degrees of similarity in the spikes. Placing the sensing 
chain before the decomposition processor reduces the 
hardware resources and improves the effectiveness of spike 
waveform disintegration. The path SP → FS → ADDs can be 
implemented by considering all parallel decomposition sub-
bands from δ = 1 to δ = 7 and applying multimodal metric in 
each decomposition line to retain the separable features. 

The frequency synthesizer (FS) converts the extracted 
localized differences pattern to the sub-bands with the most 
informative parameters for clustering. The frequency 
synthesizer operation is shown in Fig. 9. Having generated SP 
as shown in Fig. 9(b), analysis of its slope variations is 
performed to assign weights to the range of variations from 
high (δ = 1) to low (δ = 7). The slope uses the first derivative: 

 FD(F_) = SP(𝑛) − SP(𝑛 − 1) (5) 

The frequency variation range (FVR) of SP is defined as: 

 FVR = dFD(F_,efg) − FD(F_,ehi)d (6) 

where FD(SP,max) and FD(SP,min) are the maximum and minimum 
of the FD(SP). FVR is divided into seven scales to cover all the 
possible frequency range [high (A) to low (G)] as shown in 
Fig. 9(c)-(d). The absolute value of ǀFD(SP)ǀ is then synthesized 
into the defined frequency ranges. Once the weight allocation 

process has been performed, the three scaling factors 
(scaling1, scaling2 and scaling3) with the highest weights are 
chosen for tuning the ADDs. 
 The proposed approach for adaptive decomposition of spike 
waveforms is similar in operation to the methods in [20] and 
[22]. The feature extraction method in [22] employs four-level 
multi-resolution decomposition using Haar wavelets which 
result in 64 wavelet coefficients for each spike. Then the 
Kolmogorov–Smirnov (K-S) test [25] for normality is applied 
to select the first 10 informative features in the examined 
datasets [26] as shown in Fig. 10(a). The combination of Haar 
wavelets and K-S test is developed for offline processing and 
it requires large amount of hardware resources. The feature 
extraction method in [20] [Fig. 10(b)] uses discrete derivatives 
and extrema sampling for on-chip hardware realization 
purposes. 
 In the new proposed method for informative decomposition, 
Haar wavelets are replaced by parameterized ADDs and the 
K-S test is replaced by the sensing path SP → FS which is 
simply tuned over time. Different combinations are introduced 
in [20] by sweeping the decomposition window length (δ) to 
explore the frequency sub-bands (from δ = 1 to δ = 7) which 
accommodate the most informative features for the examined 
datasets [26]. By applying the multimodality metric it 
maintains the features exhibiting multiple peaks and valleys in 
their distributions. In [20], the process of choosing the 
combination with the highest clustering accuracy is performed 
offline. It is replaced here with the online and tunable 
informative sub-bands selector (SP →FS → ADDs). The 
hardware implementation of ADDs is shown in Fig. 10(c). It 
comprises adjustable delay lines, subtractors and 
dimensionality reduction blocks. They perform extrema 
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Fig. 10. Feature extraction methods in [22] (a), and [20] (b). (c) Block 
diagram of adaptive feature extractor. Three decomposition lines are 
activated and six features are selected for clustering. In this feature 
extractor, the multimodality metric is moved before the decomposition 
block to achieve high performance via selection of the decomposition sub-
bands with multimodal features while keeping the complexity low. 
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Fig. 11. Implementation of configurable online sorting (C-Sort). C-Sort 
enhances clustering performance robustness with little energy and hardware 
overhead. The blocks highlighted in the grey area determine the optimal 
sorting threshold (Topt). The C-Sort is an “error-aware model” since it adapts 
the noise level and iteratively tunes it to an optimal value by undoing the 
effects of non-idealities in feature space. 
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Fig. 12. Illustration of multi-phase clustering. 
 

Training Data

Data Streaming

Feature
Extraction

Feature
Extraction

{FV1, FV2, ... }1 ms

A
m

pl
itu

de

Peak Alignment

alsp(n)

1 ms
A

m
pl

itu
de

Peak Alignment

alsp(n)

Training

Assignment

Hold Time

Frame 1

Frame 2

t0

t1

t2

Va
lid

at
io

n
T o

pt

t3

C #1 C #k

Frame 1
Frame 2t >t3

R
et

ra
inRetrain

Cluster
Change

as
si

gn
ed

_F
V

as
si

gn
-n

ot
va

lid

En
gi

ne
2-

A 
& 

B

En
gi

ne
2-

C

Al
ig

ne
d 

Sp
ik

es

selection of the decomposition lines to create a feature vector 
(FV). The proposed feature extraction is flexible in terms of 
frequency band selection and extraction of a wide range of 
features. These processes result in robustness to spike 
similarity and noise level in the feature extraction operation. 

D. Clustering 
Clustering provides classification of spikes into different 

groups, corresponding to different neurons. The clustering 
algorithm (O-Sort) in [24] is well suited for real-time neuron 
mapping. However, for cases where neurons are hardly 
distinguishable or there is significant background noise, the 
clustering accuracy in [24] when the sorting threshold (SThr) 
is at a non-optimum level, is severely degraded. This results in 
cluster splitting and artificial clustering causing errors in 
classification. To boost the clustering accuracy configurable 
online sorting (C-Sort) is proposed here (see Fig. 11) by 
including adaptive tuning of SThr to an optimal level (Topt). 
The principles used include active embedded sensing of noise 
variations (Frame 1) for clustering error tolerance 
enhancement which defines SThr, and the detection of the 
clustered feature space non-idealities, for example, cluster 
split (Engine2-A in Fig. 11) to achieve error-aware clustering. 
To identify the number of active neurons in the recorded data, 
C-Sort includes a cluster change block (Engine2-C in Fig. 11). 
The added functions boost the clustering reliability providing 
resilience against statistical errors with little overhead in terms 
of power requirements and hardware. 

 
1) Clustering State Machine and Operation: 

A single-channel clustering function is shown in Fig. 12. It 
is divided into five time intervals: hold (t0), training (t1), 
validation (t2), assignment (t3) and cluster change (t > t3). The 
clustering execution begins with t0. The embedding frames 
(Frame 1 = σN; Frame 2 = SP) are initiated to calculate the 
signal characteristics and other parameters such as SThr. 
Training begins at t1 when the initial value of SThr is 
identified. SThr is sent to the sorting SThr LUT (see Fig. 3) as 

the initial value for training. The training period is tunable and 
is defined based on the number of feature vectors (FV1, FV2 
…) to identify the cluster means in the recording channel. 
After training to evaluate the mapped data to the converged 
cluster means, t2 is initiated. During this time interval, the 
performance check block (grey section in Fig. 11) is used to 
distinguish the clustered feature space non-idealities (e.g. 
cluster split) and adaptively fine-tune SThr to an optimal level 
(Topt). Once the validation is performed (a maximum of three 
iterations) the identified cluster means (C#1 … C#k) are 
transferred to the assignment block as shown in Fig. 11. At t3 
the recorded spikes are continuously mapped to their origins. 
At t > t3 Frame 1 and Frame 2 are updated intermittently to 
project either the trajectory movements of the existing active 
neurons in feature space (due to the noise or spike template 
amplitude fluctuations) or to reflect the 
appearance/disappearance of active neurons in feature space. 
After training the frames, the performance check block tracks 
and evaluates the updated feature space projection to decide 
whether or not channel re-training is required. 
 
2) Performance Check: 

The performance check block (see Fig. 11) identifies Topt in 
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Fig. 13. 2-D illustration of cluster feature space for (a) cluster split, (b) 
cluster merge, (c) cluster disappearance/appearance and (d) cluster shift due 
to the noise or spike template amplitude fluctuations. If dc < SThr the cluster 
mean (Cluster 3) is shifted to a new position in feature space; if dc > SThr 
the case of appearance of a new cluster (Cluster 4) is valid. dc is the distance 
between the cluster means (centroids). 
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Fig. 14. Structure of the training unit (see Fig. 12) which comprises a 
training memory and peripheral processing engines (1-7); see also Fig. 15. 
Each row of training memory consists of six columns (C0-C5) for 
accommodating the extracted feature vectors (FV0-FV5), a 1 bit status flag 
(C6) for dynamic power saving, 6 bits (C7) for the number of spikes per 
cluster (NOSPC) for cluster mean update in (4) and (6) (C7 is also used for 
cluster generation and checking the finalized cluster means in the training 
phase), and a 1 bit finalized flag (C8) for conditional initiation of (4) and (6). 
The number of interleaved processing in ℓ1-norm (2) and merging (5) 
engines is chosen 8 to minimize the power-area product. 
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t2 and cluster change analysis in t > t3. The inputs to the 
clustering status analysis block are the finalized cluster means 
(C#1 … C#k), assigned-FV and assign-notvalid as shown in 
Fig. 11(a). The structure of assigned-FV and assign-notvalid 
are shown in Fig. 11(b); assigned-FV comprises FV and the 
cluster number (C#) while assign-notvalid comprises FV and 
not-valid flag to monitor the assignment error rate (not-valid 
flag is set when FV is not matched with any converged 
clusters in t1). Engine1 comprises a correlator and a spike rate 
(SR) integrator. Its output provides the state of the clustered 
feature space to trigger Engine2. The latter has cluster split 
(A), cluster merge (B) and cluster change (C) blocks. Their 
operations are summarized as follows: 

• Artificial splitting (Engine2-A): In the case of artificial 
splitting into multiple clusters [Fig. 13(a)], the 
correlation between the split clusters identified in the 
cluster means (C#1 … C#k) is high (> 0.9) and their SR 
is less than other active neurons. SThr is increased to 
establish a hyperplane that forms an optimal clustering 
boundary between the existing clusters. 

• Artificial clustering (Engine2-B): In the case of artificial 
clustering [Fig. 13(b)], a spurious cluster is created. SThr 
is decreased for corrected clustering.  

• Variations in recorded neural data (Engine2-C): When 
there is appearance/disappearance of active neurons [Fig. 
13(c)] or cluster shift [Fig. 13(d)] as a result of noise or 
spike amplitude variation over time (e.g. due to electrode 
drift), the performance check block (Fig. 12) detects 
them. It then reinitializes training for detection of 
changes in the recorded neural data. 

Adjustment of SThr is performed over three different runs 
where the value of SThr is modified from the initial value by 
10% in each run (Δ = ±0.1). This provides an improvement in 
median clustering performance of 5-8%. The performance 
check block also tracks changes in the number of active 
neurons and cluster shifts. 
 
3) Training Unit Structure: 

The training memory and the main processing engines are 
shown in Fig. 14. The flowchart of the operations performed 
by the engines is summarized in Fig. 15 using the adapted O-
Sort algorithm. The training memory in Fig. 14 is 
implemented in a matrix format to provide highly flexible 
access to the memory locations. Status engine screens the 
activity of training and monitors the duration of training. 
When a FV is sent to the training block, it is compared to the 
existing transient cluster means in the ℓ1-norm engine whose 
block diagram is shown in Fig. 16. The minimum distance dmin 
between the FV(n) and the created transient cluster ci(n) is 
computed using the ℓ1-norm metric: 

 𝑑ehi = argehi ∑ ∑ |FV(𝑛) − 𝑐o(𝑛)|
2p
567o  (7) 

where NS is the number of features and i (= 0, …, 63) is the 
number of rows in the training memory as shown in Fig. 14. If 
dmin < SThr, the FV is assigned to the existing cluster and the 
cluster mean is updated to be the weighted average of the first 
two spikes, otherwise a new cluster is automatically created 
and FV is assigned to it. When dmin > SThr, cluster creation 
engine provides an ID for a new transient cluster and if 
dmin < SThr the on-hold FV is used for cluster mean update 
Cupdate: 

 𝐶rstfuv =
w∙x(5)yz{(5)

wy7
 (8) 

where W is the number of spikes in a specific cluster (NOSPC- 
C7). 
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Fig. 15. Flowchart of unsupervised clustering algorithm C-Sort. Operation 
functions are annotated (1-7) based on the training engines in Fig. 14. The 
procedure is iterative. 
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Fig. 16. Details of the ℓ1-norm engine. It consists of eight parallel 
processors and it is reused eight times to calculate the ℓ1-norm difference 
accumulation for all the 64 rows (row0-row63) as shown in Fig. 14. When a 
FV (blue line) is sent to the training block (see Fig. 11), initially it is 
compared to the transient cluster means created in the previous phases 
(Data_0 to Data_7). The minimum update distance (dmin) is calculated 
sequentially on the transient values in the search block to either activate the 
cluster generation (cluster_gen) or to revise the mean update value 
(mean_update). 
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Fig. 17. (a) Details of merging engine (5). Two clusters with dc< SThr are indistinguishable and are merged. Interleaving of 8 parallel merging-check units is 
used to access the 64 matrix memory rows. At the end of the merging process, either merging update (merge_ini) is initiated or training is terminated for the 
current FV (training_done). In the case of merging update, the appropriate content of the memory rows based on the chosen IDs (first_ID and second_ID) are 
accessed. (b) 2-D illustration of distance between the cluster centroids. 
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 Due to the cluster shift, there might be overlap between the 
clusters. In this case, two clusters with distance between their 
means (centroids) of dc < SThr in the feature space are 
indistinguishable and they are merged. To evaluate the 
merging possibility, the distance between all cluster means are 
calculated in the merging engine as shown in Fig. 17 and the 
selected candidates (first_ID and second_ID) are sent to the 
update engine. The centroid of the new merged cluster is 
calculated as a weighted mean: 

 𝐶ev|}v_rstfuv =
w�∙x�(5)yw�∙x�(5)

w�yw�
 (9) 

where c1 and c2 are the centroids, and W1 and W2 are the 
respective spike populations of each cluster. Cmerge_update is 
stored in one memory location and the content of other 
locations is erased to be reused for subsequent cluster 
generation. 
 To reduce area-power circuit techniques such as 
interleaving, logic reusing and transient memory allocation 
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Fig. 18. Die photo of the adaptive spike sorting processor chip with 
processing blocks identified. The area is dominated by the training function 
for clustering. In a multi-channel processor, the training block would be 
shared between the recording channels. 
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Fig. 19. Illustration of extrema features using different sets of scaling 
factors. The scaling factors are selected based on the frequency synthesizer 
output for (a) C_Easy2_0.05 and (b) C_Difficult1_0.05. 2-D projection of 
clusters for (c) C_Easy1_0.05, (d) C_Easy2_0.05, (e) C_Difficult1_0.05 and 
(f) C_Difficult2_0.05. (Spikes have been colored according to the ground 
truth). The number of features allocated to each cluster in the assignment 
phase takes 7 seconds. The 2-D projection plots are based on the most 
informative features (Feature I and Feature II). 
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TABLE I 
ADAPTIVE SPIKE PROCESSOR PERFORMANCE AND FEATURES 

Chip Summary 
Technology 180 nm 

Supply Voltage 1.8 V 
Power Consumption 148 µW 

Core Size 6 mm2 
Clock Frequencies 30, 120, 240, 960 kHz 

Processor Type Adaptive 
Median PD, PFA 92%, 1% 
Median CACC 84.5% 

Compression Factor*  150X**, 240X  
Memory Size 10 kB 

Input Data Rate 240 kbps 
Active Learning Features 

Training Model Embedded Frames 

Function of Frames Frame 1 = Noise Standard Deviation (σN) 
Frame 2 = Similarly Pattern (SP) 

Frame Training Interval Every 1 min** 
Active Tuning Features 

Detection SThr & ωNEO 

Feature Extraction SNR → MAF Length (M) 
SP → FS → ADDs 

Clustering C-Sort   

* Ratio between the spike processor input data rate and its output data rate. 
** Compression factor in error monitoring mode. 
** The training time can also be tuned externally. 

reusing were used in the training block of the clustering (see 
Figs 14, 16, 17). 

IV.CHIP MEASURED RESULTS 
The adaptive spike sorting processor was fabricated in a 

180-nm CMOS technology for proof-of-concept. The die 
micrograph is shown in Fig. 18. The chip core area 1 occupies 
6 mm2. The processor uses four different clock rates (30 kHz, 
 

1 It comprises 2.7 mm2 non-training area and 3.3 mm2 training area. The 
logic cells occupy 55% of the core area and the rest is for routing (only 4 
metal layers are available in the 180-nm CMOS technology used). If the 
design was implemented in a deep sub-micron technology, e.g.  TSMC 65-nm 
(9 metal layers), the logic area would scale down to 0.44 mm2 (the area 
scaling factor form 180-nm to 65-nm is 7.67 [27]) and the routing area would 
be also much reduced.   

120 kHz, 240 kHz, 960 kHz) to obtain the best processing 
efficiency and consumes 148 µW from a 1.8 V supply voltage. 
To evaluate the spike detection performance the following 
metrics are used: 1) probability of detection, PD = TDS/TNS 
where TDS is the number of truly detected spikes and TNS is 
the total number of spikes; 2) probability of false alarm, 
PFA = FD/TDS where FD is the number of false detections and 
TDS are the true positives. Table I summarizes the features 
and performance of the adaptive spike processor chip. 

In the following sections, various testing methodologies are 
used to evaluate the chip performance under different 
conditions including confirmation of its successful adaptation 
providing high clustering accuracy. 

A. Static Test 
The static test examines the processor performance different 

spike shapes and different noise levels with a known ground 
truth. The spike datasets in [26] (Easy1, Easy2, Difficult1 and 
Difficult2) were used. Each dataset has three different types of 
spike shape and four different noise levels with standard 
deviations of 0.05, 0.1, 0.015 and 0.2 (each dataset contains 
1.44 million samples). Fig. 19(a)-(b) shows cases for different 
scaling factors (δ) used for decomposition of spike 
waveforms. Scaling factors in the ADDs provides enhanced 
clustering discrimination. Extrema sampling provides six 
features for clustering. Fig. 19(c)-(f) shows the two-
dimensional (2-D) projection of the clusters in all datasets. 
The boundaries of the clusters are identified by dotted lines. 
An overall median clustering accuracy of 84.5% is achieved.  

B. Dynamic Test 
A dynamic test to evaluate the adaptivity of the processor 

was used. To simulate dynamic variations in the data over 
time a random data selection procedure was used. The neural 
simulator employed the 4 standard datasets (a: Easy1, b: 
Easy2, c: Difficult1, d: Difficult2) each with its 4 noise 
standard deviations (a': 0.05, b': 0.1, c': 0.015, d': 0.2) - i.e. 16 
different combinations. Five minutes of data was chosen 
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Fig. 20. Set-up for comparing the performance between model A (error-
affected) and model B (error-aware) spike processors. The error-aware 
model employs adaptation of the input signal model enabled by the 
embedded sensing frames.  
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TABLE II 
ERROR-AWARE SPIKE PROCESSOR PARAMETERS 

Random 
Data δ Convergence 

Time NOIs CCST 
(t > t3) 

Comb.(a, a') δǀ6,5,4 0.11 s (W = 12) 1 - 
Comb.(b, c') δǀ7,6,4 0.67 s (W = 29) 2 (M) aa'→ bc' (1.8 s) 
Comb.(b, d') δǀ7,6,3 0.67 s (W = 29) 3 (M) - 
Comb.(c, b') δǀ6,4,5 0.69 s (W = 32) 2(S) bd'→cb' (1.92 s) 
Comb.(d, a') δǀ6,5,4 0.84 s (W = 36) 1 cb'→ da' (1.67 s) 
Comb.(c, a') δǀ6,5,4 0.48 s (W = 27) 1 da'→ ca' (1.88 s) 
Comb.(a, b') δǀ6,5,4 0.18 s (W = 13) 1 ca'→ ab' (1.95 s) 
Comb.(b, a') δǀ6,5,3 0.14 s (W = 11) 1 ab'→ ba' (2.15 s) 
Comb.(d, b') δǀ6,5,4 0.74 s (W = 36) 1 ba'→ db' (1.58 s) 
Comb.(d, d') δǀ7,6,2 0.98 s (W = 40) 3 (M) - 
Comb.(a, c') δǀ6,4,5 0.25 s (W = 14) 2 (M) dd'→ ac' (1.63 s) 
Comb.(b, b') δǀ6,7,3 0.23 s (W = 20) 2 (S) ac'→ bb' (2.22 s) 
Comb.(a, d') δǀ6,4,5 0.41 s (W = 21) 3 (M) bb'→ ad' (1.78 s) 
Comb.(d, c') δǀ5,7,6 0.83 s (W = 39) 1 ad'→ dc' (1.38 s) 
Comb.(c, d') δǀ7,6,2 0.92 s (W = 35) 3 (M)  dc'→ cd' (1.43 s) 
Comb.(c, c') δǀ6,4,5 0.61 s (W = 32) 2 (M) - 

Under column NOIs: M = Merge, S = Split. 
 

 

Fig. 21. Clustering accuracy (CACC) comparison between the model A 
(error-affected) and model B (error-aware) spike processors. The input data 
to the processors was randomly selected. For example, Comb.(a, a') is Easy1 
with the lowest noise level (0.05). Model B is less affected by the dynamic 
changes in the input data. 
 

randomly from each of the combinations and concatenated 
into a continuous stream of data providing variable data 
conditions over time. 

Fig. 20 shows the alternative models of operation of the 
spike processor. In model A (error-affected model), the spike 
processor was configured to operate without the embedded 
frames. The constituent building blocks in this model are NEO 
based detection, multi-resolution decomposition utilizing fixed 
decomposition lines (δǀ1,3,7) [12] and O-Sort with incorporated 
clustering change sensing. In model B (error-aware model), 
the spike processor operates adaptively with the embedded 
frames 2. 

The clustering performance of both error-affected and error-
aware processors, is shown in Fig. 21 for a sequence of 
randomly selected input data. It demonstrates the clustering 
performance superiority of the adaptive spike processor under 
variable input signal conditions. Averaging the results in Fig. 
21, yields an 84.5% median clustering accuracy for Model B 
 

2 If only Frame 1 or only Frame 2 are used in the adaptive spike processor, 
the latter provides almost 5% higher median clustering accuracy compared to 
the former. 

compared to 73.3% for Model A. 
Table II shows the automatic choice of the decomposition 

scaling factors (δ) for the 16 different combinations in Fig. 21, 
and details the training convergence time (also quantified in 
spike numbers W), number of iterations (NOIs) for defining 
the optimal threshold (Topt) in the validation phase (t2) and 
cluster change sensing time (CCST) for retraining initiation 
when there is cluster change in the recording path. 

C. Case Study 
This section provides a detailed multi-aspect analysis of 

Comb.(c, d'). Fig. 22(a) shows the clustering performance 
(CACC) versus the cluster mean convergence weight in (8). 
Ttransient average performance does not significantly change 
when the update weight W (NOSPC in Fig. 14) is higher than 
35. The iterative-update procedure initially introduces error in 
cluster mean convergence and eventually converges to its true 
value. Fig. 22(b) shows the cluster border rotation in the 
sorting threshold (SThr) tuning phases 1-3; the cluster border 
is rotated by θ1 and θ2 degrees. This rotation is due to 
decreasing the initial value of SThr with a fixed step (Δ = 0.1) 
in the validation phase (t2). To qualitatively show the 
effectiveness of C-Sort, Fig. 22(c) shows the 2-D projection 
test [28] of two merging clusters and the improvement over 
three iterations. Moving towards Topt is the same as separating 
merged clusters in feature space. 

D. Comparison 
Table III compares this work with other integrated spike 

processors featuring on-chip clustering. The processor in this 
paper is the first adaptive sorting chip that provides on-chip 
parametric tunability via the inclusion of the embedded 
frames (Frame 1 and Frame 2). Since the spike processor can 
be implemented in different technologies, a figure-of-merit 
(FOM) is required to characterize relative efficiencies. The 
proposed FOM relates the spike processor power dissipation 
to its performance and is defined as: 

 FOM = ��������
(����∙7@@)∙�z|���� �������⁄

					(µW) (10) 
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Fig. 22. (a) Cluster convergence illustration for Comb.(c, d') versus W 
(NOSPC in Fig. 14). W = 35 forms a reliable feature space for clustering 
and CACC saturates beyond this value. (b) Iteration phases. In each iteration 
the cluster border rotates by θ degrees. 2-D projection plots are based on 
clustered FVs in assignment phase for the duration of 30 seconds. (c) 2-D 
projection test for different iterations (1-3). The merging degrades with 
tuning the sorting threshold to Topt. 
 

TABLE III 
COMPARISON WITH OTHER WORK   

Reference [13] [16] This Work (TW) 
Detection Absolute (4s N) ICD (a) SThr & ωNEO 
Alignment Slope Peak Peak 

Feature Extraction Spike Template ICFE (b) ADDs 
Clustering O-Sort k-means C-Sort 

Compression Factor 240X 257X 150X/240X 
CMOS Process (nm) 65 65 180 
Supply Voltage (V) 0.27 0.54 1.8 
Power (µW/channel) 4.68 0.175 148 (c) 
Area (mm2/channel) 0.07 0.003 2.7 

 

Clustering Accuracy 
(CCAC) 

(d) U: 97% 
M: 75%  
L: 45%  

U: 83-99% 
M: 72-87% (e) 

L: 68-77% 

U: 92.8%  
M: 84.5% 

L: 67% 
FOM|DF (µW) 
DF|Base / Scaling 

624´10–4 

DF|[13]/[13] = 1 

(f) 6.07´10–4 

DF|[16]/[13] = 4 
142´10–4 

DF|[TW]/[13] = 123 
Adaptive Design No No Yes 

(a) Integer coefficient detector (ICD). 
(b) Integer coefficient feature extraction (ICFE). 
(c) In 45-nm NAN-GATE the power consumption is 20 µW (1.1 V supply voltage). 
(d) Upper (U), Mean (M), Lower (L). 
(e) 87% average accuracy when the number of clusters are set manually. 
(f)   Based on the unsupervised clustering accuracy. 

where Pchannel is the power dissipation per channel, CACC·100 

is the clustering accuracy score, and DF| Base/Scaling is the 
downscaling factor which adjusts for dynamic power 
characteristics of the spike processor in different technologies 
where [29]: 

 DF|�f�v F�f�hi}⁄ =
1∙2�∙����∙I��J� ∙��J�d����
1∙2�∙����∙I��J� ∙��J�d�������

   (11) 

where α is the switching probability, Nt is the number of 
transistors in the design, Cavg is the MOSFET capacitance 
value, Vsup is the supply voltage in a particular technology, and 
fopt is the operating clock frequency. For the spike processor 
Base is the reference technology and Scaling is the target 
technology. For example, for FOM evaluation of the spike 
processor in this work, from Base technology (180 nm, 1.8 V) 
to Scaling technology (65 nm, 0.27 V), both operating at the 
same fopt and having the same αNt factor, using (11) with 
Cavg|Base / Cavg|Scaling = 2.7, yields DF| Base/Scaling = 123. 
 As reported in Table III, when the effect of different 
technology dimensions are accounted, this adaptive spike 
processor has 4.4X lower FOM compared with [13] and 
achieves almost 10% higher clustering accuracy in online 
clustering. Although the spike processor in [16] has 
approximately 23.3X lower FOM compared to the adaptive 
spike processor in this work, the latter achieves almost 13% 
higher clustering performance in unsupervised mode, which 
allows for accurate interpretation of neural activities.  

V.CONCLUSION 
An adaptive processing methodology has been introduced to 

enhance the performance of synchronous processing systems. 
It embeds reconfigurable sensing frames into the synchronous 
processing path that learn the characteristics of the variable 
input neural signals and adapts the functionality accordingly to 

improve the accuracy. As proof of concept, an adaptive spike 
processor has been designed, fabricated and evaluated. In 
addition, a configurable online sorting method (C-Sort) has 
been proposed which incorporates defining optimal threshold 
level (Topt) and sensing active neurons in the recording 
channel. The chip prototype provides 84.5% accuracy and 
consumes 148 µW from a 1.8 V supply voltage. A dynamic 
testing methodology has been used to demonstrate the effect 
of signal model learning on clustering performance under 
variable conditions. Improved accuracy performance has been 
achieved compared to the state-of-the-art online clustering 
processors. The focus of future work will be towards the 
development of a multichannel spike sorting processor based 
on the adaptive processing methodology implemented in an 
advanced digital CMOS technology. 
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