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Abstract 

The internationally agreed global climate deal reached at the Paris Climate 

Conference (COP21) in December 2015 is intended to limit the increase in global 

average temperature to less than 2°C above pre-industrial levels by 2050. Achieving 

this goal requires a 50 – 80% reduction in CO2 emissions. Alongside renewable 

energy sources, CO2 Capture and Sequestration (CCS) is widely considered as a key 

technology for meeting this target, potentially reducing the cost of inaction by some 

$2 trillion over the next 40 years.  

It is estimated that transporting the predicted 2.3 - 9.2 Gt of captured CO2 to its point 

of storage will require the use of a global network of between 95000 - 550000 km 

pipelines by 2050.  

The economic pipeline transportation of such large amounts of CO2 will require 

operation in dense or supercritical phase. In Europe, this will likely mean pipelines at 

line pressures above 100 bar, some passing through or near populated areas. Given 

that CO2 is increasingly toxic at concentrations higher than 7%, the safe operation of 

CO2 pipelines is of great importance and indeed pivotal to the public acceptability of 

CCS as a viable means for tackling the impact of global warming. 

The accurate prediction of the discharge rate of the escaping inventory in the event of 

accidental pipeline rupture is central to the safety assessment of such pipelines. This 

information forms the basis for determining the minimum safe distances to populated 

areas, emergency response planning and the optimum spacing of isolation valves. In 

addition, in an emergency situation, the controlled depressurisation of CO2 pipeline is 

critically important given the unusually high Joule-Thomson cooling of CO2. Too 

rapid depressurisation poses the risk of embrittlement of the pipe wall causing 

pipeline running fracture, solid CO2 formation leading to blockage of pressure relief 

valves in the event of crossing the triple point temperature (216.7 K) or a Boiling 

Liquid Expanding Vapour Explosion (BLEVE) due to the superheating of liquid 

phase CO2. 

This thesis presents the development, testing and validation of various transient flow 

models taking account of the above phenomena. These include a Homogeneous 

Equilibrium Mixture (HEM) pipe flow model, a Homogeneous Relaxation Mixture 
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(HRM) pipe flow model, a Two-Fluid Mixture (TFM) pipe flow model, and an 

integral jet expansion model. 

The HEM model employing Computational Fluid Dynamics (CFD) techniques is 

developed for predicting solid CO2 formation during pipeline decompression. The 

pertinent vapour-liquid or vapour-liquid-solid multi-phase flow is modelled by 

assuming homogeneous equilibrium. The flow model is validated against pressure and 

temperature data recorded during the Full Bore Rupture (FBR) decompression of an 

extensively instrumented 144 m long, 150 mm i.d. CO2 pipe initially at 5.25 °C and 

153.3 bar. For the conditions tested, the simulated results indicate CO2 solid mass 

fractions as high as 35% at the release end, whose magnitude gradually decreases with 

distance towards the pipe intact end. 

Turning to the HRM model, in its development, thermodynamic non-equilibrium 

between the constituent fluid phases during pipeline decompression is considered for 

both pure fluids and multi-component mixtures. The validation of the HRM model is 

carried out by comparing its predictions of a number of CO2-rich mixtures pipeline 

FBR decompression experiments against the corresponding measurements. For 

reference, the HEM model predictions (where thermodynamic non-equilibrium is 

ignored) for the same tests are also included in the comparison. The results show that 

improved agreement with the measured data can be obtained by the present model as 

compared to the HEM model.  

The last pipeline decompression model presented in this thesis is the TFM model, 

where the conservation equations are solved separately for each constituent fluid 

phases during decompression, unlike in the case of the HEM and HRM models. 

Fluid/fluid interface interactions are accounted for and modelled using appropriate 

closure relations. Furthermore, a new puncture outflow boundary condition is 

presented. For the numerical solution of the conservation equations, modifications 

towards previous schemes are introduced for improved accuracy and numerical 

stability. Model validation is carried out by comparing its predictions of two CO2 

pipeline puncture decompression tests against the corresponding measurements, 

showing excellent agreement. The experimentally observed heterogeneous flow 

behaviour, that is, the significant temperature difference between the vapour and 

liquid phases, is captured by the present model. 
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The final part of this thesis deals with the accurate prediction of the conditions of a 

pressurised jet upon its expansion to atmospheric pressure, where the simulated 

outflow data from the decompression flow models is used as the input conditions. 

Such prediction is of fundamental importance in assessing the consequences 

associated with accidental releases of hazardous fluids from pressurised vessels and 

pipes. An integral jet expansion model which for the first accounts for turbulence 

generation is presented. By the use of accidental release of two-phase CO2 from a 

pressurised vessel as an example, the proposed model is shown to provide far better 

predictions of the fully expanded jet momentum flux as compared to the existing 

integral model where the impact of turbulence generation is ignored. 
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Impact statement 

This thesis investigates the rapid depressurisation and outflow of high pressure CO2 

mixture pipelines undergoing puncture or full bore rupture failure. Four different 

mathematical depressurising flow models were developed, dealing with complex 

physical processes including solid-vapour-liquid phase transitions, non-equilibrium 

phenomenon, and transport process involved during pipeline decompression. The 

modelling methodology is partly novel, and where possible, the model predictions are 

carefully validated against experimental data.  

As Carbon Capture and Sequestration being continuously developed as a key solution 

to combat global warming, significant amounts of CO2 will be transported via high 

pressure pipeline networks across the globe. Their safe operation is thus of paramount 

importance. The models developed can be directly applied for the quantitative failure 

consequence assessment of the transmission pipelines, hence providing guidelines for 

emergency planning and mitigation measures.  

In addition, the models can be easily extended to simulate the failure consequences of 

other important process fluids such as hydrogen and hydrocarbons.  

Last but not the least, the numerical scheme introduced in this study for solving the 

flow model governing equations have brought improved accuracy and computational 

efficiency over the conventional methods, which, in and of itself, is beneficial to the 

further development of computational fluid dynamics in chemical process engineering.  
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Chapter 1: 

Introduction 

According to International Energy Agency (2011), with the exponential growth of the 

energy market, the world is entering ‘a golden age of gas’. Indeed, hydrocarbon fuel 

gases are becoming a significant part of the world energy mix (International Energy 

Agency 2015), producing over 11000 MWh energy (mainly in the form of electricity) 

which accounts for 25% of the energy mix in 2014. As the fuel gas production sites 

are usually not collocated with the power plants, transportation is required. By far, the 

most prevalent method of transporting the significant amounts of hydrocarbon fuel 

gases is via high-pressure (usually over 100 bar) transmission pipelines given its 

superior operation safety and economic viability over other transportation modes 

(Transportation Research Board 2004). As a result, there are currently over 32000 km 

of newly built pipelines per year (Linnitt 2013). 

Ironically, the intensive application of fuel gases has produced abundant CO2 

emissions, which in turn leads to global warming and climate change. The estimated 

total carbon emissions reached 35.7 billion tonnes in 2014 (Olivier et al. 2015) and 

were kept at the same level in the following two years (Conti et al. 2016; International 

Energy Agency 2017). One of the key mitigation strategies to combat global warming 

is Carbon Capture and Sequestration (CCS) which involves the transportation of the 

captured CO2 from the capture points to the sequestration sites. As expected, high-

pressure pipelines are again adopted as the major transportation mode. Although 

compared to hydrocarbon pipelines, the current CO2 pipeline network is of a much 

smaller scale (total length of approximately 7000 km mainly located in USA and 

Canada) (Knoope et al. 2014), given CCS’ great potential in mitigating global 

warming, it is estimated that there will be over 100000 km of CO2 pipelines carrying 

the captured CO2 across the globe by 2030 (International Energy Agency 2010).  

In both the cases, pipeline routing through populated areas cannot be completely 

avoided in order to keep it economically viable (Koornneef et al. 2010; Vianellob et al. 

2013). Given the fact that hydrocarbons are highly flammable, and CO2 is aspyhxiant 

at high concentrations (considered to be increasingly toxic above 7% v/v; Harper et al. 

2011), pipeline failures often lead to catastrophic consequences, including loss of 

valuable inventory, damage to property, environmental pollution and fatalities. For 
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example, on March 12, 2014, a violent explosion of a natural gas pipeline owned by 

Edison’s Gas situated at 1644 and 1646 Park Avenue, New York, the U.S.A. 

completely destroyed two adjacent five-story buildings (National Transportation 

Safety Board 2015). 8 fatalities and 46 injuries were reported. The cause of the 

explosion was identified as natural gas leak resulting from pipeline corrosion. On July 

31, 2014, a buried propylene pipeline failure led to a string of explosions in 

Kaohsiung, Taiwan, causing severe damage to the neighbourhood including several 

kilometres of the road surface and hundreds of vehicles (Liaw 2016). The explosion 

itself and the subsequent fire also resulted in 30 fatalities. Estimate shows that, on 

average, there are 250 pipeline failure incidents per year across the globe (Linnitt 

2013). Given the above, the quantitative failure consequence assessment of high-

pressure transmission pipelines is essential.  

Central to the above is the accurate prediction of the outflow and the decompression 

characteristics including the in-pipe fluid temperature, pressure and phase 

composition variations as a function of time in the event of failure (Molag & Dam 

2011; Pham & Rusli 2016; Munkejord et al. 2016). The outflow data serve as the 

source terms for determining the consequences of fire, explosion, dispersion of the 

emerging toxic cloud (of CO2) and hence minimum safety distances to populated 

areas (Mahgerefteh et al. 2007; Mahgerefteh et al. 2008; Brown et al. 2013). With 

regards to the fluid temperature, pressure and phase composition variations during 

decompression, such data are central to the determination of fracture propagation 

behaviour along the pipe wall (Mahgerefteh & Atti 2006; Cosham & Eiber 2008; 

Aursand et al. 2016; Martynov et al. 2017). In the case of CO2, there are also the risks 

associated with solid CO2 or ‘dry ice’ formation upon surpassing its triple point (216 

K) (DNV 2010; Pham & Rusli 2016). The formation of any significant amounts of 

solid CO2 within the pipeline may result either in its blockage (especially along 

restrictions such as bends), or more likely, the blockage of the emergency pressure 

relief valves, leading to over-pressurisation and possible pipeline rupture.  

Given the above, the development of accurate, robust and computationally efficient 

mathematical models for predicting the outflow and the decompression characteristics 

in the event of pipeline failure, or during scheduled maintenances has been the focus 

of considerable attention (see (Mahgerefteh et al. 2008; Munkejord et al. 2010; Brown 
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et al. 2013; Brown et al. 2014; Munkejord & Hammer 2015; Nouri-Borujerdi & 

Shafiei Ghazani 2017) for example). The success of such models invariably depends 

on the accurate modelling of the fluid dynamics and thermodynamics during 

decompression. This necessitates careful consideration of fluid/wall interactions 

including friction and heat transfer, and fluid/fluid interface interactions in terms of 

mass, momentum and energy exchange. 

The most simplistic flow model is the Homogeneous Equilibrium Mixture (HEM) 

model. In its literal sense, the multiphase mixture formed during pipeline 

decompression is assumed to be at homogeneous equilibrium, which means 

instantaneous interface mass, momentum and energy exchange. As such, the 

constituent fluid phases are assumed to remain at the same pressure, temperature and 

velocity. The corresponding fluid flow can be described using a single set of the mass, 

momentum and energy conservation equations. For fluid/wall friction and heat 

exchange, empirical correlations are usually adopted.  

Despite its simplicity, in the case of pipeline Full Bore Rupture (FPR) failure where 

fully dispersed bubbly flow is observed to occur, its relatively good performance in 

predicting the decompression process has been reported through several studies. For 

example, Mahgerefteh et al. (2008) applied the HEM for predicting the 

decompression characteristics of both high pressure hydrocarbon (mainly LPG) and 

CO2 pipelines. A real-fluid Equation of State (EoS) was employed for the prediction 

of the required thermal properties and phase equilibrium data. In both cases, 

comparisons against the available experimental data such as the pressure and 

temperature variations as a function of time during pipeline decompression indicated 

reasonably good agreement with the model predictions. More recently, Teng et al. 

(2016) studied the pipeline FBR decompression characteristics for vapour, liquid and 

supercritical CO2 using the HEM model. Reporting good agreement between the 

model predictions and the measured data of the pressure variation as a function of 

time during decompression, the decompression rate was found to be the highest in 

liquid phase CO2 followed by the supercritical phase, vapour-liquid two-phase and 

finally vapour phase. However, their flow models are not capable of handling solid 

phase CO2. 
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In the case where delayed phase transition occurs during pipeline decompression, 

metastable fluid states (e.g. superheated liquid phase) may be expected (Munkejord et 

al. 2016), and thermodynamic equilibrium assumption between the constituent fluid 

phases is no longer valid. Such non-equilibrium behaviour can significantly affect the 

decompression characteristics. Cosham et al. (2012) for example experimentally 

observed that the non-equilibrium behaviour resulted in larger decompression wave 

speeds as compared to the HEM model predictions.  

In light of the above, the Homogeneous Relaxation Mixture (HRM) model was first 

developed Bilicki & Kestin (1990). In this case, by explicitly modelling of the finite 

rate of interface mass exchange, thermodynamic non-equilibrium during pipeline 

decompression can be accounted for. Brown et al. (2013) successfully demonstrated 

the HRM model capability in predicting the pipeline FBR decompression for CO2. 

However, by far, the HRM model is limited to single-component flow, which puts a 

significant restriction on its practical application in the quantitative failure 

consequence assessment of high-pressure transportation pipelines, as most of flows 

encountered in industry are mixtures with multiple impurities. The presence of 

impurities can largely impact the fluid physicochemical properties (Pershad et al. 

2010; Patchigolla & Oakey 2013; Solomon Brown et al. 2014).  

Heterogeneous flow is another important phenomenon reported by Brown et al. (2013) 

based on pipeline decompression tests involving the direct visual observation of the 

in-pipe flow through a reinforced glass section. The Drift Flux Mixture (DFM) model 

accounts for such phenomenon through the addition of a slip relation between the 

constituent fluid phases in the HEM model (Ishii 1977). Munkejord et al. (2010) 

studied the impact of phase slip on CO2 pipeline decompression using the DFM 

model. The authors concluded that phase slip between the vapour and liquid phases 

resulted in a higher decompression rate as compared to the HEM model predictions 

where such effect is ignored. However, it should be pointed out that in the application 

of the DFM model, the velocity of each fluid phase must be strongly coupled, such 

that a slip relation can be prescribed (Munkejord et al. 2010). As such, the DFM 

model is only applicable to limited flow regimes during pipeline decompression (e.g. 

bubbly/slug flow; Hibiki & Ishii 2003), for which the HEM model has already been 
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proven to be effective. As such the additional mathematical complexity introduced in 

the DFM model may not be justified.  

Although important in the context of pipeline failure consequence assessment, the 

forgoing flow models are mostly suitable for the most catastrophic but least likely 

pipeline FBR failures where homogenous flow has been shown to prevail during the 

most part of the decompression process (Robert M. Woolley et al. 2014). However, in 

practice, pipeline punctures are found to be far more frequent than FBR 

(Transportation Research Board 2004). Here, based on direct visual observation of in-

pipe flow, significant vapour-liquid phase stratification has been reported during the 

course of the CO2QUEST European Commission FP7 project (Solomon Brown et al. 

2014). During pipeline puncture decompression, the constituent fluid phases behave 

independently involving weak interface interactions, which renders the HEM 

inapplicable.  

The Two-Fluid Mixture (TFM) model, mostly employed in the nuclear industry for 

heterogeneous water/steam flow as part of the quantitative failure consequence 

assessment, considers the conservation equations separately for each of the 

constituent fluid phases (Toumi et al. 1999). Although successfully verified against 

pipeline FBR decompression experiments (S. Brown et al. 2014; Munkejord & 

Hammer 2015), the model’s capability in handling pipeline puncture decompression 

flows has not been investigated.  

Given the above overview of the limitations of the previous pipeline failure 

decompression models, the main objectives of this thesis are to develop, verify and 

where applicable validate: 

• a HEM pipeline decompression flow model accounting for the formation of 

solid phase CO2 in the context of high pressure CO2 transmission pipelines 

employed as part of the CCS chain 

• a HRM pipeline decompression flow model capable of handling 

thermodynamic non-equilibrium in multi-phase multi-component mixtures  

• a TFM flow model capable of handling pipeline puncture decompression, 

accounting for heterogeneous flow 

The following presents an overview of each of the proceeding chapters: 
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Chapter 2 commences with a detailed description of the background theory of the 

most popular pipeline decompression flow models reported in the open literature. It 

covers the governing conservation equations, constituent relations for fluid/wall and 

fluid/fluid interface interactions during pipeline decompression, EoS for predicting 

fluid thermal properties and phase equilibrium data and the mathematical properties 

of the overall formulations. This is followed by a review of the applications of these 

flow models for predicting pipeline decompression, including a discussion of their 

performance in reproducing available experimental data and the limitations worthy of 

further development.  

In Chapter 3, the development of the HEM flow model accounting for the solid CO2 

as a third phase is presented. This includes a description of the conservation equations, 

the thermodynamic consideration for the solid phase and the numerical solution 

scheme employed. The developed model is then tested by solving a specified 

Riemann problem, where the predicted wave structure in a solid-vapour-liquid three-

phase flow is presented and discussed. This is followed by validation against available 

experimental data. 

In Chapter 4, the development, testing and validation of the HRM model capable of 

predicting thermodynamic non-equilibrium in multi-phase multi-component mixtures 

during pipeline decompression is given. The chapter commences with the 

mathematical formulation for describing the thermodynamics and fluid dynamics. In 

particular, the methodology for predicting thermodynamic non-equilibrium in multi-

component mixtures is presented in details. For verification and testing purposes, the 

model is employed to solve a specified Riemann problem, showing the impact of 

thermodynamic non-equilibrium on the resulting wave structure. Finally, three 

validation case studies are performed in which the model predictions are compared to 

available data such as the decompression wave speed measured during pipeline 

decompression tests for CO2 rich mixtures.  

Chapter 5 presents the development, testing and validation of the TFM model for 

simulating heterogeneous flow during pipeline puncture decompression. The mass, 

momentum and energy conservation equations for each of the constituent fluid phases 

are presented together with the closure relations for specifying fluid/wall (friction and 

heat transfer) and fluid/fluid interface interactions (mass, momentum and energy 
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exchange). To predict the outflow through the puncture at the pipeline release end, an 

additional boundary condition is introduced. For validation purposes, the TFM model 

developed is employed to simulate two CO2 pipeline puncture decompression tests, 

where the predicted pressure, temperature and remaining inventory mass variations as 

a function of time are compared against the corresponding measurements. 

Chapter 6 demonstrates an important example of utilising the predicted outflow data 

from the pipeline decompression models for simulating the jet expansion, and 

ultimately, the atmospheric dispersion of the escaping hazardous fluids. The above 

focuses on the use of the simulated outflow data as the input for predicting the 

subsequent fully expanded jet conditions based on an especially developed integral jet 

expansion model accounting for turbulence generation. Using a series of case studies, 

the integral jet expansion model’s performance is in turn verified based on the 

comparison of its predictions of the fully expanded jet conditions against those from 

an established rigorous but highly computationally demanding CFD jet expansion 

model.  

Chapter 7 presents a summary of the important conclusions of this work, followed by 

recommendations for future work.  
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Chapter 2: 

Literature Review 

In view of the safety hazards involved in the event of CO2 pipeline failures, 

appropriate mathematical models for their quantitative consequence assessment are 

essential. In this section, the corresponding background theory and examples of their 

applications in predicting medium/large-scale pipeline decompression are presented. 

Given the above, the following literature review has been split into two parts. The first 

part comprises a detailed description of the key building blocks for pipeline 

decompression modelling, including the governing equations for describing fluid flow; 

constituent relations for describing fluid/pipe wall heat transfer and friction; 

Equations of State (EoS) for predicting real fluid thermal properties and phase 

equilibrium data. Also included is a discussion regarding the mathematical nature of 

the resulting overall equation systems. The knowledge of the mathematical natures of 

the governing equations is required for seeking appropriate numerical solution 

strategies.  

In the second part, relevant studies focusing on the applications of the reviewed 

mathematical models for predicting CO2 pipeline decompression behaviour are 

reported. In each case, the model performances are assessed based on the degree of 

agreement between the predictions and the measured data for pipeline decompression 

tests. Moreover, the model limitations at their current stage of their development are 

summarised. 

 

2.1 Background Theory 

2.1.1 General Conservation Equations for Fluid Dynamics 

For the description of the fluid dynamics of the kth fluid phase within an arbitrary flow 

Control Volume (CV), 
k

CVV  with a Control Surface (CS), 
k

CVS , the corresponding 

general time-averaged mass, momentum and energy conservation equations read (see 

Sections A1.1 to A1.4, Appendix for more details): 
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p I
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 
  


  


+ +  −




  + + + + −  =



u I u

τ u q q F u

 

2.3 

Where, the scalar variables, k , k , kp , kh , kE  and kQ  are respectively the volume 

fraction, density, pressure, enthalpy, total energy, and added heat per volume of the kth 

fluid phase; kE  is defined as the sum of the internal energy, ke  and the kinetic energy, 

2
2ku , that is, 

2
2k k kE e= + u . The interface mass, momentum and energy 

exchange (interaction) terms are denoted by kI , k

kI
u  and *kE

kI , respectively. The 

vectors, ku , kq , and kF  respectively represent the velocity, heat flux and body force. 

kτ  and I are the stress tensor and the identity matrix, respectively. The subscript, k 

and the superscripts, t respectively represent the kth fluid phase and the turbulence. 

The averaging operators, ‘    ’ and ‘    ’ respectively denote phase-weighted time-

averaging, and mass-weighted (Farve) time-averaging (see Section A1.1.1, Appendix 

for their definitions).  

 

2.1.2 Conservation Equations for Pipe Flows 

2.1.2.1 General Assumptions and Simplifications 

The full conservation equations for mass, momentum and energy derived above are 

applicable to any type of flows. However, given that they are a set of coupled, non-

linear and high-order Partial Differential Equations (PDEs), seeking a complete 

solution would be difficult and computationally demanding (Ferziger & Peric 2002). 

For most practical engineering problems, inconsequential terms in equations 2.1 to 2.3 
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are often neglected. These include viscous term in inviscid flow and the convection 

term in Stokes flow. 

In the case of pipe flow, it is assumed to be one-dimensional, and momentum 

diffusion, energy diffusion and turbulence are usually neglected (Mahgerefteh et al. 

1999; Oke et al. 2003; Cleaver et al. 2003). Accordingly, equations 2.1 to 2.3 are 

simplified to: 

( ), 0k k
k k x k ku I

t x

 
 

 
+ + =

 
 

2.4 

( ) ( ) ,
,

, , , 0x k
k k x k u

k k x k x k k k k k x k

u
u u p I F

t x x

 
   

  
+ + + − =

  
 

2.5 

( ) ( ), ,

*

, , 0k

k k k k
k k x k k k x k k k

E

k k x k x k k

E
u E u p p

t x x t

I F u Q

  
  



  
+ + + +

   

 − + = 
 

 

2.6 

Such simplification is based on cross-sectional area averaging over equations 2.1 to 

2.3 (Ishii & Hikiki 2006c), and as a result, terms ,x ku

kI  and *kE

kI  now respectively 

correspond to fluid/wall friction and heat transfer of which the closure relations will 

be provided in later sections. For simplicity, the volumetric terms (representing the 

body force and the added work/heat per volume) and the interface exchange terms are 

combined. The resulting conservation equations are given by: 

( ), ,
k k

k k x k M ku S
t x

 
 

 
+ =

 
 

2.7 

( ) ( ),

, , ,

k k x k

k k x k x k k k F k

u
u u p S

t x x

 
  

  
+ + =

  
 

2.8 

( ) ( ), , ,

k k k k
k k x k k k x k k k E k

E
u E u p p S

t x x t

  
  

  
+ + + =

   
 

2.9 
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Finally, by dropping the subscript, x and all the averaging operators in the above 

equations, the final form of the conservation equations describing pipe flow of the kth 

fluid phase reads: 

kMkkkkk Su
xt

,=



+




  

2.10 

( ) kFkkkkkkkk Spu
x

u
t

,=+



+




 2  

2.11 

( ) ,
k

k k k k k k k k k k k E kE u E u p p S
t x t


    

 
+ + + =

  
 

2.12 

It should be noted that the solutions of equations 2.10 to 2.12 represent the time-

averaged flow (over finite t ) within the control volume of interest.  

 

2.1.2.2 Multi-Phase Flow Modelling 

During pipeline decompression, multi-phase flow occurs mainly as a result of 

evaporation of the liquid phase, or condensation of the compressed vapour phase. This 

leads to complex interface interactions. Such interactions may completely change the 

flow characteristics.  

For example, with very rapid rates of interphase mass, momentum and energy 

exchange, the constituent fluid phases are at thermodynamic and mechanical 

equilibrium (homogeneous equilibrium), that is, no differences can be observed 

between the phasic temperatures, pressures or velocities. When interphase momentum 

exchange rate is not sufficiently high, mechanical equilibrium cannot be retained, and 

heterogeneous flow (e.g. slug flow, annular flow and stratified flow) occurs. In the 

case of delayed interface mass and energy exchange, thermodynamic non-equilibrium 

is respectively manifested in fluid metastable states (e.g. superheated liquid phase) 

and distinctive phasic temperatures (thermal stratification).  

The accurate simulation of the above phenomena has been the focus of many studies, 

involving different modelling approaches for dealing with the interface interactions. 
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These models may be generally divided into four groups namely (Pham & Rusli 2016; 

Munkejord et al. 2016):  

• Homogeneous Equilibrium Mixture (HEM) model 

• Homogeneous Relaxation Mixture (HRM) model 

• The nonhomogeneous equilibrium mixture model (commonly known as the 

Drift Flux Mixture (DFM) model)  

• Two-Fluid Mixture (TFM) model.  

Table 2.1 is a list of the above models and their top level features. 

Table 2.1: Common flow models for predicting pipeline decompression. 

Multi-phase 

flow Model 

Remarks 

HEM model The HEM model assumes thermodynamic and mechanical 

equilibrium between the fluid phases 

HRM model The HRM model accounts for thermodynamic non-equilibrium 

between the fluid phases as a result of delay in phase transition 

(interphase mass exchange) 

DFM model The DFM model takes mechanical non-equilibrium into 

consideration 

TFM model Neither of thermodynamic and mechanical equilibrium is assumed; 

interface interactions are modelled explicitly 

An elaborated review of the various models in Table 2.1 is presented in the following.  

 

2.1.2.2.1 Homogeneous Equilibrium Mixture Model 

The HEM model assumes instantaneous mass, momentum and energy exchange 

between fluid phases. As a result, all fluid phases share the same velocity, temperature 

and pressure. 
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Taking vapour-liquid two-phase flow as an example, adding the conservation 

equations of each fluid phase gives: 

( )
( ) , ,

v v l l

v v l l M v M l Mu S S S
t x

   
   

 + 
+ + = + =

 
 

2.13 

( )
( )( )2

, ,

v v l l

v v l l F v F l F

u
u p S S S

t x

   
   

 + 
+ + + = + =

 
 

2.14 

( ) ( )( ) , ,v v v l l l v v v l l l E v E l EE E E E u pu S S S
t x
       

 
+ + + + = + =

 
 

2.15 

Note that all the interface exchange terms for each fluid phase sum up to zero.  

By defining the bulk mixture properties as: 

llvv  +=  2.16 

lvlvvv EEE  +=  2.17 

the resulting governing conservation equations are given by: 

Mu S
t x




 
+ =

 
 

2.18 

( )2

F

u
u p S

t x




 
+ + =

 
 

2.19 

( ) E

E
uE pu S

t x




 
+ + =

 
 

2.20 

Despite the strong assumptions made, the HEM model is the most frequently applied 

model in academic research and industry involving multi-phase flow (Mahgerefteh et 

al. 1997; Adeyemi Oke et al. 2003; Mahgerefteh et al. 2006; Teng et al. 2016) due to 

its simplicity and its relatively low computational demand.  

 

2.1.2.2.2 Homogeneous Relaxation Mixture Model 
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The HRM model is developed to account for thermodynamic non-equilibrium caused 

by delayed phase transition during decompression. For a vapour-liquid two-phase 

mixture, as the phase fraction can no longer be assumed at thermodynamic 

equilibrium values, an additional equation describing its evolution with the flow needs 

to be introduced. Following Bilicki & Kestin (1990), Downar-Zapolski & Bilicki 

(1996), Brown et al. (2013) and Nouri-Borujerdi & Shafiei Ghazani (2017), such an 

equation is essentially a scalar transport equation given by: 

u
t x

 



  
+ =

 
 

2.21 

where Γ stands for the rate of interface mass exchange per unit volume. Note that the 

phase index, k is dropped as equation 2.21 generally only concerns the vapour phase.  

Before equation 2.21 can be solved in conjunction with the mass, momentum and 

energy conservation equations, Γ needs to be specified. For example, the following 

relations can be adopted: 

( )t eqK   = −  2.22 

Where, ϕ is the thermodynamic variable of choice. It can be the pressure (Woolley et 

al. 2013; Wen et al. 2016), enthalpy (S. Brown et al. 2014), chemical potential (Lund 

2013) and phase composition (Downar-Zapolski & Bilicki 1996; Brown et al. 2013; 

Nouri-Borujerdi & Shafiei Ghazani 2017). The subscript, eq denotes thermodynamic 

equilibrium, and Kt is the (empirical) relaxation parameter. The physical interpretation 

of the above is that, at thermodynamic equilibrium, the mass exchange rate is zero, 

and the thermal properties of the flow must be at their equilibrium values. 

For example, for the choice of  =  (ϕ is the vapour phase mass fraction) and 

1tK = , equation 2.22 becomes: 

( )
1

eq  


 = −  
2.23 

where τ is the relaxation time determined empirically.  
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Substituting equation 2.23 into equation 2.21 gives: 

( )
1

eq

d

dt


 


= −  

2.24 

with the total derivative of α defined as: 

x
u

tdt

d




+




=


 

2.25 

Analytical integration of equation 2.24 indicates an exponential tendency of the HRM 

system towards the HEM system (Downar-Zapolski & Bilicki 1996).  

The full set of the HRM model conservation equations are summarised in the 

following: 

u
t x

 



  
+ =

 
 

2.26 
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


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2.28 

( ) 0=+



+




puuE

xt

E



 

2.29 

 

2.1.2.2.3 Drift Flux Mixture Model 

In the case of finite rate of interface momentum exchange, mechanical non-

equilibrium may significantly impact the fluid flow and thus needs to be accounted 

for. Such consideration leads to the development of the DFM model (Munkejord et al. 

2010), as summarised in the following for vapour-liquid two-phase flows. 

Starting from the previously derived phasic conservation equations 2.10 to 2.12, 

summation of the vapour and liquid phases gives: 
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t x
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2.32 

In the absence of volumetric terms, the RHS of the above equations are zero, as in the 

case of the HEM model. However, unlike the HEM model, the phasic velocities, uv 

and ul are different and related via a prescribed relation referred to as the phase slip 

relation. Such a relation is generally empirical and often in the form of (Munkejord et 

al. 2010): 

( )f ,  ,  v l n v v l l vu u u   − =
 

2.33 

where the LHS of equation 2.33 is the so-called ‘slip velocity’. The exact expression 

of equation 2.33 varies with the flow regimes, and an example can be found in 

Section 2.2.3. It is worth noting that the DFM model is limited to flow regimes where 

the two fluid phases are strongly coupled (e.g. bubbly flow) so that a slip relation can 

be prescribed (Ishii 1977; Hibiki & Ishii 2003). 

The final form of the DFM model is given by (Munkejord et al. 2010): 

( )
( )v v l l

v v v l l l Mu u S
t x

   
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2.36 

 

2.1.2.2.4 Two-Fluid Mixture Model 
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In the case of the HEM, HRM and DFM models, there exists only one set of 

conservation equations for all the constituent fluid phases. Such flow models are often 

referred to as ‘single-fluid model’, involving several assumptions relating the thermal 

and mechanical properties of each fluid phase. Examples include the homogeneous 

equilibrium assumption in the case of the HEM model, the mechanical equilibrium 

assumption in the case of the HRM model, and the phase slip relation in the case of 

the DFM model.  

In reality, the fluid phases properties may not be closely related. For example, during 

pipeline puncture decompression, complete fluid phase separation (stratification) may 

occur as a result of significant density differences between the vapour and liquid 

phases. Interface interactions may be limited by a much smaller interface area in 

comparison to e.g. bubbly flow. As such, the interface exchange terms must be 

explicitly modelled, and the conservation equations of mass, momentum and energy 

must be solved for each constituent phase as shown below (Paillère et al. 2003; Chang 

& Liou 2007; Yeom & Chang 2013; S. Brown et al. 2014): 

vMvvvvv Su
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2.42 

Here, the phasic pressures are often assumed to be identical: 

lv pp =  2.43 
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The resulting flow model is referred to as the ‘six-equation TFM model’.  

As no prescribed closure relations are required for the TFM model to relate phasic 

mechanical and thermal properties, in comparison to the single-fluid models, the TFM 

model is more physically relevant, complete and thus has a wider range of 

applicability in (but not limited to) pipeline decompression modelling. 

 

2.1.3 Constitutive Relations  

In the case of pipe flow, the volumetric terms in the above flow models (as part of the 

RHS of the conservation equations) represent fluid/wall heat transfer and friction and 

need to be accounted for.  

In this section, examples of the constitutive relations for specifying fluid/wall heat 

transfer and friction in the open literature are presented.  

 

2.1.3.1 Fluid/wall Heat Transfer  

During pipeline decompression, heat transfer to the fluid within the pipe is mainly 

from warmer pipe wall. Heat loss to the ambient surroundings is ignored if the pipe is 

thermally insulated.  

The constitutive relations for both the single-fluid and TFM models are given in the 

following. 

In the single-fluid models: The heat flux from the pipe wall to the fluid reads: 

( )TTUq w −=  2.44 

where U is the overall heat transfer coefficient. It is usually calculated using empirical 

correlations. For forced convection heat transfer, examples include the Dittus-Boelter 

equation (Knudsen et al. 1997a) adopted by Brown et al. (2014) and the Colburn 

correlation (Knudsen et al. 1997a) adopted by Munkejord & Hammer (2015). The 

Dittus-Boelter equation reads: 
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0.8 0.4Nu 0.023Re Pr=  2.45 

where the bulk flow Nusselt number, Nu, Reynolds number, Re and Prandtl number, 

Pr are respectively defined as:  

,
Nu

w inUD

k
=  

2.46 

,
Re

w inuD


=  

2.47 

Pr
pC

k


=  

2.48 

where k, µ and Cp are respectively the bulk flow thermal conductivity, viscosity and 

heat capacity. By obtaining Nu from equation 2.45, U can be readily calculated (from 

equation 2.46) and hence the corresponding heat flux may be determined (from 

equation 2.44).  

In the case of boiling, the heat transfer is enhanced and the resulting heat transfer flux 

can be estimated using appropriate correlations. An example (the Rohsenow’s 

correlation (Knudsen et al. 1997b)) is presented below: 

( ) ( )
3

,

10.013 Pr

p l wl v

l fg

fg l

C T Tg
q h

h

 




 −− 
=    

  
 

2.49 

where l , σ, 
fgh  and 

,p lC  are respectively the viscosity, surface tension, latent heat 

and constant pressure heat capacity of the liquid phase. Prl is the liquid phase Prandtl 

number given by: 

,
Pr

p l l

l

l

C

k


=  

2.50 

where lk  is the liquid phase thermal conductivity.  
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The wall temperature, Tw can be modelled by first assuming constant pipe wall 

density and specific heat capacity. Thereafter, further neglecting any temperature 

gradient across the wall thickness (given that the thermal conductivity of the pipe wall 

is high (ca. 40 W/m-K (Liiey et al. 2008)), the wall temperature variation as a 

function of time during decompression following the energy balance is given by: 

,
w

p w w

dT
C qA

dt
 =  

2.51 

where A
~

 is the available heat transfer area per unit volume given by: 
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2.52 

where inwD ,  and outwD ,  are respectively the inner and outer pipeline diameters.  

Finally, the heat flux, q  is converted to the volumetric heat source, Q , following: 

q
DLD

LDq
Q

inwwinw

winw 


,,

, 4

42
==




 

2.53 

In the TFM model: As the energy conservation equation is solved for each 

constituent fluid phase, it is possible to consider distinctive heat transfer modes in the 

vapour and liquid phases.  

An excellent example would be stratified flow encountered during puncture-induced 

pipeline decompression. Here, the vapour and liquid fluid phases are completely 

separated from each other. Figure 2.1 gives a schematic representation of a cross-

section of stratified pipe flow (with an assumed flat interface). 
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Figure 2.1: Schematic representation of stratified flow in a pipeline during 

decompression. vD  and lD  are respectively the elevations of the stratified vapour and 

liquid phases, 
,w inD  is the pipe inner diameter, R is the corresponding radius. 

Tuning our attention to the heat transfer from the dry wall to the stratified vapour 

phase first, convection can take place, and the correlation discussed in the single-fluid 

model above can be applied with all the relevant properties calculated for the vapour 

phase.  

The corresponding heat transfer flux then reads:  

( ),v v w v vq U T T= −  
2.54 

With regards to the dry wall temperature, Tw,v, equation 2.51 is still applicable with 

the available heat transfer area between the dry wall and the stratified vapour phase 

per unit volume of the dry wall, vA
~

 given by: 

( )

( ) ( ) ( )( )

1

, ,

2 2 1 2

, , , ,

cos 2 1

4 cos 2 1

w in l w in w

v

w out w in l w in w in v v w

D D D L
A

D D D D D D D L

−

−

−
=

− − − −
 

2.55 
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where the definitions of Dv and Dl are given in the figure 2.1 caption. The 

corresponding vapour phase volumetric heat source, 
vQ  is then: 

( ) ( )1 1

, , ,

2

, ,

cos 2 1 4cos 2 1

4

w in l w in w l w in

v v v

w in w w in

D D D L D D
Q q q

D L D 

− −− −
= =  

2.56 

Next, with regards to the stratified liquid phase, the corresponding heat flux, lq  and 

the wet wall temperature, Tw,l can be computed respectively following equations 2.49 

and 2.51 with the available heat transfer area per unit volume defined as: 

( )( )
( ) ( ) ( ) ( )( )

1

, ,

2 2 1 2

, , , ,

cos 2 1

4 4 cos 2 1

w in l w in w

l

w in w w in l w in w in v v w

D D D L
A

D L D D D D D D L





−

−

− −
=

− − − −
 

2.57 

The corresponding liquid phase volumetric heat source, lQ is given by: 

( )( )1

,

,

4 cos 2 1l w in

l l

w in

D D
Q q

D





−− −
=  

2.58 

 

2.1.3.2 Fluid/wall Friction  

For one-dimensional pipeline decompression flow models, fluid/wall friction can be 

included as a body force in the momentum conservation equation. It is correlated with 

the friction factor, f determined by appropriate empirical relations.  

In the single-fluid model: For laminar pipe flow (Re < 2300), the friction factor is 

given by (Tilton 1997): 

16

Re
f =  

2.59 

In transitional and turbulent flows (4000 < Re < 4×108), the Chen’s correlation (Chen 

1979) can be applied (Brown et al. 2013; Martynov et al. 2014; R. M. Woolley et al. 

2014). The corresponding friction factor is given by: 
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,

1 16.2446
3.48 1.7372ln ln

2 Rew in

B
Df

 
= − −  

 
 

2.60 

where: 

( )( )
1.0198

0.8981
, 2 7.149

6.0983

w inD
B

Re

  
= +  

 
 

2.61 

and ε is the pipe wall roughness. 

After obtaining f, the wall friction force per volume is given by: 

( ) ,

2

, ,

2
1 2

4

w in w

w

w in w w in

D L u u f
F u u f

D L D

 




 
= − = −  

 

 
2.62 

In the TFM model: Recalling the phasic momentum conservation equations 2.39 and 

2.40 in the two-fluid model, fluid/wall friction force can be specified for the vapour 

and liquid phases individually.  

Again, taking stratified flow as an example (figure 2.1), according to Taitel & Dukler 

(1976), the friction factor for the stratified vapour phase is given by: 

( ),
Re

n

nh v v

v v v v

v v

D u
f C C

 

−

− 
= = 

 
 

2.63 

and that of the stratified liquid phase is: 

( ),
Re

m

mh l l

l l l l

l l

D u
f C C

 

−

− 
= = 

 
 

2.64 

where 
,h vD  and 

,h lD are the hydraulic diameters of the vapour and liquid phases 

respectively, defined in (Taitel & Dukler 1976). Cv, Cl, n and m are model constants. 

For laminar flow, Cv = Cl = 16, n = m = 1.0, and for turbulent flow, Cv = Cl = 0.046, n 

= m = 0.2. The resulting friction force per volume each in the vapour and liquid 

phases is respectively given by:  
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( )1

,

,

,

2cos 2 1l w in v v v v

w v

w in

D D u u f
F

D





− −
= −  

2.65 

( )( )1

,

,

,

2 cos 2 1l w in l l l l

w l

w in

D D u u f
F

D

 



−− −
= −  

2.66 

 

2.1.4 Thermodynamics  

2.1.4.1 Equation of State  

To determine the fluid flow thermal properties (e.g. pressure and temperature) and 

phase equilibrium data, an Equation of State (EoS) can be applied.  

For pipeline decompression modelling, the most commonly adopted EoS are the cubic 

EoS which are computationally efficient (Munkejord et al. 2016). Examples include 

(Mahgerefteh et al. 2008; Teng et al. 2016; Nouri-Borujerdi & Shafiei Ghazani 2017). 

Among these, the most widely validated for CO2 is the Peng-Robinson EoS (PR RoS; 

Peng & Robinson 1976) and its variations (e.g. volume-translated Peng-Robinson EoS 

(Abudour et al. 2013)). Its general form and key parameters are presented below:  

bvbv

a

bv

RT
p ~~

~

~
−+

−
−

=
22

 
2.67 

where: 

caa ~~ =  2.68 

2

22

457240
c

c

c
p

TR
a .~ =  

2.69 

2
50

1
























+=

.

cT

T
  

2.70 

217505741480  ... −+=  2.71 
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c

c

p

RT
b 077800.
~
=  

2.72 

In the above equations, pc, Tc and v are the critical pressure, critical temperature and 

molar volume, respectively. ω is the accentric factor. For multi-component mixtures, 

a  and b  are modified to include the dependence on component molar fractions: 

( )=
i j

ijijcji azza ,
~~  2.73 

( ) ( )( )jjciicijijijc aaaaka ~~~~~
,,, −= 1  2.74 

=
i

iibzb
~~

 2.75 

where kij, and zi,j are respectively the binary interaction parameter and component 

molar composition.  

Recently, more advanced multi-parameter EoS have become popular for pipeline 

decompression modelling, especially for multi-component mixtures, due to their 

superior accuracy (see (Elshahomi et al. 2015; Munkejord & Hammer 2015), for 

example). According to Aursand et al. (2017), multi-parameter EoS are the most 

accurate EoS for the regions where thermal property experimental data are available. 

The general structure of such an EoS is given as follows (Lemmon & Tillner-Roth 

1999): 

( ) ( ) ( ), , , o ra T a T a T  = +  2.76 

where a is the specific Helmholtz energy. ao and ar are respectively the ideal and 

residual contributions. ao is defined as: 

( )

0 0
0 0

0

,

ln

o o o

o
T T

o o o

oT T

a T h RT Ts

Cp R
Cp dT h RT T dT R s

T







= − − =

  − + − − − +       
 

 

2.77 
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where 
oh0 , 

o

0  and 
os0  are respectively the enthalpy, density and entropy at an 

arbitrary reference state. Cp
o is the ideal gas heat capacity (as a function of T). The 

residual contribution, ar is given by: 

( )
1 1

, exp

k k kk kpol pol exp

pok

d d et tK K K

r c c
k k

k k Kc c c

T T
a T RT n RT n

T T

  


  

+

= = +

         
 = + −                   

   

2.78 

where the first term on the RHS of the above equation represents the sum of Kpol 

polynomial functions in terms of the reduced density, c  and the inverse reduced 

temperature, TTc . The second term consists of Kexp exponential functions. The 

collection of these two terms is referred to as the bank of terms, of which the 

coefficients, kn , kd , kt  and ke  are determined by multi-property fitting and 

optimisation methods based on available experimental measurements. 

For multi-component mixtures, much like in the case of PR EoS, the dependence on 

component molar compositions needs to be accounted for. Hence: 

( ) ( ) ( )i

r

i

o

i zTazTazTa ,,,,,,  +=  2.79 

where: 

( ) ( ) ( )
1

, , , ln
N

o o

i i i i

i

a T z z a T z 
=

 = +   
2.80 

( ) ( ) ( )
1

, , , , ,
N

r r r

i i i i

i

a T z z a T a T z  
=

= +  
2.81 

( ) ( )
1

1 1

, , ,
N N

r r

i i j ij ij

i j i

a T z z z k a T 
−

= = +

 =  
2.82 

where kij is again the parameter specific to a binary mixture, and 
r

ija  is given by: 
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2.83 

where ρr and Tr are the so-called reducing functions respectively for the mixture 

density and temperature which impose combining rules for the critical parameters (e.g. 

critical temperatures) of the pure components.  

It is interesting to note that PR EoS (or other cubic EoS) can also be recast in terms of 

Helmholtz free energy with the residual part defined as: 

( )
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
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221
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2.84 

Examining equation 2.84 shows that there are only two parameters in contrast to 

multi-parameter EoS of which a typical number of adjustable parameters is around 

500 (Kunz et al. 2007). This has direct impact on the accuracy of PR EoS in its 

predictions of thermal properties and phase equilibrium data, which will be further 

discussed later. 

 

2.1.4.2 Predictions of Key Thermal Properties 

Following the above, the calculation of the fluid pressure, specific enthalpy and 

specific entropy based on an EoS is presented (Lemmon & Tillner-Roth 1999): 
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2.85 
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2.86 
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2.87 

Note that the above equations are all explicit in Helmholtz free energy and its 

derivatives.  

Alternatively for PR EoS (equation 2.67), the departure equation can be applied as 

shown in the following. Writing PR EoS in terms of compressibility factor, Z: 


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2.88 

the fluid specific enthalpy and entropy are respectively given by: 
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    
− = − − − +   

   
  

2.90 

where the value zero in the integration limit represents the ideal gas limit (Z = 1). ho 

and so are respectively the ideal gas specific enthalpy and entropy at a given state (p 

and T).  

Another important thermodynamic variable is the fluid speed of sound defined as: 

s
p

c 











=


 

2.91 

Its significance in pipe flow modelling will be elucidated in Section 2.1.6. 
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2.1.4.3 Predictions of Equilibrium States 

For a non-reacting mixture of N components, thermodynamic equilibrium between the 

coexisting phases (e.g. vapour and liquid phases) implies the following equalities 

(Kunz et al. 2007): 

eqlv TTT ==  2.92 

eqlv ppp ==  2.93 

, ,v i l i =  2.94 

,v i  and 
,l i  are the chemical potentials of each component i in the vapour and liquid 

phases, respectively given by: 

,

,

, , ,v v v j

v
i v

v i T v n

n a

n


 
=    

 
2.95 

,

,

, , ,l l l j

l
i l

l i T v n

n a

n


 
=    

 
2.96 

where vn , ln , 
,v in  and 

,l in  are respectively the total number of moles of the mixture 

and that of component i in the vapour and liquid phases. yi and xi correspond to 

vapour and liquid phase molar compositions, respectively. They are linked to the 

overall molar composition, zi through the material balance: 

1

i i
i

i

K z
y

K 
=

− +
 

2.97 

1

i
i

i

z
x

K 
=

− +
 

2.98 

where: 

n

nv=  
2.99 
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2.100 

Note:  

 =
i

iy 1  2.101 

 =
i

ix 1 2.102 

Examining equations 2.92, 2.93, 2.94, 2.97 (or 2.98), 2.99, 2.100, 2.101 and 2.102 

reveals that there are in total 2N + 6 equations with 3N + 7 variables (including Tv, Tl, 

pv, pl, vv (ρv), vl (ρl), yi, xi, zi, β). It follows that N + 1 variables (e.g. Teq and zi) need to 

be specified in order to fully define an equilibrium state.  

Solving this non-linear algebraic system is equivalent to minimising the overall Gibbs 

energy at given T, p and zi as shown below: 

lv dgdgdg +=  2.103 
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2.105 

The overall Gibbs energy is minimised when dg = 0. Hence: 

0=+ lv dgdg  2.106 

which implies: 
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2.107 

Following the definition of chemical potential: 
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,,
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2.108 

equation 2.94 is reproduced.  

It is noteworthy that the above discussion is general to any EoS as they all can be 

written in terms of Helmholtz energy (see equation 2.84 for example).  

As stated earlier, PR EoS (or other cubic EoS) has much less adjustable terms as 

compared to a multi-parameter EoS, resulting in a lower accuracy in e.g. predicting 

phase equilibrium data. This is demonstrated by plotting the predicted bubble and dew 

curves from PR EoS and GERG 2008 EoS (a typical multi-parameter EoS; (Kunz & 

Wagner 2012)) for pure CO2 and CO2-rich mixtures of CH4 and N2. Both EoS are 

readily available in the off-the-shelf thermodynamic package, REFPROP (Lemmon et 

al. 2010). The results are shown in figure 2.2.  
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(a) (b) 

  

(c) (d) 

Figure 2.2: Comparisons between the predicted bubble and dew curves of pure CO2 

(a) and CO2-rich mixtures from PR EoS and GERG 2008 EoS. The included mixtures 

are: 96% CO2 + 4% N2 (b), 97.4% CO2 + 2.6% N2 (c) and 92% CO2 + 4% H2 +4% N2 

(d).  

In figure 2.2, for pure CO2, both the vapour-liquid phase transition boundary 

predictions from PR and GERG 2008 EoS are in close agreement. In this case, PR 

EoS may be preferable due to its higher computational efficiency. However, with 

regards to multi-component mixtures, significant deviations between the two EoS 

predictions can be observed especially for the bubble curves. In some cases (see 

figures 2.2 (c) and (d)), the difference exceeds 100 bar at relatively low temperatures 

(ca. 230 K). Clearly, (at least) for the tested mixtures, GERG 2008 EoS should be 

selected over PR EoS.  
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2.1.4.4 Predictions of Metastable States 

During rapid pipeline decompression, delayed phase transition may occur. Such a 

phenomenon is referred to as relaxation from thermodynamic equilibrium, and in the 

case of evaporation, the liquid phase will be superheated in its metastable/non-

equilibrium state.  

The metastable states can also be predicted using an EoS. Taking cubic EoS as an 

example, its typical predictions for an arbitrary pure fluid are depicted in figure 2.3.  

 

Figure 2.3: Schematic representation of the cubic EoS prediction of a real fluid 

isotherm (through points a, f, l), isentropes (through points a, f’, l’) and spinodal lines 

in p-v plane (Shamsundar & Lienhard 1993).  

As it may be observed, superheated liquid states lie on the isotherm between points f 

and l, where the fluid remains as liquid upon crossing the vapour-liquid phase 

transition boundary (at point f). Point l is referred to as the liquid spinodal limit 

(superheating limit), beyond which there is no thermodynamically stable state (up to 
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point v). A collection of these limits (from different isotherms) results in a liquid 

spinodal curve which ends at the critical point (see the dashed curve on the LHS of 

the critical point in figure 2.3). It is also noted that the isotherm encompasses a region 

of negative pressures. However, this has little physical relevance and is often 

discarded (Shamsundar & Lienhard 1993). 

Turing to the isentrope (denoted as ‘isentropic line’) starting from point a in the liquid 

phase, it is worth noting that decompression processes (from point a) are bounded by 

the relevant isentrope and isotherm which respectively represent the isentropic 

decompression process and the isothermal decompression process (with delayed 

phase transition beyond point f or f’). 

There are much less studies in the open literature discussing the accuracy of EoS in 

predicting non-equilibrium states as compared to those for equilibrium states. One of 

the major difficulties is obtaining experimental measurements of highly metastable 

fluids, as minimal disturbances can trigger for example rapid evaporation, and the 

fluids return to equilibrium states. In a recent publication by Aursand et al. (2016), it 

states that the uncertainty of an EoS can be characterised by comparing their 

predictions of liquid spinodal limits to available experimental measurements. In their 

study, Aursand et al. (2016) used four EoS, including PR EoS (Peng & Robinson 

1976), extended corresponding state EoS (Ely 2010), Statistical Associating Fluid 

Theory (Gross & Sadowski 2001) and GERG 2008 EoS (Kunz & Wagner 2012) to 

predict such data mainly for hydrocarbons. The performances of PR EoS and GERG 

2008 are discussed in the following given their relevance to this work.  

Figure 2.4 shows the predicted isotherms for methane at 175 K using various EoS.  
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Figure 2.4: Predictions of methane isotherm at 175 K by a variety of EoS. PR EoS 

and GERG 2008 EoS are marked by red and blue curves, respectively (Aursand et al. 

2017). Point a: saturated vapour; points b’ and b: vapour spinodal limits respectively 

predicted by PR EoS and GERG 2008 EoS; points c’ and c: liquid spinodal limits 

(superheating limit) respectively predicted by PR EoS and GERG 2008 EoS; point d: 

saturated liquid.  

From figure 2.4, both PR and GERG 2008 EoS produce similar ‘humps’ in the 

metastable vapour and liquid region (portions between points a-b, a-b’, c-d and c’-d). 

Although the predicted isotherm behaviour in the unstable region (b-c and b’-c’) 

differ significantly, they are not thermodynamically admissible and hence pose little 

importance.  

Next, the EoS predictions of liquid superheating limits of various pure fluids and 

multi-component mixtures are plotted in figure 2.5 together with the measurements 

(Aursand et al. 2017). Discussion again focuses on the performance of PR EoS and 

GERG 2008 EoS.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 2.5: Prediction of the superheating limits by a variety of EoS for methane (a), 

n-pentane (b), nitrogen (c), ethane + propane mixture (d), propane + n-butane mixture 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 37 - 

 

(e) and n-pentane + n-hexane mixture (f) (Aursand et al. 2017). The PR and GERG 

2008 EoS predictions are marked by red and blue curves. The measured data is shown 

by black markers.  

As may be observed in figure 2.5, in contrast to the case of the phase equilibrium 

predictions, the performances of PR and GERG 2008 EoS in predicting the liquid 

superheating limits and hence superheated states in general are similar. The overall 

standard deviations from the measured data are 1.4 and 2.7 K for pure fluids and 

multi-component mixtures, respectively (Aursand et al. 2017).  

 

2.1.5 Transport Properties 

Fluid transport properties, including viscosity, thermal conductivity and surface 

tension are required in the modelling of fluid/wall heat exchange and friction (see 

Section 2.1.3).  

For individual fluid phases, they are readily calculated using off-the-shelf software 

such REFPROP (Lemmon et al. 2010). With regards to multi-phase mixtures, the bulk 

overall transport properties are usually determined by averaging between the 

constituent fluid phases. As suggested by Daubert & Danner (1989), for a vapour-

liquid two-phase mixture, the averaging procedure for viscosity and thermal 

conductivity reads: 

1 1

v l

 

  

−
= +  

2.109 

where  =  or k . 

 

2.1.6 Mathematical Nature of the Conservation Equations  

The conservation equations for the previously discussed single-fluid and TFM models 

are systems of PDEs. Their solution methods vary significantly according to the 

corresponding mathematical natures. They can be elliptic, parabolic and hyperbolic, 

depending on the eigenvalues of the PDE systems.  
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2.1.6.1 PDEs for the Single-Fluid Models 

2.1.6.1.1 Hyperbolicity  

The conservation equations for the single-fluid models are hyperbolic (Toro 2009d). 

This can be shown by performing a characteristic analysis on the corresponding PDE 

system. An example based on the HEM model is presented below. 

Recall the conservation equations of mass, momentum and energy for the HEM 

model: 

0=



+





x

u

t


 

2.110 

( ) 0
u

uu p
t x




 
+ + =

 
 

2.111 

( )( ) 0
E

E p u
t x




 
+ + =

 
 

2.112 

This PDE system can be recast in vector form: 

( )
t x

 
+ =

 
U F U 0  

2.113 

Herein, the vector of conservative variables, U and its flux function, F are defined as: 

u

E







 
 

=  
 
 

U , ( ) 2

u

u p

uE pu







 
 

= + 
 + 

F U  

2.114 

It can be readily seen that equations 2.110 to 2.112 are essentially the Euler equations 

in conserved form. Expanding the time and space derivatives in equations 2.110 to 

2.112, the primitive form of the Euler equations can be derived and is given by: 

0=



+




+





x
u

x

u

t





 

2.115 
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0
1

=



+




+





x

p

x

u
u

t

u


 

2.116 

0=



+




+












+




+




+





x

pu

x

up

x

u
u

t

u
u

x

e
u

t

e


 

2.117 

Note that volumetric source terms (e.g. representing fluid/wall heat transfer and 

friction) are neglected for this analysis, as they do not alter the mathematical nature of 

the PDE system (Stadtke 2006). Equations 2.116 and 2.117 can be combined: 

0=



+




+





x

up

x

e
u

t

e

  

2.118

 

Alternatively, one can introduce the entropy, s as a new primitive variable. Appling 

the fundamental thermodynamic relation for the internal energy, e: 




d
p

TdspdvTdsde
2

+=−=

 

2.119

 

and substituting the above into equation 2.118: 

0
2

22

=











+




+




+




+





=



+












+




+




+





x

u

x
u

t

p

x

s
Tu

t

s
T

x

up

x

p

x

s
Tu

t

p

t

s
T
















 

2.120

 

In view of equation 2.115, equation 2.120 can be further simplified to: 

0=



+





x

s
u

t

s

 

2.121

 

The resulting entropy conservation equation is easier to work with as compared to the 

energy conservation equation 2.118 and thus adopted for the rest of the analysis. The 

resulting conservation equations are summarised here: 
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0=



+




+





x
u

x

u

t





 

2.122 

0
1

=



+




+





x

p

x

u
u

t

u


 

2.123 

0=



+





x

s
u

t

s
 

2.124 

An EoS is required to close the above PDE system. 

Writing an arbitrary EoS: 

( ), p s =  2.125 

or in differential form: 

ds
s

dp
p

d
ps













+












=


  

2.126 

Recalling the definition of the speed of sound defined by equation 2.91 and 

recognising that 0=ds  (from equation 2.124), equation 2.126 yields: 

2

1
d dp

c


 
=  
 

 
2.127 

Substitution of equation 2.127 to the mass conservation equation 2.122 gives: 

02 =



+




+





x

u
c

x

p
u

t

p
  

2.128 

Equations 2.128, 2.123 and 2.124 represent a system of quasi-linear PDEs, as shown 

in vector form: 

( ) 0
t x

 
+ =

 
V G V V

 

2.129
 

where V is the vector of primitive variables: 
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p

u

s

 
 

=  
 
 

V  

2.130 

and G is the coefficient matrix: 

2 0

1 0

0 0

u c

u

u





 
 

=  
 
 

G  

2.131 

As already mentioned at the beginning of this section, the eigenvalues of the PDE 

system determines its mathematical nature. The eigenvalues are found by solving the 

relevant characteristic polynomial given by: 

- =G I 0
 

2.132
 

which gives: 

cu +=1  
2.133

 

cu −=2  
2.134

 

u=3  
2.135

 

All three eigenvalues are real, and thus the PDEs in the HEM model are hyperbolic. 

By definition (Toro 2009b), they describe the propagation of a set of waves travelling 

at finite velocities (in this case, λ1, λ2 and λ3). More discussion about the wave 

properties will be presented in the next section.  

It should be noted that the above characteristic analysis is general to any set of 

primitive or conservative variables. This can be shown through similarity 

transformation (Stadtke 2006). 

To change the primitive variable set, ( ), ,
T

p u s=V  in equation 2.130 to e.g.

( )' , ,
T

p u h=V , the similarity transformation of equation 2.129 reads: 
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( )1 ' '
'

t x t x t x

−                
+ = + = + =           
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J JG J JGJ J G 0

 

2.136
 

where the new coefficient matrix, 'G  and the Jacobian matrix, J are respectively: 

















== −

uc

u

cu

2

2
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

JGJG'
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 
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Tshuhph
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V
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2.138

 

1−J  denotes the inverse matrix of J.  

On a relevant note, similarity transformation can also be applied to convert the 

conservative form PDEs (e.g. equation 2.113) to primitive form (or vice versa) 

following: 

( ) 0
V

G
VU

JJHJ
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J
F

J
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
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
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
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
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
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 −

xtxtxt

1

 

2.139

 

with: 

U

V
J




=

 

2.140

 

U

F
H




=

 

2.141

 

 

2.1.6.1.2 Elementary Wave Solution of a General Initial Value Problem 

Following the above discussion, the wave properties of the PDEs in the HEM model 

may be better demonstrated by examining the solution of a general Initial Value 

Problem (IVP) defined as: 
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( )

( ) ( )0

0,
t

,0

x
x

x x

 
+ = −   
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 =

U F U

U U

 

2.142 

or in primitive form: 

( )

( ) ( )0

0,
t

,0

x
x

x x

 
+ = −   

 
 =

V G V V

V V

 

2.143 

Since equation 2.129 is hyperbolic, it can be diagonalised again via similarity 

transformation, given by (Stadtke 2006):  

( )1 1 1 1 1- - -

t x t x

− −          
+ = + =       

          

V V V V
T T GT T T ΛT 0

 

2.144
 

where Λ is the diagonal matrix of the eigenvalues of G given by: 

and T and 1−T  are the transformation matrix and its inverse matrix respectively given 

by: 

( ) ( )

1 2 1 2 0

1 2 1 2 0

0 0 1

c c 

 
 

= − 
 
 
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1 0
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c
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



 
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= − 
 
 

T
 

2.147
 

where the column vectors of T and the row vectors of 1−T  are respectively the right 

and left eigenvectors of G: 

1

1

2

3

0 0

0 0

0 0







−

 
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= =  
 
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2.145
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     

= = − =     
     
     

r r r
 

2.148
 

( ) ( ) ( )1 2 31 0 , 1 0 , 0 0 1c c = = − =l l l
 

2.149
 

Note that:  

1T

m m =r l
 

2.150
 

and: 

, 0T

m n n m =r l
 

2.151
 

The mth component of equation 2.144 is thus: 

0m m
t x


  

 + = 
  

V V
l

 

2.152
 

Equation 2.152 is often called the characteristic (or wave) form of equation 2.129. It 

is clear that the expression inside the parentheses represents the total derivative of V 

with respect to t, defined as: 

xdt

dx

tdt

d




+




=

VVV

 
2.153

 

with: 

m
dt

dx
=

 
2.154

 

Substituting equation 2.153 into equation 2.152, it is readily shown that the original 

PDEs are converted to m number of Ordinary Differential Equations (ODEs) given by: 

0= Vl dm  
2.155

 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 45 - 

 

along the paths defined by equation 2.154. These paths are referred to as characteristic 

curves, wave curves, or simply, waves. In the case of the HEM model ( 3m = ), these 

are the right-running pressure wave propagating at λ1, the left-running pressure wave 

propagating at λ2 and the entropy wave propagating at λ3. A schematic representation 

of the three waves is presented in figure 2.6.  

 

Figure 2.6: Schematic representation of the wave structure of a general IVP solution. 

The numbers, 1, 2 and 3 respectively denote the right-/left-running pressure waves 

and the entropy wave. VL and VR are the initial data specific to an IVP, whereas VL
* 

and VR
* are the primitive variables in the regions affected by the waves. 

Introducing the definition of the linearity factor, m  (Fossati & Quartapelle 2014):
 
 

( ) ( )m m m = r V V
 

2.156

 

The wave is said to be linearly degenerate if 0m =  and genuinely nonlinear 

otherwise. The corresponding values for waves 1 to 3 in figure 2.6 are given by: 

( )
1

2 2

s
c p c


 

= +
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2

2 2

s
c p c


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3 0 =
 

2.159
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It can be readily seen that the pressure waves are genuinely nonlinear, and the entropy 

wave is linearly degenerate (Toro 2009d). Nonlinear waves can form rarefactions and 

shocks, whereas linear waves act as contact discontinuities (material interfaces) (Toro 

2009b).  

 

2.1.6.1.3 Elementary Wave Solution of the Riemann Problem  

In this section, the significance of the wave properties of a hyperbolic PDE system 

(using the HEM model as an example) in obtaining the solution of a special type of 

IVPs is discussed. This special IVP, known as the Riemann problem, is defined as: 
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( ) ( ) L
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, 0
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2.160 

or: 
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0

R

,

, 0
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, 0

x
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x x
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2.161 

From the above definition, there is an initial discontinuity in V  at x = 0 (note that the 

location of the discontinuity is entirely arbitrary). Referring to figure 2.6, naturally, 

the solution to the left of wave 2 is simply the initial data, LV  and to the right of wave 

1 is RV . The remaining task is to find V  in the region bounded by each wave. These 

regions are often called the ‘star regions’, and the corresponding V  is denoted by 
*

LV  

or 
*

RV , separated by wave 3 in figure 2.6. 

Riemann invariants: In seeking the solution of 
*

, L RV , the shock-free case is first 

discussed. Introduce a new scalar function across the mth wave (m = 1,2, …, M): 
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( )m mI I
 
= V  2.162 

such that: 

0= VdI m

 2.163 

Comparing equations 2.163 and 2.155, it is immediately recognised that mI


  and 

the left eigenvector of the PDE system, lm are parallel. As a result, with equation 

2.151, there is: 

0= mnn
mI ,r


 2.164 

Equation 2.164 implies that, given an M M  system, 1M −  scalar functions (which 

relate LV  and 
*VL , 

*VL  and 
*VR , 

*

RV  and RV  in figure 2.6) can be identified across the 

mth
 wave. For example, in the case of the HEM model (M = 3), there exist 2 scalar 

functions across each of the three waves. These functions are referred to as the 

Riemann invariants.  

Following the above, the subscript, w is added to the notation of the scalar functions 

(i.e. m

wI
 ); w represents the wth scalar function across each wave.  

According to Toro (2009b), solving equation 2.164 is equivalent to solving 1M −  

ODEs given by: 

( ) ( ) ( ) ( )
31 2

1 2 3
... M

M

m m m m

dVdV dV dV

r r r r
= = = =  

2.165 

across the mth wave, where the superscript in the parentheses denotes each element in 

rm. In the case of the HEM model, the corresponding Riemann Invariants are: 

( )
cdupI

c

dudp
+=→= 



1

1
2121

 
2.166 

( )
sI

c

duds
=→= 1

2
210
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
 

2.167 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 48 - 

 

across the right-running pressure wave (wave 1 in figure 2.6); 

( ) −=→
−

= cdupI
c

dudp




2

1
2121

 
2.168 

( )
sI

c

duds
=→

−
= 2

2
210




 

2.169 

across the left-running pressure wave (wave 2 in figure 2.6); 

pI
dsdp

=→= 3

1
10



 
2.170 

uI
dsdu

=→= 3

2
10



 
2.171 

across the entropy (contact) wave (wave 3 in figure 2.6). By observing the above 

Riemann Invariants, it is summarised that pressure and velocity changes continuously 

across a shock-free pressure wave and are otherwise conserved across a contact wave. 

Entropy (and other related thermodynamic variables, e.g. ρ and T) changes 

discontinuously across a contact wave.  

Rankine-Hugoniot conditions: In the case of shock formation as a result of 

nonlinear wave steepening, there is a discontinuity in V  across the emerging shock 

wave (Toro 2009b). Taking the right-running pressure wave (wave 1 in figure 2.6) as 

an example, the corresponding Riemann invariants (equations 2.166 and 2.167) are no 

longer valid, and instead, 
*

RV  and RV  across the shock wave can be related through 

jump conditions. This is known as the Rankine-Hugoniot conditions given by (Toro 

2009d): 

UF  shockc=  
2.172 

or with reference to figure 2.6:  

( ) ( ) ( )* *

R R shock R Rc− = −F U F U U U  
2.173 
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where cshock is the shock wave speed. Note the Rankine-Hugoniot conditions are 

prescribed based on the conserved form of the PDEs which is interchangeable with 

the primitive form via similarity transformation (equation 2.139).  

To this point, 
*

LV  and 
*

RV  in the star region (in figure 2.6) are fully defined (as 

demonstrated in Section A2, Appendix).  

 

2.1.6.2 PDEs in the TFM Model 

2.1.6.2.1 Hyperbolicity 

Much the same as in the case of the HEM model, a characteristic analysis can be 

performed for the PDEs in the TFM model. According to Dinh et al. (2003), the PDEs 

in the six-equation TFM model (equations 2.37 to 2.42) do not have a complete set of 

real eigenvalues. As a result, the PDE system is not hyperbolic and does not represent 

a ‘well-posed’ initial-boundary value problem, which in turn leads to severe 

numerical instability and unphysical oscillations (known as ‘spurious oscillations’).  

To address the above, mathematical regularisation can be applied to stabilise the 

numerical solution towards the six-equation TFM model. One of such approaches is 

‘hyperbolisation’. In its literal sense, modifications to equations 2.37 to 2.42 are 

introduced to recover the hyperbolicity, and three examples are given in the following.  

Addition of the virtual mass force terms: The virtual mass force terms, first 

introduced by Drew & Lahey Jr (1987), can be added to the RHS of the phasic 

momentum conservation equations 2.39 and 2.40. Its general form is given by: 

, ,
v l

vm v vm l vm v l

du du
F F C

dt dt
  

 
= − = − 

   

2.174

 

where Cvm is the virtual mass coefficient, and with appropriate choices of Cvm, the 

hyperbolicity of the TFM model can be recovered. However, it is noted that the new 

PDE system does not have analytical expressions of the eigenvalues and eigenvectors. 

Addition of the pressure correction terms: The pressure correction terms (more 

commonly known as the interface pressure terms) can be added to the RHS of both 
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the phasic momentum and energy conservation equations 2.39 to 2.42. The added 

terms are denoted by intp
F  and intp

W , respectively: 

( )int int

int

, ,

v

p v p l
F F p p

x


= − = −

  

2.175

 

int int

int int

, ,

v

p v p l
W W p u

x


= − = −

  

2.176

 

where 
intp  and intu  are respectively the interface pressure jump and velocity defined 

as: 

( )
2int v v l l

v l

v v l l

p u u
   


   

 = −
+  

2.177

 

int v v v l l l

v v l l

u u
u

   

   

+
=

+  

2.178

 

By setting the model constant, 1 , the hyperbolicity of the TFM model is recovered. 

The most commonly adopted value is 1.2 according to these authors (Paillère et al. 

2003; Munkejord 2010; Yeom & Chang 2013; S. Brown et al. 2014). Note that the 

added pressure correction terms in the phasic momentum conservation is small in 

comparison to the pressure force (but sufficient to recover the hyperbolicity of the 

PDE system in the TFM model) (Dinh et al. 2003).  

The TFM model with interface pressure terms still does not have analytical 

expressions for the eigenvalues and eigenvectors.  

Addition of the pressure relaxation equation (the seven-equation TFM model): 

The last hyperbolisation approach discussed in this section is the inclusion of pressure 

relaxation, and the constituent fluid phases are no longer assumed to be at the same 

pressure. The mathematical formulation of the pressure relaxation equation is shown 

below: 

( )lvp
vv ppK

x
u

t
−=




+



  int

 

2.179
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where 
pK  is the pressure relaxation parameter. Its modelling is often empirical. For 

example, Hérard & Hurisse (2012) used the following expression for 
pK  

lvp

p
pp

K
+

= 211 

  

2.180

 

where τp is the pressure relaxation time.  

The resulting seven-equation system is given by: 

( )lvp
v

i
v ppK

x
u

t
−=




+



 
 

2.181 

vM
vvvvv S

x

u
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


+


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2.182 

lM
lllll S

x

u
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


+


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2.183 
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vF

vvvvvvvv S
x
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t

u
,=



+
+



  2
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llllllll S
x
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
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lE
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l
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E
,=




+



+
+


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2.187 

Following Baer & Nunziato (1986) and Embid & Baer (1992), the resulting seven-

equation PDE system has a set of seven real eigenvalues of which the analytical 

expressions are given by: 

ll cu +=1  
2.188

 

vv cu +=2  
2.189
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ll cu −=3  
2.190

 

vv cu −=4  
2.191

 

lu=5  
2.192

 

lu=6  
2.193

 

vu=7  
2.194

 

The recovered hyperbolicity by introducing the additional pressure relaxation 

equation is hence apparent. 

 

2.1.6.2.2 Elementary Wave Solution of a General IVP 

Following the same procedure adopted in the case of the HEM model, equations 

2.181 to 2.187 can also be written in wave form (see equation 2.152) (Embid & Baer 

1992). 

Analogous to the elementary wave solution in the case of the HEM model, there exist 

a total number of 7 waves: 4 pressure waves propagating at λ1, λ2, λ3 and λ4; 2 entropy 

waves propagating at λ5 and λ7; a void wave travelling at λ6 (corresponding to the 

inclusion of the pressure relaxation equation 2.181). 

Figure 2.7 depicts the corresponding wave structure of the IVP solution. 
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Figure 2.7: Schematic representation of the wave structure of a general IVP solution. 

Wave 1: the right-running pressure wave in the liquid phase; wave 2: the right-

running pressure wave in the vapour phase; wave 3: the left-running pressure wave in 

the liquid phase; wave 4: the left-running pressure wave in the vapour phase; wave 5: 

the entropy wave in the liquid phase; wave 6: the void wave; wave 7: the entropy 

wave in the vapour phase. 
 

Note that waves 1 to 4 (the pressure waves) are genuinely nonlinear, which gives rise 

to rarefaction waves or shocks, whereas waves 5 to 7 (the entropy waves and void 

wave) are linearly degenerate, which corresponds to contact discontinuities (Embid & 

Baer 1992).  

 

2.1.6.2.3 Elementary Wave Solution of the Riemann Problem  

For the seven-equation TFM model, the Riemann problem defined by equation 2.160 

(2.161) can also be approached via the application of the Riemann invariants and the 

Rankine-Hugoniot conditions introduced earlier.  

Riemann invariants: The Riemann Invariants corresponding to the seven-equation 

TFM model are summarised in the following (Embid & Baer 1992):  

= llll

or
ducpI  31

1  
2.195

 

l

or
sI =31

2



 
2.196
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l

or
I 

=31

3  
2.197

 

v

or
uI =31

4



 
2.198

 

v

or
pI =31

5



 
2.199

 

v

or
sI =31

6



 
2.200

 

across the pressure waves 1 or 3 in figure 2.7; 

= vvvv

or
ducpI  42

1  
2.201

 

v

or
sI =42

2



 
2.202

 

v

or
I 

=42

3  
2.203

 

l

or
uI =42

4



 
2.204

 

l

or
pI =42

5



 
2.205

 

l

or
sI =42

6



 
2.206

 

across the pressure waves 2 or 4 in figure 2.7; 

vpI =7

1



 
2.207

 

vuI =7

2



 
2.208

 

vI 
=7

3  
2.209

 

luI =7

4



 
2.210

 

lpI =7

5



 
2.211

 

lsI =7

6



 
2.212

 

across the entropy wave 7 in figure 2.7; 
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luII == 65
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
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vsII == 65
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

 
2.214

 

( )vlvv uuII −==  65
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2.215

 

( )2
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vlvlllvv uuppII −++== 

 
2.216

 

( ) ( ) 22
22

55
65

vlvvvv uupuEII −++−== 

 
2.217

 

across the entropy wave 5 and the void wave 6 in figure 2.7. It is worth mentioning 

that 5

3


I  to 5

5


I  also indicate a jump in the phasic volume fraction. 

Rankine-Hugonoit conditions: For shock waves, the Rankine-Hugoniot conditions 

(equation 2.172) remain valid in each fluid phase (Embid & Baer 1992). In the case 

where waves 1 and 2 (figure 2.7) are both shock waves, they are: 

( ) ( ) ( )* *

, , , , ,l R l R l shock l R l Rc− = −F U F U U U  
2.218 

across wave 1; 

( ) ( ) ( )* *

, , , , ,v R v R v shock v R v Rc− = −F U F U U U  
2.219 

across wave 2.  
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2.2 Applications of the Reviewed Flow Models in Pipeline Decompression 

Modelling 

In the preceeding section, the main features of the most popular fluid dynamic models 

for pipeline decompression modelling are presented together with the closure models 

for other relevant physical processes including interphase mass, momentum and 

energy exchange, fluid/wall heat transfer and friction. This is followed by the 

discussion regarding the accuracy of PR (Peng & Robinson 1976) and GERG 2008 

(Kunz & Wagner 2012) EoS in predicting fluid thermal properties and phase 

equilibrium data. The mathematical nature of the governing conservation equations is 

also discussed given its significance in seeking an appropriate solution scheme.  

In the following, examples for the applications of the introduced flow models as 

reported in the open literature are presented with a particular focus on their 

performance in predicting medium- to large-scale pipeline decompression tests. 

The selected relevant studies are grouped into different sections with reference to the 

employed flow models (including the HEM, HRM, DFM and TFM models). Each 

section is comprised of a short description of the model development, an assessment 

of the model performance (based on comparisons against relevant experimental data) 

and a summary of their limitations meriting further research.  

 

2.2.1 Applications of the HEM Model 

2.2.1.1 Mahgerefteh et al. (1999) 

The pipeline decompression model developed by Mahgerefteh et al. (1999) is one of 

the most validated among its kind reported in the open literature. The model was 

originally developed for the quantitative failure consequence assessment in the event 

of high-pressure hydrocarbon and CO2 pipeline Full Bore Rupture (FBR) failures 

(Mahgerefteh et al. 1999; Mahgerefteh et al. 2007; Mahgerefteh et al. 2008) and later 

extended to puncture failures (Oke et al. 2003). Other important features were 

reported in their subsequent studies, including the simulations of emergency dynamic 

valve responses (Mahgerefteh et al. 2000), ductile fracture propagation of the pipe 
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wall (Mahgerefteh et al. 2011; Mahgerefteh et al. 2012) and decompression of 

pipeline networks (Mahgerefteh et al. 2006).  

Following their methodology, the HEM model (equations 2.18 to 2.20) is used to 

describe the fluid flow dynamics. Fluid/wall heat transfer and friction are modelled 

using standard correlations (following Steiner & Taborek (1992) and Techo et al. 

(1965), respectively). Real fluid behaviour is also accounted for using PR EoS (Peng 

& Robinson 1976). 

In solving the resulting PDE system, the conservation equations in the HEM model 

are firstly converted into wave form (equation 2.152). A set of three ODEs are 

identified along the relevant waves (Section 2.1.6.1.2), given by: 

2 E
F

p

S
dp cdu cS c dt

s T




  
+ = −     

 

2.220
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


  
− = − −     

 

2.221
 

dt
T

S
ds E=

 
2.222

 

where the wall/fluid friction and volumetric heat source terms, FS  and ES  are given 

by (see also Section 2.1.3): 

inw
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,
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=

 

2.223
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44 ww
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U T Tq
S

D D

−
= =

 

2.224
 

The Method of Characteristics (MoC) (Zucrow & Hoffman 1976) is then applied to 

obtain numerical solutions of equations 2.220 to 2.222.  

The flow model has been validated against multiple large-scale high-pressure pipeline 

decompression experiments for both hydrocarbons and CO2. A selection of these tests 
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is reviewed in the following including the set-ups, relevant measurements taken and 

model validation results.  

Isle of Grain LPG pipeline depressurisation test P40 (Richardson & Saville 1996): 

The Isle of Grain test P40 consisted of a 100 m length, 154 mm i.d. carbon steel 

pipeline filled with commercial LPG (95 mol% propane, 5 mol% n-butane) at 21.6 

bar and 20 °C. The ambient temperature was also 20 °C. FBR was initiated at one end 

of the test pipe, and the pressure and temperature were monitored by multiple pressure 

transducers and thermocouples placed along the length of the pipe during 

decompression. In addition, the inventory mass during decompression was measured 

using load cells. More details about the test can be found in (Richardson & Saville 

1996).  

Figures 2.8 to 2.9 present the simulated and measured pressure and temperature 

variations as a function of time at both the pipe open and intact ends during 

decompression. This is followed by a comparison between the predicted and 

measured inventory mass, as plotted in figure 2.10.  

 

Figure 2.8: Pressure variations with time at the pipe closed and open ends for test 

P40. Curve A: measured data (closed end); Curve B: model prediction (closed end); 

Curve C: measured data (open end); Curve D: model prediction (open end) (Oke et al. 

2003).  
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Figure 2.9: Temperature variations with time at the pipe closed and open ends for test 

P40. Curve A: measured data (closed end); Curve B: model prediction (closed end); 

Curve C: measured data (open end); Curve D: model prediction (open end) (Oke et al. 

2003).  
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Figure 2.10: Remainig inventory mass with time during decompression for test P40. 

Curve A: measured data; Curve B: model prediction (Oke et al. 2003). 

Referring to the pressure-time profiles in figure 2.8, the measurements show an initial 

rapid drop in pressure to ca. 6.5 and 7 bar respectively at the open and intact ends of 

the pipe, followed by a much slower rate of depressurisation. This trend corresponds 

to the phase transition at the vapour-liquid phase boundary of LPG, where the speed 

of sound reduces dramatically (Stadtke 2006). A similar observation can be made in 

the corresponding temperature-time profiles (figure 2.9). It is interesting to note that 

at the open end, dry-out (complete evaporation of the in-pipe liquid) is experimentally 

observed, marked by a recovery in temperature at 20 s. With regards to the measured 

inventory mass as a function of time during decompression (figure 2.10), as expected, 

the amount decreases monotonically.  

In terms of model performance, for all quantities monitored during the test, there is a 

relatively good agreement between the measured data and model predictions. 

However, the experimentally observed dry-out is not predicted.  
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National Grid COOLTRANS CO2 pipeline decompression tests 6 and 7 (Cosham 

et al. 2012): As part of the COOTRANS project undertaken by National Grid U.K., a 

number of shock tube tests (pipeline FBR decompression tests) were carried out for 

CO2 and CO2-rich mixtures in order to understand the decompression wave behaviour 

in single- and two-phase flows. Among these, tests 6 and 7 consisted of a 144 m 

length, 150 mm i.d., 11 mm pipe wall thickness heavily insulated ASTM A333 Grade 

6 low carbon steel seamless pipe filled with gaseous mixtures of CO2, N2 and SO2. 

The pertinent test conditions are summarised in table 2.2.  

Table 2.2: Relevant initial conditions for test 6 and 7.  

Test Feed 

compositions 

Feed 

temperature  

(°C) 

Feed 

pressure  

(bar) 

Ambient 

temperature 

(°C) 

6 95.97 mol% CO2 

+ 4.03 mol% N2 

5.3 37.9 20.4 

7 99.14 mol% CO2 

+ 0.86 mol% SO2 

9.9 38.0 13.9 

The test pipe was instrumented with multiple pressure and temperature transducers 

along its entire length to monitor transient pressure and temperature variations. In 

addition, by comparing the recoded pressure-time profiles from adjacent pressure 

transducers (with known distance apart), decompression wave speed was also 

reported in the form of a fan diagram (pressure versus decompression wave speed 

plot).  

In validating the flow model, the predicted decompression wave speed was compared 

to the corresponding measurement. The results are presented in figures 2.11 and 2.12. 
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Figure 2.11: fan diagram at pressure transducers P13 to P16 following FBR for test 6. 

Curves A and B: model predictions; Curve C: measured data (Mahgerefteh et al. 

2012).  
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Figure 2.12: fan diagram at pressure transducers P13 to P16 following FBR for test 7. 

Curves A and B: model predictions; Curve C: measured data (Mahgerefteh et al. 

2012).  

Focussing on the measured data in both above figures, a pressure plateau can be 

observed (each at 34 bar for test 6 in figure 2.11 and at 36 bar for test 7 in figure 2.12). 

Such a pressure plateau corresponds to condensation of vapour, where the speed of 

sound and hence the decompression wave speed significantly decrease (by ca. 50 m/s 

in both cases). The wave speed eventually reaches zero when the local flow (between 

transducer P13 to P16) becomes sonic (choked).  

With regards to the model predictions in both cases, despite demonstrating a general 

agreement with the data, over-predictions can be observed for the pressure plateaux at 

the vapour-liquid phase transition boundaries and the decompression wave speeds at 

the later stages of the decompression process. According to the authors, the former is 
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due to thermodynamic non-equilibrium between the vapour and liquid phases, which 

is not accounted for in their model. With regards to the over-prediction for the 

decompression wave speed, this is attributed to the friction correlation adopted 

(Mahgerefteh et al. 2012).  

 

2.2.1.2 Teng et al. (2016) 

Teng et al. (2016) studied the decompression of a CO2 pipeline using both 

experimental and mathematical techniques. The experimental set-up consisted of a 70 

m length, 25 mm i.d. stainless steel (type 304) pipe. The pipeline was enveloped with 

an electric heating jackets to enable various starting CO2 fluid conditions. FBR was 

initiated at one end of the test pipe, and the variations of pressure and temperature as a 

function of time were monitored using pressure and temperature sensors. Three 

different starting flow conditions each at 35 bar, 15 °C (vapour), 55 bar, 5 °C (liquid) 

and 75 bar, 40 °C (supercritical) were tested.  

The measured pressure variations as a function of time at both open and close ends of 

the test pipe for all three tests with varying starting flow conditions are presented in 

figure 2.13. Also included are the model predictions for comparison. The 

mathematical model was also based on the HEM assumption. PR EoS (Peng & 

Robinson 1976) was adopted for predicting the fluid thermal properties and 

equilibrium data, and the overall system was solved applying the MoC (Zucrow & 

Hoffman 1976), same as that employed by Mahgerefteh et al. (1999). 
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(a) (b) 

 

(c) 

Figure 2.13: Predicted and measured pressure variations as a function of time at both 

the closed and open ends of the test pipe for all three decompression tests with the 

different starting flow conditions at 35 bar, 15 °C in vapour phase (a), 55 bar, 5 °C in 

liquid phase (b) and 75 bar, 40 °C in supercritical phase (c) (Teng et al. 2016).  

From figure 2.13, for all tests, there is good agreement between the model predictions 

and the measured data during the early stages of the release. As the decompression 

proceeds, in figures 2.13 (b) and (c) for the tests respectively starting from the CO2 

liquid and supercritical phases, a significant over-prediction of the rate of 

decompression is observed.  

Focusing on figure 2.13 (b) with the decompression test starting in the CO2 liquid 

phase, the expected discontinuity in the rate of decompression upon phase transition 

(indicated by the vertical dashed lines) as previously reported by Oke et al. (2003) 
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(see Section 2.2.1.1) is not observed. No explanation is provided by the authors 

regarding the above.  

 

2.2.1.3 Martynov et al. (2014) 

Martynov et al. (2014) performed a numerical study on the formation of solid CO2 

(dry ice) at the pipeline release point (e.g. the rupture plane) during decompression, 

given the potential risk of blockage of the pipeline or more likely, the blockage of 

emergency pressure relief valves.  

The HEM model was used to describe the in-pipe flow fluid mechanics. Friction was 

assumed to be the only fluid/wall interaction modelled using Chen’s correlation (Chen 

1979). To account for solid CO2, the extended PR EoS (Martynov et al. 2013) 

previously developed by the authors was employed to determine the solid-vapour and 

solid-vapour-liquid phase equilibrium data. MoC (Zucrow & Hoffman 1976) was 

applied as the numerical solution technique. 

A case study was performed to simulate hypothetical FBR decompression scenarios 

(up to the triple point) of CO2 pipelines of various lengths. The results are presented 

in figure 2.14 in terms of the decompression time to reach the triple point pressure (at 

the rupture plane) as a function of the test pipeline length and the corresponding mass 

fraction of the initial inventory released. 
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Figure 2.14: Predicted decompression time to the triple point pressure (red curve) and 

the corresponding mass fraction of the initial inventory released (blue curve) as a 

function of the pipeline length tested in the case study (Martynov et al. 2014).  

From figure 2.14, it can be observed that the decompression time to the triple point 

rapidly increases with pipeline length at first, stabilising at ca. 300 s when the pipeline 

length reaches ca. 40 km. At this point, approximately 90% of the initial inventory 

still remains in the pipeline. The above finding highlights the risk of significant 

amounts of solid CO2 formation upon further depressurisation below the triple point 

and hence the importance of the development of the corresponding models.  

 

2.2.1.4 Hammer et al. (2013) 

The computational CO2 pipeline decompression study performed by Hammer et al. 

(2013) focuses on solid CO2 formation within the pipeline when surpassing the triple 

point.  

In comparison to (Martynov et al. 2014), the key difference between the two studies is 

the adopted numerical solution method. The MoC (Zucrow & Hoffman 1976) adopted 

by Martynov et al. (2014) requires the conversion of the PDE conservation equations 
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to a set of ODEs along relevant waves, whereas the Finite Volume Method (FVM) 

(LeVeque 2002) applied in Hammer et al. (2013) study directly integrates and thus 

solves the PDE conservation equations. 

To test their numerical solution scheme, the developed model was used to obtain the 

wave solutions of a specified Riemann problem. The initial conditions of the Riemann 

problem consisted of a step change in pressure (from 30 bar to 1 bar) and a constant 

temperature profile (at 250 K) along a 100 m long horizontal computational domain. 

At the start of the simulation, waves were allowed to propagate within the domain. 

The resulting pressure and temperature profiles along the computational domain at 

0.06 s from the start of the simulation are presented in figure 2.15 for visualisation of 

the wave structure. (The following discussion only concerns the simulated results 

marked by green curves in figure 2.15). 

  

(a) (b) 

Figure 2.15: Numerical solution of the specified Riemann problem in terms of the 

pressure (a) and temperature (b) profiles along the length of the computational domain 

(denoted by x) at 0.06 s from the start of the simulation (Hammer et al. 2013). SW, 

PR, PR ns EOS are the different EOS tested by the authors.  

From figure 2.15 (a), the decompression and shock waves can be easily identified 

occurring at x = 5 m and 75 m, respectively. The contact wave is at x = 62 m, where 

there is a jump in temperature (figure 2.15 (b)) while the pressure is conserved (figure 

2.15 (a)). These three waves make up the classical wave solution of the Riemann 

problem (see also Section 2.1.6.1.3). Furthermore, two additional waves are observed 
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at x = 50 and 55 m in figure 2.15 (a). They are separated from the rarefaction wave (at 

x = 5 m) by two pressure plateaux each at the CO2 saturated pressure of 17 bar and 

triple point pressure of 5.18 bar. According to the authors, the anomalous waves are 

related to fluid phase transitions (Hammer et al. 2013). However, no further 

discussion was provided to support their argument.  

In the next part of their numerical investigation, a case study was performed for the 

decompression of a hypothetical CO2 pipeline across the triple point. The 100 m long 

pipe was assumed to be initially filled with pure CO2 at 100 bar and 300 K (in liquid 

phase), with FBR initiated at one end. The simulated pressure-time profiles along the 

pipe length at different decompression times in the range of 0.05 to 5.5 s are presented 

in figure 2.16. 

 

Figure 2.16: Predicted pressure profiles along the entire length of the assumed 

pipeline at different decompression times (Hammer et al. 2013). 

In figure 2.16, the pressure plateau (at ca. 58 bar) each observed at 0.05 s, 0.15 s and 

1.0 s following the start of the simulation corresponds to vapour-liquid phase 
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transition. As the decompression proceeds, all the remaining CO2 is in vapour-liquid 

two-phase, and the pressure plateau is no longer observed. Before reaching the 

ambient pressure (at 7.0 s), a temporal pressure stabilisation at the triple point (at 5.5 s) 

appears as a result of solid CO2 formation. 

It should be pointed out here that the above model predictions were not validated 

against experimental data. Moreover, at the triple point, the homogeneous mixture 

speed of sound turns to zero (with reference to equation 2.91). Consequently, the 

HEM assumption adopted in their flow model produces a singularity in the 

corresponding PDEs, which cannot be dealt with using conventional numerical 

methods based on hyperbolicity. There is no mention of how such a mathematical 

difficulty was overcome in their study. 

 

2.2.1.5 Concluding Remarks  

In reviewing the recent developments of the HEM model for pipeline decompression 

modelling, it is clear that significant progress has been made in terms of its predictive 

capabilities. Despite its relatively simple form, notwithstanding the limited number of 

investigations, its effectiveness in successfully simulating pipeline FBR 

decompression has been clearly demonstrated.  

More specifically, the following is a summary of the key findings in the context of 

scope and range of applicability:  

• A variety of physical phenomena relevant to pipeline decompression such as 

fluid/wall friction and heat transfer, multicomponent mixtures, phase 

transitions (including solid phase) are accounted for;  

• Good performance in predicting pipeline FBR decompression is achieved; 

• For CO2 pipelines, its accuracy is however limited to decompression before 

reaching the triple point. Upon surpassing the triple point, the HEM model is 

yet to be validated against experimental data; 

• Heterogeneous flow cannot be accounted for; 

• Thermodynamic non-equilibrium due to delayed phase transition cannot be 

accounted for.  
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2.2.2 Applications of the HRM Model 

2.2.2.1 Angielczyk et al. (2010) 

Angielczyk et al. (2010) applied the HRM model (see Section 2.1.2.2.2) for the 

investigation of non-equilibrium CO2 flashing flows through a converging-diverging 

nozzle. The original HRM model was extended to account for smooth change in the 

flow area. The finite interphase mass transfer rate was modelled following equation 

2.23, and a correlation for the relaxation time, τ was proposed: 

0.54 1.76

72.14 10
eq

eq c eq

p p

p p


 



− −

−
   −

=        −     

2.225
 

Herein, ϕ is the vapour phase molar fraction. For predicting CO2 thermodynamic non-

equilibrium (metastable) states, PR EoS (Peng & Robinson 1976) was used. 

Fluid/wall friction and heat transfer were not considered.  

Assuming steady state flow, the authors neglected the transient contributions in PDEs. 

The solutions are thus obtained analytically.  

As part of validation, the developed model was used to simulate a CO2 nozzle flow 

experiment by Nakagawa et al. (2009). The rectangular test nozzle consisted of a 

27.35 mm length converging section and a 56.15 mm length diverging section with 

adjustable divergence angles. The throat area was 0.24 mm × 3 mm. CO2 at 91 bar 

and 36.5 °C was released through the nozzle and steady state pressure profiles were 

recorded along its length. The measurements together with the corresponding model 

predictions are given in figures 2.17 to 2.19.  

In addition, the simulated vapour quality (vapour phase molar fraction) profiles along 

the nozzle length from both the HRM model developed and a HEM model are also 

presented. The inclusion of the HEM model predictions is to showcase the impact of 

thermodynamic non-equilibrium.  
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Figure 2.17: Predicted and measured steady state pressure profiles along the nozzle 

length at a divergence angle of 0.612 °. Also included are the predicted vapour quality 

profile along the nozzle length both from the HRM model and the HEM model 

(labelled as ‘unconstrained equilibrium’ in the figure legend) (Angielczyk et al. 

2010).  

 

 

Figure 2.18: Predicted and measured steady state pressure profiles along the nozzle 

length at a divergence angle of 0.306 °. Also included are the the predicted vapour 

quality profile along the nozzle length both by the HRM model and the standard HEM 

model (labelled as ‘unconstrained equilibrium’ in the figure legend) (Angielczyk et al. 
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2010).  

 

 

Figure 2.19: Predicted and measured steady state pressure profiles along the nozzle 

length at a divergence angle of 0.153 °. Also included are the predicted vapour quality 

profile along the nozzle length both by the HRM model and the HEM model (labelled 

as ‘unconstrained equilibrium’ in the figure legend) (Angielczyk et al. 2010).  

From figures 2.17 to 2.19, in all cases, pressure decreases as the flow expands through 

the diverging section. There is a relatively good agreement between the theory and 

measurements. With regards to the predicted steady state vapour quality profiles, 

although no experimental data is available, comparison between the HRM and HEM 

model predictions shows that the HEM model consistently predicts higher vapour 

qualities.  

 

2.2.2.2 Haida et al. (2016) 

In another study on CO2 nozzle flow in a vapour ejector by Haida et al. (2016), the 

model developed by Angielczyk et al. (2010) was extended to 2-D with additional 

consideration of turbulence. By simulating several CO2 vapour ejection experiments, 

the model’s performance was assessed based on its relative accuracy in predicting the 

mass flowrate in two different sections of the test ejector (i.e. the motive and suction 
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sections). The results are shown in figures 2.20 and 2.21. Also included are the results 

from the HRM model based on constant relaxation times (instead of equation 2.225) 

in the range of from 1×10-6 to 1×10-3 s as well as the HEM model for comparison.  

 

Figure 2.20: Relative accuracy of the mass flowrate predictions (in the motive section 

of the ejector) from the HEM model and the HRM model based on varying relaxation 

times (denoted as θ by the authors in the figure legend) either specified by equation 

2.225 or of constant values (Haida et al. 2016).  

 

 

Figure 2.21: Relative accuracy of mass flowrate predictions (in the suction section of 

the ejector) from the HEM model and the HRM model based on varying relaxation 

times (denoted as θ by the authors in the figure legend) either specified by equation 

2.225 or of constant values (Haida et al. 2016).  

Eq. 2.225 

Eq. 2.225 
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As it may be observed in figures 2.20 and 2.21, in general, the HRM model with the 

relaxation time computed by equation 2.225 is shown to produce an improved relative 

accuracy (about 20 % for most cases) over the HEM model.  

Interestingly, the HRM model predictions based on constant relaxation times 

occasionally yield better relative accuracy as compared to those based on equation 

2.225. However, the results are very sensitive to the specified values of the relaxation 

time. Within the tested range of between 1×10-6 and 1×10-3
 s, the difference can be as 

much as 160% (see #1 in figure 2.21). 

 

2.2.2.3 Brown et al. (2013) 

Angielczyk et al. (2010) and Haida et al. (2016) have showed that in the case of 

thermodynamic non-equilibrium flow, the HRM model provided noticeable 

improvements over the widely used HEM model. However, their work is limited to 

steady state flows.  

In a recent study by Brown et al. (2013), the HRM model was applied to investigate 

the transient decompression of a high-pressure CO2 pipeline. The neglected time-

dependent terms in the previous studies were accounted for. Fluid/wall friction was 

computed using Chen’s correlation (Chen 1979), and fluid/wall heat transfer was 

argued to be insignificant given the very short decompression duration.  

The resulting PDE system was solved numerically using the FVM (LeVeque 2002) in 

conjunction with the Harten-Lax-Van Leer (HLL) scheme (Toro 2009e).  

The model developed was first verified by solving a specified Riemann problem on a 

computational domain of 1 m length filled with vapour-liquid two-phase CO2. The 

initial conditions for the Riemann problem were given by a step function each in 

pressure (15 bar to 1 bar) and vapour quality (0.15 to 0.5). Both constant relaxation 

times (ranging from 0.01 to 1 ms) and those computed using the correlation defined in 

equation 2.225 were tested. The results in terms of pressure and density profiles along 

the length of the computational domain are plotted in figure 2.22.  



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 76 - 

 

  

(a) (b) 

Figure 2.22: Predicted pressure (a) and vapour quality (b) profiles along the 

computational domain based on the computed relaxation time (denoted as Eq. (11) in 

the figure legend) and different constant relaxation times (denoted as θ) at 2 ms from 

the start of the simulation (Brown et al. 2013). 

From figure 2.22 (a), it is clear that a larger relaxation time is observed to produce a 

faster decompression wave front. The slowest and the fastest fronts are 0.1 m apart, 

which gives a wave speed difference of ca. 50 m/s. This is attributed to the 

corresponding increased delay in vapour-liquid phase transition (see figure 2.22 (b)). 

The relaxation time computed by equation 2.225 is between 0.1 and 1 ms.  

The authors went on to simulate a large-scale CO2 pipeline FBR decompression test 

performed during the course of the National Grid UK COOLTRANS project (Cosham 

et al. 2012). The test rig was the same as that presented in Section 2.2.1.1. The pipe 

was initially filled with pure CO2 at 153.35 bar and 278.35 K, and FBR was initiated 

at one end using an explosive charge. Pressure and temperature were measured at 

multiple points along the pipe length during decompression.  

Figure 2.23 presents the predictions from the HRM and HEM models for the 

variations of pressure as a function of time at both pipe intact and release ends. Also 

included in figure 2.23 (a) are the measurements at the pipe intact end for comparison.  
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(a) (b) 

Figure 2.23: Predicted pressure-time profiles from the HRM and HEM models at the 

pipe intact end (a) and the release end (b) during decompression. The measurement at 

the pipe intact end is included in (a) (Brown et al. 2013). 

Referring to figure 2.23 (a), there is a marginal difference between the HRM and 

HEM model predictions; they are both in good agreement with the measured data, 

showing a rapid drop in the decompression rate at vapour-liquid phase transition 

boundary (marked by the vertical dashed line in figure 2.23 (a)). Turning to figure 

2.23 (b), at the pipe release end, the HRM model predicts a faster decompression rate 

prior to phase transition. This corresponds to the faster decompression waves as a 

result of delayed phase transition. Unfortunately, no experimental data is available at 

the release end, and thus there is no conclusive evidence to support the validity of the 

simulated results.  

 

2.2.2.4 Concluding Remarks  

From the above review of the HRM model applications, where thermodynamic non-

equilibrium is relevant, the model has shown to produce a noticeable improvement 

over the HEM model. However, as compared to the HEM model, the HRM model 

validation against appropriate experimental data is lacking. Moreover, most previous 

studies using the HRM are limited to single-component flow, thus significantly 

reducing its scope in practical applications.  

The following is a summary of the key findings:  

• Where thermodynamic non-equilibrium is relevant, the HRM model is shown 

to produce improved accuracy compared to the HEM model; 
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• The HRM model predictions are sensitive to the relaxation time specified; 

• For pipeline decompression, a higher decompression rate (prior to phase 

transition) is predicted by the HRM model as compared to the HEM model. 

However, this needs to be verified against experimental data;  

• The HRM model development has been confined to single-component flows. 

 

2.2.3 Applications of the DFM Model  

2.2.3.1 Munkejord et al. (2010) 

To investigate the impact of heterogeneous flow on pipeline decompression, a 

computational study was carried out by Munkejord et al. (2010) using the DFM model 

(Section 2.1.2.2.3).  

As pointed out in Section 2.1.2.2.3, the DFM model requires an empirical constitutive 

relation to closely relate the velocities of two fluid phases. In their study, a slip 

relation proposed by Zuber & Findlay (1965) was used: 

( )
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2.226
 

where Ku and Su are flow regime-dependent parameters.  

Fluid/wall friction was modelled using Friedel’s correlation (Friedel 1979), and the 

heat transfer flux was computed assuming a constant heat transfer coefficient 

throughout the decompression process. The Soave-Redlich-Kwong (SRK) EoS 

(Soave 1972) was employed for predicting the fluid thermal properties and phase 

equilibria data.  

The DFM model was employed to simulate the FBR decompression of an assumed 

100 m length pipe filled with a mixture of CO2 and CH4 (at 99 wt% and 1 wt%, 

respectively) initially at 60 bar and 290.5 K (in liquid phase). The ambient pressure 

was set to 30 bar. Figures 2.24 and 2.25 respectively display the predicted velocity 

and pressure profiles along the entire length of the assumed pipe at 1 s following the 

rupture. Also included is the HEM model predictions (denoted by ‘no slip’ in the 
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figure legend) to demonstrate the impact of heterogeneous flow on pipeline 

decompression. 

 

Figure 2.24: Predicted vapour (denoted as g) and liquid phase (denoted as l) velocity 

profiles along the pipe length at 1 s following the rupture (Munkejord et al. 2010).  

 

 

Figure 2.25: Predicted pressure profiles along the pipe length at 1 s following the 

rupture (Munkejord et al. 2010).  
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According to figure 2.24, significantly different phasic velocities can be observed for 

the DFM model (denoted as ‘Zuber and Findlay’), which is referred to as ‘phase slip’ 

as a result of heterogeneous flow. The phase slip increases to as much as 40 m/s close 

the pipe release end. For the HEM model, as expected, only a single velocity is 

predicted for both fluid phases. 

Turning to the pressure predictions in figure 2.25, beyond the observed initial plateau 

marking the finite speed of decompression wave propagation, at any given time, a 

faster decompression rate is predicted by the DFM model as compared to the HEM 

model. In practice, this may be significant as the decompression rate is directly related 

to the fracture propagation length (Cosham & Eiber 2008; Aursand et al. 2016; 

Martynov et al. 2017) in the event of such type of failure. Unfortunately, no validation 

against appropriate experimental data was provided by the authors to support their 

model predictions.  

 

2.2.3.2 Concluding Remarks  

For pipeline decompression modelling, based on the reviewed literature, the DFM has 

attracted less attention in comparison to the HEM and HRM models. This is partially 

due to the fact that for the DFM model to be credible, the fluid phasic velocities must 

be strongly coupled (corresponding to slug and bubbly flow regimes (Hibiki & Ishii 

2003) that may occur during the decompression process). Given the success of the 

relatively simple HEM model in simulating the flow behaviour during pipeline FBR 

decompression encompassing such flow regimes, the mathematical complexity of the 

DFM model makes it unattractive.  

In conclusion, based on the above: 

• Phase slip is theoretically shown to have a profound impact on pipeline 

decompression rate. However, this is yet to be supported by experimental data;  

• For pipeline decompression modelling, the DFM model is limited to the flow 

regimes where the HEM model is known to offer acceptable accuracy. The 

extra mathematical complexity thus renders it unfavourable especially for 
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quantitative failure consequence assessment of transportation pipeline 

networks with hundreds of kilometres in length.  

 

2.2.4 Applications of the TFM model  

2.2.4.1 Brown et al. (2014) 

As discussed in Section 2.1.2.2.4, the single-fluid models (i.e. the HEM, HRM and 

DFM models) require additional assumptions or closure relations to relate the 

constituent fluid phase thermal or mechanical properties. On the other hand, by 

solving the mass, momentum and energy conservation equations for each fluid phase 

separately along with explicit modelling of interface interactions, such a limitation 

can be removed in the TFM model.  

Brown et al. (2014) applied the six-equation TFM model for CO2 pipeline FBR 

decompression modelling, where both thermal and mechanical non-equilibrium were 

considered. This was achieved by appropriate modelling of the interface mass, 

momentum and energy exchange via the source terms in the corresponding 

conservation equations 2.37 to 2.42. The net interface mass exchange rate per unit 

volume is given by (S. Brown et al. 2014): 

( )int int
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2.227 

where the subscript, sat denotes the saturated vapour or liquid state. 
intq  in each fluid 

phase is given by (S. Brown et al. 2014): 

( )( )int 1
, ; 1 sat

k k k k kk v l q h h 


 = = − −  
2.228 

where τ is the relaxation time set as constant values by the authors.  

Moving on to the interface momentum interaction, in addition to the included 

interphase pressure force terms for hyperbolisation (Section 2.1.6.2.1), only the drag 

force was accounted for. The drag force is given by (S. Brown et al. 2014): 
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where dC , vk  and lk  are model constants.  

Fluid/wall interactions are modelled by the authors specific to each fluid phase (see 

Sections 2.1.3,1). The vapour and liquid phase thermal properties and phase 

equilibrium data were calculated using PR EoS (Peng & Robinson 1976). Finally, the 

resulting PDEs are presented for completeness (all symbols are defined in Section 

2.1.2 and 2.1.3): 
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In numerically solving the above PDE system, the conservative part (LHS of 

equations 2.230 to 2.235) were integrated applying the FVM (LeVeque 2002) in 

conjunction with the AUSM+ scheme (Paillère et al. 2003). The remaining non-

conservative spatial ( x ) and temporal ( t ) derivative terms were approximated 
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using the central difference scheme and the forward Euler method, respectively 

(Paillère et al. 2003; S. Brown et al. 2014).  

For validation, the model was employed to simulate a CO2 pipeline FBR 

decompression test performed by DUT, China during the course of the CO2PipeHaz 

project (Robert M. Woolley et al. 2014). The test rig consisted of a 256 m length, 233 

mm i.d. and 20 mm thickness 16Mn carbon steel pipe filled with two-phase CO2 

( 0.5v = ) at saturated pressure of 36 bar. Following the rupture, pressure and 

temperature variations are monitored at multiple points along the pipe length. Figure 

2.26 presents the predicted pressure variations as a function of time both at the pipe 

release (figure 2.26 (a)) and intact (figure 2.26 (b)) ends, together with the 

corresponding measurements. Different constant values of τ, including 5×10-6, 5×10-5 

and 5×10-4 s in equation 2.228 were tested using the model. Also included are the 

predictions from the HEM model for comparison.  

  

(a) (b) 

Figure 2.26: Predicted (from the HEM model and the TFM model based on various 

values of τ) and measured pressure variations as a function of time at the pipe release 

end (a) and intact end (b).  

From figure 2.26, in agreement with the observation made for the HRM model 

(Section 2.2.2.3), a faster decompression wave and hence a higher decompression rate 

can be observed with a larger relaxation time. In terms of the degree of agreement 

with the measured data, the TFM model outperforms the HEM model. The best 

accuracy is obtained by setting τ to 5×10-4 s. The HEM model on the other hand 
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consistently over-predicts the fluid pressure by as much as 10 bar (at the pipe intact 

end; see figure 2.26 (b)).  

Next, the vapour and liquid phase temperature predictions as a function of time both 

at the pipe release and intact ends were compared against the corresponding 

measurements. The results are shown in figures 2.27 and 2.28.  

  

(a)  (b)  

Figure 2.27: Predicted (from the HEM model and the TFM model based on various 

values of τ) vapour phase temperature variation as a function of time and the 

measurement (for the bulk vapour-liqiud mixture) at both the pipe release end (a) and 

intact end (b). 
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(a) (b) 

Figure 2.28: Predicted (from the HEM model and the TFM model based on various 

values of τ) liquid phase temperature variation as a function of time and the 

measurement (for the bulk vapour-liqiud mixture) at both the pipe release end (a) and 

intact end (b). 

From figures 2.27 and 2.28, the performances of both HEM and TFM models in terms 

of the degree of agreement with the experimental data are comparable, except for the 

case where τ = 5×10-4 s in the TFM model. In this case, the large relaxation time leads 

to significant superheating of the liquid phase. In figure 2.29, the corresponding 

decompression trajectory is plotted in p-T thermodynamic plane, together with the 

HEM model predictions, the measurements and the CO2 saturation line for reference.  

 

Figure 2.29: Predicted (from the HEM model and the TFM model based on 

-45 10 =   s) and measured decomperssion trajectories in the p-T plane.  
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From the above figure, a significant departure from the saturation line is observed for 

the TFM model prediction with -45 10 =   s, whereas the HEM prediction exactly 

follows the saturation line.  

In the next part of their study, Brown et al. (2014) investigated the impact of 

mechanical non-equilibrium on pipeline decompression. This was achieved by 

manually fixing the interface drag coefficient, Cd in equation 2.229 to different 

constant values of 0.1, 1 and 10. A higher Cd means a higher rate of interface 

momentum exchange (and hence being closer to mechanical equilibrium). The 

simulation was repeated, and the results (in terms of pressure variations at both pipe 

release and intact ends) are presented in figure 2.30.  

  

(a) (b) 

Figure 2.30: Predicted (from the TFM model based on various drag coeffcients) and 

measured pressure variations as a function of time at both the release end (a) and 

intact end (b).  

From figure 2.30 (a), it is clear that increasing Cd from 0.1 to 10 results in only a 

marginal change in the simulated release end pressure data, all producing a reasonably 

good agreement with measurements. This is in contrast to the simulated intact end 

pressure data where the predictions are more affected by the specified Cd. The degree 

of disagreement with the experimental data increases as Cd increases. 
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2.2.4.2 Munkejord & Hammer (2015)  

Another example for the application of the TFM is the study by Munkejord & 

Hammer (2015) on the decompression of CO2-rich mixtures. The adopted flow 

conservation equations were similar to equations 2.230 to 2.235. However, due to the 

extra consideration of stream impurities, species transport equations were solved for 

each component in parallel. The species transport equations for both fluid phases are 

given by (Munkejord & Hammer 2015): 
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Moreover, thermal equilibrium between the two constituent fluid phases was assumed, 

which effectively reduces the two phasic energy conservation equations 2.234 and 

2.235 to one mixture energy conservation equation given by: 
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In equation 2.238, fluid/wall heat exchange is accounted for through the source term, 

SE. The Colburn correlation (see (Knudsen et al. 1997a)) and the Gungor and 

Winterton correlation (Gungor & Winterton 1987) were applied respectively for 

computing the forced convection and boiling heat fluxes, respectively.  

Reynolds number-based correlations were used to compute the fluid/wall friction in 

each fluid phase and interface drag force.  

For validation, the model was employed to simulate several large-scale pipeline FBR 

decompression tests for CO2-rich mixtures. Examples are presented in the following, 

including the details of the experimental set-up and the validation results.  

The pipeline for the selected example consisted of a 140 length, 10 mm i.d. horizontal 

stainless steel pipe initially filled with CO2-N2 mixtures at different molar 

compositions (10% N2 + 90% CO2, 20% N2 + 80% CO2 and 30% N2 + 70% CO2) 

(Drescher et al. 2014). The mixtures prior to decompression was in its supercritical 
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state at 120 bar and 20 °C. FBR was initiated at one end of the test pipe, while the 

other end remained closed during decompression. Pressure and temperature 

transducers were strategically installed at various locations along the pipe length.  

For all three releases, the model predictions were compared against the measurements 

from the transducer located 50 m away from the pipe close end, and the results are 

shown in figures 2.31 to 2.33. Also included are the HEM model predictions for 

comparison.  

  

(a) (b) 

Figure 2.31: HEM and TFM model predictions and the measured data (denoted as 

Exp) for the pressure (a) and temperature (b) variations as a function of time 50 m 

away from the pipe intact end for test 1 (10 % N2 impurity).  
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(a) (b) 

Figure 2.32: HEM and TFM predictions and the measured data (denoted as Exp) for 

the pressure (a) and temperature (b) variations as a function of time 50 m away from 

the pipe intact end for test 2 (20 % N2 impurity). 

 

  

(a) (b) 

Figure 2.33: HEM and TFM predictions and the measured data (denoted as Exp) for 

the pressure (a) and temperature (b) variations as a function of time 50 m away from 

the pipe intact end for test 3 (30 % N2 impurity). 

Comparing figures 2.31 (a), 2.32 (a) and 2.33 (a), the increase in the amount of N2 in 

CO2 can be observed to result in a higher overall rate of decompression; the test pipe 

is depressurised to the ambient pressure in 35 s for test 1; 30 s for test 2; 27 s for test 3. 

With regards to the corresponding temperature measurements (figure 2.31 (b) to 2.33 

(b)), a higher N2 molar composition leads to a reduction in the magnitude of the 

temperature drop. It is interesting to note that dry-out (marked by a temperature 
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recovery in each temperature-time profiles) takes place as a result of fluid/wall heat 

transfer.  

For the model performance, the HEM and TFM models show no noticeable difference 

between the model predictions. They both produce good agreement compared to the 

pressure measurements. This is in contrast to the temperature data where a relatively 

significant degree of departure between theory and experiment is obtained especially 

at the later stages of the depressurisation process.  

Interestingly in two cases (tests 1 and 2), the HEM model performs better than the 

TFM model. 

 

2.2.4.3 Concluding Remarks  

According to the above investigations, overall, both the HEM and the TFM models 

perform equally well as compared to measured data for CO2 pipeline FBR 

decompression. This suggests that non-equilibrium effects (mechanical non-

equilibrium in particular) are largely insignificant during FBR decompression; 

probably due to the very large fluid velocities resulting in the mixing and entrainment 

of the constituent fluid phases.  

As such, given the mathematical complexity of TFM and its heavy reliance on 

empirically obtained data (for interface exchange modelling), its use for CO2 pipeline 

FBR simulation is not justified.  

On the other hand, recently obtained direct experimental evidence involving the visual 

observation of in-pipe flow during CO2 pipeline puncture decompression have 

indicated heterogeneous flow marked by the complete separation of the vapour and 

liquid phases (Brown et al. 2013). Given the much higher failure rate of pipeline 

puncture failure compared to pipeline FBR failure (Lydell 2000), the knowledge of 

the impact of such strong flow heterogeneity on pipeline decompression behaviour is 

therefore of crucial importance for the quantitative consequence assessment of such 

failure. Given the above, there is significant scope in the further development, testing 

and validation of the TFM model for pipeline puncture decompression.  

  



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 91 - 

 

Chapter 3: 

Modelling of CO2 Decompression across the Triple Point 

3.1 Introduction  

From Chapter 1, the formation of significant quantities of solid CO2 as a result of 

surpassing its triple point during rapid decompression of CO2 pipelines employed as 

part of the CCS chain can present serious operational and safety challenges. For 

example, the resulting blockage of depressurising pipeline, or more likely, the 

blockage of the pressure relief valves can lead to pipeline over-pressurisation and 

possible rupture.  

As part of the risk assessment of solid CO2 formation in depressurising pipelines, flow 

models mainly based on the Homogeneous Equilibrium Mixture (HEM) assumption 

are being developed. However, as pointed out in the review of relevant studies 

(Sections 2.2.1.3 and 2.2.1.4, Chapter 2), although some interesting flow features 

associated with solid CO2 formation such as pressure stabilisation at the triple point 

have been predicted by the developed models, their accuracy in predicting real 

pipeline decompression is not tested. The lack of necessary validation against 

experimental data may introduce uncertainties in quantifying the risk associated with 

solid CO2 in pipes. 

In this chapter, the development, verification and validation of a CO2 pipeline 

decompression model for predicting CO2 solid formation at any time and distance 

along the depressurising pipeline is presented. This chapter is organised as follows. 

Section 3.2 details the flow model formulation, including the conservation equations 

and the closure models for fluid/wall heat transfer and friction. In addition, a general 

discussion of the wave properties of the conservation equations is provided to aid the 

later analysis of the simulated results. Also, the boundary conditions and the pertinent 

fluid thermal property prediction methods such as for the speed of sound of two-phase 

and three-phase (vapour-liquid-solid) CO2 mixtures are presented. The numerical 

technique for solving the conservation equations is given next in Section 3.3. It is 

noted that, in contrast to the centred scheme adopted in the study by Hammer et al. 

(2013) concerning solid CO2 formation during pipeline decompression, an upwind 

scheme is implemented in this study. Upwind schemes are known to be less diffusive 
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than centred schemes and hence provide better accuracy especially at discontinuities 

or large gradients within the flow. The numerical difficulties associated with the 

speed of sound turning to zero at the triple point are also discussed and addressed.   

 In Section 3.4, verification of the flow model consisting of a Riemann problem test is 

carried out to test the model capability of predicting the wave propagation in a 

vapour-liquid-solid CO2 flow. The resulting wave structure is discussed in detail with 

a particular focus on the impact of solid CO2 formation. This is followed by model 

validation against experimental data obtained from a large-scale CO2 pipeline 

depressurisation test. Conclusions are drawn in Section 3.5.  

 

3.2 Theory 

3.2.1 Flow Model 

In order to describe the depressurisation of CO2 in a pipeline upon failure, the 

following set of conservation equations is applied based on the HEM model (Section 

2.1.2.2.1, Chapter 2):  

( )
t x

 
+ =

 
U F U Ψ  

3.1 

where U is the vector of the conservative variables, F is the vector of the 

corresponding flux functions, and Ψ is vector of volumetric terms (for fluid/wall 

friction and heat transfer), respectively defined as: 
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 
 − +
 
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3.2 

All symbols have been defined previously in Sections 2.1.2.2.1 and 2.1.3, Chapter 2. 

The friction factor, f is computed following the Chen’s correlation (Chen 1979) given 

in equation 2.60, Chapter 2, and the fluid/wall heat transfer flux, q  is calculated 

following Rohsenow’s correlation (Knudsen et al. 1997b) introduced in equation 2.49, 

assuming boiling is the major heat transfer mode between the fluid and the wall.  
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3.2.2 Hyperbolicity and the Elementary Wave Structure  

As discussed in Section 2.1.6.1.1, Chapter 2, equation 3.1 is hyperbolic and has three 

eigenvalues, cu −=1 , u=2 , cu +=3 , where c is the sound speed in the fluid. 

(Note the ordering of the eigenvalues differs from that in Section 2.1.6.1.) In view of 

equation 3.1, the classical wave structure from solving an Initial Value Problem (IVP) 

relevant to practical engineering flows is schematically shown in figure 3.1. 

 

Figure 3.1: Schematic representation of the classical wave structure from solving 

equation 3.1 for an IVP. 

As may be observed in figure 3.1, a left-running expansion wave and a right-running 

shock are separated by a contact wave. It should be noted that this classical wave 

structure in figure 3.1 applies only to the case where isentropes in the pressure-

specific volume (p-v) thermodynamic plane, ( )
svp  remain convex and smooth 

(Menikoff & Plohr 1989). Since isentropes are directly related to speed of sound, as 

shown below: 

-
ss s

p p v p
c v

v v 

       
= = =     

       

 
3.3 

the speed of sound as a result must be continuous. 
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As shown by Menikoff & Plohr (1989), isentropes are smooth and convex if and only 

if the fundamental derivative, defined below remains positive everywhere: 

( )
( )

s

s

vp

vp
v




−=

22

2

1


 

3.4 

On the other hand, non-classical wave structures, also known as anomalous wave 

structures, arise when ς becomes zero or undefined (often referred to as ‘vanished’). 

This typically happens at phase transition boundaries where isentropes (in p-v plane) 

exhibit a discontinuous change in the slopes (and hence the speed of sound).  

For example, Menikoff and Plohr (Menikoff & Plohr 1989) showed that in a real fluid, 

evaporation induced by decompression would produce a pair of rarefaction waves 

splitting at the corresponding saturated pressure.  

 

3.2.3 Boundary Conditions  

In order to close equation 3.1 to enable their numerical solutions, appropriate 

boundary conditions for describing the flow at both the pipe closed and rupture ends 

need to be specified. 

At the closed end, the velocity is set to zero, whilst for scalar variables, zero-gradient 

extrapolation is applied. 

Turning to the rupture end, where the flow is expected to be choked (sonic) during the 

most part of the decompression process, the boundary condition is determined from 

the analysis of local waves corresponding to the governing equations. Following 

Munkejord & Hammer (2015), the Riemann invariant across the right-running 

pressure wave reads (see also Section 2.1.6.1.3, Chapter 2): 

−=
bc

mx

p

p
mxbc

c

dp
uu

  

3.5 

where the subscripts, bc and mx represent the boundary numerical cell at the pipe 

release end and the cell adjacent to it, respectively. By assuming isentropic flow 

condition (i.e. 
bc mxs s= ), ρ and c can be computed at a given pressure from flash 
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calculations. Knowing that the outflow is sonic (i.e. 
bc bcu c= ), equation 3.5 can be 

solved for 
bcp .  

 

 

3.2.4 Physical Properties  

In order to predict the thermal properties of CO2 required for the HEM flow model, 

both GERG 2008 Equation of State (EoS) (Kunz & Wagner 2012) and ePR (‘e’ stands 

for ‘extended’) EoS (Martynov et al. 2013) are employed. The former is applied for 

the predictions of CO2 above its triple point. Below the triple point, ePR EoS is 

employed which has been shown to produce good accuracy in handling solid phase 

CO2 (Martynov et al. 2013).  

The general HEM speed of sound is defined in equation 3.3. In the case of a vapour-

liquid mixture, the HEM speed of sound is numerically approximated, given by 

(Mahgerefteh et al. 1999):  

( ) ( )

0.5

, ,

p
c

p s p p s 

 
=   − − 

 

3.6 

where p  is the infinitesimal change in pressure ( 61 10p − =   bar; Mahgerefteh et al. 

1999). 

With regards to the vapour-liquid-solid mixture at the triple point, following the 

definition (equation 3.3), the speed of sound is zero. This implies that waves cannot 

propagate upstream of the triple-point region of the flow and hence, leading to 

unrealistic scenario of permanent pressure stabilisation at the triple point pressure 

(5.18 bar for CO2).  

To address the above, a suitable non-zero estimate for the speed of sound at the triple 

point is required. Accordingly, in this study, the speed of sound is calculated as: 
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2 2

1
, , ; k

k k

k v l s
c c


 = =  

3.7 

Such an expression has been used to provide estimates for two-phase mixture speed of 

sound (Brown et al. 2013; Nouri-Borujerdi & Shafiei Ghazani 2017; De Lorenzo et al. 

2017) and is often referred to as the ‘Homogeneous Frozen Mixture (HFM)’ speed of 

sound.  

Equation 3.7 effectively removes the singularity at the triple point introduced by 

equation 3.3. The corresponding impacts on the predictions of the wave structure and 

furthermore, on the depressurisation of high-pressure CO2 pipelines are presented and 

discussed in Section 3.4.  

 

3.3 Numerical Method  

Knowing the hyperbolicity of the conservation equation 3.1, the finite volume 

Godunov’s method is adopted (LeVeque 2002). In this method, equation 3.1 is 

integrated over a control volume  1 2 1 2 1, ,i i n nx x t t− + +
    as depicted in figure 3.2: 

1/2 1/2 1 1

1/2 1/2
1 1/2 1/2( , ) ( , ) ( ( , ) ( ( , ))

i i n n

i i n n

x x t t

n n i i
x x t t

x t dx x t dx x t dt x t dt
+ + + +

− −
+ − += + −   U U F U F U  3.8 

where 
21 /−ix  and 

21 /+ix  are the coordinates of two adjacent cell interfaces i-1/2 and 

i+1/2, respectively. 

 

Figure 3.2: Schematic representation of the wave configuration emerging at cell 
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interfaces i±1/2 of the discretised computational cell 
1 2 1 2,i ix x− +

    over the time 

interval  1,n nt t + . The superscript, * corresponds to the ‘star regions’ bounded by the 

left- and right-running waves. 

Equation 3.8 can be rewritten as (see Section A3, Appendix): 

 2121

1

// FFUU +−

+ −



+= ii

n

i

n

i
x

t

 

3.9 

where 
iU  is the vector of averaged conservative variables in  2121 // , +− ii xx , 

1 2iF  is the 

so-called Godunov’s fluxes evaluated at the cell interfaces (see figure 3.2), the 

timestep, Δt satisfies the CFL condition defined as: 

( )( )
max

1
t u c

CFL
x

 
= 


 

3.10 

In the current work, the Harten-Lax-van Leer-Contact (HLLC) approximate Riemann 

solver (Toro 2009e) is used to compute the required Godunov’s fluxes. Its derivation 

can be found in Section A3, Appendix. The corresponding expression for 
1/2i−F  at 

interface 1 2i −  is given by: 
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3.11 

where: 
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( )
( )

1 1 1 1 1 3

2

1 1 1 3

( )

( )

i i i i i i i i

i i i i

p p u u u u

u u

   


   

− − − −

− −

− + − − −
=

− − −
 

3.14 

Finally, the source term vector, Ψ in equation 3.1 is accounted for using the fractional 

splitting technique (LeVeque 2002). 

 

3.4 Results and Discussion  

3.4.1 Riemann Problem Tests 

In order to verify the flow model developed above, a Riemann problem test is 

performed, where equation 3.1 is solved to obtain the flow profiles, numerically 

approximating the wave structure of the solution.  

The simulation is performed for a 100 m long horizontal flow domain, initially filled 

with CO2. The left half of the domain is at 250 K and 30 bar (in liquid phase), whilst 

the right half is at 250 K and 1 bar (in vapour phase) for the prevailing conditions, as 

summarised in table 3.1.  

The flow domain is discretised uniformly into 2000 cells found to be sufficient to 

guarantee convergence (see figure A5.1, Appendix for the the grid convergence study 

results). The CFL number is set to be 0.5. 

Table 3.1: Initial conditions of CO2 in left and right part of the computational domain 

for the Riemann problem test. 

Fluid property Left state (x<50 m) Right state (x>50m) 

Pressure (bar) 30 1 

Temperature (K) 250 250 

Fluid phase Liquid Vapour 
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Figure 3.3 depicts the flow pressure and temperature profiles along the computational 

domain at 0.06 s following the start of the simulation. The predictions based on both 

equations 3.3 and 3.7 for calculating the fluid speed of sound at the triple point are 

presented. Also included in figure 3.3 (a) is a magnified plot for the boxed region of 

the pressure profile.  

  

(a) (b) 

Figure 3.3: Variations of pressure (a) and temperature (b) along the flow domain at 

0.06 s following the start of the simulation for the Riemann problem test. The 

predictions based on equations 3.3 and 3.7 are overlapped. 

Referring to figure 3.3, as it may be expected according to the classical wave structure 

(see figure 3.1), three waves emerge, including a rarefaction wave at ca. x = 5 m, a 

contact wave at ca. x = 65 m and a shock at x = ca. 75 m. The main features of these 

three classical waves are predicted consistently with those identified in Section 

2.1.6.1.3, Chapter 2. In particular, across the rarefaction wave, all the flow properties 

change continuously and smoothly; across the contact wave, there is a discontinuous 

change in the temperature (and other related thermal properties such as density and 

entropy) while the pressure and velocity remain constant; across the shock wave, all 

the flow properties change discontinuously.  

Interestingly, apart from these three waves, two additional waves respectively at ca. x 

= 50 m and x = 55 m can be observed in the left part of the domain (as marked by 

dashed-line box). They are separated from the most left rarefaction wave by two 

pressure plateaux, respectively at ca. 17 bar (saturated liquid) and 5.18 bar (the triple 

point) pressures (figure 3.3 (a)).  

In order to verify the above finding, the model prediction is then compared to the 

wave structure obtained from an analytical analysis of the isentrope (at the entropy 
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value corresponding to the initial flow conditions at the left part of the simulated 

domain) in p-v plane following Menikoff & Plohr (1989).  

Figure 3.4 shows p-v phase diagram for CO2 with several isentropes crossing the two-

phase equilibrium region and the triple point. 

  

Figure 3.4: CO2 p-v phase diagram, showing the phase boundaries and isentropes 

crossing the phase equilibrium regions; following the isentrope corresponding to the 

Riemann problem test (the dashed curve), points 1, 2 and 3 mark the vapour-liquid, 

triple point and solid-vapour phase transition boundaries, respectively. 

Focusing on the isentrope presented by the dashed curve in figure 3.4, three points 

exist at which its slope changes discontinuously. In the order of appearance these 

include at the phase transition boundaries of vapour-liquid (point 1), the triple point 

(point 2), and solid-vapour (point 3).  

Figure 3.5 shows the calculated fundamental derivative, ς along this isentrope. It can 

be seen that ς vanishes at points 1, 2 and 3, indicating the formation of anomalous 

waves. 
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To determine the type of the anomalous waves emerging at these three points, the 

convexity of the isentrope across these points is examined. Referring to figure 3.5, on 

both sides of point 1 (representing pure liquid phase and vapour-liquid mixture), ς 

remains positive, and the convexity of the isentrope is preserved. As such, following 

Menikoff & Plohr (1989), at this phase transition boundary, the emerging wave is 

identified as a split rarefaction wave from the rarefaction wave at ca. x = 5 m (see 

figure 3.3). 

As it also can be seen in figure 3.5, in contrast to point 1, ς vanishes both at and 

between points 2 and 3 where the fluid remains at the triple point. As such, the 

analysis applied above to identify the anomalous wave at point 1 cannot be directly 

extended to that for points 2 and 3. Alternatively, the nature of these waves may be 

partly determined by looking at the predicted decompression wave propagation speed 

profile near the triple point. 

 

Figure 3.5: Fundamental derivative, ς (defined by equation 3.4) along the isentrope 

marked by dashed curve in figure 3.4; phase transition boundaries are marked and 

circled in red. 
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Figure 3.6 shows the decompression wave speed profiles corresponding to figure 3.3 

in the proximity of the triple point. As it can be seen in figure 3.6 for both speed of 

sound models, the predicted wave speeds only differ within the triple point region. 

The predicted wave speed beyond phase transition boundary at point 3 (in the solid-

vapour mixture) increases rapidly and becomes significantly larger than that at point 2. 

This gives rise to a second split rarefaction wave, as can be observed in figure 3.3 (at 

ca. x = 55 m). Returning to figure 3.6, given that at the triple point the pressure 

remains constant, pure convection at flow velocity, u occurs, and the different wave 

speeds predicted by equations 3.3 and 3.7 have no impact on the solution of the 

Riemann problem. This is supported by a comparison between the two predicted 

profiles presented in figure 3.3, showing overlapped results.  

The wave structure from the above analysis is shown in figure 3.7.  

    

Figure 3.6: Predicted decompression wave speed profiles (corresponding to figure 

3.3) in the proximity of the triple point based on both equations 3.3 and 3.7 for 

calculating the fluid speed of sound at the triple point. 
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It is also worth noting that the isentropes originating either in the liquid or 

supercritical phases all exhibit discontinuous changes at the previously discussed 

phase transition boundaries (see figure 3.4). Given that CO2 is normally transported in 

the liquid or supercritical phases due to economic considerations, the numerically 

discovered anomalous waves are thus expected during the complete decompression of 

CO2 transmission pipelines. 

 

3.4.2 Model Validation  

In the following, the flow model presented above is validated against measurements 

taken from a large-scale pipeline decompression experiment performed as part of the 

COOLTRANS UK National Grid project (Brown et al. 2015). The test involved the 

Full Bore Rupture (FBR) of a thermally insulated 144 m long, 150 mm i.d. and 11 

mm wall thickness steel pipe containing liquid phase CO2 initially at 5.25 oC (278.38 

K) and 153.3 bar. The pipe was instrumented with fast response pressure and 

temperature transducers strategically placed along its length. The full details of the 

test set-up can be found in (Cosham et al. 2012).  

Simulations are performed based on a computational domain of 500 discretised cells 

(further grid refinement produces little variance in the results; see figure A5.2, 

Appendix) and using a CFL number of 0.5.   

 

Figure 3.7: Schematic representation of the wave structure from solving equation 3.1 

for the Riemann problem test defined in table 3.1. 

 t 

x 
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Figure 3.8 shows the predicted and measured variations of pressure with time at the 

intact end of the test pipe during its decompression following FBR. 

 

Figure 3.8: The variation of CO2 intact end pressure with time during decompression. 

The shaded area shows the triple point location.  

As it may be observed, theory and experiment are in excellent agreement. The initial 

rapid drop in pressure from 153.3 to 30 bar synonymous with FBR is followed by 

temporary pressure stabilisation at ca. 30 bar lasting for ca. 4.5 s. The latter 

corresponds to the split rarefaction wave at the vapour-liquid phase transition 

boundary (see Section 3.4.1).  

Following this temporary stabilisation, the pressure gradually decreases until 18 s, 

where a second pressure plateau is observed at the CO2 triple point (5.18 bar). This is 

attributed to the additional split rarefaction wave at the triple point phase transition 

boundary. As can be further observed from figure 3.8, after ca. 18 s, the 

depressurisation of two-phase solid−vapor mixture proceeds until reaching the 

ambient pressure. 
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Figure 3.9: The variation of CO2 intact end temperature with time during 

decompression. The shaded area shows the triple point location.  

Figure 3.9 shows the corresponding variations of intact end temperature with time 

during decompression based on the measurements and model predictions. As it may 

be observed, the temperature profiles follow very similar trends as with the pressure 

profiles presented and discussed in figure 3.8. However, although theory and 

experiment are in good accord up to the triple point, the degree of agreement 

decreases beyond this point where the flow model under-predicts the CO2 temperature 

by as much as ca. 12 K.  

We postulate that the observed discrepancy is mainly a consequence of the extent of 

the validity of the HEM assumption embedded in the flow governing equation 3.1 in 

which the constituent fluid phases are assumed to be at thermal and mechanical 

equilibrium. Prior to surpassing the CO2 triple point, the observed reasonably good 

agreement between theory and experiment indicates that such an assumption holds in 

this region. This is most likely due to the relatively high momentum and thus good 

mixing of the liquid and vapour phases such that inhomogeneity would be expected to 

be insignificant, that is, the flow is fully dispersed.  

However, the passing of the triple point marks the formation of much denser solid 

CO2 which separates and settles out of the solid-vapour mixture due to the gravitation. 

Thereafter, the fluid/wall heat transfer to the vapour phase may result in its 

superheated states (instead of saturated vapour predicted by the present model). Given 

that in the current study the fluid phase separation is not accounted for, this leads to 

the discrepancy observed between the present model temperature predictions and the 

measured data. 

Figures 3.10 shows the variation of solid mass fraction along the pipe at different 

decompression times of 15.6, 17.4 and 19.2 s following FBR. The data indicates that 

by 15.6 s following rupture, approximately 35% of the total mass of the remaining 

CO2 at the release end is in solid phase with the rest of the content upstream 

remaining in vapour phase. By 17.4 s following rupture (2.4 s later), the ‘solid front’ 

has propagated by approximately 30 m, reaching the pipe intact end at 19.2 s, where 

the percentage solid along the entire pipe length is approximately 30%.  
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Figure 3.10: Variation of predicted solid phase CO2 mass fraction along the pipeline 

at different decompression times following FBR. 

As mentioned earlier, the solid-vapour phase separation is not accounted for in the 

current HEM flow model, and thus the predicted distributions of the solid CO2 along 

the length of the pipe may be inaccurate. However, we may expect the HEM 

approximation to be applicable at the point of phase transition from vapour-liquid to 

vapour-liquid-solid at the triple point (i.e. at the solid front), providing valid estimates 

for the solid front propagation and the amount of solid CO2 formed behind. Such 

information is vitally important as it directly governs the likelihood of pipeline or 

emergency pressure relief valve blockage. 
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Figure 3.11: Variation of predicted pressure along the pipeline at different 

decompression times following FBR. 

Figure 3.11 shows the corresponding pressure profiles along the pipeline at the same 

times following FBR as those in figure 3.10. The data based on the speed of sound 

calculated using equation 3.3 (as opposed to equation 3.7) at 19.2 s following FBR is 

also included indicating an unrealistic constant pressure throughout the entire pipeline 

length at the triple point pressure (5.18 bar). In contrast, the proposed model produces 

a continuous drop in pressure below the triple point. The discontinuities in pressure 

profiles at 15.6 and 17.4 s following FBR in figure 3.11 correspond to the phase 

transition from the triple point to solid-vapour mixture. 

 

3.5 Concluding Remarks  

Based on the results and analysis presented in this chapter, the following key 

conclusions may be made:  

• A HEM flow model accounting for solid CO2 formation as pipeline 

decompression across the triple point is developed; 

• Model verification involving a Riemann problem test revealed emerging 

anomalous wave structure consisting of split rarefaction waves as a result of 
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phase transition. This is in agreement with the results obtained from the 

thermodynamic analysis performed as part of the study; 

• Comparisons of the model predictions and the corresponding measurements 

for the variations of pressure and temperature as a function of time during 

decompression showed a good agreement. In particular, the experimentally 

observed temporal pressure stabilisation at the triple point pressure was 

successfully captured; 

• The error in the temperature prediction was observed to grow systematically at 

the later stages of the decompression process (below the triple point), as 

heterogeneous flow may occur;  

• As heterogeneous flow is currently not accounted for, for accurately predicting 

the solid CO2 distributions along the length of the pipe, further study is 

required.  
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Chapter 4: 

Modelling of Thermodynamic Non-Equilibrium during 

Decompression of CO2-Rich Mixtures 

4.1 Introduction  

In Chapter 1, it was shown that delayed phase transition between the constituent fluid 

phases during rapid pipeline decompression leads to thermodynamic non-equilibrium. 

In the case of a non-equilibrium vapour-liquid mixture with superheated liquid phase, 

a faster decompression wave front and hence a higher decompression rate are 

expected (as compared to the corresponding Homogenous Equilibrium Mixture (HEM) 

system) before the constituent fluid phases return to equilibrium. Moreover, upon 

approaching the superheating limit (Section 2.1.4.4, Chapter 2), violent boiling in the 

liquid phase may lead to a catastrophic Boiling Liquid Expanding Vapour Explosion 

(BLEVE). As such, for the quantitative consequence assessment of pipeline 

decompression involving thermodynamic non-equilibrium, the HEM model is not 

applicable. 

To address the above, the Homogeneous Relaxation Mixture (HRM) model is 

developed (see Section 2.1.2.2.2, Chapter 2). However, as pointed out in the review of 

the HRM model applications (Section 2.2.2, Chapter 2), although studies have shown 

to produce improved accuracy over the widely used HEM model in predicting 

multiphase flow where thermodynamic non-equilibrium becomes relevant, its 

application has been limited to single-component flows. Given that most pipe flows 

encountered in practice are multi-component mixtures (in the case of CCS mostly 

CO2 containing N2, O2, H2O), and the fact that even a small amount of impurities can 

change the fluid properties drastically (Mahgerefteh et al. 2012), such a limitation 

significantly restricts the practical applications of the HRM model. 

In this chapter, the HRM model is extended to account for multi-component mixtures, 

which removes the previous limitation on its application in modelling thermodynamic 

non-equilibrium during rapid decompression. Given the focus of the present work 

being on CCS, CO2-rich mixtures are chosen as the working fluid.  

The chapter is organised as follows: Section 4.2 provides a description of the 

mathematical development of the model. In particular, the method for determining 
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superheated liquid states for a multi-component mixture is presented. The numerical 

method for solving the overall PDE system is given in Section 4.3. In Section 4.4, the 

developed model is validated against the measurements from three high-pressure 

pipeline decompression tests for CO2-rich mixtures conducted by the UK National 

Grid during the course of the COOLTRANS project (Cosham et al. 2012). 

Conclusions are drawn in Section 4.5. 

 

4.2 Theory 

4.2.1 Homogeneous Relaxation Mixture (HRM) Model 

Recalling Section 2.1.2.2.2, the basic form of the HRM model is once again presented: 
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4.4 

where ϕ is the vapour phase mass fraction. All other symbols have been defined 

previously (see Section 2.1.2.2.2, Chapter 2).  

In the case of two-phase flow, the bulk mixture properties are defined as follows: 

lv uuu ==  4.5 

lv ppp ==  4.6 

( )1v l   = + −  4.7 

( )1v le e e = + −  4.8 
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where the subscripts, v and l respectively denote the vapour and liquid fluid phases. 

Note that in equations 4.7 and 4.8: 

eq  , 
eq   4.9 

where the subscript, eq stands for thermodynamic equilibrium states. 

Returning to the conservation equations 4.1 to 4.3, the friction factor, f is computed 

following the Chen’s correlation given in Section 2.1.3.2, Chapter 2, and the 

fluid/wall heat transfer flux q  is assumed negligible following Brown et al. (2013). 

The transport equation 4.4 describes the evolution of α with the flow where the 

relaxation time, τ is given by (Angielczyk et al. 2010): 
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4.10 

where 
cp  is the critical pressure of the mixture, and 

0p  refers to as the saturated 

pressure at the (pipe) initial temperature. It is noted that, although this correlation has 

been successfully applied in predicting pure CO2 pipe flow (Brown et al. 2013), its 

accuracy for CO2-rich mixtures remains uncertain.  

It is noteworthy that as already mentioned in Section 2.1.2.2.2, Chapter 2, equation 

4.4 indicates an exponential tendency of the HRM system towards the HEM system as 

the flow develops at a rate governed by τ. 

Finally, accounting for multi-component mixture flows, species transport can be 

modelled using the following equations: 

1 2 3 ; 0
j jz z u

j , , ...J
t x

  
 = + =

 
 

4.11 

where 
jz~  is the component j mass composition in the bulk mixture. Note that: 

1 2 3 ;
j

j j

M
j , , ...J z z

M
 = =  

4.12 
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where zj is the corresponding molar composition. M and Mj are the molecular weight 

of the bulk mixture and component j, respectively. 

The complete expression of the HRM model is given below in vector form for 

numerical purposes: 

( ) ΨUFU =



+





xt
 

4.13 

where, U, F and Ψ are respectively the vectors of the conservative variables, the flux 

functions and the source terms given by: 
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4.2.2 Physical Properties 

Referring to equation 4.13, its solution consists of ρ, u, e, α and 
jz~ (or zj). Other flow 

properties of interest such as the temperature, pressure and speed of sound need to be 

computed through flash calculations. Their accurate predictions largely rely on the 

EoS employed.  

In this study, GERG-2008 EoS (Kunz & Wagner 2012) as implemented in the 

commercialised thermodynamic package, REFPROP (Lemmon et al. 2010), is 

employed given its superior accuracy in predicting fluid phase equilibrium as 

compared to cubic EoS (figure 2.2, Chapter 2). In the case of the HEM model, 

standard density-energy (ρ-e) flash calculation (available in REFPROP) is performed 

to obtain the corresponding fluid thermal properties and phase equilibrium data. On 

the other hand for the HRM model, given the need of accounting for fluid non-

equilibrium states, the flash calculation is re-formulated as presented in the following.  
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4.2.2.1 Multi-component Non-Equilibrium Flash Calculation  

With known ρ, e and α from solving equation 4.13, the standard ρ-e flash calculation 

is first performed to determine the equilibrium state of the flow, including αeq (ϕeq) 

and the corresponding component molar compositions in the vapour and liquid phases 

(denoted by 
,j satx  and 

,j saty , respectively).  

Next, assuming that the vapour phase remains saturated at the prevailing pressure 

during decompression (whilst the liquid phase is superheated) (De Lorenzo et al. 2017; 

Nouri-Borujerdi & Shafiei Ghazani 2017), its density and internal energy can be 

expressed as a function of p and yj: 

( ), ,v v sat je e p y=  4.15 

( ), ,v v sat jp y =  4.16 

Here, 
jy  is set to be equal to 

,j saty .  

Turning to the liquid phase, with known ρv, ev and α, solving equations 4.7 and 4.8 

gives ρl and el. The liquid phase molar composition, xj can be obtained from the 

material balance: 

1,2,3... ;
1

j j

j

z y
j J x


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−
 = =

−
 

4.17 

where   is the vapour phase molar fraction ( vM M = ).  

With the help of the selected EoS, the liquid phase density and internal energy can 

also be respectively expressed as: 

( ), , ,l l sh l jp T x =  4.18 

and: 

( ), , ,l l sh l je e p T x=  4.19 
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where the subscript, sh represents the superheated liquid state. It is noted that the 

temperature of the liquid phase, Tl  differs from that of the vapour phase, Tv. The 

pressures of the vapour and liquid phases are however equal as mechanical 

equilibrium is assumed to be retained.  

To this end, there exist 6 + J equations (4.7, 4.8, 4.15 to 4.19) and 6 + J unknowns (ev, 

ρv, el, ρl, p, Tl and xj). The non-linear algebraic system is closed, and both the saturated 

vapour and superheated liquid states are fully defined. The above non-linear system is 

solved with the numerical solver, DNSQE (Powell 1970) adopted in this study.  

 

4.2.2.2 Two-Phase Mixture Speed of Sound  

The speed of sound, c is one of the most important thermodynamic variables in 

determining the accuracy of a decompression flow model. As such, its predictive 

method for vapour-liquid two-phase mixtures is discussed separately in this section.  

For the HEM model, the vapour-liquid mixture speed of sound is given by equation 

3.6, Chapter 3. 

In the case of the HRM model, according to Brown et al. (2013), the vapour-liquid 

mixture speed of sound is instead defined as: 

( )
2 2 2

11

v lc c c

 −
= +  

4.20 

 

4.3 Numerical Method  

In this section, the solution strategy for the multi-component HRM model is presented. 

It can be shown that the corresponding PDEs are hyperbolic and hence exhibit wave 

behaviour (Bilicki & Kestin 1990). The general wave structure emerging at cell 

interface i-1/2 is displayed in figure 4.1.  
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Figure 4.1: Schematic representation of the wave configuration emerging at cell 

interface i-1/2 between the discretised computational cells i-1 and i over the time 

interval  1,n nt t +
. The superscript, * corresponds to the ‘star regions’ bounded by the 

left- and right-running waves. λ denotes the wave speed of each wave listed.  

From figure 4.1, it is evident that compared to the HEM model (see figure 2.6, 

Chapter 2), additional J+1 waves arise with the inclusion of the transport equations 

for α and 
jz~ . As these quantities are passively advected by the bulk flow, the 

corresponding waves propagate at the same speed u (i.e. 2 3 3 J   += = = ), 

overlapping with the contact wave shown in figure 4.1 (LeVeque 1992).  

With hyperbolicity, the PDEs are solved numerically using the Godunov’s method in 

conjunction with the HLLC Riemann solver (Toro 2009; see also Section A3, 

Appendix). However, due to the emerging additional waves, modifications are 

introduced to the intermediate states, 
*U . Using *

1i−U  as an example, the 

corresponding intermediate state reads:  
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Thereafter, the cell interface flux, 
1 2i−F  (figure 4.1) can be calculated exactly 

following equation A3.16, Appendix. 

 

4.4 Results and Discussion  

In the following, the HRM model developed for predicting thermodynamic non-

equilibrium during rapid pipeline decompression of multi-component mixtures is first 

tested by solving a specified Riemann problem (see equations 2.160 and 2.161, 

Chapter 2 for the definition of the Riemann problem).  

Thereafter, the model is validated against three large-scale pipeline decompression 

tests for binary and ternary CO2-rich mixtures carried out by National grid during the 

COOLTRANS project (Cosham et al. 2012). The predicted decompression wave 

curves and pressure/temperature variations as a function of time are compared to the 

corresponding measurements.  

The above tests are repeated for the HEM model and the HRM model based on 

constant relaxation times (in replacement of equation 4.10) to demonstrate the 

significance of the relaxation time on the extent of thermodynamic non-equilibrium 

during pipeline decompression.  

 

4.4.1 Riemann Problem Test  

The Riemann problem test consists of vapour and liquid phase CO2-N2 binary mixture 

(4 mol% CH4 + 96 mol% CO2) initially separated by a diaphragm at the middle of an 

assumed 1 m length horizontal domain. The initial flow conditions left and right to the 

diaphragm are respectively set at 60 bar, 260 K (in liquid phase) and 10 bar, 260 K (in 

vapour phase). The diaphragm is removed at the start of the simulations to allow the 

initial discontinuity to evolve.  

For simplicity, the fluid/wall friction terms are switched off. The computational 

domain is discretised into 500 equally-spaced cells (see figure A5.3, Appendix for the 

grid convergence test results), and the CFL number is fixed at 0.1.  
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To demonstrate the impact of the relaxation time on the Riemann problem solution, 

the above test is repeated for the HRM model based on constant relaxation times of 

0.05, 0.1 and 0.2 ms as well as the HEM model (representing an infinitely small 

relaxation time).  

The results are shown in figure 4.2 in terms of pressure, vapour molar fraction, 

density and velocity profiles along the domain length at 1 ms following the start of the 

simulation.  

  

(a)  (b)  

  

(c)  (d)  

Figure 4.2: Predicted pressure (a), vapour mole fraction (b), density (c) and velocity 

(d) profiles along the domain length at 1 ms following the start of the simulation for 

the defined Riemann problem. The predictions from the HEM model and the HRM 

model based on τ of constant values as well as computed following equation 4.10 (the 

correlation) are all included. 
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In figure 4.2 (a), focusing on the decompression waves in the vapour-liquid two-phase 

flow between x = 0.2 to 0.5 m, a faster decompression wave can be observed as the 

relaxation time increases. This is attributed to the increased delay in phase transition 

(in this case, evaporation). Such delay can be clearly observed from the vapour molar 

fraction profile magnified between x = 0.4 to 0.5 m as shown in figure 4.2 (b). This is 

consistent with the observation made by Brown et al. (2013) for pure CO2 flow. The 

predicted results using the correlation (equation 4.10) lies somewhere between the 

HEM model predictions and the HRM model predictions based on τ of 0.1 ms. 

 

4.4.2 Model Validation  

In the following section, the multi-component HRM model developed is employed to 

simulate three large-scale pipeline Full Bore Rupture (FBR) decompression tests for 

CO2-rich mixtures performed by National grid during the COOLTRANS project 

(Cosham et al. 2012). These three tests involved an insulated 144 m length, 146.36 

mm i.d. and 10.97 mm wall thickness carbon steel seamless pipe. The average 

roughness was 0.005 mm (see also Section 2.2.1.1). The details of the initial 

conditions for each test are presented in table 4.1.  

Table 4.1: Initial conditions of the pipeline FBR decompression tests. 

Test Fluid 

pressure 

(bar) 

Fluid 

temperature 

(K) 

Impurity 

compositions 

Fluid 

phase 

Ambient 

pressure 

(bar) 

Ambient 

temperature 

(K) 

26 140.4 293.0 

 

4.04 mol% 

N2 

Liquid 1.0 

273.6 

27 141.0 293.2 

 

2.62 mol% 

H2 

273.6 

28 140.6 293.1 4 mol% N2 + 

4.29 mol% 

H2 

274.3 

FBR was initiated at one end of the test pipe whilst the other end remained intact 

during the decompression process. The pipe was instrumented with a total number of 

35 pressure and 14 temperature transducers strategically distributed at various 

locations along its length. For the selected tests, the published measured data include 

the decompression wave curves at the interval of 3.64 to 6.04 m from the pipe release 

end, and the pressure and temperature evolutions at 143.78 m from the pipe release 
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end. For reference purposes, from here on, these two locations are respectively 

referred to as the open and close ends, respectively.  

The model validation is performed in two parts. This involves comparing the 

predicted decompression wave curves at the open end, and the pressure and 

temperature evolutions at the closed end with the corresponding measurements. 

All the simulations are performed based on a uniformly-spaced computational grid of 

200 cells (see Section A5.4, Appendix for the grid convergence test results). The CFL 

factor is set to be constant at 0.1.  

 

4.4.2.1 Decompression Wave Curves 

In figure 4.3, the predicted open end pressure is plotted against the corresponding 

decompression wave speed during the simulated decompression period from the HEM 

model and the HRM models with various relaxation times. The resulting curve is 

referred to as the decompression wave curve often used for the construction of the 

Batelle two-curve for pipeline fracture propagation analysis (see (Aursand et al. 2016; 

Martynov et al. 2017) for examples). Also included are the corresponding 

measurements for comparison.  
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(a) (b) 

 

(c) 

Figure 4.3: Predicted (from the HEM model and the HRM model based on τ of 

constant values as well as computed following equation 4.10 (the correlation)) and 

measured decompression wave curves for tests 26 (a), 27 (b) and 28 (c) following 

FBR. Also included are the zoom-in views at the phase transition point. 

Referring to the measured data, the decompression wave speed remains high (above 

300 m/s) in liquid phase for all the multi-component mixtures tested. Upon phase 

transition, pressure plateaux are observed (respectively at ca. 54, 60 and 97 bar in 

figures 4.3 (a) to (c) for tests 26 to 28), while the decompression wave speed drops 

discontinuously. The observed trend is associated with the formation of the vapour 

phase which significantly reduces the mixture sound speed. In all cases, the 

decompression wave speed eventually approaches zero, which corresponds to the 

sonic flow conditions at the pipe open end. 
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Turning to the model predictions, prior to phase transition, both the HEM model and 

the HRM model based on different relaxation times produce a relatively good 

agreement with the measurements. This is to be expected as thermodynamic non-

equilibrium plays no part at this stage of the decompression process.  

However, at the onset of evaporation, the impact of non-equilibrium becomes 

apparent. In all cases, as the relaxation time, τ increases, a lower pressure plateau is 

predicted by the HRM model. The difference obtained as compared to the HEM 

model predictions reaches more than 30 bar (test 28, figure 4.3 (c)). In comparison to 

the measured data, for tests 26 and 27, the best fit with the measured data is observed 

for the HRM model based on τ = 5 ms. On the other hand, the HEM model over-

predicts the pressure plateaux by more than 10 bar.  

In addition, the HEM model under-predicts the decompression wave speed as 

compared to the HRM model (at any given pressures), which is further elucidated by 

plotting the pressure profiles along the entire pipe length at different decompression 

times for test 26, as shown in figure 4.4.  

 

Figure 4.4: Predicted (from the HEM model and the HRM model based on τ of 

constant values as well as computed following equation 4.10 (the correlation)) 

pressure profiles along the pipe length at different decompression times for test 26 

following FBR. Arrows point towards the direction of increasing relaxation time. 

The under-prediction of the decompression wave speed from the HEM model can be 

significant e.g. for pipeline fracture propagation analysis, where this can lead to an 

over-estimation of the fracture length (Brown et al. 2013). 
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As decompression proceeds, it is interesting to note that the experimentally measured 

wave speeds are in close agreement with the HEM model predictions, and consistent 

over-predictions are observed for the HRM model. This indicates that, with 

significant phase transition, equation 4.20 for computing the speed of sound in the 

HRM model may become inaccurate, and equation 3.6, Chapter 3 may be used instead. 

In light of the above, the calculation of the speed of sound in the HRM model is 

modified, and the above simulations are repeated. The modification consists of 

changing the calculation of the speed of sound from equation 4.20 to equation 3.6 at 

0.01   (which is determined to produce the best agreement between the theoretical 

predictions and the measured data in all cases tested). The corresponding simulated 

results are plotted in figure 4.5. 

  

(a) (b) 

 

(c) 

Figure 4.5: Predicted (from the HEM model and the HRM model based on τ of 

constant values as well as computed following equation 4.10 (the correlation)) and 

measured decompression wave curves for tests 26 (a), 27 (b) and 28 (c) following 
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FBR. The speed of sound calculation in the HRM model has been changed from 

equation 4.20 to equation 3.6, Chapter 3 at 0.01  . 

As it may be observed from figure 4.5, the accuracy of the wave speed predictions 

from the HRM model during the later stages of the decompression process is 

significantly improved, in agreement with the experimental data.  

Returning to figure 4.3, it is noted that for all tests, τ computed following equation 

4.10 is in the proximity of 0.2 ms. In the case of tests 26 and 27, with equation 4.10, 

the HRM model over-predicts the pressure plateaux (as compared to the measured 

data), whereas in the case of test 28, a relatively good agreement is obtained. This 

reveals the limitation of the direct application of equation 4.10 (based on pure CO2) to 

CO2-rich mixture flows. To address the above, equation 4.10 may be re-adjusted 

based on available experimental data as suggested by Angielczyk et al. (2010).  

 

4.4.2.2 Variations of Pressure and Temperature against Time  

The second part of validation includes comparisons between the predicted and the 

measured pressure and temperature variations as a function of time at the pipe close 

end during decompression. The results for tests 26 and 28 are presented in figures 4.6 

and 4.8, respectively. Unfortunately, the measured transient pressure data during the 

first 2 s following FBR is not available.  
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(a) (b)  

Figure 4.6: Predicted (from the HEM model and the HRM model based on τ of 

constant values as well as computed following equation 4.10 (the correlation)) 

pressure variations as a function of time at the pipe open and closed ends and the 

measured data at the closed end for test 26 (a) and test 28 (b). Also included in the 

figures are the zoom-in views for the first 1 s following FBR.  

As it can be seen in figure 4.6, the vapour-liquid phase transition boundary is marked 

by the sudden changes in the decompression rates both at the open and close ends of 

the pipe. Interestingly, in contrast to the HEM model, pressure undershoots are 

predicted by the HRM model, the magnitude of which increases with τ during the 

early stages of the depressurisation (ca. t = 0 to 0.5 s). This trend is explained by 

plotting the corresponding decompression trajectories on the pressure-temperature (p-

T) phase diagrams as shown in figure 4.7.  
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(a) (b) 

Figure 4.7: Predicted decompression trajectories at the pipe close end for tests 26 (a) 

and 28 (b) in relation to the p-T phase diagrams. Also included in (a) and (b) are the 

zoom-in views near the phase transition boundaries (marked by the boxes). 

From figure 4.7, as it may be observed for both cases, delayed phase transition results 

in the depressurising fluid to temporarily remain in liquid-like phase instead of 

forming an equilibrium vapour-liquid mixture (cf. the HEM and the HRM model 

predictions). As a result, pressure undershoots below the corresponding equilibrium 

(saturated) values (65 bar for test 26 and 95 bar for test 28) are observed in the HRM 

model predictions. As the decompression process continues, rapid phase transition 

occurs, coinciding with a pressure rebound towards the equilibrium values. 

Returning to figure 4.6, after the HRM system approaches equilibrium, both model 

predictions are in-line with each other and in good agreement with the measurements.  
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(a) (b)  

Figure 4.8: Temperature variation with time for test 26 (a) and test 28 (b). The model 

predictions at both the open and close end and the measurements at the close end at 

different relaxation times are presented.  

Moving on to the in-pipe temperature evolutions in figure 4.8, as it may be observed, 

throughout the entire duration of the decompression process considered, good 

agreement with the measurements is obtained by both the HEM and HRM models. 

The maximum error is +5 K.  

 

4.4.2.3 Degree of Superheat 

Another important safety concern arising due to thermodynamic non-equilibrium 

occurring during rapid pipeline decompression is the risk of a BLEVE. It is directly 

related to the degree of superheat in the liquid phase (computed as l vT T− ) (Casal & 

Salla 2006). Such data predicted as a function of time at both the pipe open and close 

ends from the HRM model based on different relaxation times are presented in figure 

4.9 for test 26, as an example.  
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(a) (b) 

Figure 4.9: predicted degree of superheat as a function of time at both the open (a) 

and close ends (b) during decompression for test 26. 

From figure 4.9, as it may be observed, in accordance to the HRM model, 

superheating of the liquid phase is predicted at both the open and close ends for both 

tests. The degree of superheat increases with the extent of delayed phase transition 

(denoted by a larger relaxation time), and a maximum of 10 K is observed at the pipe 

open end (for τ = 20 ms). Minimal degree of superheat is predicted by the HRM 

model with τ computed following equation 4.10.  

The data in figure 4.9 in conjunction with an appropriate explosion model can form 

the basis for quantifying the failure consequences in the event of a BLEVE occurring 

during rapid pipeline decompression, such as the explosion overpressure.  

 

4.5 Concluding Remarks  

Based on the results and analysis presented in this chapter and the ranges of the 

parameters investigated, the following key conclusions may be made:  

• The HRM model has been successfully extended to simulate multi-component 

mixture flows occurring during rapid pipeline decompression; 

• By performing the Riemann problem test, the wave structure in a multi-

component mixture flow with thermodynamic non-equilibrium was revealed. 

The results indicated that delayed phase transition resulted in faster 

decompression waves and hence higher rates of decompression as compared to 
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the HEM model predictions. This observation agrees with the previous studies 

for single-component flow; 

• The HRM model developed was validated against pipeline FBR 

decompression experiments for CO2-rich mixtures. By comparing its 

predictions against the measurements for the decompression wave curves as 

well as the recorded variations of pressure and temperature as a function of 

time, overall, it was shown that improved accuracy could be obtained as 

compared to the HEM model; 

• Superheating in the liquid phase was captured by the HRM model at both the 

pipe open and closed ends during decompression. Its magnitude increased 

with an increase in delayed phase transition (marked by an increase in the 

relaxation time). The results indicated the risk of a BLEVE occurring; 

• The study also revealed the limitation of the HRM model due to the lack of 

suitable closure relations for computing the relaxation times for multi-

component mixtures. 

  



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 129 - 

 

Chapter 5: 

Modelling of Heterogeneous Flow during CO2 Pipeline Puncture 

Decompression 

5.1 Introduction  

So far, the main focus of the work presented has been on studying pipeline Full Bore 

Rupture (FBR) failures. Another possible failure mode encountered in practice is 

pipeline puncture. Although in comparison to pipeline FBR failure, pipeline puncture 

failure is much less catastrophic (given that the release flowrate of hazardous 

materials is much less), its significantly higher failure rate requires equal attention 

when performing quantitative failure consequence assessment for high-pressure 

transmission pipelines.  

As explained in Chapter 1, during pipeline puncture decompression, vapour-liquid 

phase separation (stratification) occurs (see figure 5.1). Such heterogeneous flow 

behaviour was observed to result in significant temperature difference between the 

two phases (referred to as thermal stratification) during the course of the CO2QUEST 

project.  

 

Figure 5.1: Photograph of vapour-liquid phase separation taken during a CO2 pipeline 

puncture decompression test as part of the CO2QUEST project (Solomon Brown et al. 

2014).  

 

Vapour-liquid interface 

Stratified liquid phase 

Stratified vapour phase 
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Such flow behaviour invalidates the Homogenous Equilibrium Mixture (HEM) 

assumption.  

Given the above, heterogeneous flow during pipeline puncture decompression must 

be considered when developing appropriate flow models for the safety assessment. 

With reference to the literature review (Section 2.1.2.2.4, Chapter 2), such a 

phenomenon may be accounted for by applying the Two-Fluid Mixture (TFM) model, 

which involves solving the mass, momentum and energy conservation equations 

separately for each fluid phase. However, as pointed out in the review of the TFM 

model applications in pipeline decompression studies (Section 2.2.4.3, Chapter 2), its 

current development is limited to pipeline FBR decompression, and thus its 

applicability in predicting pipeline puncture decompression remains uncertain. 

In this chapter, the TFM model is extended to enable the modelling of puncture-

induced depressurising pipe flow. Such extension is made via the construction of a 

puncture outflow boundary condition. In addition, a numerical scheme is developed 

aiming at improving the stability and accuracy of the existing scheme for solving the 

TFM model at locations within the two-phase flow where fluid phase volume 

fractions change rapidly. 

The study is organised as follows: Section 5.2 presents the basic mathematical 

formulation of the flow model and the closure relations for modelling the fluid-fluid 

interface mass, momentum and energy exchange. The development of the puncture 

outflow boundary condition for the TFM model is also presented in the same section. 

Section 5.3 commences with a detailed discussion on a widely used numerical scheme 

for the solution of the TFM model. This is followed by a description of the 

modifications introduced in the present study. In Section 5.4, the modified scheme is 

tested by performing a series of standard numerical experiments. Thereafter, the 

model developed is validated by comparing the predicted temperature and pressure 

variations as a function of time for two CO2 pipeline puncture decompression tests 

against the measured data. In addition, the impact of fluid phase separation on 

decompression characteristics (e.g. pressure and temperature) is shown by comparing 

the TFM model predictions to those from a HEM model. Conclusions are drawn in 

the last section. 
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5.2 Theory 

5.2.1 Two-Fluid Mixture (TFM) Flow Model 

In developing the pipeline puncture decompression model, both the stratified vapour 

and liquid phases are assumed to be compressible, and the depressurising flow is 

assumed to be one-dimensional. Furthermore, pressure relaxation is neglected (which 

leads to equal phasic pressures). The resulting six-equation Two-Fluid Mixture (TFM) 

model hence reads (see also Section 2.1.2.2.4, Chapter 2): 

v v v v vu

t x
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where 
,v lH  is the total enthalpy ( 2

, , , 2v l v l v lH h u= + ) of each fluid phase. The 

subscripts, v and l denote vapour and liquid phases, respectively. The phasic volume 

fractions additionally fulfil: 

1l v + =  5.7 

In the mass conservation equations 5.1 and 5.2, the net rate of interface mass 

exchange per volume, Γ is determined by: 

l v= +  5.8 
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where Γl denotes the mass transfer from the liquid phase to the vapour phase 

(positive), while Γv represents the mass transfer from the vapour phase to the liquid 

phase (negative). Following Wen et al. (2016): 

,

,

l satl l
l

l sat

p p

p

 



−
 =  

5.9 

,

,

v satv v
v

v sat

p p

p

 



−
 =  

5.10 

In the above equations, the subscript, sat represents the saturated states for the 

simulated vapour and liquid phases. τ is the relaxation time. Thermodynamic non-

equilibrium is not considered in this study.  

Turning to the momentum conservation equations 5.3 and 5.4, the first term on the 

RHS, intF  represents the interface momentum exchange due to the interface pressure 

force, intp
F  and drag force, 

dF . The interface pressure force is given by equation 

2.175, Chapter 2. For the interface drag force, 
dF  is expressed as (Taitel & Dukler 

1976): 

( )int

2

d v v l v l

d

C u u u u
F A

 − −
=  

5.11 

where 
intA  and Cd are respectively the interface area per unit volume and the drag 

coefficient. For stratified flow with an assumed flat interface (Taitel & Dukler 1976):  

( )
2

,int

,

4 1 2 1l w in

w in

D D
A

D

− −
=  

5.12 

where 
lD  and 

,w inD  are respectively the liquid phase elevation and the pipe inner 

diameter (see figure 2.1, Chapter 2). Returning to equation 5.11, the drag coefficient 

for stratified flow is given by Taitel & Dukler (1976): 

0.20.046Red vC −=  5.13 

where Rev is the vapour phase Reynolds number. 
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The second term on the RHS of equations 5.3 and 5.4 accounts for the momentum 

exchange due to mass exchange, where the interface velocity, 
intu  is given by 

equation 2.178, Chapter 2. The last term corresponds to the fluid/wall friction force in 

each fluid phases, given by equations 2.65 and 2.66, Chapter 2.  

Moving on to the RHS of the energy conservation equations 5.5 and 5.6, the first term 

describes energy exchange associated with mass exchange. The second term 

corresponds to the work done by the interface forces (including the interphase 

pressure force and drag force). The last term accounts for fluid/wall heat transfer in 

each fluid phase. The corresponding volumetric heat sources, 
vQ  and 

lQ  are 

computed by assuming forced convection and nucleate boiling as the dominating heat 

transfer modes respectively in the vapour and liquid phases, following equations 2.56 

and 2.58, Chapter 2.  

 

5.2.2 Boundary Conditions 

In order to close the conservation equations 5.1 to 5.6, suitable boundary conditions 

must be specified. In this study, the boundary conditions are implemented by 

introducing ‘ghost cells’ at both ends of the computational domain, representing the 

pipe closed and release ends.  

At the closed end, the velocity in the added ghost cell is set to be zero, whilst the 

scalar variables are equated to the corresponding values at the adjacent cell centre 

within the computational domain.  

At the release end, figure 5.2 is a schematic representation of the flow through the 

puncture.  
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Figure 5.2: Schematic representation of the flow through the puncture.  

From figure 5.2, it can be seen that the flow area changes significantly from the 

pipeline to the puncture orifice. The flow accelerates until becoming sonic (choked) at 

the puncture orifice. The development of the required boundary condition for 

simulating the above is detailed below.  

According to Brown et al. (2013), during pipeline puncture decompression, in the 

proximity of the puncture, the vapour and liquid phases are dispersed due to relatively 

high velocity (as illustrated in figure 5.2). Given the above, the HEM assumption is 

applied in the ghost cell at the release end. The corresponding HEM model 

conservation equations are presented in Section 2.1.2.2.1, Chapter 2.  

Next, the flow at the puncture orifice is further assumed to be adiabatic and 

frictionless (Richardson et al. 2006). As a result, the energy conservation equation can 

be neglected, and the remaining mass and momentum conservation equations are 

rewritten as (Thompson 1987; Thompson 1990): 
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Herein, ζ is referred to as the wave amplitude, for which the generic expressions are 

given by: 

Following Thompson (1987), modifications to equations 5.16 and 5.17 may be 

required at the flow boundaries. In our case, 
1  needs to be specified in accordance 

with the flow acceleration through the variable flow areas (from the pipeline to the 

puncture orifice).  
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Multiplying equation 5.14 by u and equation 5.15 by ρ gives: 
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By adding equations 5.18 and 5.19, the following equation is derived: 
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Where, m u= . In equation 5.20, 
2  is a known quantity from equation 5.17, and the 

derivative of the mass flux with respect to time is approximated by: 

1

1
n n

m
m m

t t −


  −  

 5.21 

where the subscripts, n-1 and n respectively denote the previous and current timesteps. 

n
m  is given by: 

where the subscripts, orifice and up respectively represent the flow at the puncture 

orifice and its upstream. ( )
orifice

u  is computed following Section 3.2.3, Chapter 3.  

Finally, equations 5.14 and 5.15 can now be readily solved for a complete description 

of the flow conditions in the ghost cell at the pipe release end. It is noted here that the 

developed boundary condition is also directly applicable to the HEM model.  

 

5.2.3 Thermodynamics  
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In this study, the fluid thermal properties and phase equilibrium data are computed 

using Peng-Robinson (PR) Equation of State (EoS) (Peng & Robinson 1976). PR EoS 

has been extensively applied and validated in pipeline decompression studies 

especially for CO2 (Mahgerefteh et al. 2012; Brown et al. 2013; S. Brown et al. 2014).  

 

5.3 Numerical Method  

5.3.1 AUSM+-up Flux Splitting Scheme 

In this section, the AUSM flux splitting scheme first proposed by Paillère et al. (2003) 

for solving hyperbolic conservation equations 5.1 to 5.6 is summarised.  

As a first step, equations 5.1 to 5.6 are written in vector form: 
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Following Paillère et al. (2003), the discretised form is given by: 
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where n and i respectively represent the nth timestep and ith numerical cell in the 

computational domain. i±1/2 denotes the left/right cell interface. 

The next task at hand is to compute the interface flux, 
1 2iF . The interface flux for kth 

fluid phase can be split into the advection flux, ( )
1 2k i+

A  and the pressure flux, 

( )
1 2k i+

P , such that: 
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Here, ( )
21+ikm  is the cell interface mass flux, given by: 
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1 2 12 2

k i

k k k ki i i i

k k k k ki i i

m

M M M M
a    

+

+ + + +

+ +

=

 + −
 +
 
 

 

5.27 

where: 

( ) ( ) ( )
121 ++

=
ikikik aaa

 
5.28 

( )
( )
( )

21+

=
ik

ik

ik
a

u
M

 

5.29 

( ) ( )( ) ( )( )
121 +

−+

+
+=

ikikik MMM MM  5.30 

with the polynomials, 


M  given by: 

( )kk MM +=

2

1
1M

 

5.31 
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5.32 
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1
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else1 16 1 8
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




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M
M
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5.33 

The advection flux is then readily computed as: 

( )

( ) ( )

( )

1 2 1 2

1 2

1 2

1

1

 if 0

1

 else

k k ki i

k i
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= 
 
 
   

  
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5.34 

and the pressure flux is given by: 

( ) ( ) ( )( )( ) ( )( )( )
112121 ++

−+

++
+==

ikikikik

AUSM

ikik pMpM  PPPP  5.35 

with the polynomials, 
P  defined as: 

( )( )
1

2

2 2
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M M

M M




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M

P
M P

 
5.36 

On an additional note, for low Mach number flows, numerical diffusion can be added 

to both the advection and pressure fluxes to improve the stability of the scheme, 

which leads to: 

( ) ( ) ( ) ( ) ( )

( )
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1
2

2121
01max
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++

−

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
 ,  

5.37 

( ) ( )

( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )
1 2 1 2

1 1 1 2 1

P P
AUSM AUSM

k ki i

u k k k k k k k k ki i i i i i i
K M M a u u   

+ +

+ −

+ + + +

= −

+ −P P

 

5.38 

where: 
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0.1u pK K= =  5.39 

( ) ( )( )
1
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+=
ikikk MMM

 
5.40 

( ) ( )( )
1

21
+

+=
ikkikkkk 

 
5.41 

Thereafter, following equation 5.26, addition of the advection flux and the pressure 

flux gives the sought interface flux. 

Turning to the non-conservative terms in equation 5.25, its discretisation in vector 

form reads: 

( )
( ) ( )

( )
( ) ( )
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 
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


 

5.42 

following Paillère et al. (2003) and S. Brown et al. (2014). 

Lastly, the volumetric source terms are accounted for explicitly using fractional step 

approach (LeVeque 1992).  

 

5.3.2 Modifications towards the AUSM Scheme 

Focusing on the ( )k p x   and 
kp x   terms in equation 5.24 (respectively in the 

momentum flux and the non-conservative terms), according to Chang & Liou (2007), 

their discretisation must be compatible in order to avoid numerical instability at the 

locations where αk varies rapidly. In the presented scheme above, ( )k p x   is 

discretised following equation 5.35, and 
kp x   on the other hand is discretised 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 140 - 

 

following the centred difference scheme (equation 5.42). It is clear that the 

compatibility requirement is unlikely to be fulfilled. 

To address such an issue, in what follows, modifications towards the AUSM scheme 

are introduced.  

 

5.3.2.1 Modified Discretisation 

According to Munkejord et al. (2009), the non-conservative term in equation 5.23, 

nvC  can be recast into its mathematically equivalent form given by: 

nv

x


= −



W
C B  

5.43 

where: 
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( )
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     
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+
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Note that 
v l  =−  (from equation 5.7), and W is a function of U. Substitution of 

equation 5.44 into 5.23 gives: 

t x x

  
+ + =

  

U F W
B 0  5.45 
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Here, the source term, S is dropped temporarily for simplicity. Following Tokareva & 

Toro (2016), equation 5.45 can be split into two systems:  

t x

 
+ =

 

U A
0  5.46 

t x x

  
+ + =

  

U P W
B 0  5.47 

where A and P are defined in Section 5.3.1. The overall numerical fluxes at cell 

interfaces corresponding to equation 5.45 are then computed as the sum of the 

numerical fluxes corresponding to equations 5.46 and 5.47 (denoted as 
1 2iA  and 

1 2iD  respectively). From the above, the updating formula for 
iU  reads: 

( ) ( )1

1 2 1 2 1 2 1 2

n n

i i i i i i

t t

x x

+

− + − +

 
= + − + −

 
U U A A D D  5.48 

In equation 5.48, 
1 2iD  is computed following the PRImitive CEntred scheme of the 

First ORder CEntred type (PRICE-FORCE) analogous to the implementation by 

Munkejord et al. (2009) (see also Section A4.3, Appendix), which gives: 

( )LWPRICE

i

LFPRICE

i

FORCEPRICE

ii

−

+

−

+

−

++ +== 21212121
2

1
DDDD  5.49 

where 
LFPRICE

i

−

+ 21D  is computed following the PRICE-Lax-Friedrichs scheme given by 

(Toro & Siviglia 2003): 

( ) ( ) ( )11121
2
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2

1

2

1
+++

−

+ ++−++= iiiiiii

LFPRICE

i
t

x
WWBUUPPD




 5.50 

and 
LWPRICE

i

−

+ 21D  is given by the PRICE-Lax-Wendroff scheme (Toro & Siviglia 2003): 

( ) ( )( )** UWBUPD 212121 ++

−

+ += iii

LWPRICE

i
 5.51 

where: 

( ) ( ) ( )1211121
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1
+++++ −+−++= iiiiiii

*

i
x
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t
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






 5.52 

with: 
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






 +
= +

+
2

1
21

ii
i

WW
BB  

5.53 

From the above, in contrast to the implementation in the original AUSM scheme, 

( )k p x   and 
kp x   are discretised following the same numerical scheme. 

 

5.3.2.2 MUSTA Scheme 

It is known that centred schemes are more diffusive as compared to upwind schemes 

(Toro 2006), which leads to loss of accuracy in capturing discontinuities (e.g. shocks) 

and large gradients in flows. As a remedy, the MUltiStage Approach (MUSTA) first 

introduced by Toro (2006) is adopted here.  

The central idea of the MUSTA scheme is to subdivide each numerical cell on the 

global grid into 2N sub-cells (N = 1, 2, 3…), resulting in the so-called MUSTA grid. 

The solutions of the relevant equation system is then advanced on the MUSTA grid 

for M successive stages with a local timestep, 
totalt . 

totalt  is determined by the CFL 

condition (with a specified constant local CFL factor). With M increasing from 1 to ∞, 

the accuracy of the centred scheme approaches the most accurate upwind scheme 

(Toro 2006).  

However, this is achieved at the expense of computational efficiency. For example, 

Munkejord et al. (2009) found that at least 200 stages with 200 sub-cells (i.e. N = 100, 

M = 200) was necessary to obtain a comparable performance to the tested upwind 

scheme. 

The implementation of the MUSTA scheme is discussed in the following. Equation 

5.47 is first solved on the MUSTA gird of 2N sub-cells with a local timestep of 
totalt . 

Thereafter, all the variables at each sub-cell centre are updated, and 
1 2iD  are re-

computed. The updated cell centre values are adopted as the initial conditions for the 

next stage, and the above procedure is repeated until the required number of stages, M 

is reached. On an important note, to avoid undesired numerical oscillations, it is 

recommended to set NM 2 (Toro 2006). Finally, 
1 2iD  obtained at the end of the 
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final stage are substituted into the updating formula equation 5.48 to advance the 

solution in time and space on the global grid. 

The resulting scheme is simply referred to as the MUSTA scheme.  

 

5.3.2.3 AUSM-MUSTA Scheme  

As mentioned above, the MUSTA scheme can be computationally demanding to 

achieve an accuracy comparable to upwind schemes. To address such an issue, the 

following is proposed.  

The idea stems from the fact that the AUSM scheme only loses accuracy at the 

locations where αk changes rapidly. At each timestep, the difference in 
v  between 

two adjacent cells is evaluated and checked against the set-point value, set

v  

( 51 10set

v
− =  ). The modifications introduced in this study will be activated only if 

set

v v   .  

For the sake of clarity, the final scheme is referred to as the AUSM-MUSTA scheme.  

 

5.3.2.4 Second-Order Extension of the AUSM-MUSTA Scheme 

The AUSM-MUSTA scheme proposed in the present study is of first-order accuracy 

both in time and space. To obtain its second-order extension, the Monotone Upwind-

centred Scheme of Conservation Laws (MUSCL) (Toro 2009f) is adopted. The central 

component of the MUSCL scheme is the reconstruction of the flow variables based on 

interpolation techniques. Herein, a set of primitive flow variables, 

( ), , , , ,v v l v lp u u T T=V  (in replacement of U) is selected following the 

recommendation by Munkejord et al. (2009). Applying piecewise linear interpolation, 

the corresponding interpolated values on the left/right surface of the cell interface, 

i+1/2 respectively read: 

1 2
2

R

i i i

x
+


= + V V  

5.54 
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1 2 1 1
2

L

i i i

x
+ + +


= − V V  5.55 

( )1i i i + = −V V , ( )+1 2 +1i i i + = −V V  5.56 

where θ is the standard van Leer slope limiter function (see (Toro 2009a) and (Toro & 

Billett 2000) for details) to supress numerical oscillations introduced by high-order 

schemes. 

After data reconstruction, the primitive variable set, ( )1 2 1 2, R L

i i+ +V V  are converted to the 

corresponding conservative variable set, ( )1 2 1 2, R L

i i+ +U U  for the computation of the 

interface fluxes exactly following the procedure introduced earlier in this section, in 

replacement of ( )i i 1, +U U . 

 

5.4 Results and Discussion  

5.4.1 Model Verification  

For the verification of the proposed AUSM-MUSTA scheme for solving the TFM 

model equations 5.1 to 5.6, three numerical experiments that are most commonly seen 

in the literature (Tokareva & Toro 2010; Paillère et al. 2003; Munkejord et al. 2009; 

Munkejord 2010) are performed. They are the moving discontinuity test, the water 

faucet problem test and the Toumi’s shocktube problem test.  

During all three numerical experiments, the ideal gas and stiffened gas EoS (see 

(FlÅtten et al. 2011) for details) are respectively applied to the vapour and liquid fluid 

phases. For the stiffened gas EoS, one needs to specify three parameters, κ, p∞ and Cp.
 

Their constant values are given in table 5.1. In addition, the terms representing 

interface and fluid/wall interactions are omitted in equations 5.1 to 5.6.  

Table 5.1: Ideal gas and stiffened gas EoS constant parameters employed in this study. 

 κ p∞ 

(pa) 

Cp 

(J/kg-K) 

Vapour 1.4 0.0 1008.7 

liquid 2.8 8.5×108 4186.0 
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5.4.1.1 Moving Discontinuity Test  

The moving discontinuity test concerns the propagation of the initial vapour-liquid 

interface with the flow of uniform pressure and velocity. With reference to equations 

5.1 to 5.6, in such case, no variations in pressure and velocity should be introduced by 

a numerical scheme as the discontinuity propagates. This is sometimes called the 

‘pressure non-distribution’ condition (Munkejord et al. 2009). The details of the test 

initial conditions are given in table 5.2. 

Table 5.2: Initial conditions for the moving discontinuity test.  

Quantity Left (x = 0 ~ 6 m) Right (x = 6 ~ 12 m) 

Fluid pressure 

 (bar) 

1 1 

Fluid temperature 

 (K) 

315.9 315.9 

Vapour phase volume 

fraction 

0.9999 (~1.0) 0.0001 (~0.0) 

Vapour phase velocity 

(m/s) 

100 100 

Liquid phase velocity 

(m/s) 

100 100 

The numerical test is simulated using the AUSM scheme, the AUSM-MUSTA (M = 4) 

scheme and the MUSTA (M = 4) scheme on a computational domain of 400 equal-

spaced cells with a CFL number of 0.5. The results are presented in figure 5.3. Also 

included are the corresponding exact solution for comparison. 
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(a) (b) 

 

(c) 

Figure 5.3: Predicted and exact pressure (a), vapour phase volume fraction (b) and 

velocity (c) profiles along the length of the computational domain at 0.03 s following 

the sart of the simulation for the moving discontinuity test. In (a) and (b), the red and 

yellow curves (respectively representing the AUSM-MUSTA and MUSTA schemes 

predictions) conicide with the exact solution (marked by the black curve). 

From figure 5.3, although all three schemes are capable of predicting the propagation 

of the vapour-liquid interface, in reasonably good agreement with the exact solution 

(see figure 5.3 (b)), it is clear that the AUSM scheme does not fulfil the pressure non-

distribution condition. As it can be seen in figures 5.3 (a) and (c), disturbances are 

introduced to both pressure and velocity profiles along the computational domain. 

This is attributed to the incompatibility between the discretisation of the ( )k p x   

and 
kp x   terms respectively in the momentum and non-conservative terms in the 

AUSM scheme.  
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With regards to the MUSTA and AUSM-MUSTA schemes, in both cases, the 

pressure non-distribution condition is met.  

5.4.1.2 Water Faucet Problem Test 

The water faucet problem was firstly introduced by Ransom (1987) and later studied 

by a number of researchers (Tokareva & Toro 2016; Paillère et al. 2003; Munkejord 

et al. 2009; Munkejord 2010) mainly to test the accuracy of the numerical schemes for 

solving the TFM model in one-dimension. The test consists of a water column of 12 

m length initially moving at 10 m/s, which is surrounded by air at the same velocity. 

Other relevant initial conditions are given in table 5.3. 

Table 5.3: Initial conditions for the water faucet problem.  

Quantity x = 0 ~ 12 m 

Fluid pressure  

(bar) 

1 

Fluid temperature  

(K) 

300 

Vapour phase volume 

fraction 

0.2 

Vapour phase velocity 

(m/s) 

10 

Liquid phase velocity 

(m/s) 

10 

The gravity force is applied to the flow field, causing the water column to accelerate 

and become narrower along its length due to mass conservation. There exists an 

analytical solution for the corresponding vapour phase volume fraction profile along 

the flow domain at any given time.  

In what follows, the predicted pressure, temperature, vapour volume fraction and 

velocity profiles along the length of the computational domain at 0.5 s following the 

start of the simulation using all three schemes described above are presented. In 

particular, the vapour volume fraction profile predictions are compared to the 

analytical solution. The results are displayed in figure 5.4. All the simulations are 

performed on a uniform computational grid of 2000 cells with a CFL number of 0.5. 

(The grid convergence test results can be found in figure A5.5, Appendix). 
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(a) (b) 

  

(c) (d) 

Figure 5.4: The predicted pressure (a), temperature (b), vapour volume fraction (c) 

and velocity (d) profiles along the length of the computational domain at 0.5 s 

following the sart of the simulation for the water faucet problem test. The analytical 

solution of the vapour volume fraction profile is also included in (c). 

From figure 5.4, it can be seen that all three schemes predict similar profiles. 

However, by comparing the predicted vapour phase volume fraction profiles to the 

analytical solution (figure 5.4 (c)), the AUSM-MUSTA and MUSTA schemes with 4 

stages ( 4M = ) are more diffusive than the AUSM scheme.  

Such an undesired property of the AUSM-MUSTA and MUSTA schemes can be 

mitigated by increasing the number of the stages, M. 10M = is tested in this study. 

The corresponding predictions from the AUSM-MUSTA scheme are included in 

figure 5.4. As may be observed, a noticeable improvement in the accuracy is obtained. 

However, as pointed out in Section 5.3.2.2, such an improvement is at the expense of 

much increased computational workload. Figure 5.5 depicts the runtime for all 
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schemes tested for the water faucet problem, and that for M = 10 is more than 250 % 

higher than that for M = 4.  

 

Figure 5.5: Computaional runtimes of each tested numerical schemes in the water 

faucet problem test using a Intel ® Core ™ i5 4590 CPU at 3.30 GHz 

Return to figure 5.4, no numerical instability is observed in the AUSM scheme 

predictions in this particular test case.  
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5.4.1.3 Toumi’s Shocktube Problem Test 

The Toumi’s shocktube problem, first introduced by Toumi et al. (1999), is another 

classic test for examining the accuracy of the numerical schemes for the TFM model. 

The problem consists of a horizontal tube filled with two fluids of different initial 

states separated by a diaphragm in the middle. To commence the simulation, the 

diaphragm is removed, and the flow field starts to evolve. The relevant initial 

conditions are given in table 5.4. 

Table 5.4: Initial conditions for the Toumi’s shocktube problem test. All symbols are 

defined previously.  

Quantity Left (x = 0 – 5 m) Right (x = 5– 10 m) 

Fluid pressure 

(bar) 

200 100 

Fluid temperature 

(K) 

308.15 308.15 

Vapour phase volume 

fraction 

0.25 0.1 

Vapour phase velocity 

(m/s) 

0 0 

Liquid phase velocity 

(m/s) 

0 0 

The tests are performed using all three schemes on a uniform computational grid of 

2000 cells with a CFL number of 0.5 (The grid convergence test results are shown in 

figure A5.6, Appendix). The results are presented in figure 5.6. 
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(a) (b) 

  

(c) (d) 

Figure 5.6: The predicted pressure (a), temperature (b), vapour volume fraction (c) 

and velocity (d) profiles along the length of the computational domain at 0.06 s 

following the start of the simulation for the Toumi’s shocktube problem test.  

From figure 5.6, some general observations can be made first: all three schemes are 

capable of predicting the propagation of the initial discontinuities; the AUSM scheme 

is again the least diffusive at locations with large gradients (at ca. 5 m in the vapour 

volume fraction profile and the vapour velocity profile).  

Turning to the included magnified plots for the boxed regions in the predicted flow 

profiles in figures 5.6 (a) to (d), overshoots can be observed in all AUSM scheme 

predictions. Such a numerical instability and hence the loss of accuracy is again 

caused by the AUSM scheme being unable to meet the compatibility requirement (see 

Section 5.3.2.1). On the other hand, both the proposed AUSM-MUSTA and MUSTA 

schemes give satisfactory results.  
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In terms of computational efficiency, from figure 5.7 showing the runtimes of all 

three schemes, the AUSM scheme again comes first, followed by the AUSM-MUSTA 

scheme which is more than 250 % faster than the MUSTA scheme, indicating the 

effectiveness of the AUSM-MUSTA scheme in improving the computational 

efficiency while maintaining its accuracy. 

 

Figure 5.7: Computaional runtimes of each tested numerical schemes in the Toumi’s 

shocktube problem test using a Intel ® Core ™ i5 4590 CPU at 3.30 GHz. 

 

5.4.1.4 Effect of Second-Order Extension on the AUSM-MUSTA Scheme  

As presented in Section 5.3.2.4, the proposed ASUM-MUSTA scheme is readily 

extended to second-order accuracy via the MUSCL scheme. The resulting second-

order scheme is tested by repeating the water faucet problem and Toumi’s shocktube 

problem tests. The results (in terms of vapour phase volume fraction as an example) 

are presented in figure 5.8, together with the predictions from the first-order ASUM-

MUSTA scheme for reference. The number of numerical cells (2000 cells) and the 

CFL number (0.5) remain unchanged.  
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(a) (b) 

Figure 5.8: Comparisons of the predictions of vapour phase volume fraction profiles 

along the computational domain from the fisrt- and second-order ASUM-MUSTA 

schemes for the water faucet problem test (a) and the Toumi’s shocktube prblem test 

(b). The profiles are recored at 0.5 s and 0.06 s respectively for the two tests.   

As can be seen in figure 5.8, in both cases, a significant improvement in accuracy 

especially for the predictions at the locations with large gradients is obtained.  

 

5.4.2 Model Validation  

In the following section, the TFM model with the AUSM-MUSTA scheme is used to 

simulate two CO2 pipeline puncture decompression tests conducted during the course 

of the collaborative CO2QUEST FP7 project (Solomon Brown et al. 2014). The model 

predictions are compared to available experimental measurements for validation 

purpose. In addition, the HEM model (Section 2.1.2.2.1, Chapter 2) is applied to 

repeat the simulations, and the results are included in the comparisons. 

 

5.4.2.1 INERIS Medium-Scale Pipeline Puncture Decompression Test  

In this experiment, the test rig involved a thermally insulated horizontal pipe of 37 m 

length and 50.8 mm i.d. A 6 mm i.d. orifice release nozzle was attached to one end of 

the test pipe while the other end remained closed, mimicking a puncture failure-

induced pipeline decompression. The pipeline was initially filled with saturated 
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vapour-liquid two-phase CO2.  The full details of the initial conditions are given in 

table 5.5.  

Table 5.5: INERIS CO2 pipeline puncture decompression test conditions. 

Quantity x = 0 ~ 37 m 

Fluid pressure  

(bar) 

55 

Fluid temperature 

(K) 

292 

Ambient pressure 

(bar) 

1 

Ambient temperature  

(K) 

293 

Inventory  

(kg) 

41 

Fluid phase Two-phase 

(with 30 vol% 

vapour) 

Upon decompression, the CO2 temperatures and pressures were monitored at four 

different locations of 0.5, 12.5, 25 and 36.5 m from the closed end along the pipe 

length, using K-type thermocouples (1 mm sleeve Inconel, ± 1.0 oC error) and 

piezoresistive gauge pressure sensors (Kistler 4622A, 0 – 300 bar, ± 0.05% accuracy). 

At each location, there were three thermocouples installed at top, middle and bottom 

of the pipe cross-section; the top and bottom thermocouples respectively recorded the 

temperature of the stratified vapour and liquid phases. The remaining inventory mass 

in the pipe was measured using load cells (Tedea-Huntleigh 1250, ± 0.02 %accuracy).  

The simulations are performed on a uniform grid of 100 discretised computation cells 

with a CFL number of 0.3. Further grid refinement results in little difference in the 

simulated results (see figure A5.7, Appendix) 

Figure 5.9 shows the TFM and HEM model simulated variations of CO2 pressure with 

release time 12.5 m from the closed end of the pipe together with the corresponding 

measured data.  
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Figure 5.9: Predicted (from both the HEM and TFM models) and measured CO2 

pressure variations as a function of time during decompression for the INERIS 

pipeline puncture decompression test. 

As can be seen in figure 5.9, the pressure variations with time follow an 

approximately linear trend which is expected for two-phase mixture flows (Martynov 

et al. 2014). Turning to the model predictions, the TFM model is in close agreement 

with the measurement, with a maximum difference of 3 bar occurring at the later 

stages of the depressurisation process. With regards to the HEM model, in spite of 

producing a generally agreement with the measured data, it predicts a slower rate of 

decompression compared to the TFM prediction and measurement between 0 and 60 s 

following the release. The predicted decompression rate increases to the end of the 

simulated decompression period.  

Figure 5.10 shows the corresponding variations of CO2 temperature as a function of 

time following release. It is particularly noted that the measured data reported are 

those recorded from the top (stratified vapour phase) and bottom (stratified liquid 

phase) sections of the pipe.  



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 156 - 

 

 

Figure 5.10: Predicted (from both the HEM and TFM models) and measured CO2 

temperature variations with time during decompression for the INERIS pipeline 

puncture decompression test. 

As it may be observed, the measured data indicate a significantly larger drop in the 

liquid phase temperature (ca. 60 K) as compared to that of the vapour phase (ca. 10 K). 

Such heterogeneous flow phenomenon is often referred to as thermal stratification. 

During puncture decompression in a two-phase mixture, the convection heat flux from 

the dry wall to the stratified vapour phase significantly reduces the cooling effect 

brought by its expansion. On the other hand, the nucleate boiling heat flux from the 

wet wall to the liquid phase supplies the latent heat of vaporisation, and the liquid 

phase temperature continues to drop following the saturation line. 

As the energy conservation equation is solved for vapour and liquid phases separately 

in TFM model, the different heat transfer modes in the separated two fluid phases can 

be accounted for as demonstrated in the model formulation (equations 5.1 to 5.6; see 

also Section 2.1.3.1, Chapter 2). As it may be observed from the data in figure 5.10, 

the TFM model produces good predictions of the measured liquid and vapour phase 

temperatures during the most part (up to 90s) of the decompression process. In the 

case of the liquid phase, the TFM over predicts the temperature by as much as 8 K in 

the remaining 10s (90 – 100s) of the simulated depressurisation period. 

The HEM model does not distinguish between the vapour and liquid phases given the 

implicit homogeneous flow assumption, and hence only one fluid temperature may be 

simulated. In this case, the computed convection and boiling heat fluxes only facilitate 

vaporisation in the liquid phase, and both vapour and liquid phases follow the 
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saturation temperature corresponding to the prevailing pressure in the pipe (figure 5.9). 

As it may be observed from figure 5.10, the HEM follows the recorded liquid space 

temperature producing a reasonably good agreement with the measured data with the 

maximum discrepancy being +5 K.  

In practice, the observed relatively large temperature difference between the stratified 

vapour and liquid phases (ca. 50 K in the present case) will result in a thermal stress 

gradient across the pipe wall. The above coupled with the prevailing pressure stress 

may therefore in extreme circumstances poses the risk of pipeline rupture especially if 

the pipe wall temperature falls below its ductile-brittle transition temperature. For 

such failure scenarios, the advantages of the TFM model as a predictive tool is clear.   

Figure 5.11 shows the impact of the two modelling approaches on the corresponding 

simulated CO2 vapour molar fraction during depressurisation.  

 

Figure 5.11: Predicted (from both the HEM and TFM models) CO2 vapour molar 

fraction variation as a function of time during decompression for the INERIS pipeline 

puncture decompression test. 

As compared to the TFM model, it is clear that the HEM model consistently over-

predicts the vapour molar fractions throughout the release. Further discussion 

regarding the above will be carried out in Section 5.4.3. 

Figure 5.12 shows the corresponding measured and simulated (from both the HEM 

and TFM models) variations of the remaining CO2 inventory in the pipe as a function 

of time during decompression. 
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Figure 5.12: Predicted (from both the HEM and TFM models) and measured 

remaining CO2 mass during the decompression for the INERIS pipeline puncture 

decompression test. 

From figure 5.12, compared to the TFM model, the HEM model under-predicts the 

remaining mass (by ca. 60 % at most). However, both model predictions are within 

the range of the measured data with the TFM producing a slightly better performance.  
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5.4.2.2 DUT Large-Scale Pipeline Puncture Decompression Test 

The DUT pipeline puncture decompression test conducted as part of the CO2QUEST 

FP7 project (Solomon Brown et al. 2014) consisted of a 256 m length, 223 mm i.d. 

insulated horizontal pipe filled with pure CO2. A 50 mm i.d. orifice release nozzle 

was attached to one end of the test pipe. The test conditions are summarised in table 

5.6. 

Table 5.6: DUT large-scale pipeline puncture decompression test conditions. 

Quantity x = 0 ~ 256 m 

Fluid pressure 

(bar) 

55 

Fluid temperature 

(K) 

291 

Ambient pressure 

(bar) 

1 

Ambient temperature 

(K) 

295 

Inventory 

(kg) 

2800 

Fluid phase Two-phase (with 

80 vol% vapour) 

At the onset of decompression, pressures and temperatures were monitored at various 

locations along the testing pipe, using low-temperature fast-response pressure 

transducers and K-type thermocouples. At each location, two thermocouples were 

placed respectively at the top and bottom sections of the pipe. The mass of the 

remaining inventory was however not measured. The validation of the TFM models is 

performed by comparing the predictions of the pressure and temperature vs. time 

profiles 150 m from the pipe closed end to the corresponding measurements.  

Simulations are performed on a uniform grid of 300 discretised computation cells 

with a CFL number of 0.3. Further grid refinement shows little difference in the 

predictions (see figure A5.8, Appendix). The pressure variation as a function of time 

obtained from the TFM and HEM models is presented in figure 5.13. Also included 

are the corresponding measurements for comparison.  
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Figure 5.13: Predicted (from the HEM and TFM models) and measured pressure 

variations as a function of time 150 m from the pipe closed end for the DUT puncture 

decompression test. 

From figure 5.13, similar to the INERIS test, the pressure trajectory follows an almost 

linear decline with time in both cases. Additionally, both model predictions are very 

close, producing a relatively good agreement (ca. ± 1 bar) with the measured data.  

The corresponding predicted temperature variations as a function of time are 

displayed in figure 5.14. 

 

Figure 5.14: Predicted (from the HEM and TFM models) and measured temperature 

variations as a function of time 150 m from the closed end for the DUT puncture 

decompression test. 

Much the same as in the case of the INERIS test, thermal stratification is observed in 

the measurements with a maximum temperature difference of ca. 15 K between the 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 161 - 

 

liquid and vapour phases, which is predicted correctly by the TFM model. On the 

other hand, the HEM model prediction closely follows the measured liquid phase 

temperature but completely misses the vapour phase.  

Moving on to the predictions of the evolution of the vapour molar fraction 150 m 

from the pipe closed end during decompression, as plotted in figure 5.15. As it may be 

observed, in comparison to the TFM model, once again, the HEM model predicted a 

higher vapour phase molar fraction throughout the simulated decompression process.  

 

Figure 5.15: HEM and TFM model predictions of the vapour phase mole fraction 

variation as a function of time 150 m from the closed end for the DUT puncture 

decompression test. 

Finally, the predictions of the remaining mass from both HEM and TFM models are 

compared in figure 5.16. 

 

Figure 5.16: Predicted (from the HEM and TFM models) remaining fluid mass as a 
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function of time for the DUT puncture decompression test. 

From the above plot, the HEM model again under-predicts the remaining inventory 

during decompression.  

 

5.4.3 Effect of Finite Interface Momentum Exchange  

In the case of stratified flow, finite interface momentum exchange may result in 

different phasic velocities (often referred to as ‘phase slip’). The TFM model 

simulated CO2 liquid and vapour phase velocities along the entire length of the pipe at 

5 and 50 s following decompression for both the INERIS (table 5.5) and DUT (table 

5.6) tests are plotted in figure 5.17. 

  

(a) (b) 

Figure 5.17: Predicted vapour and liquid phase velocities along the length of the pipe 

at two decompression times (of 5 and 50 s) for both the INERIS (a) and DUT (b) 

tests.  

As it may be observed from the data, in both cases, at any given time during 

depressurisation, the stratified vapour phase is at a higher velocity than the stratified 

liquid phase. The difference, or phase slip becomes more significant on approaching 

the release end of the pipe. Close to the release end (ca. 30 m and 230 m from the 

release ends for the INERIS and DUT tests, respectively), phase slip decreases rapidly 

due to the HEM assumption imposed in the puncture outflow boundary condition in 

the formulation of the TFM. 
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In order to isolate and hence demonstrate the impact of phase slip on the transient 

flow behaviour during pipeline puncture decompression, fluid/wall heat transfer and 

friction terms in both the HEM and TFM models are disabled. Figures 5.18 (a) to (d) 

show the corresponding simulated and measured pressure, temperature vapour molar 

fraction and remining CO2 inventory in pipe data for the DUT test (table 5.6).   

  

(a) (b) 

  

(c) (d) 

Figure 5.18: Predicted variations of pressure (a), temperature (b), vapour molar 

fraction (c) and remianing mass (d) from the HEM and TFM models as a function of 

time 150 m from the closed end for the DUT puncture decompression test. Also 

included in (a) and (b) are the corresponding experimental measurements.  

As it may be observed from the pressure data in figure 5.18 (a), both model 

predictions closely agree with each other, producing a faster rate of depressurisation 

as compared to the measured data. This is in turn reflected in the faster rate of fluid 

temperature drop as compared to the measure data (figure 5.18 (b)), as expected. The 
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close agreement between two model predictions for the pressure data (figure 5.18 (a)) 

indicates that phase slip has minimal effect on the rate of depressurisation. However, 

this is only true given that the phasic velocities during pipeline puncture 

decompression are very small (< 2 m/s, figure 5.17); the flow upstream of the 

puncture is approximately stagnant.  

In figure 5.18 (c), a comparison of the HEM and TFM model predictions of the 

vapour molar fraction shows that at any given time during the simulated 

depressurisation process, the TFM model consistently predicts a lower vapour fraction, 

as compared to the HEM based prediction, with the difference increasing with the 

passage of time. This is due to that, in the case of the TFM model, the vapour phase is 

at a higher velocity as compared to the liquid phase (figure 5.17), while in the case of 

the HEM model, both phases are at the same velocity (mechanical equilibrium).  

Finally, from figure 5.18 (d), a lower release flowrate is predicted by the TFM model 

as compared to the HEM model. The same observations are made in model validation 

(figures 5.12 and 5.16). This is again attributed to phase slip.  

 

5.5 Concluding Remarks  

• The TFM model capability presented in Section 2.2.4, Chapter 2 has been 

extended to predict heterogeneous flows during pipeline puncture 

decompression by incorporating a puncture outflow boundary condition;  

• A numerical scheme, AUSM-MUSTA for solving the TFM model equations 

was proposed. Standard numerical tests showed that the proposed scheme was 

both accurate and numerically efficient, combining both features of the 

previously established AUSM and MUSTA schemes; 

• The developed model was successfully validated against the experimental data 

recorded during medium- and large-scale pipeline puncture decompression 

tests. The experimentally observed thermal stratification between the vapour 

and liquid phases due to heterogeneous flow was accurately captured; 

• The HEM model on the other hand was shown to be incapable of correctly 

predicting the vapour phase temperature. As a result, the experimentally 

observed fluid phase thermal stratification cannot be simulated by the HEM 
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model. In practice, thermal stratification will result in a thermal stress gradient 

across the pipe wall. The above coupled with the prevailing pressure stress 

may therefore in extreme circumstances poses the risk of pipeline rupture 

especially if the pipe wall temperature falls below its ductile-brittle transition 

temperature;   

• Phase slip during pipeline puncture decompression was observed in the TFM 

model predictions; the vapour phase was found to travel at a higher velocity as 

compared to the liquid phase except close to the release end (where the two-

phase flow is assumed to be at homogeneous equilibrium); 

• The comparisons between the HEM and TFM model predictions showed that 

phase slip resulted in lower vapour phase molar fractions and release flowrates 

during most of the decompression process.   
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Chapter 6: 

Modelling of the Jet Expansion of Outflows Released from 

Pressurised Containments 

6.1 Introduction  

In foregoing chapters, we mainly focused on the decompression modelling in the 

event of containment failure, or during scheduled maintenances, and one of the key 

predictions is the discharge outflow. Such data is used in determining the dispersion 

of the toxic vapour cloud, the possibility of jet fire as well as vapour cloud explosions 

in the case of hydrocarbon, and hence the minimum safety distance from populated 

areas (Oke et al. 2003; Cleaver et al. 2003; Cumber 2007; Mahgerefteh et al. 2007). 

In performing a dispersion analysis, two additional models, the jet expansion model 

and the dispersion model, are required. With simulated outflow data as the input, the 

former determines the corresponding fully expanded jet conditions, and the latter in 

turn utilises such conditions to determine the dispersion behaviour of the emerging 

toxic cloud (e.g., CO2 cloud).  

Dispersion modelling is a mature subject having received considerable attention in the 

past decades (Cleaver & Edwards 1990; Cleaver et al. 1995; Witlox et al. 2009; Gant 

et al. 2014; Wen et al. 2016). For CO2, recent publications include (Woolley et al. 

2013; Gant et al. 2014; Wen et al. 2016), all showing good agreement with available 

experimental measurements, such as the CO2 concentrations as a function of distance 

from the release point.  

On the other hand, the modelling of jet expansion to the ambient pressure is often 

based on the solution of the integral form of the mass, momentum and energy 

conservation equations, assuming frictionless, adiabatic and laminar flow conditions 

without air entrainment (Bricard & Friedel 1998; Witlox et al. 2007). Neglecting 

interactions between the jet and the surroundings (in the form of mass, momentum 

and energy exchange) may be justified provided that the length scale of jet expansion 

is short enough (Bricard & Friedel 1998). However, as the high-speed jet penetrates 

the stagnant surrounding air, turbulences generation at the jet boundary is expected 

(due to the large velocity gradient at the jet boundary). The kinetic energy of these 
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turbulent motions, also known as the turbulent kinetic energy, is acquired directly 

from the mean flow of the expanding jet (see Section A1.5.2, Appendix). This leads to 

the loss of the jet mean flow kinetic energy, which may be significant and should thus 

be considered. 

This chapter presents the development and testing of an integral multi-phase jet 

expansion model accounting for turbulence generation during its expansion. Section 

6.2 presents the model formulation. Also included is a description of a CFD turbulent 

jet model which is later used to verify the predictions from the developed integral 

model. In Section 6.3, using the puncture release of CO2 from a high-pressure vessel 

as a working example, the integral model’s performance is evaluated by comparing its 

predictions against the rigorous but computationally demanding CFD model. 

Furthermore, the importance of accounting for turbulence generation is also 

demonstrated by comparing the predictions from the present model to the previous 

integral model where such effect is ignored. Conclusions are drawn in Section 6.4.  

 

6.2 Theory 

6.2.1 Integral Jet Expansion Model  

Following Bricard & Friedel (1998), during jet expansion, the emerging fluid phases 

are assumed to be at thermodynamic and mechanical equilibrium (i.e. the 

Homogeneous Equilibrium Mixture (HEM) assumption). Furthermore, air 

entrainment, turbulence, friction and heat transfer between the jet and its surroundings 

are also neglected. The resulting integral form of the conservation equations of mass, 

momentum and energy of the expanding jet can be written as follows (Bakkum & 

Duijm 2005): 

222111 AuAu ~~~~  =  6.1 

( )21122221111 ppAuAuuAu ~~~~~~~~ −=+−   6.2 

22 2

22

2

11 uhuh ~~~~
+=+  6.3 

where 
1, 2u , 

1, 2p , 
1, 2  and 

1, 2h  are respectively the averaged velocity, pressure, density 

and enthalpy over the jet cross-section area, A. The subscripts, 1 and 2 stand for the 
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locations at the release point and at full expansion, respectively. Solving the above 

algebraic system together with an Equation of State (EoS), the jet flow conditions 

such as its density, enthalpy, velocity and area at full expansion are obtained. 

However, as stated in Section 6.1, turbulence generation may lead to the loss of the jet 

mean kinetic energy. To account for such effect, an additional term, kt representing 

the turbulent kinetic energy following expansion to ambient pressure is added to 

equation 6.3. The modified energy conservation is given by: 

tkuhuh ++=+ 22 2

22

2

11
~~~~

 6.4 

Adequate modelling is required for kt; according to Richards & Norris (2011), by 

assuming constant pressure and shear stress in the direction transverse to the flow and 

applying k-ε turbulence models, kt can be approximated by the following for flows 

away from solid boundaries: 





C

u
kt

2

=

 

6.5 

where C
 is a constant of 0.09, and u  is the friction velocity. For calculating u , the 

velocity profile along the jet radius is first approximated by a logarithmic velocity 

profile given by:  
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6.6 

where z denotes the distance from jet boundary, κ is the Von Karman constant of 0.41, 

z0 is the aerodynamic surface roughness length of 0.004 (Jacobson 2005). Averaging 

equation 6.6 (with function translations) across the jet cross-section area gives an 

expression relating 2u~  to u : 
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where r is the distance from the jet centre, and R2 is the jet radius corresponding to A2. 
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To this point, the sought solution for kt is complete.  

It should be noted that, as both previous and present integral models neglect 

dissipation (energy conversion between thermal and mechanical energy), the 

predictions of the jet average enthalpy at full expansion, 
2h

~
 and hence other thermal 

properties from the two models, are equal. As a result, the additional consideration of 

the turbulence effect by the present model is reflected on the predictions of 2u~  and A2. 

They are obtained by solving equations 6.1, 6.4, 6.5 and 6.7 numerically using Matlab. 

For simplicity, in later sections, the previous integral jet expansion model and the 

present model in this study are respectively referred to as IJEM and IJEM-T (where 

‘T’ stands for turbulence).  

 

6.2.2 CFD Turbulent Jet Expansion Model 

In order to test the performance of IJEM and IJEM-T, their model predictions are 

compared to a rigorous CFD jet expansion model.  

The following describes the corresponding conservation equations and the turbulence 

model used in this study.  

 

6.2.2.1 Governing Conservation Equations 

The Reynolds-Average Navier-Stokes multiphase mixture model is used to describe 

the flow during jet expansion. Following Section A1.5.2, Appendix, the resulting 

mass, momentum and energy conservation equations of a HEM are respectively given 

by: 

0=+



u

t
 

6.8 

( ) ( ) 0=+−++


 ''uuτIuuu  p
t

 
6.9 

( ) ( )( ) 0=−+−++



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where  , p , T  and E are the time-averaged mean flow density, pressure, 

temperature and total energy ( 2
2

u+= eE ), respectively. τ and ( )''uu are 

respectively the viscous and Reynolds stress tensors. The closure relation for τ is 

given in equation A1.52, Appendix, and ( )''uu  is modelled using turbulent-viscosity 

model which is discussed in the following (see also Section A1.5.2, Appendix).  

 

6.2.2.2 Turbulence Modelling.  

According to the turbulent-viscosity assumption, the Reynolds stress tensor is related 

to the mean strain rate tensor (see also equations A1.58 to A1.60, Appendix): 

sIuu t

'' k  2
3

2
+=  

6.11 

where t  is the turbulent viscosity, k is the turbulent kinetic energy, s is the mean 

strain rate tensor given by: 
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6.12 

For computing t , as a first approximation, the k-ω Shear Stress Transport (SST) 

model (Menter et al. 2003) is employed, given by: 

where Pk and Pω are the effective production rates of the turbulent kinetic energy and 

its specific dissipation, respectively. σk, σω, σω,2 β and β* are model coefficients (see 

(Rocha et al. 2014)). F1 is the blending function. The k-ω SST model reduces to the k-
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ε model (equations A1.62 and A1.66, Section A1.5.2, Appendix) with F1 = 1 and to 

the k-ω model with F1 = 0 (equations A1.62 and A1.69, Appendix).  

According to Menter et al. (2003), the incorporation of the blending function enables 

the k-ω SST formulation to yield the best behaviour of both the standard k-ε and k-ω 

models; it outperforms the k-ε model in predicting the turbulence close to the wall, 

while retains its accuracy in the non-turbulent free-stream away from the wall (unlike 

the standard k-ω model).  

In addition, modifications of the turbulent kinetic energy transport equation 6.13 are 

required to take the compressibility effect into account. Following Sarkar et al. (1991), 

a dilation dissipation term given by  2

tk MS −=  is introduced to the RHS of 

equation 6.13, where tM  is the turbulent Mach number defined as ckM t /2= . 

Finally, the turbulent viscosity is calculated following ( ) 
22 1 tt MkC += .  

The resulting overall system is solved in ANSYS Fluent 14.0 using a pressure-based 

implicit scheme (the PISO scheme) (ANSYS 2013a). 

 

6.2.2.3 Boundary Conditions 

Figure 6.1 (a) shows the axisymmetric computation flow domain adopted for 

simulating the expanding CO2 jet downstream of a 6 mm diameter, 9 mm long release 

nozzle. The computational flow domain dimensions are set as 200 mm across and 

1000 mm long to fully envelop the expanding jet observed in the experiment (figure 

6.1 (b)).  
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Figure 6.1: Computational domain (a) and a photograph (b) for the expanding jet. 

To close the conservation equations 6.8 to 6.10 and the transport equations 6.13 and 

6.14, the boundary conditions adopted for the flow are specified at the edges of the 

simulated flow domain (see figure 6.1 (a)):  

(i) Inlet: Specified mass flowrate, pressure and temperature; for k and ω, they are 

usually small at the inlet and are estimated in terms of the turbulence intensity, I and 

length scale, l given by (ANSYS 2013c): 

8/1Re16.0 −=I  6.15 

,0.07 w inl D=  6.16 

where Re is the Reynolds number and 
,w inD  is the orifice diameter. k and ω are then 

estimated by: 

( )2
2

3
uIk =

 

6.17 

l

k
4/1

2/1

09.0
=

 

6.18 

(ii) Wall: Standard wall functions (ANSYS 2013b); 

(iii) Outlet (ambient): Constant pressure; zero-gradient boundary condition for other 

relevant variables; 

(iv) Jet axis: Symmetry plane.  

The entire flow domain is initialised with stagnant air at the ambient conditions 

corresponding to each test (see table 6.1).  
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The discretised flow domain with 0.3 million cells was adopted for the simulations 

(see figure A5.9, Appendix for grid convergence test results). The timestep size is 

5×10-7 s.  

 

6.2.3 Thermodynamics   

In this study, thermal properties of each fluid phase and phase equilibrium data are 

computed using extended PR EoS (Martynov et al. 2013) capable of handling the 

solid phase.  

On an important note, unlike in Chapter 3, solid-vapour-liquid three-phase 

coexistence at the triple point is neglected; all liquid is assumed to transform into 

solid phase at the triple point, and a smoothing function is used to connect the thermal 

properties of the saturated liquid and solid phases. Following Woolley et al.(Woolley 

et al. 2013), the smoothing function reads: 

( ) ( )( ) ( ) ( ) ( )1 l sT S T T S T T  = − +
 

6.19 

where: 

where b is the smoothing interval of 4 K.  

 

 

 

 

 

 

 

( )
216.7

0.5 0.5tanh
T

S T
b

− 
= +  

   

6.20 
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6.3 Results and Discussion  

Six case studies of assumed high-pressure vessel release scenario, applying IJEM, 

IJEM-T and the CFD model (as base case) are carried out to simulate the jet 

expansion.  

 

6.3.1 About the Case Studies 

For the purpose of this study, the relevant initial conditions for the high pressure 

vessel CO2 release tests conducted by Hébrard et al. (2016) are adopted for our 

simulations. In these tests, a 2 m3 heavily insulated spherical CO2 tank was connected 

to a 6 m length, 50.8 mm i.d. very smooth steel pipe incorporating a 9 mm length and 

6 mm i.d. orifice nozzle at its end. The other end of the pipe terminated at a height of 

ca. 150 cm above the vessel’s base. The vessel was initially partly filled with 

saturated CO2.  

The adopted upstream and ambient conditions are given in table 6.1 for each of the six 

case studies. The upstream conditions are assumed constant. Case studies 1a – 3a are 

for saturated vapour phase upstream whereas case studies 1b – 3b are for saturated 

liquid phase upstream. Table 6.1 also shows the corresponding calculated outflow 

conditions based on isentropic expansion approximation (Moody 1965).  
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Table 6.1: Relevant flow conditions for all case studies. The subscripts, 0, amb and 1 

represent the upstream, ambient and outflow, respectively. All symbols are defined 

previously. 

 Case 

study 

no. 

0T  

(K) 

0p  

(bar) 

ambT  

(K) 

ambp  

(bar) 

V
a
p

o
u

r 

u
p

st
re

a
m

 

1a 264.3 27 272.1 

1 

 

2a 280.1 44 281.6 

3a 278.1 39 278.1 

L
iq

u
id

 

u
p

st
re

a
m

 1b 264.3 27 272.1 

2b 280.1 44 281.6 

3b 278.1 39 278.1 

(Table 6.1 continued)  

 Case 

study 

no. 

1T
~

 

(K) 

1p~  

(bar) 
1

~  

(kg/m3) 
1e  

(×105 J/kg) 

1u~  

(m/s) 
111 Au~~  

(kg/s) 

Liquid 

phase 

mass 

fraction 

V
a
p

o
u

r 

u
p

st
re

a
m

 

1a 246.0 16 43.7 6.73 198.0 0.24 0.07 

2a 260.7 25 72.8 6.68 188.4 0.38 0.11 

3a 258.5 23 67.2 6.83 190.6 0.36 0.10 

L
iq

u
id

 

u
p

st
re

a
m

 1b 256.3 22 501.4 4.92 42.3 0.60 0.94 

2b 271.2 33 523.0 5.23 55.4 0.81 0.91 

3b 267.2 30 458.7 5.19 57.1 0.74 0.90 

 

6.3.2 CFD Model Results 

Figures 6.2 to 6.5 respectively represent the CFD simulation results for the pressure, 

temperature, liquid/solid phase mass fraction, and velocity profiles along the jet axis 

from the release point at 1.0 s following the start of the simulation. Also included are 

the corresponding contour plots. 
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(a)  (b) 

Figure 6.2: Pressure contour plot across the expanding CO2 jet (a) and the pressure 

profile along the jet axis (b) at 1.0 s for case study 1b.   

 

  

(a)  (b) 

Figure 6.3: Temperature contour plot across the expanding jet (a) and the temperature 

profile along the jet axis (b) at 1.0 s for case study 1b. 
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Figure 6.4: Liquid/solid phase mass fraction profile along the jet axis (b) at 1 s for 

case study 1b.  

 

  

 

 

 

(a) (b)  

Figure 6.5: Velocity contour plot of the expanding jet (a) and the velocity profile 

along the jet axis (b) at 1 s for Case study 1b. 

From these figures, three common trends may be observed. In the order of appearance 

these are: (i) An initial plateau representing the almost constant flow conditions along 

the 9 mm long nozzle; (ii) A Discontinuity corresponding to the location of the Mach 

shock (ca. 0.03 m from the release point). (iii) A second plateau corresponding to 

flow pressure stabilisation at the ambient pressure (1.0 bar; see figure 6.2 (b)). At this 

point, the jet remains at its sublimation temperature of 194.3 K (see figure 6.3) and 

solid phase CO2 is present (at mass fraction of ca. 0.40; figure 6.4).  
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Figure 6.6 is the corresponding CFD contour plot for CO2 mass fraction. As it may be 

observed, air entrainment only occurs at the jet boundary as most of the jet core is 

pure CO2. This supports the validity of negligible air entrainment assumption 

employed in the development of the integral jet expansion models (both the previous 

and present models).  

 

Figure 6.6: CO2 mass fraction (including all fluid phases) contour plot of the 

expanding jet at 1s for case study 1b. 

Figures 6.7 to 6.9 respectively represent the corresponding CFD model predictions 

(solid lines) for the momentum flux, temperature and density profiles along the jet 

radius at full expansion (ca. 0.03 m from the release point). The origin of each plot 

represents the jet centre. Additionally, in order to enable comparisons between the 

CFD and the integral model predictions (presented in the next section), the 

corresponding average values over the jet cross-section area are given by the dotted 

lines. The cut off points (dotted vertical lines) represent the locations of the jet/air 

boundaries; they are obtained by conserving the discharge mass flowrate (table 6.1). 
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(a) (b) 

Figure 6.7: Fully expanded jet momentum flux profiles along the jet radius for the 

various case studies (see table 6.1); (a): Case studies 1a – 3a (saturated vapour 

upstream); (b): Case studies 1b – 3b (saturated liquid upstream). Solid lines: CFD 

simulation; Dotted lines: average values over the jet cross-section area at full 

expansion.  

 

  

(a) (b) 

Figure 6.8: Fully expanded jet temperature profiles along the jet radius for the 

various tests (see table 6.1); (a): Case studies 1a – 3a (saturated vapour upstream); 
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(b): Case studies 1b – 3b (saturated liquid upstream). Solid lines: CFD simulation; 

Dotted lines: average values over the jet cross-section area at full expansion. 

 

  

(a) (b) 

Figure 6.9: Fully expanded jet density profiles along the jet radius for the various 

tests (see table 6.1); (a): Case studies 1a – 3a (saturated vapour upstream); (b): Case 

studies 1b – 3b (saturated liquid upstream). Solid lines: CFD simulation; Dotted lines: 

average values over the jet cross-section area at full expansion. 

From the figures, a larger jet radius is obtained in the case of the liquid CO2 upstream 

(1b – 3b) as compared to the vapour upstream (1a – 3a). Also, the jet radius increases 

with an increase in the upstream pressure (table 6.1). 

Referring to the temperature plots (figure 6.8) as it may be observed, in all cases the 

jet temperature remains constant at the CO2 sublimation temperature (194.3 K). The 

jet boundary is marked by a rapid rise in temperature due to the mixing with 

surrounding warmer air.  

Turning to figure 6.9 (b), as expected in the case of the liquid upstream, a rapid drop 

in the density is observed on crossing the jet boundary due to the mixing with less 

dense surrounding air. This trend is less pronounced in the case of the vapour 

upstream (figure 6.9 (a)).  
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All relevant CFD simulated average values are also summarised in table 6.2. 

Table 6.2: CFD model simulated fully expanded jet conditions. The subscript, CFD 

denotes the CFD turbulent jet expansion model.  

 Case 

study 

no. 

2,CFDT  

(K) 

2,CFDp  

(bar) 

2,CFD  

(kg/m3) 

2,CFDe  

(×105 J/kg) 

Solid 

phase 

mass 

fraction 

2,CFDR  

(m) 

( )
2,CFD

uu  

(×105 kg/m-s2) 

V
a
p

o
u

r 

u
p

st
re

a
m

 1a 

194.3 

 

1 

 

2.95 6.44 0.05 0.0010 1.86 

2a 2.98 6.39 0.06 0.0129 1.81 

3a 2.99 6.37 0.07 0.0125 1.77 

L
iq

u
id

 

u
p

st
re

a
m

 1b 4.39 4.65 0.40 0.017 0.46 

2b 4.02 4.99 0.34 0.019 0.57 

3b 4.06 4.93 0.35 0.018 0.59 

 

6.3.3 Integral Model Results 

Table 6.3 represents the fully expanded jet conditions (including temperature, 

pressure, density, internal energy, CO2 solid phase mass fraction, jet radius and 

momentum flux) for all the test scenarios as predicted by IJEM-T. Also included are 

the jet radius and momentum flux predictions from IJEM without accounting for 

turbulence generation, for comparison. Given that dissipation is assumed negligible, 

the predicted thermal property data (e.g. the internal energy and solid phase mass 

fraction) are the same for both integral models (see Section 6.2.1). 
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Table 6.3: The fully expanded jet conditions from IJEM and IJEM-T. 

 Case 

study 

no. 

2T
~

 

(K) 

2p~  

(bar) 
2

~  

(kg/m3) 
2e~  

(×105 J/kg) 

Solid 

phase 

mass 

fraction 

V
a
p

o
u

r 
 

u
p

st
re

a
m

 1a 

194.3 

 

1 

 

3.06 6.29 0.08 

2a 3.1 6.23 0.10 

3a 3.09 6.25 0.09 

L
iq

u
id

 

u
p

st
re

a
m

 1b 4.68 4.66 0.40 

2b 4.29 4.94 0.35 

3b 4.34 4.90 0.36 

(Table 6.3 continued) 

 Case 

study 

no. 

R2  

by IJEM 

(m) 

R2  

by IJEM-T 

(m) 

( )2uu ~~~  

by IJEM 

(×105 kg/m-s2) 

( )2
~~~ uu  

by IJEM-T 

(×105 kg/m-s2) 

V
a
p

o
u

r 
 

u
p

st
re

a
m

 1a 0.0084 0.0097 4.13 1.99 

2a 0.011 0.013 4.04 2.12 

3a 0.010 0.012 4.08 2.11 

L
iq

u
id

 

u
p

st
re

a
m

 1b 0.017 0.019 0.91 0.51 

2b 0.019 0.022 1.19 0.70 

3b 0.018 0.021 1.21 0.69 

In what follows, a discussion of the model comparison results is provided.  

 

6.3.4 Comparison of the Different Model Results  

In this section, comparisons of the IJEM and IJEM-T predictions against the averaged 

CFD simulation data for the fully expanded jet conditions, including the density, 

internal energy and momentum flux are presented. (As the fully expanded jet is at 

solid/vapour equilibrium, the pressure and temperature data are excluded from the 

comparisons.) The results are displayed in figures 6.10 to 6.12 with a 45 degree line 
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drawn in each figure to provide a direct measure of the degree of agreement between 

the integral and the CFD model predictions.  

Figure 6.10 is the comparison of the density predictions. Since thermal property 

predictions (i.e. the density and internal energy) are the same for both integral models, 

only one set of data is presented. As may be observed, the maximum percentage 

difference between the integral models and the CFD model is ± 5%.  

 

Figure 6.10: Comparison of the predicted jet density at full expansion; the dash-dot 

lines show the percentage difference (5%) of the integral model predictions from the 

CFD model predictions.  
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Figure 6.11: Comparison of the predicted jet internal energy at full expansion; the 

dash-dot lines show the percentage difference (5%) of the integral model predictions 

from the CFD model predictions.  

Turning to figure 6.11 showing the comparison of the internal energy predictions, the 

reasonably good agreement (± 5 %) between the integral and CFD models is 

indicative of the validity of negligible energy dissipation assumption (see Section 

6.2.1) made in the integral models.  
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Figure 6.12: Comparison of the predictions of the averaged momentum flux, ( )2
~~~ uu  

from IJEM, IJEM-T and the CFD model; the dash-dot lines show the percentage 

difference (5%) of the integral model predictions from the CFD model predictions. 

Moving on to figure 6.12 for the comparison of the momentum flux predictions from 

the three models, IJEM grossly over predicts the momentum flux by more than 50%. 

In the case of IJEM-T, which accounts for the mean flow kinetic energy loss due to 

turbulence generation, this disagreement is significantly reduced, producing a 

maximum overestimate of ca. 15%. This finding is significant given that the jet 

momentum largely determines the subsequent ‘spread’ of the dispersing cloud. 

 

6.4 Concluding Remarks  

• An integral jet expansion model was developed accounting for the mean flow 

kinetic energy loss due to turbulence generation;  

• Releases from a pressurised CO2 storage vessel were selected as test cases for 

model verification. The corresponding predictions of the fully expanded jet 
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conditions from both the integral models, IJEM and IJEM-T were compared 

against a rigorous but computationally demanding CFD model; 

• For the thermal property predictions such as density and internal energy, all 

the three models were in good agreement with a maximum difference of ca. ±5% 

• With regards to momentum predictions, IJEM without accounting for 

turbulence was observed to over predict the fully expanded jet momentum flux 

by as much as 50%. The developed IJEM-T on the other hand significantly 

reduced the percentage error to about 15%; 

• Given that the subsequent dispersion of the toxic cloud is largely dependent on 

the jet momentum, the improved accuracy of the developed model can be 

significant in the relevant quantitative consequence analysis (e.g. predicting 

the safety distance from populated areas); 

• It is noted that the model predictions are yet to be validated against 

experimental data. To this end, as part of the CO2QUEST project, significant 

effort was devoted in developing techniques for recording the jet expansion 

zone pressure and temperature immediately downstream of the release point. 

Unfortunately, these attempts failed due to the extremely high momentum of 

the expanding jet which resulted in the damage and in some cases, the 

dislodging of the in-line recording instrumentations. 
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Chapter 7: 

Conclusions and Future Work 

7.1 Conclusions 

Recent appreciation of the impact of greenhouse gas emissions on global warming has 

resulted in the development of a number of decarbonisation strategies aiming to 

reduce the amount of CO2 emissions into the atmosphere from coal fired power plants 

and other CO2 intensive industries. Central to this strategy is Carbon Capture and 

Sequestration (CCS) technology which involves capturing CO2 and storing it in 

geological formations. 

In the near future, large quantities of CO2 will be transported over hundreds of 

kilometres from the capture sites to on-shore and off-shore underground storage sites. 

High-pressure transmission pipelines is widely recognised represent as the most 

practical and economic transportation mode for the captured CO2. Given the 

hazardous nature of CO2, the significant amounts transported, and the inevitable 

likelihood of such pipelines passing near or through populated areas, their safe 

operation is of paramount importance. 

In light of the above, this thesis describes the further development, testing and 

validation of four flow models for the quantitative failure consequence assessment of 

high-pressure CO2 transmission pipelines. These include: 

• the extension of the HEM flow model to account for vapour-liquid-solid three-

phase flow occurring during rapid decompression of high-pressure CO2 

transmission pipelines 

• the extension of the HRM model to predict the experimentally observed 

thermodynamic non-equilibrium phenomenon of depressurising multi-

component mixtures 

• the extension of the TFM model to simulate heterogeneous flows during 

pipeline puncture decompression, including:  

I. developing a puncture outflow boundary condition for the TFM model 
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II. proposing, testing and verifying a discretisation scheme, AUSM-MUSTA, 

which combines the computational efficiency of the AUSM scheme and 

the accuracy of the MUSTA scheme 

• the extension of the existing integral jet expansion model to take into account 

the mean flow kinetic energy loss due to turbulence generation during jet 

expansion 

The following is a summary of the main findings in each chapter: 

In Chapter 2, a detailed description of the mathematical formulations of four popular 

multi-phase flow models, including the HEM, HRM, DFM and TFM models, were 

presented. These included the governing conservation equations for fluid mechanics, 

the constituent relations for fluid/pipe wall and fluid/fluid interface interactions and 

the Equation of State (EOS) for predicting the fluid thermal properties and 

equilibrium data.  

This was followed by a review of relevant studies focusing on the applications of the 

flow models for predicting CO2 pipeline decompression behaviour. It was found that:  

• the HEM model was limited to vapour-liquid two-phase flow; 

• the HRM model was only capable of predicting rapid depressurisation-induced 

thermodynamic non-equilibrium of single-component fluids; 

• the TFM model application was limited to simulating pipeline FBR failure. 

Chapter 3 presented the development, testing and validation of a rigorous 

decompression flow model for predicting the amount of solid CO2 formed as a 

function of time and distance along high-pressure pipelines during decompression. In 

practice, such predictive capability is important for a number of safety and operational 

reasons. These include pressure relief valve sizing, appropriate pipeline design in 

order to avoid blockage and minimising the risk of exposure of personnel to high 

doses of undiscovered accumulated sublimating solid CO2 following pipeline 

depressurisation for maintenance purposes.  

The flow model developed was based on the solution of the mass, momentum and 

energy conservation equations, accounting for the fluid/wall heat transfer and 

frictional effects. The pertinent thermodynamic and phase equilibrium data for CO2 
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above and below its triple point were computed using GERG 2008 and ePR EoS, 

respectively. The Homogenous Frozen Mixture (HFM) model was employed for 

predicting the speed of sound of multi-phase CO2 at the triple point.  

For model verification, a Riemann problem test was performed, showing the wave 

structure in a vapour-liquid-solid flow. Anomalous waves (as compared to in the case 

of single-phase flow) were predicted by the flow model, consisting of two split 

rarefaction waves separating at the vapour-liquid and triple point phase transition 

boundaries.  

The flow model was next validated against the pressure and temperature 

measurements obtained from a large-scale CO2 pipeline FBR decompression test. 

Typical data generated using the model included the variations of pressure, 

temperature and solid mass fraction as a function of time and space (along the pipe) 

during decompression. 

Indicating generally good agreement with the measured data, the model successfully 

reproduced the experimentally observed temporal pressure stabilisation at the triple 

point. In addition, the amount of solids was predicted to increase with distance 

towards the rupture plane, peaking at a maximum value of 35 wt% for the condition 

tested. 

In Chapter 4, the HRM model was successfully extended for predicting 

thermodynamic non-equilibrium during the depressurisation of CO2-rich mixtures. 

This is an important development, since in CCS, depending on the capture technology 

employed, the CO2 streams will contain a range of different types and concentrations 

of impurities such as Ar, N2, H2, CH4, and SO2.  

GERG 2008 EoS was employed to predict the thermal properties of both equilibrium 

and non-equilibrium fluid phases. The two-phase mixture speed of sound was 

calculated based on the HFM model, following previous studies. 

Verification of the developed model was carried out by a Riemann problem test, 

numerically approximating the wave structure in a non-equilibrium two-phase 

mixture. It was found that thermodynamic non-equilibrium resulted in faster 

decompression waves and hence higher decompression rates compared to that for 

equilibrium mixtures.  



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 190 - 

 

For validation, the model predictions were compared against the experimental 

measurements of the decompression wave speed, pressure and temperature as a 

function of time at both the test pipe open and close ends during several pipeline FBR 

decompression tests. The HEM model was also applied to simulate the same tests. 

Overall, it was found that based on comparisons with measured data, the HRM model 

performed better than the HEM model. In addition, the degree of superheat in the 

liquid phase at the test pipe open and close ends was determined as a function of time 

during pipeline decompression. A higher degree of superheat was observed at the 

open end as compared to the closed end given the less rapid expansion in the case of 

the latter.  

Chapter 5 presented the development of a TFM model for modelling heterogeneous 

flow during pipeline puncture decompression. Such work is particularly important for 

the quantitative failure consequence assessment of high-pressure transportation 

pipelines, given that puncture failures are far more frequent than FBR. Any flow 

heterogeneity may significantly impact the pipeline decompression behaviour and 

hence the outflow.  

The flow modelling involved solving the conservation equations of mass, momentum 

and energy individually for each fluid phase. Heterogeneous interface interactions 

were accounted for using appropriate constitutive relations. The fluid thermal 

properties and phase equilibrium data were predicted using the PR EoS.  

For the numerical solutions of the TFM model conservation equations, the 

mathematical development of a pipeline puncture outflow boundary condition was 

presented. This was followed by a description of a new discretisation scheme. The 

proposed scheme is both computationally efficient and accurate, combining the 

features of two popular existing schemes, AUSM and MUSTA schemes.  

For validation, the model developed was used to simulate two pipeline puncture 

decompression tests conducted during the course of the CO2QUEST project. In the 

meanwhile, the HEM model was also used to repeat the simulations for comparison. 

The predicted pressure, temperature and remaining inventory mass as a function of 

time were compared to the corresponding measurements, showing good agreement in 

all cases. In particular, the experimentally observed fluid thermal stratification as a 
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result of heterogeneous flow was accurately captured, in contrast to the HEM model 

where a single temperature was predicted for both fluid phases.  

In addition, the comparison of the TFM model and HEM model predictions for the 

remaining inventory mass revealed that phase slip encountered during heterogeneous 

flow resulted in a reduced discharge flowrate. Both predictions from the TFM and 

HEM models were however found to be in relatively close agreement with the 

measured data.  

In Chapter 6, the development and testing of an integral jet expansion model aimed at 

predicting the fully expanded jet conditions was presented. Typical output data 

included the jet radius, temperature, density, fluid phase mass fraction and momentum 

flux. The availability of such data is important given it serves as the input for 

modelling the subsequent atmospheric dispersion behaviour of the escaping hazardous 

fluid and hence determining the minimum safe distances to populated areas. In 

contrast to the previous formulations reported in the open literature, the jet expansion 

model accounted for the important and inevitable loss of the mean flow kinetic energy 

of the expanding jet due to turbulence generation.  

Model verification was based on the comparison of the integral jet expansion model’s 

predictions to those obtained from a rigorous but far more computationally 

demanding CFD based jet expansion model.  

The verification test cases involved a series of realistic release scenarios for high-

pressure gas and liquid phase CO2 from a pressurised containment. Extended PR EoS 

was employed to provide the pertinent phase equilibrium data including accounting 

for CO2 solid formation as a result of significant temperature drop associated with the 

jet expansion process. 

Based on the predicted profiles of e.g. the jet temperature, density, momentum flux 

across the jet cross-section area from the CFD model, the corresponding average 

values were obtained. In order to demonstrate the impact of ignoring turbulence 

generation, the results were in turn compared against those from the existing integral 

jet expansion model.  
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It was observed that in all cases, similar values for the jet thermal properties such as 

internal energy were obtained by the integral models as compared to those from the 

CFD model, indicating negligible energy dissipation during jet expansion. 

However, the jet momentum flux was the parameter whose predicted magnitude was 

by far the most affected by the simulation technique employed. Here it was shown 

that ignoring turbulence generation during jet expansion resulted in as much as 50% 

overestimate of the jet momentum flux as compared to the CFD prediction. This 

overestimate was substantially reduced to about 15% when the mean kinetic energy 

loss associated with turbulence generation was incorporated in the developed integral 

model.  

This finding has significant implications given that the jet momentum is one of the 

key factors in determining the dispersion behaviour of the escaping vapour cloud, 

impacting the minimum safety distances to populated areas.  

In conclusion, the work presented in this study provides the mathematical and 

computational basis for the accurate assessment of the consequences associated with 

the rupture of high-pressure CO2 pipelines. It goes beyond the current state of the art 

by allowing the analysis of complex physical phenomena (including dry ice formation, 

thermodynamic non-equilibrium, heterogeneous flow and turbulence during pipeline 

decompression) and addressing some of the critical drawbacks of the established 

theory. The models developed are also directly applicable to systems of hydrocarbons.  

Since the predicted data from the flow models act as the input in determining the 

likelihood of pipeline or pressure relief valve blockage due to CO2 solid formation, 

the fracture propagation length along the pipe wall and where relevant, the subsequent 

dispersion, fire and explosion characteristics, the developments in this work will help 

to quantify the corresponding hazard profiles with improved certainty. This in turn 

yields cost benefits in view of the design and implementation of relevant protection 

and mitigation systems. Thus, the fundamental nature of this work will benefit process 

safety in, but not limited to, CCS by protecting life, property and the environment. 
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7.2 Suggestions for Future Work 

7.2.1 Heterogeneous Modelling of the Accumulation of Solid Phase CO2 

In Chapter 3, a HEM flow model capable of predicting the amount of solid CO2 

formed in pipelines as a result of decompression below the CO2 triple point was 

developed. However, to be able to quantify the risk of pipeline or pressure relief valve 

blockage due to the accumulation of solids, the spatial variation (in 3-D) of the 

formed solids must be known.  

In addition, given the significant density difference between the vapour and solid 

phases, disengagement and eventual settling of the solid CO2 during the pipeline 

decompression process can occur, as clearly demonstrated in practice. This largely 

invalidates the HEM assumption adopted in the presented flow model. 

In light of the above, future work should involve the extension of the present model to 

3-D (for the flow through the pressure relief valves and other restrictions) and account 

for heterogeneous flow.  

 

7.2.2 Development of Dedicated Correlations for Specifying the Relaxation Time 

in the HRM Model for CO2-Rich Mixtures 

In Chapter 4, the HRM model was successfully extended to account for multi-

component mixtures. Model validation against experimental data performed as part of 

the study showed that, with certain constant relaxation times, improved agreement 

was obtained as compared to the HEM model. However, the performance of the HRM 

model using the relaxation time predicted from the correlation developed for pure 

CO2 was not as good. 

Clearly, to extend the applicability of the HRM model to CO2-rich mixture flows in 

practice, the development of dedicated correlations for determining the relaxation 

times for CO2 with a variety of impurities is necessary. 
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7.2.3 Development, Testing and Validation of the TFM Model for All 

Heterogeneous Flow Regimes 

In the development of the TFM model for predicting pipeline puncture decompression 

(Chapter 5), the heterogeneous vapour and liquid phases were assumed to be stratified 

with a perfectly flat fluid/fluid interface in between. The interface drag force, the 

interface area and the heat transfer area between the pipe wall and the fluid were then 

calculated accordingly. 

In reality, as the pipeline puncture diameter increases, the separated two fluid phases 

may become more disturbed following decompression, and hence the heterogeneous 

flow regime may transform to different flow regimes such as stratified-wavy flow, 

plug/slug flow, annular flow. As a result, the assumption of flat interface becomes 

invalid, and so do the calculations for interface and heat transfer areas. Furthermore, 

the correlation adopted for specifying interface drag force needs to be adjusted 

accordant to the specific flow regimes.  

To address the above, the further extension of the TFM model accounting for various 

flow regimes encountered during pipeline puncture decompression would be useful. 

This will involve the implementation of appropriate methodology for determining the 

prevailing flow regimes during the decompression process (e.g. based on individual 

fluid phase Reynolds number) and hence the use of the appropriate constitutive 

relations for computing the corresponding heat transfer area, interface area as well as 

interface drag force. 

 

7.2.4 Validation of the Jet Expansion Model 

In Chapter 6, the integral jet expansion model developed was verified against a 

rigorous CFD model for the predictions of the fully expanded jet conditions. This was 

achieved by performing a number of case studies based on assumed realistic release 

conditions.  

However, where practical, validations against experimentally data would be 

extremely useful. To this end as part of the CO2QUEST project, significant effort was 

devoted to developing techniques for recording the pressure and temperature within 

the jet expansion zone immediately downstream of the release point. Unfortunately, 
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these attempts failed due to the extremely high momentum of the expanding jet which 

resulted in the damage and in some cases the dislodging of the inline recording 

pressure and temperature transducers.  

Alternatively, one can use the predicted fully expanded jet conditions from the model 

developed and use the data as the input to a fully validated dispersion model. The 

resulting predictions for the dispersion behaviour of the escaping CO2 cloud (e.g. CO2 

concentration as a function of space downstream of the release point) may then be 

compared against available experimental measurements for validation.  
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Appendix 

A1 Derivation of the Time-Averaged Conservation Equations  

A1.1 General Conservation Equation for Fluid Dynamics 

For an arbitrary flow Control Volume (CV), 
k

CVV  with a Control Surface (CS), 
k

CVS , 

the general conservation equation of the kth fluid phase is given by Ishii & Hikiki 

(2006):  

k k k
CV CV CV

k k k k k
V S V

d
dV dS dV

dt
  = −  +  J n  

A1.1 

where ρk is the density of the kth fluid phase, k  is any quantity that is transported by 

the flow, the vectors, Jk and nk respectively denote the outward flux (efflux) and 

surface normal of the CS. The remaining term, k  is the volumetric source term in 

the CV.  

The corresponding differential form is derived in the following. Throughout the 

derivation, two key mathematical theorems used, Leibniz rule and the Gauss’ theorem 

are respectively given by: 

f f f
k k k

CV CV CV

S

k k
V V S

d
dV dV dS

dt t


= + 

   u n  
A1.2 

k k
CV CV

k
V S

dV dS =  g g n  A1.3 

Herein, f and g are (vector) functions that are to be integrated. The vector, 
S

ku  denotes 

the velocity of the movement of the CS. In the case where 
S

ku  is equal to the flow 

element velocity, ku  at the CS, Leibnitz rule reduces to the Reynolds transport 

theorem given by: 

f f f
k k k

CV CV CV
k k

V V S

d
dV dV dS

dt t


= + 

   u n  
A1.4 

Applying equation A1.4 to the LHS of equation A1.1 gives: 
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k k k
CV CV CV

k k k k k k k k
V V S

d
dV dV dS

dt t
     


= + 

   u n  
A1.5 

The surface integral term on the RHS can be converted to a volume integral via the 

Gauss’s theorem: 

( )
k k
CV CV

k k k k k k k
S V

dS dV    =   u n u  A1.6 

Performing the same procedure for the surface integral term in equation A1.1 and 

substituting equation A1.5 to equation A1.1 leads to: 

( ) ( )
k k

CV CV
k k k k k k k

V V
dV dV

t
    

 
+ = − + 

 
 u J  

A1.7 

By taking the CV to be of infinitesimally small volume, the differential form of 

equation A1.7 reads: 

( )k k k k k k k
t
    


+ = − +


u J  

A1.8 

The first term of equation A1.8 is the rate of change of k  per unit volume, the 

second term is the rate of convection of k  per unit volume. 

It seems that, by directly solving equation A1.8, the solutions of the local 

instantaneous variations of k  can be readily obtained. However, the mathematical 

difficulties encountered in doing so are prohibitively great and beyond present 

computational capability (Ishii & Hikiki 2006d). These mathematical difficulties are: 

Existence of multiple fluid-fluid interfaces with unknown transient deformations; 

flow discontinuity at the interfaces; existence of turbulence flow. In particular, in the 

presence of turbulence, even for single-phase fluid without any interface, it has not 

been possible to obtain the exact solutions to local instantaneous variations.  

Fortunately, these microscopic details of the flow are rarely needed for most practical 

engineering problems (Ishii & Hikiki 2006d). Rather, the corresponding macroscopic 

flow aspects are much more important. The variations of these macroscopic flow 
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properties can be represented by proper averaging the local instantaneous 

conservation equation A1.8.  

In the following, the time-averaging of equation A1.8 is briefly discussed.  

 

A.1.1.1 Basic Relations in Time-Averaging 

In deriving the time-averaged general conservation equation, some useful relations are 

summarised following Ishii & Hikiki (2006a). 

First, the time-averaging of a general function of the kth fluid phase, fk can be 

mathematically expressed as: 

where t  represents a fixed time interval. 

In addition, the weighted time average of fk  can be obtained applying a non-zero 

scalar weight function, w: 

In the case where w is the density function of the kth fluid phase (denoted by kM ; 

1kM =  if the point of observation within CV is occupied by the kth fluid phase, and 

0kM =  otherwise), the phase-weighted time average of fk  reads: 

Given that (Ishii & Hikiki 2006a): 

1
f fk k

t
dt

t 
=
 

 
A1.9 

f
f w k

k

w

w
=  

A1.10 

f
f k k

k

M

M
=  

A1.11 
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where k  is referred to as the probability of finding the kth fluid phase at a given point 

in CV, equation A1.11 turns to: 

From here on, k  is called the volume fraction of the kth fluid phase as mostly seen in 

the open literature. 

w can also be the density of the kth fluid phase. In this case, fk  is considered to be an 

extensive quantity (variable per unit volume). The extensive quantity is denoted by 

k  (firstly seen in equation A1.1) for consistency, and the resulting mass-weighted 

time average (also known as ‘Favre average’) is given by: 

Next, in view of equation A1.8, the time average of the time and space derivatives are 

presented. 

Following Ishii & Hikiki (2006a), with Leibniz rule (defined in equation A1.2), the 

time average of the derivative can be linked to the derivative of average, such that: 

with: 

1
k k

t
M dt

t



=
   

A1.12 

f
f k

k

k
=  

A1.13 

k k
k

k

 



=  

A1.14 

( )
f f 1 1

f Sk k
k k k

j nit t t u

 
= − 

  
 n u  

A1.15 

( )
1 1

f f fk k k k

j nit u
 = −


 n  

A1.16 
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where: 

Note that the last term each in equations 1.15 and 1.16 is related to interface transfer 

at the jth interface (Ishii & Hikiki 2006a). 

Finally, the time average of the convection term in equation A1.8 is defined. For such 

purpose, k , ku  and k  are expressed as the sum between the corresponding 

weighted time averages and fluctuating components: 

'

k k k  = +  A1.19 

'

k k k  = +  A1.20 

+ '

k k k=u u u  A1.21 

with the following identities: 

' 0k =  
A1.22 

' 0k k  =  
A1.23 

0'

k k =u  
A1.24 

By substituting equations A1.19 to A1.24, the phase-weighted time average of the 

convection term in equation A1.8 reads:  

' '

k k k k k k k k k     = +u u u  
A1.25 

f

f
ni

t
u

 
 
 = −


 

A1.17 

f fk

k

=  A1.18 
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where the last term is referred to as the turbulent flux, 
t

kJ . 

To this point, all the key relations that are required during the time-averaging of the 

local instantaneous general conservation equation A1.8 are given.  

 

A.1.1.2 Time-Averaging 

Returning to equation A1.8 and focusing on the LHS first, with the relations presented 

above, its time average is given by: 

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

k k
k k k

s tk k
k k k k k k k k k k k

j ni

k k k s t

k k k k k k k k k k k

j ni

t

t t u

t t u

 
 

 
     

  
     


+ =



 
+  − + + = 

   

  
+  − + + 

   





u

n u u u J

n u u u J

 

A1.26 

Next, with regards to the RHS of equation A1.8, the corresponding time average 

simply reads: 

k k k k k k   − + = − +J J  A1.27 

Finally, the time-averaged general conservation equation is derived: 

( ) ( )

( )
1 1

0

k k k t

k k k k k k k

s

k k k k k k k

j ni

t

t u

  
   

   


+ + + +



 
 − − = 

  


u J J

n u u

 

A1.28 

To further simplify equation A1.28, the following definition for the interface 

exchange term is introduced: 
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( )
1 1

k s

k k k k k k

j ni

I
t u

  
 

=  − 
  
 n u u  

A1.29 

Equation A1.28 hence becomes:  

( ) ( ) 0k
k k k t

k k k k k k k k k kI
t


  

     


+ + + + − =


u J J  

A1.30 

By specifying k , kJ , 
t

kJ  and k , the time-averaged governing equations of mass, 

momentum and energy can be derived (Ishii & Hikiki 2006c).  

 

A1.2 Mass Conservation Equation 

In this case, 1k = , 0J =k , 
t

k =J 0  and 0=k , and the time-averaged mass 

conservation equation for kth fluid phase reads: 

( ) 0k k
k k k kI

t

 
 


+ + =


u  

A1.31 

Here, Ik represents the rate of interface mass exchange per unit volume, given by (in 

its most common notation in the literature): 

k kI = −
 A1.32 

The mass conservation equation in Cartesian coordinates is given by:  

( ) ( ) ( ), , ,
k k

k k x k k k y k k k z k ku u u
t x y z

 
     

   
+ + + = 

   
 

A1.33 

where the subscripts, x, y and z respectively represent the x-, y- and z-axis directions.  
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A1.3 Momentum Conservation Equation 

In this case, k k = u , kkk p τIJ −= , 
' 't t

k k k k k= = −J u u τ  and kk F= , and the time-

averaged momentum conservation equation is given by: 

( ) ( ) ( ) 0k
k k k t

k k k k k k k k k k k kp
t

 
    


+ + − + + − =



u
u

u u I τ τ I F  

A1.34 

where kτ  and 
t

kτ  are respectively the shear stress and the turbulence stress. k

k

u
I  

represents the rate of fluid/fluid interface momentum exchange per unit volume. 

In Cartesian coordinates, equation A1.34 in x-axis direction is given by: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
,

,

, , , , , ,

, , , , , ,

, 0x k

k k x k

k k x k x k k k x k y k k k x k z k

k k k k k k

t t t

k xx k xx k k xy k xy k k xz k xz k

u

k k x k

u
u u u u u u

t x y z

p p p
x y z

x y z

I F

 
     

  

        



   
+ + + +

   

  
+ + −

  

  
+ − + − + +

  

− =

 

A1.35 

 

A1.4 Energy Conservation Equation 

In this case, 22

kkkk ueE +== , ( ) kkkkk p uτIqJ −−= , 

'' '' '' ''t t

k k k k k k k k kE p= = −  + J q u τ u I u  and kkkk Q+= uF , and the time-averaged 

energy conservation equation is given by: 

( ) ( )

( ) ( ) 0k

k k k

k k k k k k k

Et

k k k k k k k k k k

E
E p

t

I

 
  

  


+ +  −



  + + + −  =

u I u

τ u q q F u

 

A1.36 

where kq  and 
t

kq  are respectively the diffusion heat flux and the turbulence heat flux. 

For the modelling of the interface energy exchange term, kE

kI , it is essential to include 
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the term, ( )kp t  . According to Munkejord et al. (2009), this ensures the entropy 

conservation for kth fluid phase. Hence: 

( ) ( )

( ) ( ) *
0k

k k k

k k k k k k k

Et k
k k k k k k k k k k

E
E p

t

p I
t

 
  


  


+ +  −




  + + + + −  =



u I u

τ u q q F u

 

A1.37 

Also note that: 

( ) ( )
22 '

2 2

kk

k kE e= + +
uu

 

A1.38 

The time-averaged energy conservation equation is also given in Cartesian 

coordinates: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

, , ,

, , ,

, , , , , ,

, , , , , ,

, ,

k k k

k k x k k k k y k k k k z k k

k x k k k y k k k z k k

k x k xx k k x k yx k k x k zx k

k y k xy k k y k yy k k y k zy k

k z k xz k k z

E
u E u E u E

t x y z

u p u p u p
x y z

u u u
x y z

u u u
x y z

u u
x y

 
     

  

     

     

  

   
+ + + +

   

  
+ + −

  

  
− − −

  

  
− − −

  

 
−

 
( ) ( )

( ) ( ) ( )

, , , ,

, , , , , ,

*

, , , , , , 0

k

k yz k k z k zz k

t t t

k x k x k k y k y k k z k z k

Ek
k k

k x k x k y k y k z k z k k

u
z

q q q q q q
x y z

p I
t

F u F u F u Q

  

  






− −


  
+ − + − + +

  


+ −



 + + + = 
   

A1.39 

To this end, the full set of the time-averaged conservation equations are derived (both 

in coordinate free and Cartesian form). It can be seen that time-averaging over a fixed 

time interval gives rise to fluctuating terms (turbulence fluxes) and interface exchange 

terms (in presence of moving interfaces).  
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A1.5 Conservation Equations in Single-Fluid Flow 

In the case of single-phase or homogeneous multi-phase flow, the previously derived 

conservation equations can be shown to reduce to (Ishii & Hikiki 2006c): 

0
t
 


+ =


u  

A1.40 

( ) ( ) 0=+−++


 tp
t

ττIuuu   
A1.41 

( ) ( ) 0=+−−++


 t

kkpEE
t

qquτuIu  
A1.42 

Note that, as the entire CV is occupied by a single fluid phase or a homogeneous 

mixture of multiple fluid phases, the interface exchange terms are omitted.  

For inviscid flow without energy diffusion, the above equations become: 

0=+



u

t
 

A1.43 

( ) 0=++



Iuuu p

t
  

A1.44 

( ) 0=++



uIu pEE

t
  

A1.45 

The well-known Euler equations for fluid dynamics are derived.  

In the case of viscous flow with turbulence, substitution of the definitions of the 

turbulence terms, tτ  and 
tq  (given in Sections A1.3 and A1.4 respectively) into 

equations A1.40 to A1.42 gives: 

0=+



u

t
 

A1.46 

( ) ( )' 'I 0p
t
  


+ + − + =


u uu τ u u  

A1.47 
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( ) ( )' ' ' 0E E p E p
t
  


+ +  − −  +  =


u I u u τ u I u  

A1.48 

The resulting equations are referred to as the Favre-averaged Navier-Stokes equations. 

It is known that, for most of flows encountered in engineering applications, the 

turbulence effect on fluid density can be safely neglected. In this case, Favre-

averaging can be simply replaced with time-averaging, which leads to: 

0=+



u

t
 

A1.49 

( ) ( ) 0=+−++


 '' uuτIuuu  p
t

 
A1.50 

( ) ( ) 0=+−−++


 '' pEpEE
t

uIuτuuIu '  
A1.51 

The classical Reynolds-averaged Navier-Stokes (RANS) equations are derived.  

By observing equations A1.49 to A1.51, closure models are required for specifying τ , 

'' uu , 
'u E' , uτ   and 

'p uI  . 

 

A1.5.1 Viscous Stress Model 

τ  is referred to as the stress tensor. For Newtonian fluid, it can be related to the mean 

strain rate (mean rate of change of the deformation), s of the fluid, given by: 

( ) ( )
( ) ( )

( )
( ) ( )

( )

mean strain rate

trace-less mean strain rate

I 2 I 2
2 2

2 1
I 2

3 2 2 3

T

T

   

  

 
  

=  + =  + + = 
 
 

 
   

+  + + −    
   

 

u u
τ u s u

u u
u u I

 

A1.52 
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where λ and μ are respectively the bulk viscosity and the dynamic viscosity. The first 

term in equation A1.52 is associated with the dilation of the fluid particles and usually 

negligible (even for compressible flow) (Sonin 2001).  

 

A1.5.2 Turbulence Model 

Returning to equations A1.49 to A1.51, the remaining unknowns, 
'' uu , 

'u E' , 

uτ   and 
'p uI   all contain fluctuating terms (the fluctuating terms in uτ   is shown 

below in equation A1.54). Additional turbulence modelling is required. 

In specifying these unknown terms, they are manipulated in the following way: 

( )

( ) ( )

( ) ( )

( ) ( )''
'''

'

''''''

'''''''

''

''''''

h

h

hh

p
e

pEpEEpE

uuu
uuu

u

uuuuuuu

uuuuuuuuuuuu

uIuuu

uIuuIuuIu '















+


+

=++

=+++=+

=+







+

=+=+−=+

2

2

1

2
2

1

2

1

2

1

 

A1.53 

' ' ' ' ' ' =  +  +  +  =  + τ u τ u τ u τ u τ u τ u τ u  A1.54 

Substitution of the above equations to the RANS equations A1.49 to A1.51 gives: 

0=+



u

t
 

A1.55 

( )
( )

0

1

=













+−++






'' uuτIuuu  p
t

 

A1.56 
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( )

( )

( )

( )

( )
( )

( )

' ' '

' ' ' ' '

42
1

3

0
2

E E p
t

h

 


 


+ + 



 
 

− + +  −  −  = 
 
 

u I u

u u u
u u u u τ u τ u

 

A1.57 

In the above equations, all terms containing the fluctuating parts are indexed from (1) 

to (4). Focusing on (1), it is referred to as the Reynolds (or turbulence) stress tensor, 

tτ  (see also Section A1.3) which accounts for momentum transfer by the fluctuating 

velocity field. It can be split into the isotropic and anisotropic parts (respectively 

corresponding to the trace of tτ  and the trace-less tτ ), given by: 

isotropic part anisotropic part

2 2

3 3

t ' ' ' 'k k  
 

= = + − 
 

τ u u I u u I  
A1.58 

where k is the turbulence kinetic energy defined as: 

''k uu =
2

1
 

A1.59 

Following the turbulent-viscosity (eddy-viscosity) assumption (see (Pope 2000b)), the 

anisotropic part of tτ  can be related to the mean strain rate, s (defined in equation 

A1.52), directly analogous to the case of τ : 

sIuu t

'' k  2
3

2
=








−  

A1.60 

where μt is the turbulent viscosity. The most frequently applied approach for 

specifying μt is the two-equation models (Pope 2000c). For example, the k-ε model is 

consisted of two transport equations for the turbulence quantities, k and ε (ε represents 

the rate of dissipation of k). The derivation of the k-ε model is briefly shown in the 

following (Pope 2000c). 

The transport equation for 'u  can be derived from subtracting equation A1.50 from 

the Navier-Stokes equations, which gives: 
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Iuuuuuuu
u 'p
t
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







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


++−=+







 1
 

A1.61 

The transport equation for k (defined in equation A1.59) is thus: 

( ) ( )

( )

( )

( )



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





−+


−=+




 

A1.62 

or in Cartesian coordinates: 

( )

( )

'' ' '' ' ' ' ' '
' ' '

'' ' '' ' ' ' ' '
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2 2 2
2 2 2
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'
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A1.63 

where: 
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( ) ( )












 
+


=

22

T''
t uu

s  

A1.64 

In the transport equation A1.62, the marked terms (1) to (3) respectively account for 

turbulent diffusion, production and dissipation. The turbulent diffusion term, which is 

responsible for the redistribution of k within CV, can be approximated by (Pope 

2000c): 

( )1
Pr

t

t
k




   

A1.65 

where tPr  is the turbulence Prandtl number (of 0.9 (Pope 2000c)). For the other 

turbulence quantity, ε, the corresponding transport equation is entirely empirical 

(Pope 2000c): 

( )
k

C
k

C
t

''t
2

21 :
Pr












−−+












−=+




uuuu  

A1.66 

where 31Pr .= , 4411 .=C , 9212 .=C . 

Finally, after obtaining k and ε, the turbulent viscosity is calculated as: 


 

2k
Ct =  

A1.67 

It should be pointed out here that the above derivation of the k-ε model is based on 

incompressible flow assumption (constant ρ). It can be easily extended to 

compressible flows by the addition of correction terms to the transport equations (see 

(Woolley et al. 2013) for example).  

On a relevant note, following (Pope 2000a), the mean flow kinetic energy transport 

equation reads: 
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A1.68 

Each term on the RHS of equation A1.68 is again marked from (1*) to (3*). By 

comparing equations A1.68 and A1.62, terms (2) and (2*) are of opposite signs. It 

indicates that the turbulent kinetic energy, k is taken directly from the mean flow; the 

fluctuating motions (turbulences) gain its energy from the mean flow, while the mean 

flow loses its kinetic energy (hence leading to a lower mean velocity).  

In addition, it is also noteworthy that the only from of energy exchange between mean 

flow internal energy, mean flow kinetic energy and turbulent kinetic energy is 

dissipation (terms (3) and (3*) respectively in equations A1.62 and A1.68). For 

virtually all flows encountered in practice, (3) >> (3*), that is, energy dissipation is 

mainly through turbulence.  

Other two-equation turbulent-viscosity models are also available. In most of these, the 

transport equation of k is kept, but there are diverse choices for the second transport 

equation. For example, defining the specific dissipation rate as k = , the transport 

equation for ω is given by (Pope 2000c): 

( ) 2
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A1.69 

where Pr , Cω1 and Cω2 are again model constants. It is noteworthy that, the addition 

of a diffusion term to equation A1.69 gives: 
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21 uuuu  
A1.70 

It can be shown that equation A1.70 is essentially the transport equation of ε in the k-ε 

model (Pope 2000c). 
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Returning to equation A1.57, the term marked by (2) represents the turbulent transport 

of heat. A gradient approximation is usually applied, given by (Pope 2000b; CFD 

online 2005): 

( )2
Pr

t
p t

C T


 −   
A1.71 

where Cp is the constant pressure heat capacity of the mean flow.  

(3) and (4) account for turbulent transport and diffusion of k, and they are modelled 

again by gradient approximation, given by (Pope 2000b; CFD online 2005): 

( ) ( ) k
k

t 







+−+



43  

A1.72 

They can be neglected all together if hk  , which is a reasonable assumption for 

most flows (CFD online 2005).  

To this point, the closed form of the RANS equations is derived.  
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A2 Application of the Riemann Invariants and Rankine-Hugoniot 

Conditions in Solving a Hyperbolic PDE System Using the HEM Model as 

an Example  

In Section 2.1.6.1.3, Chapter 2, the Riemann invariants and the Rankine-Hugoniot 

conditions for relating the variables across each wave in a hyperbolic PDE system are 

introduced. They form the basis of modern numerical solution schemes for hyperbolic 

PDE systems. 

In order to demonstrate how the unknown variables in the star region, 
*VL  and 

*VR  

(see figure 2.6, Chapter 2) can be solved by applying the Riemann invariants and 

Rankine-Hugoniot conditions, herein a degree of freedom analysis is performed for 

the Riemann problem defined by equation 2.161 in view of the HEM model.  

Referring to figure 2.6, it is assumed that waves 1, 2 and 3 are respectively a shock 

wave, a rarefaction (decompression) wave, and a contact wave. Across the shock 

wave, with the Rankine-Hugoniot conditions, there are: 

** ˆˆ
RRRR uu  =  

A2.1 

*** ˆˆ
RRRRRR pupu +=+ 22   

A2.2 

( ) ( )*** ˆˆˆˆ
RRRRRR pEupEu +=+  A2.3 

Note the change of the frame of reference in the Rankine-Hugoniot conditions (i.e. the 

shock wave speed, 0shockc = ), where: 

shockRR cuu −=ˆ  A2.4 

shockRR cuu −= **ˆ  A2.5 

( )221 RRR ueE ˆˆ +=  
A2.6 

( )221 *** ˆˆ
RRR ueE +=  

A2.7 
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Applying the Riemann invariants across the rarefaction wave and the contact wave, 

there are respectively: 

ducpducpI LLLLLL

***

 −=−= 2

1  A2.8 

*

LL ssI ==2

2


 

A2.9 

and: 

3 * *

1 R LI p p

= =  A2.10 

3 * *

2 R LI u u

= =  A2.11 

From the above, a total number of seven equations (equations A2.1 to A2.3 and A2.8 

to A2.11) are identified corresponding to the assumed wave structure. Given that there 

are an equal number of unknowns (i.e. 
*

R , 
*

Ru , 
*

Rp , 
*

L ,
*

Lu ,
*

Lp , cshock; note 
*

Re  and 
*

Le  

can be obtained from an EoS), the algebraic system is closed.  
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A3 Derivation of the Harten-Lax-van Leer-Contact (HLLC) Scheme 

Following Toro (2009c) 

The Euler equations 2.113 derived in Section 2.1.6.1.1, Chapter 2 (see also Section 

A1.5) reads: 

( )
t x


+ =

 

F UU
0  

A3.1 

where the vector, U and flux function, F are defined in Section 2.1.6.1.1. It is noted 

that equation A3.1 is in conserved form.  

 

Figure A3.1: Schematic representation of the control volume of interest. The cell 

centres are denoted by i-1, i and i+1 (separated by Δx), while the cell interfaces are 

denoted by i±1/2. n stands for the nth timestep of length of Δt.  

Next, integration of equation A3.1 within the control volume of 

 1 2 1 2 1, ,i i n nx x t t− + +
    (shown in figure A3.1) gives (Toro 2009b): 

( ) ( ) ( ) ( )
1 2 1 2 1 1

1 2 1 2
1 1 2 1 2

i i n n

i i n n

x x t t

n n i i
x x t t

x,t dx x,t dx x ,t dt x ,t dt
+ + + +

− −
+ − −

 = − −
     U U F F  

A3.2 

Define the relevant space and time averages as: 
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( )
1 2

1 2

1 i

i

x
n

i n
x

x,t dx
x

+

−

=
 U U  

A3.3 

( )
1

1 2 1 2

1 n

n

t

i i
t

x ,t dt
t

+

+ +=
 

F F  
A3.4 

With the above definitions, equation A3.2 can be written as: 

1

1 2 1 2

n n

i i i i

t

x

+

+ −


 = − − 

U U F F  
A3.5 

It is clear that solving equation A3.1 is reduced to solving the fluxes, F at the cell 

interfaces (indexed as i±1/2). Here, the Harten-Lax-van Leer-Contact (HLLC) scheme 

(Toro 2009e) is presented (using 1 2i−F  as an example).  

To aid the derivation of the HLLC scheme, the wave structure corresponding to the 

Euler equations are displayed in figure A3.2. 

 

Figure A3.2: Schematic representation of the general wave structure of the Euler 

equations originating at a cell interface. The cell centres are denoted by i-1, i and i+1 

(separated by Δx), while the cell interfaces are denoted by i±1/2. n stands for the nth 

timestep of length of Δt.  

Applying the Rankine-Hugoniot conditions (Section 2.1.6.1.3, Chapter 2) to all three 

waves in figure A3.2, there are: 

 

 

   

 
 

 

  

n 

n+1 
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( )* *

1 1 1 1 1i i i i− − − −− = −F F U U  
A3.6 

( )* * * *

1 2 1i i i i− −− = −F F U U  
A3.7 

( )* *

3i i i i− = −F F U U  A3.8 

where ( )1 1i i− −F = F U , ( )* *

1 1i i− −F = F U , ( )* *

i iF = F U  and ( )i iF = F U . It is noted that 

there are four unknown vectors ( *

1i−U , *

iU , *

1i−F  and *

iF ) in equations A3.6 and A3.8, 

and all other vectors are known from the previous timestep n. (The superscript, n is 

dropped for simplicity.)  

In addition, the Riemann invariants (Section 2.1.6.1.3, Chapter 2) across the contact 

waves (marked by the dashed line in figure A3.2) are: 

* * *

1i ip p p− = =  A3.9 

* *

1 2i iu u − = =  A3.10 

With equations A3.6, A3.8 (the first and second components) and A3.10, the 

following equations for 
*

1ip −  and 
*

ip  are derived: 

( )( )*

1 1 1 1 1 2 1i i i i ip p u u  − − − − −= + − −  
A3.11 

( )( )*

3 2i i i i ip p u u  = + − −  
A3.12 

With equations A3.11, A3.12 and A3.9, an expression for 
2  is obtained: 

( )
( )

1 1 1 1 1 3

2

1 1 1 3

( )

( )

i i i i i i i i

i i i i

p p u u u u

u u

   


   

− − − −

− −

− + − − −
=

− − −
 

A3.13 

Note that (see Section 2.1.6.1.1, Chapter 2): 

1 1 1i iu c − −= −  A3.14 
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3 i iu c = +  A3.15 

where c is the speed of sound evaluated at cell centre i-1 or i. 

Finally, rearranging equations A3.6 and A3.8 with 
*

1ip −
 and 

*

ip  specified by equations 

A3.11 and A3.12 gives the expression for the interface fluxes, 1 2i−F  (dependent on 

different wave configurations): 

( )

( )

1
1

*

1 1 1 1 1 2

1/2 *
2 33

3

, 0if

, 0if

0if,

0if,

i

i i i

i

i i i

i

        

      

    

       



  

 



−

− − −

−

 


+ −  
= 

 + −
 


F

F U U
F

F U U

F

 

A3.16 

with the intermediate states given by: 

( )
( )

1 1
1 1 2

1 2

1 1
2 1 2

1 1 1 1

1
* i
i i

i i
i

i i i

u

E p
u

u


 

 

 
  

−
− −

− −
−

− − −

 
 
 

 −  =    − 
  

+ − +  
−   

U  

A3.17 

( )
( )

3
2

3 2

2 2

3

1
* i
i i

i i
i

i i i

u

E p
u

u


 

 

 
  

 
 
 

 −  =    −    
+ − +  

−   

U  

A3.18 
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A4 Derivation of the PRImitive CEntred Scheme of the First ORder 

CEntred Type (PRICE-FORCE) Following Toro & Siviglia (2003) 

The general non-conservative form of hyperbolic PDEs reads (see also equation 2.129, 

Section 2.1.6.1.1, Chapter 2): 

( ) 0=



+





xt

V
UA

V
 

A4.1 

where V is the vector of primitive variables and A is the coefficient matrix.  

 

Figure A4.1: Schematic representation of the control volume of interest. The cell 

centres are denoted by i-1, i and i+1 (separated by Δx), while the cell interface is 

denoted by i±1/2. n stands for the nth timestep of length of Δt. 

By local linearisation with an appropriate constant matrix, ˆ
iA , integration within the 

control volume of    12121 ++−  nnii ttxx ,,  (shown in figure A4.1) gives: 

( ) ( ) ( ) ( )
1 2 1 2 1 1

1 2 1 2
1 1 2 1 2

ˆi i n n

i i n n

x x t t

n n i i i
x x t t

x,t dx x,t dx x ,t dt x ,t dt
+ + + +

− −
+ + −

 = − −
     V V A V V  

A4.2 

Define relevant space and time averages as:  
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( )dxx,t
x

i

i

x

x
n

n

i 
+

−

=
21

21

1
VV


 

A4.3 

( )dt,tx
t

n

n

t

t
ii 

+

++ =
1

2121

1
VV


 

A4.4 

Substitution of equations A4.3 and A4.4 to equation A4.2 gives: 

 2121

1

−+

+ −−= iii

n

i

n

i
x

t
VVÂVV




 

A4.5 

where:  

( )ii VAÂ =  A4.6 

The next task at hand is to compute the intermediate states denoted by 1 2iV  in figure 

A4.1. 

For such purpose, the non-conservative versions of the Lax-Wendroff and the Lax-

Friedrichs schemes are derived first. They are then used to construct the non-

conservative version of the FORCE scheme employed in this thesis (Section 5.3.2.1, 

Chapter 5).  
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A4.1 PRICE-Lax-Wendroff Scheme 

Integrating equation A4.1 within the control volume of 

 1 2 1 21 2 , 1 2 0,i ix x x x t− +
 −  +      (shown in figure A4.2;  0, 1 = ) gives: 

 

Figure A4.2: Schematic representation of the control volume for the derivation of the 

Lax-Wendroff scheme. The cell centres are denoted by i-1, i and i+1 (separated by 

Δx), while the cell interfaces are denoted by i±1/2. n stands for the nth timestep of 

length of Δt. 

 

( ) ( )

( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2
0 0

0

ˆ 1 2 1 2

i i

i i

x x x x

x x x x

t t

i i i

x, t dx x, dx

x x,t dt x x,t dt
 


+ +

− −

+  + 

−  − 

 

+ + +

 =

 − +  − − 
  

 

 

V V

A V V

 

A4.7 

where:  

1
1 2

ˆ
2

n n

i i
i

+
+

 +
=  

 

V V
A A  

A4.8 

Knowing that: 
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( ) n

ii x,tx 121 21 ++ =+ VV   A4.9 

( ) n

ii x,tx VV =−+ 2121
 A4.10 

and recalling the definition of the space and time averages in equations A4.3 and A4.4, 

equation A4.7 can be recast into: 

1
1 2 1 2 1

ˆ
2

n n
n n ni i

i i i i

t

x

 + +
+ + +

+ 
 = − − 

V V
V A V V  

A4.11 

With the choice of 1 2 = , the intermediate state defined by equation A4.11 reads: 

1 2

1 2 1 2

n

i i

+

+ +V =V  A4.12 

and the PRICE-Lax-Wendroff scheme is derived:  

 

 

 

 

 

 

 

 

 

 

1 1 2 1 2

1 2 1 2 1 2 1 2
垐n n n n n PRICE LW PRICE LW

i i i i i i i i i

t t

x x

+ + + − −

+ − + −

 
   = − − = − −    

V V A V V V A V V  
A4.13 
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A4.2 PRICE-Lax-Friedrichs Scheme 

Integration of equation A4.1 within the control volume of    1 1, 0,1 2i ix x t− +    

(shown in figure A4.3) gives (see (Toro 2009c) for the physical interpretation): 

 

Figure A4.3: Schematic representation of the control volume for the derivation of the 

Lax-Friedrichs scheme. The cell centres are denoted by i-1, i and i+1 (separated by 

Δx), while the cell interfaces are denoted by i±1/2. n stands for the nth timestep of 

length of Δt. 

 

( ) ( ) ( ) ( )
1 1

1 1

2 2

1 1
0 0

ˆ0
i i

i i

x x t t

i i i
x x

x, t dx x, dx x ,t dt x ,t dt
+ +

− −

 

+ −
  = − −
     V V A V V  

A4.14 

where: 








 +
= +

2

11 ii-
i

VV
AÂ  

A4.15 

Combining with the definitions of space and time averages, equation A4.14 can be 

recast to: 
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 n

i

n

ii

n

i

n

in

i
x

t
11

111

2

1

2
−+

+−+ −−
+

= VVÂ
VV

V



 

A4.16 

or: 

 2121

1

−+

+ −−= ii

n

i

n

i
x

t
DDVV




 

A4.17 

where: 

( ) ( )n

i

n

i

n

i

n

iii
t

x
VVVVÂD −−+= +++ 1121

2

1

2

1




 

A4.18 

( ) ( )n

i

n

i

n

i

n

iii
t

x
1121

2

1

2

1
−−− −−+= VVVVÂD




 

A4.19 
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A4.3 PRICE-FORCE Scheme 

The previously derived PRICE-Lax-Wendroff scheme can be rewritten as: 

where: 

From the previously derived PRICE-Lax-Lriedrichs scheme (equation A4.18), there is: 

The algorithmic average between LWPRICE

i

−

+ 21D  and LWPRICE

i

−

+ 21D  gives the non-

conservative version of the FORCE scheme (PRICE-FORCE scheme): 

where:  

It should be noted here that, by analogy, the conservative version of the FORCE 

scheme can be derived (see (Toro & Billett 2000)).   

 

 

 

 

 LWPRICE

i

LWPRICE

i

n

i

n

i
x

t −

−

−

+

+ −−= 2121

1 DDVV



  

A4.20 

( )LWPRICE

ii

LWPRICE

i

−

+

−

+ = 2121 VÂD  A4.21 

( ) ( )n

i

n

i

n

i

n

ii

LFPRICE

i
t

x
VVVVÂD −−+= ++

−

+ 1121
2

1

2

1




 

A4.22 

 FORCEPRICE

i

FORCEPRICE

i

n

i

n

i
x

t −

−

−

+

+ −−= 2121

1 DDVV



  

A4.23 

2

2121

21

LFPRICE

i

LWPRICE

iFORCEPRICE

i

−

+

−

+−

+

+
=

DD
D  

A4.24 
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A5 Grid Convergence Test Results 

A5.1 Modelling of CO2 Decompression across the Triple Point 

 

 

Figure A5.1: Grid convergence test results for the Riemann problem test, showing the 

predicted pressure profiles at 1 ms following the start of the simulations.  

 

 

Figure A5.2: Grid convergence test results for CO2 pipeline decompression 

simulations, showing the predicted pressure variations with time at the closed end of 

the test pipe during decompression.  
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A5.2 Modelling of Thermodynamic Non-Equilibrium during the Decompression 

of CO2-Rich Mixtures 

 

 

Figure A5.3: Grid convergence test results for the Riemann problem test, showing the 

predicted pressure profiles at 1 ms following the start of the simulations.  
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Figure A5.4: Grid convergence test results for the pipeline decompression 

simulations, showing the predicted pressure variations with time at the closed end of 

the test pipe during decompression for test 26.  

 

 

 

 

 

 

 

 

 

 

 

 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

- 245 - 

 

A5.3 Modelling of Heterogeneous Flow during CO2 Pipeline Puncture 

Decompression 

 

 

(a) 

 

(b) 

Figure A5.5: Grid convergence test results for the water faucet problem test, showing 

the predicted air volume fraction (a) and phasic velocity (b) profiles along the length 

of the computational domain at 0.5 s following the start of the simulations. Also 

included in (a) is the exact solution for reference.  
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Figure A5.6: Grid convergence test results for the Toumi’s shocktube problem test, 

showing the predicted pressure profiles along the length of the computational domain 

at 0.06 s following the start of the simulations.  
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Figure A5.7: Grid convergence test for the CO2 pipeline puncture decompression 

simulations, showing the predicted pressure variations with time at the closed end of 

the test pipe during decompression for the INERIS pipeline puncture decompression 

test. 

 

 

Figure A5.8: Grid convergence test for the CO2 pipeline puncture decompression 

simulations, showing the predicted pressure variations with time at the closed end of 

the test pipe during decompression for the DUT pipeline puncture decompression test. 
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A5.4 Modelling of the Jet Expansion of outflows released from pressurised 

containments  

 

  

Figure A5.9: Grid convergence test results for the CFD jet expansion simulations, 

showing the predicted jet axial velocity profiles.  
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