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Summary 

Huntington’s disease (HD) is a chronic progressive neurodegenerative condition where new markers 

of disease progression are needed. So far no disease modifying intervention has been found and few 

have been proven to alleviate symptoms. This may be partially explained by the lack of reliable 

indicators of disease severity, progression and phenotype. 

Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, 

reproducibility, price, accuracy and direct quantification of pathobiological processes at the 

molecular level; and in addition to empowering clinical trials, they have the potential to generate 

useful hypotheses for new drug development. 

In this chapter we review biofluid biomarker reports in HD, emphasising those we likely to be closest 

to clinical applicability. 
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1. Introduction 

So far almost 100 clinical trials have been conducted in Huntington’s disease (HD), with a very low 

success rate[1], and there is only low quality evidence that selected symptomatic interventions have 

a beneficial effect on HD[2,3], while evidence of disease modification has not yet been 

reported[4,5]. Two possible explanations exist for this: either the drugs did not work, or they worked 

and we were unable to detect the benefit. Newer therapeutics, like antisense drugs that aim to 

reduce production of mutant huntingtin, are currently being tested in humans[6], and it is crucial 

that we are able to detect target engagement and a therapeutic effect if one is being exerted. This is 

a problem across most neurodegenerative diseases but particularly difficult in HD, where 

premanifest mutation carriers usually feel and appear completely well for several decades before 

symptoms begin, and the rate of neuronal death is very slow[7]. Moreover, if such disease-modifying 

drugs are developed, we will need to know when to initiate treatment and how monitor their 

effects. 

Concerted international collaborative efforts have established a panel of clinical, cognitive and 

neuroimaging biomarkers with predictive power for onset and progression in HD that can be used to 

stratify, enrich and conduct clinical trials[8,9,7]. While these and their successors will certainly be 

useful, they have limited capacity to report on the biochemical and physiological milieu in the CNS, 

and especially to do so within the timescales necessary to optimise the conduct of clinical trials. In 

particular, early phase trials and critical go/no-go decisions are greatly facilitated by 

pharmacodynamic markers to indicate whether or not a drug has engaged with its target to produce 

an early, meaningful biological effect. 

Biofluid biomarkers are so-called because they are quantified in body fluids, ideally with minimal 

invasiveness, good accuracy, and high discriminatory power. They cover not only the most 

commonly used fluids such as blood and urine, but also cerebrospinal fluid (CSF), saliva, sweat, 

among others. Biofluid biomarkers have the appeal of being capable of precise, reliable 

quantification, often in bulk or in retrospect. In addition, a single sample can generate results for 

multiple analytes of interest. 

CSF is enriched for CNS-derived substances and its collection for research purposes by lumbar 

puncture is safe and well-tolerated. In other neurodegenerative conditions, CSF has been extensively 

studied to yield biomarkers that can be used for diagnosis, prognosis and clinical trial conduct but in 

HD, large systematic studies of CSF are lacking and few findings have been replicated[10]. In blood 

and more accessible tissues, even less systematic work has been done. 
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In this chapter we provide a review of proposed biofluid biomarkers for HD, the methodologies used 

to identify them, and their state of validation. We present the comprehensive details of methods 

and findings in tabular format, and in the text particular focus has been given to biomarkers likely to 

be used in current and planned clinical trials. 

2. Methods 

All studies published after 1993 – the date of HTT gene discovery[11] – on HD fluid biomarkers were 

included (see Fig. 1). The references were retrieved from MEDLINE using the terms “huntington” and 

(“cerebrospinal fluid” or “blood” or “urine”). Reference lists were cross-checked. No language, or 

quality restriction was applied. For biomarkers of particular interest, the date range was extended 

before 1993. The search strategies employed can be found below: (("Cerebrospinal Fluid"[Mesh] OR 

CSF[Title/Abstract]) AND ("Huntington Disease"[Mesh] OR "huntington"[Title/Abstract])); 

("Blood"[Title/Abstract] OR "Serum"[Title/Abstract] OR "Plasma"[Title/Abstract]) AND ("Huntington 

Disease"[Mesh] OR "huntington"[Title/Abstract]); (("Urine"[Mesh] OR urin*[Title/Abstract]) AND 

("Huntington Disease"[Mesh] OR "huntington"[Title/Abstract])).  

3. Results 

3.1. Huntingtin protein 

HD is caused by a CAG repeat expansion mutation in the HTT gene on chromosome 4[11,12], and the 

intracellular presence of the mutant huntingtin protein (mHTT) in affected tissues is one of the 

hallmarks of this condition. Huntingtin protein has an incompletely understood role in normal brains 

and peripheral tissues[13], but gains toxic properties when large polyglutamine tracts are present in 

its amino-terminus[14]. 

As well as the a priori importance of studying the pathogenic agent in patients with the disease, drug 

development programs based on reducing the expression of huntingtin are well underway[6]. 

Quantifying mHTT with simple, accurate and reproducible methods is of the utmost importance as a 

pharmacodynamic biomarker of the effect of such treatments (Table 1). This has proven extremely 

challenging, since soluble mHTT is present in very low concentrations in all accessible biofluids, and 

is produced ubiquitously such that it is hard to distinguish CNS-derived mHTT from that generated 

peripherally. 
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The first detection of soluble mHTT in human biological fluids was achieved in 2009 by Weiss and 

colleagues, who quantified soluble mHTT in human whole blood, isolated erythrocytes and buffy 

coats – the portion of an anticoagulated blood sample that contains the majority of leukocytes and 

platelets following centrifugation - using a highly sensitive time-resolved Förster resonance energy 

transfer (TR-FRET) assay[15,16]. With a specialised form of immunofluorescence, the assay relies on 

a specific antibody pair: 2B7, which binds to N-terminal huntingtin; and MW1, which binds to 

expanded polyglutamine tracts. Using a small sample – five patients and four healthy controls – it 

was possible to clearly distinguish between diseased and healthy plasma, with no overlap between 

the measurements of each of the groups. This technique was then more extensively validated in 

isolated monocytes, B cells and T cells in eight pre-manifest gene expansion carriers, 18 manifest 

gene expansion carriers and 12 healthy controls[17]. Indeed, this latter study revealed significant 

differences not only between individuals with and without the HD mutation, but also across disease 

stages. Most interestingly, it showed differences between pre-manifest and manifest gene 

expansion carriers. Furthermore, the disease burden score – a measure of lifetime exposure to 

mHTT –and several neuroimaging variables of brain atrophy, such as caudate atrophy and ventricular 

expansion, were significantly correlated with mHTT measurements. 

Using a homogeneous time-resolved Förster resonance energy transfer (HTRF), Moscovitch-Lopatin 

and colleagues verified the previous results first in a small cohort of buffy coat samples and then in 

peripheral blood mononuclear cells in a large multisite study, involving 228 healthy controls and 114 

gene expansion carriers[18,19]. Despite its statistical power, this study was not able to correlate 

mHTT with disease burden score or with Unified Huntington’s Disease Rating Scale (UHDRS) Total 

Motor Score (TMS), possibly because the majority of participants were pre-manifest gene expansion 

carriers, and only a minority had manifest HD. Still, it was possible to significantly differentiate 

groups of gene expansion carriers based on their probability of motor onset within two years and 

the amount of mHTT in their peripheral blood mononuclear cells, the first sign that this molecule 

may have some predictive value of the disease onset. 

Subsequent studies of total huntingtin protein in peripheral blood showed no difference between 

gene expansion carriers and healthy controls[17,18], with the exception of one, which reported a 

decrease in total HTT using an enzyme-linked immunosorbent assay (ELISA)[20]. 

In 2015, Wild and colleagues developed a novel femtomolar-sensitive immunoassay based on the 

same antibody pair using a ‘single molecule counting’ (SMC) platform, and successfully quantified 

mHTT in cerebrospinal fluid for the first time in two different cohorts, from the United Kingdom and 

Canada[21]. With this new technique, virtually no mHTT signal was detected in healthy controls, 
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while most of the gene expansion carriers had mHTT detected in their CSF, with manifest carriers 

having higher levels than pre-manifest (Fig. 2). This study also revealed that in premanifest subjects 

the mHTT level in the CSF was correlated with their probability of onset, and in manifest subjects it 

was correlated with some clinical measures of disease severity, such as the Unified Huntington’s 

Disease Rating Scale (UHDRS) Total Motors Score (TMS), the symbol-digit modality test, Stroop 

colour naming test, Stroop word reading test and Stroop interference test. Finally, the same study 

showed an association between mHTT and two measures of neuronal damage, neurofilament light 

chain (NfL) and total tau (Fig. 3). 

Shortly after, another method was developed by Southwell et al. to measure mHTT in the CSF[22]. In 

the same Canadian cohort studied by Wild and colleagues, they showed, using more widely-available 

micro-bead based immunoprecipitation and flow cytometry methods, that mHTT in gene expansion 

carriers increases with disease stage and correlates with clinical measures (Fig.4). No signal was 

detected in healthy controls. They also demonstrated reduction in brain lysates and CSF mHTT after 

CNS administration of an HTT-lowering antisense oligonucleotide. 

In the future we expect to see these results replicated in longitudinal studies examining the clinical 

predictive power of CSF mHTT. At least one mHTT assay is likely to be validated to regulatory 

standards for clinical trial use as a pharmacodynamic marker of HTT lowering. 

3.2. Protein markers of neuronal damage 

Neurodegeneration is readily detectable as an early feature of HD both pathologically[23] and non-

invasively through neuroimaging[24]. Two major international collaborative studies, Track-HD [25-

27,8] and Predict-HD[28], showed that disease-related atrophy of the striatum and white matter is 

present and detectable several years prior to the expected symptom onset, and that over the course 

of the disease, including in pre-manifest individuals, it is possible to measure neurodegeneration 

indirectly via yearly assessments of striatal, cortical and white-matter volumes. Biofluid biomarkers 

that accurately measure neuronal damage could still provide a cheaper, more rapid and more 

specific measure of disease progression or therapeutic efficacy. Largely informed by developments 

in other neurodegenerative diseases, some progress has been made in identifying biofluid 

biomarkers of neuronal damage in HD (Table 2). 

The first such molecule to be tested was S100B in serum by Stoy and colleagues in 2005, using 

commercially-available ELISA assays[29]. S100B is a known marker of acute brain injury, released by 

astrocytes in response to the insult[30]. Unfortunately, no difference was detected between patients 
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with HD and healthy controls, probably indicating that this marker of acute brain damage is 

incapable of detecting the slow kinetics of neurodegeneration in HD. 

Another important group of molecules associated with axonal injury and neurodegeneration are the 

neurofilament proteins of the axonal cytoskeleton[31]. Three isoforms exist: the heavy, the medium, 

and the light chain, and some have been associated with neurodegeneration in other conditions 

[32]. 

In 2007, Wild and colleagues measured neurofilament heavy chain in the plasma of 117 subjects, 

using an in-house ELISA assay[33]. No difference was found between gene expansion carriers and 

healthy controls, or between pre-manifest and manifest gene expansion carriers. In addition, no 

measure of the clinical phenotype was correlated with this isoform of neurofilament. 

The light chain isoform was first detected and found to be significantly elevated in the CSF of HD 

patients in 2009 by Constantinescu and colleagues [34], using an in-house ELISA assay (Fig. 5). This 

group also established a positive correlation between the UHDRS Total Functional Capacity (TFC) and 

neurofilament light chain (NfL), but not with other clinical measures. Interestingly, Rodrigues and 

colleagues, making use of similar samples sizes and of a commercially available ELISA assay, showed 

that the neurofilament light chain was significantly different between healthy controls and gene 

expansion carriers, as it was between pre-manifest and manifest individuals, to a magnitude of 

difference having no overlap between the confidence intervals of these populations; and that age-

adjusted neurofilament light chain is correlated with disease stage, measures of clinical motor 

phenotype severity and of functional ability[35]. In 2015 Wild and colleagues demonstrated that 

neurofilament light chain level was closely associated with that of mHTT in CSF[21]. 

Tau, an axonal protein with microtubule-stabilizing functions, is also considered a non-specific 

marker of neuronal damage[36]. The first report of the alteration of total tau concentrations in CSF 

was made by Constantinescu and colleagues who, by means of a commercially available ELISA assay, 

showed total tau was significantly elevated in patients compared with controls[37]. No correlations 

were found with clinical measures. A second report by Rodrigues and colleagues using two different 

cohorts, one from the United Kingdom and another from Canada, and another commercially 

available ELISA assay, reinforced the differences between gene expansion carriers and healthy 

controls, even after adjustment for age, and identified correlations between motor, cognitive and 

functional ability measures and total tau concentration in manifest gene expansion carriers, after 

age and disease burden adjustment (Fig. 6)[38]. A head-to-head comparison of NfL and Tau in CSF 

suggests that NfL is more strongly associated with clinical phenotype in HD[39]. Tau has been 
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directly implicated in the pathobiology of HD[40,41], so studying it in CSF may nonetheless come to 

have some role in dissecting the relative contributions of different pathways. 

In 2015, single molecule assay (‘SIMOA’) technology facilitated successful quantification of NfL in 

blood for the first time[42]. Blood NfL levels have been shown to predict disease progression in 

several other neurodegenerative diseases including frontotemporal dementia, alzheimer’s disease, 

amyotrophic lateral sclerosis and progressive supranuclear palsy[43-48]. 

In 2017 Byrne and colleagues  quantified NfL in blood plasma in HD for the first time, in the large 

366-participant TRACK-HD cohort[49]. Strikingly, plasma levels of NfL were significantly increased at 

every disease stage compared with controls, even in the early premanifest group, with significant 

differences even between early and late premanifest, and between late premanifest and early 

manifest HD (Fig.7). Plasma NfL was very closely associated with CAG repeat length, the first biofluid 

marker to show a genetic dose-response relationship with the causative expansion. Higher CAG 

repeat counts were associated with earlier and steeper increases in plasma NfL. (Fig.7). Baseline 

plasma NfL predicted subsequent disease onset within three years in premanifest mutation carriers, 

the first time a biofluid marker has shown such predictive value. Baseline NfL also predicted 

subsequent change in measures of cognitive and functional ability and brain atrophy (Fig.7), even 

after adjustment for the known predictors of HD – age and CAG repeat length. In a separate cohort, 

plasma and CSF levels of NfL were strongly correlated (Fig.7). While it requires further study 

especially in terms of the relative value of plasma and CSF, and the response to a successful 

treatment remains to be seen, NfL appears to be a robust biomarker of HD disease progression and 

neuronal damage. 

3.3. Inflammatory markers 

Immune system dysfunction has been implicated in neurodegeneration in several different 

conditions, including in the pathogenesis of primarily degenerative diseases[50]. HD is a special case, 

since the immune system appears to undergo primary derangement due to the presence of mHTT in 

leukocytes and microglia. This derangement, first uncovered by a proteomic biomarker study in 

plasma[51], gave rise to an independent field of study that has ultimately led to at least one drug 

trial of an immunomodulatory agent[52-54]. The immune system has some potential as a source of 

biomarkers of natural history in HD (Table 3), as well as pharmacodynamic markers of immune-

targeting therapeutics, but its potential is limited by the propensity of such markers to be altered by 

infections and other derangements unrelated to HD pathology. 
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Importantly, a key unanswered question regarding this class of biomarkers is whether these changes 

represent primary peripheral abnormalities due to ubiquitous expression of mHTT, transfer of 

inflammatory molecules to the periphery across the blood–brain barrier, or a combination of both. 

These limitations restrict the utility of such biomarkers in the clinical trial setting. 

Hyperactivity of myeloid cells including microglia, and subtle alterations of the innate immune 

system, are among the first biological changes so far detected in people with the HD mutation. 

Björkqvist, Wild and colleagues described in 2008 that IL-6 is increased in plasma of pre-manifest 

and manifest gene expansion carriers (Fig. 8) and this alteration can be found, on average, 16 years 

before the predicted onset of clinical symptoms[55]. This result was attained using 194 plasma 

samples and a Mesoscale Discovery electrochemoluminescence assay. Interestingly, in this study CSF 

concentrations were correlated with plasma concentrations. Still, this analyte is known to cross the 

blood-brain barrier and its concentration may reflect systemic alterations or parallel CNS and 

peripheral inflammation[56,55]- 

CSF YKL-40 (also known as Chitinase-3-like protein 1, CHI3L1) – a poorly understood inactive enzyme 

associated with astrocytes and microglia [57,58] – has shown mixed results in HD [59,60], but 

encouragingly, a pilot study by our group has demonstrated a strong association with disease stage 

and motor and functional severity/phenotype[59]. Furthermore, we showed that these correlations 

were independent from disease burden score (Fig. 9), a property only attained by the mHTT itself, 

and other markers of neuronal damage. 

Clusterin, also known as Apolipoprotein J, is a chaperone glycoprotein that has shown promising 

results as a general biomarker of neurodegeneration and a genetic modifier of Alzheimer’s disease, 

through unclear mechanisms [ref]. In HD, a moderately sized study explored plasma and CSF of 

people with HD and healthy controls using ELISA techniques. In two different cohorts, one from 

England and another from Canada, this molecule was found to be increased in HD[51]. A second 79-

participant study using ELISA in serum rather than plasma did not replicate these results[61]. Still, 

further work is needed to understand the validity of this biomarker. 

3.4. Transglutaminase activity 

Transglutaminases are enzymes which facilitate linkage reactions between glutaminyl- and lysyl-

containing molecules or polyamines. In vitro experiments have shown that expanded polyglutamine 

– which confers toxicity upon mHTT protein – strengthens transglutaminase activity, suggesting 

transglutaminases may be involved in the regulation of mHTT aggregation. Further supporting this 
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hypothesis, the treatment of HD transgenic mice with cystamine –a known inhibitor of 

transglutaminase – alleviated HD symptoms[62]. 

Jeitner and colleagues have investigated several suggested markers for transglutaminase activity, 

including Nε-(γ-l-Glutamyl)-l-lysine (GGEL)[63,64], γ-Glutamylspermidine, γ-Glutamylputrescine and 

bis-γ-Glutamylputrescine[64], in the CSF of HD patients (Table 4). All markers were higher in HD 

patients compared with controls (hospitalized for unspecified spinal injury) after quantification using 

high-performance liquid chromatography (HPLC). Despite this seemingly supporting evidence, 

transglutaminase activity has thus far disappointed as a clinically relevant therapeutic target. A 

randomized, placebo-controlled, phase 2/3 clinical trial of cysteamine (CYST-HD) in HD patients did 

not meet its primary endpoint[65]. 

3.5. Neurotransmitters 

Some of earliest studies examining biofluid biomarkers in HD took a particular interest in 

neurotransmitters, neuromodulators and neuropeptides as surrogate outcome measures of 

neuronal viability and function (Table 5). 

One of the pathological hallmarks of HD is loss of GABAergic medium spiny neurons[66], triggering 

studies of the GABAergic system. Enna and colleagues were the first to successfully detect GABA in 

CSF from HD patients, in 1977, using a radioreceptor assay[67]. Lower concentrations of this 

neurotransmitter were detected in several biomarker studies evaluating CSF and blood of people 

with HD when comparing with controls[67-71]. It is noteworthy that these results are inconsistent 

across all published evidence[72,73]. The investigation of homocarnosine, a dipeptide containing 

GABA, also showed contradictory results in the CSF. Some studies pointed towards a significant 

increase of this molecule while others towards a significant decrease[70,72]. Further disappointment 

was attained after results from a randomized, double-blinded, placebo-controlled trial in patients 

using isoniazid and -acetylenic GABA, showing that CSF but not plasma GABA levels increased in 

response to this antibiotic[74], and CSF concentrations of GABA and homocarnosine levels increased 

but with no significant clinical improvement[75]. 

The basal ganglia have a high concentration of cholinergic neurons and cholinesterase activity, and 

the most affected nuclei in HD are the caudate and the putamen. Comparisons between choline 

levels in patients with HD and healthy controls generated inconsistent results in CSF[76,77], and 

cholinesterase activity was not different between these two groups[76,78,77]. Results from the 
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isoniazid trial above showed that this molecule did not affect CSF choline level or cholinesterase 

activity[77]. 

The striatum receives dopaminergic input from the substantia nigra. Neuronal loss in the striatum – 

and therefore loss of postsynaptic striatal dopamine receptors – during the course of HD creates an 

imbalance due to a reduction in dopamine uptake. This disproportion was thought to contribute to 

chorea on the basis of an overactive effect of dopamine on the striatum[79]. Dopamine metabolites 

were therefore a source of early interest as possible biofluid biomarkers. 

However, CSF levels of dopamine and its metabolites showed challenging results[80,81]. 

Homovanillic acid (HVA) – a result of dopamine metabolism and maker of dopaminergic activity, has 

been extensively studied both in the CSF, blood and urine of patients with HD. Again, the results 

were disappointing, with some studies showing a decrease[81-83], while others showed no 

difference[84,80,85,86], and only one study supported the theory of dopaminergic 

overactivation[87]. Several other dopamine metabolites were also studied extensively with no 

definitive contribution towards the dopaminergic activity hypothesis[88,82,89,90,81,85,91]. 

3.6. Transcriptomic and proteomic approaches 

Several exploratory transcriptomic (Table 6) and proteomic and (Table 7) approaches to HD 

pathobiology and biomarkers have been investigated. These enable the hypothesis-free exploration 

of biochemical differences between HD and control biofluids but in isolation present difficulties of 

extracting signal from noise and require replication in hypothesis-driven mechanistic studies, which 

have been lacking. Unfortunately, little from these approaches has been translated into the pursuit 

of new therapeutic pathways. 

HD is known for transcriptional dysfunction which may be due to interactions between mHTT and 

DNA. Using microarray technology, one group identified transcriptional differences in blood in a 

panel of 12 genes, between controls and gene expansion carriers[92]. Unfortunately others could 

not externally validate these results[93]. This finding may be explained by genetic, environmental, 

medication or dietary differences between populations, or the inherent statistical and technical 

challenges of transcriptomics. The apparent failure of gene expression profiling to produce readily 

measured biomarkers is disappointing, but as larger populations are studied using more recent 

methods, useful transcriptomic biomarkers may yet emerge. 
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Proteomic studies in CSF, blood and urine have largely suffered from the same conceptual concerns 

and lack of validation. One exception is immune dysfunction (see above), which was first identified 

using plasma proteomics[51]. 

3.7. Kynurenine pathway metabolites 

Before the identification of HTT as the cause of HD, quinolinic acid (QA) lesioned mice were a 

common experimental model used to study HD as they displayed a similar pathology to HD patients. 

QA is a key component of the kynurenine pathway (KP), a biochemical pathway encompassing the 

oxidative metabolism of tryptophan. QA’s agonistic action on NMDA receptors gives it a selective 

toxicity for medium spiny neurons produced after direct intra-striatal injection. This discovery 

inspired much interest in QA and other KP metabolites (Table 8) and introduced the concept of 

excitotoxicity as a disease mechanism in HD. 

Some of the earliest studies of KP metabolites in humans examined CSF, driven by the effects of QA 

injection in mouse striatum. QA, kynurenic acid (KA) and tryptophan have all been reported to be 

altered in CSF from HD patients[94-97]. Unfortunately, all studies of KP metabolites in CSF thus far 

were carried out before the discovery of the causative gene for HD. They also used inconsistent 

methods and sample collection procedures such as collecting at different times of day and with or 

without fasting. 

Interest in this pathway has been revisited more recently in blood. In 2005, Stoy and colleagues used 

HPLC to quantify the levels of six major components of the kynurenine pathway – tryptophan, 

kynurenine, KA, 3-hydroxykynurenine, 3-hydroxyanthranilic acid (3HAA) and xanthurenic acid – in 

the blood of eleven hospitalised advanced HD patients and 15 healthy controls after loading and 

depletion of tryptophan[29]. The kynurenine:tryptophan and KA:kynurenine ratios were increased, 

while levels of the redox-active 3HAA was decreased in HD patients compared to controls suggesting 

a greater conversion of tryptophan to kynurenine in patients. These changes in KP metabolites 

supported previously published measurements of their levels from post-mortem brain or animal 

models[94,97-101]. Forrest, Mackay and colleagues (2010) found levels of tryptophan were lower 

and the kynurenine:tryptophan ratio was higher in HD patients than in healthy controls, supporting 

results previously seen by Stoy et al. (2005)[102,29].  

An important caveat when interpreting evidence from KP metabolites in blood is that they do not 

have equal ability to cross the blood-brain barrier. For example tryptophan and kynurenine readily 

pass through neutral amino acid transportors[103-105], in contrast, other components pass poorly 
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by diffusion, such as 3HAA and KA. This raises the question of whether blood is a relevant medium to 

measure disease markers of HD-related neuropathology. Blood also may be too dynamic for 

measuring metabolic markers to give a meaningful indication about HD disease processes. 

There remains strong evidence for the KP’s involvement in HD but the studies currently available to 

us are insufficient to provide a conclusive answer to how KP metabolites may be involved in HD 

pathology. It will be important to further investigate KP metabolites in CSF using high-quality CSF 

with matched blood samples from a large and clinically well-characterised cohort with 

contemporaneous healthy control samples for comparison. 

3.8. Oxidative stress 

Oxidative stress has been associated with several neurodegenerative conditions[106-108]. HD is no 

exception, and CSF, blood and urine have been used to investigate markers of oxidative stress in this 

population[109,110]. Two relatively well-characterized substances are F2-isoprostanes and 8-

Hydroxy-2-deoxyguanosine (8OH2’dG), but multiple others have been investigated (Table 9). 

F2-isoprostanes are a marker for lipid peroxidation. In a small population of patients with HD, and 

healthy and disease controls, Montine and colleagues found that HD CSF contained an excess of 

these markers[109], a result in line with previous research in Alzheimer’s disease[106]. Further 

investigation by the same group with blood and urine samples, also using gas 

chromatography/negative ion chemical ionization mass spectrometry could not replicate such 

abnormalities[110]. 

Based on the findings from animal models and human observational studies, a number of 

randomized clinical trials invested in compounds hypothesised to act as anti-oxidants, such as ethyl-

EPA[111-113], creatine[114,115] and coenzyme Q10[116-118]. The results were disappointing in 

terms of clinical efficacy but data on several potential biomarkers was obtained. In particular, Hersch 

and colleagues found great differences between patients and controls in 8OH2’dG levels[114], a 

change that has also been found incidentally by others[119]. This molecule is proposed to be an 

indirect measurement of oxidative damage to DNA. Indeed, creatinine was theorized to be able to 

change the levels of 8OH2’dG in HD, and consequently the intensity of DNA damage. Further studies 

did not validate these findings[120,121,115], and it is now well-established from rigorously-

conducted large-scale replication studies that 8OH2’dG is not a disease biomarker in HD (Fig. 

10)[122]. 
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3.9. Neuroendocrine and metabolic markers 

Both wild type and mutant huntingtin are expressed throughout most body tissues[123], perhaps 

accounting for at least some of the neuroendocrine and metabolic abnormalities found in HD such as 

weight loss and muscle atrophy[124]. On one hand, neuronal populations responsible for 

coordinating and giving feedback to complex endocrine loops may be subject to dysfunction and 

neurodegeneration; on the other, tissues outside the CNS also show susceptibility to mHTT 

accumulation and eventually dysfunction[125]. 

For these reasons, neuroendocrine and metabolic biofluid biomarkers are not only seen as potential 

surrogates for clinical outcome measures in research and clinical practice, but as useful hints in the 

preclinical development of therapeutic approaches to some of the peripheral abnormalities found in 

people with HD (Table 10 and Table 11). So far more than fifty such molecules have been examined 

in humans with HD. For a comprehensive review on this topic please refer to references[126,124]. 

BDNF, or brain derived neurotrophic factor, is a peptide of utmost relevance to the survival of 

striatal neurons. It was found decreased in the blood of gene-positive individuals (Fig. 11)[127,128]. 

Indeed some authors showed these alterations were correlated with the clinical phenotype[127], 

and were already present in premanifest individuals[129]. However, these findings were not 

corroborated in a larger study involving 398 indivuduals[130], mainly because, although blood 

concentration reflects at least partially in-brain concentration[131], this factor is also produced 

peripherally by megakaryocytes and platelets, and variations in blood collection, storage and 

measurement techniques have a significant impact in the final results[130]. In 2014, another 

moderately sized study refuted the conclusion of the first reports[132]. No study has so far explored 

BDNF in CSF. 

Melatonin is a light-sensitive hormone mainly secreted by the pineal gland. It has an important role 

in the sleep-wake cycle, which is highly deregulated early in the course of HD[133]. Two preliminary 

reports showed no differences in plasma melatonin in people with HD[91,134]. A third study in a 

larger cohort showed that the mean 24-hour hormone concentration decreases with disease 

progression, as does the amount secreted during the acrophase of its production – during the 

night[135]. This was seen even in premanifest individuals. 

These endocrine abnormalities are of clinical interest and may yield useful biomarkers. Some 

endocrine abnormalities may be amenable to treatment using existing therapies, which may have 

both central and peripheral benefits. If treatable, measures of endocrine dysfunction will become 

biomarkers of pharmacodynamics rather than of progression. Endocrine features are highly 
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susceptible to influences other than pathology, such as drugs and depression; this must be borne in 

mind when assessing their utility as potential biomarkers. As with so many other proposed markers, 

proper validation studies of the assays and the disease-related changes are lacking. 

4. Conclusion 

Many biofluid biomarker candidates have been reported over several decades of HD research. The 

most noteworthy and most likely to be genuinely useful in the near future include: 

 Mutant huntingtin and other huntingtin species in CSF, with the immediate demand 

for pharmacodynamics and target-engagement markers for current and upcoming 

clinical trials of huntingtin-lowering therapeutics;  

 Neuronal damage markers in CSF and blood – especially neurofilament light protein 

– which have demonstrated neuropathological relevance and the accumulating 

evidence of prognostic value from studies in HD and other neurodegenerative 

diseases. 

Many methodologies have been explored from radioenzymatic assays to enhanced immunoassays 

producing ultrasensitive quantification. As technology continues to improve, the potential for more 

sensitive and specific techniques which could unearth biofluid markers of previously immeasurable 

alterations increases. A real-life example of this in HD is the quantification of mHTT itself. Single 

molecule counting (SMC) technology made it possible for the first time to measure mHTT in CSF, 

even in premanifest individuals with extremely low concentrations[21]. Most recently SIMOA 

technology which has uncovered a robust blood-based biomarker of neuronal damage in 

neurofilament light chain[49].  

Methodologies and disease-related findings both require validation, particularly if they are to be 

considered for use as clinical trial endpoints. This has not yet been achieved for any of the biofluid 

biomarkers that we have discussed in this chapter. The closest to validation in HD are assays for 

huntingtin and the protein markers of neuronal damage such as neurofilament light chain, which are 

already useful as exploratory endpoints. In order to achieve this level of validation, three things are 

necessary: 

(1) A rigorous framework. The European Medicines Agency (EMA) and Food and Drug administration 

(FDA) provide guidelines on how to technically validate an assay, ensuring it will be robust and 

methodologically sound[136,137]. 
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(2) Large observational studies designed for biomarker evaluation. Disease-related findings from 

smaller studies need to be replicated in cohorts with large numbers of samples and ideally from 

multi-site studies with complete consistency between sites and comprehensive clinical data. 

Samples collected in large-scale observational studies in HD such as TRACK-HD and Predict-HD offer 

a current source to do this for potential blood biomarkers. Previously, studies of potential CSF 

biomarkers for HD have been thwarted by low sample numbers and inconsistent collection 

procedures. HDClarity, a multi-site CSF collection initiative for HD, will be collecting CSF and blood 

samples from 600 subjects across all disease stages as well as healthy controls. This will provide an 

invaluable resource to facilitate the validation of both blood and CSF biomarkers for HD[138]. 

(3) Motivation. Biomarkers do not discover themselves, and nor do findings replicate themselves. 

For any biofluid biomarker of HD to make it as a useful tool clinically or commercially, there has to 

be rigorous work to move from hypothesis-driven discovery work to the replication of methods and 

findings to regulatory standards in large-scale cohorts.  

The last five years alone have seen significant progress with biofluid biomarkers having real potential 

to study and predict HD disease progression and therapeutic response. With concerted work, it is to 

be hoped that the years to come will see some of these biofluid biomarkers reaching validation for 

use in the therapeutic trial or even clinical setting. 
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Figures Captions 

Fig. 1. Timeline of published CSF biomarkers in Huntington’s disease. Triangular markers indicate the 

identification of the HTT gene as the cause of HD. Adapted from Byrne et al.[10] with the author’s 

and publisher’s permission. 

Fig. 2. In two independent cohorts (A and B), CSF mHTT levels were different between gene 

expansion carriers and healthy controls, and premanifest and manifest gene expansion carriers. 

Adapted from Wild et al.[21] with the author’s and publisher’s permission. 

Fig. 3. CSF mHTT levels correlate with CSF markers of neuronal death, tau (A, B) and NFL (C, D), in 

independent cohorts. Adapted from Wild et al.[21] with the author’s and publisher’s permission. 

Fig. 4. Using a different assay than the one used by Wild et al., Southwell et al. showed that CSF 

mHTT levels change with disease progression (A), and correlates with several clinical measures, such 

as the verbal fluency (B), the symbol digit modality test (C), the Stroop colour naming test (D), and 

the total motor score (E). Adapted from Southwell et al.[22] with the publisher’s permission. 

Fig. 5. CSF Neurofilament light chain (NfL) is increased in patients with Huntington’s disease. 

Adapted from Constantinescu et al.[34] with the publisher’s permission. 

Fig. 6. (a) CSF tau levels are higher in gene expansion carriers comparing with healthy controls, and 

correlates with clinical measures, such as the total functional capacity (b), and the total motor score 

(c). Adapted from Rodrigues et al.[38] with the author’s and publisher’s permission. 

Fig. 7. (A) Plasma neurofilament light chain (NfL) is increased in Huntington’s disease and rises with 

advancing disease. (B) Each CAG increase is associated with higher, more steeply rising NfL. (C) 

Baseline plasma NfL is able to predict subsequent cognitive, motor and functional decline, and brain 

atrophy. (D) Baseline plasma NfL predicted subsequent onset of manifest HD in the mutation carriers 

who were premanifest at the start of the study, even after adjustment for age, CAG and baseline 

brain volumes. (E) CSF NfL is closely correlated with plasma NfL.  Adapted from Byrne et 

al.[49] under a creative commons licence. 

Fig. 8. The plasma concentration of IL-6 is higher is gene expansion carriers. Adapted from Björkqvist 

et al.[55] with the publisher’s permission. 

Fig. 9. YKL-40 shows a strong correlation with phenotypic measurements. Adapted from Rodrigues et 

al.[38] with the author’s and publisher’s permission. 
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Fig. 10. 8OHdG measure with (A) liquid chromatography–electrochemical array (LCMS) and with (B) 

liquid chromatography–mass spectrometry (LCECA) does not change with disease progression. 

Adapted from Borowsky et al.[122] with the publisher’s permission. 

Fig. 11. Brain-derived neurotrophic factor is decreased in patients with Huntington’s disease. 

Adapted from Ciammola et al.[127] with the publisher’s permission. 
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Tables 

 

Table 1. Summary of published studies reporting HTT as a biofluid biomarker in HD. 

Molecule Sample Study n Direction Method 

HTT protein Blood Weiss 2012 [17] 40 C = HD TR-FRET  

  
Moscovitch-Lopatin 2010 
[19] 

38 C < HD HTRF 

  
Moscovitch-Lopatin 2013 
[18] 

342 C = HD HTRF 

  Massai 2013 [20] 25 C > HD ELISA 

mHTT 
protein 

CSF Southwell 2015 [22] 37 
C < HD 
PM = M 

IP-FCM 

  Wild 2015 [21] 52 

C < HD 
PM < M 

Corr stage 

Corr NFL and 
tau 

Singulex SMC 
Immunoassay 

 Blood Weiss 2009 [15] 9 C < HD TR-FRET 

  
Moscovitch-Lopatin 2010 
[19] 

38 C < HD HTRF 

  Weiss 2012 [17] 40 
C < HD 
PM < M 

TR-FRET  

  
Moscovitch-Lopatin 2013 
[18] 

342 C < HD HTRF 

  Wild 2015 [21] 52 CSF corr plasma 
Singulex SMC 
Immunoassay 

Abbreviations: n, sample size; HTT, Huntingtin; mHTT, mutant Huntingtin; C, healthy controls; HD, 
Huntington’s disease gene expansion carriers; PM, premanifest gene expansion carriers; M, manifest gene 
expansion carriers; CSF, cerebrospinal fluid; Corr, correlates; TR-FRET, Time resolved fluorescence resonance 
energy transfer; HTRF, homogeneous time-resolved fluorescence; ELISA, enzyme-linked immunosorbent assay; 
IP-FCM, micro-bead based immunoprecipitation and flow cytometry; NFL, neurofilament light chain; SMC, 
single-molecule counting mHTT immunoassay. 
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Table 2. Summary of published studies on protein markers of neuronal death in HD. 

 

Abbreviations: n, sample size; HTT, Huntingtin; mHTT, mutant Huntingtin; C, healthy controls; HD, 
Huntington’s disease gene expansion carriers; PM, premanifest gene expansion carriers; M, manifest gene 
expansion carriers; CSF, cerebrospinal fluid; Corr, correlates; TFC, UHDRS Total Functional Capacity; TMS, 
UHDRS Total Motor Score; Cogn, measures of cognition; ELISA, enzyme-linked immunosorbent assay. 

Molecule Sample Study n Direction Method 

NfL CSF Constantinescu 
2009 [34] 

35 C < HD 
Corr TFC 

ELISA 

  Rodrigues 
2016[35] 

37 C < HD 
PM < M 

Corr stage 
Corr TFC 
Corr TMS 

ELISA 

  Niemela 
2017[39] 

23 PM < M 

Corr TFC 

Corr TMS 

Corr tau 

ELISA 

  Byrne 2017[49] 37 Corr plasma NfL SIMOA 

 Blood Byrne 2017[49] 298 C < HD 

Corr stage 

Corr TMS 

Corr cogn 

Corr imaging 

SIMOA 

NfH Blood Wild 2007 [33] 117 C = HD ELISA 

Tau CSF Constantinescu 
2011 [37] 

35 C < HD ELISA 

  Rodrigues 2016 
[38] 

67 C < HD 
Corr TFC 
Corr TMS 
Corr Cogn 

ELISA 

  Niemela 2017 
[39] 

23 Corr TFC 

Corr TMS 

Corr NfL 

ELISA 

S100B Blood Stoy 2005 [29] 26 C = HD ELISA 

  Silajdzic 2013 
[61] 

Cohort1 79 
Cohort2 42 

C = HD 
C = HD 

Luminex 
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Table 3. Summary of published studies on inflammatory biofluid biomarkers in HD. 

Molecule Sample Study n Direction Method 

IL-1 CSF Rodrigues 2016 [59] 37 Not detected MSD antibody-based 
tetraplex array 

 Blood Mochel 2007 [139] 53 C = HD ELISA 
  Bjorkqvist 2008 [55] 194 C = HD MSD immunoassay 
  Wang 2014 [132] 39 C = HD Human cytokine/chemokine 

assay kit 
IL-2 Blood Bjorkqvist 2008 [55] 194 C = HD MSD immunoassay 
IL-2 
receptor 

Blood Leblhuber 1998 [140] 23 C < HD ELISA 

IL-4 Blood Bjorkqvist 2008 [55] 194 C = HD 
Corr stage 

MSD immunoassay 

IL-5 Blood Bjorkqvist 2008 [55] 194 C = HD MSD immunoassay 
IL-6 CSF Bjorkqvist 2008 [55] 194 Corr plasma IL-6 ELISA 
  Rodrigues 2016 [59] 37  C < HD MSD antibody-based tetra-

plex array 
 Blood Dalrymple 2007 [51] 96 C < HD ELISA 
  Mochel 2007 [139] 53 C = HD ELISA 
  Bjorkqvist 2008 [55] 194 C < HD 

PM < M 
Corr stage 

MSD immunoassay 

  Sanchez-Lopez 2012 
[141] 

23 C < HD ELISA 

  Trager 2014 [142] 80 C < HD MSD immunoassay 
  Wang 2014 [132] 39 C = HD Human cytokine/chemokine 

assay kit 
  Chang 2015 [143] 36 C < HD 

Corr IS 
Corr TFC 
PM = M 

ELISA 

IL8  CSF Bjorkqvist 2008 [55] 194 Corr plasma IL-6 ELISA 
  Rodrigues 2016 [59] 37 C =HD MSD antibody-based tetra-

plex array 
 Blood Bjorqvist 2008 [55] 194 C < HD 

Corr stage 
Corr TFC 
Corr TMS 

MSD immunoassay 

IL-10 Blood Bjorqvist 2008 [55] 194 C = HD 
Corr stage 

MSD immunoassay 

  Wang 2014 [132] 39 C = HD Human cytokine/chemokine 
assay kit 

IL-12 Blood Bjorqvist 2008 [55] 194 C = HD MSD immunoassay 
IL-13 Blood Bjorqvist 2008 [55] 194 C = HD MSD immunoassay 
IL-16 Blood Chang 2015 [143] 36 C = HD 

PM = M 
ELISA 

IL-18 Blood Chang 2015 [143] 36 C > HD 
PM = M 

ELISA 

IL-23 Blood Forrest 2010 [102] 113 C < HD 
Corr stage 
Corr CAG 

Immunoassay kit 

sCD23 Blood Leblhuber 1998 [140] 23 C = HD ELISA 
sHLA-G Blood Forrest 2010 [102] 113 C = HD ExBIO/BioVendor ELISA 

assay kit 
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TNF-α CSF Rodrigues 2016 [59] 37 Not detected MSD antibody-based 
tetra-plex array 

 Blood Bjorqvist 2008 [55] 194 C = HD 
Corr stage 
Corr TFC 
Corr TMS 

MSD immunoassay 

  Wang 2014 [132] 39 C = HD Human cytokine/chemokine 
assay kit 

sTNF 
receptor 

Blood Leblhuber 1998 [140] 23 C < HD ELISA 

INF-γ Blood Bjorqvist 2008 [55] 194 C = HD MSD immunoassay 
GM-CSF Blood Bjorqvist 2008 [55] 194 C = HD MSD immunoassay 
MMP-3/-
9/-10 

Blood Chang 2015 [143] 36 MMP-3: C < HD 
PM = M 
MMP-9: C = HD 
PM = M 
MMP-10: C = HD 
PM = M 

ELISA 

TIMP-2 Blood Chang 2015 [143] 36 C = HD 
PM = M 

ELISA 

VEGF Blood Chang 2015 [143] 36 C < HD 
PM = M 

ELISA 

TGF-1β Blood Squitieri 2009 [144] N/S C = HD N/S 
  Battaglia 2011 [145]  C > HD 

PM < M 
TGF-1β Emax Immunoassay 
System kit 

  Chang 2015 [143] 36 C < HD 
PM = M 

ELISA 

MIP-1α/-
3β 

Blood Chang 2015 [143] 36 C = HD 
PM = M 

ELISA 

Clusterin CSF Dalrymple 2007 [51] 29 C < HD ELISA 
 Blood Dalrymple 2007 [51] 20 C < HD 2D electrophoresis 
   90 C < HD Semiquantitative 

immunoblotting 
   73 C < HD ELISA 
  Silajdzic 2013 [61] Cohort1 79 C = HD ELISA 
VCAM-1 Blood Chang 2015 [143] 36 C = HD 

PM = M 
ELISA 

ICAM-1 Blood Chang 2015 [143] 36 C = HD 
PM = M 

ELISA 

β-actin Blood Dalrymple 2007 [51] 20 C < HD 2D electrophoresis 
YKL-40 CSF Vinther-Jensen 2014 

[60] 
68 C = HD 

PM = M 
Corr TMS 

ELISA 

  Rodrigues 2016 [59] 37 C < HD 
Corr stage 
Corr TFC 
Corr TMS 
Corr NFL+Tau 

MSD antibody-based tetra-
plex array 

 Blood Vinther-Jensen 2014 
[60] 

68 C = HD ELISA 

Chitotria
sidase 

CSF Rodrigues 2016 [59] 37 C < HD Mattsso 2011 [146] 

Prothro
mbin 

CSF Huang 2011 [147] 12 C < HD Two-dimensional 
electrophoresis and mass 
spectrometry 

  Huang 2011 [147] 18 C < HD 
Corr TMS 

ELISA 
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Corr IS 
 Blood Huang 2011 [147] 18 C = HD ELISA 
Haptoglo
bin 

CSF Huang 2011 [147] 12 C < HD Two-dimensional 
electrophoresis and mass 
spectrometry 

  Huang 2011 [147] 18 C < HD ELISA 
 Blood Huang 2011 [147] 18 C = HD ELISA 
Neopteri
n 

Blood Leblhuber 1998 [140] 23 C < HD 
Corr cogn 

ELISA 

  Stoy 2005 [29] 26 C < HD 
Corr CRP 

ELISA 

  Christofides 2006 [91] 26 C < HD ELISA 
Immuno
globulins 
A, M , G 

Blood Leblhuber 1998 [140] 23 IgA: C < HD 
IgM: C = HD, 
corr cogn 
IgG: C = HD 

Nephelometry and indirect 
immuno-fluorescence 

  Bjorqvist 2008 [55] 194 C = HD Single radial immunodiff-
usion assays 

C3 Blood Leblhuber 1998 [140] 23 C < HD Nephelometry and indirect 
immuno-fluorescence 

  Silajdzic 2013 [61] Cohort1 79 
Cohort2 42 

C = HD 
C = HD 

Luminex and MRM 

C4 Blood Leblhuber 1998 [140] 23 C = HD Nephelometry and indirect 
immuno-fluorescence 

  Silajdzic 2013 [61] Cohort1 79 
Cohort2 42 

C = HD 
C = HD 

Luminex 

C5 Blood Silajdzic 2013 [61] Cohort1 79 C = HD MRM 
C7 Blood Dalpymple 2007 [51] 109 C < HD 2D electrophoresis 
C9 Blood Dalpymple 2007 [51] 109 C < HD 2D electrophoresis 
  Silajdzic 2013 [61] Cohort1 79 C = HD MRM 
Comple
ment 
factor B 

Blood Silajdzic 2013 [61] Cohort1 79 C = HD MRM 

Comple
ment 
factor H 

Blood Silajdzic 2013 [61] Cohort1 79 
Cohort2 42 

C = HD 
C ≠ HD 

Luminex and MRM 

Eotaxin 3 Blood Wild 2011 [148] Cohort1 99 
Cohort2 94 

C < HD 
C < HD 

ELISA 

MIP-1β Blood Wild 2011 [148] Cohort1 99 
Cohort2 94 

C < HD 
C < HD 

ELISA 

MIP-4 
(CCL18) 

Blood Silajdzic 2013 [61] Cohort1 79 C = HD Luminex 

Eotaxin Blood Wild 2011 [148] Cohort1 99 
Cohort2 94 

C = HD 
C < HD 

ELISA 

MCP-1 Blood Wild 2011 [148] Cohort1 99 
Cohort2 94 

C = HD 
C = HD 

ELISA 

MCP-4 Blood Wild 2011 [148] Cohort1 99 
Cohort2 94 

C = HD 
C = HD 

ELISA 

Circulatin
g 
immune 
complex
es 
 

Blood Leblhuber 1998 [140] 23 C = HD 
Corr cogn 
 

Nephelometry and indirect 
immuno-fluorescence 

Cardiolipi
n 

Blood Leblhuber 1998 [140] 23 Corr cogn Nephelometry and indirect 
immuno-fluorescence 

CRP Blood Leblhuber 1998 [140] 23 C = HD N/S 
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  Stoy 2005 [29] 26 C < HD 
Corr ESR 

Behring Turbitimer 

  Mochel 2007 [139] 53 C = HD ELISA 
  Sanchez-Lopez 2012 

[141] 
23 C < HD Assay kit (OSR6147) 

  Krzyszton-Russjan 2013 
[149] 

57 C = HD N/S 

  Silajdzic 2013 [61] Cohort1 79 
Cohort2 42 

C > HD 
C = HD 

Luminex and MRM 
 

  Wang 2014 [132] 39 C < PM ALPCO ELISA kit 
  Bouwens 2014 [150] 164 C = HD COBAS INTEGRA 800 

analyzer 
ESR Blood Leblhuber 1998 [140] 23 C = HD N/S 
  Stoy 2005 [29] 26 C = HD 

Corr CRP 
Starrsed Automated ESR 
machine 

  Mochel 2007 [139] 53 C = HD ELISA 
  Krzyszton-Russjan 2013 

[149] 
57 C = HD N/S 

sHLA-G Blood Forrest 2010 [102] 113 C = HD ELISA 
Myelope
roxidase 
(MPO) 

Blood Tasset 2012 [128] 38 C = HD N/S 

  Sanchez-Lopez 2012 
[141] 

13 HD1 > HD2 Oxis International 

Prealbu
min 

Blood Silajdzic 2013 [61] Cohort1 79 C = HD Luminex 

Albumin Blood Phillipson 1977 [151] 18 C = HD Bromocresol Green dye-
binding method 

  Leblhuber 1998 [140] 23 C = HD N/S 
  Bouwens 2014 [150] 117 C > HD Modular P systems 
LDH Blood Tasset 2012 [128] 38 C < HD Kit from Linear Chemicals S. 

L. 
Lactate Blood Duran 2010 [152] 91 C < M L-lactic acid Enzymatic 

Bioanalysis (Roche) kit 
  Josefsen 2010 [153] 19 C = HD Passonneau and Lowry, 

1993 [154] 
  Ciammola 2011 [155] 50 C = HD Colorimetric assay 
α2-
antiplas
min 

Blood Dalpymple 2007 [51] 109 C < HD 2D electrophoresis 

α2-
macroglo
bulin 

Blood Dalpymple 2007 [51] 109 C < HD 2D electrophoresis 

 Blood Silajdzic 2013 [61] Co 1 79 
Cohort2 42 

C = HD 
C = HD 

Luminex 

Abbreviations: n, sample size; HTT, Huntingtin; mHTT, mutant Huntingtin; C, healthy controls; HD, 
Huntington’s disease gene expansion carriers; PM, premanifest gene expansion carriers; M, manifest gene 
expansion carriers; CSF, cerebrospinal fluid; Corr, correlates; TFC, UHDRS Total Functional Capacity; TMS, 
UHDRS Total Motor Score; IS, UHDRS Independence Scale; Cogn, measures of cognition; MSD, Meso 
ScaleDiscovery; ELISA, enzyme-linked immunosorbent assay; NFL, neurofilament light chain; MRM, multiple 
reaction monitoring 
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Table 4. Summary of published studies on transglutaminase activity biofluid biomarkers in HD. 

Molecule Sample Study n Direction Method 

Nε-(γ-l-Glutamyl)-l-lysine (GGEL) CSF Jeitner 2008 [63] 63 C < HD MS 

  Jeitner 2008 [64] 45 C < HD HPLC 

γ-Glutamylspermidine CSF Jeitner 2008 [64] 45 C < HD HPLC 

γ-Glutamylputrescine CSF Jeitner 2008 [64] 45 C < HD HPLC 

bis-γ-Glutamylputrescine CSF Jeitner 2008 [64] 45 C < HD HPLC 

Abbreviations: n, sample size; C, healthy controls; HD, Huntington’s disease gene expansion carriers; PM, 

premanifest gene expansion carriers; M, manifest gene expansion carriers; CSF, cerebrospinal fluid; MS, mass 

spectrometry; HPLC, high-performance liquid chromatography. 
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Table 5. Summary of published studies on neurotransmitter studies in HD. 

Molecule Sample Study n Direction Method 

GABA CSF 
Enna 1977 
[67] 

45 C > HD Radioreceptor assay 

  
Manyam 
1978 [68] 

11 C > HD Ion-exchange fluorometry 

  
Bohlen 1980 
[69] 

34 C > HD HP cation exchange chromatography 

  
Uhlhaas 
1986 [70] 

58 C > HD Ion-exchange chromatography 

  
Bonnet 
1987 [72] 

33 C < HD HPLC 

  
Nicoli 1993 
[73] 

23 C = HD 
High resolution proton NMR 
spectroscopy and HPLC 

 Blood 
Uhlhaas 
1986 [71] 

58 C > HD Ion-exchange chromatography 

  
Nicoli 1993 
[73] 

23 C = HD 
High resolution proton NMR 
spectroscopy and HPLC 

Homocarnosine CSF 
Bohlen 1980 
[70] 

34 C > HD HP cation exchange chromatography 

  
Bonnet 
1987 [72] 

33 C < HD HPLC 

Neuropeptide Y CSF 
Wagner 
2016 [156] 

30 C < HD Competitive radioimmunoassay 

Agouti-related 
protein 

Blood 
Wang 2014 
[132] 

39 

C < PM 

C = M 

PM > M 

Human Brain-Derived/ Pituitary Protein 
Multiplex Panel assay kit 

Choline CSF 
Consolo 
1977 [76] 

27 C = HD Radiochemical micromethod [157] 

  
Manyam 
1990 [77] 

15 C > HD Radiometric enzymatic assay 

AChE activity CSF 
Consolo 
1977 [76] 

27 C = HD Radiochemical method [158]  

  
Manyam 
1990 [77] 

15 C = HD Radiometric method [159] 

 Blood 
St Clair 1986 
[78] 

49 C = HD Monoclonal Antibody Assay 

Dopamine CSF Garret 1992 23 C < HD HPLC 
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[81] 

 Blood 
Belendiuk 
1980 [80] 

76 C = HD [160] 

DBH Plasma 
Caraceni 
1977 [89] 

91 C = HD [161] 

Epinephrine Blood 
Belendiuk 
1980 [80] 

76 C < HD [160] 

 Urine 
McNamee 
1971 [88] 

54 C = HD [162] 

Norepinephrine CSF 
Garret 1992 
[81] 

23 C = HD HPLC 

 Blood 
Belendiuk 
1980 [80] 

76 C = HD [160] 

 Urine 
McNamee 
1971 [88] 

54 C = HD [162] 

Tryptophan 
See 
oxidativ
e stress 

    

Serotonin Blood 
Belendiuk 
1980 [80] 

76 C < HD Fluorometry 

  
Christofides 
2006 [91] 

26 C = HD HPLC 

HVA CSF 
Klawans 
1971 [86] 

13 C = HD Fluorimetric method [163] 

  
Curzon 1972 
[82] 

26 

C > HD 

Corr 
severity 

[164] 

  
Garret 1992 
[81] 

23 C > HD HPressureLC 

  
García Ruiz 
1995 [85] 

35 C = HD HPressureLC 

  
Caraceni 
1977 [83] 

17 C > HD [165] 

 Blood 
Belendiuk 
1980 [80] 

76 C = HD HPLC 

  
Markianos 
2009 [87] 

169
? 

C=PM 

C < M 

Corr 
stage 

HPLC 
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 Urine 
Williams 
1961 [84] 

N/S C = HD N/S 

VMA Urine 
McNamee 
1971 [88] 

54 C = HD [166] 

5-HIAA CSF 
Curzon 1972 
[82] 

39 C < HD [167] 

  
Caraceni 
1977 [89] 

17 C > HD [165] 

  
Kurlan 1988 
[90] 

77 C = HD HPLC 

  
Garret 1992 
[81] 

23 C = HD HPLC 

  
García Ruiz 
1995 [85] 

35 C = HD HPressureLC 

 Blood 
Christofides 
2006 [91] 

26 C = HD HPLC 

 Urine 
McNamee 
1971 [88] 

54 C = HD [168] 

DOPAC CSF 
Garret 1992 
[81] 

23 C < HD HPLC 

MHPG CSF 
Garret 1992 
[81] 

23 C < HD HPLC 

Monoamine 
oxidase 

Blood 
Belendiuk 
1980 [80] 

76 C < HD [169] 

A2A receptors Blood 
Varani 2003 
[170] 

115 C < HD Multiple methods 

  
Maglione 
2005 [171] 

74 
Corr 

anticipati
on 

Binding Assay 

  
Maglione 
2006 [172] 

94 

C < HD 

Corr CAG 
Corr age 

onset 

Radioligand binding assays 

  
Varani 2007 
[173] 

252 C < HD Multiple methods 

Histamine Urine 
McNamee 
1971 [88] 

54 C > HD [174] 

1,4-
methylimidazoleac
etic acid 

Urine 
McNamee 
1971 [88] 

54 C > HD [174] 
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1,5-
methylimidazoleac
etic acid 

Urine 
McNamee 
1971 [88] 

54 C > HD [174] 

Kainic acid-like 
molecules 

CSF 
Beutler 
1981 [175] 

5 C = HD Competition assay 

 Blood 
Beutler 
1981 [175] 

5 C = HD Competition assay 

 Urine 
Beutler 
1981 [175] 

5 C = HD Competition assay 

Glycine CSF 
Nicoli 1993 
[73] 

23 C < HD 
High resolution proton NMR 
spectroscopy and HPLC 

 Blood 
Reilmann 
1997 [176] 

37 C = HD High-pressure liquid chromatography 

  
Nicoli 1993 
[73] 

23 C = HD 
High resolution proton NMR 
spectroscopy and HPLC 

 
Abbreviations: n, sample size; C, healthy controls; HD, Huntington’s disease gene expansion carriers; PM, 

premanifest gene expansion carriers; M, manifest gene expansion carriers; CSF, cerebrospinal fluid; HP, High 

performance; MS, mass spectrometry; HPLC, high-performance liquid chromatography; HPressureLC, high 

pressure liquid chromatography. 
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Table 6. Summary of published studies on transcriptomic biofluid biomarkers in HD. 

 

Abbreviat
ions: n, 
sample 
size; C, 
healthy 
controls; 
HD, 
Huntingto
n’s 
disease 
gene 
expansion 
carriers; 
PM, 
premanife
st gene 
expansion 
carriers; 
M, 
manifest 
gene 
expansion 
carriers;m
RNA, RNA 

of mtDNA-encoded mitochondrial enzymes; mtDNA, mitochondrial DNA;; QRT-PCR , Quantitative Real-time 
PCR; RT-PCR , Real-time PCR;  

Molecule Sample Study n Direction Method 

Multiple mRNA Blood 
Borovecki 2005 
[92] 

71 
C < HDCorr 
stage 

QRT-PCR 

IER3 mRNA Blood Runne 2007 [93] 90 C < HD QRT-PCR 

Chromosomal variation Blood 
Anderson 2008 
[177] 

31 
C < HD 
C < PM 

QRT-PCR 

“12-gene set” Blood 
Lovrecic 2009 
[178] 

123 C < HD QRT-PCR 

ARFGEF2 and GOLGA8G Blood 
Lovrecic 2010 
[179] 

46 C < HD QRT-PCR 

H2AFY Blood Hu 2011 [180] 119 C < HD QRT-PCR 
MAOB, TGM2, SLC2A4, 
BCKDK 

Blood 
Krzyszton-Russjan 
2013 [149] 

57 C < HD QRT-PCR 

LDHA, BDNF Blood 
Krzyszton-Russjan 
2013 [149] 

57 C > HD QRT-PCR 

TLR2, LTBR, CD40, 
TMED4, AKT1, IL10, FR2 

Blood Trager 2014 [142] 20 C < HD RT-PCR 

CHUK  Trager 2014 [142] 20 C > HD RT-PCR 
SERCA2 and VEGF Blood Cesca 2015 [181] 164 C > HD RT-PCR 

miRNA-34b Blood 
Gaughwin 2011 
[182] 

23 C < PM miRNA RT-PCR 

ND1, COX1, CYTB 
mtRNA 

Blood Chen 2007 [119] 52 C = HD QRT-PCR 
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Table 7. Summary of published studies on proteomic biofluid biomarkers in HD. 
 

Abbreviations: n, sample size; C, healthy controls; HD, Huntington’s disease gene expansion carriers; PM, 

premanifest gene expansion carriers; M, manifest gene expansion carriers; CSF, cerebrospinal fluid; Corr, 

Correlation; ELISA, enzyme-linked immunosorbent assay; MS, mass spectrometry; SELDI-TOF MS, Surface-

enhanced laser desorption/ionization time-of-flight mass spectrometry; LC/MS/MS, Liquid 

chromatography tandem mass spectrometry.  

Sample Study n Direction Method 

CSF Dalrymple 2007 [51] 29 Corr stage ELISA 

 Fang 2008 [183] 30 

CHGB, SIAE, IDS, NRXN3, GSN, ENDOD1, GRIA4, GGH, GC, 
C4B, PRNP: C > HD 
C1QC, HPX, TPI1, PKM2/PKLR, LYZ, FAM3C, LMAN2: C < 
HD 

5 diff methods (1 per lab)

 Huang 2011 [147] 
12 
18 

Prothrombin, ApoA-IV, Haptoglobin: C < HD 
Prothrombin: C < HD 
ApoA-IV: C < HD 
Haptoglobin: C < HD 

2D Electrophoresis + MS 
Western blot analysis or ELISA

 
Vinther-Jensen 2015 
[184] 

121 10 peaks (Ubiquitin, transthyretin)  SELDI-TOF MS 

Blood Dalrymple 2007 [51] 
20 b-actin, ApoA-IV, clusterin: C < HD 

 
2D Gel Electrophoresis + LC/MS/MS
 

  
109 C7, C9, a2-macroglobulin, a2-antiplasmin: C < HD 

Afamin, IGF binding protein, PRBP: C > HD 
 

2D Gel Electrophoresis + LC/MS/MS
 

  
60 a-/b-clusterin: C < HD, corr Stage 

 
Semiquantitative Immunoblotting
 

  
73 Corr stage 

 
ELISA 
 

  96 Corr stage ELISA 

 Huang 2011 [147] 18 
Prothrombin: C = HD 
ApoA-IV: C = HD 
Haptoglobin: C = HD 

Western blot analysis or ELISA

http://topics.sciencedirect.com/topics/page/Chromatography
http://topics.sciencedirect.com/topics/page/Chromatography
http://topics.sciencedirect.com/topics/page/Mass_spectrometry
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Table 8. Summary of published studies on kynurenine pathway metabolites in HD. 

Molecule Sample Study n 
Directio
n 

Method 

Quinolinic acid CSF Schwarcz 
1988 [94] 

17 C = HD Radioenzymatic assay 

  Heyes 1991 
[95] 

18 C = HD N/S 

  Heyes 1992 
[96] 

43 C = HD HPLC 

 Blood Stoy 2005 
[29] 

26 C = HD GC/MS 

 Urine Heyes 1985 
[185] 

25 C = HD HPressureLC 

Quinolinic acid 
phophoribosyltransferase 

Blood Foster 1985 
[186] 

6 C = HD Scintillation 
spectrometry 

Kynurenic acid CSF Beal 1990 
[97] 

73 C > HD HPLC 

  Heyes 1992 
[96] 

43 C > HD HPLC 

 Blood Stoy 2005 
[29] 

26 C = HD HPLC 

  Forrest 2010 
[102] 

113 C = HD HPLC fluorescence 
detection 

Kynurenine CSF Beal 1990 
[97] 

73 C > HD HPLC 

  Heyes 1992 
[96] 

43 C > HD HPLC 

 Blood Leblhuber 
1998 [140] 

23 C = HD HPLC 

  Stoy 2005 
[29] 

26 C < HD HPLC 

  Forrest 2010 
[102] 

113 C = HD HPLC absorbance 
detection spectrometry 

3-hydroxykynurenine Blood Stoy 2005 
[29] 

26 C > HD HPLC 

Tryptophan CSF Heyes 1992 
[96] 

 C = HD HPLC 

  García Ruiz 
1995 [85] 

35 C = HD HPressureLC 

 Blood Phillipson 
1977 [151] 

18 C = HD [187] 

  Belendiuk 
1980 [80] 

76 C > HD Fluorometry 

  Leblhuber 
1998 [140] 

23 C > HD HPLC 

  Stoy 2005 
[29] 

26 C = HD HPLC 

  Christofides 
2006 [91] 

26 C = HD HPLC 

  Forrest 2010 
[102] 

113 C = HD HPLC absorbance 
detection spectrometry 

3-hydroxyanthranilic acid Blood Stoy 2005 
[29] 

26 C > HD HPLC 

  Forrest 2010 
[102] 

113 C = HD HPLC fluorescence 
detection 
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Anthranilic acid Blood Forrest 2010 
[102] 

113 C = HD HPLC fluorescence 
detection 

Xanthurenic acid Blood Stoy 2005 
[29] 

26 C > HD HPLC 

Abbreviations: n, sample size; C, healthy controls; HD, Huntington’s disease gene expansion carriers; PM, 

premanifest gene expansion carriers; M, manifest gene expansion carriers; CSF, cerebrospinal fluid; HPLC, 

high-performance liquid chromatography; GC/MS, gas chromatography mass spectrometry; HPressureLC, high 

pressure liquid chromatography. 
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Table 9. Summary of published studies on oxidative stress biofluid biomarkers in HD. 

Molecule Sample Study n Direction Method 

F2-
isoprostanes 

CSF Montine 1999 [109] 43 C < HD [106] 

 Blood Montine 2000 [110] 42 C = HD Highly accurate 
quantitative MS 

 Urine Montine 2000 [110] 33 C = HD Highly accurate 
quantitative MS 

8OH2’dG Blood Hersch 2006 [114] 94 C < HD 

↓ w/ crea�ne treatment 
(HD) 

[188] 

  Chen 2007 [119] 52 C < HD HPLC-ECD 

  Biglan 2012 [120] 28 C = HD 

↓ w/ crea�ne treatment 
(HD+C) 

[188] 

  Long 2012 [121]  C = PM 

↑ w/ proximity to onset 

Long gradient Liquid 
Chromatography 
Electrochemical Array 
and/or Liquid 
Chromatography MS 

 

  Borowsky 2013 
[122] 

160 C = PM 

No diff longitudinally 

 

Liquid chromatography–
electrochemical array 
(LCECA) assay or liquid 
chromatography–MS 
(LCMS). 

  Ciancarelli 2014 
[189] 

28 C < HD 

No corr 

ELISA 

  Rosas 2014[115] 64 C = PM 

= w/ creatine treatment 

N/S 

  Ciancarelli 2015 
[190] 

34 C < HD 

= w/ neurorehabilitation 

No corr 

ELISA 

Malondialdehy
de 

Blood Stoy 2005 [29] 26 C < HD Bioxytech LPO-586 
colourimetric assay 

  Christofides 2006 
[91] 

26 C < HD Bioxytech LPO-586 
colourimetric assay 
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  Chen 2007 [119] 52 C < HD 

Corr TMS and IS 

HPLC 

  Forrest 2010 [102] 111 C = HD Bioxytech LPO-586 

colorimetric assay 

  Pena-Sanchez 2015 
[191] 

53 C < HD 

 

Bioxytech LPO-586 
colourimetric assay 

 Urine Olsson 2012 [192] Sample1=
130 

Sample2=
73 

C = HD Thiobarbituric acid 
method 

4-
hydroxynonen
al 

Blood Stoy 2005 [29] 26 C < HD Bioxytech LPO-586 
colourimetric assay 

  Christofides 2006 
[91] 

26 C < HD Bioxytech LPO-586 
colourimetric assay 

  Forrest 2010 [102] 111 C = HD Bioxytech LPO-586 

colorimetric assay 

AOPPs Blood Pena-Sanchez 2015 
[191] 

53 C < HD 

Corr age of onset 

Corr TMS 

Corr age 

 

[193] 

Superoxide 
dismutase 

Blood Chen 2007 [119] 52 C > HD RANSOD kit 

  Klepac 2007 [194] 99 C = HD Spectrophotometrically 

  Ciancarelli 2014 
[189] 

28 C < HD 

No corr 

ELISA 

  Ciancarelli 2015 
[190] 

34 C < HD 

↓ w/ neurorehabilita�on 

No corr 

ELISA 

  Pena-Sanchez 2015 
[191] 

53 C = HD [195] 

Catalase Blood Klepac 2007 [194] 99 C = HD Spectrophotometrically 
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  Pena-Sanchez 2015 
[191] 

53 C = HD [196] 

glutathione 
peroxidase 

Blood Chen 2007 [119] 52 C > HD 

PM = M 

[197] 

  Pena-Sanchez 2015 
[191] 

53 C < HD 

 

[197] 

glutathione 
reductase 

Blood Pena-Sanchez 2015 
[191] 

53 C > HD 

 

[198] 

reduced 
glutathione 

Blood Klepac 2007 [194] 99 C > HD Spectrophotometrically 

  Pena-Sanchez 2015 
[191] 

53 C = HD 

Corr caudate vol 

Bioxytech GSH/GSSG-412 

protein thiols 
and total 
antioxidant 
capacity 

Blood Pena-Sanchez 2015 
[191] 

53 C = HD 

Corr age of onset 

[199] 

a1-

microglobulin 

Blood Olsson 2012 [192] 67 
(cohort 
2) 

C =HD Radioimmunoassay 

 Urine Olsson 2012 [192] 130 
(cohort 
1) 

73 
(cohort 
2) 

C < HD, C < PM, C< eM 

C < HD, C < PM 

Radioimmunoassay 

Protein 
carbonyl 
groups 

 

Blood Olsson 2012 [192] 67 
(cohort 
2) 

C =HD Absorbance test 

 Urine Olsson 2012 [192] 130 
(cohort 
1) 

73 
(cohort 
2) 

C = HD 

C = HD 

Absorbance test 

NSE Blood Ciancarelli 2014 
[189] 

28 C < HD 

No corr 

ELISA 

  Ciancarelli 2015 
[190] 

34 C < HD ELISA 
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↓ w/ neurorehabilita�on 

No corr 

Haemoglobin Blood Leblhuber 1998 
[140] 

23 C = HD N/S 

  Olsson 2012 [192] 67 
(cohort 
2) 

C = HD ELISA 

 Urine Olsson 2012 [192] 73 
(cohort 
2) 

C < eM 

C < mM 

Corr TFC 

ELISA 

Protein 
carbonyl 
groups 

Urine Olsson 2012 [192] 73 C = HD ELISA 

Malonyldialde
hyde 

Blood Forrest 2010 [102] 113 C = HD Bioxytech LPO-586 
colorimetric assay 

  Olsson 2012 [192] 67 
(cohort 
2) 

C = HD Thiobarbituric acid 
method 

 Urine Olsson 2012 [192] 73 
(cohort 
2) 

C = HD Thiobarbituric acid 
method 

Nitric oxide Blood Sanchez-Lopez 
2012 [141] 

23 C = HD Gries method 

  Carrizzo 2014 [200] 83 C > HD 

eHD > aHD 

HPLC 

Nitric oxide 
synthase 

Blood Sanchez-Lopez 
2012 [141] 

23 C = HD Ultrasensitive 
Colorimetric NOS Assay 

  Carrizzo 2014 [200] 83 C > HD 

eHD > aHD 

[201] 

Nitrotyrosine Blood Tasset 2012 [128] 38 C < HD N/S 

Thioredoxin 
reductase-1 

Blood Sanchez-Lopez 
2012 [141] 

23 C > HD ELISA 

Thioredoxin-1 Blood Sanchez-Lopez 
2012 [141] 

23 C > HD ELISA 

Lipid peroxide Blood Duran 2010 [152] 91 C < M PeroxiDetect (Sigma)  

Enzymatic Bioanalysis 
(Roche) kit 
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Aminopeptida
ses 

Blood Duran 2010 [152] 91 C > HD 

PM = M 

[202] 

Aspartate Blood Reilmann 1994 
[203] 

37 C > HD HPLC 

Glutamate CSF Kim 1980 [204] 16 C > HD [205] 

  Kim 1980 [204] 16 C =HD [205] 

 Blood Reilmann 1994 
[203] 

37 C = HD HPLC 

Glutamine  Blood Reilmann 1994 
[203] 

37 C = HD HPLC 

L-
pyroglutamin 
acid 

CSF Uhlhaas 1988 [206] 50 C = HD N/S 

 Blood Uhlhaas 1988 [206] 50 C < HD 

Corr disease duration 

N/S 

Phenylalanine Blood Reilmann 1994 
[203] 

37 C = HD HPLC 

Abbreviations: n, sample size; C, healthy controls; HD, Huntington’s disease gene expansion carriers; PM, 

premanifest gene expansion carriers; M, manifest gene expansion carriers; eHD, early HD; aHD, advanced HD; 

TMS, UHDRS Total Motor Score; CSF, cerebrospinal fluid; MS, mass spectrometry; HPLC-ECD, high performance 

liquid chromatography-electrochemical detector; ELISA, enzyme-linked immunosorbent assay; HPLC, high-

performance liquid chromatography.  
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Table 10. Summary of published studies on neuroendocrine biofluid biomarkers in HD. 

Molecule Sampl
e 

Study n Direction Method 

Growth hormone CSF Caraceni 
1977[89] 

14 C = HD Radioimmunoassay 

 Blood Keogh 1976 
[207] 

12 C = HD Radioimmunoassay 

  Phillipson 1976 
[208] 

18 C < HD [209] 

  Chalmers 1978 
[210] 

19 C = HD Radioimmunoassay 

  Muller 1979 
[211] 

45 C = HD N/S 

  Murri 1980 [212] 12 C = HD Radioimmunoassay 

  Lavin 1981 [213] 18 C = HD Radioimmunoassay 

  Durso 1983 [214] 18 C < HD Radioimmunoassay 

  Durso 1983 [215] 16 C = HD Radioimmunoassay 

  Popovic 2004 
[216] 

35 C = HD Time-resolved fluoro- 
immunometric assay 

  Saleh 2009 [217] 290 C < HD 

C < HD1/2 

Asso IS, TA, 
TFC, TMS 

ELECSYS2010 kit 

  Aziz 2010 [218] 18 C = HD Time-resolved 
fluoroimmunoassay 

  Saleh 2010 [219] 109 Asso Cogn 
(males) 

ACCESS2 kit 

  Salvatore 2011 
[220] 

34 C < HD Radioimmunoassay 

  Wang 2014 [132] 39 C > HD Human Brain-
Derived/Pituitary Protein 
Multiplex Panel assay kit 

IGF1 Blood Popovic 2004 
[216] 

35 C = HD Enzyme-labeled 
chemiluminescent 
immunometric assay 

   Mochel 2007 
[139] 

53 C > HD 

Corr TMS 

PNMRS 
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  Saleh 2009 [217] 290 C < HD 

Asso IS, FA, 
TFC 

IMMULITE2500 kit 

  Aziz 2010 [218] 18 C = HD Radioimmunoassay 

  Saleh 2010 [219] 109 Asso Cogn 
(males) 

IMMULITE2500kit 

  Salvatore 2011 
[220] 

34 C > HD Radioimmunoassay 

  Russo 2013 [221] 56 C > HD Radioimmunoassay 

IGF binding protein Blood Dalpymple 2007 109 C > HD 2D electrophoresis 

  Aziz 2010 [218] 18 C = HD Radioimmunoassay 

Prolactin Blood Caraceni 
1977[89] 

14 C < HD Radioimmunoassay 

  Hayden 1977 
[222] 

20 C > HD  Radioimmunoassay 

  Caine 1978 [223] 15 C < HD Radioimmunoassay 

  Chalmers 1978 
[210] 

19 C = HD Radioimmunoassay 

  Murri 1980 [212] 12 C = HD Radioimmunoassay 

  Lavin 1981 [213] 18 C = HD Radioimmunoassay 

  Durso 1983 [214] 18 C = HD Radioimmunoassay 

  Durso 1983 [215] 16 C = HD Radioimmunoassay 

  Kremer 1989 
[224] 

20 C = HD 

= after 2y 

Radioimmunoassay 

  Saleh 2009 [217] 290 C = HD ACCESS2 kit 

  Markianos 2009 
[87] 

172 C = PM 

C < M 

Radioimmunoassay 

  Aziz 2010 [225] 18 C = HD Time-resolved 

immunofluorometic 
assays 

  Wang 2014 [132] 39 C > HD Human Brain-
Derived/Pituitary Protein 
Multiplex Panel assay kit 

CRF CSF Kurlan 1988 [90] 77 C < HD 

Corr 

Radioimmunoassay 
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depression 

ACTH Blood Heuser 1991 
[226] 

20 C < HD [227] 

  Saleh 2009 [217] 290 C = HD ELECSYS2010 kit 

  Russo 2013 [221] 56 C > HD Immunoassay 

Cortisol Blood Bruyn 1972 [228] 12 Low in 8 
patients 

N/S 

  Lavin 1981 [213] 18 C = HD Radioimmunoassay 

  Heuser 1991 
[226] 

20 C < HD [227] 

  Leblhuber 1995 
[229] 

36 C < HD DHEAS -Diagnostic 
Products Corporation, 
CRT Abbot 

  Markianos 2007 
[230] 

125 C = PM = M N/S 

  Mochel 2007 
[139] 

53 C = HD 8089-K kit 

  Saleh 2009 [217] 290 C < HD ELECSYS2010 kit 

  Krzyszton-
Russjan 2013 

57 C = HD N/S 

  Aziz 2009 [231] 16 C < HD 

Corr TMS, TFC, 
BMI 

Radioimmunoassay 

  Russo 2013 [221] 56 C = HD Immunoassay 

 Urine Bjorkqvist 2006 150 C < HDIII and 
IV 

C = PM and 
HDI and II 

Radioimmunoassay 

LH Blood Lavin 1981 [213] 18 C = HD Radioimmunoassay 

  Markianos 2005 
[232] 

86 C > HD Radioimmunoassay 

  Saleh 2009 [217] 146 C = HD ELECSYS2010 kit 

FSH Blood Lavin 1981 [213] 18 C = HD Radioimmunoassay 

  Markianos 2005 
[232] 

86 C > HD Radioimmunoassay 

  Saleh 2009 [217] 146 C = HD ELECSYS2010 kit 
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Testosterone Blood Bruyn 1972 [228] 12 HD within 
normal limits 

Not stated 

  Markianos 2005 
[232] 

86 C > HD Radioimmunoassay 

  Markianos 2007 
[230] 

125 C = PM = M N/S 

  Saleh 2009 [217] 146 C = HD 

Asso IS, FA, 
TFC, Behaviour 

ELECSYS2010 kit 

  Russo 2013 [221] 19 C = HD Immunoassay 

DHEA Blood Bruyn 1972 [228] 12 HD within 
normal limits 

Not stated 

DHEA-sulphate Blood Bruyn 1972 [228] 12 Low in 9 
patients 

Not stated 

  Leblhuber 1995 
[229] 

36 C > HD DHEAS -Diagnostic 
Products Corporation, 
CRT Abbot 

  Markianos 2007 
[230] 

125 C = PM = M N/S 

17-β-estradiol Blood Russo 2013 [221] 9 C > HD Immunoassay 

TSH Blood Lavin 1981 [213] 18 C = HD Radioimmunoassay 

  Leblhuber 
1998[140] 

23 C = HD N/S 

  Mochel 2007 
[139] 

53 C = HD 8089-K kit 

  Saleh 2009 [217] 290 C = HD 

Asso IS, FA, 
TFC 

ELECSYS2010 kit 

  Aziz 2010 [225] 18 C = HD Time-resolved 

immunofluorometic 
assays 

  Russo 2013 [221] 56 C = HD Immunoassay 

T3 Blood Lavin 1981 [213] 18 C = HD Serum total thyroxine 
minus uptake of 125I 
labelled triiodothyronine 

  Leblhuber 
1998[140] 

23 C = HD N/S 

  Saleh 2009 [217] 290 C = HD ELECSYS2010 kit 
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Asso IS, FA, 
TFC, TMS 

  Russo 2013 [221] 56 C = HD Immunoassay 

T4 Blood Leblhuber 1998 
[140] 

23 C = HD N/S 

  Mochel 2007 
[139] 

53 C = HD 8089-K kit 

  Saleh 2009 [217] 290 C = HD ELECSYS2010 kit 

Ghrelin CSF Popovic 2004 
[216] 

35 C = HD Radioimmunoassay 

 Blood Popovic 2004 
[216] 

35 C < HD Radioimmunoassay 

  Mochel 2007 
[139] 

53 C < HD (male) 

C = HD 
(female) 

Radioimmunoassay 

  Aziz 2010 [218] 18 C = HD Radioimmunoassay 

  Wang 2014 [132] 39 C < PM ELISA 

Leptin CSF Popovic 2004 
[216] 

35 C = HD Radioimmunoassay 

 Blood Popovic 2004 
[216]  

35 C > HD Radioimmunoassay 

  Mochel 2007 
[139] 

53 C > HD (male) 

C = HD 
(female) 

Radioimmunoassay 

  Aziz 2010 [233] 18 C = HD Radioimmunoassay 

  Wang 2014 [132] 39 C = HD human gut hormone 
multiplex kit 

Orexin 
A/Hypocretin-1 

CSF Gaus 2005 [234] 20 C = HD Radioimmunoassay 

  Meier 2005 [69] 22 C = HD Radioimmunoassay 

  Bjorkqvist 2006 
[235] 

67 C = HD Radioimmunoassay 

Adiponectin Blood Aziz 2010 [233] 18 C = HD Radioimmunoassay 

  Wang 2014 [132] 39 C = HD Radioimmunoassay 

Resistin Blood Aziz 2010 [233] 18 C = HD Radioimmunoassay 

CART CSF Bjorkqvist 2007 67 C < HD Radioimmunoassay 
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[236] 

BDNF Blood Ciammola 2007 
[127] 

84 C > HD 

Corr TFC 

Corr Cogn 

ELISA 

  Squitieri 2009 
[129] 

142 C > PM ELISA 

  Squitieri 2009 
[144] 

N/S C > HD ELISA 

  Zuccato 2011 
[130] 

398 C = HD ELISA 

  Tasset 2012 
[128] 

38 C > HD ELISA 

  Wang 2014 [132] 39 C = HD Human Brain-
Derived/Pituitary Protein 
Multiplex Panel assay kit 

NGF Blood Lorigados 1992 
[237] 

9 C > HD ELISA 

   Tasset 2012 
[128] 

38 C > HD 

eHD > aHD 

ELISA 

GDNF Blood Squitieri 2009 
[144] 

N/S C = HD ELISA 

  Tasset 2012 
[128] 

38 C > HD ELISA 

Anandamide Blood Battista 2007 
[238] 

14 C < HD HPLC 

Vasopressin/ADH Blood Wood 2008 [239] 107 C < HD Radioimmunoassay 

Osmolality Blood Wood 2008 [239] 107 C = HD Not stated 

Insulin Blood Keogh 1976 
[207] 

12 C = HD Immunoreactive insulin 

  Kremer 1989 
[224] 

20 C = HD 

= after 2y 

Radioimmunoassay 

  Popovic 2004 
[216] 

35 C = HD Radioimmunoassay 

  Lalic 2008 [240] 51 C < HD Radioimmunoassay 

  Salvatore 2011 
[220] 

34 C = HD Not stated 
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  Russo 2013 [221] 56 C = HD Not stated 

  Wang 2014 [132] 39 C = HD human gut hormone 
multiplex kit 

Glucose Blood Keogh 1976 
[207] 

12 C = HD Glucose oxidase method 

  Podolsky 1977 
[241] 

14 Normal values Glucose oxidase method 

  Caine 1978 [223] 15 C = HD Not stated 

  Phillipson 1977 
[151] 

18 C = HD Standard neocuproine 
method 

  Lavin 1981 [213] 18 C = HD Glucose oxidase method 

  Kremer 1989 
[224] 

20 C = HD 

= after 2y 

Standard hexokinase 
method 

  Leblhuber 1998 
[140] 

23 C = HD N/S 

  Popovic 2004 
[216] 

35 C = HD Beckman Glucose 
Analyzer 2 

  Lalic 2008 [240] 51 C = HD Glucose oxidase method 

  Josefsen 2010 
[153] 

19 C = HD [242] 

  Salvatore 2011 
[220] 

34 C = HD Not stated 

  Krzyszton-
Russjan 2013 
[149] 

57 C = HD N/S 

  Russo 2013 [221] 56 C = HD Not stated 

  Wang 2014 [132] 39  Glucose assay kit 

C-peptide Blood Kremer 1989 
[224] 

20 C = HD 

= after 2y 

Radioimmunoassay 

HbA1c Blood Kremer 1989 
[224] 

20 C = HD 

= after 2y 

HPLC 

Amylin Blood Wang 2014 [132] 39 C < HD Human gut hormone 
multiplex kit 

Glucagon Blood Wang 2014 [132] 39 C > M Millipore RIA kit 

Somatomedin-C Blood Kremer 1989 
[224] 

20 C = HD Radioimmunoassay 
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= after 2y 

GIP Blood Wang 2014 [132] 39 C = HD Human gut hormone 
multiplex kit 

PYY Blood Wang 2014 [132] 39 C = HD Human gut hormone 
multiplex kit 

PP Blood Wang 2014 [132] 39 C = HD Human gut hormone 
multiplex kit 

Melatonin Blood Christofides 2006 
[91] 

26 C = HD Direct radioimmunoassay 
[243] 

  Aziz 2009 [134] 18 C = HD Radioimmunoassay 

  Kalliolia 2014 
[135] 

42 C = PM 

C > M 

Radioimmunoassay 

Plasma retinol 
binding protein 

Blood Dalrymple 2007 
[51] 

109 C > HD 2D electrophoresis 

Osteocalcin Blood Silajdzic 2013 
[61] 

Cohort1 
79 

C = HD MSD Immunoassay 

Osteonectin Blood Silajdzic 2013 
[61] 

Cohort1 
79 

C = HD MSD Immunoassay 

Osteopontine Blood Silajdzic 2013 
[61] 

Cohort1 
79 

C = HD MSD Immunoassay 

PEGF Blood Silajdzic 2013 
[61] 

Cohort1 
79 

C = HD Luminex 

Abbreviations: n, sample size; C, healthy controls; HD, Huntington’s disease gene expansion carriers; PM, 
premanifest gene expansion carriers; M, manifest gene expansion carriers; eHD, early HD; aHD, advanced HD; 
Corr, correlation; TFC, UHDRS Total Functional Capacity; Cogn, measures of cognition; PNMRS, proton nuclear 
magnetic resonance spectroscopy; MSD, Meso ScaleDiscovery; HPLC, high-performance liquid 
chromatography; 
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Table 11. Summary of published studies on metabolic biofluid biomarkers in HD. 
 

Molecule Sample Study n Direction Method 

ApoA-I Blood Silajdzic 2013 [61] Cohort1 
79 

C = HD Luminex 

ApoA-IV CSF Huang 2011 [147] 12 C < HD Two-dimensional 
electrophoresis and mass 
spectrometry 

  Huang 2011 [147] 18 C < HD ELISA 

 Blood Huang 2011 [147] 18 C = HD ELISA 

 Blood Dalrymple 2007 
[51] 

20 C < HD 2D electrophoresis 

ApoC3 Blood Silajdzic 2013 [61] Cohort1 
79 

C = HD Luminex 

ApoE Blood Silajdzic 2013 [61] Cohort1 
79 

Cohort2 
42 

C = HD 

C = HD 

Luminex 

BCAA Blood Phillipson 1977 
[151] 

18 C > HD Durrum D500 Automatic 
Amino Acid Analyser 

  Mochel 2007 
[139] 

53 C > HD PNMRS 

 

Valine Blood Phillipson 1977 
[151] 

18 C > HD Durrum D500 Automatic 
Amino Acid Analyser 

  Mochel 2007 
[139] 

53 C > HD Ion exchange 
chromatography 

Leucine Blood Phillipson 1977 
[151] 

18 C > HD Durrum D500 Automatic 
Amino Acid Analyser 

  Mochel 2007 
[139] 

53 C > HD 

Corr TFC 

Ion exchange 
chromatography 

Isoleucine Blood Phillipson 1977 
[151] 

18 C > HD Durrum D500 Automatic 
Amino Acid Analyser 

  Mochel 2007 
[139] 

53 C > HD 

Corr TFC 

Ion exchange 
chromatography 

Cystathionine Blood Aziz 2015 [244] 18 C = HD [245] 

 Urine Aziz 2015 [244] 18 C = HD [245] 

Copper Blood Forrest 1957 [246] 12 C = HD Not stated 
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Magnesium Blood Bruyn 1965 [247] 55 C = HD Direct spectrophotometric 
estimation 

Iron Blood Bonilla 1991 [248] 104 C = HD Flameless atomic absorption 
spectrophotometry 

  Morrison 1994 
[249] 

190 C = HD Not stated 

Ferritin Blood Bonilla 1991 [248] 104 C > HD Radioimmunoassay 

  Morrison 1994 
[249] 

190 C > HD Not stated 

TIBC Blood Morrison 1994 
[249] 

190 C = HD Not stated 

Vitamin B12 Blood Bonilla 1991 [248] 104 C = HD Radioassay 

  Leblhuber 1998 
[140] 

23 C = HD Not stated 

Folic Acid Blood Bonilla 1991 [248] 104 C = HD Radioassay 

  Leblhuber 1998 
[140] 

23 C = HD Not stated 

Total cholesterol Blood Leoni 2008 [250] 191 C = HD Standard spectophotometry 

  Lalic 2008 [240] 51 C = HD Not stated 

  Markianos 2008 
[251] 

295 C > M 

C > PM 

Commercially available kit 
ELITech 

  Leoni 2011 [252] 303 eHD > 
aHD 

 

Isotope dilution mass 
spectrometry 

  Salvatore 2011 
[220] 

34 C = HD Not stated 

  Russo 2013 [221] 56 C = HD Not stated 

  Wang 2014 [132] 39 C > HD Enzymatic assay kits 

  Ciancarelli 2015 
[190] 

28 C = HD Architect c8000 

Lanosterol Blood Leoni 2011 [252] 303 C > M Isotope dilution mass 
spectrometry 

Lathosterol Blood Leoni 2011 [252] 303 C > PM 

C > M 

Isotope dilution mass 
spectrometry 

HDL Blood Lalic 2008 [240] 51 C = HD Not stated 
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  Salvatore 2011 
[220] 

34 C = HD Not stated 

  Russo 2013 [221] 56 C > HD Not stated 

  Wang 2014 [132] 39 C = HD Enzymatic assay kits 

  Ciancarelli 2015 
[190] 

28 C = HD Architect c8000 

LDL Blood Lalic 2008 [240] 51 C = HD Not stated 

  Salvatore 2011 
[220] 

34 C = HD Not stated 

  Russo 2013 [221] 56 C = HD Not stated 

  Krzyszton-Russjan 
2013 

57 C = HD N/S 

  Wang 2014 [132] 39 C > HD Enzymatic assay kits 

FFA/triglycerides Blood Phillipson 1977 
[151] 

18 C < HD [253] 

  Lalic 2008 [240] 51 C = HD Not stated 

  Russo 2013 [221] 56 C = HD Not stated 

  Wang 2014 [132] 39 C = HD Enzymatic assay kits 

FAAH Blood Battista 2007 
[238] 

113 C > M 

C > PM 

ELISA 

24S-
hydroxycholeste
rol 

Blood Leoni 2011 [252] 191 C > PM 

C > M 

Gas chromatography-mass 
spectrometry 

27-
hydroxycholeste
rol 

Blood Leoni 2011 [252] 191 C > PM 

C > M 

Gas chromatography-mass 
spectrometry 

CK-BB Blood Kim 2010 [254] 50 C > M 

C > PM 

Dot blot analysis (Western 
blot?) 

Afamin Blood Dalrymple 2007 
[51] 

109 C > HD 2D electrophoresis 

Abbreviations: n, sample size; C, healthy controls; HD, Huntington’s disease gene expansion carriers; PM, 
premanifest gene expansion carriers; M, manifest gene expansion carriers; eHD, early HD; aHD, advanced HD; 
Corr, correlation; TFC, UHDRS Total Functional Capacity; ELISA, ELISA, enzyme-linked immunosorbent assay; 
PNMRS, proton nuclear magnetic resonance spectroscopy.  


	Summary
	1. Introduction
	2. Methods
	3. Results
	3.1. Huntingtin protein
	3.2. Protein markers of neuronal damage
	3.3. Inflammatory markers
	3.4. Transglutaminase activity
	3.5. Neurotransmitters
	3.6. Transcriptomic and proteomic approaches
	3.7. Kynurenine pathway metabolites
	3.8. Oxidative stress
	3.9. Neuroendocrine and metabolic markers

	4. Conclusion
	References
	Tables

