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Abstract. We study the imprint of non-standard dark energy (DE) and dark matter (DM)
models on the 21cm intensity map power spectra from high-redshift neutral hydrogen (HI)
gas. To this purpose we use halo catalogs from N-body simulations of dynamical DE models
and DM scenarios which are as successful as the standard Cold Dark Matter model with
Cosmological Constant (ΛCDM) at interpreting available cosmological observations. We limit
our analysis to halo catalogs at redshift z = 1 and 2.3 which are common to all simulations.
For each catalog we model the HI distribution by using a simple prescription to associate the
HI gas mass to N-body halos. We find that the DE models leave a distinct signature on the
HI spectra across a wide range of scales, which correlates with differences in the halo mass
function and the onset of the non-linear regime of clustering. In the case of the non-standard
DM model significant differences of the HI spectra with respect to the ΛCDM model only
arise from the suppressed abundance of low mass halos. These cosmological model dependent
features also appear in the 21cm spectra. In particular, we find that future SKA measurements
can distinguish the imprints of DE and DM models at high statistical significance.
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1 Introduction

Cosmological observations provide strong evidence that the Universe is dominated by dark
invisible components. On the large scales cosmic expansion is currently undergoing an accel-
erated phase triggered by an exotic unknown dark energy (DE) component [1, 2], while on
smaller scales an invisible dark matter (DM) drives the formation and evolution of the visible
structures in the Universe (see e.g. [3–5]). In the standard cosmological model, a cosmological
constant (Λ) in Einstein’s equation of General Relativity can account for the DE phenomenon.
Together with the cold dark matter (CDM) paradigm, which assumes DM to be composed of
collisionless particles, the standard ΛCDM model has been tremendously successful at repro-
ducing the cosmological observations thus far available [6]. However, the puzzling conceptual
issues raised by the existence of a small non-vanishing Λ (see e.g. [7]) and the lack of detec-
tions of dark matter particle candidates in Earth laboratories pose fundamental questions on
the origin of the invisible components.

A variety of scenarios have been proposed in a vast literature to account for dark energy
and dark matter, whether in the form of non-Standard Model fields [8–10] or a manifestation
of deviations from Einstein’s gravity (see e.g. [11]). However, to date none of the proposed
models provide a self-consistent theoretical explanation of these phenomena. On the other
hand, there is a widespread consensus that the study of the clustering of matter in the Universe
may reveal key insights on their origin. In fact, measurements of the growth rate of structures
may test whether DE is dynamical or a strictly static phenomenon as expected in the case of
Λ. This is because by affecting the late time cosmic expansion, dark energy alters the rate of
gravitational collapse of dark matter density fluctuations. Similarly, the CDM paradigm can
be tested through measurements of the abundance and density profiles of DM structures at
small scales since in non-standard DM models dissipative effects suppress the amplitude of
small density fluctuations with respect to the standard cosmological model predictions.

In the upcoming years a new generation of experiments in cosmology will provide accu-
rate measurements of the clustering of matter in the Universe across an unprecedented range

– 1 –



of scales and redshifts. Surveys such as Large Synoptic Survey Telescope (LSST) [12] and
Euclid [13] will detect billions of galaxies, while the Square Kilometer Array1 (SKA) will
map the distribution of neutral hydrogen from unresolved galaxies up to the high-redshift
Universe.

Observations of the 21cm line emission from cosmic neutral hydrogen are of particular
interest since these will probe the distribution of matter in the redshift range 1 . z . 3,
which extends to the matter dominated era where the effect of DE on the cosmic expansion
is subdominant. By testing such a transitional regime, measurements of the 21cm power
spectrum at large scales are expected to provide constraints on DE that are complementary
to those obtained by other cosmic probes (see e.g. [14–17]), and constraints on the nature of
DM particles [18–20] that are also complementary to those obtained by investigating small
scales observables [21].

Several studies have modelled the 21cm emission mostly using prediction from linear
perturbation theory. However, HI is hosted in DM halos which are biased tracers of the DM
density field, thus the use of numerical simulations may provide a more accurate description
of the HI clustering. Moreover, numerical N-body simulation studies have also shown that
DE alters the non-linear clustering of matter at small scales in a way that depends on the
DE dynamics or lack thereof (see e.g. [22–27]). For these reasons, it is timely to perform
a forecast analysis of the 21cm signal of non-standard DE and DM scenarios using N-body
simulations and test the sensitivity of SKA measurements to the different cosmological model
predictions.

Here, we use large volume N-body simulations from the Dark Energy Universe Simula-
tions (DEUS) database2 to derive prediction of the HI clustering in different DE models. In
the case of the non-standard DM scenarios we use high-resolution simulations of axions and
late-forming dark matter models presented in [44], thus extending the analysis on the Warm
Dark Matter scenario presented in [20]. We show that due to the fundamentally different way
in which DE and DM models impact the non-linear regime of gravitational collapse, their
signatures on the 21cm power spectrum remain distinct and can be differentiated by future
SKA measurements. The paper is organised as the following: in Sec. 2 we illustrate how we
distribute neutral hydrogen in the simulations that we later present in Sec. 3, together with
the non-standard DE and DM models for which they are run. In Sec. 4 we present the HI
power spectra of the different cosmologies, we compare them and we discuss some numerical
effects that enter into play. The 21cm signal results are shown in Sec. 5, together with an
estimation of the error with which the SKA telescope will be able to measure them. Finally,
we summarise and draw our conclusions in Sec. 6.

2 Neutral Hydrogen Distribution Model

2.1 N-body Halo Based Approach

We model the neutral hydrogen distribution as in [20, 28, 29]. We assume that HI is confined
in DM halos with a mass proportional to that of the host halo mass. Using this simple
prescription we assign the neutral hydrogen mass to halos from N-body simulation catalogs.
The spatial distribution of the resulting HI cloud catalog is then converted into 21cm maps.

1http://skatelescope.org
2http://www.deus-consortium.org/deus-data/
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For each halo of mass M at redshift z the mass of neutral hydrogen is modelled as:

MHI(M, z) =

{
fMα if M ≥Mmin

0 otherwise
(2.1)

where α is the slope of the power law relation between halo mass and HI mass, f is a
calibration parameter that depends on the cosmic abundance of neutral hydrogen and Mmin

is the minimum halo mass containing HI. The latter accounts for the fact that there is a
neutral hydrogen density threshold below which the gas becomes fully ionised and unable to
effectively self-shield from UV-radiation. As pointed out in [28], stability arguments suggest
that gas in halos with circular velocities vcirc & 60 km s−1 may undergo gravitational collapse
to form stars, which corresponds to halos with a virial mass larger than

M & 1010M�

( vcirc

60 kms−1

)3
(

1 + z

4

)−1.5

. (2.2)

On the other hand, simulation analyses have shown that neutral hydrogen can reside even in
smaller mass halos [32]. As an example, using smoothed particle hydrodynamic simulations
implemented with various baryon feedback models the authors of [31] have found that HI is
hosted in halos with vcirc & 25 km s−1. However, this was inferred by extrapolating the results
on scale below the mass resolution of the simulations. Hence, a conservative cut-off is usually
considered at vcirc ≈ 25 − 30 km s−1, corresponding to a minimum halo mass Mmin ∼ 109

M� at z = 3. Given the large uncertainties on the exact value of Mmin, a larger mass cut can
also be assumed, eventually never exceeding the mass of halos containing the most massive
galaxies (∼ 1011 M�), since in the low redshift Universe groups and clusters of galaxies do
not host large quantities of neutral hydrogen. As we will see our choice of Mmin is mainly
dictated by the mass resolution of the N-body simulation catalogs available to us.

The calibration parameter f is set such that total amount of HI in the halo catalog
reproduces the observed cosmic abundance. The cosmic HI density is given by

ΩHI(z) =
1

ρc

∫ ∞
0

dn

dM
(M, z)MHI(M, z)dM, (2.3)

where ρc is the present critical density and dn/dM the halo mass function. Using Eq. (2.1)
we obtain the following relation:

f =
ΩHIL

3ρc∑Nhalo
i=0 Mα

i Θ(Mi −Mmin)
, (2.4)

where L is the simulation box-lenght, Θ(x) is the Heaviside step function and Nhalo is the
number of halos in the catalog. Notice that the value of ΩHI, only sets the overall amplitude
of the 21cm signal and not the scale dependence of the HI distribution. Hence, though poorly
constrained by observations, the exact value of ΩHI will not affect our analysis as we are
interested in relative differences of the 21cm power spectrum predicted by different models.
We set the value to ΩHI = 10−3 consistently with observational results at 3 . z . 5 presented
in [33, 34].

It is important to stress that as we assign the HI mass to the center-of-mass of the halos
without modelling its distribution within halos we expect the HI power spectrum to be valid
only on scales approximately larger then the virial radius of the most massive halos in the
simulation catalogs.
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Model Ωm σ8 w0 wa
ΛCDM-W5 0.26 0.80 -1 0
RPCDM-W5 0.23 0.66 -0.87 0.08
SUCDM-W5 0.25 0.73 -0.94 0.19

Table 1: Cosmological parameters of DE models. The other cosmological parameters are set
to Ωb = 0.04, h = 0.72, ns = 0.96. Notice that w0 and wa the DE equation of state parameters
of the Linder-Chevalier-Polarski parametrization [38, 39] best-fitting the time evolution of the
quintessence-field equation of state.

2.2 21cm Emission Model

Having assigned the HI mass to each halo with comoving (center-of-mass) position x, the
redshift-space location of the HI cloud is given by

s = x +
1 + z

H(z)
vlos(x), (2.5)

where z is the redshift of the halo catalog considered, H(z) is the Hubble function and
vlos is the component of the halo perculiar velocity along the line-of-sight. From the cloud
distribution in redshift space one can compute through a standard cloud-in-cell algorithm the
HI density ρHI(s) and finally derive the brightness temperature fluctuation [46]:

δTb(s) = δTb(z)

[
ρHI(s)
ρ̄HI

]
, (2.6)

where ρ̄HI is the HI mean density and

δTb(z) = 1571.05 ΩHIh
2

√
0.015(1 + z)

Ωmh2
mK. (2.7)

The power spectrum of the 21cm intensity maps is then obtained by computing P21cm(k) =
〈δTb(k)δT ∗b (k′)〉.

3 Cosmological Models & N-body Simulations

We use a set of simulations from the DEUS database of flat dark energy models. These
consist of a standard cosmological model with cosmological constant (ΛCDM-W5) and two
quintessence scenarios with dynamical equation of state as given by the scalar field evolution
in a Ratra-Peebles [9] (RPCDM-W5) and supergravity [35] (SUCDM-W5) self-interacting
potentials respectively. As discussed in [23] the cosmological parameters of these models have
been calibrated such as to reproduce within 1σ the cosmic microwave background power spec-
tra from WMAP-5 observations [36] and the luminosity distances from SN-Ia measurements
[37] (see Table 1).

These models are characterised by small differences in the large linear scale clustering
which are amplified at small scales by the onset of the non-linear regime of gravitational
collapse [23]. In particular, the quintessence models exhibit DM density power spectra in
the range 0.1 . k [Mpch−1] . 1 and z . 2 that are lower than the ΛCDM prediction with
deviations as large as 20−40%. This is because the DE dynamics alters the cosmic expansion
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Figure 1: Ratios of the halo mass function of each quintessence model (RPCDM-W5 in
blue solid line and SUCDM-W5 in red dotted) over the reference ΛCDM-W5 model at z = 1
(top panel) and 2.3 (bottom panel). Error bars represent Poisson errors.

during the late matter dominated era by causing a less decelerated expansion than in the
standard ΛCDM case. Consequently matter density fluctuations grow less efficiently than in
ΛCDM which leads to a lower level of clustering [23] and halo abundances [40]. As we are
interested in modelling the HI cloud distributions using N-body halo catalogs, we use data
from the DEUS simulations with the largest available mass resolution. These have a 162
Mpc h−1 box-length and contain 10243 particles (corresponding to mass particle resolution of
mp = 2.5 · 108 M� h−1). To limit numerical systematic errors we only retain halos with more
than 100 particles corresponding to a minimum halo mass of the catalogs of M162

min = 2.5 ·1010

M� h−1. We identify the halos in each simulation box using the FoF halo finder [47].
In Fig. 1 we plot the ratio of the halo mass function of the quintessence model simulations

relative to the reference ΛCDM-W5 at z = 1 (top panel) and 2.3 (bottom panel) respectively.
As expected the dynamical DE models exhibit lower halo abundances with respect to the
ΛCDM with increasing deviations as function of mass and redshift. Notice also that the
RPCDM-W5 model has larger deviations (∼ 20−80%) than SUCDM-W5 (∼ 5−40%) which
is consistent with expectations from the cosmic expansion history and linear growth rate of
these models.

In the case of the non-standard DM models, we consider N-body simulations of 27.5 Mpc
h−1 box-length with 10243 particles of non-standard DM scenarios presented in [44]. These
consist of ultra-light axion DM models ([41] for a review) with axion mass ma = 1.56× 10−22

eV (ULADM-1), 4.16 × 10−22 eV (ULADM-2) and 1.54 × 10−21 eV (ULADM-3), and late-
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Figure 2: Ratios of the halo mass function of the non-standard DM models relative to the
reference ΛCDM scenario at z = 1 (top panel) and 2 (bottom panel) respectively. Error bars
are represent Poisson errors.

forming DM models [42, 43] with transition redshift zt = 5×105 (LFDM-1), 8×105 (LFDM-2)
and 15 × 1015 (LFDM-3). Note that all the three ULADM models investigated here are in
disagreement with the recent constraints obtained from the Lyman-α forest high redshift
power spectrum which result in a lower limit at the 2σ level of ∼ 2 × 10−21 eV [49], for a
conservative analysis. However, given the intrinsic complementarity of the two observables,
intensity mapping power spectrum probes the HI in mass while the forest probes the HI in
volume, it is important to explore these models to confirm or disproof the limits obtained
with the forest (that are obtained at z > 3). These models are characterised by a suppression
of the amplitude of matter density fluctuations at small scales below a characteristic length
that for ULADM models depends on the particle mass, while in the case of LFDM models
depends on the phase transition redshift. The halos in the simulation boxes are identified
using the FoF algorithm [47]. Spurious artificial halos that form due to the sampling of
numerical Poisson noise below the cut-off scale of the initial power spectrum of these models
have been removed using the approach described in [45]. To be conservative we further retain
only halos with 300 particles thus corresponding to a minimum halo mass of the catalogs
of M27.5

min = 5 · 108 M� h−1. The cosmological model parameters have been set to those of
a reference ΛCDM simulation (ΛCDM-S) of the same box-length and with equal number of
particles with Ωm = 0.3, Ωb = 0.046, h = 0.7, σ8 = 0.8 and ns = 0.99.

In Fig. 2 we plot the ratio of the halo mass function of non-standard DM models relative
to the reference ΛCDM simulation at z = 1 (top panel) and 2 (bottom panel). As expected
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Figure 3: Power spectrum of HI (left panels) and of the 21cm signal (right panels) at
z = 1 for the different ΛCDM simulations: ΛCDM-W5 in green dotted line and the ΛCDM-S
catalog having set Mmin = M27.5

min (red dashed) and Mmin = M162
min (blue solid). In the bottom

panels the ratios of the ΛCDM-S power spectra over the ΛCDM-W5 one.

these models exhibit suppressed halo abundances at low masses compared to the ΛCDM case,
with the mass scale cut-off depending on the specificities of the underlying DM model. The
larger the ULADM particles mass or equivalently the higher the phase transition redshift of
LFDM models the lower the mass scale cut-off and the smaller the deviation from ΛCDM in
the simulated mass range. By comparing the trends in Fig. 1 and Fig. 2 we can clearly see that
non-standard DE and DM models, exhibit different mass dependent deviations from ΛCDM.
As we will see these will contribute to having different predictions for the HI clustering signal.

4 HI power spectrum of non-standard DE and DM models

Our goal is to study the imprints of DE and DM models on the HI power spectrum. Since
the HI distribution is modelled upon the results of numerical simulations, we first evaluate
the impact of numerical effects due to the finite volume and the mass resolution of the halo
catalogs.

4.1 Minimum Halo Mass & Volume Effects

As discussed in Section 2, the HI distribution model depends on the specification of a minimum
halo mass containing the neutral gas cloud (Mmin) and the slope of the power law relation
between halo mass and HI mass (α). The parameters are independent of the underlying
cosmological model and set by the astrophysical processes that shape the abundance of neutral
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Figure 4: Power spectrum of HI (left panels) and of the 21cm signal (right panels) at z = 1
of the LFDM-3 scenario for different simulation box size and value of Mmin as in Eq. (2.1).
In the bottom panels their ratios.

hydrogen in halos such as the intensity of the cosmic UV background, the cooling rate and the
mechanical stripping of gas from halos. These are largely uncertain due to the lack of high-
redshift data to constrain their values (see [48] for a review). Here, we set α = 3/4 consistently
with results from hydrodynamic simulation studies [30, 31], while for the minimum halo mass
a conservative guess is to set Mmin ∼ 109 M�. However, such a mass scale is resolved only in
the case of the non-standard DM halo catalogs from the 27.5 Mpc h−1 box-length simulations
with 10243 particles. In the case of the dynamical DE model simulations, the minimum halo
mass is about a factor 10 larger3. Hence, it is important to evaluate the impact of Mmin on
the HI power spectrum.

In Fig. 3 we plot the HI power spectrum at z = 1 for the ΛCDM-W5 model simulation
(green dotted line) and from the ΛCDM-S catalog having set Mmin = M27.5

min (red dashed
line) and Mmin = M162

min (blue solid line) in Eq. (2.1). The power spectrum from the larger
simulation box covers a wider range of low-k modes than the smaller box, the latter on the
other hand extends to larger k modes as the corresponding simulation has higher spatial and
mass resolution. It is important to notice that in both cases the spectra exhibit an unphysical
flattening of power at k & 1 Mpc−1 h, which is due to the lack of modelling the HI distribution
within the halos (see appendix A in [29]).

We can see that the HI power spectrum from the 27.5 Mpc h−1 box-length halo catalog
increases in amplitude when increasing the value of Mmin. This is because the total amount

3Notice that this Mmin value is anyway compatible with what found in [50], where it is tuned by requiring
MHI(M) to reproduce the observed bias of the Damped Lyman α systems at z = 2.3.
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of HI is fixed and by increasing Mmin we assign more HI mass to more massive halos which
are more clustered then low mass ones, thus leading to a larger amplitude of the HI power
spectrum. Notice also that as we set Mmin = M162

min, the HI power spectrum of the 27.5 Mpc
h−1 box-length halo catalog lies closer to that of the ΛCDM-W5 model with difference of
∼ 20 − 30%, however this cannot be attributed uniquely to a volume effect since the two
ΛCDM simulations have slightly different values of the cosmological parameters.

Since we do not have a larger volume simulation of the ΛCDM-S model, we address this
point using halo catalogs of the LFDM-3 model for which we have simulations of 27.5 Mpc
h−1 box-length with 10243 particles and an additional run with 110 Mpc h−1 box-length and
20483 particles. The corresponding HI power spectra are shown in Fig. 4. Again we notice
a flattening of the power spectrum for k & 1h Mpc−1. As in the previous case, we can see
that increasing Mmin from M27.5

min to M162
min leads to a larger amplitude of the HI spectrum by

an amount similar to that found in ΛCDM-S case. Moreover, the HI spectrum from the 27.5
Mpc h−1 box-length catalog with Mmin = M162

min (blue solid line) differs by less than . 10%
from that of the 110 Mpc h−1 box-length simulation with Mmin set to the same value (green
dotted line).

This shows that assuming a larger value of Mmin only scales the resulting HI power
spectrum by an amplitude factor that is independent of the underlying cosmological model.
Consequently, since we are interested in the relative different of the HI spectra between
different cosmological scenarios, our specific assumption on Mmin (mainly dictated by the
mass resolution of the numerical halo catalogs available to us) does not alter the conclusions
of our analysis. As already mentioned the value ofMmin (and similarly in the case of α) is set
by astrophysical processes that shape the distribution of HI gas in halos and do not depend on
the specificities of the cosmological scenarios. Hence, whatsoever is the exact value, it cannot
vary freely across different cosmological models, but remain set to constant with the only
effect of changing the overall amplitude of the HI spectrum. Thus, focusing on the relative
difference of HI spectra of different cosmological scenarios retain the cosmological signature
independently of the neutral hydrogen halo model assumptions.

We do not attempt to model the HI gas distribution within halos, due to the limited
numerical resolution of the corresponding halo density profiles, for this reason, hereafter, we
only consider the HI spectra for k . 1h Mpc−1.

4.2 Cosmological Dependence and Redshift Evolution of HI spectra

We now focus on the signatures of the non-standard cosmological models on the HI spectra
relative to the standard ΛCDM scenario.

In Fig. 5 we plot the HI spectra for the DE (left panel) and DM (right panel) models
at z = 1 and 2.3 respectively. In the bottom panels we show the relative differences with
respect to the reference ΛCDM model. In the case of the non-standard DE models the
differences among the HI spectra at large scales can be understood in terms of the evolution
of the halo mass function. In fact, at z = 2 the RPCDM and SUCDM models have spectra
with amplitude larger than in the ΛCDM case. This is consistent with the fact that at this
redshift the abundance of halos in the non-standard DE models are suppressed compared to
the reference ΛCDM (see Fig. 1), consequently since we distributed in the halo catalogs the
same HI mass to all models, the HI populates more massive halos in RPCDM and SUCDM
than in the ΛCDM, as these are more biased the resulting clustering amplitude of the HI
power spectrum is higher. At z = 1, the halo abundance in the non-standard DE model is
still suppressed compared to the ΛCDM, but higher than at z = 2.3, hence the amplitude of
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Figure 5: HI power spectra (top panel) and relative difference with respect to the ΛCDM
prediction (bottom panel) at z = 1 and 2.3 respectively, in the case of the non-standard DE
(panel a) and DM (panel b) models respectively.

the HI spectra decrease. However, notice that at small scales the SUCDM has less suppressed
spectrum than the RPCDM. This is because of a competing effects due to the onset of highly
non-linear clustering regime that depends on the linear growth of structures, which in the
case of SUCDM is larger than RPCDM compared to the ΛCDM model (see [23]).

For the non-standard DM models shown in the right panel of Fig. 5 the linear growth
rate is identical to that of the reference ΛCDM model, thus the relative differences in the HI
spectra at z = 1 and 2.3 are entirely due to the suppressed abundances for low halo masses
(see Fig. 2), which is also consistent with the findings of [20] on WDM models. In particular,
we can see two distinct effects: first, we may notice again that the larger the suppression of
the halo abundance at low halo masses the larger the overall amplitude of the HI spectra;
secondly, while on the large scales the spectra have nearly the same slope relative to reference
ΛCDM model, at smaller scales the slope tends to flatten proportionally to the slope of the
suppression of the halo mass function at the low mass end. Such scale dependence leads to
increasing deviation from the ΛCDM model prediction at low scales as can be seen in the
right lower panels of Fig. 5.

5 21cm Intensity Map Power Spectra: SKA1-MID forecasts

We now focus on the 21cm intensity map power spectrum. Differently from the HI spectra,
the 21cm encodes additional cosmological information since it traces in redshift space the
location of HI clouds whose peculiar velocities alter the clustering signal. In Fig. 6 we plot
the relative difference of the 21cm power spectrum between the non-standard DE models and
the reference ΛCDM-W5 at z = 1 (left panel) and z = 2.3 (right panel) respectively, while in
Fig. 7 we plot the spectra in the case of the non-standard DM models relative to the reference
ΛCDM-S.

It is worth noticing that the 21cm spectra of the DE models differ from the ΛCDM case
not only by an amplitude factor but also on the scale dependence of the signal, in particular we
may notice a change of the slope of the spectra at small scales. This is due to the competing
contribution of the halo clustering and the projection effect in redshift-space due to peculiar
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Figure 6: 21cm intensity map power spectrum of the non-standard DE models relative to
ΛCDM-W5 predictions at z = 1 (left panel) and 2.3 (right panel) respectively. The shaded
area represents the expected errors from SKA1-MID measurements for the reference ΛCDM-
W5 model, σ[PΛCDM

21cm (k)]/PΛCDM
21cm (k), assuming t0 = 100 (light shaded area) and t0 = 500

(dark shaded area) observing hours.

velocities. In the case of the non-standard DM models we notice a very different trend,
with differences with respect to the standard cosmological scenario increasing at small scales.
This is because these models have the linear growth rate which is identical to that of the
reference ΛCDM. In fact, since on the scale considered the peculiar velocity term in Eq. (2.5)
is proportional to the linear growth rate, then the effect of redshift space distortions on the
21cm spectra are similar in the ΛCDM and the non-standard DM models. Consequently, the
relative differences of the 21cm spectra trace the difference in the HI spectra already shown in
the right lower panels of Fig. 5, which are entirely determined by the suppression of the halo
mass function at low mass and its slope. Overall, this suggests that in principle the imprints
of DE and DM models can be distinguished from one another through 21cm intensity map
measurements.

To be more quantitative, we have followed the computation in [29] and we have estimated
the 1σ errors on 21cm power spectrum measurements expected from the instrumental noise
of SKA1-MID radio telescope in interferometry for the reference ΛCDM models. SKA1-MID
will consist of 250 antennae of D = 15 m of diameter, thus here we consider 250 pointings
with a field of view of the order FoV ∼ (λ/D)2, where λ is the wavelength of observation
(i.e. the corresponding 21cm line at the redshift of detection). The assumed instrumental
temperature of each receiver is Trcvr = 0.1Tsky + Tinst, where Tsky is the temperature of the
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Figure 7: As in Fig. 6 for the non-standard DM models relative to the reference ΛCDM-S
model.

sky at the redshift of detection (here either z = 1 or 2) and Tinst = 28K is the instrument
temperature. The width of each redshift bin is the comoving distance associated to the
instrumental bandwidth B = 32 MHz.

The parameter that we are left to tune is the total observation time t0. In Fig. 6 and
Fig. 7 we highlight the 1σ errors on the 21cm signal power spectrum as shaded regions for
t0 = 100 (light shaded area) and t0 = 500 (dark shaded area) observing hours respectively. It
is important to stress that our estimate implicitly assume that astrophysical and atmospheric
foreground contaminations as well as radio interferences have been removed from data.

We can see that the RPCDM model can be distinguished from the ΛCDM at high-
statistical significance. Even the SUCDM model, characterised by a cosmic expansion and
a linear growth rate similar to that of the ΛCDM, can be potentially distinguished at more
that 1σ at z = 2.3 in the range of scales corresponding to 0.02 . k [Mpc−1 h] . 2. Similarly,
the non-standard DM models considered here should be detectable or ruled out with future
SKA observations.

5.1 Degeneracy with astrophysical parameters

As discussed in Section 4, the values of the model parameters Mmin and α of Eq. (2.1) are
set by the astrophysical mechanisms that regulate the distribution of HI in dark matter halos
and should not depend on the underlying cosmology. This is why here we have focused on the
relative difference of the HI (Fig. 5) and consequently of the 21cm power spectra (Figs. 6-7)
of different cosmological scenarios keeping the astrophysical parameters fixed. However, since
changes in clustering due to non-standard cosmological models can be partially compensated

– 12 –



100

k [h Mpc−1 ]

20 

0  

20 

40 

60 
(P

21
cm
−
P

Λ
C

D
M

2
1c

m
)/
P

Λ
C

D
M

2
1c

m
[%

]

z = 1.0

t0 =100 hours

t0 =500 hours

100

k [h Mpc−1 ]

0.8

1.0

1.2

1.4

1.6

z = 2.0

20 km/s

25 km/s

30 km/s

50 km/s

20 km/s

25 km/s

30 km/s

50 km/s

Figure 8: 21cm intensity map power spectrum of the reference ΛCDM-S model predictions
calculated at z = 1 (left panel) and 2 (right panel) for different Mmin parameters, charac-
terized by different circular velocity vcirc as in the legend in the right panel. The shaded
area represents the expected errors from SKA1-MID measurements for the reference ΛCDM-
S model with Mmin of vcirc = 25 km s−1, σ[PΛCDM

21cm (k)]/PΛCDM
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by choosing different values of Mmin and α that are not yet known a priori, we acknowledge
that when dealing with real data one needs to treat these parameters as nuisance ones, to
disentangle their effects from cosmology.

In particular, as seen already in Fig. 3, a higher mass cut-off Mminboosts the HI power
spectrum and the 21cm signal and it is degenerate with having a lack of matter clustering
due to a non-standard cosmology; whereas a lower Mmin would highlight more the differences
among the different cosmological scenarios. For example, in Fig. 8 we plot the difference
in 21m power spectrum of the ΛCDM-S model when considering values of Mmin other than
the one we have used throughout this work (vcirc = 25 km s−1), selecting them within the
currently reasonable range [48]. The power spectra differences are shown together with the
SKA1-MID instrumental noise corresponding to the reference ΛCDM-S model with Mmin of
vcirc = 25 km s−1, i.e. the shaded area of Fig. 8 is the same as in Fig. 7. The effect of varying
Mmin is indeed comparable in amplitude and in shape to that of some of the non-standard
dark matter models analysed.

Unfortunately, we cannot perform a similar exercise for the dynamical dark energy mod-
els, since in this case the Mmin we have used is set by the halo resolution of our simulations
and corresponds roughly to vcirc ≈ 80 km s−1, a high still meaningful value [48]. On the other
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hand, this makes the results shown in Fig. 6 quite conservative.

6 Conclusion

Future measurements of the clustering of matter in the Universe are a promising tool to infer
new insights onto the properties of dark energy and dark matter. In particular, observations
of the 21cm emission from HI in distant galaxies can provide a complementary probe of matter
clustering across a wide range of scales and at high redshifts.

Here, we have studied the imprint of non-standard DE and DM models on the clustering
of HI and 21cm power spectra. Using halo catalogs from N-body simulations we associate HI
gas mass to halos using a simple model prescription to estimate the spatial distribution of HI
and infer the 21cm intensity map power spectra.

We find that the simulated DE models leave a characteristic imprint on the HI spectra
which differ from that of a reference ΛCDM model. In particular, differences in the abundance
of halos and the onset of the non-linear clustering regime impact significantly on the power
distribution of the HI spectra between large and small scales at high-redshifts. The non-
standard DM models considered here only differ from the ΛCDM scenario for the suppressed
abundance of low mass halos. This causes the HI power spectra to have larger amplitudes
than the ΛCDM case and thus differ from the predictions of the dynamical DE models. Such
model dependent features are also manifest in the 21cm intensity map spectra, thus suggesting
that SKA measurements of the 21cm signal can provide strong constraints on DE and DM
models, which are complementary to those inferred from other cosmic probes. However, since
the results inferred in this analysis rely on a simply modelling of the HI cloud distribution
on dark matter only simulations, it suggests to further pursue this investigation through the
realisation of hydrodynamic simulations of the HI distribution in non-standard cosmological
scenarios.
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