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Abstract 

The isonicotinic acid adduct [Ru(η3:η3-C10H16)Cl2(p-NC5H4CO2H)] 1 and nicotinate and 

isonicotinate bridged binuclear complexes [Ru2(η
3:η3-C10H16)2Cl3(μ-N,O,O′-NC5H4CO2)] 2 and 3 

are reported. Complexes 2 and 3 exist as mixtures of diastereoisomers and are dynamic in water 

saturated chloroform solution with complexes involving bidentate chelating carboxylate ligands in 

equilibrium with unidente carboxylate aquo complexes [Ru2(η
3:η3-C10H16)2Cl3(OH2)(μ-N,O-

NC5H4CO2)] 
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Introduction 

Bis(allyl) ruthenium(IV) complexes are of ongoing interest as catalysts and catalyst precursors in a 

range of processes such as carbonyl reduction,[1] alkene oligomerization and polymerization,[2-5] 

transfer hydrogenation,[6] photo‐initiated ring‐opening metathesis polymerization,[7] S–S and C–S 

bond cleavage[8] and as guanidinate precursors.[9] Of particular interest are reactions either involving 

water or occurring in aqueous solution such as the hydrolysis of nitriles to amides[10-12] and redox 

isomerization of allylic alcohols[13, 14]. Bis(allyl) ruthenium(IV) complexes are also of interest in 

catalysis related chemistry such as transmetallation,[15] and as precursors to novel ruthenium(II) 

systems via reductive elimination.[16] Carboxylate complexes of bis(allyl) ruthenium(IV) species in 

particular are active catalysts and catalyst precursors[17-19] and the field has been reviewed.[20]  The 

simple acetate chelate complex[21] of 2,7-dimethylocta-2,6-diene-1,8-diyl ruthenium(IV) [Ru(η3:η3-

C10H16)Cl(O2CMe)] possesses significant catalytic activity and surprisingly is soluble in both water 

and in ionic liquids despite its neutral, relatively hydrophobic structure.[17, 19] Previous work has 
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shown that complexes of this organometallic fragment with more electron withdrawing carboxylates 

(acid pKa of 2.9 or below) are in equilibrium with aquo species bearing a unidentate carboxylate ligand 

of type [Ru(η3:η3-C10H16)Cl(OH2)(O2CR)] where R = CH2Cl, CH2F.[21] Such a process may promote 

both catalytic activity (by creation of a vacant site) and water solubility. In this work we report the 

formation of bis(allyl) ruthenium(IV) complexes of nicotinic and isonicotinic acids. Both species have 

comparable pKa to acetic acid (4.75, 4.96 and 4.75, respectively[22]) but offer the possibility of 

bridged coordination via the pyridyl nitrogen atom as well as the carboxylate group. In addition, 

nicotinato analogues of the pyrazine-bridged ruthenium-containing Creutz-Taubé ion display an 

extensive electrochemistry.[23] The unsymmetrical nature of nicotinic acids suggests that it may be 

possible to generate mononuclear compounds bound via the pyridyl nitrogen atom before 

deprotonation of the carboxylate functionality in the presence of a second metal complex to give an 

unsymmetrically bridged compound. Such an unsymmetrical system would complement previous 

work on more symmetrical binuclear ruthenium(IV) complexes.[24-29] 

 

Results and Discussion 

In contrast to the case of the mononuclear pyrazene adduct [Ru(η3:η3-C10H16)Cl2(N2C4H4)],[26] 

reaction of the chloro-bridged precursor [{Ru(η3:η3-C10H16)Cl(-Cl)}2][30] with two molar 

equivalents of isonicotinic acid (p-NC5H4CO2H) results in the clean formation of the adduct 

[Ru(η3:η3-C10H16)Cl2(p-NC5H4CO2H)] 1 in 80% yield. This is consistent with recent results reported 

by Creutz[23] in which isonicotinate and isonicotinamidate bridged analogues of the Creutz-Taubé ion 

are readily prepared from mononuclear precursors. The 1H NMR spectrum of 1 was consistent with its 

formulation as an equatorial adduct, with the only noteworthy feature being the surprisingly similar 

chemical shifts of the two terminal allyl signals (δ 4.62 and 4.46 ppm). The infrared spectrum of the 

complex showed a strong vasymm(OCO) at 1732 cm-1 and vsymm(OCO) 1414 and 1369 cm-1, similar to 

the values for free carboxylic acids and implying the complex to be N-bound.[31] If the reaction is 

carried out with a single mole equivalent of nicotinic (m-NC5H4CO2H) or isonicotinic acid in the 

presence of excess Na2CO3 an equally smooth reaction occurs to give the unsymmetrical binuclear 

complexes [Ru2(η
3:η3-C10H16)2Cl3(μ-m-NC5H4CO2)] 2 and [Ru2(η

3:η3-C10H16)2Cl3(μ-p-NC5H4CO2)] 

3 respectively in ca. 70% yield. Unlike 1, the infrared spectra of 2 and 3 no longer display a band at ca. 

1700 cm-1, instead two new bands at lower wavenumber, assignable to asymm(OCO) are apparent 

[1607 and 1509 cm-1 in 2 and 1509 and 1496 cm-1 in 3]. Bands assignable to symm(OCO) also occur in 

both complexes [1444 and 1381 (2) and 1429 and 1383 cm-1 (3)]. The difference in frequency between 

asymm and symm, Δ is ambiguous, and hence from this data the coordination mode of the carboxylato 

functionalities is uncertain, although the chelate mode is suspected based on previous related examples 
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and the requirement to complete the metal coordination sphere.[32] The binuclear nature of 2 was 

confirmed by a FAB mass spectrum which exhibited a clear molecular ion peak centred on m/z 703 

with isotope distribution characteristic of two ruthenium and three chlorine atoms along with a 

fragmentation peak corresponding to loss of chloride m/z 668. 

 

 The 1H NMR spectra of 2 and 3 strongly reflect the asymmetric, binuclear nature of the 

compounds. In the spectrum of 2 for example, the N-bound "Ru(η3:η3-C10H16)" fragment 

demonstrates sharp resonances similar to the N-bound adduct 1, the terminal allyl resonances again 

occurring at similar chemical shifts to one another. In common with other binuclear complexes 

containing the chiral "Ru(η3:η3-C10H16)" moiety, 2 is expected to exist as two diastereoisomers.[21, 

26, 27] The linkage between the two metal atoms is long however (six atoms), and thus only small 

chemical shift differences are anticipated in the 1H NMR resonances for the two forms. In reality the 

diastereoisomers are resolved on only one of the terminal allyl signals for the N-bound side of the 

molecule: δ 4.60 and 4.59 ppm. The other two terminal allyl signals are coincident, δ 4.41 ppm. In 

contrast to the N-bound side of the molecule, the O-bound "Ru(η3:η3-C10H16)" fragment exhibits four 

terminal allyl signals at room temperature, δ 5.61, 4.73, 4.70 and 3.75 ppm, all of which are broad 

implying a fluxional process that apparently has most effect on the O-bound end of the molecule. The 

remainder of the spectrum of the O-bound fragment resembles strongly that of carboxylato complexes 

such as the chelate acetate [Ru(η3:η3-C10H16)Cl(O2CMe)].[21] 

 At -20oC all the resonances in the spectrum of 2 are sharp (Fig. 1) and consistent with the 

proposed formulation with signals for individual diastereoisomers resolved on some of the resonances 

due to the terminal allylic protons on the O-bound end of the molecule. Interestingly, a number of 

additional resonances of very low intensity (ca. 5% of the total sample) are observed, including a 

broad signal at δ 6.46 ppm. It seems likely that this second species contains a unidentate carboxylato 

group with the vacant coordination site at the carboxylate bound metal centre occupied by a water 

molecule. An 1H NMR spectrum exhibiting similar features is observed for 3 and it would thus appear 

that the carboxylatopyridines exhibit behaviour related to that of the fluoro- and chloroacetato 

complexes [Ru(η3:η3-C10H16)Cl(OH2)(O2CR)],[21] with chelating compounds in equilibrium with 

aqua species containing unidentate carboxylato ligands (Scheme 1). This behaviour is surprising given 

the chelate nature of the analogous acetate complex and the higher pKa values of nicotinic and 
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isonicotinic acid compared to chloro- and fluoroacetic acid. While the coordination of the second 

ruthenium(IV) fragment may enhance the electron withdrawing nature of the nicotinate and 

isonicotinate pyridyl substituent, it implies that exchange between bidentate carboxylates and 

unidentate aqua species may be widespread and may contribute to the water solubility of the parent 

acetate complex. 

 

 

Scheme 1: Fluxionality in the nicotinato bridged 

compound [Ru2(η
3:η3-C10H16)2Cl3(μ-NC5H4CO2)] 2. 

 

 Attempts were made to use 1 to synthesise mixed valence Ru(IV)/Ru(II) compounds such as 

[(η3:η3-C10H16)Cl2Ru(μ-NC5H4CO2)RuCl(η6-p-MeC6H4CHMe2)], related to the pyrazine-bridged 

analogue,[26] by reaction  of 1 with the arene ruthenium(II) precursor [{Ru(η6-p-

MeC6H4CHMe2)Cl(μ-Cl)}2].[33] On carrying out the reaction the mixed-valence compound 

represented ca. 50% of the isolated yield (by 1H NMR spectroscopy) but was contaminated by 

significant amounts of 3 and the analogous Ru(II)-Ru(II) species. Similar results were obtained from 

the reaction of [Ru(η6-p-MeC6H4CHMe2)Cl2(m-NC5H4CO2H)] with [{Ru(η3:η3-C10H16)Cl(-Cl)}2] 

while an extremely complicated mixture of products was obtained from the reaction of 1 with 

[PdCl2(PhCN)2]. 
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Fig. 1: partial 1H NMR spectrum of the binuclear compound 

[Ru2(η
3:η3-C10H16)2Cl3(μ-m-NC5H4CO2)] 2 a) recorded at +20oC; b) -20oC in water-saturated 

CDCl3 solution. The arrow indicates the resonance at δ  6.46 ppm assigned to coordinated water. 

 

 

Conclusion 

Isonicotinic acid forms N-bound mononuclear adducts with 2,7-dimethylocta-2,6-diene-1,8-diyl 

ruthenium(IV) dichloride. In the presence of base both nicotinic and isonicotinic acid give 

unsymmetric binuclear bridged complexes with 2,7-dimethylocta-2,6-diene-1,8-diyl ruthenium(IV) 

involving a bidentate chelate carboxylate group. These complexes are dynamic and exist as a mixture 

of diastereoisomers and are in equilibrium with analogous aquo complexes bearing a unidentate 

carboxylate group. The facile coordination of water with carboxylate complexes of relatively high pKa 

is likely to contribute to the water solubility of the catalytically active acetate parent compound. 

 

Experimental 

Instrumental.  

 Infrared spectra were recorded on a PE983 grating spectrometer between 4000 and 180 cm-1 as 

either KBr disks or nujol mulls on CsI plates. NMR spectra were recorded on a Varian VXR400 

(a) 

(b) 
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spectrometer at University College London. NMR data are given in Table 1. Microanalyses were 

carried out by the departmental service and mass spectra were recorded by the University of London 

Intercolliegate Research Service at the School of Pharmacy. All manipulations were carried out under 

nitrogen with degassed solvents using conventional Schlenk line techniques except where otherwise 

stated. In general isolated products were found to be air stable or to decompose only slowly in solution 

in the presence of atmospheric oxygen. 

 

Preparations 

 [Ru(η3:η3-C10H16)Cl2(p-NC5H4CO2H)] 1. [{Ru(η3:η3-C10H16)Cl(μ-Cl)}2] (0.24 g, 0.38 mmol) 

was stirred as an acetone (5 cm3) suspension with isonicotinic acid (0.09 g, 0.77 mmol) for 2 h, during 

which time the gradual formation of an orange colouration was observed as the starting material was 

taken up into solution. The solution was evaporated to an orange oil and triturated resulting in the 

deposition of the product as an orange precipitate which was washed with diethyl ether and air dried. 

Yield: 0.26 g, 0.61 mmol, 80% (Found: C, 44.15; H, 5.05; N, 2.95. Calc. for C16H21NCl2O2Ru: C, 

44.55; H, 4.90; N, 3.25%). 

 

 [Ru2(η
3:η3-C10H16)2Cl3(μ-m-NC5H4CO2)] 2. [{Ru(η3:η3-C10H16)Cl(μ-Cl)}2] (0.08 g, 0.12 

mmol) was stirred with nicotinic acid (0.015 g, 0.12 mmol) in acetone (5 cm3) in the presence of 

Na2[CO3] (0.1 g, excess) for 2 h. The resulting orange solution was filtered to remove excess base and 

evaporated to an orange oil. Addition of diethyl ether (4 cm3) resulted in the formation of the product 

as an orange precipitate which was isolated by filtration and air dried. Evaporation of the filtrate and 

trituration with hexane resulted in a further crop of product. Combined yield: 0.06 g, 0.09 mmol, 71% 

(Found: C, 43.75; H, 5.40; N, 1.85. Calc. for C26H36NCl3O2Ru2: C, 44.40; H, 5.15; N, 2.00%). 

 

 [Ru2(η
3:η3-C10H16)2Cl3(μ-p-NC5H4CO2)] 3. [{Ru(η3:η3-C10H16)Cl(μ-Cl)}2] (0.06 g, 0.10 

mmol) was treated with isonicotinic acid (0.012 g, 0.10 mmol) and  excess anhydrous sodium 

carbonate as described for 2. Combined yield: 0.05 g, 0.07 mmol, 70% (Found: C, 44.35; H, 5.40; N, 

1.75. Calc. for C26H36NCl3O2Ru2: C, 44.40; H, 5.15; N, 2.00%). 
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Table 1: 1H NMR Data for New Complexes.a 

 

Compound 
δ 

 Terminal Allyl Internal Allyl -CH2- Me     Other 

[Ru(η3:η3-C10H16)Cl2(p-NC5H4CO2H)] 1 4.62 (s, 2H) 

4.46 (s, 2H) 

 

5.31 (m, 2H) 3.06 (m, 2H) 

2.43 (m, 2H) 

2.39 (s, 6H) 9.42 & 7.88 (AA'BB', 4H, 3J=5.4, 5J=1.5, 

NC5H4CO2H) 

[Ru2(η3:η3-C10H16)2Cl3(μ-m-NC5H4CO2)] 2 

i) 20oC (two diastereoisomers) 

5.61 (s, br, 2H) 

4.73 (s, br, 2H) 

4.70 (s, br, 2H) 

4.60 (s, 2H) 

4.59 (s, 2H) 4.41 

(s, 4H) 

3.75 (s, br, 2H) 

5.26 (m, 4H) 

4.35 (s, br, 2H) 

3.80 (s, br, 2H) 

3.02 (m, 4H) 

2.61 (m, 8H) 

2.41 (m, 4H) 

2.38 (s, 12H) 

2.33 (s, 6H) 

2.17 (s, 3H) 

2.16 (s, 3H) 

9.59 (d, 1H, 4J=1.8), 9.58 (d, 1H, 4J=1.8), 9.31 (d, 

2H, 3J=5.8), 8.36 (d, 2H, 3J=7.4), 7.37 (dd, 2H, 
3J=5.8 & 7.4) 

ii) -50oC (two diastereoisomers, minor aquo 

complex not listed) 

5.59 (s, 2H) 4.69 

(s, 1H) 

4.67 (s, 1H) 4.64 

(s, 2H) 

4.62 (s, 2H) 4.61 

(s, 2H) 

4.38 (s, 4H) 3.72 

(s, 2H) 

5.22 (m, 4H) 

4.30 (m, 2H) 

3.76 (m, 2H) 

3.06 (m, 4H) 

2.69 (m, 2H) 

2.62 (m, 4H) 

2.50 (m, 2H) 

2.38 (m, 4H) 

2.34 (s, 12H) 

2.31 (s, 6H) 

2.16 (s, 3H) 

2.15 (s, 3H) 

9.51 (s, 1H), 9.49 (s, 1H), 9.26 (d, 1H, 3J=5.8), 9.25 

(d, 1H, 3J=5.8), 8.38 (d, 2H, 3J=7.8), 7.39 (dd, 2H, 
3J=5.8 & 7.8) 

[Ru2(η3:η3-C10H16)2Cl3(μ-p-NC5H4CO2)] 3  

(two diastereoisomers) 

 

5.63 (s, 2H) 4.72 

(s, 2H) 

4.69 (s, br, 2H) 

4.58 (s, 2H) 

4.57 (s, 2H) 4.43 

(s, 2H) 

4.42 (s, 2H) 3.68 

(s, br, 2H) 

5.27 (m, 4H) 

4.37 (m, 2H) 

3.79 (m, 2H) 

3.04 (m, 4H) 

2.63 (m, 8H) 

2.41 (m, 4H) 

2.38 (s, 6H) 

2.37 (s, 6H) 

2.34 (s, 6H) 

2.18 (s, 6H) 

9.32 (t, 4H, 3J=6.5), 7.76 (d, 4H, 3J=6.5) 

a) In CDCl3, δ / ppm, JH-H / Hz, 400 MHz, 20oC, s = singlet, d = doublet, dd = doublet of doublets, t = triplet, se = septet, m = multiplet. 
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