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Abstract  
 
Myosin-driven contraction of the actin cytoskeleton is at the base of cell and tissue 

morphogenesis. At the molecular level, myosin motors drive contraction by sliding 

actin filaments past one another using energy produced by ATP hydrolysis. How this 

microscopic sliding activity gives rise to cell-scale contractions has been an active 

research question first in muscle cells, and over the last few decades in non-muscle 

cells. While many early investigations focused on myosin motor activity, 

increasingly, the nanoscale architecture of the actin network emerges as a key 

regulator of contractility. Here we review theoretical and in vitro reconstitution 

studies that have uncovered some of the key mechanisms by which actin network 

organization controls contractile tension generation. We then discuss recent findings 

indicating that similar principles apply in cells. 
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Introduction: 

 

Actomyosin contractility is at the base of cellular morphogenesis and 

mechanosensing. Shape changes of animal cells as they divide, migrate, or form 

tissues in developing embryos, are driven by gradients in actomyosin contractility 

(reviewed in [1,2]). Furthermore, contractile forces exerted on neighboring cells and 

the extracellular matrix allow cells to sense the stiffness of their environment, which 

influences cell migration, cell shape dynamics within tissues, as well as cellular fate 

decisions (reviewed in [3]).  

 

The mechanisms of actomyosin contractility were first investigated in striated muscle 

cells [4]. In these cells, actomyosin is arranged in highly ordered, one-dimensional 

arrays called sarcomeres, where network architecture is perfectly adapted for 

contractility generation (Fig. 1a).  In non-muscle cells, actomyosin structures are 

generally less ordered, ranging from stress fibers, where actin filaments are bundled 

but lack clear polarity, to the cellular cortex, where actin forms a mostly isotropic 

network (Fig. 1b). In such disordered structures, contractile tension generation cannot 

be understood in terms of a sarcomeric mechanism. Partly due to the difficulty in 

obtaining information on the spatial organization and dynamics of actin filaments in 

cellular networks, the mechanisms controlling actomyosin tension generation in non-

muscle cells have long remained elusive. In fact, in morphogenesis studies, cortical 

contractile tension has often been assumed to be simply proportional to the levels of 

myosin II at the cortex [5-8], with little attention paid to the organization of the actin 

network itself.  

 

Yet, in vitro studies of cell-free actomyosin systems reconstituted from purified 

components, as well as theoretical models clearly indicate that the spatial arrangement 

and physical properties of the actin filaments in the network are, alongside myosin 

motors, key to tension regulation (reviewed in [9]). Several recent studies in cells 

indeed indicate that changing actin network organization can strongly affect 

contractile tension even when myosin activity remains unchanged [10,11]. 

Increasingly, the nanoscale architecture of the actin network emerges as a key 

regulator of contractility both in vitro and in vivo.  
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We review here in vitro and theoretical studies demonstrating that different aspects of 

actin network architecture are key regulators of contractile tension generation. We 

also discuss recent findings indicating that similar principles apply in cells. Finally, 

we highlight some of the important open questions in the field. 

 

I. Tension generation: why do contractile forces dominate? 

 

Actomyosin contractility predominantly results from the mechanical action of myosin 

II motors, which use energy released from ATP hydrolysis to exert forces on actin. 

Actin filaments (F-actin) have structural polarity conferred by the head-to-tail 

assembly of the actin monomers, leading to two distinct filament ends denoted as the 

minus (or pointed) and plus (or barbed) ends. Myosin II motors have two globular 

head domains joined by a long tail domain. The head domains bind to actin filaments 

and selectively move towards the plus ends, while the tail domains serve to assemble 

myosin II molecules into bipolar filaments with motor heads on the two ends and tails 

packed in the center. This bipolar architecture allows myosin filaments to slide anti-

parallel actin filaments with respect to each other. Depending on the arrangement of 

the actin filaments, the sliding activity can give rise to either a contractile or an 

extensile force (Fig. 2a). Yet, all known cellular actomyosin structures are overall 

contractile, indicating that some physical bias results in contractile forces dominating. 

 

In skeletal muscle, this bias unequivocally originates from the arrangement of actin 

and myosin in repeating aligned arrays called sarcomeres, where myosin bipolar 

filaments are localized in between antiparallel actin filaments having their minus ends 

inwards and their plus ends outwards and anchored at Z-disc regions in between 

sarcomeres (Fig. 1a). The localization of the myosin clusters in the vicinity of F-actin 

minus ends and the co-alignment of myosin and actin filaments convert the sliding 

activity of the motors into uniform contraction [12]. Some actin structures in non-

muscle cells such as stress fibers and contractile structures associated with integrin-

based adhesions display some level of sarcomeric order, but with varied polarity 

patterns [13,14]. In strong contrast, the actomyosin cortex lacks any apparent order, 

making contractile and extensile actomyosin configurations equally likely (Fig. 2a) 

[15]. The search for mechanisms that bias isotropic actomyosin networks towards 
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contraction has been an active research focus for both experimentalists and theorists 

for the last two decades. 

 

Broadly speaking, the mechanisms proposed so far ascribe the bias towards 

contractility either to mechanical asymmetries or to self-organization of contractile 

force dipoles (Fig. 2 b,c). Most mechanical models attribute contractility to the 

nonlinear elastic properties of actin filaments. Since actin filaments are semi-flexible 

with a persistence length around 10 µm [16], they strongly resist tension but filament 

portions longer than ~ 0.3 µm readily buckle under compressive forces comparable to 

those generated by single molecular motors (~ 2 pN). Buckling relaxes extensile 

configurations, and can thus bias actomyosin bundles and networks towards 

contraction (Fig. 2b) [17,18]. An important prerequisite is that forces can propagate 

across the system, meaning that the actin filaments need to be crosslinked. Strong 

experimental support for this mechanism comes from direct observations of buckling 

of individual fluorescently labeled actin filaments during contraction of disordered 

bundles and 2D networks in vitro [17,19,20]. The degree of shortening of filaments 

by buckling correlates with the macroscopic shrinkage of the networks, further 

supporting the buckling model [19,21]. Buckling can sometimes lead to filament 

severing, which further promotes contraction [19].  

 

Experimental evidence of a buckling mechanism promoting contractility in cells is at 

this point missing. A potentially crucial difference between cellular networks like the 

cortex and in vitro biomimetic systems is the length of the actin filaments between 

crosslinking points. In biomimetic assays filaments tend to be longer than the 

persistence length and the distance between adjacent crosslinks is on the order of 1 

µm [22]. In contrast, recent work suggests that the cortex is made of filaments much 

shorter than the persistence length and contains a mixture of formin-nucleated 

filaments with lengths on the order of 1 µm, and much shorter Arp2/3-nucleated 

filaments in the 100 nm range [23]. Furthermore, typical cortical mesh sizes range 

between 30 and 200 nm, suggesting very short distances between crosslinkers [24,25]. 

Actin filament segments between crosslinking points may therefore be too short and 

rigid for buckling to strongly contribute to contractility generation in cellular 

networks. 
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Self-organized polarity has been proposed as an alternative contractility-promoting 

mechanism. The best-studied example is motor-driven polarity sorting of actin 

filaments. The basic idea is that if motors processively walk along actin filaments and 

slow down or stall before they detach from the plus end, they can cause polarity 

sorting of the filaments into radial arrays referred to as asters, connected by cables of 

antiparallel actin filaments that resemble sarcomere-like contractile structures [26] 

(Fig. 2c). Theoretically, polarity sorting could also be achieved via actin treadmilling: 

if actin filament plus end elongation and minus end shrinkage are faster than myosin 

movement, treadmilling can bias myosin to F-actin minus ends, which is a contractile 

configuration similar to that in sarcomeres [27] (Fig. 2c).  

 

In networks, a clear signature of polarity sorting should be the formation of radial 

arrays of filaments (asters), where the filament ends point inwards and motors 

accumulate in the center. In vitro, such aster-like arrangements have been observed 

both in microtubule-motor mixtures [28] and in actomyosin networks [29-31]. In 

many cell types, the cortex also tends to form aster-like actin structures and compact 

myosin foci. However, it is unclear to what extent these are due to polarity sorting, or 

to other patterning processes driven by actin nucleation or RhoA-mediated regulation 

of myosin [32-34].  

 

In addition to these mechanisms, simulations suggest that the finite size of myosin 

bipolar filaments may promote contraction by favoring rotation of myosin filaments 

toward low-energy contractile configurations [35,36] or by generating anisotropic 

forces by myosin heads at the filament ends [37]. To our knowledge, these predictions 

have not been tested experimentally. 

 

II. Network architecture and tension: the importance of being well connected 

 

Though it remains unclear which of the mechanisms described above determines the 

bias towards contractility in cellular networks, network connectivity via actin 

crosslinkers is a key determinant in all current models (Fig. 2). Interestingly, recent 

work highlights that further to promoting contractility, crosslinking also tunes the 

length scale of contractions and the magnitude of the stresses developed.  
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Cell-free experiments demonstrate that long-range coordinated contraction only 

occurs above a threshold connectivity provided by crosslinks [38]. This threshold was 

identified as the percolation threshold, where all filaments are connected so that 

motor-driven stresses propagate across the entire system [38,39]. Below the 

percolation threshold, myosins contract the network only on short length scales, 

creating small clusters [31,38]. In cellular actomyosin networks, the role of 

crosslinking in actomyosin tension generation is harder to investigate because of 

redundancies between the vast array of different crosslinkers present. Nonetheless, 

several recent studies have highlighted the importance of crosslinking for cellular 

contractility. Experiments in C. Elegans embryos showed that crosslinking by plastin 

is required for effective long-range cortex contraction [11]. Similarly, depletion of the 

actin bundling protein Eps8 decreases cortical tension in cancer cells [40], and 

depletion of different cross-linkers, including alpha-actinin and fascin, decreases 

cellular rounding force, a readout of tension, in mitotic cells [41].  

 

Interestingly, excessive crosslinking can be counter-productive and limit contractile 

tension generation. Early experiments investigating bulk contractility in in vitro 

actomyosin networks have already shown that a minimal level of cross-linking is 

required for contraction, but that excessive cross-linking is detrimental [42]. More 

recent theoretical and in vitro work has further dissected the relationship between 

crosslinking, motor activity and network contractility [39,43,44]. The emerging view 

is that maximal contractile tension is achieved at an intermediate level for 

crosslinking. Consistent with this idea, a recent study combining experiments on the 

cellular cortex and simulations suggests that cortical tension is maximum at 

intermediate actin filament lengths [10]. This tension optimum likely results from 

intermediate connectivity favoring contractility build up, as at a given crosslinker 

density, filament length directly correlates with network connectivity.  

 

How exactly excessive connectivity limits contractility is not well understood. One 

possible explanation is that at intermediate connectivity, the network can remodel in 

response to myosin-mediated stresses, and that such remodeling favors contractile 

configurations [10]. In contrast, remodeling is limited in an overly connected 

network, leading to lower tension. Network remodeling could promote contractile 

tension by mechanisms like polarity sorting (Fig. 2c), or by the relaxation of extensile 
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stresses by a buckling-like behavior of local network configurations. While these are 

plausible mechanisms, they remain speculative largely due to the difficulty in 

obtaining microscopic data on the dynamics of single actin and myosin filaments in 

dense contractile networks, particularly in cells.  

 

In cells, connectivity is modulated by network turnover. Crosslinkers and actin 

filaments turn over within seconds and tens of seconds respectively [1]. Microscopic 

simulations indicate that maximum tension is expected for an optimum ratio of the 

filament and cross-linker turnover rates [36]. Theory and experiments further suggest 

that turnover could deeply affect network behavior. Turnover is thought to stabilize 

dynamic contractile steady states with a homogeneous myosin distribution, as 

opposed to irreversible contraction into clusters displayed by networks that lack 

turnover [43,45-47]. Interestingly, a number of models indicate that turnover should 

promote cyclic contractions, where the actomyosin network continuously pulses 

[44,48,49]. Such pulsed contractions appear to be very common in cell and tissue 

morphogenesis (reviewed in [2]).  

 

Mechanosensitive modulation of bond lifetimes could also affect network 

connectivity and tension. For instance, in in vitro actin networks crosslinked with 

fascin, myosin was shown to cause crosslink unbinding at high motor densities [38]. 

Rather than being prevented from contracting at high crosslinking levels, the network 

was actively ruptured into clusters. Intriguingly, while fascin appears to form slip 

bonds, whose lifetime decreases with loading so fascin is depleted from regions of 

high contractile stress [38], other cross-linkers, like α-actinin-4, form catch bonds and 

accumulate in stressed regions [50]. Mechanical stress has also been shown to affect 

the rates of formin-based actin filament elongation, with load making elongation 

faster for the mammalian Dia1 and budding yeast Bni1 formins [51,52], and slower 

for the fission yeast formin Cdc12 [53]. Myosin II motors themselves also form catch 

bonds [54]. How mechanosensitive effects influence tension generation has not been 

systematically investigated.  

 

Finally, in addition to the level of connectivity, the specific geometric arrangement of 

actin networks could also influence tension. An interesting recent in vitro study used 
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surface micropatterning to impose actin filament arrangement into either bundled or 

branched structures with disordered (mixed polarity) or ordered (antiparallel) 

filaments [39]. Upon exposure to myosin motors, Arp2/3-mediated branching 

appeared to promote contractility the most, possibly by providing more efficient 

percolation than bundling proteins. In contrast, several studies suggest that in cells, 

Arp2/3 acts to reduce contractile tension at the cortex [55]. Decreasing Arp2/3 

activity promotes the formation of cellular blebs, protrusions that grow because of 

cortex contractions [55-57], and enhances myosin II-powered retrograde flow in 

neuronal growth cones [58]. These observations suggest that Arp2/3-nucleated actin 

networks may not provide an optimal scaffold for tension generation at the cell 

cortex. However, the microscopic basis of Arp2/3 effect on tension remains unclear, 

as information on cortical actin filament arrangement is still very limited (reviewed in 

(Chugh and Paluch, submitted)). 
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Conclusions and open questions  

 

The last decade has seen considerable progress in our understanding of contractility in 

non-sarcomeric actomyosin networks. In vitro assays and modeling have been 

particularly crucial in identifying the basic mechanisms of tension generation in a 

disordered network. Recent studies in vitro but also in cells have clearly shown that 

the nanoscale architecture of the actin network is a crucial determinant of tension, and 

that the level of crosslinking is a particularly important parameter. While we focused 

here on the actin cortex, cell contractility mediated by stress fibers also appears to 

depend on the architecture and connectivity of the fiber network [59],. Recent work 

also suggests that at a supracellular level, actomyosin networks architecture can be 

tuned in response to mechanical constraints to control force orientation during tissue 

morphogenesis [60]. 

 

Despite an increasingly refined understanding of contractility in vitro and despite 

detailed knowledge of the molecular composition of the actomyosin ’contractome’ 

[61], the physical mechanisms controlling contractility in cells, particularly at the 

actomyosin cortex, remain insufficiently understood. This is partly due to inherent 

limitations of in vitro studies and modeling, where network components are usually 

restricted to actin, myosin and crosslinkers. Such reductionist approaches are 

powerful, as network composition is fully tractable, making predictions quantitative 

and precisely testable. However, such approaches can of course only unveil 

mechanisms relying on the specific components investigated. Cellular networks 

typically contain >100 regulatory proteins [62], many of which directly or indirectly 

affect tension [41]. 

 

Another key challenge is the difficulty in uncovering the organization and dynamics 

of actin filaments and actin-binding proteins in dense actomyosin networks. Super 

resolution microscopy and improvements in electron microscopy are starting to 

overcome this limitation. Recent studies have for example successfully used advanced 

image analysis and super-resolution microscopy to beat the diffraction limit and 

investigate the thickness and organization of the cellular cortex [10,63], or to follow 

myosin minifilaments during cortex contractions [64,65]. Dissecting the nanoscale 
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architecture of cellular actin networks and investigating how they dynamically 

remodel as cells contract and deform constitutes an exciting future research avenue. 
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Figure legends: 

 

Figure 1: Actomyosin networks in cells. 

a) In muscle cells, actin and myosin are organized into sarcomeres. The ordered 

organization of a sarcomere promotes contractility. Top: image of sarcomeres in 

Drosophila flight muscle; red: actin (phalloidin), green: the myosin-rod-associated 

protein flightin-GFP, image obtained with permission from [66]. Bottom:  schematic 

of the organization of a sarcomere. b) In non-muscle cells actomyosin networks are 

less ordered. Cell images, kindly provided by Murielle Serres (Paluch lab), represent 

HeLa cells in interphase and mitosis, where DNA (red) and F-actin (cyan) have been 

labeled. Scale bars: 10 µm. 

 

 

Figure 2: Tension generation in isotropic actomyosin networks.  

a) In a disordered network, contractile and extensile actomyosin configurations are 

equally likely. b) Filament buckling can relax extensile forces and bias the network 

force distribution towards contraction. c) Under certain kinetic conditions, myosin 

minifilament processive walking or actin turnover could bias networks towards 

contractile configurations (details in text). 
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