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Abstract
Background/Aims: Chronic kidney disease (CKD) is often accompanied by hyperlipidemia, 
which accelerates progression of the disease. Podocyte injury can lead to dysfunction of 
the glomerular filtration barrier, which is associated with proteinuria, a risk marker for the 
progression of CKD. Our previous studies demonstrated that palmitic acid (PA) can induce 
podocyte apoptosis; however, the underlying mechanisms are unclear. In the present study, we 
investigated the specific molecular mechanisms of PA-induced apoptosis in cultured podocytes. 
Methods: We cultured mouse podocytes and treated them with PA. Then, cell viability was 
measured using the Cell Counting Kit-8 colorimetric assay, lipid uptake was assessed by Oil Red 
O staining and boron-dipyrromethene staining, apoptosis was measured by flow cytometry, 
mitochondrial injury was assessed by JC-1 staining and transmission electron microscopy, and 
mitochondrial production of reactive oxygen species (ROS) was evaluated by fluorescence 
microscopy using the MitoSOX Red reagent. The effects of PA on the mitochondria-mediated 
caspase activation pathway were investigated by examining the expression of caspase-8, 
cleaved caspase-9, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), B-cell 
lymphoma 2 (Bcl-2), Bax, Bid, cytochrome c, and Fas-associated protein with death domain 
(FADD) using western blotting. The translocation of Bax and cytochrome c were detected 
by immunofluorescence. Results: PA treatment significantly increased lipid accumulation and 
induced podocyte apoptosis. We investigated whether the two primary apoptosis signaling 
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pathways (death receptor-mediated pathway and mitochondria-mediated pathway) were 
involved in the execution of PA-induced podocyte apoptosis, and found that the levels of 
FADD, caspase-8, and Bid did not significantly change during this process. Meanwhile, PA 
treatment induced an increase in Bax protein expression and a decrease in Bcl-2 protein 
expression, with Bax translocation to the mitochondria. Furthermore, PA treatment induced 
mitochondrial impairment, and triggered the release of cytochrome c from the mitochondria 
to cytosol, with a concomitant dose-dependent increase in the levels of cleaved caspase-9, 
cleaved caspase-3, and PARP. Meanwhile, PA treatment increased mitochondrial production 
of ROS, and the mitochondria-targeted antioxidant mitoTEMPO significantly ameliorated PA-
induced podocyte apoptosis. Conclusion: Our findings indicated that PA induced caspase-
dependent podocyte apoptosis through the mitochondrial pathway, and mitochondrial ROS 
production participated in this process, thus potentially contributing to podocyte injury.

Introduction

Lipid disorders, mainly hypertriglyceridemia, are common in patients with all stages of 
chronic kidney disease (CKD) including diabetic nephropathy (DN) [1–4]. It has been reported 
that lipid abnormalities in renal disease contribute to the process of glomerulosclerosis with 
progressive renal dysfunction [5–9]. However, the mechanisms underlying how dyslipidemia 
accelerates CKD progression remain unclear.

Podocytes play a key role in glomerular selective filtration function [10, 11]. Podocyte 
dysfunction or injury induced by various stresses and pathological stimuli is thought to be 
critical for the pathogenesis of proteinuria and glomerular diseases [12, 13]. Podocytes are 
highly specialized and terminally differentiated visceral epithelial cells with a very limited 
ability to regenerate [14, 15]. Therefore, protecting them from injury and limiting their loss 
are important for the treatment of CKD. Podocyte apoptosis is one of the main risk factors 
causing podocyte loss [12, 16]. Our previous studies showed that palmitic acid (PA) can 
induce podocyte apoptosis [17, 18]. However, the precise mechanisms involved are not fully 
understood.

In this study, we aimed to elucidate the signaling pathway involved in PA-induced 
podocyte apoptosis.

Materials and Methods

Cell culture
The conditionally immortalized murine podocyte clone 5 (MPC5) cell line was a kind gift from Dr. Ruan 

(The Centre for Nephrology, Royal Free and University College Medical School, London, United Kingdom); 
they were cultured as previously described [17, 18]. Briefly, cells were cultured and maintained on type I 
collagen-coated dishes in RPMI-1640 medium (Gibco, Karlsruhe, Germany) supplemented with 10% fetal 
bovine serum (Gibco), 100 U/mL penicillin, and 100 μg/mL streptomycin at two different temperatures in a 
5% CO2 incubator. At 33°C (permissive condition), the cells were cultured in medium supplemented with 10 
U/mL mouse recombinant interferon gamma (IFN-γ). To induce podocyte differentiation, the temperature 
was increased to 37°C (non-permissive condition) and cells were cultured in medium without IFN-γ for 14 
days, after which subsequent experiments were performed.

Oil Red O staining and boron-dipyrromethene lipid probes
To observe fatty acid uptake by Oil Red O staining, the cells were fixed in 4% paraformaldehyde for 

30 min, washed with phosphate-buffered saline (PBS), and incubated with Oil Red O working solution 
for 1 h. Then lipid droplets in podocytes were visualized by microscopy. To measure fatty acid uptake by 
boron-dipyrromethene (BODIPY) lipid probes, podocytes were incubated with 4, 4-difluoro-5-methyl-4-
bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (10 μg/mL, BODIPY 500/510 C1, C12; Invitrogen, Carlsbad, 
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CA, USA) for 1 h at 37°C, washed three times with PBS, and immediately visualized using a fluorescence 
microscope (DM4000; Leica, Wetzler, Germany).

Cell death assessment
The effects of PA treatment on podocyte death were detected with a Cell Counting Kit-8 (CCK-8) 

colorimetric assay (Sigma-Aldrich, St. Louis, MO, USA). Briefly, podocytes were seeded at a density of 104 cells 
per well into 96-well plates and cultured in complete RPMI-1640 culture medium for 24 h. Then, the cells 
were treated with various concentrations of PA (0, 50, 150, and 300 μM) for 24 h. CCK8 was added to each 
well, followed by a 2 h incubation at 37°C in a 5% CO2 incubator. Absorbance was quantified by a multi-well 
fluorescence plate reader at 450 nm (Thermo Scientific Varioskan Flash; Thermo Fisher Scientific, Waltham, 
MA, USA). The cell death rate was calculated as follows: (1-A450 [experimental]/A450 [control])×100%.

Flow cytometric analysis
Apoptosis was detected using the Annexin V-Fluorescein isothiocyanate (FITC)/
propidium iodide (PI) apoptosis assay kit (Sungene Biotech, Tianjin, China). In brief, treated cells 

were collected by centrifugation, washed twice with ice-cold PBS, and resuspended in 500 μL 1× Annexin 
V binding buffer containing 5 μL Annexin V-FITC and 3 μL of PI. After incubation for 10 min at room 
temperature, apoptosis was analyzed by flow cytometry.

Transmission electron microscopy
Treated podocytes were harvested and fixed in 2.5% glutaraldehyde for 24 h at 4°C, rinsed with PBS, 

and post-fixed in 1% osmium tetroxide and 0.1% potassium ferricyanide. After rinsing with 0.1 M cacodylate 
buffer, the samples were dehydrated through a graded series of ethanol (30–90%) washes and embedded 
in a mixture of epoxy resin. Sections were cut using a diamond knife on an ultramicrotome (ULTRACUT E; 
Reichert-Jung, Vienna, Austria) and stained with 1% uranyl acetate and Reynolds lead citrate. The sections 
were examined using a JEM-1200 EXII transmission electron microscope (JEOL, Tokyo, Japan).

Measurement of mitochondrial reactive oxygen species production
Mitochondrial superoxide production was measured with MitoSOX Molecular Probes (M36008; 

Invitrogen), a red fluorescent dye that localizes to mitochondria. Treated cells were washed twice with PBS 
and then incubated with MitoTracker Green (C1048; Beyotime, Jiangsu, China) and MitoSOX for 30 min at 
37°C. Cell fluorescence was observed by fluorescence microscopy at wavelengths of 488 nm for excitation 
and 525 nm for emission.

Assays for mitochondrial membrane potential
The mitochondrial membrane potential (ΔΨm) of podocytes was detected using a mitochondrial 

membrane potential assay kit (JC-1; Beyotime). In accordance with the manufacturer’s instructions, 
differentiated podocytes were grown on a glass coverslip in 12-well culture plates, pretreated with PA 
(150 μM) for 24 h, and incubated with JC-1 (300 nM) at 37°C for 20 min. Images were captured using a 
fluorescence microscope. Mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) was 
used as a positive control.

Mitochondrial morphology examined by fluorescence microscopy
Differentiated podocytes cultured on confocal dishes were treated with 150 μM PA for 24 h and then 

stained with MitoTracker Deep Red (M22426; Invitrogen) for 30 min at 37°C. Fluorescence images for 
MitoTracker (excitation/emission: 644/665 nm) were obtained using a confocal microscope (A1R; Nikon, 
Tokyo, Japan).

Immunocytochemistry
Podocytes cultured on coverslips were washed three times with PBS, stained with or without 

MitoTracker Deep Red at 37°C for 30 min, fixed in 4% paraformaldehyde for 30 min, permeabilized with 
0.1% Triton X-100 for 15 min, and blocked with 5% bovine serum albumin (BSA) for 1 h at room temperature. 
The cells were incubated with different antibodies (rabbit anti-Bax, 1:200; Cell Signaling Technology 
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[CST], Danvers, MA, USA and rabbit anti-cytochrome c, 1:100; Abcam, Cambridge, UK) overnight at 4°C, 
followed by incubation with an Alexa Fluor 546 donkey anti-rabbit IgG (1:400, A10040; Invitrogen) for 1 
h at 37°C. The cells were washed and counterstained with 10 ng/mL DAPI for 3 min. Fluorescence images 
were observed using a confocal microscope. Quantification of all immunofluorescence data was performed 
in individual frames after deconvolution and thresholding using Image J software (National Institutes of 
Health, Bethesda, MD, USA). Specifically, quantification of the target protein was based on at least three 
fields taken at random from each slide. The area ratio between the target protein and cells in every field 
was calculated (with content color thresholds). Then the area ratio was normalized to the control group. 
To show colocalization, Image J was used to measure the gray value within lines drawn in the images (with 
content Plot Profile). Then line graphs were completed in GraphPad.

Western blot analysis
After treatments, cells were washed with ice-cold PBS, lysed with ice-cold RIPA buffer (Beyotime) 

containing protease inhibitors, sonicated (noise-isolating tamber, Ningbo Scientz Biotechnology Co., Ltd.) 
for 12 s (20% power, 1-s pulse on, 2-s pulse off), and centrifuged at 12, 000 g for 20 min at 4°C. Protein 
concentrations were determined with the BCA Protein Assay Kit (Beyotime). Equal amounts of protein 
samples were loaded per lane, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 
electrophoretically transferred onto polyvinylidene fluoride membranes (Millipore, Stafford, VA, USA). The 
membranes were blocked in 5% skim milk for 3 h. Then the PVDF membranes were incubated with different 
primary antibodies: rabbit anti-caspase-8 (1:1000; CST), mouse anti-cleaved caspase-9 (1:1000; CST), rabbit 
anti-cleaved caspase-3 (1:1000; CST), rabbit anti-poly (ADP-ribose) polymerase (PARP) (1:1000; CST), 
rabbit anti-B-cell lymphoma 2 (Bcl-2) (1:1000; CST), rabbit anti-Bax (1:1000; CST), rabbit anti-Bid (1:1000; 
CST), rabbit anti-cytochrome c (1:2000; Abcam), rabbit anti-Fas-associated protein with death domain 
(FADD) (1:2000; Abcam), and mouse anti-β-actin (1:5000; Sungene Biotech) overnight at 4°C, followed by 
incubation with horseradish peroxidase-conjugated secondary antibodies for 1 h at room temperature. The 
signals were detected using an ECL chemiluminescence system (GE Healthcare, Piscataway, NJ, USA), the 
band intensities were quantified with Quantity One software, and the results were normalized to those of 
β-actin.

Statistical analysis
The data are shown as the mean ± standard error of the mean of three independent experiments 

performed in triplicate. Statistical analyses were performed using GraphPad Prism 6.0 (GraphPad software, 
San Diego, CA, USA). Statistical comparisons between the two groups were analyzed using the two-tailed 
unpaired Student’s t-test, and multiple comparisons were performed using one-way analysis of variance 
followed by Tukey’s t-test. A value of P < 0.05 was defined as statistically significant.

Results

PA induced lipid accumulation, cell death, and cell apoptosis in podocytes
Using Oil Red O staining, BODIPY lipid probes, and transmission electron microscopy 

(TEM), we found that exposing podocytes to 150 μM PA induced obvious intracellular lipid 
accumulation and lipid droplet formation compared with the control cells (Fig. 1A, 1B, and 
1C). To evaluate the effects of PA on cell death, the CCK-8 assay was conducted. After 24 h 
of incubation with different concentrations of PA, we observed a concentration-dependent 
increase in cell death (Fig. 1D). Apoptosis is one of the main types of cell death and plays a 
fundamental role in the development of multicellular organisms [19]. We measured apoptosis 
using Annexin V-FITC/PI staining and flow cytometry, and found that PA dose-dependently 
induced podocyte apoptosis (Fig. 1E and 1F). Next, we observed the subcellular changes 
of podocytes by TEM, and found that PA-induced podocytes showed obvious apoptotic 
features such as chromatin peripheralization, cytoplasm condensation, and breakdown and 
formation of apoptotic bodies consisting of cytoplasm and tightly packed organelles with or 
without nuclear fragments within an intact plasma membrane (Fig. 1G).

http://dx.doi.org/10.1159%2F000487673
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PA-induced podocyte apoptosis was independent of the death receptor pathway
There are two predominant signaling pathways that trigger apoptotic cell death: the 

death receptor (extrinsic) pathway and the mitochondrial (intrinsic) pathway [19–21]. Upon 
stimulation, FADD, an apoptotic adaptor molecule, recruits caspase-8 to the activated Fas 
(CD95) receptors to form the death-inducing signaling complex. Then, activated caspase-8 
initiates the caspase cascade, ultimately leading to apoptosis. This is termed the death 
receptor pathway [19]. Furthermore, activated caspase-8 can cleave Bid (a BH3-only pro-
apoptotic protein, which is thought to be a bridging element between the death receptor 
pathway and mitochondrial pathway) to produce truncated Bid (tBid), which promotes 

Fig. 1. Palmitic acid induced 
lipid accumulation, cell death, 
and cell apoptosis in podocytes. 
Differentiated podocytes cultured 
on coverslips were treated with 
150 μM palmitic acid (PA) for 24 
h, after which the lipid content was 
evaluated by (A) Oil Red O staining 
(400×), (B) transmission electron 
microscopy (TEM) (12, 000×), (C) 
and BODIPY lipid probes (400×). 
The rightmost panels show 
enlarged views of the boxed areas 
in the left panels in Fig. 1A, 1B, and 
1C. (D-F) Podocytes were treated 
with different concentrations of 
PA for 24 h. (D) Cell death was 
evaluated by the CCK-8 assay. The 
data are shown as the mean ± 
standard error of the mean (SEM), 
n = 3. *, P<0.05 vs. control group; #, 
P<0.05 vs. 50 μM group; Δ, P<0.05 
vs. 100 μM group; &, P<0.05 vs. 
150 μM group. (E–F) Apoptosis 
was detected by flow cytometry. 
(E) Representative cytograms of 
apoptosis. (F) Quantification of cell 
apoptosis. The data are shown as 
the mean ± SEM, n = 3. *, P<0.05 vs. 
control group; #, P<0.05 vs. 50 μM 
group; Δ, P<0.05 vs. 150 μM group. 
(G) Apoptosis were detected by 
TEM. Panel Ctr and panel PA1 
are 5000× magnification, panel 
PA2 is 12, 000× magnification. 
PA-treated podocytes showed 
obvious apoptotic features such 
as chromatin peripheralization 
(red arrow), cytoplasm condensation (green arrow), and breakdown and formation of apoptotic bodies 
consisting of cytoplasm and tightly packed organelles with or without nuclear fragments within an intact 
plasma membrane (yellow arrow). Ctr: control group, podocytes were treated with 1% defatted-BSA; PA1 
and PA2: palmitic acid group, podocytes were treated with 150 μM palmitic acid for 24 h.
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the translocation of Bax from the cytosol to the mitochondria and subsequent activation 
of the mitochondrial pathway [22]. In this study, no significant difference in the expression 
of FADD, caspase-8, and Bid was found between the PA-treated group and control group 
(Fig. 2A and 2B), indicating that PA induced podocyte apoptosis independently of the death 
receptor pathway.

PA increased the Bax/Bcl-2 ratio and induced Bax translocation to the mitochondria in 
podocytes
The Bcl-2 family of proteins, which contain Bcl-2 homology (BH) domains, consist of 

pro-apoptotic members including Bax and anti-apoptotic members including Bcl-2. The 
imbalance between pro-apoptotic and anti-apoptotic members of the Bcl-2 family determines 
the ultimate fate of cells [23]. In this study, we observed that PA induced an increase in Bax 
expression and decrease in Bcl-2 expression in a dose-dependent manner in podocytes (Fig. 
3A, B). Next, we investigated the location of Bax in PA-treated podocytes and found that Bax 
staining (green) mainly located outside the mitochondria (red) in control cells, whereas in 
PA-treated cells, the green fluorescence of Bax mainly co-localized with the red fluorescence 
of the mitochondria, as shown by the orange staining of the mitochondria in the merged 
image, indicating that PA induced Bax translocation from the cytosol to the mitochondria in 
podocytes (Fig. 3C, 3D, and 3E).

Fig. 2. Podocyte apoptosis induced by PA was independent of the death receptor pathway. (A) Podocytes 
were treated with different concentrations of PA for 24 h. Representative bands of Fas-associated protein 
with death domain (FADD), caspase-8, and Bid protein expression were detected by western blotting. 
β-actin was used as a loading control. (B) Densitometric analysis of FADD, caspase-8, and Bid expression in 
Fig. 2A. The statistical data are presented as the mean ± SEM from three independent experiments. *, P<0.05 
vs. control group; #, P<0.05 vs. 50 μM group; Δ, P<0.05 vs. 150 μM group.
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PA induced podocyte apoptosis through activation of the mitochondrial pathway
As mitochondrial membrane integrity is regulated by Bcl-2 protein family members such 

as Bcl-2 (anti-apoptotic) and Bax (pro-apoptotic) [22, 23], we further investigated the change 
of ΔΨm using the fluorescent probe JC-1 and found a large accumulation of J-aggregates 

Fig. 3. PA induced increased Bax and reduced Bcl-2 protein expression, and Bax translocation to the 
mitochondria of podocytes. (A) Podocytes were treated with different concentrations of PA for 24 h. 
Representative bands of Bax and Bcl-2 protein expression were detected by western blotting. β-actin was 
used as a loading control. (B) Densitometric analysis of Bax and Bcl-2 expression in Fig. 3A. The statistical 
data are presented as the mean ± SEM from three independent experiments. *, P<0.05 vs. control group; #, 
P<0.05 vs. 50 μM group; Δ, P<0.05 vs. 150 μM group. (C) Mitochondria was stained by MitoTracker Deep Red 
and then stained with an antibody against Bax. Representative images of the cells were taken with a confocal 
microscope (1200×). The rightmost panels showed enlarged views of the boxed areas in the left panels. 
(D) Quantification of Bax translocation to the mitochondria in PA-treated cells. The localization of Bax in 
MitoTracker-stained cells was evaluated to determine the percentage of cells that showed Bax accumulation 
in mitochondria. The data represent three independent experiments with at least 50 cells scored from several 
random fields. The statistical data are presented as the mean ± SEM from three independent experiments, 
*, P<0.05 vs. control group. (E) Line scans indicate co-localizations between Bax (Green) and MitoTracker 
(Red) and correlate to the lines drawn in the images. Ctr: control group, podocytes were treated with 1% 
defatted-BSA; PA: palmitic acid group, podocytes were treated with 150 μM PA for 24 h.
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(red fluorescence) and a small population of J-monomers (green fluorescence) in the control 
group. However, PA-treated cells and ΔΨm disrupter CCCP-treated cells showed more diffuse 
J-monomer fluorescence and less apparent accumulation of J-aggregates in (Fig. 4A and 
4C), which indicated that PA induced depolarization in the ΔΨm of podocytes, which is a 
distinctive feature of early-stage apoptosis. Normal ΔΨm is required to sustain mitochondrial 
morphology and structure. We observed mitochondrial morphology changes using 
confocal microscopy and found interconnected and rod-shaped mitochondria in untreated 
podocytes, but dot-like round and fragmented mitochondria in PA-treated podocytes (Fig. 
4E). TEM images also showed abnormal mitochondria including mitochondrial enlargement 
and swelling with cristae loss and inner membrane destruction in PA-treated podocytes 
(Fig. 4F and 4G). Mitochondrial depolarization triggers mitochondrial outer membrane 
permeabilization, facilitating the release of cytochrome c from dysfunctional mitochondria 
into the cytoplasm, which leads to activation of the caspase cascade (apoptotic markers) 
and mitochondria-mediated apoptosis [24]. In present study, we observed that PA treatment 
significantly increased the expression of cytochrome c in a dose-dependent manner, as 
determined by western blot analysis (Fig. 4B and 4D). Meanwhile, we found that in control 
cells, cytochrome c staining (green) mainly co-localized with the mitochondria (red), as 
shown by the orange staining of the mitochondria in the merged image. Nevertheless, the 
diffuse green staining of cytochrome c mainly located outside the mitochondria (red) in PA-
treated cells (Fig. 4H–J). All of these data indicated that PA induced the release of cytochrome 
c from the mitochondria into the cytosol of podocytes. Caspases are the central components 
in the execution of apoptosis. In general, they are involved in apoptosis and are divided into 
initiator and executioner caspases. Caspase-9 is the initiator caspase in the mitochondrial 
pathway. Caspase-3, which is downstream of caspase-9, is the key executioner caspase in 
apoptosis [25, 26]. Using western blot analysis, we found that PA treatment significantly 
induced activation of caspase-9 and caspase-3 in a dose-dependent manner (Fig. 4K and 
4L). At the same time, exposure of podocytes to PA also resulted in PARP cleavage (Fig. 4K 
and 4L), which is an endogenous substrate of activated caspase-3, its cleavage is considered 
a hallmark of apoptosis. These results indicated that PA treatment induced apoptosis in 
podocytes via activation of the mitochondrial (intrinsic) apoptotic pathway.

Role of mitochondrial ROS production in PA-induced podocyte apoptosis
ROS is a collective term for various short-lived oxygen-containing molecules that are 

highly reactive and can promote oxidative stress [27]. They are the byproducts of aerobic 
respiration, and primarily arise from the mitochondria; excessive ROS production can cause 
damage to the mitochondria [28, 29]. In this study, we found that PA promoted mitochondrial 
ROS production in podocytes by using the MitoSOX molecular probe (Fig. 5A and 5C). The 
mitochondrial apoptotic pathway is involved in oxidative stress-induced cell apoptosis [30–
32]. To verify the role of PA-induced mitochondrial ROS production in the mitochondrial 
apoptotic pathway, differentiated podocytes were pre-incubated with the mitochondrial 
antioxidant, mitoTEMPO (100 nM) for 1 h and then treated with PA (150 μM) for 24 h. 
As shown in Fig. 5A and 5C, pretreatment with mitoTEMPO significantly attenuated PA-
induced mitochondrial ROS accumulation in podocytes. In addition, PA-induced podocyte 
apoptosis was significantly ameliorated by pretreatment with mitoTEMPO (Fig. 5B, 5D, 
5E, and 5F). These data support our hypothesis that oxidative stress originating from the 
mitochondria is involved in PA-induced apoptosis in podocytes. Taken together, these data 
strongly demonstrate that the mitochondrial apoptotic pathway is involved in the execution 
of apoptosis in PA-treated podocytes, and mitochondrial ROS production takes part in PA-
induced podocyte apoptosis.
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Fig. 4. PA induced podocyte 
apoptosis through the 
mitochondrial pathway. 
(A) Podocytes were treated 
with 150 μM PA for 24 h 
or 10 μM carbonyl cyanide 
m-chlorophenylhydrazone 
(CCCP) for 1 h. The JC-1 red/
green fluorescence ratio 
reflects the mitochondrial 
membrane potential 
(400×). (B) Representative 
bands of cytochrome c 
protein expression were 
detected by western blot 
analysis. β-actin was used 
as a loading control. (C) 
Fluorescence intensities 
from five randomly selected 
microscopic fields per group 
in Fig. 4A were measured 
and analyzed. The statistical 
data are presented as the 
mean ± SEM from three 
independent experiments. 
*, P<0.05 vs. control group. 
(D) Densitometric analysis 
of cytochrome c expression 
in Fig. 4B. The statistical 
data are presented as the 
mean ± SEM from three 
independent experiments. 
*, P<0.05 vs. control group; 
#, P<0.05 vs. 50 μM group; Δ, P<0.05 vs. 150 μM group. (E, F) Representative images of mitochondrial 
morphology. (E) Podocytes were stained with MitoTracker Deep Red and then examined under a confocal 
microscope (1200×). (F) Structural alterations of mitochondria were analyzed by transmission electron 
microscopy (30, 000×). (G) Mitochondrial injury in Fig. 4F was calculated and expressed as a percentage 
of damaged mitochondria over the total number of mitochondria counted under three different sections. 
Data are expressed as the mean ± SEM from three independent experiments. *, P<0.05 vs. control group. (H) 
Mitochondria was stained by MitoTracker Deep Red and then stained with an antibody against cytochrome 
c. Representative images of the cells were taken with a confocal microscope (1200×). The rightmost panels 
showed enlarged views of the boxed areas in the left panels in Fig. 4E, 4F, and 4H. (I) Quantification of 
cytochrome c release into the cytosol of PA-treated cells. The localization of cytochrome c in MitoTracker-
stained cells was evaluated to determine the percentage of cells that released cytochrome c into cytosol. The 
data represent three independent experiments with at least 50 cells scored from several random fields. The 
statistical data are presented as the mean ± SEM from three independent experiments, *, P<0.05 vs. control 
group. (J) Line scans indicate co-localizations between cytochrome c (Green) and MitoTracker (Red) and 
correlate to the lines drawn in the images. (K) Representative bands of cleaved caspase-9, PARP and cleaved 
caspase-3 protein expression were detected by western blot analysis. β-actin was used as a loading control. 
(L) Densitometric analysis of cleaved caspase-9, PARP, and cleaved caspase-3 expression in Fig. 4K. The 
statistical data are presented as the mean ± SEM from three independent experiments. *, P<0.05 vs. control 
group; #, P<0.05 vs. 50 μM group; Δ, P<0.05 vs. 150 μM group. Ctr: control group, podocytes were treated 
with 1% defatted-BSA; PA: palmitic acid group, podocytes were treated with 150 μM PA for 24 h.
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Discussion

CKD is often accompanied by hyperlipidemia, which is associated with accelerated CKD 
progression [3, 5, 33]. Podocytes form an important cellular layer of the glomerular filtration 
barrier, which is involved in the regulation of glomerular permselectivity [34]. Podocyte 
injury or dysfunction plays a pivotal role in the development of proteinuria in all forms 
of glomerular nephritis and DN [35, 36]. Hence, maintaining the structural and functional 
integrity of podocytes and protecting podocytes from injury have become potential 
therapeutic approaches for CKD. However, the exact mechanisms involved are still unclear. 

Fig. 5. Role of 
mitochondrial ROS 
production in PA-
induced podocyte 
apoptosis. Differentiated 
podocytes were treated 
with PA (150 μM) for 
24 h in the presence or 
absence of preincubation 
with mitoTEMPO 
(100 nM) for 1 h. (A) 
Mitochondrial ROS were 
labeled with MitoSOX 
(200×). Fluorescence 
was visualized using a 
fluorescence microscope. 
(B) Flow cytometric 
analysis of cell apoptosis 
was conducted using 
Annexin V-FITC+PI 
staining. (C) Relative 
fluorescence intensities 
of mitoSOX from three 
randomly selected 
microscopic fields per 
group were measured 
and analyzed. (D) 
Percentage of apoptotic 
cells. (E) Western blot 
analysis of the protein 
level of cleaved caspase-3. 
β-actin was used as 
a loading control. (F) 
Densitometric analysis 
of cleaved caspase-3 
expression in Fig. 5E. 
Statistical data are 
presented as the mean ± 
SEM from three independent experiments. *, P<0.05 vs. control group; #, P<0.05 vs. mitoTEMPO group; 
Δ, P<0.05 vs. PA group. Ctr: control group, podocytes were treated with 1% defatted-BSA; mitoTEMPO: 
podocytes were treated with 1% defatted-BSA for 24 h after pretreatment with 100 nM mitoTEMPO for 1 h; 
PA: palmitic acid group, podocytes were treated with 150 μM PA for 24 h; PA+ mitoTEMPO: podocytes were 
treated with 150 μM PA for 24 h after pretreatment with 100 nM mitoTEMPO for 1 h.
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In this study, we treated MPC5 cells with PA to create an in vitro hyperlipidemia model, and 
found that PA could increase lipid accumulation, and induce cell death and apoptosis in 
podocytes.

The mechanism of podocyte apoptosis is complex. It has been reported that palmitate 
can induce podocyte apoptosis by activating the endoplasmic reticulum (ER) stress-mediated 
apoptotic pathway [37–41]; however, it remains unknown whether the two primary apoptosis 
signaling pathways (death receptor-mediated pathway and mitochondria-mediated 
pathway) are also involved in the execution of PA-induced podocyte apoptosis. The death 
receptor-mediated pathway is an extrinsic signaling pathway that is activated upon ligation 
of cell surface death receptors, including Fas, the TRAIL receptor, and tumor necrosis factor 
receptor [42], and recruits the adapter protein FADD and procaspase-8 to form the death-
inducing signaling complex (DISC). This protein complex serves as a platform for caspase 
activation, and the auto-catalytic activation of caspase-8 at the DISC leads to activation of 
caspase-3, triggering the apoptotic process [43, 44]. In this study, we found that the levels 
of FADD, caspase-8, and Bid did not significantly change during the process of PA-induced 
podocyte apoptosis. Mitochondria-mediated pathway of apoptosis is the intrinsic pathway, 
which is triggered upon mitochondrial injury including loss of integrity of mitochondrial outer 
membrane. Then, cytochrome c is released from the mitochondria into the cytosol. The Bcl-2 
protein family controls this process. Once in the cytosol, cytochrome c recruits procaspase-9 
to the apoptosome, which induces cleavage of downstream effector caspase-3, resulting in 
apoptosis [45–47]. Here, we found that PA treatment resulted in the increased expression 
of Bax/Bcl-2, depolarization of ΔΨm, mitochondrial swelling and destruction, and release 
of cytochrome c from the mitochondria into the cytosol of podocytes. These perturbations, 
in turn, activate caspase cascades (caspase-9 and caspase-3) in a dose-dependent manner. 
PARP, a marker of caspase-3 activation during apoptosis [48], was also clearly cleaved after 
PA treatment in podocytes. This finding indicates that the mitochondria-mediated apoptotic 
pathway, rather than the death receptor pathway, is involved in the process of PA-induced 
apoptosis in podocytes.

ROS, the products of normal metabolism and xenobiotic exposure, can be beneficial 
or harmful to cells and tissues. Mounting evidence suggests that moderate levels of ROS 
are beneficial for cell proliferation and differentiation [49], whereas excessive ROS can 
cause protein oxidation, lipid peroxidation, and DNA damage, thus leading to cell damage 
and apoptosis [47, 50, 51]. Mitochondria are both the major source of intracellular ROS 
production and targets of ROS [52]. Here, we found that PA accelerated mitochondrial 
ROS production and apoptotic cell death in podocytes, and the mitochondrial antioxidant 
mitoTEMPO ameliorated PA-induced podocyte apoptosis, which indicated that oxidative 
stress originating from the mitochondria mediated PA-induced podocyte apoptosis.

In this study, we showed that in addition to the ER stress-induced apoptotic pathway, 
the intrinsic mitochondrial apoptotic pathway in podocytes can also be activated by PA. 
However, the relationship between these two apoptotic pathways in PA-induced podocytes 
is still uncertain and is the subject of ongoing investigations.

Conclusion

We demonstrated that PA induces lipid accumulation, mitochondrial injury, and 
apoptosis in podocytes. The mitochondria-mediated apoptotic pathway, rather than the 
death receptor pathway, is the main pathway involved in PA-induced apoptosis in podocytes, 
and excessive ROS production derived from damaged mitochondria is a key underlying 
mechanism. Further studies are required to determine the relationship between the 
mitochondria-mediated apoptotic and ER stress-mediated apoptotic pathways, and how 
they are regulated in podocytes in high lipid conditions.
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