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1. Introduction: the historical intellectual context 

Economic theory has long struggled with the phenomena of innovation and inertia.  
Solow (et al., 1953; 1957) acknowledged innovation as a crucial component of the 
‘residual’ in his basic growth model, and more than half a century of subsequent 

research has underlined its importance to economic development.  Preceding Solow, 
Schumpeter (1947) - best known for clarifying the distinction between invention and 
innovation, and for his concept of ‘creative destruction’ - emphasised that a crucial 
function of the entrepreneur is ‘the doing of new things, or the doing of things that are 

already being done in a new way’.6  Arrow (1962) was the first to formalise analysis of 
another crucial factor, namely ‘learning by doing’, that captures effects such as scale 
economies. Theories of evolutionary economics, often traced back to Nelson & Winter 
(1982), in effect build upon such concepts. Modern growth theory now habitually 
emphasises the importance of innovation as an engine of growth (Romer, 1986; 
Aghion & Howitt, 1992; Acemoglu, 1998, 2002; Acemoglu et al. 2012).  

Some of these approaches have also discussed inertia and potential costs of 
change. Thus, Schumpeter (1947, p. 152) refers to ‘the resistances and difficulties 

which action always meets with outside of the ruts of established practice’; and notes 

(p.157) that ‘the teaching [...] according to which capital “migrates” from declining to 
rising industries, is obviously unrealistic: the capital “invested” in railroads does not 

migrate into trucking and airport transportation but will perish in and with the railroads’. 
Subsequent theories and empirics have similarly emphasised the importance of inertia 
(see e.g. Freeman & Perez, 1988; Grubler et al., 1999; Geels, 2002, 2005). The 
combination of these forces form some of the intellectual foundations for theories of 
evolutionary economics, path dependence and lock-in (Unruh, 2000) in economic 
systems, and particularly in complex socio-technological systems when viewed over 
long timescales (e.g. Beinhocker, 2006). 

In contrast to the growing complexity of much of this literature, our inquiry in this 
paper can be considered as attempting to develop a simple, stylised mathematics of 
some core implication of innovation (including creative responses, learning and other 
adaptive responses), along with inertia and path dependence, in economic systems.  

Application: energy systems response to climate change mitigation  

We then apply this to a problem concerning some of the largest and most complex 
capital-intensive systems on the planet, over very long timescales: namely, the 
challenge that climate change poses to the development of the global energy system. 

                                                 
6 From this, Schumpeter drew another distinction, less acknowledged: between what he called ‘adaptive response’ 
(using more or less hands, brains and capital to adapt the mix of established tasks – in effect, resource substitution) 
as compared to ‘creative response’ – when ‘the economy or an industry or firms do something else, something 
that is outside the range of existing practice.’(Schumpeter, 1947, p. 150). In this paper we use innovation as the 
broadest term, but emphasize the aspects relating to investment, which can encompass both aspects and also 
structural and system-level responses. 
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Here, if anywhere, we might expect to see substantial implications arising from the 
underlying phenomena.  

Developments over the past few years in this field suggest a serious need to try 
and take account of the factors explored here (learning and inertia). For example, most 
economic ‘integrated assessment’ studies of the problem embodied exogenous 

assumptions about the cost of clean energy that have been significantly overtaken by 
major cost reductions in key renewable sources, partly due to extensive learning and 
scale effects. The most extensive empirical study of this phenomenon (Bettencourt et 
al., 2013) finds that related innovation has been strongly correlated with deployment 
even as measured through patents, neglecting pure scale economy or related factors7. 
These cost reductions, however, required large (and relatively expensive) initial 
investments, and their growing scale has also led to major and costly disruptions in 
the incumbent industry (particularly electric utility) sectors.  

Our analysis thus explores a new way to take account of learning and the sources 
and characteristics of inertia in stylised economic models, in particular to understand 
better the economics and dynamics of private (consumer and business) sector 
responses to a carbon price or equivalent emissions constraint. We go on to 
demonstrate that, indeed, optimal climate change responses may be profoundly 
affected by such a focus in economic perspectives.  

We structure this paper in three main parts. Part I reviews relevant literature and 
clarifies our terminology and focus, including emphasising the distinction between 
operational substitution and investment, and distinctions between traditional 
‘abatement cost’ curves and the cost of investment in abatement technologies: we 
argue the need to focus on this because it is capital investment which is most 
obviously associated both with long-lived assets and technology learning.   

In Part II we develop a micro-economic framework to represent capital investment 
in abatement technologies, and both the learning and lifetimes associated with it. First, 
we derive the functional form of the cost of scrapping capital earlier than its expected 
lifetime. This shows a first relationship of the costs of emissions abatement to its rate: 
the faster emissions are reduced beyond a certain rate, the more stranded assets 
accumulate. Second, we explore investment for intermediate production and supply 
chains, and show that this has an inertial term, related to the non-linearity of the 
abatement cost curve and learning rates. Third, we consider processes of technology 
adoption and diffusion and again suggest a functional form relating cost to the rate of 
emissions abatement.  

                                                 
7 Bettencourt et al (2013) document ‘A sharp increase in rates of patenting [during 2000-2009], particularly in 
renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite 
modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data 
of technological innovation to various types of investment. The model reveals a regular relationship between 
patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at 
different stages of technological maturity and market development. We show quantitatively how growing markets 
have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have 
each leveraged the effect of the other in driving patenting trends over long periods of time.’ 
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In Part III, we take these concepts to the systems/macro-level. We argue that the 
essential dynamic features can be represented in terms of two main factors. The 
adaptability of the techno-economic system (e.g. to pressures such as emissions 
pricing or constraints) determines the extent to which costs of meeting a constrain will 
endure or diminish due to learning and other adjustments. The transitional costs 
involved in moving from one state to another embody the various sources of inertia 
we identified at the microeconomic level, plus additional aspects of transitional costs 
including the investments in learning that drive reductions in enduring costs. We 
introduce and define the term pliability to express the ratio of these transitional costs, 
compared to the ongoing costs associated with meeting a given level of emissions 
constraint.  

The microeconomic analysis thereby informs the structure of a simple two-term 
model, which we then apply to an optimising cost-benefit appraisal of global climate 
change. The emphasis is not upon prediction, but rather to show in a transparent 
manner how (often implicit) assumptions around learning and inertia actually drive 
results, and how the ratio between these forces – the ‘pliability’ of the system - is a 
determining factor in optimal policy.   
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Part I: Literature and concepts 
 

2. Existing modelling approaches   

Efforts to conduct global economic assessment of climate change responses have 
spawned a range of ‘Integrated Assessment Models’ (IAMs), which seek to balance 
the damages of climate change against the costs of emission cutbacks, or otherwise 
seek an optimal trajectory to meet an emissions constraint. The vast majority of such 
models represent mitigation costs as a function of the degree of mitigation, relative to 
an assumed reference trajectory (e.g. as reviewed in Clarke et al., 2014). In such 
models, if there is no endogenous learning, timing tends to enter in quite indirect ways, 
for example as a product of discount rates, or as affected by the economics of waiting 
for improved technologies.  

Whilst various energy sector models have developed capacity to model 
endogenous technical change, few IAMs (with a climate damage module) have done 
so, one example being the PAGE model which explicitly incorporated learning-by-
doing (Alberth and Hope, 2006).  Still, the rate of change tends not to enter as a direct 
factor determining abatement costs in any of these IAMs. 

The most widespread efforts to represent inertia in abatement have focused on 
capital stock lifetimes in energy system models.  These date back to at least the early 
1990s (e.g. Manne & Richels, 1992).  Early forays looking at implications of inertia in 
its own right included those of Ha-Duong et al., (1997).  But little attention was paid in 
these efforts to understanding or formally characterising the various sources of inertia 
(or of learning) and, consequently, quite how these might be more fully represented. 
By far the most extensive effort is by Vogt-Schilb et al. (2017), who focus on the 
implications of capital stock lifetimes for optimal strategy with a fixed concentration 
limit, but do not incorporate learning, or optimal cost-benefit analysis.  

Modelling studies have repeatedly underlined the importance of technology. But 
efforts to represent technology, innovation, and inertia have followed mostly different 
tracks. As noted, most studies continue to use exogenous assumptions about future 
technology costs, with ever increasing degrees of technological detail (as seen in the 
IPCC Fifth Assessment).  

2.1. Representing learning and diffusion processes in global energy-econ-
omy models: efforts and challenges 

In reaction to purely exogenous cost assumptions, early studies using Learning-
by-Doing, building on the early forays of BCG (1972), emphasised the potential for 
non-linearities and bifurcations in pathway costs (e.g. Gritsevskyi & Nakićenovi, 2000).   

Meanwhile, the closely connected concept of diffusion of innovations is well 
established, but has traditionally been studied separately (Rogers, 2010). Diffusion 
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and learning have however a close relationship as they re-inforce each other, where 
learning leads to further adoption, which induces further learning and so on. 

A comparative study over a decade ago (the Innovation Modeling Comparison 
(IMCP) project) identified over a dozen global models incorporating endogenous 
innovation in various ways (Grubb et al., 2006; Edenhofer et al., 2006) and the 
literature has continued to expand. Yet no consensus has emerged on how best to 
incorporate systems innovation, and it remains neglected in many of the most widely 
used global energy models.   

We suggest that this is due to at least three factors: complexity, uncertainty, and 
the centrality of inertia.  

Incorporating innovation is complex. The technology learning literature itself 
distinguishes ‘learning by searching’ from ‘learning by doing’ (Grubler, 2003), which 
have spawned sometimes divergent modelling approaches. Much of the wider 
literature is explicitly concerned with ‘complex systems’ and has earned the term 
‘complexity theory’ (Anderson et al., 1988; Arthur, 1999). The individual processes 
and possibilities involved themselves are complex; together it seems they make for a 
degree of complexity which is hard for analysts to manage, and even harder for others 
to understand.  

The non-linearity and potential for increasing returns to scale makes the resulting 
models frequently very sensitive. The Innovation Modeling Comparison (IMCP) 
project (Grubb et al., 2006; Edenhofer et al., 2006) underlined that models with 
endogenous technical change can be sensitive to assumptions (the ‘butterfly effect’ of 

chaos theory), in which minor changes may radically change outcomes. In turn, this 
creates a modelling environment within which optimisation is difficult, sometimes to 
the point of impossibility, in sharp contrast to the tractability of traditional linear 
programming or convexity assumptions. Tractability, however, is not generally robust 
scientific grounds onto which to support a choice of modelling approach (Mercure et 
al., 2016), where a clear danger exists to oversimplify reality. 

The second major issue is uncertainty. Almost by definition, the outcome of 
‘learning by searching’ (typically equated with R&D) is hard to predict. This approach 
is central to seminal work by Acemoglu et al. (2012), which projected that R&D 
combined with a small carbon tax could lead to radical emission reductions at very 
little economic cost. However, the assumptions were subject to a strong critique, which 
concluded that in fact their model, populated with equally or more plausible 
assumptions, would lead to the opposite conclusion (Pottier et al., 2014). Large 
differences between results of the three models of the RECIPE project (Edenhofer et 
al., 2006; Luderer et al., 2011), for example, are largely about different 
parametrisations of learning processes.   

At first sight, learning-by-doing might seem subject to less uncertainty, as 
correlation between deployed volume and cost reduction has now been measured for 
hundreds of technologies (e.g. Weiss et al., 2010). However, the estimates span a 
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wide range and the value may vary with stage of development (e.g. see review in 
Grubb et al., 2014, Chapter 9). And more fundamentally, correlation is not causality, 
as emphasised by Nordhaus (2014): scale and cost reduction could be expected to 
reinforce each other, and it is hard to disentangle induced learning from other forms 
of learning. Hence there is risk that empirical estimates of technology learning rates 
(i.e. cost reductions driven by scale of deployment) are exaggerated. Based on such 
considerations, Nordhaus (2014) warned against ‘the perils of the learning model’. 

However, complexity and uncertainty are not valid scientific reasons for ignoring 
important phenomena.  Indeed, doing so, just because they are complex and hard to 
quantify, risks ‘throwing out the baby with the bathwater’. Assuming no capacity for 
induced learning, scale economies, or ‘creative responses’ to energy or environmental 

policy is clearly inconsistent with multiple lines of evidence (see eg. note 7). In almost 
all cases, increasing deployment of a given technology has led to cost reductions, 
businesses frequently plan on the basis of assessed scale economies, and there is 
very strong evidence that the ex-post costs of meeting environmental constraints have 
generally proved to be far lower than ex-ante assumptions or expectations (Hammitt, 
2000; Harrington et al., 2000). Assuming zero scope for learning or creative response 
– the implication of purely exogenous technology assumptions - is a poor and biased 
approximation to something we know to be positive.  Assuming something to be zero 
just because it is hard to measure or model, may be the most misleading approach of 
all – particularly when diverse modelling approaches so far attempted suggest that 
these processes can radically change results.  

Central to charting a path through this maze, we suggest that a third factor needs 
to be embedded with any theory of learning, namely a time dimension most simply 
conceived as inertia. We show below that without any time dimension, endogenous 
learning on its own either changes little. It is also notable that in Acemoglu et al. (2012), 
time enters indirectly, through an assumption on substitution elasticity between dirty 
and clean fuels, and it was precisely this parametrisation which formed a central focus 
of the critique by Pottier et al. (2014). They argued that the assumed substitution 
elasticity of 10 was without foundation and entirely implausible, and yet largely 
determined the results, because it meant that a modest gain from R&D could rapidly 
and radically change the energy system at little cost.  

 

2.2. On operational substitution versus investment  

We consider how the limited attention given to issues of systems innovation and 
inertia8 may be partly due to the fact that much of theoretical literature does not 
distinguish between operational substitution and investment in abatement.   

                                                 
8 In the rest of this paper we use the terms ‘systems innovation and inertia’ to encompass the multiple processes 
of (a) endogenous learning, scale economies and creative responses, and (b) the various factors which make the 
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Operational substitution – like switching between running a clean gas plant instead 
of a dirtier coal plant – has almost no inertia, and involves little or no learning. The 
cost of such abatement can in most respects be considered as entirely exogenous, 
and indeed the action is reversible. Time is largely irrelevant.  

But tackling climate change is largely about investment, both in end-use (vehicles, 
buildings) and supply. An almost universal conclusion from the modelling literature is 
that most of the existing capital stock ultimately needs to be either retrofitted with 
additional stock (e.g. building insulation or carbon capture and storage), or replaced, 
much of it with new or improved low carbon technologies.  

Capital stock can have extended lifetimes, which in the energy sector typically 
span decades (even longer in urban and transport infrastructure). With changes of 
capital stock, intermediate production and supply chains also need to be transformed. 
Investment with associated learning is thus crucial, and it all takes time (for a review 
see Hanna et al., 2015).  

In this paper, we argue that even the most stylised economic models need to 
recognise that large scale investment involves both innovation and inertia, and that 
these need to be represented in integrated and consistent ways. We have a particular 
focus on clarifying some sources of inertia and their implications for the functional 
forms of emissions abatement, and then illustrate this with application to optimised 
emission trajectories, thus making an important extension to develop a stylised, but 
theoretically-grounded, integrated representation of systems innovation and inertia: a 
formalised approach to investment in cleaner technologies 

If abatement were only about switching fuels (e.g. replacing coal with gas), actions 
in one period would have little influence on later periods. In standard cost-benefit 
‘integrated assessment’ studies (e.g. Nordhaus, 2010; Stern, 2007), the apparently 
smooth profiles are basically determined by the discount rate and exogenous unit cost 
assumptions.  

Such a framework may be appropriate to operational substitution. In reality, 
however, only a modest part of long-run mitigation is likely to be achieved by fuel 
substitution, at least based on existing assets (e.g. switching existing coal and gas 
power generations).  

The dominant driver will be investment in new technologies with significantly lower 
greenhouse gas emissions. By technologies, we mean technological systems that 
produce societal services that the economy consumes (e.g. electricity, transport, 
chemicals, steel, cement, etc.), for which there exist alternatives. Typical examples of 
alternatives include: renewables or nuclear in place of fossil fuel power generation; 
more efficient vehicles and new types of vehicles able to run on different energy 

                                                 
cost of energy provision (in one period directly dependent upon that in preceding periods; and hence, the cost of 
an absolute emissions level dependent on the emissions level in previous periods. 
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sources supplied through different infrastructure; and investment in ultra-efficient 
building stock.  

Such investment in new technologies has two generic characteristics that 
distinguish it from purely operational substitution: learning, and inertia. In this section 
we begin the development of a mathematical framework that can be used to consider 
more directly issues of capital stock investment (including inertia) and associated 
innovation (including scale economies and endogenous learning). 

2.3. Investment paths and marginal abatement cost curves 

Providing energy for the twenty-first century will cost trillions of dollars every year 
(IEA, 2015). Under most ‘business-as-usual’ scenarios, investment allocation follows 
its historic trend, preserving the dominance of the fossil fuel industry. Energy 
investments are predominantly allocated towards technology and processes that 
support exploration, extraction, processing, transport and sale of fossil fuels. This is 
not consistent with climate science or international commitments, as adopted in the 
Paris Agreement (UN, 2015).  

Following a different and low carbon trajectory is generally assessed to require 
higher investment, given that most new low carbon equipment (e.g. solar panels, 
buildings insulation) is more capital-intensive, per unit energy delivered (or saved), 
than equivalent alternatives (e.g. a coal plant).9  

In most of the relevant literature it is common to display technology options in order 
of increasing net cost to define a ‘marginal abatement cost curve’ (MACC). This 
necessarily involves assumptions (whether explicit or implicit) about both capital and 
fuel costs, along with discount rates, which are generally assumed to be applicable 
across all global abatement, and the assumption that measures are implemented 
strictly in order of least cost assessed at this universal discount rate.  

Whilst this approach is common, the use of technology-based cost curves has also 
generated considerable controversy (see eg. Murphy and Jaccard 2011); and review 
of MACC methodologies by Huang, Kuo and Chou 2016).  In particular, attempts to 
apply empirical data in this form have generated considerable controversy between 
engineering and economic perspectives – controversy which, we argue, are partly 
explicable by reliance on data which bundles investment and fuel savings into a unified 
net abatement cost curve.   

Instead, our approach starts with an explicit and distinct focus on investment. 
Capital investment often involves newer technologies with potential for learning, and 

                                                 
9 The most extensive study of global investment implications of a low carbon scenario concludes: ‘A fundamental 
reorientation of energy supply investments and a rapid escalation in low carbon demand-side investments would 
be necessary to achieve the 66% 2°C Scenario. Around USD 3.5 trillion in energy sector investments would be 
required on average each year between 2016 and 2050, compared to USD 1.8 trillion in 2015. Fossil fuel 
investment would decline, but would be largely offset by a 150% increase in renewable energy supply investment 
between 2015 and 2050. Total demand-side investment into low carbon technologies would need to surge by a 
factor of ten over the same period.’ (IEA / IRENA, 2017)   
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tends to embody capital stock, and hence inertia, in ways that other forms of 
abatement – such as operating gas instead of coal plants – do not.  These 
characteristics are our main focus, and we return to consider net abatement costs 
after developing methodologies to analyse these dimensions of investment in 
abatement technologies.  

Part II: Micro-economic representation of investment, learning and 
inertia 

3. Integrating across technology investment cost curves 

3.1. On abatement investment cost curves  

Whilst most of the methodology we develop in this paper could be applied to 
MACCs, our focus on investment as the source of both learning and inertia suggests 
instead attention to a ‘marginal investment cost curve’ (MICC), which focuses on the 
capital intensity of abatement options; Vogt-Schilb et al (2017) similarly emphasise 
the need to focus on investment when considering the dynamics of abatement. An 
example curve is illustrated in Figure 1.10  

By construction, abatement technologies represented in the positive side of the 
MICC curve tend to be more investment-intensive than the carbon technologies they 
displace. This reflects our initial focus on investment – which as noted is key to low 
carbon scenarios and is the source of both inertia and learning.  By focusing on 
investment in the end-use emitting systems we can set aside debate about whether 
some low carbon technologies might be (or become) more cost-effective than fossil 
fuels when the stream of fuel savings are taken into account at universal discount rate.  

For analytic tractability, the traditional economic assumption that low carbon option 
must be more expensive than the fossil fuel alternative, in terms of NPV, is thus also 
amended to the assumption that it is more capital intensive. This is less restrictive and 
more consistent with the evidence and nature of the abatement problem: the up-front 
capital investment requirement is a major factor deterring the adoption of clean 
technologies, even when on an NPV basis they may result in net savings (as in many 
consumer efficiency options, and more recently some renewable energies); it is also 
striking that macro-assessments increasingly emphasise the capital investment 

                                                 
10  Figure 1 is drawn from one of the biggest global assessments. The ‘net cost’ analysis of this has been 
controversial in part due to a strong element of apparently ‘negative costs’.  We suggest that in part, what appears 
as ‘negative cost’ arises because of the asset nature of the associated investments: many of the options identified 
by McKinsey as negative cost at a standardised (and low) discount rate either involve long term returns (such as 
buildings insulation) or involve the adoption of relatively new technologies (such as LED lighting, much more 
efficient vehicles, etc.), in sectors where decisions are taken by entities with generally high discount rates and/or 
behavioural characteristics including risk aversion to new technologies.   
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requirements of low carbon scenarios, rather than absolute cost differences.11 A focus 
on investment correspondingly avoids the complexities of widely different discount 
rates in many end-use investments12. We briefly consider the net cost, including fuel 
savings, subsequently.  

We represent abatement by invoking a certain number N of independent sectors 
where abatement measures, involving changes of technologies, could reduce 
greenhouse gas emissions (in carbon equivalent).  We use the subscript k to denote 
the order of successive sectors, and assume that all abatement options on the curve 
involve either positive net cost (MACC) or higher investment (MICC) relative to a more 
carbon-intensive ‘reference’ pathway.  Whereas the MACC curve would order 
abatement technology sectors according to net present value at a universal discount 
rate relative to this reference, as noted the MICC curve orders options in order of 
increasing capital intensity.  With our main focus on the latter, we return to consider 
fuel savings later in the paper. 

This construction of a MICC generates an increasing function of investment cost 
𝐼𝑘 = 𝑓(𝜇𝑘), which can be most simply represented as an explicit power function with 
exponent 𝛾:  

 𝐼𝑘(𝜇𝑘) = 𝛼𝐼𝜇𝑘
𝛾
,     𝑎𝑛𝑑     𝜇𝑘(𝐼𝑘) = ∫ 𝜌𝑘(𝐼𝑘

′ )𝑑𝐼𝑘
′

𝐼𝑘

0

, (1)  

where 𝛼𝐼  is a scaling factor obtained from the MICC data, 𝐼𝑘  is the investment on 
abatement in sector k, 𝜌𝑘 is abatement per unit of investment and 𝜇𝑘 is the cumulative 
abatement (in tCO2/year), following the MICC curve from sector 1 until sector k. Note 
that the investment cost function is obtained by inverting the result of the integral for 
𝜇𝑘(𝐼𝑘), and abatement measures are ordered according to their capital intensity, 
following the MICC curve.  

 

 

 

 

                                                 
11 See note 5. Also, global scenarios by the International Energy Agency (including the most recent (IEA/IRENA 
2017) increasingly conclude that low carbon scenarios may not be more costly in aggregate, because higher 
investment costs are offset by the fuel savings and the impact in globally reducing fossil fuel prices. 
12 Most notably, there are in particular many end-use efficiency investments for which the fuel savings appear to 
outweigh additional investment costs assessed at any reasonable global discount rate, but many do not happen 
because the investment faces numerous barriers including high consumer discount rates.  Also, most renewable 
energy generation is capital intensive but then delivers energy at negligible variable operating costs.  Overall, 
energy system modeling by the International Energy Agency estimates that low carbon scenarios are 
systematically more capital intensive, but may not involve overall higher costs (IEA/IRENA, 2017).  
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Figure 1 Curve of marginal investment (capital) intensity – a marginal investment cost curve (MICC). 
Source: “Pathways to a low-carbon economy: Version 2 of the global greenhouse gas abatement cost 
curve” (Exhibit 8), 2009, McKinsey & Company, www.mckinsey.com. Copyright (c) 2017 McKinsey & 
Company. All rights reserved. Reprinted by permission. 

 

We see here that when dealing with investment, rather than operational 
substitution, we discuss segments of deployed abatement technologies which 
displace emitting stock, rather than displacing emissions. We thus have a different 
relation to time than most studies in the literature to date. Once a capital emission 
source is displaced, its contribution to growing emissions stops. 

Most global assessments of potential abatement focus on net abatement costs and 
imply a somewhat non-linear abatement cost curve, at least without technology 
learning. This applies to all approaches: engineering cost curves (e.g. McKinsey 2009); 
global energy system models – both partial and general equilibrium (e.g. Kriegler et 
al. 2015) 13, and the stylised representations in IAM models (e.g. The DICE model of 
Nordhaus, 2008 and the PAGE09 model of Hope, 201314). DICE – which to an extent 
has set a standard in IAM literature, assumes total abatement costs rise quadratically, 
which is equivalent to linearity of the marginal cost curve.  This appears a plausible 
form, though uncertainties increase at higher abatement levels, where there is tension 
in assumptions between the rising cost of known identified technologies, versus the 

                                                 
13 Kriegler et al (2015) summarise, as part of a Special Issue on global abatement scenarios, the results of the 
AMPERE studies comparing a wide range of energy & industrial system models; Figure 9 displays the clear non-
linearity of abatement costs in both general and partial equilibrium models.  
14 In the PAGE09 model, the abatement cost curve is specified by three points, and by two parameters describing 
the curvature of the MACC curve below and above zero cost respectively (Hope, 2013). 

file:///C:/Users/BSEER/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/L9KIAP1K/www.mckinsey.com
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possibility of ‘backstop’ technologies available at large volumes if the price gets high 

enough.  

This also means that the supply of emissions reductions measures per unit cost 
decreases with increasing abatement. Clearly the MACC curve is likely to some 
degree to reflect the investment MICC curve, and the MICC curve illustrated in Figure 
1 also suggest that investment intensity increases faster than linearly but slower than 
quadratically i.e. with an exponent 𝛾  between 1 and 2, at least until the most 
investment-intensive options are reached (the costs of which already appear to have 
come down more recently).15    

3.2. Integrating the investment cost curve 

Abatement measures in sector k take place by gradually replacing existing 
polluting units of technology (e.g. power plants, cars, industrial machines, etc) by less 
polluting units. There may be several options within the range 𝐼𝑘 + 𝛥𝐼𝑘; however we 
skip over the details of individual technologies and assume that they have an average 
abatement factor 𝛽𝑘, in units of tonnes of avoided CO2/y per unit of capacity (e.g. GW).  

We denote the ex-ante assumed MICC as 𝐼𝑘0(𝜇𝑘) , and represent the cost of 
implementing abatement measures in sector k an overnight investment (capital cost) 
per unit capacity (e.g. $/vehicle, $/MW). Thus the cost before learning of all abatement 
measures in sector k with respect to baseline is 𝐼𝑘0𝑈𝑘 ,16 where 𝑈𝑘  is the additional 
capacity of low carbon technology in sector k (e.g. in MW). This capacity has a 
capacity factor and an emissions factor, the latter lower than that of the incumbent 
technology, and their combination generates the factor 𝛽𝑘, where 𝑑𝜇𝑘 = 𝛽𝑘𝑑𝑈𝑘.  

With learning, however, the values of 𝐼𝑘 may change with cumulative constructions, 
each becoming less capital intensive than the previous. Clearly, the total cost is path 
(i.e. investment history) dependent. This requires the use of a path integral as a 
calculation method. Thus the total investment cost 𝑐𝐴 over all sectors k is determined 
by integration of the marginal cost over a pathway of technology development in each 
sector, and summed over all sectors: 

 𝑐𝐴 =∑∫ 𝐼𝑘(𝑈𝑘
′ )𝑑𝑈𝑘

′
𝑈𝑘

0𝑘

, (2)  

If the approach is applied to marginal abatement cost (MACC), Ik has to be 
understood as the net cost by sector, taking account of fuel savings relative to baseline, 
and cA is the additional net cost of the abatement pathway. Where the focus is on 
investment (MICC), Ik is the incremental investment cost and cA is to be interpreted as 

                                                 
15 Most notably, since estimation of the MICC curve in Figure 1, the cost of hybrid and electric vehicles, which 
populate the very high end of the investment curve, has come down dramatically.   
16 In the baseline, equipment has to be gradually replaced with a gradual scrapping rate, or turnover rate, and thus 
some investments are made. Mitigation costs in this context correspond to investments that are more expensive 
than what would have been paid for in a non-mitigation scenario. For example, wind turbines are more expensive 
than coal power plants when measured on the same capacity basis. 
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the additional investment requirement of the abatement pathway. In what follows we 
focus on the latter interpretation and consider fuel savings separately later (though 
most of the mathematical analysis would be applicable to either approach). 

Time is not (yet) included in this because we are only calculating the annualised 
investment cost associated with a given level of abatement: the learning in this form 
is ‘instantaneous’. In assuming that 𝐼𝑘(𝑈𝑘′ ) is levelised, all operation & maintenance 
(O&M) costs are included, but fuel costs can be separated as discussed later (since 
fuel costs would not be affected by learning). In the case without learning, the marginal 
cost of measures within a given sector would be constant and the total cost across 
sectors is: 

 ∑∫ 𝐼𝑘(𝑈𝑘
′ )𝑑𝑈𝑘

′
𝑈𝑘

0𝑘

= ∑
1

𝛽𝑘
∫ 𝛼𝐼𝜇𝑘

′ 𝛾𝑑𝜇𝑘
′

𝜇𝑘

𝜇𝑘−1𝑘

=∑
𝛼𝐼

(𝛾 + 1)𝛽𝑘
𝜇𝑘
′ 𝛾+1|

𝜇𝑘−1

𝜇𝑘

𝑘

 (3)  

Where as in equation (1), 𝛼𝐼 is the scaling factor and 𝛾 is the exponent for the marginal 
cost curve, 𝐼𝑘(𝜇𝑘) = 𝛼𝐼𝜇𝑘

𝛾
, and  𝜇𝑘  is the cumulative abatement up to sector k, 

assuming that all abatement measures included in the MICC curve up to k have been 
implemented.17 Assuming an average emissions factor 𝛽 ≈ 𝛽𝑘 in the sum every term 
in k cancels with every term in k-1, except for the end terms, obtaining: 

 𝑐𝐴 ≈
𝛼𝐼𝜇

γ+1

(𝛾 + 1)𝛽
 (4)  

Where 𝜇 is the cumulative abatement from sectors 1 until k, given that 𝜇0 ≈ 0, and 𝑐𝐴 
is the cost difference with respect to the baseline scenario (so that if 𝜇 = 0 then 𝑐𝐴 = 
0). Thus without learning, our approach as expected yields the basic cost curve in the 
pre-defined form, the only point being that we have structured this explicitly by 
integrating deployment across the abatement sectors.   

3.3. Abatement cost curves with (‘instantaneous’) learning 

The economics literature that seeks to represent and quantify learning tends to 
divide the processes into knowledge accumulation through direct learning-by-

searching, and indirect learning-by-doing, to which the innovation systems literature 
also adds consumer-based learning-by-using. In the earlier stages of innovation, the 
first of these may dominate. Still, as a technology moves to market, for entrepreneurs 
to improve their products, they critically need sales, of which part of the profits are re-
invested into the expansion of production capacity and (private) R&D to improve 
production processes and products. These reduce production costs and also generate 
economies of scale. The total amount of investment in expansions and R&D depends 

                                                 
17 The relation between capacity and abatement is: 𝜇𝑘 = 𝛽𝑘𝑈𝑘. In order to keep tractability, abatement measures 
are assumed to be implemented in order of initial investment cost. Therefore, abatement in sector k only happens 
after abatement measures in sectors 1 ... k-1 are already implemented. In that context, it is valid to assume that 
𝑑𝜇𝑘 = 𝛽𝑘𝑑𝑈𝑘,  
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ultimately on sales, this process may stop if sales stop, and proceeds if sales proceed, 
almost irrespective of time. 

In its purest conceptual form therefore such learning in the private sector – 

including learning-by-searching as well as learning-by-doing and learning-by-using - 
occurs as function of sales. Empirical studies emphasise not only an association of 
deployment with cost reduction (which as Nordhaus (2013) notes, can also reflect cost 
reductions increasing deployment), but also patenting (Bettencourt et al, 2013);  thus, 
costs change with deployment levels of technologies through multiple channels.18  
This means that the actual building costs may turn out to be lower than the expected 
(a priori) costs, as represented in the assumed MICC. While the MICC represents 
costs estimated a priori, costs post fact turn out lower than initially assumed to the 
extent there is learning. For simplicity we use the term learning-by-doing but 
emphasise it actually encompasses all the different learning processes associated 
with growing investment and sales.  

Analysing this requires an explicit approach to integrating costs across the curve 
as abatement proceeds. The cost of the first additional investment in each sector 
taken corresponds to that assumed in the initial cost curve, which we denote as 𝐼𝑘0(𝜇𝑘), 
while the actual cost curve incurred, which continuously changes with increasing 
abatement, as 𝐼𝑘(𝜇𝑘). This we term instantaneous learning.   

Thus where instantaneous learning occurs, the cost of measures 𝐼𝑘 changes with 
the cumulative production of similar units 𝑊𝑘 , following learning curves. A large 
literature now estimates learning rates (e.g. Kohler et al., 2006; Weiss et al., 2010)) – 
cost reductions associated with a doubling of capacity – which can be converted to 
learning exponents −𝑏𝑘, which we use here, of positive values between 0 and 1.  In 
particular the studies of Weiss (2010) covered a wide range of both supply and 
demand-side technologies and estimated learning rates for most technologies 
between 5 and 30%, with a median at around 15%. The learning exponent b relates 

to the learning rate LR through 𝑏 =  ln(𝐿𝑅−1)
ln(2)

 which (when using as a negative exponent) 

suggests values typically between 0 and 0.5.  

Costs including instantaneous learning can be expressed in terms of cumulative 
capacity additions and emissions reductions. Note that the very concept of learning 
rates assumes some pre-existing deployment. This again emphasises that our 
framework concerns not radically new and untested technologies, but rather is 
appropriate to the fact that many of the low carbon technologies represented in 
detailed abatement scenarios are now well known and deployed at significant scales 
(consider high efficiency gas, wind, solar, batteries, deep building insulation, electric 
vehicles, etc.), but require radical scaling-up to achieve deep emission reductions.  

                                                 
18 We use the terms ‘learning’ and ‘learning-by-doing’ in this section because structuring the analysis around 
abatement cost curves implies a mathematical focus on industrial investment in specific technology- or sector- 
areas.  Such learning is subset of overall systems innovation, which can for example include structural shifts and 
the impact of technological and institutional innovation in facilitating the adoption of new technologies. 
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Our focus is on how to analyse the potential pathway and cost implications of learning 
and inertia given this.  

Learning is relative to an initial cost, which in the form of marginal cost curves is 
either the additional abatement cost (MACC) or additional investment cost (MICC) of 
the lower carbon option. In common with almost all the economics literature, the 
construction above assumes that the cost curves reflect additional cost (so that any 
‘negative costs’ are already included in the high carbon reference). With learning they 
decline, but cannot reach zero or go negative; such analysis thus assumes by 
construction that, relative to the baseline, the low carbon options are and remain either 
more costly overall (MACC) or more capital intensive (MICC). The latter, on which we 
focus, is clearly less restrictive since the great majority of abatement options involve 
little (e.g. renewables) or no (enhanced energy efficiency) running costs. 

Cumulative production corresponds to all units produced in history to date. We 
define here historical cumulative production 𝑊𝑘0 (since 𝑡′ = −∞ up to the present 𝑡′ =
0),19 and future additional cumulative production 𝑊𝑘  (from the present 𝑡′ = 0 to the 
end of the projection period 𝑡′ = 𝑡): 

 
𝑊𝑘(t) = ∫ (𝑈̇𝑘(𝑡′) + 𝛿𝑘𝑈𝑘(𝑡′))𝑑𝑡′

𝑡

0

,

𝑊𝑘
0 = ∫ (𝑈̇𝑘(𝑡

′) + 𝛿𝑘𝑈𝑘(𝑡′)) 𝑑𝑡′
0

−∞

, 
(5)  

where δk corresponds to a depreciation rate, meaning that new cumulative capacity 
at time t includes all additions as well as replacements for decommissioned units. We 
also assume that for abatement technologies, U̇k > 0. Costs including instantaneous 
learning can then be expressed in terms of cumulative capacity additions, emissions 
reductions and the sector learning rate 𝑏𝑘:  

 
𝐼𝑘(t) = 𝐼𝑘

0 (
𝑊𝑘
0 +𝑊𝑘(t)

𝑊𝑘
0 )

−𝑏𝑘

= 𝐼𝑘
0 (1 +

∫ (𝑈̇𝑘(𝑡′) + 𝛿𝑘𝑈𝑘(𝑡′))𝑑𝑡′
𝑡

0

𝑊𝑘
0 )

−𝑏𝑘

= 𝐼𝑘
0 (1 +

∫ (𝜇̇𝑘(𝑡′) + 𝛿𝑘𝜇𝑘(𝑡′))𝑑𝑡′
𝑡

0

𝛽𝑘𝑊𝑘
0 )

−𝑏𝑘

 

(6)  

Since the numerator is always larger than the denominator, and 𝑊𝑘 cannot decrease, 
costs can only go down with capacity additions, meaning that the system does not 
‘un-learn’.  Note that the denominator here 𝛽𝑘𝑊𝑘0  is effectively the cumulative 
emission saving attributable to existing deployment of technology k, which may for 
example have been promoted previously by technology-specific government policies. 

We calculate the two terms in the integral. The first term is simply 𝜇𝑘 (assuming 
𝜇𝑘(0) = 0), while the second,  

                                                 
19 Technology capacity growth is typically exponential, and therefore missing capacity additions very far in the past 
does not generate significant uncertainty. 
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 ∫ 𝛿𝑘𝜇𝑘(𝑡
′)𝑑𝑡′

𝑡

0

 (7)  

produces a fixed value, the total abatement 𝐸̅ at the end of the projection period, a 
constant, times the depreciation rate 𝛿𝑘. We then have 

 𝐼𝑘(t) = 𝐼𝑘
0 (1 +

𝜇𝑘(t) + 𝛿𝑘𝐸̅

𝛽𝑘𝑊𝑘
0 )

−𝑏𝑘

 (8)  

where 𝐼𝑘0 = 𝛼𝐼𝜇k
γ. 20 

Knowing the investment cost of the kth option as function of abatement does not tell 
us the total cost yet until we know how many were carried out at which cost. This 
requires evaluating the path integral eq. (2) under the new expression for 𝐼𝑘(𝑈𝑘′ ) : 

 𝑐𝐴 =∑∫ 𝛼𝐼𝜇
γ (1 +

𝜇 + 𝛿𝑘𝐸̅

𝛽𝑘𝑊𝑘
0 )

−𝑏𝑘 𝑑𝜇

𝛽𝑘

𝜇𝑘

𝜇𝑘−1𝑘

. (9)  

The term in 𝛿𝑘𝐸̅  relates to amount of depreciated low carbon technology units in 
a scenario in comparison to the total number of units. For long-lived new low carbon 
technologies, with rising investment as abatement proceeds, 𝛿𝑘𝐸̅ ≪  𝜇. 21 It is also the 
case that their current cumulative capacities are small relative to the scale of 
deployment implied in any deep emission reduction pathway, i.e. 𝜇 ≫ 𝛽𝑘𝑊𝑘0.22 We 
thus obtain for the total investment cost of long-lived abatement options with learning 
(see Appendix 2 for details): 

 

𝑐𝐴 =∑∫ 𝛼𝐼𝜇
γ (1 +

𝜇 + 𝛿𝑘𝐸̅

𝛽𝑘𝑊𝑘
0 )

−𝑏𝑘 𝑑𝜇

𝛽𝑘

𝜇𝑘

𝜇𝑘−1𝑘

 

=∑[𝜇𝑘
γ+1−bk − 𝜇𝑘−1

γ+1−b𝑘]
αI(𝛽𝑘𝑊𝑘

0)bk

(γ + 1 − bk)𝛽𝑘
𝑘

 

 

 

We impose the assumption that in the chosen ordering of the cost curve, all 
abatement sectors up to k are fully implemented (most simply interpreted as being 

implemented in order of increasing ex-ante cost).  The critical term in this, (𝛽𝑘𝑊𝑘
0)
bk

(γ+1−bk)
, 

represents the  % cost reduction due to learning in sector after it is fully deployed, with 

                                                 
20 The superindex 0 in 𝐼𝑘0 does not indicate time (otherwise investment would be zero, because 𝜇𝑘(0) = 0). Instead, 
it indicates the a priori investment cost (without learning).  
21 Strictly speaking, 𝛿𝑘𝐸 is always smaller than 𝜇𝜇. In many cases, it is much smaller, which simplifies the analysis. 
Cases in which the order is similar are straightforward to calculate, although tedious, and not shown here, since 
they do not add to the argument. 
22 In cases where lifetimes are extremely short, 𝛿𝑘𝐸 ≫  𝜇𝜇, or where learning is also insignificant, such costs are 
taken care of by a classical component without learning. 
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𝛽𝑘𝑊𝑘
0 being the emission reduction associated with pre-existing capacity relative to 

the overall scale of the sector (when fully deployed). With typical learning rates bk of 
around 0.1– 0.15, the denominator is quite constant. If the % cost reduction in each 

sector after fully implementing its capacity is similar, the ratio (𝛽𝑘𝑊𝑘
0)
bk

(γ+1−bk)
 does not vary 

much among sector, and the total investment cost can be calculated as a telescopic 

sum. With 𝜇0 ≈ 0 , and taking average cost reduction in each sector (𝛽𝑘𝑊𝑘
0)
bk

(γ+1−bk)𝛽𝑘
≈

(𝛽𝑊0)
b

(γ+1−b)β
   we obtain  (see the full calculation in Appendix 2): 

 

 𝑐𝐴 ≈
𝛼I(𝛽𝑊

0)𝑏

(𝛾 + 1 − 𝑏)𝛽
𝜇𝛾+1−𝑏. (10)  

with 𝜇  being the cumulative abatement. Here 𝛽𝑊0  represents the emission 
reductions associated with the existing capacities of the abatement technologies – the 
annual emission savings (relative to the total emissions of the system) associated with 
cumulative production to date of the technologies represented in the curve. 

The exponent 𝛾 + 1 − 𝑏 of the power law cost curve turns out lower than 𝛾 + 1 as 
measured at 𝑡 = 0, by the learning exponent b, meaning a less steep rise in costs. 
Thus if the marginal ex-ante curve is slightly convex (𝛾 > 1), making the total curve 
slightly steeper than quadratic, then learning will tend to pull the ex-post curve back 
towards DICE-like assumptions of linear marginal and quadratic total costs.  

The pre-factor also makes the curve lower in absolute value, in comparison to the 

classical case without learning 𝛼𝐼𝜇
γ+1

(𝛾+1)𝛽
, to a degree dependent on the typical degree of 

learning once a sector is fully deployed. 

The assumption of similar learning across the different sectors required to derive 
this overall cost curve is formally a strong one, but the basic form and insights of the 
result are far more generic and evident from the form of the telescopic sum itself (eq.9). 
For example, if a sector has already been mostly deployed, leaving little room for 
further learning, it is also only a very small component of the projected overall cost 
curve. Also if a technology sector is higher up the cost curve but displays little learning 
as deployment proceeds, it might be abandoned – in effect, simply ejected from the 
cost curve in favour of those displaying higher learning potential. Such variations are 
thus unlikely to radically change the general insight about the potential impact of 
learning on both the shape and scale of the ex-ante cost curve.  

4. The cost of early scrapping of equipment 

In a process of rapid decarbonisation, additional costs arise, which have not been 
explored here yet, due to the inertia inherent to energy systems. These include 
potential ‘stranded assets’. Technologies and capital are fixed, and have a lifetime 
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during which they are expected to operate. A rapid transition may involve scrapping 
equipment before its expiry date, in other words, forgone planned income: physical 
capital is not liquid and firms cannot recover their money if these become stranded.  

Abatement may thus become more costly when units of capital are 

decommissioned or scrapped much earlier than the date up to which they were 

expected to operate when their business plan was made, and more importantly, 

whether planned income is forgone. Of course, after investment these costs are sunk, 
but not utilising them may still imply opportunity costs, so in general the inertia 
associated with capital lifetimes implies an additional cost when abatement is rapid. 
Formally, this can be described by considering the case where a loan is taken to 
finance a unit of technology, repaid over its lifetime (e.g. a power plant, a car), during 
which the user (the firm, the consumer) uses the income generated by the operation 
of the technology (e.g. selling electricity, transport services) to repay the loan. If the 
consumer/investor is required by climate policy to scrap this unit while still paying, and 
being still required to provide the same service with a unit of cleaner technology, he 
will most likely have to take out a second loan before he has finished paying back the 
first, and thus have to repay two loans simultaneously instead of one, with the service 
income of only a single unit of producing technology. The outstanding amount to pay 
for the first unit corresponds to the early scrapping loss, which is thus easy to define.23 
Further losses incurred after the end of the repayment schedule due to loss of income 
in the operation of the capital are not considered here; such values are subjective and 
not possible to define clearly, since it is not possible to know at what date exactly the 
capital is to be considered obsolete and due for replacement.24 

A unit of polluting technology (e.g. fossil fuelled) has a lifetime 𝜏𝑘, defined by the 
length of the repayment schedule of the initial loan, in other words, the expected 

lifetime at the time of purchase.25 We denote 𝜏𝑘′ < 𝜏𝑘 the time at which it is scrapped. 
At the system level, the loss is therefore 

 
𝑐𝑘
𝐸𝑆 = −𝛽𝑘𝑈̇𝑘

𝐼𝑘
𝐸𝑆

𝛽𝑘
∫ 𝑒−𝑟𝜏𝑑𝜏
𝜏𝑘

𝜏𝑘
′

≈ −𝛽𝑘𝑈̇𝑘
𝐼𝑘
𝐸𝑆

𝛽𝑘
(
𝑒−𝑟𝜏𝑘

′

− 𝑒−𝑟𝜏𝑘

𝑟
)

≈ −𝛽𝑘𝑈̇𝑘
𝐼𝑘
𝐸𝑆

𝛽𝑘
(𝜏𝑘 − 𝜏𝑘

′
) 

(11)  

for a small Δ𝜏𝑘 = 𝜏𝑘 − 𝜏𝑘′ , where 𝐼𝑘𝐸𝑆 is the forgone income, a constant with no learning 
or relationship with abatement 𝜇𝑘, 𝑈̇𝑘 is the polluting capacity scrapped and replaced 

                                                 
23 Note that an early scrapping loss can only be defined with respect to a difference between income and income 
planned at the time when the business plan was made and a loan may have been taken. However, it can lead to 
default and bankruptcy. 
24  The research area called ‘vintage capital’, initially explored by Solow et al. (1966), and more recently developed 
by Boucekkine et al. (2011), attempt to construct models of optimal capital use and decommission. Such models 
involve optimisations with time delays that are not very tractable and challenging to solve. The gain that would be 
obtained in involving such problems here is significant enough to justify the work, as we already capture the 
principal component of the loss. 
25 At the end of this, the investor may keep using the unit of technology or scrap and change it at any time he 
wants, he is not bound financially anymore. 
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(a negative value), and 𝛽𝑘 is the emissions factor per unit of capacity of the polluting 
technology (in contrast to the abatement factors used above in units of avoided carbon 
per unit of capacity, but the function is the same). In fact, the cost should be written 
as  

 𝑐𝑘
𝐸𝑆 ≈ {

−𝛽𝑘𝑈̇𝑘
𝐼𝑘
𝐸𝑆

𝛽𝑘
(𝜏𝑘 − 𝜏𝑘

′ )  if    𝜏𝑘
′ < 𝜏𝑘

0  if    𝜏𝑘
′ ≥ 𝜏𝑘

, (12)  

since no loss occurs if the operating lifetime 𝜏𝑘′  is equal or longer than the expected 
rated lifetime 𝜏𝑘. The capacity change can be expressed in terms of abatement (since 
it is replaced by low carbon equivalent technologies), 𝑈̇𝑘 = 𝜇̇𝑘/𝛽𝑘 , and the early 
scrapping cost per unit of abatement. Since additional avoided emissions and 
abatement rates are  

 𝜇𝑘 = 𝑈𝑘𝛽𝑘
𝜏𝑘 − 𝜏𝑘

′

𝜏𝑘
, 𝜇̇k = 𝑈̇𝑘𝛽𝑘

𝜏𝑘 − 𝜏𝑘
′

𝜏𝑘
, (13)  

The total early scrapping cost, calculated using the path integral eq. (4), scales 
with 

 𝑐𝐸𝑆 ≈ −∑∫
𝐼𝑘
𝐸𝑆

𝛽𝑘
2 𝜏𝑘𝜇̇k

′ 𝑑𝜇̇k
′

𝜇̇𝑘

𝜇̇𝑘−1

=

𝑘

−∑(
𝐼𝑘
𝐸𝑆

𝛽𝑘
2 𝜇̇𝑘

2𝜏𝑘 −
𝐼𝑘−1
𝐸𝑆

𝛽𝑘−1
2 𝜇̇𝑘−1

2 𝜏𝑘−1)

𝑘

 (14)  

when 𝜇̇k < 0, otherwise if emissions are not declining, there is no early scrapping and  
𝑐𝐸𝑆 = 0. We do not know the k dependence of 𝐼𝑘𝐸𝑆, 𝛽𝑘 or 𝜏𝑘. Were they constant, in 
this telescopic sum over k, each term would cancel out with the previous, leaving the 
first and the last. They are not constant, however, where for instance the emissions, 
capital intensity and lifetimes of gas and coal plants are different. Being unrelated to 
k, and having relatively similar parameters (lifetimes, emission factors, etc.) the sum 
will nevertheless yield a result that is proportional to 𝜇̇2 (roughly speaking, an average), 

𝑐𝐸𝑆 ≈ { 𝜁𝐸𝑆𝜇̇
2 − 𝑐0

𝐸𝑆(𝜇0
𝐸𝑆) if    𝜏 ′ < 𝜏 𝑎𝑛𝑑 𝛼𝐸𝑆𝜇̇

2 > 𝑐0
𝐸𝑆(𝜇0

𝐸𝑆)

0 otherwise
 (15)  

 

where 𝜏 ′  and 𝜏   are mean lifetimes and expected lifetimes and 𝜁𝛼𝐸𝑆  is just a 
proportionality factor rising from the average approximation. The term 𝜇0𝐸𝑆  is a 
threshold value, equivalent to the minimum rate of abatement above which premature 
retirement is required. For abatement below this threshold level, no early scrapping is 
required, and therefore the early scrapping cost is zero ( 𝜁𝐸𝑆𝜇̇2 < 𝑐0𝐸𝑆(𝜇0𝐸𝑆) ). For 
abatement above the threshold level, the cost of early scrapping increases 
quadratically, proportional to the rate of abatement.  

The faster abatement is made, proportionally more units are scrapped each year. 
Thus, inertia related to the fossil fuel capital stock results in a cost component 
proportional to the rate of abatement. However, as abatement proceeds, there are 
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less and less early scrapping losses since there are less and less existing polluting 
technologies, and therefore this cost vanishes at high levels of abatement unless the 
rate is very fast. Overall an optimal trajectory would tend to pathways which reduce 
the need for premature scrapping of equipment.  

5. The cost of developing new production capacity for abatement 

Abatement takes place by replacing polluting units of technology by clean ones. 
The associated investment scales with replacements multiplied by their price, which 
decreases with learning following cumulative sales. This cost calculation is incomplete 
since new production capacity, factories, supply chains and new infrastructure were 
required to produce these units on a possibly large scale, which didn’t exist before. 

Furthermore, some old production capacity for polluting equipment could also become 
stranded assets. In other words, inertia characterises not only individual units of 
technology, but also the technologies and infrastructures required to produce these 
units. The associated costs do not scale simply with emissions reductions. Instead, 
they scale with the rate of transformation, which can readily be understood in terms of 
a transitional cost. 

A number of units of new clean technology (e.g. electric cars) for abatement can 
be produced following all kinds of possible profiles in time. Each unit of abatement 
takes a certain amount of time 𝑡𝑘 to produce, and each unit of production capacity can 
produce 1/𝑡𝑘 units per unit time. If the demand for units is exactly 1/𝑡𝑘 per unit time, 
and one single unit of production capacity exists, then no additional production 
capacity is required. However, if the rate of production demanded becomes higher, 
for example, for an identical final number of units produced that we require to be 
produced in a shorter time span, then several units of production capacity must work 
in parallel, and more factories must be built. Thus for the same amount of abatement, 
depending on the profile of abatement in time, different amounts of investment in 
production capacity may be required. Critically, we assume these are long-lived, and 
may thus also become stranded assets in a scenario where the production rate is very 
high but stops abruptly when decarbonisation is achieved, and only the factories 
replacing the depreciation of existing units are needed. We thus define the production 
capacity for technologies as 𝑁𝑘 = 𝑈̇𝑘. 

Effectively, while emissions reductions 𝜇 scale with the number of units of polluting 
technologies replaced by clean units, the rate of change of emissions abatement 𝜇̇ 
scales with the production capacity for clean technology. The cost of transformation, 
or transitional cost, corresponds to the expansion of production capacity for clean 
technology, where learning is also present in this development. We assume that the 
cost of production capacity for abatement technologies follows the same order as the 
technologies themselves (i.e. the more expensive technologies have more expensive 
production lines as well). Therefore we use another MICC, but for the production 
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capacity of abatement 𝜇̇, rather than abatement 𝜇 itself. In this case, we have a similar 
set-up as to eq. (3): 

 𝐼𝑘
𝑁 = 𝛼𝐵𝜇̇k

γ
, where 𝜇̇k = ∫ 𝜌𝑘

𝑁(𝐶𝑘 ′)𝑑𝐶𝑘 ′
𝐶𝑘
𝐵

0

 (16)  

Learning also exists in creating production capacity. We denote as 𝑏𝑁 the learning 
exponents related to production capacity, and follow the same path integral method 
as in section 3.3 (eq. 6), where the cumulative cost is integrated along a path of 
abatement: 

 𝑐𝐵 =∑∫
𝐼𝑘
𝑁 

𝛽𝑘
(1 +

∫ 𝑁̇𝑘 + 𝛿𝑘
𝑁𝑁𝑘𝑑𝑡

𝑡

0

𝑊𝑘
𝑁0 )

−𝑏𝑁

𝑑𝜇
𝜇𝑘

𝜇𝑘−1𝑘

 (17)  

where 𝑁𝑘  is the production capacity of technology for sector k which is being 
expanded, 𝐼𝑘𝑁 its unit cost and 𝛿𝑘𝑁 its depreciation rate. This production capacity must 
cover both the building of new units of technology for abatement 𝑈𝑘 and replace those 
coming to the end of their lives,  

 
𝑁𝑘
𝑡𝑘
= 𝑈̇𝑘 + 𝛿𝑘𝑈𝑘,

𝑁̇𝑘
𝑡𝑘
= 𝑈̈𝑘 + 𝛿𝑘𝑈̇𝑘. (18)  

Where as noted, 𝑡𝑘 is the average time to produce the abatement product k from 
the production process. This can be transformed into abatement and abatement rates: 

 
𝑁𝑘
𝑡𝑘
=
𝜇̇ + 𝛿𝑘𝜇

𝛽𝑘

𝑁̇𝑘
𝑡𝑘
=
𝜇̈ + 𝛿𝑘𝜇̇

𝛽𝑘
. (19)  

We now calculate the two terms in the (internal) integral: 

 ∫
𝜇̈ + (𝛿𝑘

𝑁 + 𝛿𝑘)𝜇̇ + 𝛿𝑘
𝑁𝛿𝑘𝜇

𝛽𝑘
𝑑𝑡

𝑡

0

=
𝜇̇ + (𝛿𝑘

𝑁 + 𝛿𝑘)𝜇 + 𝛿𝑘
𝑁𝛿𝑘𝐸

𝛽𝑘.
 (20)  

In comparison to section 0, we obtain a result of similar form, but with an additional 
time derivative. The third term in 𝛿𝑘𝑁𝛿𝑘𝐸̅ is a cumulative impact of the product of the 
combined depreciation (of manufacturing capacity, and of the abatement  technology 
itself) in tonnes of CO2, a term very small if both capital and factory lifetimes are large. 
The second term in 𝜇 can be small depending on lifetimes; or otherwise can be added 
to the cost term of section 0. We are interested in the first term in 𝜇̇, which yields a 
rate-dependent term. By the same procedure as in section 0, equation 19 follows a 
similar form as in equation 12, namely: 

 𝑐𝐵 ≈
𝛼𝐵(𝛽𝑊

𝑁0)𝑏𝑁

(𝛾 + 1 − 𝑏𝑁)𝛽
𝜇̇𝛾+1−𝑏𝑁 (21)  
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where 𝜇̇(0) = 0 and one may decide whether or not to include learning-by-doing on 
building factories.26 In the latter case, 𝑏𝑁 = 0. In equation (21), 𝑊𝑁0 is the equivalent 
to 𝑊0 in equation (10). 

Here we have a cost component that depends again on the rate of abatement. This 
cost arises due to the inertia associated with the existing production capacity. This 
implies that all scenarios of abatement incur an investment cost element that 
increases with the rate of transformation, however slow. An optimal pathway will 
therefore balance costs of transformation against damages, and will require balancing 
the benefits of technological transformation against the costs of rapid transition.  This 
would suggest starting abatement earlier in order to achieve the maximum abatement 
whilst minimising rates of change. 

6. Adoption and diffusion capabilities 

New abatement technologies do not only require new productive capacity. The 
ability to diffuse new technologies also requires investment of varied types. Economic 
history is littered with examples where seemingly attractive technologies took many 
years or even decades to be adopted.  Often new technologies must not only 
overcome barriers of trust, but their widespread diffusion requires development of 
markets, delivery networks, and appropriate regulations, institutions and infrastructure.  

The history of ‘technology transfer’ to developing countries – and indeed, the 
general pattern of global technology diffusion - has testified to the significant inertia 
these factors involve. Processes of diffusion thus also involve investment in 
‘capabilities’.  A poor country with limited education, grid or marketing capability will 
only be able to slowly adopt abatement technologies.  Investment in “capacity building” 

for developing countries has been a major feature of climate negotiations aimed at 
enhancing their abatement efforts. All this reasonably reflects a direct demand-side 
analogue to the need to develop productive capacity.   

Innovations diffuse following S-shaped patterns (‘logistic curves’; Rogers, 2010). 
Following the diffusion literature, it is well known that the pace of diffusion (the width 
of the S-shaped curve) depends on both capital stock turnover rates (the rate at which 
people replace equipment such as cars, electricity generators, etc), and the degree to 
which people are attracted to these technologies (Mercure, 2015; Rogers, 2010; 
Young, 2009). The empirical literature provides many examples of this (Grubler et al., 
1999; Marchetti & Nakicenovic, 1978; Mcshane et al., 2012). In a classical network 
problem, in order to gain information, agents typically wait to see innovations used by 
peers before adopting them (Rogers, 2010).  

When that is the case, one way to accelerate the rate of adoption beyond what is 
feasible through peer influence is through information campaigns (Knobloch & 
Mercure, 2016). If we seek to isolate the costs of diffusion occurring faster than the 
                                                 
26  Learning-by-doing scales with cumulative production of units, and factories are not typically built in large 
numbers. Cost reductions for factories are complex to identify. This, however, does not change our argument. 
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‘natural’ rate of diffusion, we argue that one is primarily looking at the costs of 

information campaigns. Taking the example of a society that undertakes a program of 
social marketing targeting the adoption of low carbon technology, this marketing cost 
will scale in a particular way with abatement. Knowledge grows with the adoption of 
new technology; this means that social marketing is primarily needed at the early 
stages of diffusion in order to accelerate kick-starting the diffusion process. The cost 
scales with the number of people targeted, and will yield a rate of adoption, i.e. each 
marketing investment will lead to a certain number of adoptions of new technology, 
and thus, marketing investment scales with the rate of abatement: 

 𝐼𝑘
𝑀 = 𝛼𝑀𝜇̇𝑘 (22)  

which, needs to be integrated along a path of investment history, using once more the 
path integral of eq. (4). This yields 

𝑐𝑀 =∑∫ 𝐼𝑘
𝑀𝑑𝑈̇𝑘

𝑈𝑘

0𝑘

=∑∫
𝛼𝑀𝜇̇𝑘
𝛽𝑘

𝑑𝜇̇𝑘

𝜇𝑘+1

𝜇𝑘

≈

𝑘

𝛼𝑀
2𝛽
𝜇̇2 (23)  

This yields again a cost term in the square of the rate of abatement.  

 

7. Interpretation and simplified forms of cost components 

7.1. Investment and inertia cost components  

We summarise the cost components developed in this paper in Table 1. So far, it 
appears as if our analysis has simply increased complexity, by separating investment 
from fuel-related costs, and introducing learning and rate-dependant terms in the 
former. We now turn to show how, to the contrary, identifying these components can 
suggest a much simplified version of stylised analysis, incorporating learning and 
inertia, with a simple analytic way to cut through many of the complexities.   

Table 1 shows the cost components in both more general and simplified forms. 
The simplified form takes the general case and illustrates, for the investment cost, the 
result if either the marginal cost is rising linearly (quadratic in total abatement) without 
learning, or if the learning rate b is of a magnitude which roughly offsets any assumed 
non-linearity 𝛾 in the ex-ante MICC, such that 𝑏 =  𝛾 −  1.  (recalling that 𝛾  = 1 is a 
linearly increasing marginal cost, i.e. quadratically increasing total cost). In this case, 
the resulting functional form of investment cost is same as in the MACC curve implied 
by the DICE model, though the level of cost is lowered by any positive learning 
component, and we account separately for the fuel savings (discussed in the next 
section).  

In addition, however we have the rate-dependent terms – which also feature 
terms which are generally quadratic, but in the rate of abatement, 𝜇̇2.  We note that in 
Vogt-Schilb et al (2017), because investment results in a stream of subsequent 
abatement, their representation of investment is mathematically similar to our 𝜇̇2  term; 
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they assume quadratically rising investment costs for their modelling. In effect, our 
analysis above (as summarised in Table 1), offers a more solid theoretical basis for 
this assumption. 

 

Cost component Expression 

Simplification if no learning 
and linearly rising marginal 
abatement cost, or if learning 
rate compensates for non-
linearity of marginal 

abatement cost (𝑏 =  𝛾 −  1) 

Dependence Units 

New technologies 
following a 
marginal 
abatement cost 
curve 

𝛼𝐼(𝛽𝑊
0)𝑏

(𝛾 + 1 − 𝑏)𝛽
𝜇𝛾+1−𝑏 

𝛼𝐼(𝛽𝑊
0)𝑏

2𝛽
𝜇2 

Emission 
sources 
avoided in a 
given year 

$/tCO2/y 

Early scrapping of 
capital stock  𝛼𝐸𝑆𝜇̇

2 − 𝑐0
𝐸𝑆(𝜇0

𝐸𝑆) 
Rate of 
abatement,  
non-linear 

$/tCO2/y2 

Transforming 
production capital 

𝛼𝐵(𝛽𝑊
𝑁0)𝑏𝑁

(𝛾 + 1 − 𝑏𝑁)𝛽
𝜇̇𝛾+1−𝑏𝑁 

𝛼𝐵(𝛽𝑊
𝑁0)𝑏𝑁

2𝛽
𝜇̇2 

Rate of 
abatement,  
non-linear 

$/tCO2/y2 

Diffusion /  
utilisation 
capability  

𝑐𝑀 =
𝛼𝑀
2𝛽𝑘

𝜇̇2 
Rate of 
abatement,  
non-linear 

$/tCO2/y2 

Table 1 Different cost components and their scaling with respect to time derivatives of the abatement 
variable. E refers to a quantity of CO2 emissions (in tCO2), 𝝁 to a quantity of abatement (in tCO2/y), 𝝁̇ 
is a rate of abatement (in tCO2/y2). See section 7 for discussion of fuel cost savings. 

Note that only the first term (the adoption of technologies according to a static 
‘abatement curve’) and fuel savings (below) involve the absolute degree of abatement 
𝜇 relative to an assumed reference projection. The other investment-related terms all 
concern the transitional costs of change. When referring to costs that relate to 
transformation processes, we are referring to the transitional component of the 
economic process. For example, if costs were only of the early scrapping nature, then 
as long as early scrapping is avoided, any transformation could take place and the 
economy could adapt to any circumstances cost-less. This is of course never the case; 
however, transformation will hurt if capital in good working order must be 
decommissioned. Meanwhile, the production of any new technology necessarily 
involves investments into fixed productive capital that will remain for a certain amount 
of time, producing a chosen number of units each year, and remain available even 
when costs are sunk, enabling low cost production. Once all factories producing 
internal combustion engine cars have been transformed into factories producing 
electric cars, no further transitional costs will be required in the sector.  
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7.2. Value of fuel savings  

As noted earlier, most of the above analysis could be applied either to marginal 

abatement cost curves (MACC), or marginal investment cost curves (MICC). We have 
chosen to focus on the latter, partly because it is investment that is most directly 
associated with both the learning and the inertia effects on which we have focused. 
Abatement costs may be a poor proxy for these effects. This means, however that an 
overall cost assessment needs to consider fuel savings separately.   

In the general case, we can assume an economy facing a choice between a dirty 
fossil fuel and a cleaner fuel (e.g. gas instead of coal), each with its own price and an 
elasticity of substitution. Appendix 1 details this more formal calculation, which yields 
- as one would expect - that in equilibrium, the cost per year of reducing emissions 
through fuel switching in sector k 𝑐𝑘𝐹𝑆 is proportional to the price difference between 
the fuels  

 𝑐𝑘
𝐹𝑆~ (𝜇k −  𝜇k

0).
(𝑝𝐶 − 𝑝𝐹)

𝛽𝐹 − 𝛽𝐶
 (24)  

where 𝛽𝐹, 𝛽𝐶 are the carbon content of the fossil and cleaner fuel, respectively, and 
 (𝜇k −  𝜇k

0) is the emission reductions associated with the corresponding sector k.  

Cost is linearly proportional to the abatement as long as the prices are independent 

of abatement. Locally, this is plausible for a given sector displacing internationally 
traded fuels; however as a generalisation across the cost curve and globally it is more 
problematic.27   

First, the fuel costs of abatement options vary widely. Coal or gas with carbon 
capture and storage intrinsically increase operating costs (since they reduce the 
operational efficiency, as well as requiring additional investment). Gas displacing coal 
will reduce emissions, but is often (though not always) more expensive to run.  

Nuclear power generally has lower operating costs than fossil fuel plants; for 
renewables, the variable operating cost is negligible, and for most end-use efficiency 
options there is no additional operating cost, only fuel savings. For these options, 
therefore, both 𝑝𝐶 and 𝛽𝐶 are effectively zero. These options in fact dominate most 
abatement cost curves, particularly as emission reductions deepen (and are likely to 
do so even more in the light of the large cost reductions already observed in many 
renewable technologies and energy efficiency options).  

Moreover, the value of end-use savings is affected by the overall system – thus, 
saving electricity is more valuable per unit of emissions than displacing generating 
fuels alone. There are other costs that vary by sector and region: if we are considering 
the market response, we need to take account of different end-use prices, which are 

                                                 
27 Note also that reducing use of fossil fuels is likely to reduce global fossil fuel prices (as 
emphasised by IEA, 2015), thereby increasing local abatement costs (such possibilities have 
also generated literature on the ‘green paradox’, see Sinn, 2008). 
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not constant across sectors, but display wide differences. This is illustrated in Table 
2.  

 

Process 

End-use Value at 

current energy 

prices ($/tCO2) 

Notes 

Carbon capture and 

storage 
Negative Same fuel, lower efficiency 

Coal to gas switching Minus $0-40 
Newbery (2016) based on range of gas 

and coal prices 

Zero carbon displacing 

coal generation 
$30 

2015 UK steam coal price (IEA) for 

electricity generation & tCO2 

conversion factor (DECC) 

Zero carbon displacing 

gas generation 
$110 

2015 UK (IEA) natural gas price for 

electricity generation & tCO2 

conversion factor (DECC) 

End-use electricity saving 

– coal based system 
$230 

2015 Polish (IEA) household 

electricity price (inc. taxes) & 

approximate 2015 grid CO2 intensity 

Transport fuel savings – 

US/Canada 
$280 

2015 USA (IEA) unleaded gasoline 

price (inc. taxes) 

End-use electricity saving 

– gas based system 
$500 

2015 UK (IEA) household electricity 

price (inc. taxes) & 2015 grid CO2 

intensity 

Transport fuel savings – 

EU/Japan 
$520 

2015 Japanese (IEA) unleaded 

gasoline price (inc. taxes) 

 
Table 2: Value of operational fuel savings associated with emission reductions ($/tCO2) 

If we compare Table 2 against the kind of technologies in the investment cost curve 
(Figure 1), there is some tendency for the options that involve higher investment cost 
per unit emission savings to also have a higher value of fuel savings. This is not 
surprising: options requiring little investment but yielding big fuel savings would tend 
to be already implemented without a carbon price, and higher investment costs would 
tend to go along with higher fuel savings.28  The range is considerable, but the broad 
pattern suggested is again a non-linear increase, at least initially, this time in the value 
of fuel savings, as abatement proceeds across different sectors with higher investment 
costs.  

7.3. Dynamics of Learning  

Against this backdrop, we can also return to the dynamics of technology learning.  In 
section 3 we observed that the traditional mathematical representation of ‘learning-

                                                 
28 As noted, the fact that many end-use improvements (like building insulation, and high efficiency or alternate 
fuelled vehicles) combine high investment needs with valuable fuel savings helps to explain why some appear as 
negative in classical engineering cost curves at low discount rates, and yet are not implemented. 
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by-doing’ through learning curves does not involve any time component, and the 
concept itself remains somewhat controversial.  

Obviously, learning-by-doing does in reality take time and it is clear that this is, 
partly, because of the three inertial components we have traced: each new round of 
improved technology may displace earlier investment, requires new factories to 
produce the equipment, and the development of supply chains and markets to diffuse 
the newer, improved products.  

In the energy sector the importance of investment-based learning – and the 
associated transitional costs - has been illustrated most dramatically by the evolution 
of renewable energy over the past fifteen years. Many regions – but with Germany 
dominant in Europe – have sought to drive an energy transformation to renewable 
energies by huge investments driven by public subsidies to renewable generation.  

This expansion has indeed been accompanied by remarkable cost reductions. 
Even offshore wind energy, long assumed to be very expensive, has seen costs 
tumbling to the point where contracts in 2017 in many European countries were 
awarded at levels close to wholesale electricity prices.29  

These gains were not cheap – the cost of the contracts struck over these fifteen 
years under Germany’s Energiewende now amounts to about €20bn/yr. At times, the 
pace of expanding production and supply chains ‘overheated’ the effort, keeping costs 

high, illustrating the importance of dynamics in learning-by-doing processes. But as 
the capacity-to-produce-the-product became established, and with the associated 
learning across all elements (private R&D, learning-by-doing and learning-by-using, 
as documented i.a. by Betterncourt et al 2013), dramatic cost reductions ensued which 
have led to wind and solar investments being cheaper than new fossil power 
generation in some regions particularly where the resources are good: in effect, to this 
extent, learning combined with fuel savings have reduced the first component of Table 
1 to very small levels.  

As noted, however, this progress was not cheap. Essentially, such learning can be 
expressed as a transitional investment associated with the expansion of emerging 
technology classes. Ex-ante cost estimates, which typically inform models, may turn 
out to be widely wrong as a guide to the enduring costs of an abatement technology, 
but this does not mean the costs were not real.  Rather, ex-post they appear as having 
been a transitional investment which has lowered the ongoing costs for subsequent 
deployment.   

The faster the growth, the faster the learning, but the bigger the learning 
investment in a given period. Hence learning investments can be considered as a 
function of 𝜇̇.  Moreover, it is clear that very rapid expansion can drive up the overall 
costs (though it also accelerates the benefits), implying non-linearity with respect to 

                                                 
29  Perhaps the most dramatic example being the results of the second UK renewable energy auction: see 
https://www.gov.uk/government/publications/contracts-for-difference-cfd-second-allocation-round-results 
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pace of abatement.  In a generalised context of representing abatement costs, in other 
words, learning-by-doing can be interpreted as reducing costs associated with but 
adding another rate-dependent component. This combination of learning investment 
and the need for the new technologies to overcome the sources of inertia 
characterised in sections 4-6 above, there, place further emphasis upon the 
transitional component of abatement costs we have associated with μ̇2. This can thus 
be understood as encompassing both a learning investment, as well as the varied 
forms of inertial cost, required to secure the enduring gains of building up the 
production capacity and supply chains of whole new industries. 

 

Part III: From micro to systems analysis 

8. From technology innovation to system-level adaptability  

The analysis we have presented thus far has sought to build up an understanding 
of potential cost structures from micro foundations. We now turn to consider this in a 
wider context of how technology-specific innovation may translate into a wider 
adaptability of systems, such as energy systems, and the analytic and policy 
implications of this shift in the level of analysis. This is relevant because “integrated 

assessment” of global climate change economics – as with IAM discussion in section 
2 - needs to be conducted at the level of overall systems, not individual technologies.  

8.1. Empirical basis  

We noted above the recent experience of renewable electricity sources, notably 
wind and solar, which have seen dramatic cost reductions to the point where, following 
the huge investments made and resulting cost reductions, they can be cost-
competitive with fossil fuel generation in a growing range of circumstances.  

 We note also that the industrial economics of this ‘renewables revolution’ has 

much in common with that in the energy sector more generally. After the oil shocks of 
the 1970s, for example, the UK offshore oil industry enjoyed around £10bn/yr 
investment for well over a decade – initially stimulated by government, then with 
increased private funding given the global oil price shock and expectations thereof. 
Cost projections were initially around US$80-100/bbl, but they subsequently fell 
dramatically as the pressure increased after the oil price collapse. Technology 
learning studies have charted the decline of technology costs with the scale of 
investment and markets across dozens of different technology areas (Weiss et al, 
2010).   

The experience of wind and solar technologies is thus emblematic, but not unique. 
Moreover, energy systems themselves are adapting to accommodate the very 
different characteristics of renewables – again, involving transitional costs, such as in 
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enhanced transmission capacity. Echoing the wider institutional literature on 
innovation, all this points to the wider transformations that effective innovation can 
involve, including Schumpeter’s ideas of ‘creative destruction’ as old capital is 

stranded by better technologies and systems.  

Similarly, examining the longer-term history of the response to the oil shocks, it is 
possible to identify the broader systemic nature of transformations at the level of 
energy systems. The response saw extensive innovation and structural adjustment 
through the energy system, including dramatic improvements in energy efficiency 
which persisted; nowhere did these gains reverse after the energy price collapse, and 
particularly in countries which maintained higher energy prices (partly through taxation) 
the efficiency improvements continued.  

A recent study (Grubb et al 2018), reinforces the findings of Bashmakov (2007) 
and Newbery (2003) that countries with higher end-use energy prices have adjusted 
so that in general they spend no more on energy (as a proportion on GDP) than those 
with lower prices – indeed many spend less.  In other words, at a system level, the 
features of technology-specific learning appear to be matched by a significant capacity 
of energy systems overall to adapt to conditions, like structurally higher prices, through 
a variety of mechanisms including specific areas of higher efficiency, innovation, 
infrastructure better matched to high energy costs, and changes in industry structure.  

Thus, as we move from technology-specific innovation to systems, we are led to 
recognise the overall adaptability of systems to constraints and incentives as a 
closely-related, but distinct and broader, concept: it embodies not only technology 
innovation but innovation and structural change in systems and associated 
infrastructures. The cross-country data assembled in Grubb et al (2018) points to 
these wide-ranging processes, but as also illustrated by the time-series data in their 
study, such adaptive response of the system is slow, to be measured in decades.  

 

8.2. On public versus private investment & innovation  

Though innovation is increasingly recognised as essential in tackling climate 
change, most of the existing modelling literature either (a) does not make any 
distinction (implicit or not) between public and private investment, subsuming all in 
some kind of implicit globally socially optimal response to emission constraints; or (b) 
in effect ascribes innovation to government investment (e.g. public R&D) in knowledge 
accumulation.   

In the latter class of models (which includes for example Acemoglu et al., 2012), 
public R&D can compensate for example for spillovers and other long-recognised 
market failures around innovation. Whether or not models allow for such overt 
knowledge investment, most of them by implication treat the private sector response 
to emission constraints or carbon price as one that does not (in the modelling) involve 
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any innovation, and is defined entirely either exogenously, or by public investment in 
knowledge.  

This is somewhat paradoxical, given that innovation is supposed to be one of the 
key benefits of private sector competition and incentives.  Indeed, in the energy area, 
one of the key observations of Bettencourt et al. (2013) is that the huge increase in 
renewable energy patents and cost reductions have occurred despite large declines 
in public energy R&D; most of the innovation has been private. We indicate below 
some of the reasons for this, but note here the dilemma that much of this has hinged 
upon technology-specific interventions (like renewable energy mandates) to drive 
industrial development.  

Continuing technology and sector-specific supports has obvious drawbacks as 
such industries mature. Whilst unit costs decline, the total costs may rise due to the 
sheer scale (as noted, global low carbon scenarios involve investments running over 
US$trn/yr). There is a growing risk of enduring ‘industry capture’, as it becomes 

increasingly difficult to disentangle supports, initially justified in terms of learning 
spillovers, from simple subsidies to locally less efficient producers.  In addition, such 
policy approaches do not fit well with IAMs, which tend to focus on national and global 
trajectories.  Hence, we turn now to examine the investment and innovation 
dimensions of responses to technology-neutral emission policies – whether emission 
constraints or pricing. This is the approach (frequently recommended by economists) 
that one might hope to do the bulk of emission reductions, separated from the risks 
commonly associated with governments’ technology-specific supports.  

Consequently, we raise the level of our analysis from the micro-economics of 
learning and inertia to considering the implications of adaptive responses at systems 
level. Correspondingly, we are turning the lens from consideration of technology-
specific innovation which might be fostered by government intervention across the 
innovation chain, to a generalised analysis of optimal technology-neutral policy (such 
as a common emission constraint or carbon price) with respect to systems which have 
some capacity to adapt, but with considerable inertia.  

From this we offer a new approach to representing investment responses to CO2 
constraints and carbon pricing in technology sectors, including innovation and inertia, 
and explore how that in turn might affect optimal timing and policy on the related 
economic instruments. 

 

8.3. Stylised characteristics of systems with innovation and inertia: pliability 
and the representation of adaptability and transitional costs  

The above discussion sets our mathematical formulation in a wider context 
concerning the extent to which emitting systems are adaptive in the sense that 
technologies and systems over time adapt to external conditions and constraints, for 
example through induced technological and systems innovation, different 
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infrastructure choices, and structural changes. This might also imply that some costs 
typically assumed to be enduring are actually manifestations of transitional costs (as 
with renewable energy costs, the decade of industry-building in the North Sea oil and 
gas industries, and the initial costs of more efficient vehicles and appliances which 
subsequently have become dominant).   

Many lines of evidence point to the apparent capacity of energy systems to adapt 
to circumstances. Consistent with the ‘Bashmakov-Newbery constant’ of energy 

expenditure, described above, there are sustained differences in structures and levels 
of energy consumption between different industrialised countries, with no sign of 
convergence (Grubb, et al., 2014, Chapter 1). Technology studies underline the huge 
array of energy technologies available or under development, and the extent of both 
fossil fuel and renewable energy resources, as well as continuing wide potentials to 
improve energy efficiency. Consequently, there is every reason to assume that further 
improvements are possible – and yet, face many transitional constraints. 

Indeed, history offers innumerable examples of how complex systems evolve in 
path dependent ways, with consequent phenomena of lock-in (e.g. Unruh, 2002).  
Such characteristics are clear in the history – and projections – of key sectors like 
transport, electricity and urban systems, all of which have the potential to be 
transformed over the next few decades, but embody very long lived capital stock and 
infrastructure.  

As examined more extensively in Grubb, et al. (2014), one factor in such behaviour 
reflects the extent to which apparently cost-effective measures (particularly relating to 
energy-efficiency) are impeded by other factors – overcoming these obstacles so as 
to install insulation or become aware of more efficient equipment leads to gains that 
are unlikely to be reversed, for example.  Innovation and infrastructure investments 
are, likewise, to an important degree long-lived public goods whose influence is again 
enduring. In the terminology of Grubb, et al. (2014), these are First and Third Domain 
processes, and are unlikely to reverse.   

Such processes contribute to the capacity of energy systems to adapt to external 
forces, through innovation and structural change. Indeed, more classical economic 
processes do not exclude that possibility, particularly in relation to investment, though 
they have generally been interpreted otherwise in modelling.  

The term adaptive is here meant to capture the evidence that technologies and 
systems can respond to investment, adjustments or external pressures which combine 
to lower the cost of sequent action in enduring ways, and should not be confused with 
the term ‘adaptation’ – generally used in the climate change literature to adapting to 
the impacts of climate change. Changes however also involve the cost of the 
investment and have to overcome the many sources of inertia as detailed in this paper.   

The basic implication is we can define emissions abatement as a cost which relates 
not only to the degree of reduction (abatement), but also to the rate of deviation from 
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the baseline.  In essence, we group the cost components identified in Table 1 into an 
overall cost of abatement:  

𝐶 = 𝛼𝐼𝜇
2 + 𝛼𝐵𝜇̇

2 − 𝛼𝐹𝑆𝑓(𝜇) (25)  

where 𝛼𝐹𝑆𝑓(𝜇)  represents the value of fossil fuel savings. Compared to the 
classical formulation, we are separating investment and fuel costs, and adding a 
generalised rate-dependent term derived from our analysis.  The enduring cost term 
– the overall degree of abatement at time t – may be moderated by learning on the 
investment cost, and offset to some degree against the value of fuel savings.  

In this formulation, note that as compared with exogenous ex-ante modelling, 
learning-by-doing investments, and indeed wider system adjustments (such as long-
lived infrastructure associated with low carbon systems) have the effect of reducing 
the enduring component 𝛼𝐼 , as the costs take the form of transitional investment 
associated with 𝛼𝐵. 

The tension between these two forces we refer to as the pliability of the system – 
reflecting the potential for changes in ways that endure, but inevitably with a trade-off 
between this and the effort or pressure exerted – the scale of investment or other costs 
incurred in response to incentives or constraints. A system with no pliability simply 
returns to the ‘status quo ex ante’ once the incentive or constraint is alleviated.  A fully 
pliable system will retain all the advances, of technologies, infrastructure, etc., and 
hence stay in the new state unless some new pressure is exerted. 

 

9. Some implications for timing and effort: a model exploration 

9.1. Interpreting and parametrising the stylised abatement costs  

Consequently, we turn to show the implications of this for studying how optimal 
abatement paths might depend on the presence of learning and inertia. As noted, the 
form of fuel savings is somewhat indeterminate, but section 7 suggests the value 
would rise non-linearly as abatement proceeds at least initially. The simplest treatment 
is to approximate fuel cost savings as offsetting some (positive but uncertain) portion 
of the higher investment costs assumed for low carbon abatement, at least initially; 
fuel cost savings at high abatement would be capped, but may be eclipsed by the 
other cost components of rising investment, transitional costs and the internalised 
costs of carbon, the last of which we consider separately in the following model.  

Our energy system equation then approximates to two basic functional 
dependencies, respectively quadratic on the degree and rate of abatement:   

𝐶(𝑡) = 𝐶𝐴(𝑡) + 𝐶𝐵(𝑡) = 𝛼𝐴𝜇(t)
2 + 𝛼𝐵 (

𝑑𝜇(𝑡)

𝑑𝑡
)
2

 

The first element now expresses the ‘enduring’ component of enduring abatement 

costs – investment less fuel savings – and thus mimics the classic DICE formulation 
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in functional form, but we have in additional a rate-dependent term, also quadratic in 
form based on the enquiries in this paper. Recalling that learning reduces the 
coefficient 𝛼𝐼, note that innovation is now subsumed in a wider interpretation of the 
coefficient 𝛼𝐴, in which a lower value reflects not only the estimated scope for learning 
to reduce investment costs (the (𝛽𝑊0)𝑏 of equation 10), but also the wider potential 
of the system to adjust over time, including the potential for specific investment costs 
in energy efficiency, zero carbon sources and related infrastructure, to be offset 
against fuel savings.  

The degree and rate of abatement refer to the deviation at any time t from the 
‘default’ or ‘business-as-usual’ trajectory. The constants 𝛼𝐴 and 𝛼𝐵 can now be seen 
as representing more broadly the magnitudes of ongoing vs transitional abatement 
costs respectively. The first term represents the ongoing cost element associated with 
a given degree of abatement relative to the high carbon baseline; the second term 
reflects inertia, i.e. the cost of changing the level of abatement. A lower ongoing 
component 𝛼𝐴and higher transitional component 𝛼𝐵means that abatement cost (or 
effort) is increasingly dominated by the transitional (learning and infrastructure 
investments and adjustment costs) cost of moving from one state to another, relative 
to the recurring costs of staying at any given distance from the ‘reference’ path.  The 
ratio of the transitional to enduring component thus represents the pliability of the 
system. Lower 𝛼𝐴 and higher 𝛼𝐵 increases the relative influence of transitional costs, 
ie. efforts to overcome inertia, which have an enduring impact in lowering the cost of 
subsequent cutbacks or altering the underlying pathway. 

Exploring the implications of this ‘pliability’ requires a way to trade-off between the 
two components, which we do with reference to a total abatement cost over time 
horizon 𝑡̂.  Thus, for a time horizon 𝑡̂ years after 2015, we define the relationship 
between the enduring (CA) and transitional (CB) cost components  by assuming the 
cost of linear emission reductions, at rate 𝜀̅%/yr (slope), over a time horizon 𝑡̂  is 
invariant.  (Specifically, in the analysis, below, we parametrise 𝐶𝐴 and 𝐶𝐵 in terms of 
the costs of halving global emissions from current levels by mid Century).  

So the abatement - the difference between rising baseline and declining actual 
emissions is30 

 

𝜇 = (𝜀1 − 𝜀)̅𝑡 
𝜇̇ = (𝜀1 − 𝜀)̅ 

 
Integrating (undiscounted) abatement cost to time 𝑡̂, we thus define: 

  

                                                 
30 Note that a linear abatement schedule implies a quadratically rising cost in the conventional (enduring only cost) 
case, but a constant rate of expenditure if the system is fully pliable – we find in the model that this can be the 
result of optimisation over the first few decades in this case. 
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𝐶̅ = ∫ (𝐶𝐴 + 𝐶𝐵)𝑑𝑡
𝑡̂

0

= ∫ 𝛼𝐴𝜇
2𝑑𝑡

𝑡̂

0

+∫ 𝛼𝐵𝜇̇
2𝑑𝑡

𝑡̂

0

= (𝜀1 − 𝜀)̅
2 ∙ (𝛼𝐴

𝑡̂3

3
+ 𝛼𝐵𝑡̂) 

 
 

Denote 𝛼̂𝐴  as the value of 𝛼𝐴 when all the abatement costs are enduring (𝐶𝐵 = 0), 
thus defining the abatement cost curve when there are no transitional costs, and so 
the cost is  

𝐶̅ = (𝜀1 − 𝜀)̅
2𝛼̂𝐴

𝑡̂3

3
 

Similarly, denote 𝛼̂𝐵 as the value of 𝛼𝐵 when there are only transitional costs (𝐶𝐴 =
0), in which case: 

 
𝐶̅ = (𝜀1 − 𝜀)̅

2𝛼̂𝐵𝑡̂ 
 

The trade-off of course does not depend on the rate (the slope drops out when we 
are comparing CA and CB).  This form is intuitively reasonable since the adjustment 
costs rise as the square of the rate, which is inversely proportional to the timescales 
over which adjustment costs are defined.  These define the extreme cases of no (CA=𝐶̅, 
CB=0) or complete (CA=0, CB=𝐶̅) pliability of the system, for a characteristic adjustment 
time 𝑡̂.   

We write the general case in terms of a parameter 𝜎 which defines the relative 
pliability of the system, in terms of the ratio of the two components:  

 
Abatement cost =  𝛼̂𝐴(1 − 𝜎)𝜇

2 + 𝛼̂𝐵𝜎𝜇̇
2 

 
Substituting for 𝛼̂𝐵, we can write the overall cost for a system of pliability 𝜎 as: 
  
 

𝐶(𝑡) = 𝛼̂𝐴[(1 − 𝜎). μ(t)
2 + 𝜎.

𝑡̂2

3
𝜇̇(𝑡)2] 

In which 𝛼̂𝐴 serves as the overall cost scaling factor, and 𝑡̂ is the characteristic 
timescale of major system adjustments (see note 30 below). Starting with the classical 
notion of a reference high carbon projection assumed ex ante to be least cost, we take 
the above equation as the first order approximation of the abatement cost, and now 
apply it in a DICE-like integrated assessment context.  

 

9.2. Representation of climate damages 

The task of applying this to studies of optimal global responses is greatly eased by 
the finding from the scientific community that global temperature change at a given 
time is closely related to cumulative emissions to that point.  This enables a simple 
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representation of climate impacts linked to temperature change (the vast majority of 
optimising ‘integrated assessment’ studies, which try to compare the cost of cutbacks 
with the cost of avoided damages, express climate damages in terms of global 
average temperature increase; see e.g. IPCC 2014).   

Our general model allows for climate damage with both linear and quadratic 
dependence on the global temperature change respectively, but in the illustration here 
and again in common with much of the ‘integrated assessment’ literature, we assume 
that global damage increases in proportion to the square of temperature change.31  A 
central estimate is that 500GtC cumulative emissions increases global temperature 
by about 1 deg.C. (IPCC 2013; Figure SPM-10) so that:   

Annual damage from climate change at time t, 

𝐷(𝑡 ∓ 𝜏) ∝  (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒)2 = (
𝐸(𝑡)

500 𝐺𝑡𝐶𝑂2
)

2

, (26)  

where 𝜏 is a time lag between emissions and impacts, and E(t) is the cumulative CO2 
emissions in billion tonnes (gigatonnes) of carbon (GtC) at time t:  

  𝐸(𝑇) =  ∫ 𝜀(𝑡)𝑑𝑡
𝑇

0
,  

Contrary to common assumption, the time lag between emissions and resulting 
temperature is small – a recent scientific study (Ricke and Caldeira 2014)) estimates 
mean lag to be about one decade, and most of the temperature rise occurs in the first 
few years.32   

The cumulative damage from climate change is then: 

    ∫ 𝑒−𝑟∙𝑡 ∙ 𝐷(𝑡)𝑑𝑡
𝑇

0
 

 

                                                 
31 A much earlier study by the author (Grubb et al., 1995) presented the basic idea of the mitigation analysis, and 
showed results that emerged if the damages from climate change were assumed to be proportional to the 
atmospheric concentration of CO2. At the time this seemed the analytically tractable approach and a useful 
approximation to illustrate the underlying themes. However, maths does what is specified and this treatment had 
the serious drawback that especially in cases with a highly adaptive energy system, results could be driven by the 
long-run benefits of negative emissions which reduce concentrations, without limit.  Particularly at low discount 
rates (or high damage coefficients) this could go to implausible extremes.  The treatment here, in which damage 
is related directly to the square of temperature change since pre-industrial levels, avoids this problem since the 
benefits of reducing concentrations decline non-linearly, and turn negative if global temperature drops below pre-
industrial levels.  
32 Although there is significant thermal time lag particularly in ocean response, this inbuilt thermal inertia is largely 
offset by the CO2 absorption so that in fact temperatures occur at a time quite close to the point of cumulative 
emissions.  Ricke and Caldeira (2014) examine the impact of a CO2 pulse with a variety of representations and 
conclude: “The median estimate of the time until maximum warming occurs is 10.1 years after the CO2 emission”; 
most relevant most of the warming occurs well before this. “.. while the temperature consequences of CO2 
emission materialize more quickly than commonly assumed, they are long lasting. The fraction of maximum 
warming still remaining one century after an emission has a median value of 0.82, with a very likely range of 0.65–
0.97.”  The relationship observed in the IPCC (2013, Figure SPM-10) does not include a time lag, and is stated to 
hold for most scenarios excepting extreme rates of emissions change, suggesting that representing temperature 
by E(t) is a reasonable approximation; our central case here thus also does not include an explicit time lag between 
cumulative emissions and temperature. In the PAGE model, if emissions cease, about 70% of the maximum 
committed warming occurs in the first decade (Chris Hope, personal communication).  The DICE model however 
(and particularly DICE 2016) appears to have a far slower temperature response.  
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Where 𝑒−𝑟∙𝑡 is the time discount (at rate r) applied to climate damages, and 𝐷(𝑡) are 
the annual damages at time t, which are costed as above.  

The optimisation problem is then to minimise the total discount costs out to time T:  

Min. Function  F(T) =𝐷(𝑇) +𝐶𝐴(𝑇) + 𝐶𝐵(𝑇) 
 
Where  

∫ 𝐹(𝑡)𝑑𝑡
𝑇

0

= ∫ 𝑒−𝑟∙𝑡

{
 
 

 
 𝑑1 ∙ 𝐸(𝑡) +

𝑑2
2
∙ 𝐸(𝑡)2

+𝛼𝐴 ∙ (𝜀𝑟𝑒𝑓(𝑡) − 𝐸̇(𝑡))
2

+𝛼𝐵 ∙ (𝜀1 − 𝐸̈(𝑡))
2
}
 
 

 
 𝑇

0

𝑑𝑡 

Where d1 and d2 are the coefficients of damage costs related to linear and quadratic 
dependence on the global temperature change respectively;33 𝜀𝑟𝑒𝑓(𝑡) is the reference 
emissions path, and 𝛼𝐴 and 𝛼𝐵 are the coefficients associated with the ongoing and 
transitional elements of abatement cost, respectively. 

The optimality conditions associated to the equation above generate a second-order 
differential equation. In Appendix 3 we give details and nomenclature and show it can 
be solved analytically using the Euler Lagrange Method.  Thus for any given level of 
assumed damage associated with accumulating CO2 in the atmosphere, we can 
explore how the path of theoretically optimal responses depends on the balance 
between ongoing abatement costs, and the transitional costs associated with induced 
learning investments and overcoming the various sources of inertia, all set against the 
long-run benefits associated with reduced atmospheric change.   

9.3. Illustrative Numerical assumptions – climate and baseline 

Emissions since the late nineteenth century to 2016 amount to around 565GtC, and 
annual emissions in 2016 were around 9.9GtC/yr (Le Quéré et al., 2016). Whilst the 
main interest is in the influence of shifting costs between enduring and transitional 
components, to illustrate the impact of adaptability in the energy system, a number of 
other assumptions are necessary and chosen in part to facilitate comparison of the 
conventional cost case (with non-adaptive abatement costs) with other modelling 
works in the field.  

• Climate change damage $3trn/yr for one degree additional temperature 

increase (an additional 500GtC emission). The cost associated with any 
given degree of atmospheric change is extremely uncertain and needs to factor 
in corresponding issues of risk. If an additional 500GtC (from present) emis-
sions increases global average temperatures to 2 deg.C above pre-industrial 
levels, $3trn/yr damages amounts to around 2% of projected global GDP in the 
corresponding decades (around or soon after 2050); this is towards the high 

                                                 
33 For simplicity we have omitted the temperature lag as being not material to the analysis, as indicated in note 32; 
it is equivalent to a reduction in d, which is a highly uncertain parameter, by just a few years discounting). 



 

 

40 

 

end of ‘classical economic’ estimates, but modest compared to many other es-
timates which place more weight on risks, non-linear responses and the welfare 
of future generations, for example.34  

• Real discount rate 2.5%/yr.  This is a compromise between the ‘prescriptive’ 

and the ‘descriptive’ rates, though leaning more towards the latter. This leads 

to significant discounting of costs after a few decades. Note that when the emit-
ting system is ‘pliable’, the results suggest that the economic case for substan-
tial action is not so dependent on the valuation of damages – either the absolute 
damage assessment, or weighting thereof through eg. very low (Stern-type) 
discounting assumptions or related distributional assumptions.   

• Reference emissions growth 120MtC/yr. Global emissions growth has 
tended to be approximately linear over extended periods, whilst fluctuating sig-
nificantly. There are various reasons why emissions growth is not exponential 
and is even less likely to be so in the future.  We thus use linear projections for 
the reference case, and emissions are reduced relative to this:  

𝜀𝑟𝑒𝑓(𝑡) = 𝜀0 + 𝜀1 ∙ 𝑡  

where 𝜀1 is the linear growth rate. Over the past few decades the average in-
crease of fossil fuels CO2 has been about 1.5% of 2010 emissions, were sub-
stantially higher in the early 2000s (with the Asian boom, before the energy 
price rises and the credit crunch) but have since paused (due to structural 
changes and growing abatement efforts), whilst the dramatic cost reductions in 
renewable sources are likely to contain future growth. Also historical data al-
ready include the impact of extensive energy efficiency measures. We take as 
a reference (no action) case a view in which global emissions rise at approxi-
mately 120MtC/yr: = 1.2 % of annual CO2 emissions over 2014-16, which is 
slower than historical trend but well within the range of IEA projections.  

9.4. Illustrative Abatement costs parameters  

We are left with the question of how to parametise the abatement cost parameters. 
There is a huge literature on abatement costs, but hardly any of it examines 
transitional costs – and, as noted, a core part of our argument is that the traditional 
measures actually comprise both enduring and transitional costs.  

To address these, we estimate abatement cost parameters with reference to a 50% 
cut in global emissions from recent (2014-16) levels as follows. We reference 
abatement costs to the existing economics literature, integrated over a specific time 

                                                 
34 A review by Tol (2015, Table 1) summarises standard estimates of climate damage by classical economists, but 
curiously omits many other views including those of Stern (2013), Weitzman (2012), Ackerman and Munitz (2012), 
Hope (2013) and Pindyck (2013) which place more emphasis upon risk aversion, ethically-grounded discount rates, 
and numerous other factors; and which are now complemented by Pezzey (2017) who argues that the value is 
truly and deeply unknowable, particularly at the higher ends. 
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period, but estimate the coefficients from two possible extremes of assumptions about 
the actual source of these costs:  

  

• Purely ongoing costs (no transitional component: CB =0): 50% cut in global 
CO2 emissions (from recent levels) by 2050 costs 1.5% of projected GDP, 
around at $2trn/yr) This corresponds approximately to central estimates by a 
number of the more detailed energy system models in recent comparative stud-
ies (eg. the AMPERE studies reported in Kriegler et al 2015) 35.  

• Purely transitional costs (no ongoing component: CA =0): the same cutback, on 
a linear trajectory of abatement, results in the same total integrated cost over 
the period 2015-2050; however, these are attributed as transitional costs of 
reorienting the energy system over these decades.  

The analysis in Grubb et al (2018) estimates the adjustment timescale of energy 
systems to price shocks has been at least 25 years, but notes that this is still 
incomplete adjustment: they suggest a characteristic timescale of fuller adjustment at 
30-40 years.  Here, we fix the characteristic timescale of adjustment used for the 
above comparison at 𝑡̂ = 35-year time horizon, which is an empirically reasonable 
estimate of the characteristic time constant of major transformations in energy 
systems, and corresponds to a depreciation rate of 2%/yr. 36   This matches the 
timescale from 2015 to 2050, on which many published mitigation cost estimates are 
reported.  

 

Thus for the cost parametrisation, we incur the cost indicated over the specified 
35-year abatement schedule, to 2050.  As indicated above, the overall abatement cost 

is 𝛼̂𝐴(1 − 𝜎)𝜇2 + 𝛼̂𝐵𝜎𝜇̇2   and 𝛼̂𝐵 =
𝛼̂𝐴𝑡̂

2

3
= 408 𝛼̂𝐴 , so the general cost form is: 

𝛼̂𝐴[(1 − 𝜎)𝜇
2 + 408𝜎𝜇̇2] .  For a system with no capacity to adapt to emission 

constraints (𝜎 = 0) we recover the classical form of abatement cost curve 𝛼̂𝐴𝜇2. For a 
fully pliable system (𝜎 = 1; CA = 0), the costs incurred from such an emission reduction 
to mid-century are the costs of learning and related investments, inertia and pathway 
adjustments, so that by the end of this transition, there are no enduring costs 
associated with remaining at that level after 2050: the system has responded that far.   

                                                 
35 Kriegler et al (2015), Figure 9, indicates that a cumulative emission reduction of 60% below reference costs has 
an NPV policy cost of about 1.7% GDP in the MESSAGE and MERGE-ETL models, and 1.3 – 1.5% GDP in the 
IMAGE and DNE21 models.  Several other models do give higher numbers.  However, cumulative emission 
reduction of 60% clearly implies much greater reductions by 2050; also note that renewable energy costs in 
particular have declined significantly even since these studies were carried out. 
36 The data collected in Grubb et al (2017) indicates that the US took 1-2 “cycles” to adjust fully to the oil price 
shocks (with one cycle being about 25 years), and that adjustment processes in eastern Europe have been of 
similar timescales.  The parameters in Vogt-Schilb et al (2017) include depreciation rates for forestry and buildings 
well below 2%/yr, and energy at 2.5%/yr, but the latter is based mostly on power plants and does not take full 
account of e.g. transmission systems and other system / infrastructure dependences. 
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Beyond simply deriving the cost coefficients in this way, a great deal of insight can 
be gained simply by comparing the results of these two opposing conceptual 
assumptions – contrasting the two extremes of zero pliability, or total pliability.   

These are the cases shown in bold lines (dashed and solid respective) in the 
results below.  The latter appears as a radical assumption, but it reflects many of the 
observations in the previous section about the apparent capacity of energy systems 
to adjust; recall, moreover, the projections of the International Energy Agency, which 
estimate that the additional investment costs of such an emission reduction scenario 
are almost exactly offset by the cost savings in the fossil fuel industries. We emphasise 
however that we are not assuming this but offering it to illustrate the implications of 
such a fully pliable energy system.  

It is of course quite likely that reality lies somewhere between, and hence a 
particular interest might be in our mid-scenario, in which the costs are weighted 50:50 
between the ongoing and transitional components, i.e. pliability 𝜎 = 0.5.37  

9.5. Illustrative Results  

Figure 2 shows the optimal trajectories of emissions and cumulative emissions. 
For the classical, non-adaptive/low inertia case (zero pliability), there is a substantial 
jump of initial abatement which then increases slowly as climate damages accumulate. 
The effort is defined by distance from the default trajectory, and the abatement cost 
directly reflects the assumed ‘social cost of carbon damages’ as discounted.   

 

 
Figure 2 Implications of pliability (adaptability and inertia) for abatement trajectories. 
Notes: The Figures show the least-cost global response given different assumptions about the structure 
of energy systems costs. The panels show trajectories of annual (left) and cumulative (right) CO2 emis-
sions (in GtC). The violet lines reflect classical assumptions in which abatement costs relate purely to 
the degree of abatement, relative to baseline global emissions that are steeply rising (the top line in the 
emission figures). The lower red lines reflect a fully pliable system, in which abatement costs (the de-
gree of effort) relate to the rate of abatement, but shift the trajectory thereafter. The blue line in between 
                                                 
37 Going further requires some estimate of how much of the apparent costs of any given path may actually be 
ongoing, and how much are transitional (with enduring benefits). Further discussion is given in the authors’ book 
Planetary Economics (Grubb, Hourcade, & Neuhoff, 2014). 
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reflects a mixed case. The blue range corresponds to a variation of the marginal cost of damages, using 
a minimum and maximum factors of 0.5 (upper trajectory – less abatement) and 2 (bottom trajectory – 
more abatement), respectively. For assumptions see text. The fully pliable case results in steadily de-
clining global emissions, reaching zero in the second half of the Century (left panel) and limiting the 
additional cumulative emissions to less than 1000GtC (right panel). 

 

The combination of such assumptions means that after the initial prompt cutback, 
global emissions continue to rise, as shown in the top ‘classical case’ (violet) lines; the 
abatement cannot keep pace with the rising emissions of the reference case. This is 
broadly the result that emerged from many of the modelling studies embodying 
classical assumptions (particularly prior to the debates provoked by the Stern Review, 
which have tended to increase the damage estimate). Cumulative emissions by the 
end of the century reach around 1400GtC. 

In contrast, if the energy system itself is highly adaptive in the long run (offset by 
high inertia as discussed), the pattern is quite different (‘fully pliable system’, red lines 
as indicated in Figure 2). The deviation from the default trajectory rises to exceed the 
‘steady state’ level of the classical case after 10-15 years, and it carries on diverging 
at a rate which does not slacken. The optimal response in this case involves global 
emissions halving before 2050 and continuing to decline, reaching zero before the 
end of the century. The corresponding cumulative emissions reach around 900GtC, 
after which atmospheric concentrations slowly start to decline.  

Note that the assumed marginal damage associated with a given degree of climate 

change in the two cases is identical by 2050. It is the dynamics of response that differs. 
At first glance, this appears to be somewhat paradoxical – one might suppose that the 
effort would be less when inertial/transitional costs increase. Yet this is not the case, 
because abatement in the pliable case is associated with an enduring change in 
trajectories. The benefits are not only those of the immediate emission reduction, but 
they extend over time - initial efforts carry through to a pattern of more extensive 
abatement spanning over decades. 

The intermediate cases allow for the possibility that we continue to develop fossil 
fuels in ways intrinsically cheaper than the alternatives. This contrasts with the fully 
pliable assumption that systems have huge capacity to innovate, evolve and respond 
over time, and that there is no inherent reason why a system based on fossil fuels 
should ultimately be cheaper than one that is based on more intensive energy 
efficiency and zero carbon energy resources.  

Figure 3 then shows the corresponding abatement investment and climate damage 
over the century.  
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Figure 3 Implications of adaptability and inertia for abatement trajectories and effort (see notes to Fig-
ure 2.)  

In the classical (non-adaptive, no inertia: i.e. zero pliability) case, for the given 
assumptions, optimal expenditure on abatement starts at just $250bn/yr and then rises 
steadily over the century.   

The optimal investment of initial action – to be more precise, the effort worth 
exerting – is more than twice as big if the system is fully pliable, because in addition 
to the direct value of emission reductions, there are benefits from both the cost-
reduction response of the emitting system (i.e. abatement costs coming down in 
response to learning and infrastructure investment) and the avoided costs of 
overcoming future inertia. However, after a few decades the effort needed starts to 
decline, as the system moves closer towards atmospheric stability. For the given 
assumptions, the initial effort is around $700bn/yr and declines towards $400bn/yr by 
the end of the century. This shows that responses which help to adjust the long-run 
trajectory may be more valuable than the value of cutting emissions alone. In this 
example, they are worth more than twice as much.  

The corresponding costs of climate damages are illustrated in the right panel of 
Figure 3. In the classical, non-adaptive case, the level of damages arising from the 
‘optimal’ response increases to around $6trillion/yr by the end of the century, since 
emissions carry on rising. In the fully pliable case, the damages stabilise around 
$2trn/yr. For optimal responses, the total equivalent-cost by the end of the century is 
thus less than $3trn/yr for a pliable energy system, and over $8trn in the opposite case.  

The importance of this is not so much the absolute numbers, but rather the more 
generic headline insights (the absolute numbers are interesting, but completely 
dependent on assumptions).38  

                                                 
38 Technically-minded readers may wish to email the authors for a copy of the model (which is implemented in 
MatLab) and experiment with different assumptions, including those on damage-equivalence and discount rates 
which can have a strong bearing on the absolute results, and to compare energy-related assumptions with other 
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10. Conclusion 

Energy systems are characterised by both learning and inertia: energy technology 
costs have generally declined with investment, and there is wider evidence of the 
capacity of systems to respond, but this requires substantial investment and involves 
a range of other transitional costs. Whilst most operational changes can happen 
rapidly and are irreversible, long-term energy futures are dominated by investment, 
and for example low carbon scenarios are characterised by radically different 
investment structures. Most new supply investments in particular embody the 
development of whole new industries and long-lived assets (like the systems they 
displace), and also considerable technological change and scale economies.   

To date, most such developments have been driven by technology-specific 
supports or regulatory programmes. These have helped to radically reduce the cost 
of key low carbon technologies, but have also required large investments and 
government direction.  As the costs have come down and scale grows, there is a case 
to consider again the economics of technology neutral policies, based on direct 
emission constraints or carbon pricing. This however is only credible if analysis 
encompasses the demonstrated potential for investment-related learning, and takes 
account of transitional / investment costs at a whole systems level.  

Most of the models applied to global energy-environment studies, however, have 
little or no direct representation of costs related to the rate of change, and often make 
exogenous assumptions about technology costs, implying no investment-related 
learning. Temporal effects in such models arise indirectly, either as a result of 
optimisation with discount rates; imposed constraints on rates of change (such as 
exogenous and often arbitrary constraints on the growth of new sources); or attention 
to just one dimension, in terms of capital stock lifetime.  

We have explored in depth the characterisation of both learning associated with 
investment, and the various sources of inertia. We have argued that the conjoined 
effects of inertia and learning deserve far more direct attention in energy systems 
modelling, in particular for example, concerning some of the more ambitious climate 
change goals.  We have thus attempted a systematic study of potential sources of 
inertia and the mathematical forms they might take, consistent also with learning, in 
optimisation frameworks.  

We show that when learning is instantaneous, it has no direct effect on optimal 
timing. However, time appears through effects of capital displacement; the investment 
in productive capital to manufacture the energy-producing equipment; and the 
business and network investments required to support diffusion of technologies.  

                                                 
studies with strong empirical content such as those by the International Energy Agency.  A good analysis of how 
results in such modelling depend on key assumptions – and the consequent implications of uncertainty for 
estimates of the ‘social cost of carbon’ – is given in Hope (2012).   
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These terms appear as costs related to the time derivative of the pathway of 
abatement, i.e. rate of change.  

We refer to the inherent tension between adaptability and inertia as the pliability of 
the system. One essential insight from the resulting modelling is that an adaptive 
emitting system, in which costs decline in response to learning and infrastructure 
investments, can greatly lower the overall costs associated with climate change – both 
impacts and responses - but only if requisite effort is put up-front into changing course. 
Given this, it also serves to narrow the gulf between the “cost/benefit” and the “security” 

approach to the problem: a pliable emitting system implies that the costs of remaining 
‘secure’ – or of avoiding many $trns of climate damages - will end up much lower than 
classical approaches suggests.  With an energy system that is largely adaptive, either 
approach to the costs and risks of climate change then yield similar conclusions about 
the benefits of strong action. 

As the results here show, the extent to which energy systems are indeed adaptive 
is a very important economic question.  Unquestionably, the degree of adaptability 
and the determinants (and parametrisation) of inertia deserve more attention. The idea 
that energy and other emitting systems have no capacity to learn and respond to 
constraints and incentives is clearly inconsistent with the evidence; this paper shows 
how much this matters.   

Ultimately, attention to learning and inertia result in smoother time profiles of 
abatement, but also substantially higher investment efforts early on to build up new 
capabilities and change the course of the energy and other emitting systems, as early 
and smoothly as possible.  
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Appendix 1. Maximising output with fuel switching 

To evaluate the general case of fuel switching we can define a Constant Elasticity of 
Substitution (CES) function in which substitution occurs between fuels used to 
produce output, 

 Y = 𝜑0(𝐽𝐶
𝜂 + 𝐽𝐹

𝜂)
1
𝜂 , 

 

 
(27)  

where Y is output, 𝐽𝐶 is clean fuel use, and 𝐽𝐹 is the more carbon intensive fossil fuel, 
both for production, 1/(1-𝜂) is the substitution elasticity (−∞ < 𝜂 < 1) , and 𝜑0 is a 
constant productivity factor.  

For simplicity, we maximise Y with a budget constraint, 𝑋 = 𝑝𝐶𝐽𝐶 + 𝑝𝐹𝐽𝐹, with 𝑝𝐶 , 𝑝𝐹 
fuel prices.  

The Lagrangian is L = Y −  λX, with λ an arbitrary Lagrange multiplier. We consider 
that total fuel use J = JC + JF  does not depend on the scenario considered. In 
equilibrium, we obtain: 

 λpC = φ0(JC
𝜂 + JF

𝜂)
1
𝜂
−1
JC
𝜂−1  and  λpF = φ0(JC

𝜂 + JF
𝜂)
1
𝜂
−1
JF
𝜂−1 

 

(28)  

We want to know what is the cost to the economy of switching fuels. Denoting fuel 
combustion emissions reductions μ in tonnes of CO2/y, this is 

 
dY

dμ
=
∂Y

∂JC

dJC
dμ
+
∂Y

∂JF

dJF
dμ

 (29)  

We assume that the economy uses a total amount of fuel J = JC + JF (in e.g. GJ), 
and that these fuels have carbon contents βC and βF (in MtCO2/GJ). In a baseline 
scenario, clean fuels are not used, and J = JF. When changes in the use of fossil fuels 
is compensated by clean fuels, we can write emissions as (assuming constant total 
fuel use J): 

 μ = JβF − (JCβC + JFβF) =  JC( βF − βC) = (J − JF)( βF − βC) (30)  

The terms of (33) are: 

 
∂Y

∂JC
= λpC ,    

∂Y

∂JF
= λpF ,   

dJC
dμ
|
J

=
1

( βF − βC)
 ,   
dJF
dμ
|
J

=
−1

( βF − βC)
, (31)  

And therefore, in equilibrium, 

 
dY

dμ
=
λ(pC − pF)

βF − βC
,   (32)  
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Which thus requires that λ ~ JC in order for the cost to scale correctly in terms of 
fuel expenditure. We see that in equilibrium, the cost of reducing emissions through 
fuel switching, per ton of carbon, is proportional to the price difference between the 
fuels (assuming that the clean fuels are more expensive). The total cost per year is 
linear in both the emissions reductions, in a very intuitive form, 

 𝑐𝐹𝑆 =  μ
dY

dε
∝ μ

(pC − pF)

βF − βC
. (33)  
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Appendix 2. Mathematics of abatement investment cost curves with 
instantaneous learning 

We give here the mathematical details of the calculations used to arrive at the first 
cost expression including learning-by-doing. The infrastructure cost calculation follows 
the exact same scheme however with a time derivative. 

ρk = abatement density: marginal abatement in sector k per unit of 
marginal cost 

ρk =
dμ

dIk
, μ = ∫ ρkdIk′

Ik
0

 

Uk = installed capacity in sector k 

Wk = cumulative production in sector k 

Ik = Investment cost on installed capacity in sector k 

βk= emissions intensity savings per unit of installed capacity 

 

We assume that abatement in sector k is proportional to installed capacity in the 
same sector: 

βkdUk = ρkdck = dμk 

Following the nomenclature of section 4, the total cost 𝑐𝐴  over all sectors k is 
determined by integration of the marginal cost over a pathway of technology 

development in each sector, and summed over all sectors: 

 𝑐𝐴 =∑∫ 𝐼𝑘(𝑈𝑘
′ )𝑑𝑈𝑘

′
𝑈𝑘

0𝑘

, (34)  

 The cost in sector k is, therefore, an integral along a technology pathway: 

CAk = ∫ Ikd𝑈𝑘
′

Uk

0

= ∫
Ik
βk
dμ

μk

μk−1

 

Equations (3) and (4) in section 3.2 show the total costs in the case without learning. 
If learning is taken into consideration, then the costs associated with sector k change 
as measures are applied. Denoting the initial MACC as 𝐼𝑘0, while the actual cost curve 
incurred, which continuously changes with increasing abatement, as 𝐼𝑘: 

Ik = Ik
0 (
Wk
0 +Wk

Wk
0 )

−bk

= Ik
0 (1 +

∫ (U̇k + 𝛿𝑘𝑈𝑘)dt
′t

0

Wk
0 )

−bk

= Ik
0 (1 +

∫ (μ̇k + 𝛿𝑘μ𝑘)dt
′t

0

βkWk
0 )

−bk

 

where  δk corresponds to a depreciation rate, meaning that new cumulative capacity 
at time t includes all additions as well as replacements for decommissioned units. The 
first term is simply μ𝑘 − μ𝑘(0)  ≈ μ𝑘 (μ𝑘 ≫ μ𝑘(0)), while the second,  



 

 

55 

 

∫ 𝛿𝑘μ𝑘(𝑡
′)𝑑𝑡′

𝑡

0

, 

produces a fixed value, the total abatement 𝐸̅ at the end of the projection period, a 
constant, times the depreciation rate 𝛿𝑘. We then have 

Ik = Ik
0 (1 +

μ𝑘 + 𝛿𝑘𝐸̅

βkWk
0 )

−bk

 

In cases where lifetimes are long in comparison to the time span of the analysis, such 
as in the electricity sector, 𝛿𝑘𝐸̅ ≪  μ𝑘 and we can safely neglect this term (see section 
3.3 for more details). Wk0 corresponds to the cumulative production in sector k before 
the abatement measures are implemented. Therefore, 𝛽𝑘𝑊𝑘0  is effectively the 
cumulative emission saving attributable to existing deployment of technology k. 
Replacing in CAk 

CAk = ∫
Ik
0

βk
(1 +

μ

βkWk
0)

−bk

dμ
μk

μk−1

 

Following the assumptions presented in section 4, equation (3), we assume Ik0 =
αAμ

γ, with αA being a scaling factor obtained from the MICC data. Setting θk = βkWk0: 

CAk = αA∫ μγ (
μ

θk
+ 1)

−bk

dμ
μk

μk−1

 

This integral is solved by parts: 

∫udv = uv − ∫vdu 

u = μγ  
yields
→   du = γμγ−1dμ 

dv = (
μ

θk
+ 1)

−bk

dμ 
yields
→    v =

θk
1 − bk

(
μ

θk
+ 1)

1−bk

 

Therefore: 

αA∫ μγ (
μ

θk
+ 1)

−bk

dμ
μk

μk−1

=
αAθkμ

γ

1 − bk
(
μ

θk
+ 1)

1−bk

|
μk−1

μk

− (
γαAθk
1 − bk

)∫ μγ−1 (
μ

θk
+ 1)

1−bk

dμ
μk

μk−1

 

The first term would be: 

αAθkμ
γ

1 − bk
(
μ

θk
+ 1)

1−bk

|
μk−1

μk

=
αAθk

bk

1 − bk
[μk

γ(μk + θk)
1−bk − μk−1

γ(μk−1 + θk)
1−bk] 

While the right hand side integral can also be solved by parts: 
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∫ μγ−1 (
μ

θk
+ 1)

1−bk

dμ
μk

μk−1

= ∫udv = uv − ∫vdu 

u = μγ−1  
yields
→   du = (γ − 1)μγ−2dμ 

dv = (
μ

θk
+ 1)

1−bk

dμ 
yields
→    v =

θk
2 − bk

(
μ

θk
+ 1)

2−bk

 

Therefore: 

(
γαAθk
1 − bk

)∫ μγ−1 (
μ

θk
+ 1)

−bk

dμ
μk

μk−1

= (
γαAθk
1 − bk

) (
θkμ

γ−1

2 − bk
)(
μ

θk
+ 1)

2−bk

|
μk−1

μk

− (
γαAθk
1 − bk

) (
(γ − 1)θk
2 − bk

)∫ μγ−2 (
μ

θk
+ 1)

2−bk

dμ
μk

μk−1

=
γαAθk

2μγ−1

(1 − bk)(2 − bk)
(
μ

θk
+ 1)

2−bk

|
μk−1

μk

−
γαAθk

2(γ − 1)

(1 − bk)(2 − bk)
∫ μγ−2 (

μ

θk
+ 1)

2−bk

dμ
μk

μk−1

 

Combining all the terms of CAk: 

CAk =
αAθk

bk

1 − bk
[μk

γ(μk + θk)
1−bk − μk−1

γ(μk−1 + θk)
1−bk]

−
γαAθk

2μγ−1

(1 − bk)(2 − bk)
(
μ

θk
+ 1)

2−bk

|
μk−1

μk

+
γαAθk

2(γ − 1)

(1 − bk)(2 − bk)
∫ μγ−2 (

μ

θk
+ 1)

2−bk

dμ
μk

μk−1

 

Solving the integral above requires to define the value of γ . In the classical 
approach of DICE model (Nordhaus, 2008), total abatement costs rise quadratically, 
which is equivalent to linearity of the marginal cost curve, i.e. γ = 1. In that case: 

CAk =
αAθk

bk

1 − bk
[μk(μk + θk)

1−bk − μk−1(μk−1 + θk)
1−bk]

−
αAθk

bk[(μk + θk)
2−bk − (μk−1 + θk)

2−bk]

(1 − bk)(2 − bk)

= (
αAθk

bk

1 − bk
) [μk(μk + θk)

1−bk − μk−1(εk−1 + θk)
1−bk

− (
1

(2 − bk)
) [(μk + θk)

2−bk − (μk−1 + θk)
2−bk]] 

Assuming μk,k−1 ≫ θk , we obtain: 
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CAk =
αAθk

bk

1 − bk
[(μk

2−bk − μk−1
2−bk) (1 −

1

(2 − bk)
)]

=
αAθk

bk

1 − bk
[(μk

2−bk − μk−1
2−bk) (

1 − bk
2 − bk

)] =
αAθk

bk

2 − bk
[(μk

2−bk − μk−1
2−bk)] 

 

 If γ = 2 , the integral becomes: 

CAk =
αAθk

bk

1 − bk
[μk

2(μk + θk)
1−bk − μk−1

2(μk−1 + θk)
1−bk]

− (
2αAθk
1 − bk

)∫ μ (
μ

θk
+ 1)

−bk

dμ
μk

μk−1

 

The right hand side integral can also be solved by parts: 

∫ μ(
μ

θk
+ 1)

1−bk

dμ
μk

μk−1

= ∫udv = uv − ∫vdu 

u = μ 
yields
→   du = dμ 

dv = (
μ

θk
+ 1)

1−bk

dμ 
yields
→    v =

θk
2 − bk

(
μ

θk
+ 1)

2−bk

 

Therefore: 

∫ μ(
μ

θk
+ 1)

1−bk

dμ
μk

μk−1

=
θkμ

2 − bk
(
μ

θk
+ 1)

2−bk

|
μk−1

μk

− (
θk

2 − bk
)∫ (

μ

θk
+ 1)

2−bk

dμ
μk

μk−1

 

Again, the left side would be: 

θkμ

2 − bk
(
μ

θk
+ 1)

2−bk

|
μk−1

μk

=
θk
bk−1

2 − bk
[μk(μk + θk)

2−bk − μk−1(μk−1 + θk)
2−bk] 

The last integral can be solved directly: 

∫ (
μ

θk
+ 1)

2−bk

dμ
μk

μk−1

= (
θk

3 − bk
) (
μ

θk
+ 1)

3−bk

|
μk−1

μk

= (
θk
bk−2

3 − bk
) [(μk + θk)

3−bk − (μk−1 + θk)
3−bk] 

Putting all together: 
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CAk =
αAθk

bk

1 − bk
[μk

2(μk + θk)
1−bk − μk−1

2(μk−1 + θk)
1−bk]

− (
2αAθk
1 − bk

) [
θk
bk−1

2 − bk
[μk(μk + θk)

2−bk − μk−1(μk−1 + θk)
2−bk]

− (
θk

2 − bk
)((

θk
bk−2

3 − bk
) [(μk + θk)

3−bk − (μk−1 + θk)
3−bk])] 

CAk =
αAθk

bk

1 − bk
{[μk

2(μk + θk)
1−bk − μk−1

2(μk−1 + θk)
1−bk]

−
2

2 − bk
[μk(μk + θk)

2−bk − μk−1(μk−1 + θk)
2−bk]

+ (
2(1 − bk)

(2 − bk)(3 − bk)
) [(μk + θk)

3−bk − (μk−1 + θk)
3−bk]} 

Doing the same approximation  μk,k−1 ≫ θk , we obtain  

CAk ≈
αAθk

bk

1 − b
{[μk

3−bk − μk−1
3−bk] −

2

2 − b
[μk

3−bk − μk−1
3−bk]

+ (
2

(2 − bk)(3 − bk)
) [μk

3−bk − μk−1
3−bk]}

= [μk
3−bk − μk−1

3−bk]
αAθk

bk

1 − bk
{1 −

2

2 − bk
+

2

(2 − bk)(3 − bk)
}

= [μk
3−bk − μk−1

3−bk]
αAθk

bk

1 − bk
{
6 − 5bk + bk

2 − 6 + 2bk + 2

(2 − bk)(3 − bk)
}

= [μk
3−b − μk−1

3−b]
αAθk

bk

1 − bk
{
2 − 3bk + bk

2

(2 − bk)(3 − bk)
}

= [μk
3−bk − μk−1

3−bk]
αAθk

bk

1 − bk
{
(2 − bk)(1 − bk)

(2 − bk)(3 − bk)
}

= [μk
3−bk − μk−1

3−bk]
αAθk

bk

3 − bk
 

 

By induction, it is possible to demonstrate that the general expression for the 
investment cost on sector k as a function of γ (being γ a natural number) is: 

CAk ≈ [μk
γ+1−bk − μk−1

γ+1−bk]
αAθk

bk

γ + 1 − bk
 

for low values of θk0 (which is typically the case of low carbon technologies) the 

ratio αAθk
bk

γ+1−bk
 does not suffer significant variations among sectors. Under those 

conditions, the total investment cost (calculated as the sum over k of the sectoral 
investment cost CAk) becomes a telescopic sum, where only the first and the last term 
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survive.  Assuming μk = μ and μ0 ≈ 0, we obtain the expression presented in equation 
(10) of section 3 (using 𝛾 + 1 − b = 3 − b  and 
 𝛽𝑊0 = θ).  

For the intermediate case where γ is between 1 and 2, this calculation is more 
complex and requires a numerical integral unless the simplification given above is 
made, but in which case the result is not very different from where γ equals 1 or 2. 
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Appendix 3 Mathematical formulation of the integrated model and 
assumptions 

The mathematical specification of the model outlined in this Appendix is as follows. 
 

• Emissions at time t  𝜀(𝑡) 
 

• Cumulative Emissions  𝐸(𝑇) =  ∫ 𝜀(𝑡)𝑑𝑡
𝑇

0
 

 
• Reference Emissions  𝜀𝑟𝑒𝑓 = 𝜀0 + 𝜀1 ∙ 𝑡 

 
• Marginal Damage (X=temp)39 𝐷(𝑡) = 𝑑1 ∙ 𝑋(𝑡) +

𝑑2

2
∙ 𝑋(𝑡)2 

 
• Cumulative Damage (r=real discount rate) 

 

    ∫ 𝑒−𝑟∙𝑡 ∙ 𝐷(𝑡)𝑑𝑡
𝑇

0
 

 
• Cost Abatement Type A: 

  𝐶𝐴(𝑡) = 𝛼𝐴 ∙ (𝜀𝑟𝑒𝑓(𝑡) − 𝜀(𝑡))
𝛾+1−b

≈ 𝛼𝐴 ∙ (𝜀𝑟𝑒𝑓(𝑡) − 𝜀(𝑡))
2
 

 
• Cumulative A. Cost Type A  ∫ 𝑒−𝑟∙𝑡 ∙ 𝐶𝐴(𝑡) 𝑑𝑡

𝑇

0
 

 
• Cost Abatement Type B:  

 

  𝐶𝐵(𝑡) = 𝛼𝐵 ∙ (𝜀1 − 𝜀̇(𝑡))
𝛾+1−𝑏𝑁 ≈ 𝛼𝐵 ∙ (𝜀1 − 𝜀̇(𝑡))

2 
 

• Cumulative A. Cost Type B ∫ 𝑒−𝑟∙𝑡 ∙ 𝐶𝐵(𝑡) 𝑑𝑡
𝑇

0
 

 
• Min. Function  F(t) = (𝐷(𝑡) +𝐶𝐴(𝑡) + 𝐶𝐵(𝑡))𝑒−𝑟∙𝑡 

 

• ∫ 𝐹(𝑡)𝑑𝑡
𝑇

0
= ∫ 𝑒−𝑟∙𝑡

{
 
 

 
 𝑑1 ∙ 𝐸(𝑡) +

𝑑2

2
∙ 𝐸(𝑡)2

+𝛼𝐴 ∙ (𝜀𝑟𝑒𝑓(𝑡) − 𝐸̇(𝑡))
2

+𝛼𝐵 ∙ (𝜀1 − 𝐸̈(𝑡))
2
}
 
 

 
 

𝑇

0
𝑑𝑡 

 
• Euler Lagrange Method to find the optimal trajectory 

 
𝜕𝐹

𝜕𝐸
−
𝑑

𝑑𝑡
(
𝜕𝐹

𝜕𝐸̇
) +

𝑑2

𝑑𝑡2
(
𝜕𝐹

𝜕𝐸̈
) = 0 

                                                 
39 To avoid confusion with the time horizon T in the model, X(t) is here used to denote temperature change; as 
explained in the text this is approximately proportional to cumulative emissions: X(t) = E(t) * 500.  In all the modelling 
work presented here we set d1 = 0, so that the focus is simply upon the quadratic damage function. 
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Quadratic Damage and type A abatement 
 

∫ 𝐹(𝑡)𝑑𝑡
𝑇

0

= ∫ 𝑒−𝑟∙𝑡 {𝑑1 ∙ 𝐸(𝑡) +
𝑑2
2
∙ 𝐸(𝑡)2 + 𝛼𝐴 ∙ (𝜀𝑟𝑒𝑓(𝑡) − 𝐸̇(𝑡))

2
}

𝑇

0

𝑑𝑡 

𝜕𝐹

𝜕𝐸
= (𝑑1 + 𝑑2 ∙ 𝐸(𝑡)) ∙ 𝑒

−𝑟∙𝑡 
𝜕𝐹

𝜕𝐸̇
= −2. 𝛼𝐴 ∙ (𝜀𝑟𝑒𝑓(𝑡) − 𝐸̇(𝑡)) ∙ 𝑒

−𝑟∙𝑡 
𝜕𝐹

𝜕𝐸̈
= 0 

Quadratic Damage and type B abatement 
 

∫ 𝐹(𝑡)𝑑𝑡
𝑇

0

=  ∫ 𝑒−𝑟∙𝑡 {𝑑1 ∙ 𝐸(𝑡) +
𝑑2
2
∙ 𝐸(𝑡)2 + 𝛼𝐵 ∙ (𝜀𝑟̇𝑒𝑓 − 𝜀̇(𝑡))

2
}

𝑇

0

𝑑𝑡 

 

∫ 𝐹(𝑡)𝑑𝑡
𝑇

0

=  ∫ 𝑒−𝑟∙𝑡 {𝑑1 ∙ 𝐸(𝑡) +
𝑑2
2
∙ 𝐸(𝑡)2 + 𝛼𝐵 ∙ (𝜀1 − 𝐸̈(𝑡))

2
}

𝑇

0

𝑑𝑡 

 
𝜕𝐹

𝜕𝐸
= (𝑑1 + 𝑑2 ∙ 𝐸(𝑡)) ∙ 𝑒

−𝑟∙𝑡 
𝜕𝐹

𝜕𝐸̇
= 0 

𝜕𝐹

𝜕𝐸̈
= −2. 𝛼𝐵 ∙ (𝜀1 − 𝐸̈(𝑡)) ∙ 𝑒

−𝑟∙𝑡 

Quadratic Damage and types A and B abatement 
 

∫ 𝐹(𝑡)𝑑𝑡
𝑇

0

= ∫ 𝑒−𝑟∙𝑡 {𝑑1 ∙ 𝐸(𝑡) +
𝑑2
2
∙ 𝐸(𝑡)2 +∙ 𝛼𝐴 ∙ (𝜀𝑟𝑒𝑓(𝑡) − 𝐸̇(𝑡))

2

+ 𝛼𝐵 ∙ (𝜀𝑟̇𝑒𝑓 − 𝜀̇(𝑡))
2
}

𝑇

0

𝑑𝑡 

∫ 𝐹(𝑡)𝑑𝑡
𝑇

0

= ∫ 𝑒−𝑟∙𝑡 {𝑑1 ∙ 𝐸(𝑡) +
𝑑2
2
∙ 𝐸(𝑡)2 + 𝛼𝐴 ∙ (𝜀𝑟𝑒𝑓(𝑡) − 𝐸̇(𝑡))

2

+ 𝛼𝐵 ∙ (𝜀1 − 𝐸̈(𝑡))
2
}

𝑇

0

𝑑𝑡 

 
𝜕𝐹

𝜕𝐸
= (𝑑1 + 𝑑2 ∙ 𝐸(𝑡)) ∙ 𝑒

−𝑟∙𝑡 
𝜕𝐹

𝜕𝐸̇
= −2. 𝛼𝐴 ∙ (𝜀𝑟𝑒𝑓(𝑡) − 𝐸̇(𝑡)) ∙ 𝑒

−𝑟∙𝑡 
𝜕𝐹

𝜕𝐸̈
= −2. 𝛼𝐵 ∙ (𝜀1 − 𝐸̈(𝑡)) ∙ 𝑒

−𝑟∙𝑡 
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