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Sensory deprivation in Staphylococcus aureus
Maite Villanueva 1, Begoña García 1,2, Jaione Valle 1,2, Beatriz Rapún1,2, Igor Ruiz de los Mozos 1,5,

Cristina Solano 1,2, Miguel Martí 3,6, José R. Penadés 3,4, Alejandro Toledo-Arana 1 & Iñigo Lasa 1,2

Bacteria use two-component systems (TCSs) to sense and respond to environmental

changes. The core genome of the major human pathogen Staphylococcus aureus encodes 16

TCSs, one of which (WalRK) is essential. Here we show that S. aureus can be deprived of its

complete sensorial TCS network and still survive under growth arrest conditions similarly to

wild-type bacteria. Under replicating conditions, however, the WalRK system is necessary

and sufficient to maintain bacterial growth, indicating that sensing through TCSs is mostly

dispensable for living under constant environmental conditions. Characterization of S. aureus

derivatives containing individual TCSs reveals that each TCS appears to be autonomous and

self-sufficient to sense and respond to specific environmental cues, although some level of

cross-regulation between non-cognate sensor-response regulator pairs occurs in vivo. This

organization, if confirmed in other bacterial species, may provide a general evolutionarily

mechanism for flexible bacterial adaptation to life in new niches.
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A key factor that determines the evolutionary success of a
living organism is the capacity to sense environmental
factors and to respond accordingly. Thus, all organisms

have evolved signal transduction mechanisms to establish “func-
tional connectiveness” between environmental cues and cellular
physiology. In the case of bacteria, two-component systems
(TCSs) are the primary means of the sensorial machinery1–3. A
canonical two-component signaling pathway contains a histidine
kinase (HK), which in response to extracellular stimuli, autop-
hosphorylates on a conserved histidine residue. The phosphory-
lated HK then binds and transfers the phosphoryl group to a
conserved aspartate residue on the response regulator (RR). The
phosphorylation of the RR activates an output domain, which can
then effect changes in cellular physiology often by regulating gene
expression, protein interactions, or enzymatic activities. The
molecular mechanisms underlying TCS signal transduction pro-
cesses have been exhaustively studied since the capacity of bac-
terial cells to sense and respond to changes in environmental
conditions is critical to understanding bacterial biology and
pathogenesis, and also because TCSs are considered suitable drug
targets to treat bacterial infections4.

The genome of most clinically relevant bacterial species usually
encodes multiple two-component HK-RR pairs, this number
being proportional to the genome size, the diversity of environ-
ments in which organisms live, and the complexity in cellular
differentiation5,6. Thus, bacteria inhabiting relatively stable host
environments, such as obligate intracellular parasites, possess few
or even none of these signaling systems, while bacteria able to live
in a variety of environments and bacteria with complex lifestyles
have dozens of unique TCSs, each one potentially responding to
different stimuli and thus activating a different cellular response.
The number of TCSs seems to expand primarily through a
mechanism of gene duplication and subsequent accumulation of
mutations that insulate the new pathways from the existing two-
component pathways7,8. The final consequence of this evolu-
tionary process is that bacteria gain the capacity to colonize a new
niche or improve the efficiency to grow under the conditions of
the existing niche. In principle, if the function of a TCS remains
exclusively devoted to sensing and responding to a specific
environmental signal, the process of acquiring TCSs should be
reversible and the successive removal of TCSs should simply
reduce the number of environmental conditions under which
bacteria are able to grow. This assumption has never been tested
because it is presumed that the accumulation of deleterious effects
caused by successive mutation of TCSs would convert free-living
bacteria into uncultivable species.

Staphylococcus aureus is an important human pathogen rou-
tinely isolated as a commensal organism living in different
niches, including skin, nares, and mucosal surfaces of more than
a third of the human population9. From these locations, S. aureus
easily leads to infections ranging from relatively mild cutaneous
infections to life-threatening infections such as pneumonia,
sepsis, septic arthritis, endocarditis, and osteomyelitis in people
predisposed with risk factors10. The versatility of S. aureus as a
pathogen relies on its capacity to sense, respond, and adapt the
expression of a large array of virulence factors in response to the
environmental cues that bacteria encounter in each tissue11–13.
For example, S. aureus is able to grow at a broad range of
temperatures (from 4 to 44 °C), oxygen levels, pH (from 4.5 to 8),
salt concentrations (up to 15% w/v NaCl), and desiccation
conditions. Taking all the above into account, we selected S.
aureus to investigate the following questions related to the TCS
network: (i) which is the minimal number of TCSs needed to
sustain life in a free-living bacteria?; (ii) are TCSs self-sufficient
and autonomous entities?; and (iii) does TCSs cross talk occur
in vivo?

Here, using a pioneering reductionist approach by which we
removed all TCS genes in two genetically independent strains, we
show that S. aureus deprived of the TCS network is able to survive
under growth arrest conditions and that a single TCS is sufficient
to sustain bacterial growth. We also show that each TCS works as
a self-sufficient and autonomous module able to confer adapta-
tion to a specific niche or environmental condition and that
cross-regulation between non-cognate sensor-RR pairs, though
rarely, occurs in vivo.

Results
Removal of the complete TCS network from S. aureus. We
initiated this study in an attempt to confirm the essentiality of
TCSs for bacterial survival by removing the complete TCS net-
work from S. aureus. The core genome of S. aureus encodes 16
TCSs (http://mistdb.com, http://www.ncbi.nlm.nih.gov/
Complete_Genomes/SignalCensus.html, http://www.p2cs.org)
6,14,15 (Fig. 1), most of which are constitutively expressed under
standard laboratory conditions (Supplementary Fig. 1). We
sequentially deleted the 15 non-essential TCSs, including the HK-
and the RR-coding genes, in two strain backgrounds, the
methicillin-resistant S. aureus (MRSA) MW2 strain and the
methicillin-sensitive S. aureus RN1 strain with a functional rsbU
gene (Fig. 2a). Note that a different deletion order was used in
each strain to avoid potential deleterious combinations. Deletion
of the walRK genes was not attempted at the beginning of this
study because it has been shown to be essential in S. aureus16,17.
The genomes of the resulting strains, named as ΔXV, were
sequenced to identify compensatory mutations that could have
arisen during the successive deletion process. We identified 10
and 5 mutations in the MW2 and RN1 derivatives, respectively.
However, the absence of common mutations between both strains
indicated that the deletion process did not appear to select for
particular genetic changes that influenced the behavior of the
mutant strains (Supplementary Table 1). Remarkably, ΔXV
mutant strains exhibited growth rates only slightly slower than
that of the wild-type strains under aerobic conditions at 37 °C
(Fig. 2b and Supplementary Fig. 2a). These data demonstrate that
S. aureus harboring a single TCS, walRK, is viable and shows a
very similar growth capacity compared to wild-type bacteria
when grown under standard laboratory conditions, providing
experimental evidence that most TCSs are dedicated to enhance
the flexibility and adaptability of bacteria to environmental sig-
nals, not being involved in the control of essential cellular
processes.

Phenotypic characterization of strains deficient in TCSs. We
next searched for phenotypes associated with the deletion of the
TCS network in S. aureus ΔXV. Analysis of the metabolic
capacities using API test revealed that S. aureus ΔXV strains
exhibited a deficiency only in the capacity to reduce nitrate to
nitrite (Fig. 2c and Supplementary Fig. 2b). In agreement with
these results, a global metabolomic profile showed that the
removal of the TCS network caused significant differences in the
concentration of only a few metabolites (Supplementary Data 1).
These metabolites are, in general, part of the metabolism of
amino acids and carbohydrates but they do not fit into any
specific metabolic pathway. S. aureus ΔXV also showed a growth
defect at 28 °C (Fig. 2d and Supplementary Fig. 2c); a growth
defect at pH 4.5 (Fig. 2e and Supplementary Fig. 2d); higher
susceptibility to detergents (Triton X-100 gradient; Fig. 2f and
Supplementary Fig. 2e); higher susceptibility to certain antibiotics
(Supplementary Table 2); and a strong deficiency in the capacity
to form abscesses in a mouse renal model (>1000-fold reduction
in bacterial load, p< 0.01, Mann–Whitney test; Fig. 2g).
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Furthermore, S. aureus ΔXV strain was highly attenuated since all
mice infected with the MW2 mutant strain survived after 50 days
of infection, while 50% of the animals inoculated with MW2 wild-
type strain died by day 21 post infection (Fig. 2h). Accordingly,
the expression of virulence factors (protein A and hemolysins)
was significantly reduced in ΔXV strains (Fig. 2i, j and Supple-
mentary Fig. 2f, g). Taken together, these results confirmed that
TCS signaling systems allow free-living bacteria to adapt to dif-
ferent environmental conditions, including life in animal hosts.

TCSs are self-sufficient regulatory entities. To investigate how
the complete TCS network operates as regards complementarity
between different TCSs, we analyzed the aforementioned phe-
notypes both in a collection of single mutants in each TCS and in
the collection of sequential mutants obtained during ΔXV con-
struction (Fig. 3a, b). Surprisingly, we observed that the different
ΔXV phenotypes appeared to be exclusively controlled by specific
TCSs. Thus, the results revealed that NreBC confers the capacity
to reduce nitrate to nitrite, VraSR is responsible for cell wall
resistance to Triton X-100, SrrAB allows adaptation to grow at 28
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Standard metabolic pathways analyzed using commercial API Staph galleries. Only the capacity to reduce nitrate to nitrite was affected in ΔXV
strain (arrowhead). d Bacterial growth on TSA medium at 28 °C. Serial dilutions were spotted on agar plates. e Growth curves in TSB medium at pH
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medium (CDM) detected by western blotting (full blot is shown in Supplementary Fig. 8). j Hemolysins production on sheep blood agar plates
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°C, GraRS is necessary to grow at a low pH, and ArlRS is
necessary for transcriptional activation of protein A expression in
chemically defined media (CDM18 and RPMI). Note that protein
A expression dependency on ArlRS in both chemically defined
media and in three genetically unrelated S. aureus strains is the
opposite to what it has been previously described in rich (tryp-
ticase soy broth; TSB) medium19 (Supplementary Fig. 3a and
Supplementary Fig. 4a). We further explored the functional
autonomy of TCSs by investigating the role of each TCS in the
absence of other members of the network. For that, we made use
of the ΔXV genetic background, which allows the generation of
derivatives, each one exclusively containing the query TCS
besides WalRK. Interestingly, the ectopic expression of a copy of
the corresponding TCS was sufficient to fully rescue each phe-
notype in ΔXV strain (Figs. 3c and 4). Thus, NreCB restored the
capacity to reduce nitrate to nitrite, VraRS restored the resistance
to Triton X-100, SrrAB restored the capacity to grow at 28 °C,
GraRS restored growth at a low pH, and ArlRS restored protein A
expression. For the analysis of the phenotype associated to S.
aureus ΔXV virulence deficiency, ectopic complementation was
not a useful strategy because the presence of the plasmid is not
guaranteed in the absence of antibiotic selective pressure during
the infection process. Thus, the virulence phenotype was analyzed
with selected derivatives of S. aureus ΔXV containing the agr
system (ΔXV+agr) or the srr system (ΔXV+srr) restored in the
chromosome. The agr system was chosen because of its major
role in the production of proteases, hemolysins, and other viru-
lence factors20, whereas the srr system was selected from its role
in the adaptation to hypoxic and nitrosative stress encountered
within the infected host21 (Supplementary Fig. 5). Evaluation of
the capacity of these strains to form abscesses in a mouse renal
model revealed that neither agr nor srr systems alone were

capable to restore S. aureus virulence, despite the fact that the agr
system rescued the production of hemolysins (probably δ-
hemolysin, since S. aureus MW2 is a weak producer of α-
hemolysin22). These results support the idea that survival in host
tissues during infection very likely implies adaptation to more
than one environmental condition and the production of several
virulence factors, which consequently involves the participation
of more than one TCS. Analysis of the dependency of specific
virulence factors’ expression on particular TCSs requires further
investigation.

Together, these results indicate that each TCS constitutes a self-
sufficient regulatory entity capable of sensing, responding, and
adapting to changes in a specific environmental condition. This
functional autonomy also helps to explain why the phenotypic
behavior of ΔXV strains is summarized as the sum of the
individual phenotypes that depend on each TCS, without any
synergistic cost to the bacterial fitness.

Genome-wide cross-regulation among TCSs in vivo. Studies on
the specificity in the signal transduction phosphotransfer process
have demonstrated that HKs typically exhibit a strong kinetic
preference for their cognate RRs23–29. However, the extent to
which cross-regulation occurs in vivo remains unclear, mainly
because the presence of dozens of TCSs in a bacterial cell makes
the analysis very complex. To answer this question, we reasoned
that if ectopic expression of a native RR was able to rescue a
phenotype in the corresponding single TCS mutant (defective
both in the HK and the RR pair), but not in ΔXV strain, this
might reflect the existence of cross talk from one or various non-
cognate sensor HKs present in the single mutant but absent in
ΔXV strain (Fig. 5a). To test this hypothesis, single mutant strains
in TCSs for which a phenotype was identified (nreCB, vraRS,
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arlRS, srrAB, and graRS), as well as the ΔXV strain, were com-
plemented with plasmids expressing the corresponding RRs. Note
that the existence of a phenotype in the absence of the TCS
implies that the TCS is active under the experimental conditions
used in the analysis. The results revealed that plasmids expressing
NreC, VraR, SrrA, and GraR were unable to restore the char-
acteristic phenotype either in the single or in ΔXV mutant strains,
at least under the laboratory growth conditions tested (Fig. 5). By
contrast, ArlR was able to restore protein A expression in the
single S. aureus ΔarlRS mutant but not in ΔXV mutant strain,
suggesting the existence of a cross talk between ArlR and a non-
cognate HK (Fig. 6a). We decided to further analyze this process.
We first confirmed that phosphorylation of ArlR is required to
induce protein A expression. For that, the single arlRS mutant
strain was complemented with a plasmid expressing the non-
phosphorylable ArlR D52A protein. As shown in Fig. 6b, ArlR
D52A allele was unable to activate protein A expression. Because
the phosphatase activity of HKs is, in many cases, a key
mechanism for eliminating the nonspecific phosphorylation of
their cognate RR, we analyzed the cross-activation of ArlR
expressed in a strain carrying the ArlS H242A allele. According to
previous studies with EnvZ, a HK from the same family as ArlS,
replacement of the conserved histidine-242 would remove the
kinase activity of ArlS preserving some level of phosphatase
activity on ArlR30,31. Interestingly, the resulting strain showed a
level of protein A expression similar to that observed in the single
arlRS mutant strain complemented with ArlR, suggesting that the
predicted phosphatase activity of ArlS H242A was unable to

suppress cross-regulation of ArlR by other HKs (Fig. 6b). Alter-
natively, another explanation for these results is that mutation of
the conserved histidine-242 might affect ArlS phosphatase
activity.

We next sought to identify the HKs responsible for the cross-
phosphorylation of ArlR in vivo. To address this, a set of 15
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different plasmids, each one containing the arlR gene in
combination with one non-cognate HK, were generated and
used to transform the ΔXV strain (Fig. 6c and Supplementary
Fig. 6). This strategy allowed us to identify GraS, in addition to
ArlS used as a control of the experiment, as the HK capable to
activate ArlR (Fig. 4 and Fig. 6c). As expected, activation of
protein A expression disappeared in the double arlS graRS
mutant (Fig. 6d, Supplementary Fig. 3b, and Supplementary
Fig. 4b). Because the antibiotic colistin is able to activate GraS32,
we tested whether stimulation of GraS with 50 μg ml−1 of colistin
was capable of activating ArlR-dependent protein A expression
(Fig. 6e, f). The results confirmed the activation of protein A
synthesis in ΔarlS and not in the wild-type and ΔarlS ΔgraRS
strains. These data provide an example of cross-regulation that
occurs at physiological protein levels and obeys to a natural input
stimulus to the HK in vivo that is undetectable in the presence of
the cognate ArlS. This is important because previous examples of
cross-phosphorylation between a non-partner HK and RR were
blind to input stimulus to the HK33–36. Interestingly, phosphor-
ylation of ArlR by GraS does not appear to be due to a close
phylogenetic relationship between them because the reciprocal
phosphorylation, i.e., phosphorylation of GraR by ArlS does not
detectably occur. Detailed system-level analysis with purified
proteins in vitro have shown that small number of residues in the
protein–protein interaction interface are responsible for the
strong kinetic preference of the HK for transferring or removing
the phosphate from the cognate RR pair8,23,25,27,37. Sequence
identity between GraS and ArlS is 29% and 30% when the HK
domain or the whole proteins are considered, respectively. Both
proteins belong to the HisKA family of HK and they have been
involved in the regulation of bacterial autolysis38, but they do not
share the key residues on the α1 helix responsible for specificity27
(Supplementary Fig. 7). Overall, these results indicate that cross
talk among different TCSs occurs in vivo.

TCSs are dispensable when bacterial growth is arrested. Intri-
gued by the finding that the entire TCS network, with the

exception of WalRK, can be removed without affecting S. aureus
viability, we focused our studies on the WalRK system. For this,
we replaced the promoter of the walRK genes with the isopropyl-
β-D-thiogalactopyranoside (IPTG)-inducible Pspac promoter in
ΔXV strains, generating strains ΔXVI* (Fig. 7a). In the absence of
IPTG, the expression of walRK is turned off and the cell is
deprived of the complete sensorial TCS network. The ΔXVI*
strains died when incubated in growth media without IPTG,
confirming that walRK remains essential for bacterial viability in
the absence of the remnant TCS network (Fig. 7b). For those
bacteria living in multiple niches, it is very likely that they often
end up in nutrient-scarce habitats. Nutrient deprivation causes
growth arrest and profound physiological changes39. Thus, we
sought to evaluate the necessity of WalRK TCS during starvation-
induced growth arrest. Overnight cultures of S. aureus wild-type,
ΔXV, and ΔXVI* strains (this last one grown in the presence of
IPTG) were washed and resuspended in phosphate-buffered sal-
ine (PBS), dried on the surface of 24-well plastic plates, and
incubated for 7 days at room temperature in the absence of IPTG.
Bacterial viability was reduced to 65%, 55% and 55% for S. aureus
wild-type, ΔXV, and ΔXVI* strains, respectively (Fig. 7c). Con-
sistent with this, depletion of the WalRK system in the wild-type
strain did not affect the capacity of bacteria to survive in these
conditions. From these experiments, we concluded that the TCS
signal transduction network is not required for coordinating all
the changes necessary to adapt bacterial physiology to starvation
and desiccation. Implicit in these results is that WalRK is essential
only when bacteria are dividing but dispensable when bacterial
growth is arrested. The existence of a TCS essential for bacterial
viability is rare and somewhat counterintuitive in that it would
seem to limit the conditions under which a bacterium can thrive.
It can be speculated that some TCSs might assume the control of
essential processes such as cell division, DNA replication, and
autolysis, because this provides direct access to the machinery
involved in stopping bacterial division when environmental
conditions are not adequate for growth. In this regard, Delaune
et al.40 showed that overexpression of a constitutively active form
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of WalR in S. aureus displayed a biphasic growth profile sug-
gesting that constitutive WalR activation becomes detrimental
once cells enter the stationary phase. Conversely, reduction of
WalRK levels in the bacterial cell resulted in increased resistance
to Triton X-100 and lysostaphin-induced cell lysis, and a sig-
nificant decrease in peptidoglycan biosynthesis, turnover, and cell
wall modifications41. It would be interesting to determine whe-
ther WalR plays a role in stopping bacterial division when
environmental conditions are not appropriate for replication.

Discussion
By using a systematic deletion approach, this work provides
experimental evidence supporting the idea that free-living bac-
teria do not need to constantly monitor environmental and
intracellular parameters for survival. In agreement with the fact
that some obligate intracellular bacteria lack TCS signaling, our
findings indicate that free-living bacteria can grow with a single

TCS, even though growth in the laboratory still implies changes
in culture parameters such as culture volume, dissolved oxygen
concentration, nutrient and product concentrations, pH, and cell
density. S. aureus ΔXV almost matches the definition of senseless
bacterium. However, it still contains additional signal transduc-
tion systems (Fig. 1b) that include the following: (i) GdpS, the
only GGDEF domain protein with a conserved GGDEF motif
that is apparently unable to synthesize the secondary messenger
c-di-GMP42,43; (ii) a c-di-AMP cyclase (Dac) and a phospho-
diesterase (GpdP) involved in c-di-AMP metabolism44; and (iii) a
Ser/Thr protein-kinase (Stk1) and two Ser/Thr protein-
phosphatases (Stp1 and RsbU). Among these signal transducers,
only Stk1 contains a transmembrane sensor domain that would
be capable of responding to extracellular signals. Hence, though
the capacity of S. aureus ΔXV strain to sense environmental cues
is certainly highly restricted, it is not null.

Taking advantage of our genetic approach, we have analyzed
genome-wide the specificity of TCS signaling pathways without
the interference caused by other members of the network. Our
data provide an example of cross-regulation of protein A
expression that occurs at physiological protein levels and obeys to
a natural input stimulus in vivo that is undetectable in the pre-
sence of the cognate sensor. In this case, and since protein A is a
moonlighting protein playing different relevant roles during S.
aureus infection45, the most likely interpretation is that different
TCSs may converge in controlling the expression of a key gene,
whose expression is absolutely required for bacteria under specific
and different environmental conditions. A further step will
require combining the systematic analysis of cross-regulation
in vivo with the spatial localization of the regulatory sensor-
regulator proteins.

We speculate that S. aureus ΔXV resembles a primitive sta-
phylococcal ancestor that, only after successive and sequentially
capturing TCSs, gained the capacity to colonize new environ-
mental niches. The set of TCSs present in S. aureus is conserved
in other closely related coagulase-negative staphylococcal species
such as Staphylococcus epidermidis and Staphylococcus haemoly-
ticus. However, Staphylococcus saprophyticus, a coagulase-
negative staphylococcus that is a common inhabitant of the
urinary tract, contains only 11 TCSs. S. saprophyticus frequently
causes uncomplicated urinary tract infections in young and
middle-aged female outpatients46 without the involvement of
indwelling catheters. The fact that S. saprophyticus colonizes a
very narrow niche of tissues compared to S. aureus, suggests that
the different abilities of S. aureus and S. saprophyticus to colonize
different body locations and cause infection may underlay at least
partially in the number of TCSs. Empirical evidence that the
acquisition of additional TCSs is a dynamic process is exemplified
by the presence of a new TCS in some highly pathogenic S. aureus
MRSA strains. The new TCS is homologous to the chromosomal
copy of kdpDE and is carried in the SCCmec mobile element47. A
definitive mechanistic insight in the process of acquisition of
additional TCSs is likely to require long-term evolutionary
experiments in which bacteria gain a selective advantage through
the acquisition of a new TCS. We anticipate that the S. aureus
ΔXV strain could represent an excellent model organism for this
purpose.

Methods
Bacterial strains, plasmids, primers, and culture conditions. Bacterial strains,
plasmids, and oligonucleotides are listed in Supplementary Table 3, Supplementary
Table 4, and Supplementary Table 5, respectively. Escherichia coli strains were
grown in LB broth (Pronadisa). S. aureus strains were grown in TSB (Pronadisa),
the chemically defined medium CDM (Hussain-Hastings-White modified med-
ium)18, and RPMI (Gibco Ref: 61870-010). When required for growth or selection,
the medium was supplemented with IPTG, 1 mM, or/and appropriate antibiotics at

a

IPTG + IPTG _

P

P

100

0

20

40

60

80

%
 S

ur
vi

va
l

WT Pspac::
walRK

ΔXV ΔXVI* ΔXV ΔXVI*

ΔXV ΔXVI*ΔXV

ΔXV

ΔXVI*

ΔXVI*

WT Pspac::
walRK

ns
ns

ns

ns
ns

ns

MW2 RN1

c

b
WT

+ _

IPTG

MW2

WT

+ _

IPTG

RN1

Fig. 7 Consequences of the removal of the complete TCS network in S.
aureus. a Scheme of the TCSs present in ΔXV and ΔXVI* strains. ΔXVI*
strain harbors the walRK operon under the Pspac IPTG-inducible promoter.
IPTG presence in the media controls the expression of walRK in this strain.
b Growth of S. aureus strains deficient in the TCS network at 37 °C in rich
media. Drops of serial dilutions from bacterial cultures were spotted on
TSA plates. IPTG was added to the media when indicated. c Survival of S.
aureus ΔXVI* during starvation-induced growth arrest. The percentage of
viable cells remaining after 7 days of growth arrest was determined.
Average and SD of three independent assays were recorded. Data were
compared using two-tailed nonparametric Mann–Whitney test (n= 3, ns=
no significant difference)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02949-y

8 NATURE COMMUNICATIONS |  (2018) 9:523 |DOI: 10.1038/s41467-018-02949-y |www.nature.com/naturecommunications

www.nature.com/naturecommunications


the following concentrations: erythromycin, 1.5 and 10 µg ml−1; ampicillin,
100 µg ml−1; chloramphenicol 10 µg ml−1; and colistin, 50 µg ml−1.

DNA manipulations and bacterial transformation. Routine DNA manipulations
were performed using standard procedures unless otherwise indicated. Plasmids
were purified using the NucleoSpin Plasmid miniprep kit (Macherey-Nagel)
according to the manufacturer’s protocol. FastDigest restriction enzymes and
Rapid DNA ligation kit (Thermo Scientific) were used according to the manu-
facturer’s instructions. Plasmids were transformed into E. coli XL1-Blue strain
(Stratagene) by electroporation and then introduced in S. aureus by electroporation
using a previously described protocol48. Staphyloccocal electrocompetent cells were
generated as previously described49. Transformation of final S. aureus strains with
pMAD and pSD3-3 plasmids were performed by phage transduction as described
previously50. Note that for transductions of plasmids to MW2 and RN1 strains,
ϕ85 phage and ϕ11 phage were used, respectively.

Transcriptome analysis by tiling arrays. Complete transcriptome maps from
several S. aureus strains obtained by tiling arrays and previously published51

(http://staph.unavarra.es/) were used to extract the transcriptional expression data
from TCS operons. Images from IGB software showing the regions of the genome
that encode the TCSs were extracted and shown separately (Supplementary Fig. 1).

Allelic exchange of chromosomal genes. To generate deletion mutants, we
amplified by PCR two fragments of at least 500 bp that flanked the left (primers A
and B, Supplementary Table 5) and right sequences (primers C and D, Supple-
mentary Table 5) of the region targeted for deletion. Chromosomal DNA from S.
aureus 15981 strain was used as genomic template and Biotools DNA polymerase
(Biotools) was used to carry out the PCR reactions. The PCR products (AB and CD
fragments or AD fragments obtained by overlapping PCR, depending on the TCS,
see Supplementary Table 5) were purified and cloned separately in the pGEM-T
Easy vector (Promega). Cloned fragments were digested, purified, and fused by
ligation into the shuttle vector pMAD52. pMAD ligations were electroporated into
E. coli XL1-Blue (Stratagene) generating the pMAD::TCSsAD plasmid collection
(Supplementary Table 4). Plasmids were purified from E. coli XL1-Blue and
transformed into S. aureus RN4220 by electroporation and then introduced to
MW2 and RN1 strains by phage transduction. Homologous recombination
experiments were performed as described53. Erythromycin-sensitive white colonies,
which did not further contain the pMAD plasmid, were tested by PCR using
primers E and F (Supplementary Table 5).

The pMAD::TCS14AD(RN1) plasmid was constructed as described above,
using kdp-RN1 primers (Supplementary Table 5) and RN1 chromosomal DNA as
template. This plasmid was used to perform the allelic exchange of kdpDE genes in
RN1 strain because the flanked sequences of the region targeted for deletion
differed significantly in this strain.

To restore deleted TCSs in the chromosome of ΔXV strain, the TCS and the
flanking sequences were amplified by PCR using primers A and D (Supplementary
Table 5). Chromosomal DNA from S. aureus MW2 strain was used as genomic
template and Phusion High-Fidelity DNA Polymerase (Thermo Fisher) was used to
carry out the PCR reactions. The PCR products were purified and cloned in the
pJET vector (Thermo Fisher Scientific). Cloned fragments were digested, purified,
and fused by ligation into the shuttle vector pMAD52. pMAD ligations were
electroporated into E. coli XL1-Blue (Stratagene) generating the pMAD::TCS
plasmids (Supplementary Table 4). Plasmids were purified from E. coli XL1-Blue
and transformed into S. aureus RN4220 by electroporation and then purified and
introduced into MW2 ΔXV strain by electroporation. Homologous recombination
experiments were performed as described53. Erythromycin-sensitive white colonies,
which did not further contain the pMAD plasmid, were tested by PCR using
primers E and F (Supplementary Table 5).

To generate the insertional mutation of the walRK operon, the mutation present
in RN4220 Pspac-yycF strain and generated by the insertion of the pSD3-3
plasmid17 was transferred by phage transduction to the wild-type and ΔXV strains,
generating Pspac::walRK and ΔXV Pspac::walRK (ΔXVI*) strains in MW2 and
RN1 strains. The resulting mutants harbored the entire walRK operon under the
control of the Pspac IPTG-inducible promoter and were grown in TSA
supplemented with Clo (10 µg ml−1). IPTG 1mM was added to allow the growth of
these strains. Plasmid insertion was confirmed by PCR using pSD3.3.1/WalR-Fw
primers (Supplementary Table 5).

Identification of spontaneous mutations in ΔXV strains. Identification of
genetic variations present in ΔXV strains relative to the corresponding wild-type
strains was carried out by computational comparison of genomic sequences gen-
erated by high-throughput sequencing. Briefly, genomic DNA was prepared from
an overnight culture of parental (MW2 and RN1) and mutant (MW2 ΔXV and
RN1 ΔXV) strains grown in TSB at 37 °C, as described previously54 and sequenced
on an Illumina Genome Analizer IIx instrument (Genomics Platform of CIBIR, La
Rioja, Spain). Reads (6M–9M 150 bp) were assembled de novo using SOAPde-
novo2 algorithm55. The reads were assembled into 466 contigs (>100 bp in size)
corresponding to 2 864 441 bp in length, with a N50 value of 16 063 and a GC
content of 32.67% for MW2; 236 contigs (>100 bp in size) corresponding to 2 856

644 bp in length, with a N50 value of 50 702 and a GC content of 32.76% for MW2
ΔXV; 283 contigs (>100 bp in size) corresponding to 2 839 577 bp in length, with a
N50 value of 60 685 and a GC content of 32.80% for RN1; and 292 contigs (>100
bp in size) corresponding to 2 807 518 bp in length, with a N50 value of 79 329 and
a GC content of 32.80% for RN1 ΔXV. Subsequently, contigs were ordered with
Mauve56 and consensus genomic sequences containing 35 contigs for MW2, 12
contigs for MW2 ΔXV, 17 contigs for RN1, and 17 contigs for RN1 ΔXV were
manually generated using SnapGene software version 3.0.3 (GSL Biotech LLC,
Chicago, USA). Finally, spontaneous and generated mutations present in ΔXV
strains relative to the corresponding wild-type reference sequences were analyzed
using the computational pipeline breseq57. Spontaneous mutations generated
during the construction of ΔXV strains are presented in Supplementary Table 1.

Growth kinetics. To compare the growth kinetics of bacteria and their growth
ability at a low pH, overnight cultures grown in TSB medium at 37 °C were diluted
in TSB to an OD600nm = 0.1, and 5 μl of the diluted culture were used to inoculate
96 microtiter wells (Thermo Fisher Scientific, Hemel Hempstead, UK) containing
195 μl of media per well (TSB pH 7 or pH 4.5, according to each case). Duplicates
were inoculated for each strain tested. Plates were incubated at 37 °C for 24 h and
the growth was monitored measuring the OD600nm every 30 min using the ther-
mostatizated spectrophotometer SpectraMAX 340PC (Molecular Devices). The
average and SD of three independent assays were plotted.

Biochemical characterization. API Staph galleries (BioMérieux) were used to
analyze bacterial metabolic patterns, according to the manufacturer’s instructions.
Homogeneous bacterial suspensions with turbidity equivalent to 0.5 McFarland
were prepared using the API Staph Medium. The microtubes were then filled with
the bacterial suspensions and the strip was incubated inside the incubation box at
37 °C for 24 h. Changes in bacterial metabolic patterns were analyzed comparing
results obtained with corresponding mutants and with the wild-type S. aureus
strain.

Quantitative metabolomics. Hydrophilic interaction liquid chromatography
(HILIC) was carried out on a Dionex UltiMate 3000 RSLC system (Thermo Fisher
Scientific) using a ZIC-pHILIC column (150 mm × 4.6 mm, 5 μm column, Merck
Sequant). The column was maintained at 30 °C and samples were eluted with a
linear gradient (20 mM ammonium carbonate in water, A, and acetonitrile, B) over
26 min at a flow rate of 0.3 ml min−1 as follows: 0 min 20/80 (%A/%B); 15 min 80/
20 (%A/%B); 15 min 95/5 (%A/%B); 17 min 95/5 (%A/%B); 17 min 20/80 (%A/%
B); and 24 min 20/80 (%A/%B). The injection volume was 10 μl and samples were
maintained at 5 °C prior to injection. For the mass spectrometry (MS) analysis, a
Thermo Orbitrap QExactive (Thermo Fisher Scientific) was operated in polarity
switching mode and the MS settings were as follows: resolution 70 000; AGC 1e6;
m/z range 70–1050; sheath gas 40; auxiliary gas 5; sweep gas 1; probe temperature
150 °C; and capillary temperature 320 °C.

For positive mode ionization: source voltage +3.8 kV; S-Lens RF Level 30.00; S-
Lens voltage −25.00 (V); Skimmer voltage −15.00 (V); Inject Flatopole Offset −8.00
(V); and Bent Flatapole DC −6.00 (V). For negative mode ionization: source voltage
−3.8 kV.

The calibration mass range was extended to cover small metabolites by
inclusion of low-mass calibrants with the standard Thermo calmix masses (below
m/z 138), butylamine (C4H11N1) for positive ion electrospray ionization mode
(m/z 74.096426), and COF3 for negative ion electospray ionization mode (m/z
84.9906726). To enhance calibration stability, lock-mass correction was also
applied to each analytical run. Positive Mode Lock masses, number = 3: Lock Mass
#1 (m/z) 83.0604; Lock Mass #2 (m/z) 149.0233; and Lock Mass #3 (m/z) 445.1200.
Negative Mode Lock masses, number = 1: Lock Mass #1 (m/z) 89.0244. For data
processing, instrument raw files were converted to positive and negative ionization
mode mzXML files. These files were then analyzed using the XCMS/MZMatch/
IDEOM pipeline to produce the IDEOM file58–60.

Growth at 28 °C. To establish growth kinetics at 28 °C, overnight cultures were
adjusted to an OD600nm of 1 and serially diluted in TSB. A volume of 5 μl of diluted
cultures were spotted onto TSA plates supplemented with the appropriate anti-
biotics if necessary, and plates were incubated at 28 °C for 24 h. Representative
pictures were taken.

Triton resistance test. Triton gradient agar plates (0–0.5%) were used to compare
the resistance phenotype against Triton X-100 (USB)61. OmniTray single-well
plates (NUNC) were filled with TSA 0.5% (v/v) Triton X-100, and a slope was
created when the media was still in liquid state. After media solidification, plates
were totally filled with TSA, generating the triton gradient. Overnight cultures of
the strains were diluted in TSB to an OD600nm = 0.4 and cell suspensions were
swabbed across the agar plates containing triton concentration gradients. Plates
were incubated at 37 °C for 24 h. Triton sensitivity was observed as a growth
deficiency on the concentrated area of the plate.
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Antibiotic resistance. Antimicrobial susceptibility tests were performed at the
University Clinic of Navarra. Antibiotics routinely used in clinic for the treatment
of S. aureus infections were tested using VITEK 2 system (bioMérieux) according
to the manufacturer’s instructions.

Mouse infection models. Strains were cultured overnight in TSA plates at 37 °C
and a single colony was resuspended into 5 ml of PBS to an OD600nm = 0.2 (1 × 108

colony-forming units (CFU) per ml). For the kidney colonization assays, 5-week-
old CD1 female mice (Charles-River) were inoculated by eye vein injection with
100 µl (1 × 107 cells) of these diluted suspensions of S. aureus. Groups of seven
mice were used for each strain tested. After 1 week, mice were euthanized and
kidneys were removed. Pictures of the kidneys were taken to show abscess for-
mation and then the organs were homogenized in PBS (9 ml g−1), serial dilutions
were performed and spread on TSA plates in triplicate for determination of the
number of CFU per organ gram. For survival assays, 5-week-old CD1 female mice
were inoculated by eye vein injection with 100 µl (1 × 107 cells) of diluted sus-
pensions of S. aureus. Groups of seven mice were used for each strain tested. Mice
death was monitored every day for 7 weeks.

Animal studies were performed in accordance with the European Community
guiding in the care and use of animals (Directive 2010/63/EU). Protocols were
approved by the ethics committee of the Public University of Navarra (“Comité de
Ética, Experimentación Animal y Bioseguridad” of the Universidad Pública de
Navarra). Work was carried out in the animal facility of the Instituto de
Agrobiotecnología, Universidad Pública de Navarra. Animals were housed under
controlled environmental conditions with food and water ad libitum. Mice were
euthanized by CO2 inhalation followed by cervical dislocation and all efforts were
made to minimize suffering.

In these animal studies randomization methods were not used, and authors
were not blinded to the group allocation during the experiment and when assessing
the outcome.

Protein A expression analysis. To analyze protein A expression in CDM and
RPMI media, overnight cultures were adjusted to an OD600nm of 0.1, diluted 1/40 in
CDM or RPMI media, respectively, and incubated at 37 °C without shaking for 24
h in sterile 24-well polystyrene microtiter plates (Sarstedt). A volume of 12 ml of
these bacterial cultures were centrifuged and pellets were washed with PBS and
resuspended in 120 µl PBS. Then, 1 µl of lysostaphin 10 mgml−1 (Sigma) and 1 µl
of TURBO DNase 2 units per ml (Ambion) were added. After 5 h of incubation at
37 °C, cell lysates were centrifuged and supernatants were collected. Protein con-
centration was determined with the Bio-Rad protein assay (Bio-Rad). Samples were
adjusted to 3–5 µg of total protein and one volume of Laemmli buffer was added.
Protein extracts were denatured by boiling at 100 °C for 5 min. Proteins were
separated on 12% SDS-polyacrylamide gels and stained with 0.25% Coomassie
brilliant blue R250 (Sigma) or Criterion TGX Stain-Free Precast Gels (Bio-Rad
Cat#5678044). For western blotting, proteins were transferred onto Hybond-ECL
nitrocellulose membranes (Amersham Biosciences) by semi-dry electroblotting.
Membranes were blocked overnight with 5% skimmed milk in PBS with 0.1%
Tween 20, and incubated with goat anti-mouse secondary antibodies labeled with
horseradish peroxidase (Sigma) diluted 1:2500 for 1 h at room temperature. Protein
A was detected with the SuperSignal West Pico Chemiluminescent Substrate
(Thermo Fisher Scientific). To analyze protein A expression in TSB medium,
overnight cultures were grown in TSB medium at 37 °C with shaking at 200 rpm. A
volume of 5 ml of bacterial cultures were centrifuged and pellets were washed with
PBS and resuspended in 120 µl PBS. Then, cells were lysed and protein extracts
were prepared as described above. Protein A expression was detected as described
above. Densitometry quantification of the protein A western blotting bands from
MW2 and ΔarlS strains growing in the presence or absence of colistin was
determined using ImageJ program. Ratios of the protein A band intensity from the
strains growing in the presence or absence of colistin were calculated dividing the
protein A band intensity from the strain growing in the presence of colistin by the
protein A band intensity from the strain growing in absence of colistin. The
average and SD of three independent assays were recorded.

RNA extractions. To analyze the spa RNA levels in CDM medium, overnight
cultures were adjusted to an OD600nm of 0.1, diluted 1/40 in CDM medium, and
incubated at 37 °C without shaking for 24 h in sterile 24-well polystyrene microtiter
plates (Sarstedt). A volume of 12 ml of these bacterial cultures were centrifuged and
pellets were frozen in liquid nitrogen and stored at −80 °C until needed.

To analyze the spa RNA levels in TSB medium, overnight cultures were grown
in TSB medium at 37 °C with shaking at 200 rpm. A volume of 5 ml of bacterial
cultures were centrifuged, the pellets were frozen in liquid nitrogen, and stored at
−80 °C until needed. Total RNA from bacterial pellets was extracted using the
TRIzol reagent method as described62. RNA concentrations were quantified and
RNAs were stored at −80 °C until needed.

Real-time quantitative PCR experiments. The spa RNA was quantified by real-
time quantitative PCR (RT-qPCR) using AriaMx Real-Time PCR System and
GoTaq 1-Step RT-qPCR System kit (Promega Ref: A6020). spa RNA was amplified
with spa-FW and spa-RV primers, and gyrB RNA was used as endogenous controls

using primers gyr-FW and gyr-RV63 (Supplementary Table 5). The specificity of
RT-qPCR products was monitorized through the analysis of melting curves and
electrophoresis. Only samples with no gyrB amplification of the minus reverse
transcriptase aliquot were considered in the study. The amount of spa RNA was
expressed as 2−ΔΔCt, where ΔCt represents the difference in threshold cycle
between the target and control (gyrase) genes and ΔΔCt represents the difference
in ΔCt between the studying strain and the wild-type strain.

Hemolysis assay. To analyze hemolysins production, overnight cultures grown in
TSB medium at 37 °C were diluted in TSB to an OD600nm of 1, and 5 μl of diluted
cultures were spotted onto 5% sheep blood Columbia agar plates (bioMérieux) and
5% rabbit blood TSA plates (TSA from Pronadisa supplemented with defibrinated
rabbit blood). Plates were incubated at 37 °C for 24 h. Hemolysins production was
observed by the appearance of a clear halo.

Quantification of nitrite production. Bacterial strains were cultured in TSB media
with 20 mM potassium nitrate (KNO3) under decreased oxygen tension conditions
that were created by growing the bacteria in 15 ml Falcon tubes completely filled
with medium64. Strains were incubated overnight at 37 °C with shaking (200 rpm)
and the presence of nitrites in the media was determined colorimetrically by the
Griess Reagent System (Promega) according to the manufacturer’s instructions. A
purple/magenta color indicates the presence of nitrites in the media. Representative
pictures were taken.

Construction of plasmids expressing HK and/or RR genes. To construct the
plasmids expressing the RRs, we amplified them by PCR using the corresponding
forward (Fw) and reverse (Rv) primers (Supplementary Table 5) and the MW2
chromosomal DNA as template. Forward primers carried a SalI-XhoI tail and
reverse primers carried a BamHI-XmaI-KpnI tail. PCR products were amplified
with Phusion® High-Fidelity DNA Polymerase (Thermo Fisher Scientific), purified,
and cloned in pCR®-Blunt II TOPO vector (Invitrogen). Fragments were then
ligated using SalI and KpnI enzymes in plasmid pCN51 (Pcad promoter)65 and
electroporated into E. coli XL1-Blue (Stratagene) to generate the pCN51::RRn
plasmid collection (Supplementary Table 4).

Similarly, HKs were amplified by PCR with the corresponding Fw and Rv
primers (Supplementary Table 5) and the MW2 chromosomal DNA as template.
Forward primers carried a BamHI tail and reverse primers carried a XmaI-AscI tail.
PCR products were amplified with Phusion® High-Fidelity DNA Polymerase
(Thermo Fisher Scientific), purified, and cloned in pCR®-Blunt II TOPO vector
(Invitrogen).

For the construction of plasmids expressing a combination of HKs and RRs,
TOPO HKn plasmids were digested with BamHI and XmaI enzymes, and the
BamHI/XmaI module, containing the HK, was transferred to the corresponding
plasmid pCN51::RRn and electroporated into E. coli XL1-Blue to generate the
pCN51::RRn-HKn plasmid collection (Supplementary Table 4).

The plasmid expressing ArlR with D52A amino-acid substitution was
constructed by amplifying separately two DNA fragments by PCR using ArlR-Fw/
ArlR(D52A)-Rv and ArlR(D52A)-Fw/ArlR-Rv primer pairs. These two PCR
products were used as templates in an overlapping PCR, using ArlR-Fw/ArlR-Rv
primers to amplify the mutant allele. The arlR(D52A) allele was cloned in pCN51
plasmid as we have described above for the construction of plasmids expressing
RRs.

The plasmid expressing ArlS with H242A amino-acid substitution was
constructed by amplifying separately two DNA fragments by PCR using ArlS-Fw/
ArlS(H242A)-Rv and ArlS(H242A)-Fw/ArlS-Rv primer pairs. These two PCR
products were used as templates in an overlapping PCR, using ArlS-Fw/ArlS-Rv
primers to amplify the mutant allele. The ArlS(H242A) allele was cloned in
pCN51::arlR plasmid as we have described above for the construction of plasmids
expressing HKs and RRs.

Plasmids were purified from E. coli XL1-Blue and transformed into S. aureus
strains by electroporation.

The pCN51 inducible plasmid shows a basal expression in the absence of
cadmium. All the experiments performed in this study that involve the pCN51
plasmid were carried out without cadmium supplementation.

Desiccation experiment. The desiccation experiment was adapted from an already
described protocol66. Briefly, 1 ml from overnight cultures grown in TSB medium
at 37 °C was harvested by centrifugation, washed with PBS three times, and finally
resuspended in 1 ml of PBS. The number of viable cells in this initial bacterial
suspension was tested immediately (initial numbers), performing serial dilutions
and plating dilutions in triplicate, and 100 µl of this initial bacterial suspension
were air-dried in 24-well tissue culture plates. Plates were stored at room tem-
perature for 7 days. Dried bacteria were then rehydrated with 500 µl TSB and the
number of viable cells remaining in each sample was determined by performing
serial dilutions of each sample and plating the dilutions in triplicate. The average
and SD of three independent assays were recorded.

Statistical analysis. All statistical analyses were performed in GraphPad Prism
5.01. Data corresponding to the kidney colonization assay were compared using a
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two-tailed nonparametric Mann–Whitney test. Data corresponding to the mice
survival assay were compared using a log-rank (Mantel–Cox) test. Ratios of protein
A quantification by western blot and data from qRT-PCR analysis were statistically
analyzed using a two-tailed one-sample t-test inferred from a hypothetical value of
1. Finally, data corresponding to desiccation resistance were compared using a two-
tailed nonparametric Mann–Whitney test.

Data availability. Genomic sequence data for strains MW2, MW2 ΔXV, RN1, and
RN1 ΔXV have been deposited in the National Center for Biotechnology Infor-
mation Sequence Read Archive under accession code SRP127351. Differences in
the metabolome of S. aureus isolate MW2 and ΔXV mutant derivative have been
deposited at figshare (https://doi.org/10.6084/m9.figshare.5733495.v1). Other
relevant data are available in this article and its Supplementary Information files, or
from the corresponding author upon request.
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