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Abstract  

Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia 

after Alzheimer’s disease. Although an increasing number of genetic factors have been 

connected to this debilitating condition, the proportion of cases that can be attributed to 

distinct genetic defects is unknown. To provide a comprehensive analysis of the frequency and 

spectrum of pathogenic missense mutations and coding risk variants in nine genes previously 

implicated in DLB, we performed exome sequencing in 111 pathologically confirmed DLB 

patients. All patients were Caucasian individuals from North America. Allele frequencies of 

identified missense mutations were compared to 222 control exomes. Remarkably, ~25% of 

cases were found to carry a pathogenic mutation or risk variant in APP, GBA or PSEN1, 

highlighting that genetic defects play a central role in the pathogenesis of this common 

neurodegenerative disorder. In total, 13% of our cohort carried a pathogenic mutation in GBA, 

10% of cases carried a risk variant or mutation in PSEN1, and 2% were found to carry an APP 

mutation. The APOE ε4 risk allele was significantly overrepresented in DLB patients (p-value 

<0.001). Our results conclusively show that mutations in GBA, PSEN1, and APP are common in 

DLB and consideration should be given to offer genetic testing to patients diagnosed with Lewy 

body dementia.
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1. Introduction 

Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia 

after Alzheimer’s disease (Lippa, et al., 2007), clinically characterized by a combination of 

progressive cognitive decline, fluctuating mental status, parkinsonism and visual hallucinations. 

Pathologically, brains of DLB patients demonstrate widespread Lewy body pathology, and the 

vast majority of patients have coexisting neurofibrillary tangles and amyloid plaques sufficient to 

meet the neuropathological criteria for Alzheimer dementia (McKeith, et al., 2005). These 

pathological findings place DLB midway along a spectrum between Parkinson disease and 

Alzheimer dementia (Berg, et al., 2014).  

 

Genetic data provide additional support for DLB existing along this Parkinson disease/Alzheimer 

dementia continuum. Mutations in five Parkinson disease genes have been linked to the DLB 

phenotype, including genetic variation in GBA, LRRK2, MAPT, SCARB2 and SNCA (Bras, et al., 

2014; Colom-Cadena, et al., 2013; Denson, et al., 1997; Fuchs, et al., 2007; Gwinn-Hardy, et al., 

2000; Ishikawa, et al., 1997; Nalls, et al., 2013; Ohara, et al., 1999; Singleton, et al., 2003; 

Zarranz, et al., 2004; Zimprich, et al., 2004). Advances in Alzheimer dementia genetics have 

provided additional insights into the molecular pathogenesis of DLB. For instance, the APOE ε4 

allele is a significant risk factor for DLB (Tsuang, et al., 2013), and familial Alzheimer dementia 

cases due to APP, PSEN1 and PSEN2 mutations occasionally present with mixed Alzheimer and 

Lewy body pathology raising the possibility of a shared molecular predisposition between 

Alzheimer dementia and DLB (Ishikawa, et al., 2005; Leverenz, et al., 2006; Meeus, et al., 2012).  

 

Despite these insights into the genetics of DLB, the frequency at which these mutations occur in 

patients diagnosed with DLB is poorly understood. To fill this gap in our knowledge, we explored 
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the frequencies and spectrum of mutations in genes previously implicated in DLB (GBA, LRRK2, 

MAPT, APOE, APP, PSEN1, PSEN2, SCARB2, SNCA) using exome sequence data generated for a 

cohort of patients with pathologically confirmed DLB. 

 

2. Material and methods 

2.1 Subjects 

A total of 111 cases with extensive Lewy body pathology were obtained from the Johns Hopkins 

Morris K. Udall Center of Excellence for Parkinson’s Disease Research and the Johns Hopkins 

Alzheimer Disease Research Center. These samples were characterized by widespread Lewy 

body pathology and met criteria for either neocortical (n = 86 cases) or transitional-type DLB 

(n=25 cases) using the McKeith classification (McKeith, et al., 2005). The majority of patients 

(69%) also met pathological criteria for Alzheimer dementia (Geiger, et al., 2016). All subjects 

were Caucasian, with males constituting 75% of the cohort. The average age at symptom onset 

was 65 (sd ± 10) years and mean age at death was 78 (± 8) years. Thirty-three patients (30% of 

the entire cohort) had a family history of cognitive impairment or parkinsonism in at least one 

first- or second-degree relative.  

 

We used in-house control exomes of 222 neurologically normal individuals from the North 

American Brain Expression Consortium. Sample acquisition for this cohort has been described 

elsewhere (Hernandez, et al., 2012). All control subjects were Caucasian, with males constituting 

66% of the cohort.  

 

The institutional review board approved the study, and written informed consent was obtained 

for each patient.  
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2.2 Sample preparation, exome capture and sequencing 

DNA was extracted from frozen brain tissue of each subject using the DNeasy extraction kit 

(Quiagen, Valencia, CA). Exome capture was performed on each subject using Nextera 

enrichment technology (Expanded Exome Oligo kit v4; Illumina, San Diego, CA). This exome 

capture kit targets the expanded exome, consisting of the 2% of the human genome coding for 

exons, UTRs and miRNAs. Exome libraries were indexed, and a total of 12 libraries were pooled 

for high-throughput, 125 bp paired-end sequencing (TruSeq v4 kit) on an Illumina HiSeq 2500 

platform. Raw sequencing data were uploaded into BaseSpace (Illumina Inc., CA), a genomic 

cloud-computing interface. Sequence data of pooled libraries were de-multiplexed using 

CASAVA v1.8.2 (Illumina), followed by alignment to the human reference genome (build hg19) 

using the Burroughs-Wheeler aligner (Li and Durbin, 2009). Next, genotypes were called from 

aligned sequences following Genome Analysis Toolkit (version 3) best practices (McKenna, et al., 

2010). Quality control steps were performed in PLINK 1.90 (Purcell, et al., 2007). These included 

estimation of coverage, call rate, heterozygosity (to rule out contamination), population (to 

confirm Caucasian ancestry), cryptic relatedness and phenotype-genotype gender matching. 

None of the samples were excluded based on these stringent quality control metrics. 

 

2.3 Filtering and annotating missense mutations 

All exomes were of high quality with a 10x coverage > 90% and a 30x coverage > 80% (details 

about the coverage for each of the nine genes studied is shown in Supplementary Figure 1 and 

Supplementary Table 1). VCFtools (version 0.1.13) (Danecek, et al., 2011) was used to extract 

missense mutations in the following genes: APOE, APP, GBA, LRRK2, MAPT, PSEN1, PSEN2, 

SCARB2 and SNCA. All variants were annotated in SeattleSeq 
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(snp.gs.washington.edu/SeattleSeqAnnotation138/) and ANNOVAR (version 2015-06-17) (Wang, 

et al., 2010). We evaluated the frequencies of identified missense mutations in the European 

ExAC population (version 0.3; exac.broadinstitute.org) and in 222 in-house neurologically normal 

controls. Protein change predictions were determined using SIFT, PolyPhen-2, and 

MutationTaster2 (Adzhubei, et al., 2010; Ng and Henikoff, 2003; Schwarz, et al., 2014). 

Mutations were described according to human genome variation society nomenclature 

guidelines (www.hgvs.org/mutnomen) (den Dunnen and Antonarakis, 2000). GBA variants are 

listed with the traditional amino-acid residue numbering in square brackets (excluding the signal 

peptide).  

 

2.4 Confirmatory Sanger sequencing and Taqman genotyping 

Identified missense mutations in the DLB cohort were sequenced using the Big-Dye Terminator 

v3.1 sequencing kit (Applied Biosystems Inc., Foster City, CA, USA), run on an ABI 3730xl genetic 

analyzer, and analyzed using Sequencher software (version 5.1, Gene Codes Corporation, Ann 

Arbor, MI, USA). PCR primers and conditions are listed in Supplementary Table 2. APOE rs7412 

(p.R176C) and rs429358 (p.C130R) were genotyped using an established TaqMan method 

(Applied Biosystems Inc., Foster City, CA, USA) (Federoff, et al., 2012).  

 

2.5 Pathogenicity determination 

Pathogenicity of coding variants was determined based on: 1) literature review implicating a 

given variant with neurodegenerative disease (Alzheimer dementia, parkinsonism, Gaucher 

disease, Lewy body dementia or other types of dementia) and 2) in-silico modeling (predicting 

pathogenicity in at least one of three prediction tools: SIFT, PolyPhen2, Mutation Taster). In 

http://www.hgvs.org/mutnomen
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addition, an increased minor allele frequency in cases compared to controls was interpreted as 

supportive for disease-association.  

 

2.6 Mutation mapping and in-silico protein modeling 

Mutations were mapped to the reference sequences using FancyGene (Rambaldi and Ciccarelli, 

2009) and illustrated in Adobe Illustrator CC (version 19.1.0). Protein modeling was performed in 

PyMOL software (v1.7.6, Schrödinger LLC; www.pymol.org) using previously described protein 

structures in the Protein Data Bank (Bai, et al., 2015; Barrett, et al., 2012; Berman, et al., 2000; 

Chen, et al., 2011; Dvir, et al., 2003; Huxford, et al., 1998). 

 

3. Results 

We performed exome sequencing in a cohort of 111 pathologically confirmed DLB patients, and 

examined the mutation rate in nine genes that had been previously linked to this type of 

neurodegeneration. In total, we identified eleven missense mutations in the genes GBA, PSEN1 

and APP in nearly 25% of the cohort that are either disease-causing or high-risk variants (Table 

1, Figure 1). In addition, we confirmed a significant overrepresentation of the APOE ε4 risk allele 

in DLB. To rule out false positive findings, we confirmed all identified variants by direct Sanger 

sequencing or Taqman genotyping.  

 

3.1 Disease-associated mutations by individual genes 

3.1.1 GBA 

We identified fourteen patients (Table 2) with one of the following pathogenic GBA mutations: 

p.D448H [p.D409H], p.N409S [p.N370S], p.E365K [p.E326K], p.R296Q [p.R257Q], and p.R87Q 

[p.R48Q]. The p.D448H [p.D409H], p.N409S [p.N370S] and p.R296Q [p.R257Q] GBA mutations 
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have been associated with Gaucher disease and parkinsonism, likely due to impaired lysosomal 

protein degradation (Beutler, et al., 1994; Choi, et al., 2012; Sidransky, 2004; Sidransky, et al., 

2009). The GBA p.E365K [p.E326K] mutation is considered a mild mutation as it has been 

demonstrated to reduce rather than abolish glucocerebrosidase enzyme activity (Alcalay, et al., 

2015; Malini, et al., 2014). As such, homozygosity for this mutation is not sufficient to cause 

Gaucher disease; however, an increased frequency of heterozygous carriers has been 

demonstrated in cohorts of Parkinson disease supporting the notion that this mutation is 

pathogenic (Duran, et al., 2013; Nichols, et al., 2009). The GBA mutation p.R87Q [p.R48Q] has 

been previously described in a patient with Gaucher disease, but a role in parkinsonism for this 

particular rare mutation has not yet been reported (Rozenberg, et al., 2006). In total, fourteen 

DLB cases or 13% of the entire cohort were heterozygous for a pathogenic GBA mutation. No 

homozygous GBA mutation carriers or compound heterozygous patients were identified.  

 

3.1.2 PSEN1 

In PSEN1, we found missense mutations in eleven patients. The p.G206A mutation, which was 

present in one patient (patient 20; Table 2), is a known cause of familial Alzheimer dementia 

(AD) (Rogaeva, et al., 2001). The second mutation (p.E318G), which was present in ten patients, 

has been associated with significantly increased risk for AD in APOE ε4 carriers (Benitez, et al., 

2013). This variant was significantly overrepresented in the DLB cohort compared to control 

exomes (p-value 0.035, Fisher’s exact test, OR 2.1, CI 1.035 – 3.758; supplementary table 4), 

suggesting that it likely constitutes a risk variant. In total, 10% of our DLB cohort carried a 

mutation in PSEN1. Interestingly, one patient (patient 14; Table 2) carried both a p.E318G PSEN1 

variant and a p.N409S GBA mutation. This individual presented with parkinsonism at age 40 and 

later developed cognitive impairment meeting criteria for Parkinson disease dementia. He had 
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no family history of dementia or parkinsonism, and his pathology demonstrated pure DLB 

without any co-existing Alzheimer pathology.  

 

3.1.3 APP 

We detected two patients with disease-associated mutations in APP. One patient carried the 

highly penetrant p.V717I mutation, a known cause of familial AD with co-existing Lewy body 

pathology that has been shown to alter APP protein processing and tau expression (Halliday, et 

al., 1997; Lantos, et al., 1994; Muratore, et al., 2014). This mutation is located in the 

transmembrane domain of APP in close proximity to the γ-secretase cleavage site. The patient 

had a family history of early-onset dementia and pathology examination of her brain revealed 

extensive Lewy body pathology (neocortical-type DLB) as well as severe Alzheimer pathology 

(Braak stage 6, CERAD score C) (table 2). The second APP mutation we detected, p.E599K, has 

been previously associated with parkinsonism (Schulte, et al., 2015) and likely constitutes a risk 

variant. In total, 2% of our cohort carried an APP missense mutation.  

 

3.1.4 APOE 

The following variants were detected in APOE: p.C130R, p.R176C and p.L46P. The p.C130R and 

p.R176C variants make up the APOE ε4 risk allele, a known high-risk allele for AD and DLB 

(Hardy, et al., 1994). APOE p.L46P is a rare variant that has been shown to be in complete 

linkage disequilibrium with the APOE ε4 risk allele, and studies have demonstrated that this 

variant has no additional effect on risk of developing AD independent of the ε4 allele (Baron, et 

al., 2003; Kamboh, et al., 1999). In line with previous studies, the APOE ε4 allele was significantly 

overrepresented in our DLB cohort (25 heterozygous carriers, 10 homozygous carriers) 

compared to neurologically normal in-house controls (Fisher exact test, p-value < 0.001). 
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Survival estimates comparing APOE ε4 carriers with APOE non-carriers demonstrated 

significantly shortened survival in APOE ε4 carriers (Supplementary Figure 2).  

 

3.1.5 MAPT, LRRK2, PSEN2, SCARB2, SNCA 

Pathogenic coding variants were not identified in MAPT, LRRK2, PSEN2, SCARB2 or SNCA. Coding 

polymorphisms detected in our DLB cohort are listed in Supplementary Table 3. 

 

3.2 Clinicopathologic features of mutation carriers 

In total, twenty-six patients with causative mutations or high-risk variants in APP, GBA or PSEN1 

were identified. Clinical and pathological characteristics of these patients are shown in Table 2. 

Fourteen patients were male, and twelve were female. The average age at onset was 62 years 

(range: 40 – 82 years) and the mean age at death was 76 years (range: 57 – 91 years).  

 

4. Conclusions 

A substantial proportion of patients (~25% of the entire cohort) were found to carry disease-

associated coding variants in the genes GBA, PSEN1, or APP, with mutations in GBA and PSEN1 

being the most frequent molecular defects, accounting for 13% and 10% of the cohort, 

respectively. The frequency of GBA mutations identified in our DLB cohort is comparable to the 

frequency found in Parkinson disease (Sidransky and Lopez, 2012). There are ongoing debates as 

to whether heterozygous, pathogenic GBA mutations constitute high-risk variants or dominant 

causative mutations with decreased penetrance (Anheim, et al., 2012; Sidransky, et al., 2009). 

This study does not resolve this controversy; nonetheless the high frequency of pathogenic GBA 

mutations emphasizes a prominent role of lysosomal dysfunction in the pathogenesis of DLB.  

 



 

 12 

Only one of the two identified pathogenic PSEN1 mutations, p.G206A, has been previously 

reported to cause familial dementia (Rogaeva, et al., 2001), whereas the second mutation, 

p.E318G, likely constitutes a risk variant rather than a causative mutation.  

 

Along the same lines, only one of the two pathogenic APP mutations is a clearly causative 

mutation (p.V717I), whereas the p.E599K mutation is likely a risk variant. In support of prior 

evidence (Keogh, et al., 2016; Tsuang, et al., 2013), the frequency of the APOE ε4 risk allele was 

significantly higher in our DLB cohort compared to Caucasian controls (p-value < 0.001) and 

survival was significantly shorter in APOE ε4 carriers (Supplementary Figure 2). Interestingly, we 

found no pathogenic mutations in LRRK2, MAPT, PSEN2, SCARB2, and SNCA indicating that 

mutations in these genes are not a frequent cause of DLB. Taken together, these findings 

emphasize that molecular genetic defects play a significant role in the pathogenesis of this 

devastating neurological disease, and firmly place DLB along a continuum between Parkinson 

disease and Alzheimer dementia.  

 

A major strength of our study was the use of a cohort of pathologically defined DLB. The clinical 

diagnosis of DLB is known to be inaccurate, primarily due to the heterogeneous clinical 

presentation observed among these patients and the difficulty of distinguishing mimic 

syndromes. The situation is further complicated by the one-year clinical rule used to separate 

Lewy body dementia into DLB and Parkinson disease dementia. According to this controversial 

guideline, the clinical diagnosis of DLB is only given if dementia occurs prior to or within one 

year of onset of parkinsonism. If the dementia occurs after this time point, a clinical diagnosis of 

Parkinson disease dementia is applied. In striking contrast to these arbitrary clinical definitions, 

however, DLB and Parkinson disease dementia are pathologically indistinguishable. Our data, 



 

 13 

which are based on a pathologically defined Caucasian cohort, clearly show that knowledge of 

genetics will be helpful in establishing the clinical diagnosis in cases of Lewy body dementia and 

may resolve the need for the one-year rule.  

 

The clinical presentation of mutation carriers in our pathological defined DLB cohort was 

variable (Table 2) and, indeed, patients received a variety of clinical diagnoses prior to death and 

neuropathological examination. Clinical misdiagnosis is not unusual for this disease group, and it 

recapitulates the ongoing challenge faced by clinicians in attempting to diagnose a behaviorally 

heterogeneous patient population. The diversity of clinical presentations associated with 

extensive Lewy body pathology likely reflects variable extend of neuronal degeneration, α-

synuclein, tau and amyloid aggregation in individual patients (Kim, et al., 2014). 

 

Interestingly, only eleven out of twenty-six cases with a disease-associated mutations (42%) 

reported a positive family history of cognitive impairment or parkinsonism in first- or second-

degree relatives. This observation illustrates an emerging concept in neurodegenerative 

diseases of late adulthood: namely, the absence of a family history does not exclude a genetic 

cause/predisposition (Scholz and Bras, 2015; Shulman, et al., 2011). Possible explanations for 

lack of a family history include death of relatives prior to manifesting symptoms, phenotypic 

heterogeneity, somatic mutations, spontaneous mutations, reduced penetrance, or non-

paternity. Another possible mechanism for seemingly sporadic disease is the occurrence of 

multiple molecular hits in a given individual (Escott-Price, et al., 2015; Reitz, et al., 2011; van 

Blitterswijk, et al., 2012). This polygenic inheritance concept is supported by observations in this 

study; specifically, three sporadic DLB patients (table 2: subjects 2, 6, 16) carried mutations in 

GBA or PSEN1 in addition to the APOE ε4 risk allele. Another patient (table 2: subject 14) carried 



 

 14 

two mutations, one causative mutation in GBA and one risk-variant in PSEN1, indicating that 

multiple molecular events could predispose a given individual to developing disease. The 

combination of such molecular hits may indeed determine where along the clinical Parkinson 

disease – DLB – Alzheimer disease continuum a patient falls.  

 

Another strength of this study is the use of exome-sequencing technologies to rapidly screen 

several genes simultaneously. Exome sequencing has already been shown to be a powerful tool 

for discovering Mendelian forms of disease (Johnson, et al., 2010; Sailer, et al., 2012), but 

increasingly applications for complex diseases, such as in this study, are recognized. This study 

was designed to identify frequent causative mutations and coding risk variants in genes 

previously implicated in DLB, which also explains some of the limitations. Rare variants could 

have been missed, and additional studies in larger cohorts will be necessary for a more refined 

resolution of the genetic risk profile in DLB. Likewise, this study was not powered to perform 

gene-burden testing on a genome-wide level to identify possible novel disease genes involved in 

the pathobiology of DLB. For this reason, we focused on genes that have already been 

implicated in DLB to dissect the frequency at which mutations in these genes occur.  

 

After completion of our analysis, a candidate gene study of exome data from a British DLB 

cohort was published (Keogh, et al., 2016). Similar to our findings, this study found an increased 

frequency of the APOE ε4 risk allele. In addition, 5.7% of their study cohort carried a pathogenic 

GBA mutation. This frequency is lower than the frequency observed in our study (13%), which is 

likely explained by population heterogeneity. Another interesting observation in the study by 

Keogh and colleagues was the finding that one patient carried a rare pathogenic mutation in 

CHMP2B that had been previously described in cases with frontotemporal dementia (Isaacs, et 
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al., 2011). This finding suggests a mechanistic overlap between the neurodegenerative 

dementias. We therefore queried our exome data for missense mutations in CHMP2B, but 

found no pathogenic variants in our North American cohort. Additional possibly pathogenic 

variants were predicted based on in-silico modeling in the genes SQSTM1, EIF4G1, GIGYF2 and 

PARK2, but the evidence linking these genes to DLB is hypothetical.  

 

In summary, our results suggest that consideration should be given to offer genetic counseling 

and testing to patients diagnosed with Lewy body dementia, given the substantial proportion of 

pathogenic mutations and risk variant carriers identified in this pathologically proven cohort. As 

we are entering the precision medicine era, refining a diagnosis by testing for molecular genetic 

defects is rapidly emerging as established practice. Characterization of common genetic defects 

in these patients is not only valuable for diagnostic considerations, but may be valuable for 

prediction of the disease course, disease modeling, rational therapeutic interventions and 

ultimately disease prevention. 
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Figure Legends 

Graphical abstract. Frequency of pathogenic mutations and risk variants in GBA, PSEN1 and APP 

in DLB 

 

Figure 1. Missense mutations in definite DLB cases. Panel (a) shows the position of causative 

mutations and coding risk variants relative to the respective gene and protein sequences. Panel 

(b) illustrates the position of each mutated amino acid residue relative to the 3-D protein or 

domain structure.  

 


