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Gabriel B. Caminha,7,8 Thomas Erben,9 Bruno Moraes4 and Huanyuan Shan9

1Brandeis University, 415 South Street, Waltham, MA 02453, USA
2Coordenação de Cosmologia, Astrofı́sica e Interações Fundamentais, Centro Brasileiro de Pesquisas Fı́sicas, Rio de Janeiro, RJ 22290-180, Brasil
3Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
4Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
5Instituto de Astronomia, Geofı́sica e Ciências Atmosféricas, Departamento de Astronomia, São Paulo-SP, 05508-090, Brasil
6Department of Physics, The University of Chicago, Chicago, IL 60637, USA
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ABSTRACT
We present the first weak lensing calibration of μ�, a new galaxy cluster mass proxy correspond-
ing to the total stellar mass of red and blue members, in two cluster samples selected from the
SDSS Stripe 82 data: 230 red-sequence Matched-filter Probabilistic Percolation (redMaPPer)
clusters at redshift 0.1 ≤ z < 0.33 and 136 Voronoi Tessellation (VT) clusters at 0.1 ≤ z < 0.6.
We use the CS82 shear catalogue and stack the clusters in μ� bins to measure a mass-observable
power-law relation. For redMaPPer clusters we obtain M0 = (1.77 ± 0.36) × 1014 h−1M�,
α = 1.74 ± 0.62. For VT clusters, we find M0 = (4.31 ± 0.89) × 1014 h−1M�, α = 0.59 ± 0.54
and M0 = (3.67 ± 0.56) × 1014 h−1M�, α = 0.68 ± 0.49 for a low and a high redshift bin,
respectively. Our results are consistent, internally and with the literature, indicating that our
method can be applied to any cluster-finding algorithm. In particular, we recommend that μ�

be used as the mass proxy for VT clusters. Catalogues including μ� measurements will enable
its use in studies of galaxy evolution in clusters and cluster cosmology.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: observa-
tions.

1 IN T RO D U C T I O N

Galaxy clusters are the largest and most massive gravitationally
bound structures in the Universe. They are formed by a large num-
ber of galaxies (usually with one large elliptical central), hot gas
and dark matter evolving in strongly coupled processes. Cluster
properties depend on both the dynamical processes that take place
inside them and on the evolution of the Universe. As such, they
can be used as a powerful tool to probe its content, to study the
formation and evolution of structures and to test modified gravity
theories (Haiman, Mohr & Holder 2001; Voit 2005; Allen, Evrard &
Mantz 2011; Kravtsov & Borgani 2012; Ettori & Meneghetti 2013;
Penna-Lima, Makler & Wuensche 2014; Harvey et al. 2015; Menci
et al. 2016; Pizzuti et al. 2016).

�E-mail: elidaiana.sp@gmail.com (MESP); marcelle@brandeis.edu
(MS-S); martin@cbpf.br (MM)

Galaxy clusters also act as powerful gravitational lenses. Their
intense gravitational fields produce distortions in the shape (shear)
of the background galaxies (sources). Through this effect, we can
assess the mass distribution of the galaxy clusters to use them as
cosmological tools (Schneider 2006). At the depths of ongoing
and planned wide-field surveys, it is not possible to measure this
signal from individual clusters, except for the most massive ones.
However, we can combine the lensing signal of a large number
of clusters to obtain a higher signal to noise. This stacking pro-
cedure requires the large statistics enabled by wide-field surveys
such as the Dark Energy Survey1 (DES; Jarvis et al. 2016; Melchior
et al. 2017), the Canada–France–Hawaii Telescope (CFHT) Lens-
ing Survey2 (CFHTLens; Velander et al. 2014; Ford et al. 2015;
Kettula et al. 2015), the Sloan Digital Sky Survey (SDSS; Sheldon

1 https://www.darkenergysurvey.org/
2 http://www.cfhtlens.org/
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et al. 2001; Simet et al. 2012; Wiesner, Lin & Soares-Santos 2015;
Gonzalez et al. 2017; Simet et al. 2017) and the Kilo-Degree Survey3

(KiDS; de Jong et al. 2013; Kuijken et al. 2015).
Clusters can be identified in several wavelengths such as in

X-rays, radio and optical. In particular, the identification in the opti-
cal can be made through the search for overdensities (from matched-
filters to more complex Voronoi tessellations) of multiband optically
detected galaxies. These multiband optical cluster catalogues usu-
ally provide good cluster photometric redshifts (photo-z), which are
crucial information for weak lensing measurements.

Observationally, galaxy clusters are ranked not by the mass of
the halo but by some proxy for mass. A mass-observable relation
must be calibrated in order to make the connection between the
observable and the true halo mass. The technique of stacking the
weak lensing signal for many systems within a given observable
interval provides one of the most direct and model independent
ways to accurately calibrate such mass-observable scaling relations.
Many efforts have been made to determine the scaling relations
empirically using an observable mass proxy for the cluster mass.
However, comparing the empirical measurements is challenging
since there are several methods to identify the clusters, which lead
to different cluster samples, and different definitions of the mass
proxy to be used (Johnston et al. 2007; Oguri 2014; Ford et al. 2015;
Wen & Han 2015; Wiesner et al. 2015; Simet et al. 2017).

In this work, we use the stacked weak lensing technique on galaxy
clusters identified by two different algorithms to estimate their mass
and to obtain the scaling relations for two different mass prox-
ies. The clusters are identified by the red-sequence Matched-filter
Probabilistic Percolation4 (redMaPPer; Rykoff et al. 2014) optical
cluster finder and the geometric Voronoi Tessellation5 algorithm
(VT; Soares-Santos et al. 2011) in the SDSS Stripe 82 region. We
use the weak lensing shear catalogue from the CFHT Stripe 82 Sur-
vey (CS82; Moraes et al. 2014; Erben et al. in preparation), which
has excellent image quality and thus we expect our mass estimates
to be less affected by shape systematics than the results obtained
from the SDSS data alone (see e.g. Gonzalez et al. in preparation).
In our analysis, we obtain the scaling relations for both the redMaP-
Per optical richness λ (Rykoff et al. 2012, 2014) and for a new mass
proxy μ�, which is described in two companion papers (Palmese
et al. in preparation; Welch et al. in preparation).

The new mass proxy μ� is defined as the sum of the stellar masses
of cluster galaxies weighted by their membership probabilities. This
quantity can be estimated reliably from optical photometric surveys
(Palmese et al. 2016) and shows a tight correlation with the total
cluster mass (e.g. Andreon 2012). Palmese et al. (in preparation)
perform a matching between redMaPPer DES clusters and XMM
X-ray clusters at 0.1 < z < 0.7 and demonstrate that μ� has low
scatter with respect to X-ray mass observables. They compute the
TX–μ� relation, obtaining a scatter of σln TX |μ� = 0.20, which is
comparable with results found for the redMaPPer richness estimator
λ by Rykoff et al. (2016) using XMM and Chandra X-ray samples
at 0.2 < z < 0.9 and by Rozo & Rykoff (2014) using the XCS X-ray
sample at 0.1 < z < 0.5.

When using the redMaPPer mass-proxy λ, we obtain a M200–λ

relation that is consistent with previous measurements found in the
literature. When using μ� on the same sample our results show
a similar level of uncertainty. Our results for the VT sample in

3 http://kids.strw.leidenuniv.nl/
4 https://github.com/erykoff/redmapper
5 https://github.com/soares-santos/vt

the same redshift range are consistent (within 1.5σ ) with those we
obtain with redMaPPer, showing that our mass calibration is robust
against the specifics of the cluster selection algorithms. Finally, we
extend our analysis to a higher redshift VT sample. We do not see
an evolution of the mass-observable relation at the level of precision
of this analysis.

This paper is organized as follows. In Section 2, we describe
the cluster and the lensing shear catalogues. In Section 3, we
present the methodology for the measurement and modelling of
the stacked cluster masses. We present our results and the derived
mass-calibrations in Section 4. Finally, in Section 5 we present
our concluding remarks. In this paper, the distances are expressed
in physical coordinates, magnitudes are in the AB system (unless
otherwise noted) and we assume a flat �CDM cosmology with
�m = 0.3 and H0 = 100 h km s−1 Mpc−1.

2 C ATALOGUES I N SDSS STRI PE 82

We work with data on the so-called Stripe 82 region, which is an
equatorial stripe that has been scanned multiple times as part of
the SDSS supernovae search (Frieman et al. 2008), leading to a
five-band co-add of selected images about two magnitudes deeper
than the main SDSS survey (Annis et al. 2014). Stripe 82 has
become a well-studied ∼100 sq-deg scale region, with extensive
spectroscopy from SDSS and other wide-field spectroscopic sur-
veys (Colless et al. 2001; Croom et al. 2001, 2004, 2009a,b; Jones
et al. 2009; Drinkwater et al. 2010; Eisenstein et al. 2011), reaching
fainter magnitudes in smaller regions (Garilli et al. 2008; Newman
et al. 2013; Coil et al. 2011; de la Torre et al. 2013; Le Fèvre
et al. 2013) and a large spectral coverage from several synergistic
surveys (see e.g. LaMassa et al. 2016; Timlin et al. 2016; Geach
et al. 2017, and references therein), including NIR photometry from
UKIRT Infrared Deep Survey (UKIDSS; Lawrence et al. 2007) and
from a combination of CFHT WIRCam and Visible and Infrared
Survey Telescope for Astronomy (VISTA) VIRCAM data (Geach
et al. 2017). It serves as a precursor of future data sets, and is being
covered by ongoing surveys at higher depths (e.g. DES, HSC6) and
denser wavelength coverage (J-PLUS7; Mendes de Oliveira et al. in
preparation).

In this work, we use three catalogues in Stripe 82:

(i) A cluster catalogue resulting from the VT algorithm (Soares-
Santos et al. 2011) applied to the SDSS stripe 82 co-add catalogue
(Annis et al. 2014) with neural network photometric redshift mea-
surements (Reis et al. 2012).

(ii) A catalogue of galaxy clusters identified by the redMaPPer
algorithm (Rykoff et al. 2014) on the SDSS 8th Data Release (DR8;
Aihara et al. 2011).

(iii) A galaxy catalogue from the CS82 survey (Erben et al. in
preparation) including shape measurements and photometric red-
shifts from matched SDSS co-add (Annis et al. 2014) and UKIDSS
YJHK (Lawrence et al. 2007) photometry.

The CS82 survey defines the sky footprint of our analysis and
both cluster catalogues are matched to it. The CS82 photo-zs were
computed by Bundy et al. (2015) with the BPZ code (Benı́tez 2000).
These are more precise than previously available photo-z measure-
ments (see also Leauthaud et al. 2017; Soo et al. 2017) and therefore
we use them throughout this analysis, namely, in the computation

6 http://hsc.mtk.nao.ac.jp/ssp/
7 https://confluence.astro.ufsc.br:8443/
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of membership probabilities, for determining absolute magnitudes,
and in the stacked weak lensing analysis.

2.1 VT clusters

The VT cluster finder (Soares-Santos et al. 2011) uses a geometric
technique to construct Voronoi cells that contain only one object
each. The cell sizes are inversely proportional to the local density
and a galaxy cluster candidate is defined as a high-density region
composed of small adjacent cells. The raw number of member
galaxies, NVT, is thus the number of VT cells. The key point is to
estimate the density threshold to separate an overdensity (a galaxy
cluster) from the background and take into account the projection
effects due to the fact that the Voronoi cells are computed in a 2D-
distribution of objects in the sky. In order to achieve that, the VT
algorithm is built in photo-z shells and uses the two-point correla-
tion function of the galaxies in the field to determine the density
threshold for detection of the cluster candidates and their signifi-
cance. Since it is a geometric technique, there is no need of a priori
assumption on galaxy colours, the presence of a red-sequence or
any assumptions about their astrophysical properties.

In this paper, we use the VT catalogue produced for the Stripe
82 co-add (v1.10; Wiesner et al. 2015). Since that release version,
the VT team has developed an improved membership assignment
scheme and a new mass proxy, μ�. In this work, we incorporate
those developments (see Section 2.1.1 for details) and add two new
improvements, namely, a defragmentation algorithm and a redef-
inition of the cluster central galaxy (described in Sections 2.1.2
and 2.1.3, respectively). The former mitigates the effect of pho-
tometric redshift shell edges and of multiple density peaks within
individual clusters. The latter allows us to extend the probabilistic
approach of membership to the determination of the central cluster
galaxy.

2.1.1 Assigning the new mass proxy μ�

NVT performs poorly as a mass proxy, as shown by the scatter in
the richness–mass relation presented in Saro et al. (2015). The new
mass proxy, μ�, is based on a probabilistic membership assignment
scheme (Welch et al. in preparation)8 and on measurements of
stellar masses Palmese et al. (in preparation)9. In particular, Palmese
et al. (in preparation) showed that the scatter in the μ� to X-ray
temperature relation is comparable to that of other mass proxies
for an X-ray selected sample and that it allows interesting cluster
evolution analyses, having a clear physics meaning of the cluster
stellar mass.

The first step in computing μ� is to compute the membership
probability Pmem for each cluster galaxy

Pmem = PzPrPc, (1)

where the three components represent the probability of the galaxy
being a member given its redshift (Pz), its distance from the cluster
centre (Pr) and its colour (Pc):

(i) Pz is the integrated redshift probability distribution of each
galaxy within a �z = 0.1 window of the cluster.

(ii) Pr is computed assuming a projected Navarro–Frenk–White
profile.

8 https://github.com/bwelch94/Memb-assign
9 https://github.com/apalmese/BMAStellarMasses

(iii) Pc is determined via Gaussian mixture modelling of the
galaxy colour distribution with two components, red sequence and
blue cloud; it is defined as the sum of the probability that the galaxy
colour is drawn from either the blue or red component.

For membership assignment purposes, we use a subsample of the
galaxy catalogue cut at Mr <−19. That subsample is volume limited
over our redshift range. We calculated the absolute magnitudes using
k-correct v4_2 (Blanton & Roweis 2007) taking the BPZ photo-z
as the galaxy redshift. We constructed a grid of g − r, r − i and
i − z colours from the templates in k-correct and chose the closest
to the observed galaxy colours. That chosen template provides the
K-correction from observed i band to rest-frame r band, which,
together with our chosen cosmology, allows us to calculate Mr.

After computing the membership probabilities for each galaxy
i within 3 Mpc of each cluster j, we compute their stellar masses
assuming that every member galaxy is at the redshift of its host,
M�, i(zj). Because the cluster redshifts have smaller uncertainties
than individual galaxies, this minimizes the uncertainties on M�, i

measurements. Stellar masses are computed using a Bayesian model
averaging (BMA) method (see e.g. Hoeting et al. 1999). With this
method, we take into account the uncertainty on model selection
by fitting a set of robust, up-to-date stellar population synthesis
(SPS) models and averaging over all of them. In this work, we use
the flexible stellar population synthesis (FSPS) code by Conroy &
Gunn (2010) to generate simple stellar population spectra. Those
are computed assuming Padova (Girardi et al. 2000; Marigo &
Girardi 2007; Marigo et al. 2008) isochrones and Miles (Sánchez-
Blázquez et al. 2006) stellar libraries with four different metallicities
(Z = 0.03, 0.09, 0.0096 and 0.0031). We choose the four-parameter
star formation history described in Simha et al. (2014). Finally, once
the stellar masses are computed, we define the new mass proxy as
the sum of the individual galaxy stellar masses weighted by their
membership probability:

μ� =
∑

i

Pmem,iM�,i . (2)

The membership assignment and μ� computation methods were
applied only to VT clusters with NVT > 20, to avoid poorly detected
galaxy groups. After applying the CS82 mask and a photometric
redshift cut at z < 0.6, where the VT sample is most reliable, we
obtain a sample of 136 clusters, which are used throughout this
analysis.

2.1.2 Investigating cluster fragmentation

Fragmentation of large clusters into smaller components in the VT
catalogue is one of the sources of scattering in the observable-
mass relation. We uncovered the issue by performing cylindrical
matching (angular separation θ < 1 arcmin and �z < 0.05) between
redMaPPer and VT catalogues. This comparison showed some cases
where one redMaPPer cluster was split into two or more VT clusters.

When applied to a cluster fragment, the new probabilistic mem-
bership method will result in a full-fledged list of members, as the
probabilities are computed out to 3 Mpc radius. This is a designed
feature. For two fragments located near each other, the result will be
two instances of the same cluster with slightly different membership
probabilities. In that case, only one instance should be maintained
in the catalogue. In order to ensure that, we developed a defrag-
mentation method using the membership probabilities Pmem. For a
given pair of cluster candidates, we define the ‘true’ cluster as the
one for which

∑
Pmem is the largest.
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In practice, we first attribute a flag for each cluster in the catalogue
as if they were all unique real clusters (cluster_frag=1). Then,
we rank them by mass proxy and compute the angular separation
between each other. If the separation is smaller than the largest R200

between the two and the redshift difference is �z < 0.05, those
clusters are considered to be two instances, i and j, of a fragmented
pair. We compute the summation of the member probabilities of
the fragmented clusters i and j as Pi = ∑

P i
mem and Pj = ∑

P j
mem,

respectively. We then match their members list (in our membership
scheme, clusters may share members) and then compute the quantity
Pmatch = ∑

P i,match
mem = ∑

P j,match
mem for the matched members. Once

we have these quantities, we compute the fractions

fij = Pmatch

Pi

and fji = Pmatch

Pj

. (3)

Since Pmatch is the same for both, the only difference is in the
denominator. If fij ≤ fji, then i is kept in the catalogue while j is
removed (i.e. set cluster_frag=0). We apply this procedure to
VT clusters in the range 0.1 ≤ z < 0.6 and we find that ∼16 per cent
of the clusters were affected by this issue. This is therefore a non-
negligible correction and future versions of VT catalogue should
have this new procedure applied to them before being released.

2.1.3 Redefining the cluster central galaxy

The brightest cluster galaxy (BCG) is a good proxy for the centre
of the cluster and that fact is used in several cluster finding meth-
ods (e.g. Koester et al. 2007; Hao et al. 2010; Oguri 2014). The
original VT algorithm, however, takes a purely spatial approach
and defines the cluster central galaxy as the one inside the highest
density VT cell. After computing μ�, we redefine the central cluster
galaxy as the member galaxy with maximum probability of mem-
bership. The probability P �

cen that this newly defined central galaxy
is the true centre of the cluster is proportional to its membership
probability:

P �
cen ∝ max(Pmem). (4)

Although not normalized, this centring probability is analogous to
that of the redMaPPer algorithm.

2.2 redMaPPer clusters

The redMaPPer cluster finder (Rykoff et al. 2014) uses multiband
colours to find overdensities of red-sequence galaxies around can-
didate central galaxies. In SDSS data, redMaPPer uses the five-
band magnitudes (ugriz) and their errors to spatially group the red-
sequence galaxies at similar redshifts into cluster candidates. For
each red galaxy, redMaPPer estimates its membership probability
(pmem) following a matched-filter technique. At the end, for each
identified cluster, redMaPPer will return an optical richness esti-
mate λ (the total sum of the pmem of all galaxies that belong to that
cluster), a photo-z estimate zλ, and the positions and probabilities
of the five most likely central galaxies (Pcen).

In this work, we use the most recent version of the SDSS redMaP-
Per public catalogue (v6.3; Rykoff et al. 2016), which covers an
area of 104 deg2, down to a limiting magnitude of i = 21 for galax-
ies. The full sample of redMaPPer clusters in the catalogue has
0.08 � zλ < 0.6 and 20 � λ < 300. After restricting the cata-
logue to the ∼170 deg2 of the CS82 footprint, we restrict our mass
measurements to the low redshift bin 0.1 ≤ zλ < 0.33 to enable
comparison with previous SDSS weak lensing measurements and
because the redMaPPer cluster catalogue from single epoch SDSS

data is most reliable at these redshifts. The redMaPPer sample
used in this work, after all selection criteria are applied, contains
230 clusters.

We compute μ� as well for the redMaPPer clusters, employing
the same steps described in Section 2.1.1. This means that new
membership probabilities are computed for every cluster and en-
ables direct comparison between the �
 profiles obtained for λ

and μ�, as discussed in Section 4.1. The defragmentation step was
not needed for redMaPPer.

2.3 CS82 weak lensing catalogue

We use the shape measurements from the CS82 survey, which is
a joint Canada–France–Brazil project using MegaCam at CFHT
and is specially designed to study the weak and strong lensing
effects (Erben et al. in preparation). The survey has 173 Mega-
Cam pointings in the i′ band covering an effective area of 127 deg2

(after masking to avoid bright stars, satellite tracks and other im-
age artefacts) to a limiting magnitude of 24 and mean seeing of
0.6 arcsec (Leauthaud et al. 2017) providing excellent imagin-
ing quality for precise shape measurements. The shape estimates
were obtained with Lensfit code (Miller et al. 2007) that per-
forms a Bayesian profile-fitting of the surface brightness to ob-
tain an unbiased estimate of the shear components from the av-
erage ellipticities. The code was tested in simulations and real
data (Kitching et al. 2008; Miller et al. 2013), achieving very
good results (Kitching et al. 2012) and became a suitable tool
for precise shape estimates in surveys with the imagining quality
of CS82.

Lensfit was applied to the masked imaging data following the
same pipeline as the CFTHLenS collaboration (Miller et al. 2013)
and applying the shear calibration factors and testing the systemat-
ics in the same way as Heymans et al. (2012). For each source, an
additive calibration correction factor c2 is applied to the ε2 shear
component and a multiplicative shear calibration factor as a func-
tion of the signal-to-noise ratio and size of the source, m(νSN, r), is
also computed. Besides that, the Lensfit shear measurements were
also compared with other independent shear calibration methods
(Reyes et al. 2012; Melchior et al. 2014; Clampitt & Jain 2015)
by Leauthaud et al. (2017) who have found that a largely un-
known and unaccounted for bias in the Lensfit measurements is
an unlikely possibility. From the Lensfit output catalogue we se-
lect the objects with weight w > 0, FITCLASS = 0 and MASK
≤ 1. These quantities are computed by Lensfit, where w is an in-
verse variance weight for each source, FITCLASS is a star/galaxy
separation flag to remove stars and select galaxies with well-
measured shapes and MASK is a flag that indicates the quality
of the photometry, where for most of the weak lensing analysis
MASK ≤ 1 is a robust cut to apply, as shown by Erben et al.
(2013). We also select only galaxies with magnitudes 20 ≤ i′ ≤
24.7, that is the limit to which the shear measurements were accu-
rately calibrated in the CFHT images (Heymans et al. 2012; Miller
et al. 2013).

The BPZ photometric redshift catalogue includes, in addition to
the photo-zs and errors, the parameter BPZ ODDS that varies be-
tween 0 to 1 and indicates catastrophic redshift errors. We removed
from our source galaxy sample all objects with BPZ ODDS ≤ 0.5.
According to Hildebrandt et al. (2012) and Benjamin et al. (2013)
the photo-z of the sources degrade at zs > 1.3, which could be a
concern for our measurements. However, Leauthaud et al. (2017)
performed a test computing the CS82 lensing signal with and with-
out this redshift cut and have shown no statistically significant
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Figure 1. Redshift distributions of the redMaPPer (purple) and VT (or-
ange) clusters used in our analysis. For our measurements we selected the
redMaPPer sample in a low redshift bin (0.1 ≤ zlow < 0.33) and the VT
sample in two redshift bins (0.1 ≤ zlow < 0.33 and 0.33 ≤ zhigh < 0.6).

shift in the signal. Therefore, we do not apply any restriction on
the maximum value of zs so as to maximize the number of back-
ground sources. Finally, after applying all the aforementioned cuts
we obtained a final catalogue with 2 809 764 sources, which give
an effective weighted galaxy number density of neff = 4.5 galaxies
arcmin−2.

Previous weak lensing measurements using the CS82 source cat-
alogue have been performed, e.g. by Shan et al. (2014), Li et al.
(2014), Hand et al. (2015), Liu et al. (2015), Li et al. (2016),
Battaglia et al. (2016), Leauthaud et al. (2017), Shan et al. (2017)
and Niemiec et al. (2017), making this lensing catalogue well tested
for different applications.

3 M E T H O D O L O G Y

We measure the mass-observable relation from the stacked lensing
signal of redMaPPer and VT clusters using the CS82 shear cata-
logue. For the stacking of the lenses, we define bins of redshift and
observable mass proxy.

In Fig. 1, we show the redshift distributions for redMaPPer and
VT clusters used in our stacked measurements highlighting the
boundaries of the low- and high-z bins. For the low redshift bin,
we follow Simet et al. (2017, hereafter S17), and define 0.1 ≤
zlow < 0.33. We have 230 redMaPPer clusters at those redshifts, with
20 ≤ λ ≤ 128.7. The corresponding range of μ� for these clusters is
3.82 × 1012M� ≤ μ� ≤ 13.85 × 1012M�. For the VT sample, we
have 41 clusters in the low-redshift bin. We also consider a higher
redshift bin, 0.33 ≤ zhigh ≤ 0.6, for which there are 95 clusters in
the catalogue. The VT clusters in these two redshift bins lie within
the range 1.47 × 1012M� ≤ μ� ≤ 16.53 × 1012M�.

Inside each redshift bin, we separate the samples into four mass
proxy bins, in such a way that we have a similar number of clusters
in each bin. For the redMaPPer catalogue we repeat this procedure
twice, once for λ and once for μ� (see Table 1). The stacking in λ

allows us to compare our mass-richness results with S17 and other
measurements reported in the literature. The binning in μ� will
enable us to compute the first mass-calibration of the redMaPPer
cluster using this new mass proxy. Table 2 shows the z and μ� bins
for the VT catalogue.

3.1 The stacked cluster profiles

For any distribution of projected mass, it is possible to show that
the azimuthally averaged tangential shear γ t at a projected radius R

Table 1. Binning scheme and properties of the redMaPPer cluster sample.
We use the same low redshift bin as S17, but for the binning in λ we use a
different scheme where we have a similar number of clusters in each of the
four richness bins. Here, μ� is given in units of 1012M�.

Mean z λ Range Mean λ No. of clusters

0.249 [20, 23.42) 21.72 59
0.244 [23.42, 28.3) 25.64 59
0.247 [28.3, 39.7) 32.90 59
0.249 [39.7, 145) 58.06 53

Mean z μ� range Mean μ� No. of clusters

0.228 [0, 4.15) 3.40 59
0.252 [4.15, 5.20) 4.72 59
0.251 [5.20, 6.84) 5.97 59
0.259 [6.84, 14) 8.41 53

Table 2. Binning scheme and properties of the VT cluster sample. We
separate in two redshift bins and choose the μ� bins so as to have a similar
number of clusters in each of the four bins. Here, μ� is in units of 1012M�.

z Range Mean z μ� Range Mean μ� No. of clusters

[0.1, 0.33) 0.220 [0, 5.78) 4.42 11
0.279 [5.78, 7.59) 6.84 11
0.278 [7.59, 10.55) 8.60 10
0.290 [10.55, 17) 11.45 9

[0.33, 0.6) 0.457 [0, 5.38) 4.17 28
0.428 [5.38, 6.58) 5.94 24
0.410 [6.58, 8.90) 7.57 24
0.380 [8.90, 17) 11.03 19

from the centre of the mass distribution (Miralda-Escude 1991) is
given by

γt (R) = �



crit
≡ 
(< R) − 〈
(R)〉


crit
, (5)

where 
(R) is the projected surface mass density at radius R, 
(<
R) is the mean value of 
 within a disc of radius R, 〈
(R)〉 is the
azimuthally averaged 
(R) within a ring of radius R and 
crit is the
critical surface mass density expressed in physical coordinates as


crit = c2Ds

4πGDlDls
, (6)

where Dl and Ds are angular diameter distances from the observer
to the lens and to the source, respectively and Dls is the angular
diameter distance between them.

From equation (5), we can compute the surface density contrast
�
 over several lenses with similar physical properties (e.g. red-
shift, richness) to increase the lensing signal and reduce the effect
of substructures, uncorrelated structures in the line of sight, shape
noise and shape variations of individual haloes.

In practice, we use the inverse variance weight w from Lensfit to
optimally weight shear measurements, accounting for shape mea-
surement error and intrinsic scatter in galaxy ellipticity. Then, for
a given lens i and a given source j, the inverse variance weight for
�
 is derived for equation (5) and expressed as wls,ij = wj


−2
crit,ij .

The quantity wls is used to compute �
 trough a weighted sum
over all lens-source pairs

�
 =
∑Nl

i=1

∑Ns

j=1 wls,ij × γt,ij × 
crit,ij∑Nl

i=1

∑Ns

j=1 wls,ij

, (7)
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where Nl is the number of cluster lens and Ns is the number of
source galaxies.

We compute �
 in 20 logarithmically spaced radial bins from
R ∼ 0.1 h−1 Mpc to R ∼ 10 h−1 Mpc. In Miller et al. (2013), it
was pointed out that a multiplicative correction for the noise bias
needs to be applied after stacking the shear. This correction can be
computed from the multiplicative shear calibration factor m(νSN, r)
provided by Lensfit. An often used expression for this correction
(Velander et al. 2014; Hudson et al. 2015; Leauthaud et al. 2017;
Shan et al. 2017) is given by

1 + K(zl) =
∑Nl

i=1

∑Ns
j=1 wls,ij [1 + m(νSN,ij , rij )]∑Nl

i=1

∑Ns
j=1 wls,ij

, (8)

and the calibrated lensing signal is computed as

〈�
cal〉 = �


1 + K(zl)
. (9)

In order to reduce the dilution of the lensing signal due to un-
certainties in the photo-zs that can cause some background sources
to be placed as foreground sources and vice versa, we impose that
zs > zl + 0.1 and zs > zl + σ 95/2, where zl is the lens redshift,
zs is the source redshift and σ 95 is the 95 per cent confidence limit
on the source redshift provided by BPZ. These cuts were validated
by Leauthaud et al. (2017), who have found that the lensing signal
is invariant over a range of lens–source separation cuts, suggesting
that dilution caused by foreground or physically associated galaxies
is not a large concern for CS82 weak lensing measurements (see
their appendix A1 for more details).

We compute the weak lensing signal �
 from equation (9) in
20 logarithmic bins in the range (0.1 − 10)h−1 Mpc. As the errors
on the weak-lensing signals are expected to be dominated by shape
noise, we do not expect a noticeable covariance between adjacent
radial bins and we treat them as independent in our analyses. The
error bars in our lensing signals are obtained by bootstrapping on the
individual clusters with N = 100 resamplings in each stack. Vitorelli
et al. (2017) have tested several bootstrap resampling values (e.g.
N = 50, 150, 200, 300) and found no significant variation of the
error bars down to R � 4 Mpc.

We computed the cross-component of the lensing signal (�
×)
and found no evidence of spurious correlations in the weak-lensing
signals, i.e. the �
× measurements are consistent with zero.

3.2 Profile-fitting

To model the average lensing signal around each lens and then obtain
their mass estimates we use a model with two components: a per-
fectly centred dark matter halo profile and a miscentring term where
the assumed centre does not correspond to the dynamical centre of
the dark matter halo. For the first term, we assume the clusters are
well modelled by spherical Navarro–Frenk–White (NFW; Navarro,
Frenk & White 1996) haloes, on average, in which the 3D density
profile is given by

ρ(r) = δcρcrit

r
rs

(
1 + r

rs

)2 , (10)

where rs is the cluster scale radius, δc is the characteristic halo over-
density, ρcrit = 3H 2(z)/8πG is the critical density of the Universe
at the lens redshift and H(z) is the respective Hubble parameter.

In this paper, we use as cluster mass the mass M200 contained
within a radius r200 where the mean mass density is 200 times
the critical density of the Universe. The scale radius is given by

rs = r200/c200, where c is the so-called concentration parameter. In
our fitting procedure, we follow van Uitert et al. (2012); Kettula
et al. (2015) and use the concentration-mass scaling relation from
Duffy et al. (2008) given by

c200 = 5.71 ×
(

M200

2 × 1012h−1

)−0.084

× (1 + z)−0.47. (11)

Bartelmann (1996) and Wright & Brainerd (2000) provide an an-
alytical expression for the projected NFW profile, �
NFW and we
use a Python implementation10 of these results for our profile-fitting
procedure.

The central galaxy of a cluster is usually very bright but is not
necessarily the BCG. For instance, Rykoff et al. (2016) pointed
out that only ∼80–85 per cent of the redMaPPer central galaxies
are BCGs and Zitrin et al. (2012) show that some BCGs present an
offset from the centre of their host dark matter halo. This miscentring
affects the observed shear profile (Yang et al. 2006), (Johnston
et al. 2007) and (Ford et al. 2014). We follow the correction scheme
presented in Johnston et al. (2007), Ford et al. (2015) and Simet
et al. (2017) to account for this effect. If the 2D offset in the lens
plane is Rs, the azimuthal average of the profile is


misc(R) =
∫ ∞

0
dRsP (Rs)
(R|Rs), (12)

where


(R|Rs) = 1

2π

∫ 2π

0
dθ


(√
R2 + R2

s + 2RRs cos θ

)
. (13)

In other words, the angular integral of the profile 
(R) is shifted
by Rs from the centre. We also use a probability distribution for Rs

given by

P (Rs) = Rs

σ 2
off

exp

(
−1

2

R2
s

σ 2
off

)
, (14)

which is an ansatz, assuming the mismatching between the centre
and Rs follows a 2-dimensional Gaussian distribution. We use the
Python implementation11 of Ford & VanderPlas (2016) to compute
the miscentring term. The width of the miscentring distribution
(σ off) is fixed as 0.4h−1 Mpc for simplicity. As noted in S17, this is
an expected value for clusters with mass ∼1014M�.

Our complete theoretical modelling for �
, considering the cen-
tred halo and miscentring terms, is given by

�
theo = pcc�
NFW + (1 − pcc)�
misc. (15)

In Table 3, we present a summary of the systematics considered
in this paper, both for obtaining the weak lensing signal �
 and in
the profile fitting.

In addition to the contribution from single (centred and miscen-
tred) cluster haloes, a variety of studies in the literature have pointed
out the need to consider other terms to better model the measured
profile. These often include a point mass term for a possible stellar-
mass contribution of the central galaxies and a so-called two-halo
term due to neighbouring haloes (i.e. due to the large-scale structure
of the Universe). In this work, we avoid these two contributions as
we are only interested in measuring M200 and we do not have enough
precision to fit for many free parameters in each mass-proxy bin. For
this sake, we perform the model-fitting in a restricted radial range.
We follow S17 and use Rmin = 0.3 h−1 Mpc as the inner radius limit

10 https://github.com/joergdietrich/NFW
11 https://github.com/jesford/cluster-lensing
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Table 3. Summary of the systematics we take into account in the measurements of the lensing signal and in the profile-fitting.
Note that since we apply a radial cut in innermost and outer range, following the same procedure as S17, our measurements are not
affected by the central point mass and the two-halo terms.

Systematic: Summary:

Shear measurement Apply additive calibration correction factor c2 to ε2 component
Apply multiplicative shear calibration m(νSN, r)

Photometric redshifts Remove BPZ ODDS ≤ 0.5 to reduce systematic errors due to catastrophic outliers
Apply zs > zl + 0.1 and zs > zl + σ95

2

Miscentring Apply same correction as Yang et al. (2006), Johnston et al. (2007) and Shan et al. (2017)

Figure 2. The �
 measurements and the profile-fitting results for the stacked redMaPPer clusters in the low redshift interval in four observable mass proxy
bins. In the top panel, we show the results for the binning using λ and in the bottom panel the results for binning in μ� (in units of 1012 M�). The fit to the
models is performed for the radial bins within the two vertical dotted lines. The purple solid line shows the best-fitting results for a combination of NFW and
miscentring term, using the information of Pcen as a prior for the miscentring offset. The orange dashed line shows the best fit using P �

cen as the information
for the prior when performing the fit. The dashed–dotted and dotted lines show the contribution of the two terms to the best-fitting profile: the centred NFW
profile pcc�
NFW (purple dashed–dotted) and the miscentring term (1 − pcc)�
misc (purple dotted).

to avoid problems with the selection of background galaxies and
the increased scatter due to the low sky area, and also to reduce
the effects of the point mass contribution (see also Mandelbaum
et al. 2010). We define a richness-dependent outer limit in the range
Rmax � (2.5–3.5) h−1 Mpc to avoid the 2-halo contribution. S17
shows that the results are insensitive to the specific values of Rmax

for a wide range of values.
Finally, for each sample in the radial range mentioned above,

we perform the profile-fitting via Bayesian formalism and Monte
Carlo Markov Chain (MCMC) method to compute the posterior
distribution Pr(M200, pcc|�
obs) and then obtain the best estimate
for the cluster mass. Following Vitorelli et al. (2017), we use a
flat prior for the mass (1012 h−1 M� < M200 < 1015 h−1 M�) and
a Gaussian prior on the miscentring term, N (pcc; Pcen, σPcen ), for
0 < pcc < 1, where Pcen and σPcen are the mean and standard deviation
of the highest centring probabilities Pcen. We use the same modelling
approach for P �

cen, in both the redMaPPer and VT catalogues.
In Fig. 2, we show the weak lensing profiles for the redMaPPer

clusters. We present the measured signal (black dots) and the best
fits using Pcen in the Gaussian prior for miscentring (purple solid
line) and using P �

cen in the prior (orange dashed line). We also
show the centred halo contribution (purple dotted-dashed line) and

the miscentring term (purple dotted line) from equation (15) as
computed in the Pcen prior case. The dotted vertical lines correspond
to Rmax and Rmin , which define the range where the fit is performed.
We show the low redshift sample in bins of λ (in the top panel) and
μ� (in the bottom).

We see from Fig. 2 that the best-fitting results using Pcen and
P �

cen are very similar, validating the use of P �
cen for the miscentring

correction, and in particular its application to the VT clusters. In
Figs 3 and 4, we show the profile-fitting results for the VT clusters
in the low and high redshift samples in bins of μ�. The best-fitting
values of the two parameters for all cases considered here are pre-
sented in Table 4. In our analyses, we use M200 relative to critical
matter density (hereafter M200c) of the Universe, however, to en-
able the comparison with other works in the literature, it is useful
to express the results in terms of M200 relative to the mean den-
sity (M200m). To convert from M200c to M200m, we use the Colossus
code12 (Diemer 2015). In Table 4, we show the results in terms of
both mass definitions.

12 https://bitbucket.org/bdiemer/colossus
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Figure 3. The �
 measurements and the profile-fitting results for the stacked VT clusters in the low redshift interval in four bins of μ� (in units of 1012 M�).
The fit is performed for the radial bins within the two vertical dotted lines. The orange solid line shows the best fit using P �

cen in the prior for the miscentring
offset in the fit. The dashed and dotted lines show the contribution of the two terms to the best-fitting profile: the centred NFW profile (orange dashed) and the
miscentring term (orange dotted).

Figure 4. Same as the previous figure, but for the interval 0.33 ≤ zhigh < 0.6 of the VT clusters in bins of μ� (intervals in units of 1012 M�).

Table 4. Best-fitting results for redMaPPer clusters in Fig. 2 and for VT clusters in Figs 3 and 4. In the fitting,
we use a concentration–mass relation from Duffy et al. (2008) to fix c200 and we fix the width of miscentring
distribution as σ off = 0.4 h−1 Mpc. Our final model has just two free parameters, the mass M200 (computed using
the critical density and converted to the mean density with Colossus) and the fraction of clusters that is correctly
centred pcc. For the redMaPPer clusters, we use the mean and standard deviation (σ ) of Pcen in a Gaussian prior
for pcc, while for the VT clusters we use the mean and σ of P �

cen for the Gaussian prior. The values of μ� that
define each stack are given in units of 1012 M�.

z M200c (1014 h−1 M�) M200m (1014 h−1 M�) pcc

redMaPPer
20 ≤ λ < 23.42 0.1 ≤ z < 0.33 0.83 ± 0.23 1.08 ± 0.30 0.83 ± 0.11
23.42 ≤ λ < 28.3 1.30 ± 0.38 1.71 ± 0.49 0.75 ± 0.13
28.3 ≤ λ < 39.7 1.30 ± 0.27 1.71 ± 0.35 0.86 ± 0.10
39.7 ≤ λ < 145 2.90 ± 0.55 3.84 ± 0.71 0.71 ± 0.12

0 ≤ μ� < 4.15 0.1 ≤ z < 0.33 0.59 ± 0.19 0.77 ± 0.25 0.86 ± 0.10
4.15 ≤ μ� < 5.20 1.60 ± 0.42 2.10 ± 0.54 0.75 ± 0.13
5.20 ≤ μ� < 6.84 1.50 ± 0.36 1.97 ± 0.47 0.75 ± 0.13
6.84 ≤ μ� < 14 2.90 ± 0.52 3.82 ± 0.67 0.77 ± 0.11

VT

0 ≤ μ� < 5.78 0.1 ≤ z < 0.33 2.40 ± 0.65 3.20 ± 0.85 0.82 ± 0.10
5.78 ≤ μ� < 7.59 2.50 ± 0.49 3.27 ± 0.63 0.91 ± 0.04
7.59 ≤ μ� < 10.55 5.20 ± 1.10 6.86 ± 1.42 0.89 ± 0.03
10.55 ≤ μ� < 17 3.80 ± 0.92 4.97 ± 1.18 0.88 ± 0.04

0 ≤ μ� < 5.38 0.33 ≤ z < 0.6 2.50 ± 0.92 3.09 ± 1.13 0.75 ± 0.12
5.38 ≤ μ� < 6.58 2.40 ± 0.90 2.99 ± 1.11 0.79 ± 0.09
6.58 ≤ μ� < 8.90 3.30 ± 0.81 4.15 ± 1.00 0.82 ± 0.07
8.90 ≤ μ� < 17 5.50 ± 1.00 7.01 ± 1.25 0.86 ± 0.04
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4 R ESULTS

From the weak lensing masses in Table 4, we obtain a mass calibra-
tion for redMaPPer clusters and compare with the current results
from the literature. We then apply the same methodology to obtain
the mass-observable scaling relation for the new mass proxy μ�,
both for the redMaPPer and VT clusters.

In this work, the mass-richness relation for the redMaPPer mass
proxy λ is given by the power-law expression

〈M200|λ〉 = M0

(
λ

λ0

)α

, (16)

where λ0 is a fixed pivot richness and the normalization M0 and the
slope α are the free parameters.

For the new mass proxy, we fit a power-law relation to the mass
obtained in the μ� bins akin to equation (16):

〈M200|μ�〉 = M0

(
μ�

μ0
�

)α

, (17)

where the pivot value μ0
� is chose as the median value of the proxy

in each sample.

4.1 redMaPPer mass–richness relation

To validate our mass estimates we make a comparison with S17,
which uses the same redMaPPer catalogue in the same low redshift
bin to compute a mass–richness relation. However, the analysis in
S17 is not limited to the SDSS Stripe 82 region, which implies
that they have more statistics than us. On the other hand, our shape
measurements are made in better quality images than SDSS and
using the state-of-the-art code Lensfit, which enables us to have a
good SNR for our lensing signal to make this comparison.

In Fig. 5 , we show our best-fitting M200m versus λ relation
(orange solid line) and its 2σ confidence intervals (orange shaded
regions). We show, for comparison, the S17 mass–richness relation
(green solid line). Using the same pivot richness as S17, λ0 = 40,
we find M0 = (2.46 ± 0.44) × 1014 h−1 M� and α = 1.18 ± 0.38
while they have obtained M0 = (2.21 ± 0.22) × 1014 h−1 M� and
α = 1.33+0.09

−0.10. Additionally, we present the mass–richness relation
obtained by (Melchior et al. 2017, blue dashed line) for clusters
identified with redMaPPer in the DES Science Verification data,
with shears measured on that same data, in a similar low red-
shift bin (0.2 < zlow < 0.4). Their results, converted to our units
and pivot λ0 = 40, are M0 = (2.21 ± 0.35) × 1014 h−1 M� and
α = 1.12 ± 0.20. We also compare our results to the mass–richness
relation for the red sequence based CAMIRA code of Oguri (2014).
The CAMIRA code was applied to the same SDSS DR8 data and
has its own richness estimator, N̂cor. In order to convert their result
to our units, we first performed a cylindrical match between our
sample and their catalogue to find the mean relation between N̂cor

and λ. Our cylindrical match uses a search radius of 1 arcmin and
�z = 0.05. We found 339 matched clusters from which we derived
the CAMIRA–redMaPPer richness scaling relation N̂cor = Aλ with
A = 0.819 ± 0.009. The mass calibration for CAMIRA is obtained
for M200vir, which we convert to M200m using Colossus, and we
converted their calibration to the pivot λ0 = 40 as well. We find
that their converted results are M0 = (2.53 ± 0.30) × 1014 h−1 M�
and α = 1.44 ± 0.27 (red double-dashed line). These results are
summarized in Table 5.

Despite using different data and slightly different approaches,
we see that our mass measurements are in excellent agreement with
those results from the literature, which validates our methodology

Figure 5. Comparison of the mass–richness relations of redMaPPer clusters
in the zlow interval. The adopted zlow interval is the same for S17 (green solid
line) and this work (orange solid line). Melchior et al. (2017, blue dashed
line) work in the range 0.2 ≤ z < 0.4 while Oguri (2014, red double-dashed
line) use the range 0.1 < z < 0.3 for its low redshift interval. We show the 2σ

confidence intervals (orange shaded region) for the cluster mass M200m as a
function of the richness λ from this work. The value of the normalizations
and slopes are shown in Table 5.

Table 5. Comparison of the redMaPPer mass–richness relation in the zlow

bin with three recent results from the literature. The normalization M0 from
Melchior et al. (2017) is converted to our units. We also have to convert M0

from Oguri (2014) to our units and find a relation between their richness
N̂cor and λ. All calibrations are computed or converted to the pivot λ0 = 40.

M0(1014 h−1 M�) α

This work 2.46 ± 0.44 1.18 ± 0.38
Simet et al. 2017 2.21 ± 0.22 1.33+0.09

−0.10

Melchior et al. 2017 2.21 ± 0.35 1.12 ± 0.20
Oguri et al. 2014 2.53 ± 0.30 1.44 ± 0.27

to obtain average mass estimates from the stacked weak lensing
signal.

As mentioned, we also computed μ� for the redMaPPer clusters.
We fit the power-law relation of equation (17) with pivot value
μ0

� = 5.16 × 1012 M�. We find M0 = (1.77 ± 0.36) × 1014 h−1 M�
and α = 1.74 ± 0.62. In Fig. 6, we show the best-fitting M200m × μ�

relation (orange solid line) and its 2σ confidence intervals (orange
shaded region) for the zlow interval.

4.2 VT–μ� mass-calibration

In Fig. 7, we show M200m × μ� for VT clusters in the zlow inter-
val, following the same approach we used to calibrate the mass
as a function of μ� in the redMaPPer cluster sample. The orange
solid line is the best-fitting result and the orange shaded regions are
the 2σ confidence intervals for this VT sample. The pivot is μ0

� =
7.30 × 1012 M� and we find M0 = (4.31 ± 0.89) × 1014 h−1 M�
and α = 0.59 ± 0.54. For comparison, we show as purple shaded re-
gions the same 2σ confidence intervals obtained for the redMaPPer
clusters shown in Fig. 6. We see a good agreement at this confidence
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Figure 6. Mass-calibration with 2σ confidence intervals for redMaPPer
clusters binned in μ� in the zlow interval. For the mass estimates, we apply
the miscentring correction. In the mass–μ� relation, we adopt the median of
μ� as the mass proxy pivot, μ0

� = 5.16 × 1012 M�.

Figure 7. Mass-calibration with 2σ confidence intervals (orange shaded
regions) for VT clusters binned in μ� in the zlow interval. Miscentring
corrections were applied in the mass estimates. In the mass-richness relation,
the pivot is μ0

� = 7.30 × 1012 M�. For comparison, we also present the 2σ

confidence intervals (purple shaded regions) for the redMaPPer zlow clusters.

level, despite the fact that the cluster samples are significantly dif-
ferent. Actually, if we consider the VT and redMaPPer data points
altogether, i.e. if we combine the VT μ� bins and corresponding
masses and the redMaPPer μ� bins and respective masses, we ob-
tain a power-law fit as good as the one for the VT points only. In
other words, the redMaPPer mass–μ� relation is compatible to the
VT one.

Figure 8. Same as previous figure but for the zhigh interval and pivot
μ0

� = 6.30 × 1012 M�.

Table 6. Summary of mass–μ� calibration for redMaPPer (RM) and VT
clusters obtained from this work. We present the normalization M0 and slope
α values by fitting the equation (17) as well the proxy pivot μ0

� adopted for
each sample, i.e. RM clusters at 0.1 ≤ zlow < 0.33 and VT clusters in the
same RM low redshift bin as well as a high redshift bin 0.33 ≤ zhigh < 0.6.

Sample μ0
�(1012 M�) M0(1014 h−1 M�) α

RM zlow 5.16 1.77 ± 0.36 1.74 ± 0.62
VT zlow 7.30 4.31 ± 0.89 0.59 ± 0.54
VT zhigh 6.30 3.67 ± 0.56 0.68 ± 0.49

We present the mass-calibration results for the zhigh interval
of VT clusters in Fig. 8. The orange solid line and orange
shaded regions are the best fit and the 2σ confidence intervals,
respectively. We have used a pivot μ0

� = 6.30 × 1012 M� and find
M0 = (3.67 ± 0.56) × 1014 h−1 M� and α = 0.68 ± 0.49. As
previously mentioned, we were able to extend our analysis of the
VT sample to the higher redshift range 0.33 < z < 0.6 because
the VT clusters were identified in the SDSS co-add data, which is
deeper than SDSS single epoch data used to identify the redMaPPer
sample. In addition, the CS82 shear catalogue is still reliable for
lenses at these redshifts. The results of the all mass–μ� calibrations
are summarized in Table 6.

5 D I SCUSSI ON

We perform a weak lensing mass calibration of μ�, a cluster mass
proxy that includes information about galaxies regardless of their
colour. Unlike the empirically determined red sequence-based mass
proxies, μ� is physically motivated: the stellar mass inside a dark
matter halo can be expected to trace the dark matter halo mass.
Furthermore, it turns out that the stellar mass is a relatively robust
observable (see Conroy 2013, and references therein) and indepen-
dent of the history of the formation of the red sequence. The redshift
at which the red sequence forms in clusters is not currently known,
and at high enough redshifts redMaPPer will become increasingly
incomplete in terms of finding dark matter haloes. Additionally,
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stellar masses are easier to model in simulations than the red se-
quence (e.g. Roediger et al. 2017).

It is natural to use a well-studied sample of clusters in the devel-
opment of a new mass proxy and to use a well-studied mass proxy
to validate our methodology. We have measured the redMaPPer
λ-mass scaling relation and showed results consistent with similar
scaling relations reported in the literature. We then performed the
scaling relation measurement on the same redMaPPer clusters bin-
ning on μ� instead of λ. The most direct comparison between the
two scaling relations is made at the pivot point: the slope and the
mass at the pivot point are consistent between the λ and μ� proxies.

Since we applied the methodology on the same clusters in mea-
suring both scaling relations, our results can be directly interpreted.
Imagine a scenario in which all cluster members are in the red se-
quence. There would be a maximal correlation between λ and μ� as
all red galaxies have very similar mass-to-light ratios. The scaling
relations would, therefore, be nearly identical. If we change the sce-
nario to include blue galaxies and compute a λ-like proxy, the slope
of the λ-like proxy with mass would be shallower because the lu-
minosity of the blue galaxies is most often driven by single star
formation events and the high luminosity of young massive stars,
and large numbers of low luminosity galaxies would be pushed
above the threshold. If the μ� proxy were similarly affected by blue
galaxies, our measured slope would be shallow. The fact that our
measurements of the scaling relations in redMaPPer are so close to
each other indicates that the stellar mass in these systems is trac-
ing dark matter mass with not much worse scatter than λ. In low-z
clusters, it is known that nearly all members are red and therefore
our results are not surprising here. At high redshift, however, this
is not true. A red-sequence selected high-z sample might show a
significant difference between λ and μ� mass calibrations as the red
sequence begins to form.

We explore the applicability of our methodology to colour agnos-
tic cluster finders by performing the scaling relation measurement of
VT clusters. The results are again consistent with those obtained for
the redMaPPer clusters in this redshift range, as expected, indicating
that our methods hold for other cluster selection algorithms. A clear
result of our work is the recommendation that μ� be incorporated
as the mass proxy for VT clusters.
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de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). Fora
Temer. AP acknowledges support from the URA research scholar
award and the UCL PhD studentship. We thank Eli Rykoff for useful
discussions.

This work is based on observations obtained with
MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA,
at the Canada–France–Hawaii Telescope (CFHT), which is oper-
ated by the National Research Council (NRC) of Canada, the In-
stitut National des Sciences de l’Univers of the Centre National de
la Recherche Scientifique (CNRS) of France and the University of
Hawaii. The Brazilian partnership on CFHT is managed by the Lab-
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