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1  | INTRODUCTION

Tropical forests play a key role in the global carbon cycle and are a major 
carbon pool, with ca. 285 Pg of carbon estimated to be stored in above-
ground live biomass (Feldpausch et al., 2012). Current efforts to quan-
tify global carbon stocks (e.g. Avitabile et al., 2016), understand carbon 
dynamics in tropical forests (e.g. Brienen et al., 2015), evaluate the 
potential for forest conservation to mitigate climate change (e.g. Jantz, 
Goetz, & Laporte, 2014) and examine biodiversity-ecosystem function 
relationships (e.g. Chisholm et al., 2013) all rely on robust estimates of 
carbon storage in above-ground biomass (AGB). The AGB of forests can 
be estimated from ground-based inventory plots, where allometric equa-
tions are used to estimate AGB from measured tree diameters (Chave 
et al., 2014). Tree height is an important component of this allometric 

relationship, as tree biomass is partially a function of tree volume, which 
is, in turn, a function of tree height, trunk basal area and trunk taper 
(Chave et al., 2005). Incorporating a height parameter is known to mark-
edly improve estimates of individual tree AGB (Feldpausch et al., 2012), 
and this has a substantial effect at larger scales too. For example esti-
mates of global tropical forest biomass carbon stocks vary by 35.2 Pg 
depending simply on whether height is incorporated (Feldpausch et al., 
2012), equivalent to c. 4 years of global fossil fuel emissions (Boden, 
Marland, & Andres, 2013) or c. 15 years of the global forest carbon 
sink (Pan et al., 2011). This has led to the incorporation of tree height 
in REDD+ carbon monitoring (Global Forests Observations Initiative, 
2013). Improved plot-level knowledge of height–diameter relationships 
would also help improve remote sensing-based estimates of local and 
global forest biomass. For example space- and airborne LIDAR measure 
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Abstract
1.	 Quantifying the relationship between tree diameter and height is a key component 
of efforts to estimate biomass and carbon stocks in tropical forests. Although sub-
stantial site-to-site variation in height–diameter allometries has been documented, 
the time consuming nature of measuring all tree heights in an inventory plot means 
that most studies do not include height, or else use generic pan-tropical or regional 
allometric equations to estimate height.

2.	 Using a pan-tropical dataset of 73 plots where at least 150 trees had in-field ground-
based height measurements, we examined how the number of trees sampled af-
fects the performance of locally derived height–diameter allometries, and evaluated 
the performance of different methods for sampling trees for height measurement.

3.	 Using cross-validation, we found that allometries constructed with just 20 locally 
measured values could often predict tree height with lower error than regional or 
climate-based allometries (mean reduction in prediction error = 0.46 m). The pre-
dictive performance of locally derived allometries improved with sample size, but 
with diminishing returns in performance gains when more than 40 trees were sam-
pled. Estimates of stand-level biomass produced using local allometries to estimate 
tree height show no over- or under-estimation bias when compared with biomass 
estimates using field measured heights. We evaluated five strategies to sample 
trees for height measurement, and found that sampling strategies that included 
measuring the heights of the ten largest diameter trees in a plot outperformed (in 
terms of resulting in local height–diameter models with low height prediction error) 
entirely random or diameter size-class stratified approaches.

4.	 Our results indicate that even limited sampling of heights can be used to refine 
height–diameter allometries. We recommend aiming for a conservative threshold 
of sampling 50 trees per location for height measurement, and including the ten 
trees with the largest diameter in this sample.

K E Y W O R D S

above-ground biomass estimation, allometry, carbon stocks, forest inventory, forest structure, 
sample size
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canopy height (Baccini et al., 2012; Saatchi et al., 2011) and high-quality 
ground estimates of AGB are needed to calibrate height–AGB allome-
tries (Jucker et al., 2017).

Despite the importance of tree height for estimating biomass, measured 
heights are frequently unavailable. This has led to the development both 
of allometric models to estimate AGB without a height parameter (Chave 
et al., 2005), and of pan-tropical height–diameter models (Brown, Gillespie, 
& Lugo, 1989) which are used to predict tree heights when measured 
heights are unavailable. While these earlier efforts assume that a single 
height–diameter relationship can be applied across the tropics, height–di-
ameter relationships are known to be influenced by biogeography and by 
environmental and compositional variation at much smaller scales (Banin 
et al., 2012; Djomo et al., 2016; Feldpausch et al., 2011; Thomas, Martin, 
& Mycroft, 2015). Pan-tropical allometries have therefore been refined to 
incorporate variation attributed to region (Feldpausch et al., 2012) or cli-
mate (Chave et al., 2014). Nevertheless, height–diameter relationships can 
be expected to vary at all scales, suggesting that even these regionally or 
climatically modified models themselves lack the necessary sophistication 
needed for many applications (Rutishauser et al., 2013; Stas, Rutishauser, 
Chave, Anten, & Laumonier, 2017). It is of course also possible to construct 
locally derived height–diameter allometries that implicitly incorporate vari-
ation due to geography and the environment. Incorporating heights esti-
mated by locally derived models has, for example already been found to 
reduce estimates of AGB in Central Africa (Kearsley et al., 2013) and to 
increase estimates of biomass production in Borneo (Banin et al., 2014) 
when compared with estimates derived from coarser-scale allometries. 
Widespread application of locally derived allometries could in principle 
lead to substantially changed—and improved—estimation and understand-
ing of variation in tropical forest carbon storage and sequestration.

Measuring tree heights is time consuming, so it is rare to mea-
sure the heights of all trees within inventory plots. As a result, in 
practice, local height–diameter relationships are frequently modelled 
using small samples of trees. For example the RAINFOR field man-
ual recommends measuring the height of 40 trees in 1-ha plots for 
convenience where time constraints prevent all trees being measured 
(Phillips, Baker, Feldpausch, & Brienen, 2009), typically leaving more 
than 90% of tree heights to be predicted. Height–diameter models 
parameterised using such small samples of trees may perform poorly 
at predicting the height of the unmeasured trees, compared to region-
ally parameterised models using much larger samples of trees, for sev-
eral reasons: (1) the full range of local diameters may not be sampled, 
meaning that locally derived models extrapolate beyond the range of 
data used to train them (see Elith & Leathwick, 2009 for discussion of 
consequences); (2) non-linear relationships, such as asymptotic maxi-
mum heights, may not be evident within smaller sets of training data 
(Duncanson, Rourke, & Dubayah, 2015) and (3), models may be exces-
sively influenced by outliers (i.e. trees that are unusually tall or short 
for their diameter). It is thus uncertain how many trees need to be 
sampled to ensure that locally derived models constructed using small 
samples of trees actually do yield better estimates of tree height than 
regional models. Furthermore, it would be very helpful to understand, 
generally, how sampling effort in the field impacts the reliability of 
local-scale models across tropical forests. In particular, ecologists and 

practitioners aiming to generate improved accuracy of forest biomass 
estimates would benefit from knowing the sample size(s) and sampling 
protocols required to ensure that locally derived models consistently 
outperform existing regional and climate-based models.

Here we addressed these challenges by assembling a pan-tropical 
dataset of plots where large numbers (≥150 per plot) of trees have 
been sampled for height measurement and examining these to quan-
tify how well locally derived models predict tree height. We use a 
cross-validation approach to allow us to test height–diameter model 
performance on data that are independent to those used for model 
fitting. Our specific objectives were to (1) examine how the number of 
trees used to train locally derived models affects prediction errors with 
reference to the performance of existing regional and climate-based 
models and (2) test different strategies for sampling trees to produce 
locally derived models.

2  | MATERIALS AND METHODS

2.1 | Forest inventory data

Pan-tropical inventory data were collected by three networks of 
ecologists, working in South America (RAINFOR, Malhi et al., 2002), 
Africa (AfriTRON, Lewis et al., 2013) and Southeast Asia (T-FORCES, 
Qie et al., 2017), with all following standardised protocols that include 
diameter measurement of all trees ≥10 cm D measured at 1.3 m or 
above buttresses. Data were curated in the ForestPlots.net database 
(Lopez-Gonzalez, Lewis, Burkitt, & Phillips, 2011), and subject to 
identical quality control and quality assurance procedures. From this 
dataset we selected plots in intact, lowland (<1,500 m a.s.l.) closed 
canopy forest. Annual precipitation, obtained from the WorldClim da-
tabase (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), ranged from 
1,339 to 3,806 mm, whereas mean annual temperatures were be-
tween 22.6°C and 27.1°C. We selected plots where at least 150 trees 
had height measurements that met the criteria for inclusion (n = 53 
plots) or where combinations of plots within 5 km of each other with 
comparable forest composition, elevation and edaphic conditions had 
≥150 trees with height measurements (n = 96 individual plots com-
bined into 20 plots, hereafter also referred to as “plots”). The criteria 
for including individual height measurements were (1) tree stems were 
not broken, leaning by ≥10% or fallen, (2) tree heights were meas-
ured either using clinometers, laser rangefinders, laser hypsometers 
or directly by climbing and (3) tree heights were below 90 m (heights 
above this were assumed to be errors). Following application of these 
filters, our dataset consisted of 73 plots (30 in South America, 30 in 
Africa and 13 in Asia) with 28,173 trees with measured heights.

2.2 | Height–diameter models

We used three equations to relate measured heights (H) to tree di-
ameters (D) in each plot (subsequently referred to as locally derived 
models). First, we used the Weibull function

(1)H=a

(

1−exp
(

−bD
C

))

,
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where a, b and c are estimated parameters. An intuitive property of 
the Weibull function is that a can be interpreted as the asymptotic 
maximum height of a tree.

Second, we used the Michaelis–Menten function

where a and b are estimated parameters. For both Weibull and 
Michaelis–Menten models, we also fitted height–diameter models with 
case weights proportional to the volume of each tree (Molto et al., 2014). 
These weights give more importance to large trees during model fitting, 
and may improve estimates of stand-level AGB as these large trees are 
dominant components of stand-level biomass due to the nonlinear rela-
tionship between D and AGB (Bastin et al., 2015; Slik et al., 2013).

Third, we modelled the height–diameter relationship using the 
log–log linear ordinary least squares regression

where b gives the scaling exponent of a power law relationship be-
tween height and diameter.

Height–diameter models were fitted in R (R Core Team, 2014) using 
functions in the biomass r package (Réjou-Méchain, Tanguy, Piponiot, 
Chave, & Hérault, 2017), with the nonlinear Weibull and Michaelis–
Menten models parameterised using the Levenberg–Marquard algo-
rithm implemented in the minpack.lm r package (Elzhov, Mullen, Spiess, 
Bolker, & Mullen, 2016). All five models were parameterised sepa-
rately for each set of training data in each plot.

We compared these locally derived models to regionally parameter-
ised height–diameter Weibull equations (i.e. same form as Equation 1) 
with parameters for each biogeographical region obtained from 
Feldpausch et al. (2012), and to the pan-tropical climate-based model

from Chave et al. (2014), where E is defined as

C is climatological water deficit, T is temperature seasonality and P is 
precipitation seasonality, see Chave et al. (2014) for further details.

2.3 | Evaluating model performance

The performance of height–diameter models was assessed by training 
models on a subset of trees within a plot, before randomly selecting 50 
of the remaining trees and predicting the height of these. Prediction 
error was calculated as the square-root of the mean squared dif-
ference between measured and predicted heights (i.e. root-mean 
squared error, RMSE). This approach allows the performance of mod-
els to be assessed on independent testing data. We note that while we 
define prediction errors as differences between predicted and meas-
ured heights, the measurement of tree height itself is also subject to 
errors (see Larjavaara & Muller-Landau, 2013). Reported differences 
between measurement instruments did not affect our results as infer-
ences about the performance of locally derived allometries were not 
affected by restricting analyses to measurements made with clinom-
eters (Figure S1).

We first assessed whether locally derived models had lower pre-
diction errors than regional models by splitting data for each plot into 
independent training and testing subsets, fitting Weibull, Michaelis–
Menten and log–log height–diameter models to the training subset 
and calculating the prediction errors of both these locally derived 
models, and regional and climate-based models, on the testing sub-
set. We did this for training data sample sizes of 10 up to 100 trees, 
in increments of 10 trees. For a given sample size, we randomly se-
lected training and testing subsets for 100 iterations. We used linear 
mixed-effects models to quantify the difference in prediction error 
among height–diameter models, with plot identity and sample iden-
tity (i.e. an identifier for each division of the data into training and 
testing subsets) as random effects; 95% confidence intervals were 
obtained by parametric bootstrap. We fitted separate mixed-effects 
models to sample size increments of 10 and 100 trees. For each 
height–diameter model, we also modelled the probability of it being 
the best performing model in a given sample of trees as a function 
of training data sample size using generalised linear mixed effects 
models with binomial errors and a logit link, with plot identity as a 
random effect.

To provide an objective measure of any turning points in the rela-
tionship between RMSE and sample size, and hence evaluate whether 
there are any threshold sample sizes beyond which further sampling 
gives diminishing returns, we numerically estimated the second deriv-
ative (Fewster, Buckland, Siriwardena, Baillie, & Wilson, 2000) of the 
smoothed relationship between RMSE and sample size as

where In is the trend curve at sample size n. We expected the relation-
ship between RMSE and sample size to be negative, with potentially 
saturating rates of decline. For negative relationships, positive second 
derivative values indicate a slowing in the rate of change, so that peaks 
in the second derivative highlight threshold sample sizes beyond which 
returns from further sampling diminish. The trend curve was obtained by 
fitting a generalised additive model, implemented in the mgcv r package 
(Wood, 2006), of RMSE as a function of sample size, setting the max-
imum base dimension of the spline to four. The exact turning point is 
sensitive to the degree of smoothing of the trend curve, so we interpret 
results from this method alongside visual inspection of relationships.

To evaluate how height prediction errors propagated to errors in 
AGB estimates, we used the allometric equation of Chave et al. (2014), 
implemented in the BiomasaFP r package (Lopez-Gonzalez, Sullivan, & 
Baker, 2015), to estimate the AGB of each tree from their diameter D 
and estimated height H

where ρ is wood density derived from Chave et al. (2009) and Zanne 
et al. (2009). Although we do not know the true AGB of trees in our 
dataset, as trees were not destructively sampled, we can identify errors 
in AGB estimates due to the height component of allometric equations 
by comparing estimates of AGB using observed heights with estimates 
using modelled heights. We therefore used the difference between the 
summed AGB of the 50 trees in the testing dataset when height was 

(2)H=

(

aD
)

∕

(

b+D
)

,

(3)ln
(

H
)

=a+b
(

ln
(

D
))

,

(4a)ln
(

H
)

=−0.893−E + 0.760 ln
(

D
)

−0.0340
[

ln
(

D
)]2

(4b)E=
(

0.178 × T−0.938 × C−6.61 × P
)

× 10
−3

(5)Second derivative= In+2−2In+ In−2∕4,

(6)AGBest = 0.0673 ×

(

ρD
2
H

)0.976

,
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predicted using a height–diameter model and when observed height 
was used as an indication of stand-level AGB prediction errors.

2.4 | Evaluating different strategies for sampling 
trees for height measurement

To evaluate whether different strategies for sampling trees reduced 
height prediction errors we evaluated prediction errors of locally de-
rived Weibull and Michaelis–Menten models (selected as these were 
the best performing models, see Results) trained using samples of 
trees selected using different sampling strategies. These were (1) ran-
domly sampling n trees (Rand), (2) sampling n trees in proportion to 
the number of trees in different size classes (<200 mm D, ≥200 mm D 
and <300 mm D, ≥300 mm D and <500 mm D and ≥500 mm D, Strat), 
(3) sampling the n trees with the largest diameter (Big), (4) sampling 
the 10 largest trees then randomly sampling the remaining n−10 trees 
(BigRand) and (5) sampling the 10 largest trees and taking a size-class 
stratified random sample of the remaining n−10 trees (BigStrat). We 
repeated this for samples of 10 to 100 trees in increments of 10, and 
took 100 samples from each plot and each sample size. Some sampling 
strategies (e.g. sampling the n largest trees) systematically removed a 
portion of trees from the testing dataset, so differences between sam-
pling strategies evaluated using independent testing data may arise 
through differences in the variance of tree heights in the testing data-
set. To avoid this, we tested model performance using all trees with 
a height measurement in the plot in this analysis. We then calculated 

mean RMSE and stand-level AGB prediction errors for each sample 
size and plot, and for each plot-sample size combination identified 
which sampling strategy gave the smallest RMSE and minimum ab-
solute AGB prediction error (identified as the lowest prediction error 
across the Weibull and Michaelis–Menten models). The probability of 
a sampling strategy resulting in the best performing model was then 
modelled for both height RMSE and AGB prediction error as a func-
tion of sample size using generalised additive models, setting the max-
imum base dimension of the spline to four as a compromise between 
allowing nonlinear relationships and avoiding overfitting.

3  | RESULTS

3.1 | Performance of locally derived models

On average, locally derived height–diameter models predicted the 
height of independent samples of trees more accurately than biogeo-
graphical region or climate-based models (Figure 1a). When only 10 
height measurements were used to train models, height prediction er-
rors of Michaelis–Menten models were statistically significantly lower 
than those of regional models obtained from Feldpausch et al. (2012) 
(statistical significance indicated by confidence intervals of difference 
in prediction error from regional models not overlapping zero) or a 
climate-based model obtained from Chave et al. (2014), with a reduc-
tion in prediction error from regional models of 0.18 m (95% CI = 0.15–
0.21 m). When 20 height measurements were used to train models, all 

F IGURE  1 Relationship between the number of height measurements used to train tropical tree height–diameter models and (a) height 
prediction error (the square-root of mean squared error, RMSE) when tested on an independent sample of 50 trees in the same permanent 
sampling plot and (b) difference in the above-ground biomass (AGB) of these 50 trees when estimated using predicted height and when 
estimated using observed height. The performances of regional (Feldpausch et al., 2012) and climate-based (Chave et al., 2014) height–diameter 
models tested on the same testing data are shown for comparison with locally derived Weibull, Michaelis–Menten and log–log models. Boxplots 
show variation in values averaged across iterations for each sample size in each plot. For clarity, outliers (points >1.5 × box length away from the 
upper or lower quartile) are not plotted. The grey line in each plot shows the median RMSE value for regional height–diameter models pooled 
across all plots and iterations, whereas the red line shows the median RMSE value for the climate-based height–diameter model—in some cases 
only one line is visible due to over-plotting
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locally derived model forms had lower prediction errors than regional 
or climate-based models. Reductions in prediction error were great-
est for Michaelis–Menten models (mean difference = −0.46 m, 95% 
CI = −0.44 to −0.48 m), followed by Weibull models (mean difference 
in prediction error from regional model = −0.35 m, 95% CI = −0.33 
to −0.37 m) then log–log models (mean difference = −0.31 m, 95% 
CI = −0.29 to −0.33 m). The prediction errors of local height–diam-
eter models decreased with increasing sample size (Figure 1a), and 
were >0.5 m lower than those of regional models when 100 height 
measurements were used to train local models (Weibull model: mean 
difference = −0.67 m, 95% CI = −0.66 to −0.69 m; Michaelis–Menten 
model: mean difference = −0.68 m, 95% CI = −0.66 to −0.69 m; log–
log model: mean difference = −0.56 m, 95% CI = −0.55 to −0.58 m). 
Weighted forms of Weibull and Michaelis–Menten models showed 
smaller improvements in prediction error (weighted Weibull: mean dif-
ference from regional model = −0.48 m, 95% CI = −0.47 to −0.50 m, 
weighted Michaelis–Menten model: mean difference = −0.43 m, 
95% CI = −0.42 to −0.45 m). Prediction errors were significantly 
lower when climate-based height–diameter models were used than 
when regional models were used (mean difference = −0.09 m, 95% 
CI = −0.07 to −0.11 m), although there was considerable variation in 
the performance of these two methods among plots (Figure 1a).

The lower mean prediction error of local models was reflected in 
the high probability of a local model being the best height-diameter 
model for a sample of trees (Figure 2). When local models were trained 
on samples of 10 trees, the probability of the model with the lowest 
height prediction errors being one of the five locally derived models 
was 0.77 (95% CI = 0.69–0.83), rising to 0.86 (95% CI = 0.80–0.90) 
when 40 trees were sampled and 0.95 (95% CI = 0.93–0.97) when 
100 trees were sampled. Note that this analysis includes occasions 
when nonlinear models did not to converge as failures, so the supe-
rior performance of locally derived models is robust to convergence 
failure. No single locally derived model consistently outperformed the 
others (Figure 2), although at small sample sizes Michaelis–Menten 
models outperformed other models (probability of being best model 
when 10 trees were sampled = 0.21, 95% CI = 0.18–0.23, cf. Weibull 
0.11, 95% CI = 0.10–0.12). However, when all trees in a plot were 
used to construct allometric models, Weibull models had the lowest 
height RMSE in 92% of plots, Michaelis–Menten in 7% and log–log in 
1% (Figure S2).

Locally derived Weibull and Michaelis–Menten height–diameter 
models provided unbiased estimates of stand-level biomass (stand-
level biomass defined here as AGB summed over the 50 trees in the 
training dataset) relative to estimates using observed height, and also 
had lower AGB prediction errors than regional and climate-based 
models (Figure 1b). In contrast, log–log models showed a tendency to 
overestimate stand-level biomass relative to estimates using observed 
height (Figure 1b).

3.2 | Effect of sample size

There were diminishing returns in improvement in model performance 
with increasing sample size (Figure 1). For Weibull models and log–
log, the greatest decrease in the gradient of the fitted generalised ad-
ditive model of the relationship between height prediction error and 
sample size (as indicated by the maximum value of the second deriva-
tive) occurred once 40 height measurements were used, whereas for 
Michaelis–Menten models this occurred when 41 trees were sampled. 
Visual inspection of relationships support this (Figure 1a) and indicate 
that similar flattening occurred for the probability of a locally derived 
model outperforming a regional model (Figure 2) when 30–50 height 
measurements were used.

3.3 | Evaluation of different sampling strategies

For samples sizes of greater than 20, sampling strategies that included 
the 10 trees with the largest diameter had a statistically significantly 
higher probability of resulting the model with lowest height prediction 
error (Figure 3). Although the strategy of sampling the largest n trees 
performed well on average (Figure 3), for some plots it resulted in very 
high prediction error (Figure S3). Random and size class stratified sam-
pling strategies were more likely to produce models that minimised 
AGB prediction error, although there was considerable overlap in con-
fidence intervals at larger sample sizes (Figure 3). Note that for both 
height and AGB prediction error, the probability of a given sampling 

F IGURE  2 Relationship between sample size and the probability 
of a given height–diameter model being the best performing model 
for a sample of tropical trees. The probability of a given height–
diameter model being the best performing model was modelled as a 
function of sample size using generalised linear mixed effects models 
with binomial errors and a logit link, with plot identity as a random 
effect. We also modelled the probability that one of the five local 
height–diameter models was the best performing model (Local). 
For the latter, fitted relationships and 95% confidence intervals 
are shown. 95% confidence intervals where calculated based on a 
normal approximation on the scale of the linear predictor. Note that 
for a sample size of 40 trees local height–diameter models are six 
times more likely to provide a better fit than either a biogeographical 
regional or climate model
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strategy producing the best model was low (<0.3), indicating that no 
single sampling strategy consistently outperformed the others.

4  | DISCUSSION

Although the importance of tree height in allometric models used 
to estimate tropical tree biomass is widely recognised (Feldpausch 
et al., 2012), it is rare to measure the heights of all trees in a per-
manent sample plot, meaning that it is often necessary to use ex-
isting allometric models to estimate tree height (Chave et al., 2014; 
Feldpausch et al., 2012). Our results show that sampling as few as 
ten trees in a plot is, on average, sufficient to construct height–
diameter allometries that perform better than existing regional or 
climate-based models. Sampling further trees improved locally de-
rived allometries, albeit with diminishing returns. Analysis of turning 
points supports the use of a threshold of 40 trees as a compromise 
between fieldwork effort and improvements in model performance. 
Our results demonstrate that with remarkably limited fieldwork ef-
fort it is possible to collect local height data that will improve esti-
mates of forest biomass. More widespread collection of height data 
will of course also be useful to further understanding of spatial vari-
ation in forest architecture (Banin et al., 2012; Chave et al., 2014; 
Feldpausch et al., 2011) and to further develop regional and pan-
tropical height–diameter allometries.

While our results demonstrate the potential for local height–diam-
eter allometries to refine understanding of spatial variation in carbon 
stocks, the consequences of using local height-diameter allometries for 
estimates of total carbon stocks in tropical forests are unclear, with re-
gional models tending to overestimate tree height in some areas and 
underestimate it in others. For example in Central Africa, estimates of 

carbon stocks were reduced when local height–diameter allometries 
were used instead of regional models (Kearsley et al., 2013), whereas 
in Borneo the use of local height-diameter allometries increased es-
timates of above-ground woody production compared to estimates 
using pan-tropical allometries (Banin et al., 2014). In our pan-tropical 
dataset, climate-based and regional height-diameter allometries 
tended to slightly overestimate stand-level AGB relative to estimates 
using observed height, but this effect varied considerably among plots 
(Figure 1b).

Despite the reduction in height prediction error when locally 
derived allometries were used, prediction errors of around 4 m 
remained even when using locally derived allometries (Figure 1). 
Substantial variability around average relationships persisted when 
all trees in a plot were used to construct allometries (Figure S2), and 
may be due to species-specific differences in allometry (Goussanou 
et al., 2016) or variation in the local competitive environment 
within stands (Forrester, Benneter, Bouriaud, & Bauhus, 2017). A 
potential source of within-plot variation is topography. This can in-
fluence height-diameter relationships, with taller canopies in val-
leys than ridges (Detto, Muller-Landau, Mascaro, & Asner, 2013). 
Because of this, the performance of height-diameter allometries in 
topographically heterogeneous plots may be improved by stratify-
ing sampling by topography. Available data suggest variation in tree 
height may be greatest at scales >100 m (Detto et al., 2013) so this 
may become an important consideration in plots considerably larger 
than 1 ha.

Our analysis focuses on the consequences of different sample 
sizes and strategies for the performance of height-diameter models, 
so prediction errors result from the fit of statistical models. However, 
it is important to note that the measurement of tree height itself is also 
subject to random and directional error. We anticipate that the latter 

F IGURE  3 Probability of different sampling strategies resulting in the best performing tropical tree local height–diameter model, where 
model performance was assessed as (1) height root-mean squared error (RMSE) and (2) the difference between estimated stand-level above-
ground biomass (AGB) using modelled heights and stand-level above-ground biomass (AGB) estimated using observed heights. n trees were 
sampled either randomly, stratified according to size class (Strat), the largest n trees were sampled (Big), the 10 largest trees where sampled with 
the remaining trees randomly sampled or stratified by size class (BigStrat). For each plot. The probability of a sampling strategy resulting in the 
best performing model was modelled as a function of sample size using generalised additive models. Fitted relationships and 95% confidence 
intervals are shown
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will have the greatest consequences for the construction of regional 
and local height-diameter allometries, leading to models systemati-
cally under or over-predicting tree height and hence biomass. To date 
there have been few attempts to quantify the magnitude of such er-
rors (Larjavaara & Muller-Landau, 2013 is a notable exception). We re-
iterate Larjavaara & Muller-Landau’s call for more studies to tackle this 
issue—better understanding is needed of how measurement errors 
vary among biogeographical regions, across environmental gradients, 
with forest structure and with human and technical factors in order to 
develop appropriate correction factors and to understand their impact 
on tropical forest biomass estimates.

The performance of locally derived height-diameter models was 
influenced by the form of the allometric equation used. We used 
three-parameter Weibull, log–log linear and Michaelis–Menten mod-
els relate tree height to tree diameter, but alternative model structures 
(e.g. Gompertz) could have been used (Ledo et al., 2016). As our aim 
was to investigate the consequences of in-field sampling decisions 
rather than post-fieldwork modelling choices, we did not explore the 
full range of possible models. However, a previous evaluation of 12 al-
lometric models recommended using three-parameter Weibull models 
(Ledo et al., 2016). Our results are somewhat consistent with this, as 
although log–log models were sometimes the best performing model 
when samples sizes were small, prediction errors of Weibull models 
were on average lower than those of log–log models at all sample 
sizes. However, we also found that Michaelis–Menten models per-
formed better on average than Weibull models (in terms of reducing 
height prediction error) when sample sizes were small, with the rela-
tive performance of Weibull models increasing with sample size. The 
failure of a single model form to consistently outperform others at mi-
nimising height prediction errors (Figure 2) supports previous studies 
that have found that the best performing model form varies between 
forest types (Cuni-Sanchez et al., 2017). For example in locations with 
frequent natural disturbances trees may not reach their asymptotic 
maximum heights, and in these plots log–log models may perform 
better than asymptotic models. Despite this general variability, our 
results also indicate that log–log models were biased towards overes-
timating tree height and hence AGB (relative to AGB estimates using 
observed heights), especially when trained on small sample sizes that 
were likely to miss the largest diameter trees. This is consistent with a 
previous investigation of the sample size sensitivity of the power law 
relationship between crown radius and tree height, which found that 
power law models overestimated tree height when trained on small 
samples of trees (Duncanson et al., 2015). In contrast, local Weibull 
and Michaelis–Menten models showed little bias in stand-level AGB 
estimates, even when trained on small samples of trees (Figure 1b), 
supporting the use of asymptotic models of tree height–diameter rela-
tionships (Fayolle et al., 2016; Ledo et al., 2016).

The best sampling strategy differed depending on whether per-
formance was assessed by height prediction errors or AGB prediction 
errors (Figure 3). This could result from a tension between maximising 
the fit of height-diameter models for small trees and maximising fit 
for large trees, as sampling strategies focused on capturing the height-
diameter relationships of the largest trees performed less well than 

random sampling at predicting stand-level AGB, potentially due to over-
estimation of the heights of smaller trees. We interpret this tension as 
indicating that while Weibull and Michaelis–Menten height-diameter 
relationships give a good approximation of true height-diameter rela-
tionships in most plots, there is insufficient parameterisation to de-
scribe the differences in allometries between small and large trees. 
This is consistent with a previous assessment which found a tendency 
for Weibull models, along with other three-parameter asymptotic 
functions, to underestimate the height of the largest trees (Banin et al., 
2012). Differences in allometry between small and large trees could re-
sult from differences in the severity of light competition and exposure 
to high winds between the canopy and understory (O’Brien, Hubbell, 
Spiro, Condit, & Foster, 1995), and possible hydraulic limitation of large 
trees (Ryan & Yoder, 1997), and supports the idea that the allometery 
and abundance of canopy trees may be constrained differently to those 
of understory trees (Farrior, Bohlman, Hubbell, & Pacala, 2016). It may 
be desirable to give more weight to errors in the prediction of the 
heights of large trees than errors for small trees as AGB is nonlinearly 
related to tree diameter. This can be achieved by applying case weights 
proportional to tree volume when fitting height-diameter models. 
Surprisingly, we found that these weighted models tended to perform 
worse than unweighted models (Figure 2).

It is important to note that we did not perform an exhaustive com-
parison of all possible sampling strategies. For example a strategy of 
sampling all emergent trees would ensure that the tallest trees are 
measured, so may perform better than strategies based on sampling 
the trees with the largest diameters.

Although our results show that locally derived height-diameter 
models can be constructed with 40 height measurements, there will 
remain cases where no local height data are available. In these cases, 
it will be necessary to use height-diameter models developed at other 
locations. Pan-tropical height-diameter models have been refined to in-
clude variation in allometry with climate (Chave et al., 2014) or among 
biogeographical regions (Feldpausch et al., 2012). Our results still sup-
port the use of these models when local height data are not available, 
as reductions in prediction error with locally derived allometries were, 
on average, less than 1 m. We show that the relative performance of 
regional and climate-based models were similar, with slightly lower pre-
diction errors from the climate-based model on average, although this 
varied among plots. However, biogeographical region is known to have 
a strong influence on tree allometry (Banin et al., 2012), so it is likely that 
allometric models could be improved by incorporating both variation in 
climate and region. Furthermore, accounting for local variation in height-
diameter relationship is key in forests that have experienced recurrent 
climatic (Thomas et al., 2015) or human disturbances (Rutishauser, 
Hérault, Petronelli, & Sist, 2016), and where generic models developed 
in more preserved forests are likely to return wrong estimates.

4.1 | Recommended protocol for sampling trees for 
height measurement

Measuring more tree heights had diminishing returns in terms of re-
ductions in height prediction error. We found the strongest reduction 
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in the slope of the relationship between sample size and prediction 
error to be when 41 trees were sampled, but as prediction errors con-
tinue to decline with increasing sample size we recommend sampling 
50 trees as a conservative threshold. Sampling the largest trees re-
duced height prediction error, but biomass estimates were more ac-
curate when random or stratified sampling was used. The strategy of 
sampling the ten largest trees in a plot, then randomly sampling the 
remaining trees showed intermediate performance in both height and 
biomass prediction, but stratified sampling of the remaining trees may 
be more preferable as it ensures height data are available for trees 
of each size class. Following these recommendations, the procedure 
in the field would simply be to first identify the ten largest diameter 
trees in a plot for height measurement, then take a diameter size 
class stratified random sample of a further 40 trees for careful height 
measurement.
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