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The economic incentive to install a solar photovoltaics (‘PV’) system depends increasingly on using PV 

generation on-site (‘self-consumption’) rather than receiving payments from generating solar energy and 

exporting it to the grid. There is, however, remarkably little empirical evidence on self-consumption. This 

paper begins to address this gap by analysing one-minute electricity monitoring data for 302 households that 

participated in a UK smart grid demonstration project. We calculate annual self-consumption levels and find 

that they are 855 kWh/year per household on average, or 45% of PV generation. We conduct a simple 

regression analysis to estimate self-consumption and use the results to show that self-consumption for an 

average UK household with electricity demand of 4000 kWh/year and 2.9 kWp PV system would be 

966 ± 38 kWh/year, equivalent to a 24% reduction in average annual electricity demand from the grid. Our 

methodology can be readily applied to measure and predict self-consumption in other solar markets as well, 

which has increasingly important implications for valuing solar investments, setting feed-in tariffs, and 

examining the impacts of PV on networks and retail sales.  
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1. Introduction 
Addressing climate change and reducing greenhouse gas emissions will require a rapid transition to electricity 

systems that are sustainable, affordable, and secure (Edenhofer et al., 2014; Pfeiffer et al., 2016). Solar 

photovoltaics (“PV”) will almost certainly play a major role as a provider of zero carbon electricity (Carbon 

Tracker and Grantham Institute, 2017; Taylor et al., 2015). In the UK specifically, it has the highest level of 

public support of all low-carbon electricity generation technologies (BEIS, 2017a) and is expected to be the 

cheapest form of electricity generation by 2025, alongside onshore wind (Figure 1). As of April 2017, over 

12 GW of solar photovoltaics had been deployed, of which roughly 2.5GW comes from small <4kW units 

associated with homes and small businesses and a further 4GW from 4kW-5MW arrays. (BEIS, 2017b). The 

trend is clear: solar PV is set to make a major contribution to UK electricity supply, and a substantial 

proportion of solar capacity will be highly-distributed. 

 

Figure 1 – forecasts of comparable costs of electricity generation in Britain for 2025. Dates show 

year forecasts were published.  Data from (Arup, 2011; BEIS, 2016a; DECC, 2013). 



Nonetheless, PV adoption in the UK residential sector has fallen dramatically from its peak rate of more than 

55,000 installations per month in November 2011 to 2,000-3,000 per month in early 2017 (Figure 2). This 

is at least partially in response to reductions in the government subsidy for residential PV – the feed-in tariff. 

The UK feed-in tariff has two components: a ‘generation rate’, which is a payment for each kWh generated by 

the PV (regardless of whether it is exported or used within the home), and an ‘export rate’, which is a 

payment for each kWh exported to the grid. Since its inception in April 2010, the UK government has 

progressively lowered the generation rate to reflect PV’s falling capital costs (although the export rate has 

risen very slightly) (Figure 2).1  

 

Figure 2 – trends in deployment and feed-in tariff for residential PV in the UK. Typical residential 
import rate (retail price of electricity) also shown. Monthly installations from (BEIS, 2017c), feed-

in tariff rates from (Ofgem, 2017) and import rates from (BEIS, 2017d; DECC, 2016). 

                                                             
1 Note the peaks in installations immediately before each drop in the generation rate. This reflects consumers rushing to adopt solar 

before an anticipated subsidy drop and suggests the subsidy levels at least partially impacted installation rates.   



Historically, the export rate has been low relative to the typical retail price of residential electricity (the 

‘import rate’). Because of this, in theory, households with PV benefit from shifting load from hours when they 

face import tariffs to hours when their PV is generating2. In other words, households with PV benefit from 

maximizing consumption of their own system’s generation (i.e., ‘self-consumption’) when the export rate is 

lower than the import rate. The reverse is true if the export rate exceeds the import rate: households with PV 

would benefit from minimising self-consumption. Furthermore, the decline of the generation feed-in tariff 

rate has made maximizing self-consumption even more important—as the FiT historically played a significant 

role in determining solar investment payback, electricity bill savings (achieved through self-consumption) 

make up an increasing proportion of the overall returns to solar investment. Figure 3 illustrates the relevant 

power flows for understanding self-consumption. 

 

Figure 3 – electrical power flows for a summer day for an example residential household with PV in 
UK. Data from (CLNR, 2017). 

                                                             
2
 A summary of typical feed-in tariff and metering configurations in the UK and other countries and how they incentivise 

different types of demand response behaviour can be found in McKenna and Thomson (2013, 2014). 

 



As noted, households with PV in general have a strong incentive to maximise self-consumption when import 

rates exceed export rates because of the electricity bill savings accrued when load is shifted from times of 

the day when it would otherwise face import tariff rates. However, households with PV in the UK have an 

even stronger incentive to self-consume due to a lack of smart metering for exports.3 Exports are not 

directly measured but rather ‘deemed’ to be 50% of generation. As such, the financial benefit from exporting 

solar power to the grid (which should be excess generation as a function of the household’s consumption and 

solar generation) is strictly a function of solar generation only (and the static 50% export assumption). Until 

smart meters are rolled out with the capacity to measure imports and exports in near-real-time, and dynamic 

pricing and half-hourly settlement are established, any electricity produced by domestic PV and used within 

the home is essentially free (zero marginal cost).4  

As feed-in tariffs decrease and self-consumption plays a more important role in the economics of PV, 

potential PV adopters face greater uncertainty about the expected return on their investment, as this 

depends not only on estimating PV generation but also self-consumption. Therefore, estimating and 

predicting PV self-consumption can help potential adopters make informed judgements about their potential 

return on investment by reducing the amount of electricity they import from the grid.  

Estimating self-consumption and predicting the resulting electricity bill savings are also critical for 

policymakers, as electricity bill savings estimates are often used to calculate the appropriate feed-in tariff 

rate to achieve PV deployment targets (DECC, 2015a). This is a particularly timely topic in the face of retail 

electricity price increases and regulatory changes. For example, in 2015, the UK government consulted on a 

review of the feed-in tariff scheme to ensure that deployment and spending were brought under control, and 

that generators were ‘not making excessive returns on their investments’ (DECC, 2015b). The review 

included an assessment and call for further evidence on the government’s assumed self-consumption rate of 

50% (relative to PV generation) for residential systems. The response to the consultation concluded there 

was ‘little usable evidence’ (DECC, 2015a, p. 31), despite over 800k residential PV systems in the UK (BEIS, 

2017c). Based on the limited evidence available, the range of self-consumption rates was assumed to be 

25%-45% and a deliberately high value of 45% was chosen to ‘encourage those installations that make most 

use of the renewable electricity generated’ (DECC, 2015a, p. 31). There are also other markets around the 

world where self-consumption is becoming the main economic driver for solar, such as in Germany, France, 

and Spain (Labastida, 2017). 

Lastly, self-consumption is also important for examining how increasing penetration of intermittent 

renewable electricity impacts electricity grids and for predicting retail sales. The challenge of balancing supply 

and demand of electricity on the high-voltage grid in real-time has been made more difficult as the growing 

volume of PV generation is connected to the distribution network and its output is effectively invisible to the 

system operator. Difficulties in forecasting PV generation mean there are real risks of periods with too much 

generation (National Grid, 2017), as well as sudden drops in generation due to widespread cloud cover, both 

of which increase the burdens on (and costs and emissions of) conventional thermal generation. Medium- and 

low-voltage networks are also impacted. Distribution networks today face the unprecedented problem of 

connected generation exceeding demand (WPD, 2016) and may resort to limiting new PV connections until 

networks are reinforced and/or storage and demand response are implemented.  

Given the expectation of continued PV deployment, there is increasing need to better understand the impact 

it has on electricity networks. In this context, self-consumption is important because the extent to which 

households change behaviour to make use of PV generation directly affects net demand profiles (gross 

demand minus PV generation) and power flows on networks (Figure 3).  

                                                             
3 To be clear, we are not referring to a lack of smart meters in the general population, but a lack of consumers with PV registered for FiTs 

that are recorded as having metered exports rather than deemed exports. 
4 If half-hourly settlement and smart metering are introduced, the picture becomes more complicated, but still there will be an incentive 

to self-consume as long as import rates are higher than export rates, and assuming there is no opportunity cost of shifting load to 
different times of the day. 



However, there remains little evidence-based research on self-consumption to support consumers, policy, 

and industry. A standard method for estimating self-consumption and predicting electricity bill savings that 

can be broadly applied is needed, which is the focus of this paper. We examine self-consumption in the UK 

solar market context using data from a major smart grid demonstration project completed by Northern 

Powergrid, a UK distribution network operator, in 2014: the Customer Led Network Revolution (‘CLNR’) 

(NPG, 2017). Part of the project consisted of a long-term metering campaign of over 300 residential 

households in the North East of England that measured PV generation and net demand (CLNR, 2013). The 

project team analysed these data and found average annual self-consumption to be 80-82% per household 

(CLNR, 2013, pp. 13–14), which is substantially higher than the 25%-45% range found in other studies. It 

turns out that the methodology introduced substantial error as self-consumption was calculated as a sum of 

averages rather than an average of the sums. The CLNR estimates of the average aggregated over many 

households, therefore, can be interpreted as the ‘after diversity’ self-consumption per household; for 

example, self-consumption at a low-voltage substation if an entire low-voltage feeder was populated by 

households with PV. The project did not provide an analysis of disaggregated household level data or the 

factors that affect self-consumption, nor did it examine how self-consumption varies by household. 

As such, it is our aim to close some of these gaps and estimate self-consumption based upon household-level 

average self-consumption. We also analyse factors that affect self-consumption and compare our results 

with other empirical studies of UK households with PV. Lastly, we develop a predictive model for self-

consumption based upon household PV generation and electricity demand to predict self-consumption for 

the average UK household with PV and infer the associated electricity bill savings. Our findings suggest that 

UK households with PV self-consume 45% of their own solar generation on average and reduce annual 

electricity demand from the grid by 24%, which implies £138/year in electricity bill savings per household.  

2. Methods and data 

2.1. Calculating self-consumption 

Household self-consumption is electrical demand that occurs at times when PV is generating but does not 

exceed its output. As previously noted, Figure 3 provides the relevant electrical power flows for calculating 

self-consumption using data for a real household with PV, where self-consumption is shown in yellow. The 

top figure shows the electrical output from a ~2 kW roof-top PV system over the course of a single summer 

day. The gross electricity demand from the household is shown in the bottom figure (dark blue line). Due to 

the presence of the PV system, only part of the gross demand is imported from the grid (shown in turquoise). 

Any surplus PV generation is exported to the grid (green). The net demand profile (light-blue dashed line, 

bottom figure) shows the net power flow from the grid to the household. To calculate these variables for a 

real system, two concurrent time-series of data are required: PV generation and net demand. The other 

variables can be calculated as shown in Table 1.  

Table 1 – description of measured and derived variables. 

Variable Description 

Ppv  PV generation (kW). Measured. 

𝑃𝑛𝑒𝑡   Dwelling's net power flow (kW). Measured. 

𝑃𝑖 = max(𝑃𝑛𝑒𝑡 , 0) Electricity demand imported from the grid (kW). Derived. 

𝑃𝑒   =  −min(𝑃𝑛𝑒𝑡 , 0)  PV output exported to grid (kW). Here exports to the grid 
are treated as positive power flows. Derived. 

𝑃𝑔𝑟𝑜𝑠𝑠 = 𝑃𝑛𝑒𝑡 + 𝑃𝑝𝑣     Dwelling’s gross electricity demand (kW). Derived. 

𝑃𝑠𝑒𝑙𝑓 = 𝑃𝑝𝑣 − 𝑃𝑒  Self-consumption - PV generation that is consumed on-
site within the dwelling (kW). Derived. 

 



2.2. Description of data 

The CLNR dataset analysed here consists of two of the project’s ‘test cells’: TC5 and TC20IHD. Both are made 

up of households with PV located in the north east of Britain, where Northern Powergrid’s network is located. 

TC5 consists of 155 households with PV, while TC20IHD consists of 147 households with PV who were also 

given an in-home display that indicated when PV generation exceeded demand and was being exported to 

the grid. Each household was fitted with meters that recorded PV generation and net electricity demand at 

1 min resolution in units of average power (kW). The full date range for the data was April 2012 to March 

2014, though each household had different start and end dates. The data is available via the project’s 

website.5 

The data is anonymised, and no socio-demographic details were published about the participants except that 

they were predominantly a mix of owner-occupiers and social tenants. Participants were recruited with an 

offer of a subsidy of a £50 voucher at the start and end of the trial. Compared to the project’s control group 

– a representative group of >8700 residential consumers with smart meters (CLNR, 2014a) – they were 

found to have higher levels of overall electricity demand, were more likely to have very high levels of demand, 

used a higher proportion of electricity during the evening peak, and used more electricity during the day 

(Bulkeley et al., 2015; CLNR, 2013). A final set of 218 systems is used in this analysis (i.e. 28% of systems 

were rejected in total due to missing data and other errors). The steps taken to prepare the data are detailed 

in the Appendix. 

2.3. Estimating self-consumption for a typical UK household with PV 

The last aim of this paper is to provide a simple and straightforward way to estimate self-consumption for a 

typical UK household with PV. To do this, we use an ordinary least squares regression approach to estimate 

how much of self-consumption is explained by annual PV generation, annual gross electricity demand, and 

fraction of day-time electricity usage on average based on the CLNR data. Our aim is not to estimate any 

causal relationships between the explanatory variables and self-consumption, nor is it to develop a model of 

many predictor variables that can fully explain all of the variation in self-consumption. Rather, we aim to 

estimate how much of the variation in self-consumption can be explained by a few pieces of data on 

electricity use and solar generation that are potentially available for PV households. This allows us to then use 

the estimates of the model to calculate the expected self-consumption for the average PV household in the 

UK, and it also allows us to demonstrate a very simple approach that can be more readily applied in other 

markets where the data exist.    

We estimate the following simple linear model: 

𝐸𝑖
𝑠𝑒𝑙𝑓

= 𝛽0 + 𝛽1𝐸𝑖
𝑝𝑣

+ 𝛽2𝐸𝑖
𝑔𝑟𝑜𝑠𝑠

𝑓𝑖
𝑑𝑎𝑦

+ 𝑢𝑖 

Equation 1 

where 𝐸𝑖
𝑠𝑒𝑙𝑓

 is annual self-consumption for household 𝑖 (kWh/yr), 𝐸𝑖
𝑝𝑣

 is annual PV generation for household 𝑖 

(kWh/yr), 𝐸𝑖
𝑔𝑟𝑜𝑠𝑠

 is annual gross electricity demand for household 𝑖 (kWh/yr), 𝑓𝑖
𝑑𝑎𝑦

is the average annual 

fraction of electricity usage during day-time (10am-4pm), and 𝑢𝑖 is an error term. We then use these model 

results to predict self-consumption and the implied demand reduction and electricity bill savings for a typical 

household using values for a typical UK household with PV, which we detail in Section 4. 

3. Results and discussion 

The results of the analysis show that the CLNR households with PV, on average, self-consume 45% of the PV 

that is generated onsite. This is substantially lower than the project’s official estimates of 80%-82%, however 

it is within the range of other self-consumption estimates. In this section, we present the details of our 

results, discuss their implications, and further explore heterogeneity in self-consumption.  

                                                             
5 http://www.networkrevolution.co.uk/resources/project-data/ 

http://www.networkrevolution.co.uk/resources/project-data/


3.1. Main Results 

The CLNR households with PV studied here had an average annual gross electricity demand of 4366 kWh/yr, 

compared to the control group’s 3570 kWh/yr, confirming the finding that households with PV tend to have 

higher than average consumption (DECC, 2015c). Average PV generation was 1942 kWh/yr. Of the 170 

households where PV system size data were available, the average size of PV system was 1.95 kW, which is 

smaller than the national average of 2.9 kW (BEIS, 2017c). Given this, average yield was 996 kWh/kWp, 

slightly higher than the 894 kWh/kWp that would be expected for systems of this size if they were 

performing as per the national average (BEIS, 2016b).  

While the households with PV had higher gross electricity demand than the average household, their net 

demand (2424 kWh/yr) was lower than the average due to the PV generation. It would be incorrect, 

however, to assume that lower net demand, in itself, necessarily means households with PV are less 

dependent on the grid. Indeed, the results show that due to their non-time-coincidence, the average amount 

that PV generation reduces imports from the grid (the self-consumption) was 855 kWh/yr, meaning the 

households with PV import almost as much as the control group (3515 kWh/yr vs. 3570 kWh/yr). This 

illustrates how using time-averaged data for PV generation and demand can lead to underestimations of 

imports and exports (see Appendix 9.2). 

Figure 4 illustrates our results, showing mean annual power flows, PV generation, and self-consumption 

across our sample of solar PV households. We present our own estimates (bars outlined in red) compared 

with those reported in official publications (bars outlined in black) (CLNR, 2013, 2014b, 2014c). Numbers 

superimposed on the bars show the estimated mean annual values for all households (kWh/yr). Percentages 

superimposed show relative differences between our own estimates relative to official estimates. Our own 

estimates of PV generation, net demand, and gross demand agree closely with official estimates, which 

provides confidence in the method we used to prepare the data and construct the related measurements. 

Slight differences between the two should be expected as the official results make use of data from 2013 

only, while here we make use of the full date range of the data (see Appendix 9.1).  

On the other hand, we find marked discrepancies between our own estimates and official estimates for 

imports, exports, and self-consumption: ours are 23% higher for imports, 179% higher for exports, and 42% 

lower for self-consumption. The discrepancies can be explained by a slight difference in methodologies. The 

official estimates are based on a ‘sum of averages’ approach to calculating the derived variables, while our 

own estimates are based on an ‘average of sums’ approach, which more accurately captures the average 

household-level self-consumption. The ‘sum of averages’ approach, on the other hand, calculates the derived 

variables from household-averaged PV generation and net demand profiles, which underestimates imports 

and exports (and over-estimates self-consumption) compared to an ‘average of sums’ approach based on 

‘non-household-averaged’ data. ‘Non-averaged’ data here refers to data on generation and power flows that 

has not been averaged across households, so that calculations of imports and exports are based on 1 min net 

demand time-series for each individual household. These household-level 1-minute calculations are then 

summed for each household and averaged across households. This difference between this approach and the 

other ‘sum of averages’ approach can be interpreted as the difference between ‘after diversity’ and non-

diversified estimates, the former of which is appropriate when considering the impact of PV from a network 

perspective (e.g. on substation power flows) while the latter is appropriate when considering the impact of 

PV from a household’s perspective (e.g. on reducing electricity bills). See Appendix 9.2 for further details 

about potential errors caused by using time- or household-averaged data. We use our own estimates (based 

on non-averaged data) for the rest of the paper. 



 

 

 

Figure 4 – comparison of official and own estimates for sample of solar PV households. Estimates 
for exports and self-consumption are shown in a ‘waterfall’ style to allow visual inspection that the 

totals ‘add up’ i.e. imports minus exports equals net demand, imports plus self-consumption equals 
gross demand, and exports plus self-consumption equals PV generation.  

 

 

To explore the extent to which CLNR households with PV might be representative of households with PV 

more generally in the UK, we now compare our results with those of a comparable, though older, dataset: the 

UK Photovoltaic Domestic Field Trial (“DFT”) (Leicester et al., 2016; Munzinger et al., 2006). The DFT was 

conducted circa 2005 and consisted of a monitoring campaign of several hundred households with PV in the 

UK over several years. Figure 5 compares histogram distributions of mean annual relative self-consumption 

for the two groups and is based on our own estimates of self-consumption for 188 households included in 

the DFT dataset. While the DFT pre-dates the UK feed-in tariff, the majority of participants would have had a 

similar incentive to maximise self-consumption as households on the feed-in tariff since consumers are 

compensated for generation (the bulk of the feed-in tariff subsidy) despite how much is self-consumed 

(McKenna, 2013, p. 138). The data shows that the mean self-consumption for the two groups is quite 

similar: 44.8% for CLNR versus 41.5% for DFT, which provides us with confidence that the sample used in our 

main analysis (the CLNR data) is representative of PV adopters in the UK more broadly.  



 

Figure 5 – comparison of results for UK PV DFT (N=188, c.2005) & CLNR (N=302, c.2013). 

The range in self-consumption (Figure 5) is large, which illustrates that there is significant diversity in self-

consumption levels between households. The CLNR project conducted 46 interviews with households to 

investigate behaviour and electricity use patterns in an effort to qualitatively understand how PV affects 

lifestyles and self-consumption (Bulkeley et al., 2015). The findings indicate that many factors influence 

levels of self-consumption and demand response: conventions (shared understandings of normal usage), 

capacities (potential to provide energy services), rhythms of activity, economics (resource management) and 

the structures of everyday life (Powells and Bulkeley, 2015). Although we cannot quantitatively assess the 

impact of these factors on self-consumption, we further explore the heterogeneity in self-consumption in 

the following sections.  

We focus on heterogeneity with respect to system size and day-time electricity usage (a proxy for day-time 

occupancy) as these are factors that we observe, which intuitively affect self-consumption, and are relevant 

factors that prospective adopters may consider when making investment decisions. The effect of different 

feed-in tariff incentives is also relevant when considering heterogeneity of self-consumption, however all 

households in this sample have the same incentive (self-consumption is free) and so this cannot be tested in 

this context.  

 



3.2 Heterogeneity in self-consumption: system size 

Figure 6 shows the relationship between self-consumption, PV generation and gross demand. Data points are 

annual estimates for each individual CLNR household. The top two graphs show absolute and relative self-

consumption against PV generation, with the colour indicating gross demand. The bottom two graphs show 

self-consumption against gross demand, with generation level indicated by colour. The data show that 

absolute self-consumption (kWh/yr) generally increases with increasing levels of PV generation and 

increasing levels of gross demand; on average households that consume more or have larger PV systems can 

expect to self-consume more than households that consume less or have smaller PV systems. With regards 

to relative levels of self-consumption (%) the data show this generally increases with gross demand, and 

decreases with PV generation. The marginal self-consumption value of PV generation decreases with greater 

amounts of PV generation, suggesting that smaller PV systems are more economic than larger systems from 

the self-consumption perspective, on average.  

 

Figure 6 – effect of PV generation and gross demand on self-consumption (absolute and relative). 



The heterogeneity in self-consumption based on PV system size can be seen also in Figure 7, which shows 

distributions and mean self-consumption for different ranges of PV generation that can be approximated to 

PV systems of different typical sizes (2 kW, 3 kW, and 4 kW). Mean self-consumption decreases with larger 

PV systems, and there is considerable heterogeneity around the mean for all system sizes. The average size of 

PV system installed in the UK is 2.9 kW (BEIS, 2017c), which would have self-consumption of approximately 

42%. 

 

Figure 7 – self-consumption for typical sizes of residential PV systems. 

 

 



3.3 Heterogeneity in self-consumption: day-time electricity usage 

CLNR found a higher proportion of electricity use during the day-time (10am to 4pm) for the PV test cells 

compared to the control group (CLNR, 2013). This indicates that the households with PV have electricity 

demand profiles that are better aligned with PV generation than the average household. This could be 

because the households with PV made changes to their patterns of electricity consumption to take advantage 

of the opportunity to consume cheap electricity from their PV, or that they had lifestyles that were already 

well-aligned e.g. high day-time occupancy, retired households, high levels of energy awareness and an 

interest in self-sufficiency, which could have influenced their decision to adopt solar in the first place. To test 

whether self-consumption differs based upon day-time electricity usage, we found the average fraction of 

day-time electricity usage for each household with PV and split the sample into three groups: low, typical, and 

high fraction day-time electricity users. The control group had a fraction of day-time electricity use of 0.267 

(CLNR, 2014a) and “typical” use was therefore assumed to be between 0.25 and 0.28. Low and high 

fractions were those falling outside this range. Figure 8 shows the results. As expected, there are a higher 

number of households with high fraction day-time electricity usage for the PV consumers (162, compared to 

66 typical and 56 low). Households with PV and fractions of day-time electricity usage typical to the control 

group have a self-consumption level of 43%, which gives an indication of what self-consumption levels might 

be expected for a typical UK household (as opposed to one that has already installed PV). 

 

Figure 8 – levels of self-consumption for different levels of day-time electricity use. ‘Typical’ is 

consistent with the average of the CLNR control group.  



 

4. Annual self-consumption for a typical UK household with PV 
This section estimates annual self-consumption for a typical household with PV in the UK based on the 

regression analysis of the CLNR PV data described in Section 2. Table 2 shows the results of the estimation 

(Equation 1). The coefficient estimates for PV generation and the fraction day-time usage times gross 

demand are statistically significant at the 0.01% level, suggesting that the variables included are strongly 

correlated with self-consumption. The adjusted R-squared is 0.754, which provides us with confidence that 

our simple model explains a large portion of the variation in the data.  

Table 2 - Self-Consumption Regression Estimates 

    

PV Generation 0.298*** 

  (0.021) 

    

Gross Demand * Fraction day-time usage 0.381*** 

  (0.021) 

    

Intercept -212.95*** 

  (45.74) 

    

Number of Observations 218 

R-Squared 0.757 

Adjusted R-Squared 0.754 

Root Mean Squared Error 177 

Note: Asterisks denote * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

Figure 9 provides a visual representation of the ‘goodness of fit’ of the regression model. The figure shows 

the model’s estimate of self-consumption for the CLNR households against actual self-consumption. 

Estimates are shown with 95% confidence interval error bars. A 1:1 line of ‘perfect fit’ is shown for 

comparison. There is clearly some scatter and discrepancy between predicted and actual self-consumption, 

particularly for extreme values, however there is reasonably good agreement on average given the simplicity 

of the model. 



 

Figure 9 – results of regression estimation. Predicted values are shown with individual confidence 
intervals against actual self-consumption. A line of ‘perfect fit’ is shown for comparison.  

Finally, we use our regression estimates to predict annual self-consumption and the implied electricity 

demand reductions for a typical household and PV system in the UK. We assume that self-consumption is 

equivalent to bill savings (reductions in imports) and that the test cells are representative of households 

installing PV. The average size of residential PV in the UK is 2.9 kW (BEIS, 2017c), and average load factor for 

PV is 10.2% (BEIS, 2016b).  We use the UK annual gross electricity demand for 2015 of 4000 kWh/yr (BEIS, 

2017e) and fraction day-time electricity usage of 0.267 based on CLNR control group TC1a (CLNR, 2014a). 

Using these input values, the model above predicts annual self-consumption of 966 ± 38 kWh/yr, or 37.3% ± 

1.5%. This corresponds to a reduction of 24% on the typical grid electricity demand of 4000 kWh/yr. 

Assuming a cost of electricity of 15 p/kWh, this implies electricity bill savings of £138/year per household, on 

average.  

This is approximately twice the estimate given in the UK Government’s analysis of the National Energy 

Efficiency Data (NEED) framework, which indicates average bill savings for PV of 500 kWh/yr (BEIS, 2017e) 

or £75/yr at 15 p/kWh. We note two shortcomings that make direct comparison of these estimates 

challenging. Firstly, given the lack of socio-demographic data available for them, the CLNR PV group may well 

be unrepresentative of PV owners more generally. Secondly, the NEED estimate is based on import meter 

readings for households with PV, not net demand readings. Without the latter, it is not possible to determine 

the gross demand of households after installing PV, nor their self-consumption. This complicates their 

comparison with any control group (e.g. to determine if there is a rebound effect with PV) or with the CLNR 

group. 



5. Conclusions and policy implications 
Estimating and predicting solar PV self-consumption is increasingly important in many markets as it is 

becoming the main economic driver of solar adoption in the face of falling subsidies. However, there is 

remarkably little empirical evidence thus far in the literature regarding the levels and determinants of self-

consumption. Our analysis of a sample of UK households with PV shows self-consumption levels of 

855 kWh/yr or 45% of generation on average. This finding, which examines self-consumption from the 

household’s perspective, is considerably lower than the official estimates provided by the CLNR project, which 

examines self-consumption from the overall network perspective. For an accurate calculation of imports, 

exports and self-consumption (from the household’s perspective), PV generation and net demand data of 

sufficiently high resolution is required. Averaging over time and multiple households is likely to underestimate 

imports and exports and over-estimate self-consumption compared to non-averaged data. Furthermore, 

estimating self-consumption from the household’s perspective provides valuable information to solar 

consumers, policymakers, and industry in the context of valuing solar investments, setting feed-in tariffs, 

marketing solar systems to new customers, and examining the impacts of self-consumption on the grid. 

We also estimated self-consumption as a function of PV generation, gross demand, and their time-

coincidence. We found that self-consumption is predicted to be 966 ± 38 kWh/yr (37.3% ± 1.5%.) for an 

average UK household (gross electricity demand of 4000 kWh/yr) and average UK PV system of 2.9 kW. This 

corresponds to a reduction of the average UK household’s annual electricity demand of 24%, which implies 

savings of £138/yr per household (assuming a cost of electricity of 15 p/kWh).  

This paper has shown that there is considerable evidence on PV self-consumption in the UK residential sector 

on which to base UK solar policy. The UK government’s choice of a self-consumption rate of 45% happens to 

be identical to the self-consumption observed with the CLNR households with PV. These households however 

have higher gross electricity demand and higher fraction of day-time electricity usage than the average, both 

of which lead to higher levels of self-consumption than what would be expected for the average UK 

household. An appropriate rate of self-consumption to reflect the average sized PV system (2.9 kW) and 

average household with gross electricity demand of 4000 kWh/yr and typical fractions of day-time 

electricity usage would be 37.3%, not 45%. For the purposes of receiving feed-in tariff payments, households 

with PV in the UK are currently deemed to export 50% of what they generate (regardless of actual exports); 

if exports continue to be unmetered, it is arguable that a deemed percentage of 55%-63% would more 

accurately reflect actual exports.  

There are many avenues moving forward that are ripe for future research, particularly as self-consumption 

becomes a more important driver of solar adoption in markets around the world. First, this paper focused on 

self-consumption in the UK, however behaviour may differ in other markets and thus an international 

comparison of self-consumption would be useful to better understand what drives self-consumption, 

particularly when taking into account the different financial incentives for self-consumption. Relatedly, socio-

demographic data was unavailable for this analysis, although it would be valuable to explore different types of 

sociodemographic heterogeneity in self-consumption. Furthermore, this paper focussed on self-consumption 

in the absence of ‘enabling technologies’ such as batteries or electric vehicles, but investigating the impact of 

these technologies on self-consumption would also be useful. 

Lastly, while average levels of self-consumption have been the focus of this paper and are significant for solar 

investment valuation and policy, the wide range of potential energy and financial outcomes from PV 

installation is an important consideration. As such, exploring more of the heterogeneity in self-consumption in 

general is important for being able to refine estimations and predictions of self-consumption. This is 

particularly important for industry and the marketing of PV as firms ask what types of households are most 

likely to be able to benefit from self-consumption in terms of their capacity, occupancy, and electricity use 

characteristics. It will also have implications for developing social and personal responses to the availability of 

electricity at different times of the day and year.  
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9. Appendix 

9.1. Data preparation 

Filters were used when querying the data to avoid any obvious errors. Readings that showed PV generation or 

exports (negative net demand) greater than 5 kW were ignored (residential PV systems are limited to 4 kW in 

the UK), as well as any readings that were exactly zero – this was taken to indicate an error in recording 

rather than a true value. Some households showed consistently negative values for PV generation – these 

readings were reversed. 

Secondly, some systems had days with missing minutes, months with missing days, years with missing 

months, etc. Clearly this affects the ability to compare results between different systems. The gaps in the 

data were therefore evaluated and data that was too ‘gappy’ was rejected, with remaining data scaled to 

provide estimates over comparable units of time, as detailed in the following. 

In our analysis, we aggregate the data to the annual level. At each step of the process, the data was checked 

for gaps. Gaps were estimated by counting the number of data points for generation and net demand for 

each system. Days with less than 98% data availability were discarded (i.e. missing 2% of 1 min data). 

Remaining ‘accepted’ data was scaled up to provide comparable estimates for the time period in question 

(day/month/year). This resulted in approximately 10% rejection. For the remaining data, daily sums were 

calculated for the variables of interest and these scaled according to “daily availability factors” – the number 

of observations per day divided by the total number of minutes per day – to provide comparable ‘whole day’ 

estimates. Months with less than 60% availability of days were rejected, which accounted for approximately 

20% of the monthly data. The scaled daily data was then used to calculate monthly data for each system, 

again scaled to provide comparable ‘whole month’ data.  

The presence of missing (rejected) data was not uniform in time nor across systems. Figure 10 shows the 

number of monthly data points that were available throughout the trial (black line, left axis), and the average 

availability of data for each of these (solid blue line, right axis). Figure 10 also shows the proportion of 

monthly data points that could not be used, either because there was no data for the system, or the data 

point was rejected.  



 

Figure 10 – variation of availability of monthly data points throughout the duration of the trial, 

and proportion of data rejected due to insufficient number of days of data for each monthly data 
point. 

Monthly data was then used to estimate annual values for each system. Figure 11 shows the number of data 

points for each month of the year for each system. Where no data was available for a specific month, but 

data was available for adjacent months, linear interpolation was used to estimate the missing month’s data. 

This helped fill some of the gaps in monthly data. Where more than one month of data was available, a mean 

value was used. In coming up with the annual values for each system, if less than 70% of monthly data was 

available for estimating the annual totals for a given system, then the system’s data was rejected, otherwise 

the values were scaled up accordingly to provide ‘whole year’ annual estimates for each system. 



 

Figure 11 – number of data points for each month and each system (Month 1 = January).  



9.2. Note on the use of time or space-averaged data 

A minimum of two electricity meters are required to calculate the derived variables in Table 1, typically one to 

record PV generation and another to record the net demand profile. However it is important to note that to 

produce accurate calculations for the derived variables the meters need to be measuring data at sufficiently 

high time-resolution (Widén et al., 2010). This is because calculating imports, exports, and self-consumption 

from generation and demand data depends not only on how much is being generated and consumed, but also 

their time-coincidence. Higher time resolution allows more accurate assessment of time-coincidence, and this 

is particularly important if the data is ‘spikey’, as is often the case with residential electricity demand (e.g. in 

Figure 3). For example, if two meters recording at one-hour resolution show that for a specific hour 1 kWh 

was generated and 1 kWh was consumed, then it could be possible that 1 kWh was exported and 1 kWh 

imported (and self-consumption was 0 kWh), or that nothing was exported and nothing imported (and self-

consumption was 1 kWh), or indeed something in between these two extremes. High resolution, non-time 

averaged data is therefore important when calculating derived variables such as imports, exports, and self-

consumption.  

By way of example, Figure 12 (top) quantifies the error in calculating imports and exports for one month of 

PV generation and net demand data for the same single residential household with PV in the UK shown 

previously in Figure 3. The graph shows the difference in estimates of imports and exports between the 

original 1-minute resolution data, and data that has been progressively time-averaged, up to a maximum 

averaging period of a day. This illustrates that using data averaged over 30 min (a typical resolution for smart 

meters) can significantly underestimate the calculation of imports and exports, around 15% for the specific 

month of data chosen here. Due care should therefore be taken when calculating derived variables using data 

with low time-resolution. This paper’s analysis is based on data at 1 min resolution. See (Urquhart and 

Thomson, 2015; Widén et al., 2010) for further discussion on this topic.  



 

Figure 12 – Examples of how calculations of imports and exports (and self-consumption) can be 

underestimated when using time-averaged (top figure) or household-averaged (bottom figure) 
net demand data.  



A similar issue arises when deriving variables such as self-consumption using PV generation and net demand 

data that has been averaged over multiple households (averaged in space rather than time). Figure 12 

(bottom) provides a similar quantification of the effect of using time-averaged data as above but this time 

using 1-minute time-coincidence data that has been averaged over multiple households, up to ~100 

households. ‘Non-averaged’ data here refers to non-household-averaged data, and consists of calculations of 

imports and exports that are based on 1 min net demand time-series for each individual household, summing 

the imports and exports for each of these, and taking the mean. This is the ‘average of sums’. In the figure this 

is compared with ‘household-averaged’ data, which consists of calculating mean net demand profiles for the 

number of households in question, and then summing the imports and exports of this average profile. In other 

words, the ‘sum of averages’. The figure above shows how the sum of averages approach underestimates 

imports and exports (and therefore also overestimates self-consumption). This paper uses an average of 

sums approach which avoids this underestimation of imports and exports. 


