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Abstract: Facioscapulohumeral dystrophy (FSHD) is characterized by the contraction of the D4Z4
array located in the sub-telomeric region of the chromosome 4, leading to the aberrant expression
of the DUX4 transcription factor and the mis-regulation of hundreds of genes. Several therapeutic
strategies have been proposed among which the possibility to target the polyadenylation signal to
silence the causative gene of the disease. Indeed, defects in mRNA polyadenylation leads to an
alteration of the transcription termination, a disruption of mRNA transport from the nucleus to
the cytoplasm decreasing the mRNA stability and translation efficiency. This review discusses the
polyadenylation mechanisms, why alternative polyadenylation impacts gene expression, and how
targeting polyadenylation signal may be a potential therapeutic approach for FSHD.

Keywords: polyadenylation; alternative polyadenylation; muscular diseases; facioscapulohumeral
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1. Introduction

Several molecules targeting RNAs have been developed during the last few years to treat patients
affected by muscle diseases, including RNA interference and synthetic antisense oligonucleotides
(AON). These molecules can (i) prevent formation of the mRNA 5′cap; (ii) modulate RNA splicing
by masking keys sequences; (iii) influence the use of an alternative polyadenylation site; (iv) induce
a RNAse H1-dependent degradation of the mRNA, and (v) inhibit the mRNA translation via steric
blockade of ribosome access to mRNA (for review see [1]). In this review, another possibility is
investigated: targeting the polyadenylation signals to destabilize the pre-mRNA.

2. Polyadenylation Mechanisms

The vast majority of eukaryotic mRNAs, with the exception of replication dependent histone
mRNAs, present a similar 3′end characterized by a long chain of adenine nucleotides called the poly(A)
tail. This poly(A) tail, which is not encoded by the DNA, is formed after endonucleolytic cleavage of
the primary transcript followed by the addition of adenine nucleotides at the 3′OH end of the cleavage
product. The specificity and efficiency of this 3′end processing are determined by the binding of a
multiprotein complex to regulatory cis-acting sequence elements on the pre-mRNA.
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2.1. Cis-Regulatory Sequence Elements

Few regulatory sequences on the pre-mRNA play a major role in the 3′end processing. The most
important sequence element is probably the polyadenylation (poly(A)) signal (PAS), defined by an
hexameric consensus sequence (usually A[A/U]UAAA) located ~20–30 nucleotides upstream of the
cleavage site (Figure 1A). This hexamer is not strictly conserved, and several variants have been
identified [2–4] (Table 1). These variants are not as efficient as the canonical one and the analysis of
their distribution suggests they may be used for regulatory purposes (Table 1) [2–5]. Polymorphisms
in PAS are rare, highlighting the importance of the sequence conservation in evolution [6]: alterations
in the PAS have been frequently associated with diseases, such as β-thalassemia (OMIM #613985) or
immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX, OMIM #304790)
(For review see [7]).

The second regulatory sequence is the downstream sequence element (DSE), characterized by a
high density of uracil (U) and/or guanine/uracil (G/U) residues and located more than 30 nucleotides
downstream of the cleavage site [8–10] (Figure 1). There is no clear consensus sequence for the DSE,
but its nucleotide composition seems to impact the 3′end processing efficiency [11,12].

A third cis-regulatory sequence is the cleavage site, located between 20 and 30 nucleotides
downstream of the PAS (Figure 1) [4,13]. The poly(A) tail attachment begins at this cleavage site
(frequently at a CA or a UA dinucleotide in mammals). The nucleotide composition around the
cleavage site is heterogeneous and importantly, impacts the cleavage efficiency [14,15].

Finally, additional auxiliary sequences, located upstream or downstream of the cleavage site, can
also influence the 3′end processing efficiency: (i) U-rich auxiliary sequences (USE) [3,9]; (ii) G-rich
auxiliary sequence elements leading to the formation of G-quadruplex structures [9,16,17]; (iii) AUA
auxiliary element for a selected set of mRNAs polyadenylated by the non-canonical poly(A) polymerase
Star-PAP [15,18–21]; or (iv) distal auxiliary elements located downstream from the PAS [22].

Table 1. Polyadenylation signals frequencies in humans and mice.

Hexameric Sequences Human [2] Human [4] Mouse [4]

AAUAAA 58.2 53.18 59.16
AUUAAA 14.9 16.78 16.11
UAUAAA 3.2 4.37 3.79
AGUAAA 2.7 3.72 3.28
AAGAAA 1.1 2.99 2.15
AAUAUA 1.7 2.13 1.71
AAUACA 1.2 2.03 1.65
CAUAAA 1.3 1.92 1.80
GAUAAA 1.3 1.75 1.16
AAUGAA 0.8 1.56 0.90
UUUAAA 1.2 1.20 1.08
ACUAAA 0.6 0.93 0.64
AAUAGA 0.7 0.60 0.36
AAAAAG 0.8 - -
AAAACA 0.5 - -
GGGGCU 0.3 - -
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Figure 1. Cis-regulatory sequence elements and protein factors involved in cleavage and 
polyadenylation. (A). The specificity and efficiency of 3′end processing is determined by the binding 
of more than 80 RNA-binding proteins to regulatory cis-acting RNA sequence elements including: 
the polyadenylation signal (PAS) A[A/U]UAAA; the cleavage site (represented by NN) and the 
downstream sequence element (DSE). Auxiliary sequences can be found near the polyadenylation 
signal or the DSE. The core processing complex, which is sufficient for the cleavage and 
polyadenylation, is composed of approximatively 20 proteins, distributed in 8 complexes: the 
cleavage and polyadenylation specificity factor (CPSF), the cleavage stimulation factor (CstF); the 
mammalian cleavage factors I (CFIm) and the mammalian cleavage factors II (CFIIm); the single 
protein poly(A) polymerase (PAP); the single protein poly(A)-binding protein nuclear 1 (PABPN1); 
the single protein RNA polymerase II large subunit (Pol II); and the symplekin. Subunits of the 
different factors are indicated. (B). CPSF and CstF are co-transcriptionally recruited to the poly(A) 
signal and the DSE respectively, causing an endonucleolytic cleavage of the pre-mRNA between the 
PAS and the DSE at the cleavage site. Two fragments are generated: one fragment with a free 

Figure 1. Cis-regulatory sequence elements and protein factors involved in cleavage and
polyadenylation. (A). The specificity and efficiency of 3′end processing is determined by the binding
of more than 80 RNA-binding proteins to regulatory cis-acting RNA sequence elements including:
the polyadenylation signal (PAS) A[A/U]UAAA; the cleavage site (represented by NN) and the
downstream sequence element (DSE). Auxiliary sequences can be found near the polyadenylation signal
or the DSE. The core processing complex, which is sufficient for the cleavage and polyadenylation, is
composed of approximatively 20 proteins, distributed in 8 complexes: the cleavage and polyadenylation
specificity factor (CPSF), the cleavage stimulation factor (CstF); the mammalian cleavage factors I (CFIm)
and the mammalian cleavage factors II (CFIIm); the single protein poly(A) polymerase (PAP); the
single protein poly(A)-binding protein nuclear 1 (PABPN1); the single protein RNA polymerase II
large subunit (Pol II); and the symplekin. Subunits of the different factors are indicated. (B). CPSF
and CstF are co-transcriptionally recruited to the poly(A) signal and the DSE respectively, causing an
endonucleolytic cleavage of the pre-mRNA between the PAS and the DSE at the cleavage site. Two
fragments are generated: one fragment with a free 5′phosphate group which is rapidly degraded by
exoribonucleases and one fragment with a free 3′hydroxyl group on which 250 adenines will be added
by PAP. The newly synthetized poly(A) tail is covered by PAPBN1, allowing mRNA circularization
and stabilization.
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2.2. Core Processing Complex

The cleavage and polyadenylation reactions are governed by more than 80 RNA-binding proteins
but less than 20 factors compose the core of the processing complex and are necessary and sufficient
to mediate cleavage and polyadenylation in vitro [23,24]. These 20 factors are distributed in eight
complexes (Figure 1) [23,25]:

- Cleavage and polyadenylation specificity factor (CPSF): is a multiprotein complex implicated
in the PAS recognition and the cleavage of the pre-mRNA [26–28]. The core of CPSF complex
is composed of CPSF100 and CPSF73 which form a heterodimer and recruit the other CPSF
subunits and symplekin [29,30]. CPSF73 has a zinc-dependent endonuclease activity that is
essential for the pre-mRNA cleavage. It has a very weak enzymatic activity suggesting that other
factors may be required for an efficient cleavage [31,32]. The specific interaction of CPSF with the
hexameric poly(A) signal is mediated by WDR33, CPSF30, and CPSF160, while hFip1 binds the
U-rich sequences [26,33–36]. Finally, hFip1 and CPSF160 recruit by direct interaction the poly(A)
polymerase (PAP) to the PAS [26,37].

- Cleavage stimulation factor (CstF): is essential for the cleavage reaction but not for the
polyadenylation reaction [38,39]. CstF is an multimeric protein complex made up of subunits
CstF64, CstF77, and CstF50 [28,40] which are respectively involved in (i) the specific recognition
of the DSE region (by CstF64), (ii) the assembly of the CstF complex (by CstF77), (iii) the
CstF-CPSF interaction (strong interaction between CPSF160 and CstF77), (iv) the interaction with
the C-terminal domain of the RNA polymerase PolII (PolII) (by CstF50), and (v) the interaction
with the breast cancer 1 (BRCA1) associated really interesting new gene (RING) domain 1 (BARD1)
complex (by CstF50) to inhibit the pre-mRNA 3′end processing during DNA repair/following
DNA damage, reducing errors in the mRNA [41–44].

- Symplekin: is considered to be a scaffolding protein connecting CPSF and CstF and supporting
the assembly of the polyadenylation machinery [27,28,45].

- Mammalian cleavage factor I (CFIm): influences alternative poly(A) site selection, mRNA
transport and mRNA splicing [45–50]. It is a heterodimer composed of the smallest CFIm25
subunits and any of the largest CFIm68, CFIm59, or CFIm72 subunits [51–54]. CFIm binds UGUA
motifs, typically located upstream of the PAS [9,55,56].

- Mammalian cleavage factor II (CFIIm): is required only for the cleavage step [57–59] and is
composed of two subunits: CFIIAm, which is required for the cleavage reaction; and CFIIBm,
which acts as a stimulator for the cleavage [23].

- Poly(A) polymerase (PAP): catalyzes the reaction leading to the addition of 200–250 adenosines
as polyadenosine tail to the newly synthesized pre-mRNA molecules [60–62]. PAP is recruited by
CPSF [26] and its activity is stimulated by the poly(A) binding protein nuclear 1 (PABPN1), which
plays a major role in poly(A) tail length control [63–65]: the binding of PABPN1 to the newly
synthesized polyadenosine tail accelerates the rate of adenosine addition mediated by PAP [62–64].
PABPN1 covers the entire length of the poly(A) tail during and after the polyadenylation reaction.
When the poly(A) tail reaches 200–250 adenosines, the polyadenylation reaction is stopped [63].
The length of the poly(A) tail appears to be critical for a suitable gene expression: transcripts with
short or long poly(A) tails are retained in the nucleus and degraded [66–68].

The RNA polymerase II (PolII) plays a critical role by coupling pre-mRNA processing to
transcription [69,70]. The PolII C-Terminal Domain (CTD) may promote the assembly of a 3’-end
processing complex through an interaction with CPSF, CstF, and CFIIm [71–73]. PolII may also be
required for efficient pre-mRNA cleavage [71].

Besides these factors, other proteins participating in the 5′ end capping can also influence the
cleavage and polyadenylation efficiency [74–76].
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2.3. Polyadenylation Steps

The first step of the 3′end processing is the co-transcriptional recruitment of CPSF and CstF to the
PAS and the DSE respectively [77,78]. CPSF and CstF are loaded onto PolII during elongation [69,70,79]
and after the transcription of the PAS, PolII pauses allowing the binding of CPSF to the hexameric
sequence through WDR33 and CPSF30 [70]. CstF then interacts with the U/GU rich sequences in the
DSE via CstF64 [80] and once the CPSF and CstF components are linked, additional factors—including
CFIm and CFIIm—join the complex around the future cleavage region [77]. The assembly of all of
these proteins induces an endonucleolytic cleavage of the pre-mRNA between the PAS and the DSE,
generally 20–30 nucleotide downstream of the hexameric sequence (Figure 1B). The cleavage efficiency
can be influenced by 5′ cap structure such as the nuclear cap-binding complex [75]. Two fragments are
generated: one with a free 3′hydroxyl group and the other one with a free 5′phosphate group which is
immediately degraded by the Xrn2 exoribonuclease (Figure 1) [81,82]. In parallel, PAP is anchored to
the cleaved pre-mRNA by an interaction with CPSF and starts adding adenines [26,37]. The newly
synthetized poly(A) tail is covered by PABPN1 proteins which control its length [62–65]. When the
polyadenylation process is complete, the 3′end processing complex is disassembled. PAPBN1 thus
interacts with the initiation factor proteins located in the 5′ untranslated region (UTR) leading to
the mRNA circularization and stabilization [58,59,77,83,84]. The mature mRNA is then ready to be
exported to the cytoplasm.

3. Alternative Polyadenylation

3.1. General Regulation of Alternative Polyadenylations

In mammals, 70–80% of transcripts have at least two alternative PAS leading to cleavage at
different sites and production of different mRNA transcripts—a phenomenon called alternative
polyadenylation (APA) [85,86]. A multitude of factors is involved in the selection of the 3′-end
processing site. We will only focus on the most important and those described in muscle cells. Among
these factors is the PAS hexameric sequence itself, which is not identical in the distal and proximal
PAS sites. Most distal sites tend to use the canonical A[A/U]UAAA sequence whereas the proximal
sites tend to use variant signals [2]. Most 3′-APA also tends to be associated with stronger and more
conserved cis-regulatory sequence elements (upstream U-rich elements and DSE) [42]. Since the
variant PAS signals are processed less efficiently than the canonical ones, the use of a proximal PAS
may be done for regulatory purposes. However, it is still far from clear how a particular PAS is
chosen and many factors may influence this choice. Alternative polyadenylation has been described to
be regulated by many factors, including the cell proliferation and differentiation state, the distance
between two PAS, the PolII polymerase speed, the presence of a pause site downstream of the proximal
PAS, the presence of methylated CpG islands, nucleosome occupancy or histone methylation, and the
concentration of the different proteins involved in the polyadenylation steps [2,87–99]. Splicing and
polyadenylation are also interconnected and are likely to be in competition with each other in case of
an intronic PAS. For example, ablation of the splicing factor 3B subunit1 (a component of U2 snRNP)
activates intronic PAS [97]. U1 snRNP also affects cleavage and polyadenylation independently of its
role in splicing. The use of cryptic PAS within introns close to the 5′-end of the transcript is increased
in the case of knockdown of U1 snRNP, potentially because U1 snRNP binding to these regions blocks
their recognition by cleavage factors [100,101].

3.2. Alternative Polyadenylations and Their Consequences

Several patterns define the APAs. The most frequent is the presence of multiple PAS in the 3′UTR
of the terminal exon. Cleavage and polyadenylation at any of these sites will lead to transcript isoforms
that differ in the length of the 3′UTR, with an identical protein-coding region (Figure 2A,B). Therefore,
3′UTR APA is more likely to affect post-transcriptional gene regulation through the modulation of
mRNA stability, translation, nuclear export and cellular localization [86]. Although two recent articles
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have demonstrated that 3′UTR shortening may have a limited effect on mRNA stability [102,103],
isoforms with long 3′UTRs are believed to be less stable than short isoforms because they can bind more
destabilizing elements. Global analyses have revealed that APA influences around 10% of predicted
targets between any two cell types analyzed [104]. The length of the 3′UTR also influences the mRNA
subcellular localization and long 3′UTR isoforms are also more abundant in the nucleus [105].
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A last form of APA, involving alternative exons, leads to proteins lacking domains or with 
alternative sequences (Figure 2E). For example, the immunoglobulin M (IgM) heavy chain has two 
transcripts, resulting in the shift from a distal PAS to an internal site and then the substitution of the 
two terminal exons, coding the amino acid sequence for membrane-binding, by a sequence involved 
in the secretion [112,113]. 

Figure 2. Alternative polyadenylations (APA). APAs have several patterns. The use of (A) a constitutive
polyadenylation at a distal site leads to the normal mRNA and protein. (B) A proximal site located
in a non-coding sequence of the mRNA results in 3′UTR shortening without any modification of the
protein. (C) An APA located in a proximal exon (or in the coding sequence of the last exon) leads to
truncated proteins. (D) An APA located in an intron (i.e., involving a cryptic poly(A) site in introns)
and leads to a modified protein with an alternative C-terminus or to truncated proteins (depending
of the presence of a stop codon). (E) An APA located in an alternative terminal exon APA, due to the
use of an alternative splicing, leads to a protein with a different C-terminus. Introns are in grey or
represented by a dotted line when spliced; non-coding sequence are hatched. Distal PAS is represented
by a black arrowhead and proximal alternative PASs by a white one.

Another pattern of APA is defined by the presence of a cryptic PAS in internal exons or in introns
(Figure 2C,D). Transcripts produced from an internal exon or intronic APA cannot possess an in-frame
stop codon or 3′UTR and are likely to be degraded rapidly through the non-stop mediated mRNA
decay [106]. In the absence of a stop codon, the poly(A) tail could also generate a C-terminal poly-lysine
tag which is generally unstable [107,108]. When present in the coding sequence, APAs can lead to the
expression of truncated proteins with new functions as seen in the retinoblastoma binding protein 6
(OMIM #600938) [109–111].

A last form of APA, involving alternative exons, leads to proteins lacking domains or with
alternative sequences (Figure 2E). For example, the immunoglobulin M (IgM) heavy chain has two
transcripts, resulting in the shift from a distal PAS to an internal site and then the substitution of the
two terminal exons, coding the amino acid sequence for membrane-binding, by a sequence involved
in the secretion [112,113].

3.3. Alternative Polyadenylations in the Skeletal Muscle World

A growing number of studies about APAs has been published during recent years, in which APAs
are associated with knockdown, depletion, or overexpression of different proteins or genes. Here,
we will focus only on APAs connected to the “skeletal muscle world”.



Int. J. Mol. Sci. 2018, 19, 1347 7 of 17

APAs have been described to play a role in muscle metabolism and myogenesis. For example,
(i) slow and fast muscle fibres display 7% of their transcriptome with different APAs [114]. (ii)
PAX3 and PAX7, coding for two transcription factors involved in myogenesis, are also subject to
APAs resulting in resistance to miR-206 regulation or alternative C-terminal domain [115,116]. (iii)
During myogenesis, differential expression, and localization of copper transporters are associated with
mRNA 3′UTR shortening of the transporter ATP7A [117]. (iv) UCP3 has an intronic APA leading to a
protein without an inhibition site at the C-terminus [118]. This may play a role in the pathogenesis of
dystrophies because UCP3 is involved in the mitochondrial proton leak and the limitation of reactive
oxygen species production [119], and consequently in oxidative stress regulation. (v) One of the most
recognized major players in controlling muscle mass is mammalian target of rapamycin (mTOR) whose
activation increases protein synthesis and prevents atrophy (for review see [120]). One of the molecular
signatures of mTOR activation includes 3′UTR shortening of mRNAs leading to the overexpression of
selected E2 and E3 components in ubiquitin ligase complexes resulting in elevated levels of protein
ubiquitination [121]. This phenomenon could be required for the continuous supply of amino acids to
cellular systems, to maintain the steady-state protein synthesis [122]. (vi) Like mTOR, the androgen
receptor (AR) is a well-known regulator of muscle anabolism (for review see [123]). Some prostate
cancers are castration-resistant due to AR splice variants that are constitutively active transcription
factors. These variants lack the ligand-binding domain thanks to the use of an APA in a cryptic
exon [124].

PAS can also be blocked by protein and/or RNA elements that compete with the 3′-end processing
machinery. For example, mutations in PABPN1 causes oculopharyngeal muscular dystrophy (OPMD,
OMIM #164300), characterized by progressive degeneration of muscles in adults [125]. Mutated
PABPN1 aggregates in the nucleus and forms filamentous nuclear inclusions. While this protein is
not involved in the choice of PAS, its knockdown produced a shorter 3′UTR [126,127], suggesting
that PABPN1 could act prior to cleavage and polyadenylation of pre-mRNA to determine the PAS
used. It was proposed that PABPN1 competes with CPSF for binding to A-rich regions at proximal,
consensual PAS inhibiting its usage. When PABPN1 is depleted or mutated (in OMPD), CPSF can
recognize the previously hidden PAS. Interestingly, whereas PABPN1 is ubiquitously expressed and
presumably contributes to control of gene expression in all tissues, mutation of the PABPN1 gene only
affects a limited set of skeletal muscles, most likely because PABPN1 levels are dramatically lowered in
skeletal muscle compared to other tissues [128], thus highlighting the importance of the concentration
of the different proteins involved in the polyadenylation steps in APA.

APA patterns may also be involved in the onset of myotonic dystrophy (DM1, OMIM
#160900). Indeed, DM is characterized by the re-emergence of developmentally immature alternative
splicings (AS) and APA patterns in adult tissues because proteins of the MBLN family are titrated,
leading to immature AS. Gene ontology and systems analysis reveals several different classes of
misregulated genes in APA, including those involved in ubiquitination, IGF-1 signalling, and the
mTOR pathway [129].

4. Therapeutic Strategies Targeting Polyadenylation in Muscle Diseases

Because polyadenylation is essential for gene expression, strategies aiming at disrupting gene
expression by targeting the polyadenylation have been developed. These strategies might be
particularly important for gain of function diseases such as DM1 or facioscuplohumaral dystrophy
(FSHD, OMIM #158900) which are two of the three most prevalent muscle diseases with an estimated
prevalence of 4/100,000 and 4.5/100,000, respectively.

DM1 is a multisystemic disease and patients show an extremely widely variable phenotype.
The symptoms include myotonia, muscle wasting, cardiac conduction defects, cataracts, and insulin
resistance (for review see [130]). DM1 is an inherited monogenic disorder characterized by a repeat
expansion in the Dystrophia Myotonica Protein Kinase (DMPK) gene localized on chromosome 19.
The 3′UTR of this gene normally contains 5–37 copies of a CTG trinucleotide repeat while the most
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severely affected DM1 patients harbor between 50 and several thousand repeats [131]. The mutation is
thought to adopt a stem-loop structure within the mRNA [132] and numerous mechanisms have been
proposed to explain how CUG-expansion in the 3′UTR untranslated region of an mRNA creates such
adverse multisystemic effects including the aberrant alternative splicing of several key mRNAs, the
alterations in the usage of alternative polyadenylation sites of a number of mRNAs and diffusion of
the molecular pathological phenotype through nuclear protein spreading (for review see [133]) [134]
(Figure 3A). DM1 thus appears to be the result of a highly stable hairpin mRNA structure in the DPMK
mRNA which facilitates binding/sequestration of several factors, mainly leading to the misregulation
of several splicing events and dysregulation of translation.
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sub-telomeric region of chromosome 4, is observed [140]. This contraction is associated with a loss of 
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Figure 3. Therapeutic strategies targeting polyadenylation in muscle diseases. (A) In Myotonic
dystrophic type 1 patients, the mutated DPMK gene carries between 50 to 2500 CTG expansions in
the 3′UTR leading to the formation of a stem-loop which sequesters splicing factors such as MBLN1,
causing foci formation and splicing defects. (B) Two PAS (SV40p(A) and bGH p(A)) have been inserted
between exons 9 and 10 (by the TALEN system), allowing the elimination of the mutant transcript.
The presence of a stop codon located at the beginning of intron 9 leads to a truncated mRNA DPMK
(Figure 2D) which no longer carries the toxic CUG repeats [135]. (C) DUX4 ORF is located in each
D4Z4 repeat but the polyadenylation signal is in exon 3 (E3) positioned in the sub-telomeric part of
the chromosome 4. The hypomethylation of the D4Z4 region, when associated with a permissive
chromosome 4, leads to the aberrant expression of the DUX4 transcription factor and the mis-regulation
of hundreds of DUX4 target genes. (D) In the presence of the PMO-PAS targeting the DUX4 PAS,
correct polyadenylation of DUX4 is inhibited, leading to an unstable DUX4 mRNA which is not
translated [136,137].

FSHD pathology is characterized by an atrophy of the muscles of the face, shoulders, and arms,
leading to muscle weakness and asymmetric involvement of affected musculature [138,139]. In 95%
of FSHD patients (named FSHD1, OMIM #158900), a contraction of the D4Z4 array, located in the
sub-telomeric region of chromosome 4, is observed [140]. This contraction is associated with a loss of
repressive epigenetic marks within the D4Z4 macrosatellite, leading to the expression of the DUX4
gene which is composed of three exons. The DUX4 ORF is fully included in the first exon, whereas
exons 2 and 3 are non-coding regions (3′UTR). Importantly, exon 3 is located outside of the D4Z4
repeats and carries the DUX4 PAS (Figure 3C) [141,142]. Two allelic variants (4qA and 4qB) exist in
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this region distal to D4Z4 but FSHD is only associated with the 4qA variant [143] which contains a
functional but non-canonical PAS (AUUAAA) [141]. The remaining 5% of FSHD patients (named
FSHD2, OMIM #158901) do not show the D4Z4 contraction but carry a mutation in the epigenetic
modifier genes SMCHD1 or DNMT3B [144,145], also leading to the hypomethylation of the D4Z4 array
and to the aberrant expression of the DUX4 protein in the context of a permissive chromosome 4. Even
if other genes may participate in the onset of FSHD [146,147] DUX4 is believed to play a major role in
disease onset and/or progression. Indeed, (i) DUX4 protein and mRNA are detected in both adult and
fetal FSHD1 and FSHD2 muscle cells and biopsies [148–150], (ii) hypomethylation of the D4Z4 array is
always observed in FSHD patients, (iii) individuals carrying a permissive chromosome 4 but lacking
the hypomethylation of the D4Z4 array are asymptomatic carriers [151], and (iv) the expression of
DUX4 accounts for the majority of the gene expression changes in FSHD skeletal muscles [152].

Both FSHD and DM1 are gain-of-function diseases and so far, there is no curative or preventive
treatment for these pathologies. Several strategies have been proposed in the literature, and in this
review we will focus on those altering the polyadenylation signal. Mutated DMPK and DUX4, being the
causative genes of DM1 and FSHD respectively, were targeted by strategies using either a TALEN-based
or an antisense oligonucleotide approach [135–137] (Figure 3B,D). In myotonic dystrophy, the authors
used an approach that they had previously developed on neural stem cells, which was the insertion of
two poly(A) signals upstream of DMPK CTG repeats in intron 9, thus leading to premature cleavage
of transcript before the transcription of the toxic region [153]. In this case, the introduced PASs may
have created an APA which inhibits intron 9 splicing and an in frame stop codon located at the
beginning of intron 9 is used (Figure 2D). The authors used DM1 induced pluripotent stem (iPS) cells
and demonstrated that integration of a PAS upstream of the CTG repeats eliminated nuclear RNA
foci in the treated cells, even after their differentiation into neural cells or cardiomyocytes. Aberrant
splicings were also abolished. Interestingly, when the PAS was inserted between the DMPK stop codon
and the start of the CTG repeats, none of the clones had the mutant allele targeted, potentially because
of heterochromatin spreading caused by the expanded CTG repeats.

In FSHD, a systematic analysis of the cis-acting elements that govern DUX4 cleavage and
polyadenylation has been performed and revealed that sequences downstream of the SNP located
within the β-satellite region are critical for DUX4 cleavage and polyadenylation [22]. Antisense
oligonucleotides targeting the mRNA of a GFP reporter construct carrying these distal auxiliary
elements led to a decrease in GFP expression, thus suggesting that these elements could have
therapeutic potential [22].

Two independent groups have targeted the DUX4 PAS using antisense phosphorodiamidate
morpholino oligonucleotides (PMO) in FSHD cells [136,137]. Different 3′key elements of the DUX4
mRNA were targeted by several PMOs and the same PMO (PMO-PAS) was found to be the one giving
the best extinction of DUX4 mRNA in both studies (Figure 3D). This PMO precisely targets the PAS
which is in a region of an open conformation, whereas the cleavage site and the DSE lay within a
closed region. In FSHD myotubes, DUX4 downregulation in the presence of PMO-PAS is associated
with a downregulation of many transcriptional targets of DUX4 without particular off-target effects.
In vivo, after electroporation of PMOs into FSHD patient muscle xenografts in immunodeficient mice,
DUX4 target genes are also downregulated [136]. Remarkably, whereas other PAS are present in the
subtelomeric region of chromosome 4, downstream from the pathological one, none of them seems
to be used in the presence of the PMO [137]. However, one of the PMOs used in the Marsollier et
al. publication (PMO-CS3) induces a switch in cleavage site usage ~40 nt upstream of the normal
one [137], thus suggesting that an unidentified alternative PAS was used. The use of this APA allows
DUX4 mRNA to escape, at least partially, the degradation process which occurs in non-polyadenylated
mRNA. Moreover, because this new cleavage site is located upstream of the normal one, it is possible
the truncated DUX4 mRNA may be more stable. The mechanisms leading to the use of an upstream
APA are not known and need to be deciphered.



Int. J. Mol. Sci. 2018, 19, 1347 10 of 17

5. Conclusions

During the past 20 years, many laboratories have used antisense oligonucleotides to silence gene
expression. Targeting the 3′end element of mRNA is a new approach that offers several advantages:
(i) all polyadenylated mRNAs may be targeted using this strategy since polyadenylation is a crucial and
common step required for the maturation of all eukaryote mRNAs (with the exception of replication
dependent histone mRNA); (ii) genes with only one exon can be targeted whereas they are not eligible
for other strategies such as exon skipping; (iii) in diseases characterized by the utilization of inadequate
APAs, these APAs can be targeted to promote the use of the canonical PAS. This strategy thus presents
an important clinical therapeutic potential not only for muscle diseases, but also for other genetic
diseases such as cancer.
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