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Abstract

Introduction: The unipolar electrogram (UEG) provides local measures of cardiac activation and

repolarization and is an important translational link between patient and laboratory. A simple the-

oretical model of the UEGwas previously proposed and tested in silico.

Method and results: The aim of this study was to use epicardial sock-mapping data to validate

the simple model's predictions of unipolar electrogram morphology in the in vivo human heart.

The simple model conceptualizes the UEG as the difference between a local cardiac action poten-

tial and a position-independent component representing remote activity, which is defined as the

average of all action potentials. UEGs were recorded in 18 patients using a multielectrode sock

containing 240 electrodes and activation (AT) and repolarization time (RT) were measured using

standard definitions. For each cardiac site, a simulated local action potential was generated by

adjusting a stylized action potential to fit AT and RT measured in vivo. The correlation coefficient

(cc) measuring the morphological similarity between 13,637 recorded and simulated UEGs was

cc = 0.89 (0.72–0.95), median (Q1–Q3), for the entire UEG, cc = 0.90 (0.76–0.95) for QRS com-

plexes, and cc = 0.83 (0.58–0.92) for T-waves. QRS and T-wave areas from recorded and simu-

latedUEGs showed cc> 0.89 and cc> 0.84, respectively, indicating good agreement between volt-

age isochronesmaps. SimulatedUEGsaccurately reproduced the interactionbetweenATandQRS

morphology and between RT and T-wavemorphology observed in vivo.

Conclusions:Human in vivowhole heart data support the validity of the simple model, which pro-

vides a framework for improving the understanding of the UEG and its clinical utility.
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1 INTRODUCTION

The unipolar electrogram (UEG)measures cardiac extracellular poten-

tials as the difference between the signal recorded by an exploring

electrode in contact with the tissue and the potential of a remote ref-

erence often taken as the potential of theWilson central terminal, the

inferior vena cava,1 or other distant nonexcitable sites.2,3

The UEG is widely used in electrophysiological research and in

the catheter lab since it allows simultaneous multisite assessment of

fundamental parameters such as local activation (AT) and repolariza-

tion times (RT) as well as action potential duration, tissue viability,
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and focal sources.1,4–6 Indeed, current advanced mapping systems

and higher density mapping electrode configurations are increasingly

being utilized to provide unipolar data. However, uncertainty still

remains regarding the interpretation of the UEG morphology, which

can limit its application. Mathematical models have been proposed to

facilitate its interpretation, but agreement with in vivo human data is

unknown. In particular, Potse et al.7 have proposed a simplemodel that

conceptualizes the UEG as the rescaled difference between a local

cardiac action potential (AP) and a position-independent component

representing remote activity. This simple model was derived from

a realistic multiscale 3D bidomain model, one of the most widely
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used theoretical models of cardiac electrophysiology,8 by performing

mathematical simplifications based on the assumption of isotropic

and homogeneous conductivity. The validity of the simple model was

demonstrated in silico by comparing its output with that of a more

complex and detailed multiscale 3D bidomain ionic model.7,9 In the

present study, we aim to provide unique human in vivo data to formally

validate the simple model and demonstrate its validity as a useful tool

to relate the morphology of the signals recorded in the catheter lab to

cardiac activation-repolarization dynamics.

Weperformedhigh-density cardiacmapping in patients undergoing

cardiac surgery using a multielectrode epicardial sock covering both

ventricles from apex to the base,2 and we compared the morphology

of UEGs recorded at each cardiac site with that of simulated UEGs

generated by the simple model7 using as input the local AT and RT

measured in vivo but no information regarding the UEG morphology.

Results demonstrate goodcorrelationbetween themorphologyof sim-

ulated and recorded UEGs, suggesting that despite its simplicity the

proposedmodel provides a sounddescription of themorphology of the

UEGs in terms of activation-repolarization dynamics.

2 METHODS

The validation scheme implemented in this study is described in

Figure 1. Local UEGs were recorded from up to 240 epicardial sites in

intact human hearts during cardiac surgery and local AT and RT were

measured (Figure 1A). These were used to generate stylized APs hav-

ing AT and RT as measured in vivo (Figure 1B). A position-independent

component representing remote activity is computed as the average of

all APs (Figure 1C), and finally the local UEG is obtained as a rescaled

differencebetween theposition-independent component and the local

AP (Figure 1D). Morphological features of recorded and simulated

UEGs from the same site were then compared for validation. Impor-

tantly, no information related to themorphology of theUEGs recorded

in vivowas used asmodel's input.

2.1 The simple nonionic model of the UEG

Local APs were simulated using established equations. The shape of

these simulatedAPs is dictatedby twoposition-dependent parameters

determining AT and RT, respectively, and two position-independent

parameters determining the steepness of the upslope and downslope

during activation and repolarization, respectively. Mathematically, the

local AP is the product of two logistic functions representing electrical

excitation and recovery, respectively:

APi (t) = A
1

1 + e−𝛽AT (t−𝜏AT,i)
⋅

(

1 −
1

1 + e−𝛽RT (t−𝜏RT,i)

)

− Vrest

In this expression, the subindex i = [1… M] indicates a given car-

diac site, the first factor represents activation and the second repolar-

ization, A is the AP amplitude and Vrest the resting potential. Param-

eters 𝛽AT and 𝛽RT determine the steepness of the upslope during

activation and the steepness of the downslope during repolarization,

respectively. Since within each heartbeat parameters A, Vrest, 𝛽AT, and

𝛽RT are assumed to be the same for all cardiac sites (parameters are

position-independent), all APs exhibit a very similar shape. Parame-

ters 𝜏AT,i and 𝜏RT,i represent local AT and RT, respectively, which in

the model correspond to the time of the steepest upslope during

activation,(dAPi(t)∕dt)max, and the time of the steepest downslope dur-

ing repolarization, (dAPi(t)∕dt)min, respectively. Following what was

F IGURE 1 Schematic representationof themodel.UEGwere recordedusing amultielectrode sockmeasuring240UEGs.A,Activation (AT, circle)

and repolarization times (RT, cross) were measured from the unipolar electrogram (UEG). B, For each cardiac site, a local action potential (red line)

was generated by adjusting a stylized action potential to fit AT and RT measured in vivo. C, The position-independent component (blue bold line)

representing remote activitywas computed as themeanof all APs (only a representative subset of the local APs is showndashedblack lines). D, The

simulated UEGs, generated as a rescaled difference between the remote and local components, shows similar morphology as the corresponding

recorded one shown in panel A [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 Top: UEGs recorded in one patient at sites P1–P3 showing different morphologies. Middle: Local (bold line) and remote position-

independent (blue bold line) components from the simple model. Bottom: Simulated UEGs generated as a rescaled difference between the remote

and local components are similar to the recorded one (top panels). From left to right, a UEG shows QS-, RS-, or R-waves when the local component

precedes, intersects, or follows the remote one, respectively. Similarly, a UEG shows a positive, biphasic, or negative T-wave when the local com-

ponent precedes, intersects, or follows the remote one, respectively. The occurrence of QRS complexes and T-waves with different morphologies

depends on activation and repolarization sequences, respectively, and any combination is possible. Figures adapted from (7) [Color figure can be

viewed at wileyonlinelibrary.com]

proposedbyPotse et al.,7 the remote component is definedas the aver-

age AP computed among all cardiac sites:

AP(t) =
1

M

M
∑

i = 1

APi(t)

The local UEG measured at a given site i is obtained by inverting

and rescaling the difference between the local AP and the position-

independent remote component (see Figure 1):

UEGi (t) = −𝛼(APi(t) − AP(t))

The scaling factor 𝛼 is equal to 𝛼 = gi∕(gi + ge) and represents the

balance between intracellular (gi) and extracellular (ge) conductivities,

which are assumed to be constant in space and time.7Mathematically,

it is possible to demonstrate that within this theoretical framework,

standard measures of AT and RT derived from UEGs, usually timed to

(dUEG(t)∕dt)min and (dUEG(t)∕dt)max, respectively, are equal to localAT,

𝜏AT,i, and RT, 𝜏RT,i, as long as the remote componentAP(t) changesmuch

more slowly than the local AP, APi(t). The amplitude of the QRS com-

plexes and T-waves depends on parameters 𝛽AT and 𝛽RT, as well as on

spatial dispersion of both depolarization and repolarization.

Importantly, as shown in Figure 2, themodel predicts that sites that

activate before (or after) the remote component exhibit QS complexes

(or prominent R waves), and sites that repolarize before (or after) the

remote component exhibit a positive (or negative) T-wave.

2.2 Clinical study and data analysis

Whole-heart epicardial contact mapping was performed during open-

heart cardiac surgery using a multielectrode sock,2,10 enabling the

acquisition of 240 UEGs. The multielectrode sock was made of a flex-

ible material allowing to fit over hearts of different sizes and cover

both ventricles from apex to base. Eighteen patients undergoing either

coronary artery bypass grafting (n = 14) or aortic valve replacement

(n = 1) or both (n = 3) were studied. The study was approved by the

local Ethics Committee and all patients gave written informed con-

sent. S1 drive trains of 30–50 beats were delivered from one of the

epicardial electrodes at cycle lengths decreasing from 600 to 350 ms.

UEGs were recorded at a sampling rate of 1 KHz within 0.05–500

Hz, and referenced to the rib retractor. Hemodynamic stability dur-

ing the pacing protocol was closelymonitored and pacing discontinued

if appropriate. Data were exported and analyzed offline with bespoke
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algorithms as in previous studies.10–12 Signal averaging of beats with

same cycle length was conducted to reduce background noise. UEGs

showing beat-to-beat morphological variability, i.e., with mean corre-

lation coefficient between the median UEG and UEGs from any single

beat lower than 0.98, were not considered. Signal-to-noise ratio (SNR)

was assessed using a spectral-basedmeasurewhere spectral bands for

signal and noise were defined within 1–40 Hz and 40–100 Hz, respec-

tively. Signal-averaged UEGs with SNR < 10 dB were not considered.

AT andRTweremeasured on the signal-averagedUEGs using standard

definitions, i.e., AT and RT was measured as the intervals between the

pacing stimulus and the timeof theminimumof the first derivative dur-

ing the QRS complex and the maximum of the first derivative of the

T-wave independently of its polarity,13 respectively. Activation recov-

ery interval (ARI), a standard surrogate for the local AP duration,3 was

measured as ARI= RT – AT.

For each beat, the local AT and RT measured in vivo were used to

generate corresponding local APs showing the same AT and RT, i.e., by

modifying 𝜏AT,i and 𝜏RT,i (Figure 1B). The pair of position-independent

parameters {𝛽AT, 𝛽RT} was chosen as that providing the highest median

correlation coefficient (best morphological matching) between real

and simulated UEGs among all combinations of 𝛽AT = {0.2, 0.4, 0.6}

ms−1 and 𝛽RT = {0.025, 0.035, 0.045, 0.055} ms
−1, while 𝛼 = 0.25 in all

configurations.

2.3 Statistical analysis

The Pearson's correlation coefficient was used to assess the similar-

ity between recorded and simulated AT and RT sequences, as well as

between morphological features of recorded and simulated UEG from

the same cardiac site. The morphological similarity was assessed con-

sidering the entire UEGs, as well as the QRS complex and T-wave sep-

arately. Standard box-plots were used to describe data distribution,

where central line is the median, the edges of the box are the first (Q1)

and third (Q3) quartiles, and the whiskers extend to the most extreme

data points not considered outliers. Values lower than Q1 – 1.5*(Q3 –

Q1) and higher than Q3 + 1.5*(Q3 – Q1) are considered outliers. Non-

normally distributed data are described by the median, median abso-

lute deviation, i.e., median(X-median(X)), and interquartile range. Sta-

tistical analysis was performed both pooling the data together and on

a patient-by-patient basis.

3 RESULTS

In total, after applying the aforementioned automatic inclusion criteria

based on morphological stability and signal quality, 13,637 UEGs from

18 patients were utilized (Table 1).

TABLE 1 Results showing similarity between data recorded in vivo in-human (R) andmodel data (M) grouped by cycle length

350 400 450 500 550 600

Cardiac intervals

ΔAT (R-M) 0±0 0±0 0±0 0±0 0±0 0±0

cc-AT (R-M) 1±6e-06 1±9e-06 1±7e-06 1±9e-06 1±1e-05 1±1e-05

N 158±15 160±19 166±18 167±19 171±24 165±21

ΔRT (R-M) −4±3 −1±3 −1±1 −1±1 0±1 0±1

cc-RT (R-M) 0.99±0.004 0.99±0.003 1±0.002 1±0.001 1±0.001 1±0.001

N 149±16 155±23 166±18 167±19 171±24 165±21

ΔARI (R-M) −4±3 0±3 0±1 0±1 0±0.5 0±2e-13

cc-ARI (R-M) 0.81±0.1 0.9±0.04 0.95±0.03 0.95±0.03 0.93±0.06 0.94±0.05

N 149±16 155±23 166±18 167±19 171±24 165±21

Morphological correlation

N 153±17 161±19 167±15 171±23 179±25 177±13

cc-UEG (R-M) 0.89±0.02 0.9±0.05 0.9±0.05 0.85±0.05 0.81±0.06 0.81±0.06

cc-TW (R-M) 0.95±0.02 0.85±0.04 0.81±0.05 0.81±0.04 0.81±0.04 0.8±0.07

cc QRS (R-M) 0.89±0.03 0.89±0.05 0.89±0.05 0.89±0.05 0.88±0.06 0.89±0.04

Morphological features

cc QRSa (R-M) 0.89±0.05 0.90±0.02 0.89±0.02 0.91±0.03 0.92±0.03 0.91±0.04

cc TWa (R-M) 0.84±0.06 0.88±0.05 0.87±0.03 0.88±0.04 0.87±0.08 0.88±0.07

cc AT-QRSa (R) 0.89±0.04 0.91±0.02 0.9±0.01 0.91±0.02 0.92±0.02 0.91±0.03

cc AT-QRSa (M) 0.99±0.003 0.99±0.003 0.99±0.002 0.99±0.002 1±0.002 1±0.002

cc RT-TWa (R) −0.87±0.05 −0.89±0.04 −0.86±0.03 −0.88±0.05 −0.89±0.07 −0.89±0.06

cc RT-TWa (M) −0.99±0.003 −1±0.002 −1±0.002 −1±0.001 −1±0.002 −1±0.001

Note:ΔAT, ΔRT andΔARI: median differences between recorded and simulated cardiac intervals. cc-AT, cc-RT and cc-ARI: correlation coefficients between

ATs, RTs and ARI from recorded and simulated data. ccAT-QRSa and ccRT-TWa: correlation coefficients between AT and the QRS area, and between RT and

T-wave area, within recorded and model data. cc-QRSa and cc-TWa: correlation coefficients comparing the QRS area and T-wave area in the recorded and

simulated data, respectively. All results are given asmedian±median absolute deviation.
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F IGURE 3 A, Distribution of the correlation coefficients indicating the morphological similarity between recorded and simulated UEGs. Corre-

lations were considered within the entire signal (indicated as UEG in the figure) as well as within theQRS and the T-wave, separately. B, Represen-

tative examples of recorded (red) and simulated (black) UEGs corresponding to correlation coefficients equal to the first (Q1), second (MED), and

third (Q3) quartile. The correlation coefficients are calculatedwithin the entire signal (left), within theQRS (middle), and the T-wave (right), and the

panels are adjusted to highlight the correlation within these intervals [Color figure can be viewed at wileyonlinelibrary.com]

3.1 Activation and repolarization sequence

As expected owing to the modeling design, AT and RT measured from

the simulated UEGs were very similar to those measured from UEGs

recorded in vivo, with correlation coefficients higher than 0.97 and

minimal absolute differences (Table 1).

3.2 Morphological features

The morphology of the simulated UEGs was very similar to the mor-

phology of the corresponding UEGs recorded in vivo. As shown in

Figure 3A, pooling all UEGs together, the median correlation coeffi-

cient between simulated and recorded UEGs was equal to cc = 0.89

(Q1/Q3 = 0.72/0.95, n = 13,637). This demonstrates that the mor-

phological similarity between simulated and recorded UEGs was good

(cc> 0.72) in at least 75% and excellent (cc > 0.95) in at least

25% of all recordings, while only less than 25% of simulated UEG

showed moderate correlation (cc < 0.72) but still reproduced the

most relevant morphological features in terms of QRS and T-wave

polarity. The correlation coefficient was higher for the QRS com-

plex (median 0.90, Q1/Q3 = 0.78/0.95) than for the T-wave (median

0.83, Q1/Q3 = 0.58/0.92) (P < 0.001). Similar results were observed

when patient-by-patient analysis was conducted (Table 1). In this case,

the median correlation coefficients between simulated and recorded

UEGs was slightly higher for the QRS complex than for the T-wave

for all cycle lengths except 400 ms and 600 ms for which only a trend

was observed (0.10 < P < 0.05, Table 1). The first column of Figure 3B

shows representative recorded and simulated UEGs exhibiting corre-

lation coefficients equal to the first (bottom), second (middle), and third

(top) quartile of the entire distribution. Morphological comparison of

QRS complexes and T-waves from the same recordings is highlighted

in the second and third columns, respectively.

Furthermore, the correlation between the area under theQRS com-

plex of recorded and simulated UEGs was cc> 0.89 for all CLs, while

the correlation between the area under the T-wave of recorded and

simulated UEGs was cc> 0.84 for all CLs (Table 1), indicating an almost

perfect match between voltage isochrones maps from recorded and

simulated data. A representative example of maps showing QRS and

T-waves areas from both recorded and simulated data is shown in

Figure 4.

In vivo data analysis demonstrates that the interactions between

AT distribution and QRS morphology as well as between RT distribu-

tion and T-wave morphology described in Figure 2 and predicted by

the model exist in the intact human heart. Figure 5A shows that in

both recorded and simulated UEGs, cardiac sites that activate early

exhibit a QS complex, those that activate around the mean ATs exhibit
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F IGURE 4 Representative example of morphological similarity

between recorded and simulated unipolar electrograms (UEG). Color

maps showtheareaunder theQRScomplexes (left) andT-waves (right)

of UEGs recorded in one patient (top, anterior view on the left, inferior

view on the right) and in the corresponding simulated UEGs (below).

The black line on the ventricular mesh indicates the approximate loca-

tion of the LAD. On the bottom, the scatterplots indicate high correla-

tion between the recorded and simulated QRS area (left) and T-waves

(right) (correlation coefficient cc≥ 0.91) [Color figure can be viewed at

wileyonlinelibrary.com]

an RS complex with positive and negative deflections of similar ampli-

tude while those that activate late exhibit a prominent R wave. Sim-

ilarly, the T-wave is positive for sites that repolarize early, bipolar

for sites whose RT is approximately equal to the mean RT and nega-

tive for sites that repolarize late (see Figure 5B). Therefore, a positive

correlation exists between AT and the area under the QRS complex,

while a negative correlation exists between RT and the area under the

T-wave (see Figure 5A and B). These correlations were observed in all

patients for all cycle lengths (Table 1), with a median correlation coef-

ficients between AT and QRS area and between RT and T-wave area

approximately equal to 1 and –1, respectively, in simulated UEGs, and

approximately equal to 0.9 and –0.9, respectively, in humanUEGs.

4 DISCUSSION

The simple model described in this article and first proposed by Potse

et al.7 explains the morphology of the UEG as the difference between

the local AP and a position-independent remote component, which is

equal to the mean AP. Although the model has been previously tested

in silico,7 it still lacked formal experimental validation. This article

provides its first in vivo in-human validation. The comparison with

F IGURE 5 Spatial interaction between activation/repolarization

dynamics and the morphology of the unipolar electrograms. A, Strong

positive correlation between the area under the QRS complex of the

local unipolar electrogram (UEG) and local activation (AT)measured at

the same site. Gray circles and white diamonds indicate results from

recorded and simulated UEGs, respectively. Bottom: examples of QRS

complexes from recordedUEGs corresponding toATequal to the 10th,

50th, and 90th percentile (white circles). B, Strong negative correla-

tion between the area under the T-wave of the local unipolar electro-

gram (UEG) and local repolarization time (RT) measured at the same

site. Gray circles and white diamonds indicate results from recorded

and simulated UEGs, respectively. Bottom: examples of T waves from

recorded UEGs corresponding to RT equal to the 10th, 50th, and 90th

percentile (white circles)

more than 13,000 UEGs recorded during whole-heart epicardial sock

mapping in 18 patients demonstrates that this analytical nonionic

framework accurately reproduces: (1) The morphology of the entire

UEG as well as the morphology of the QRS complex and T-wave, with

median correlation coefficients equal to 0.89, 0.90, and 0.83, respec-

tively (Figure 3); (2) Morphological features such as QRS and T-wave

areas, with median correlation coefficients higher than 0.89 and 0.84

(Table 1), respectively, indicating an almost perfect match between
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voltage isochrones maps from recorded and simulated data (Figure 4);

(3) In vivo interaction between local AT and QRS morphology as well

as between local RT and T-wave polarity (Figure 5). A close match

observed between simulated and recorded AT, RT, and APD sequences

was expected owing to the model design. Overall, these results

show that the simple model accurately explains the fundamental link

between the morphology of the UEGs and activation/repolarization

dynamics. It is worth mentioning that the striking similarity between

recorded and simulated UEGs is by no means the consequence of a

circular reasoning, as no information related to the UEG morphology

was used in the model. Furthermore, the model was kept as simple

as possible to avoid overfitting: the shape of the simulated APs was

forced to be very similar, only two logistic functions were used to

simulate the APs instead of three as in previous studies,14 parameters

𝛽AT and 𝛽RT were assumed position-independent and allowed to take

only few prespecified values.

Potse et al.7 derived the simple model by simplifying a realistic

multi-scale 3D bidomain model, one of the most widely used theo-

retical model of cardiac electrophysiology,14 based on the assumption

that the conductivity tensor fields of both intracellular and extracel-

lular domains were isotropic and homogeneous. In that study,7 the

local component of the UEG corresponded to the local AP generated

using a state of the art computational model including ion-currents

dynamics.9,15 The T-wave of simulated UEGs closely correlated to

those generated implementing the more complex and realistic model,

and the results were used to support theWyatt method for RT assess-

ment. In this work, the implementation of the simple model by Potse

et al.7 was further simplified by using as local components mathemati-

cal functions providing a stylized AP whose upstroke and down-slope

are adjusted to match local AT and RT. A similar approach has been

adopted in previous theoretical studies.14,16,17 Of note, in this study

we found a highmorphological correlation between recorded and sim-

ulated UEG even if the model was informed with only epicardial data.

This does not imply that endocardial and septal activity do not con-

tribute to the morphology of epicardial UEG, but it is most likely due

to the fact that sock-mapping of both the left and right ventricles pro-

vided an accurate measure of the average AT and RT and therefore a

reliable evaluation of the position-independent component represent-

ing remote activity,which is fundamental to determine the shapeof the

local UEG. Furthermore, since the simple model assumes homogenous

and isotropic conductance, it is best suited to represent UEGs in nor-

mal cardiac tissue and its validity in presence of scar should be investi-

gated in future studies.

Thepossibility of performingmultisiteRTmeasurements is a unique

feature of the UEG that offers the opportunity of investigating a

number of physiological mechanisms linked to ventricular arrhyth-

mia such as spatial inhomogeneity of repolarization,18 repolarization

alternans and variability,19,20 cardiac restitution,10,21 and activation-

repolarization coupling.22,23 The investigation of these mechanisms,

along with the understanding of the UEG morphology, is critical for

prediction as well as ablation of ventricular tachycardias. Indeed,

the increased resolution of high-density mapping technologies and

new mapping electrode configurations now enable finer mapping of

the substrate utilizing unipolar data, so correct interpretation of this

information is even more pertinent in the modern electrophysiology

arena.24

Extensive work3,7,25–28 has consistently demonstrated that the

time of the steepest upslope during the T-wave is a reliable marker

of local RT, as first suggested by Wyatt et al.13 The simple model pre-

dicts that upright and inverted T-waves are associated with early and

late repolarization, respectively, and its validation in the in vivo human

heart provides further support to theWyatt method.

The power of this model lies in its simplicity, as it explains the

UEGmorphology as the difference between only two components, one

position-dependent and similar to the local AP and another position-

independent and similar to the average of all APs, representing remote

activity. This model could be used to study mechanisms and predict

outcome as it provides a simple conceptual framework for linking

properties of the UEG to the underlying activation and repolarization

spatiotemporal dynamics, generate and test hypotheses, assess new

methodologies, and ultimately improve the interpretation and clinical

utility of the UEG. Similar analytical approaches have been previously

used for similar purposes.7,29–33

5 CONCLUSIONS

The similarity between more than 13,000 UEGs recorded with a

multielectrode epicardial sock in 18 patients and UEGs generated

by the simple theoretical model implemented in this study and

first proposed by Potse et al.7 demonstrates that (1) the UEG can

be conceptualized as the difference between a local cardiac AP

and a position-independent component representing remote activ-

ity and that (2) its morphology is mainly determined by activation-

repolarization dynamics. This has important implications in the

interpretation of high-density mapping data to advance under-

standing of arrhythmia mechanisms and enable optimal ablation

strategies.
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