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Abstract
Despite the important role that WiFi networks play in home and
enterprise networks they are relatively weak from a security stand-
point. With easily available directional antennas, attackers can be
physically located off-site, yet compromise WiFi security proto-
cols such as WEP, WPA, and even to some extent WPA2 through
a range of exploits specific to those protocols, or simply by run-
ning dictionary and human-factors attacks on users’ poorly-chosen
passwords. This presents a security risk to the entire home or
enterprise network. To mitigate this ongoing problem, we pro-
pose SecureArray, a system designed to operate alongside exist-
ing wireless security protocols, adding defense in depth against
active attacks. SecureArray’s novel signal processing techniques
leverage multi-antenna access point (AP) to profile the directions
at which a client’s signals arrive, using this angle-of-arrival (AoA)
information to construct highly sensitive signatures that with very
high probability uniquely identify each client. Upon overhear-
ing a suspicious transmission, the client and AP initiate an AoA
signature-based challenge-response protocol to confirm and miti-
gate the threat. We also discuss how SecureArray can mitigate di-
rect denial-of-service attacks on the latest 802.11 wireless security
protocol. We have implemented SecureArray with an eight-antenna
WARP hardware radio acting as the AP. Our experimental results
show that in a busy office environment, SecureArray is orders of
magnitude more accurate than current techniques, mitigating 100%
of WiFi spoofing attack attempts while at the same time triggering
false alarms on just 0.6% of legitimate traffic. Detection rate re-
mains high when the attacker is located only five centimeters away
from the legitimate client, for AP with fewer numbers of antennas
and when client is mobile.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network Monitoring
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1. INTRODUCTION
WiFi networks are ubiquitous, widely deployed in both the home
and enterprise, and at public hotspots. However, from a security
perspective, their prevalence presents a number of well-known dif-
ficulties. Once an attacker has compromised a wireless access point
(AP), she may both eavesdrop on users’ traffic and inject traffic
into the wireless network. Security protocols such as WPA, WPA2
(802.11i), and 802.11w have been proposed in the past few years,
but they have a track record of being compromised [8, 9, 13]. More-
over, once vulnerabilities are discovered, they are slow to be fixed:
Bittau et al. [10] report that a staggering 76% of secured APs in
London had still used the older WEP security protocol six years
after it was known to be insecure [31, 37]. The result is a cycle be-
tween better wireless security protocols and new protocol exploits.

Another notable trend in the design of wireless APs is the
increasing number of antennas, mainly to bolster capacity with
multiple-input, multiple-output (MIMO) and spatial division mul-
tiplexing techniques [6, 34, 18, 36]. Both 802.11n and the recent
802.11ac exploit MIMO extensively through the use of multiple AP
antennas. Our observation is that it is possible to leverage this trend
to measure the physical angles-of-arrival (AoA) at which client’s
transmitted signals arrive at the AP. What determines this AoA
information? The multipath wireless channel between client and
AP, in particular the physical propagation paths that exist between
client and AP at the instant the client transmits a packet.

The dynamism of the wireless channel and the multitude of
propagation paths in an indoor multipath environment present an
exciting opportunity: APs can leverage this AoA information to
construct an AoA signature that is unique to each client and ex-
tremely difficult for an attacker to forge—far more difficult to forge
than previously-proposed signatures based on channel impulse re-
sponse [29], received signal strength [16, 33], or other properties
of the transmitter. To forge a legitimate client’s AoA signature, our
experiments (§4) show that an attacker’s antennas would need to be
co-located to within under five centimeters of the legitimate client’s
antennas, an unlikely event. Otherwise, even with knowledge of the
legitimate client’s AoA information at the AP and possession of a
phased antenna array, it is still fundamentally difficult for an at-
tacker to mimic the AoA signature, as it is highly unlikely that the
set of physical paths from the attacker to the AP arrive at the same
bearings as those of the legitimate client.

This paper describes the SecureArray system, a cross-layer ap-
proach to enhance wireless security that is designed to provide de-
fense in depth against active attacks, those in which the attacker
injects a frame into the network for the purpose of compromising
the network, eliciting a denial-of-service state, or even causing a
protocol deadlock and extended denial-of-service. SecureArray op-



erates alongside and strengthens the latest protocol-based wireless
security measures that establish a shared secret between the AP and
legitimate client. In fact, SecureArray mitigates the most pressing
current 802.11 security threats: those for which strong encryption
is useless, which might be for any of the following reasons:
1. The security protocol has not yet established (in the process of

establishing) a shared secret between client and AP, or
2. The 802.11 specification disallows encryption for certain proto-

col control messages, or
3. The shared secret has been compromised by factors outside the

security protocol.

Our approach is wholly within the context of the latest 802.11 se-
curity specification for creating a “robust security network”, which
patches some (but not all) of the holes described above. We care-
fully examine the operation of the security protocol and exploit,
and identify instants where the attacker must inject frames within
wireless channel coherence time in order to successfully compro-
mise the protocol. This happens with surprising frequency, often
because security exploits depend on software data races with a con-
current operation at the AP that a legitimate client’s transmission
triggers. As an extension of this approach, we also propose Dat-
aCheck (§2.2.2), a new, proactive protocol that triggers a transmis-
sion within a wireless coherence time from a legitimate client when
it overhears suspicious activity that may indicate ongoing spoofing.

We have implemented SecureArray with an eight-antenna Rice
WARP FPGA platform acting as the AP. Our exhaustive security
evaluation over one floor of a busy office space tests more than 150
sets of client and attacker locations in an active office environment
with operational network traffic present in the background. Exper-
imental results in this setting show that SecureArray achieves an
overall 100% attack detection rate while simultaneously keeping
the false alarm rate at 0.6% in the presence of legitimate traffic,
orders of magnitude more accurate than current CSI approach [24].
Our results also show that efficacy degrades very little when we
reduce the number of antennas at the AP to six and four.

The contributions of this paper are threefold: First, we propose a
novel AoA signature generation scheme with random perturbations
(§2.1) to increase the attack detection rate. Next, we incorporate it
with, to our knowledge, the first wireless security system that uses
AoA to augment existing 802.11 protocol-based security. Finally,
we describe a novel proactive protocol (§2.2.2) that leverages AoA
signatures to block unauthorized use of a client’s security creden-
tials, even if those credentials are compromised. We also describe
solutions to two known recent 802.11 vulnerabilities, one of which
results in a protocol deadlock and the other of which is a known
denial-of-service issue.

In the next section, we detail SecureArray’s design. Section 3
is a description of our implementation and the performance evalu-
ation (§4) follows. The related work is in Section 5 followed by a
discussion section (§6), and Section 7 concludes.

2. DESIGN
In this section we sketch the design of SecureArray, beginning with
the threat model our system targets, followed by an explanation of
what an AoA signature is, and a description of our AoA signa-
ture generation and comparison schemes. Next (§2.2), we describe
how we integrate our AoA signature comparison algorithm with an
802.11 robust security network, the current state-of-the-art in WiFi
security. It should thus become clear how SecureArray operates in
concert with a security protocol to provide defense-in-depth against
penetration or denial-of-service attacks.
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Figure 1: The AoA spectrum of a client’s received packet at a
multi-antenna AP gives an estimate of the incoming packet’s
power as a function of its angle of arrival.

The crux of SecureArray is to use the information contained
within two or more AoA spectra resulting from two or more re-
ceived packets to fingerprint the origin of each of those packets,
testing whether a single client or multiple clients sent those packets.
As we show in Section 2.2, knowledge of the underlying security
protocol along with a method of comparing SecureArray’s AoA
signatures and bounds on the rate of change of the dynamic wire-
less channel can, with high probability, pinpoint a security breach.

Threat model. SecureArray makes no assumptions about the type
of antenna that the attacker uses. In particular, the system is de-
signed to be effective in the presence of an attacker equipped with
omnidirectional antenna, directional antenna (such as the “Pringles
can” antennas famously used in past high-profile WiFi security
breaches [19]), or even a phased array of antennas capable of se-
lectively beamforming and nulling transmissions to arbitrary sets
of 802.11 receivers on a per-packet basis. Furthermore, our design
assumes that the attacker may have breached the security protocol
and may have access to the legitimate user’s secret authentication
credentials in the WPA2-Enterprise setup.

SecureArray offers protection only against active attacks—in
particular, we do not offer any added protection against eavesdrop-
ping attacks. We do however note that in most cases to penetrate
the network the attacker must transmit, and once the attacker has
penetrated 802.11 protocol security, must transmit in order to send
data or simply open a TCP connection.

2.1 AoA signatures
Our approach of computing AoA signatures is inspired by pre-
vious algorithms [30], but we propose an entirely novel signal
processing technique in this paper to enhance the specificity of the
AoA signature. In indoor environment, RF signals interact with
objects in the environment, resulting in reflections, absorption, and
diffraction. This results in multiple attenuated and summed copies
of a client’s transmitted signal arriving at an AP, a phenomenon
known as wireless multipath propagation. An AoA spectrum of a
client’s received signals at a multi-antenna AP is an estimate of the
incoming signals’ power as a function of angle of arrival, as shown
in Figure 1.

To convey the intuition of how SecureArray computes AoA spec-
tra, we consider a single client transmitting near an AP with no
multipath reflections. If the client is at a bearing θ to the AP as
shown in Figure 2 (left), then its signal will travel an extra distance
of 1/2λ sin θ to the second AP antenna, as compared with the first.
This distance directly corresponds to a measured baseband phase
difference Ω = π sin θ between the two signals’ baseband sym-
bol representations, as shown in the figure (right). Therefore, our
estimate of the client’s bearing to the AP θ̂ based on a measured
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Figure 2: Principle of SecureArray’s AoA spectrum computa-
tion. Left: The phase of the signal goes through a 2π cycle every
radio wavelength λ, and the difference in distance between the
client and successive antennas on the AP is governed by the
client’s bearing to the access point. Right: The complex base-
band representation of the sent signal (filled dot) and received
signals at the AP (crosses) reflects this relationship.

baseband phase difference Ω is

θ̂ = arcsin (Ω/π) . (1)

In indoor multipath environments, Equation 1 breaks down,
because multiple paths’ signals sum in the I-Q plot. Prior work has
shown that the above concepts generalize to compute AoA spectra
using M antennas in the presence of indoor multipath propagation.
The best known algorithm is MUSIC [30] based on eigenstructure
analysis of an M × M array correlation matrix Rxx.

Suppose D signals s1(t), . . . , sD(t) arrive from bearings
θ1, . . . , θD at M (M > D) antennas. Recalling the relationship be-
tween measured phase differences and bearing discussed above, we
use the array steering vector a(θ) to characterize the phases added
relative to the first antenna, as a function of the incoming signal’s
bearing. For a linear array:

a(θ) = exp
(
−j2πd

λ

)





1
exp(−jπλ cos θ)

exp (−j2πλ cos θ)
...

exp (−j(M − 1)πλ cos θ)




(2)

The array correlation matrix Rxx at AP has M eigenvalues asso-
ciated respectively with M eigenvectors E = [e1 e2 · · · eM ]. The
eigenvalues are sorted in non-decreasing order, the smallest M −D
eigenvalues correspond to the noise while the next D eigenvalues
correspond to the D incoming signals. Based on this process, the
corresponding eigenvectors in E can be classified as noise or signal:

E =




EN︷ ︸︸ ︷

e1 . . . eM−D

ES︷ ︸︸ ︷
eM−D+1 . . . eM



 (3)

We refer to EN as the noise subspace and ES as the signal subspace.
The MUSIC AoA spectrum is then computed as:

P(θ) =
1

a(θ)HENEH
N a(θ) (4)

2.1.1 Random phase perturbation
We note that θ̂ and Ω do not have a linear relationship with each
other. We plot estimated client bearing in Figure 3 (upper), in
units of degrees and the derivation of θ̂ with respect to Ω in Fig-
ure 3 (lower). Here, note that a small perturbation of Ω translates
to smaller perturbations of θ̂ when the client is broadside to the
axis of the array (i.e., θ ≈ 0), but larger perturbations of θ̂ when
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Figure 3: Upper: Estimated client bearing to the AP θ̂ as a
function of measured baseband phase difference Ω, and its rate
of change with respect to Ω (lower).

the client is close to θ = ±π/2 radians (corresponding to Ω = ±π
radians):

d
dΩ

θ̂ =
1√

π2 − Ω2
(5)

we see that dθ̂/dΩ reaches a minimum of π−1 ≈ 0.32 when the
client is broadside, and increases sharply when the client is near
the array axis. The AoA computation in Equation 4 yields one
AoA spectrum. But since we are trying to formulate a highly
specific client signature, we wish to make the signature sensitive
to slight changes at any angle. Based on the above observation
of non-uniform rate of change of θ̂ with respect to Ω, we pro-
pose a novel scheme to add a random phase offset ζ2 to Ω, and
compute another AoA signature. We iterate this process, adding
L − 1 further random offsets1, so obtaining L AoA signatures
σ1(θ), ...,σL(θ) based on L random phase offsets ζ1 = 0, ζ2, . . . , ζL.

Note that we could have introduced a deterministic perturbation
to bring the bearing θ close to ±π/2 to make the signature most
unique in order to increase the attack detection rate. However, de-
terministic perturbation has the following disadvantages compared
with random perturbations:
1. The false alarm rate will be increased accordingly.
2. The bearings very close to ±π/2 become unstable (sensitive to
very tiny changes).
3. As there are multiple peaks on a signature, it’s difficult to bring
all the bearings near to ±π/2 at the same time.

SecureArray thus employs random perturbations to spread the
bearings all over the range between −π/2 and +π/2 to maintain a
balance between high detection rate and low false alarm rate. The
averaging process described in next section mitigates the inaccura-
cies caused near ±π/2 radians and also reduces the possibility of
similar peaks in coincidence.

We demonstrate how random perturbation works with Figure 4.
Figure 4 (upper) shows the effect of random perturbation on two
frames transmitted 100 milliseconds apart, from a legitimate client
and an attacker placed five centimeter away. The signatures are
similar (but not identical) under one random phase perturbation,
with a rather high similarity metric M = 0.79 (§2.1.2), but the
other random phase perturbation produces relatively different sig-
1For more than two antennas, each offset here is an offset vector
with size M − 1 while M is the number of antennas at each AP.
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Figure 4: The effect of random phase perturbation on AOA
signatures: Upper: comparison between an attacker’s frame
and a client’s frame. Lower: comparison between two frames
from the same client. M is the similarity metric (§2.1.2).

natures with a similarity metric M = 0. So with multiple random
random perturbations, we have a higher chance that the two sig-
natures are separated with some of the perturbations introduced.
Figure 4 (lower) shows that the random perturbations do not sepa-
rate (which is desired) the AoA signatures of frames (also spaced
100 ms apart) from the same client, enhancing the AoA signature
specificity and selectivity.

2.1.2 AoA signature comparison algorithm
Given two AoA signatures σA(θ) and σB(θ), we first find local
maxima in each signature using standard numerical methods. We
design a metric M that pairs local maximum i from σA with local
maximum j from σB. The metric takes two pseudospectra σA and
σB as inputs, and pairs peaks only if they are positioned within a
small constant angle threshold Θ of each other. The similarity met-
ric M also takes the magnitudes (normalized) of paired peaks into
consideration. If two peaks are paired in coincidence, their peak
magnitudes may vary significantly. In order for M to approach
one, the peaks need to be paired and at the same time, the magni-
tudes of paired peaks should also be close to each other.

S = {(i, j) : |∠i − ∠j| < Θ}

M
(
σA,σB

)
=

∑
(i,j)∈S mi · mj

(∑
i m2

i +
∑

j m2
j

)
/2

. (6)

To incorporate the random phase perturbation scheme described
in Section 2.1.1, we obtain one similarity metric with one random
phase perturbation by comparing pseudospectra σA

1 (θ) and σB
1 (θ).

We iterate this process to obtain L metrics from comparing the L
pseudospectra σA

1 (θ), ...,σA
L (θ) arising from random phase pertur-

bations of σA pairwise with the L pseudospectra σB
1 (θ), ...,σB

L (θ)
arising from σB with the same random phase perturbations applied.
We average the L metrics obtained to achieve M̄.

Based on empirical data from our performance evaluation below,
we use a binary classification threshold test, choosing a threshold
η, classifying signature pairs (σ1, σ2) as different (thus flagging an

Speed Coherence time at 2.4 GHz
Near-stationary (1 kph) 77 ms
Walking (5 kph) 15 ms
Running (12 kph) 6 ms

Table 1: Wireless coherence times at 2.4 GHz as computed with
Equation 7 for typical client motion speeds.

attack) if M̄ < η, and same (thus identifying normal traffic) if
M̄ ≥ η. Table 2 (page. 7) defines the full confusion matrix for the
terms we use in our evaluation, and we report our choice of η in
Section 4.2.1.

Wireless coherence time. The wireless channel between client
and AP is determined by scattering, reflection, and refraction by
objects in the environment. A key design parameter is the time du-
ration over which the wireless channel can be considered unchang-
ing with high likelihood, as a function of the speed of the client’s
motion and/or motion of objects in the environment. The wireless
coherence time Tc is determined by carrier wavelength λ and max-
imum client velocity v. If we measure v in meters per second, then
the coherence time is given by [35]:

Tc =
9

16π(v/λ)
. (7)

Table 1 shows wireless coherence time at 2.4 GHz as a function
of typical client motion speeds indoors. Within this time, we can
be confident that the AoA signatures of two transmissions from
the same client will indeed be the same, making a false alarm (see
Table 2) a rare event. Note that SecureArray introduces very little
amount of overhead, as SecureArray is not triggered all the time but
activated only when some particular control packets are received or
unusual behaviors are detected.

2.1.3 Collision detection and attacker jamming
In many cases an attacker will have no incentive to jam a client’s
uplink transmission, but in some cases she may have an incentive
to do so. The attacker can employ two directional antennas: one
pointed towards the legitimate client and the other pointed at the
AP. The attacker uses one directional antenna to jam the client’s
transmission at the AP and records the client’s transmission with
another directional antenna. The attacker then replays the recorded
packet to cheat the AP. We will illustrate this jamming and reply
attack in more detail in Section 2.2.4. SecureArray performs col-
lision detection by searching for energy changes and preambles in
the middle of incoming frames as is a standard practice in prior
work [17, 36]. When the attacker jams the legitimate client’s data
frame, the AoA for the overlapping portions of the two packets
will be the superposition of the two signatures σ1 and σ2 as shown
in Figure 5, which SecureArray’s classification algorithm will flag
as differing from the client’s signature σ1.

2.2 Robust security network integration
We now explain how SecureArray can integrate with an 802.11 ro-
bust security network, mitigating attacks against the security pro-
tocol itself as well as mitigating authenticated but unauthorized
spoofing of a user’s stolen credentials. To integrate SecureArray
with the entirety of the 802.11 protocol, we envision AP design-
ers will follow similar reasoning, annotating their implementations
with packet pairs or triplets in the security protocol exchange be-
tween client and AP where the AP should make an AoA signature
comparison, and a proper corresponding action to be taken if that
comparison fails.
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Figure 5: The result of an attempted jamming attack on Dat-
aCheck: the attacker’s jamming attempt (right) is discernible
as the superposition of its own AoA signature atop the legiti-
mate client’s AoA signature (left up).

2.2.1 Deauthentication deadlock attack
WPA2 uses IEEE 802.1X and in turn the Extensible Authentication
Protocol (EAP) in order to authenticate wireless clients to an au-
thentication server. EAP messages defined by 802.1X are referred
to as EAP over LANs (EAPOL). Recently, Eian and Mjølsnes [14]
and Bertka [9] have separately observed that an attacker can inject
an unauthenticated deauthentication notification after the third mes-
sage of the EAPOL four-way handshake (see Figure 6) that takes
place when a client connects to a WPA2 AP. Furthermore, since the
attack takes place during the EAPOL four-way handshake, amend-
ments to 802.11 (802.11w [2]) that protect management frames
(and in particular deauthentication frames) do not mitigate this vul-
nerability [9]. A successful attack causes a deadlock, leading to de-
nial of service for the wireless client. Note that for the attack to be
successful, the attacker must inject the deauthentication packet be-
tween the client’s receipt of EAPOL message three and the client’s
transmission of EAPOL message four.

Client AP Attacker

�1

�2

EAPOL msg 2

EAPOL msg 1

EAPOL msg 3

Deauth

EAPOL msg 4 �t

Figure 6: EAPOL Deauthentication deadlock attack. The at-
tacker sends a “deauth” message to a client whose 802.1x four-
way authentication handshake is in progress. The AP makes
an AoA signature comparison between the attacker’s deauth
packet (σ1) and the legitimate client’s subsequent EAPOL mes-
sage four (σ2).

Mitigating deauthentication deadlock. Using a wireless sniffer
operating in monitor mode, we measured typical interpacket spac-

ing times for 100 EAPOL four-way handshakes on a variety of AP
platforms. We find that the vulnerability gap (∆t in Figure 6) be-
tween EAPOL message three and EAPOL message four ranges be-
tween 30–59 µs with an average value of 36 µs, well within even a
running-speed wireless coherence time (cf. Table 1), enabling the
AP to make a rapid AoA signature comparison (§2.1.2) between the
attacker’s deauthentication packet and the legitimate client’s sub-
sequent EAPOL message 4, flagging an attack and dropping the
attacker’s frame at the link layer if the signatures do not match.

2.2.2 Authenticated spoofing attack
In many cases, users select easily-guessable passwords that are sus-
ceptible to dictionary or social engineering attacks, and the attacker
gains access to the network using an authorized user’s WPA2-
Enterprise login credentials. By thus authenticating and associating
with the AP, the attacker can sniff the user’s MAC address and then
inject packets that are completely identical to the legitimate user
via the AP.

SecureArray can mitigate these types of attacks when clients
overhear acknowledgment frames resulting from injected traffic.
We now present DataCheck, a protocol that uses this mechanism in
conjunction with AoA signatures to mitigate this traffic injection.

DataCheck: Mitigating authenticated spoofing. We propose a
client-assisted protocol to mitigate authenticated spoofing that re-
quires minimal protocol changes to 802.11 clients, focusing instead
on the addition of AoA signature processing at the AP.

Client AP Attacker

Challenge

Data(Clien
t�AP)

�2

ACK(Clie
nt)

�t

�1

Figure 7: Authenticated spoofing attack and mitigation with
DataCheck. Clients send protected minimal-length data frames
or normal traffic in response to unexpected ACKs from the AP.
The AP makes an AoA signature comparison between the at-
tacker’s data frame (σ1) and the legitimate client’s subsequent
challenge data frame (σ2).

Figure 7 outlines the protocol. As part of the 802.11 Distributed
Coordination Function (DCF) medium access control, clients nor-
mally maintain a state as to whether they are awaiting an ACK from
a frame they sent to the AP. DataCheck modifies the DCF so that
if a client receives an ACK for a frame that it did not send (or even
overhear, in the case that the attacker uses a phased array to di-
rect the frame solely to the AP and null the client) the client sends
a challenge (another data frame, or a zero-length data frame if it
has no data outstanding) to the AP. The AP then makes a signature
comparison between the attacker’s data frame (σ1) and the legiti-
mate client’s challenge frame (σ2) and flags the exchange as suspi-
cious if the two signatures do not match and both data frames are
protected with 802.11 security.



If the attacker has the legitimate user’s security credentials, she
could trigger an alarm by injecting a (security-protected) data frame
after overhearing a legitimate data-ACK exchange between client
and AP, but this simply alerts network administrators that the user’s
account has been compromised. If the attacker doesn’t have the
user’s security credentials, the encryption check on the DataCheck
data frame (σ2) prevents her from triggering a false alarm.

Through the application of AoA signatures and in the presence
of a saturated wireless network, DataCheck incurs no additional
overhead on the wireless medium. It also does not require any form
of header format changes.

2.2.3 Authentication deadlock attack
In 2011, Eian et al. used model checking to uncover another
distinct authentication-related denial-of-service vulnerability in
802.11i [13]. In this case the vulnerability appears to be based on
implementation flaws in hostapd’s implementation of 802.11i. As
shown in Figure 8, the attack is possible when the AP and client
are taking turns sending data frames to each other, each decrypt-
ing data frame as they arrive from the other. Just after the attacker
overhears a data from the client to the AP, she injects an Open Sys-
tem authentication request frame for the same client to the AP. This
causes the AP to delete its security association with the station, but
internally, its security state machine transitions to the wrong state
(possibly because of a race condition). Since the AP has deleted its
key for the victim client, it cannot transmit or receive any frames
for that client, and since the AP is in the wrong state, resynchro-
nization mechanisms that exist in the 802.11-2012 standard are not
triggered. The result, therefore, is a deadlock that typically results
in client disconnection for periods of several minutes.

Client AP Attacker

�1

�2

Data

Auth. req.

Data

�t

Data

Figure 8: Authentication deadlock attack. The attacker sends
an authorization request message to the AP just after it has re-
ceived and is decrypting a data frame from a legitimate client.
This results in loss of authentication state and a subsequent
protocol deadlock.

SecureArray is ideally suited for detecting and mitigating attacks
such as these because the time period over which the AP is vulnera-
ble ∆t is the immediate few hundred microseconds after it receives
a frame from the legitimate client. Indeed, the attacker needs to
inject the frame in an early backoff slot after just a DIFS time spac-
ing (from 34 µs in 802.11a to 50 µs 802.11b and 802.11g networks
backwards compatible with 802.11b) in order to win the 802.11
MAC protocol contention. This is clearly within the coherence
time, making a robust AoA signature comparison possible.

Mitigating authentication deadlock. If SecureArray finds a mis-
match between the AoA signature of the authentication request
frame σ2 and the AoA signature of the data frame σ1, it drops the

Figure 9: Left: the SecureArray prototype AP is composed of
two WARP radios, while a cable-connected USRP2 software-
defined radio (not shown) calibrates the array. Right: The AP
and antenna array mounted on a cart.

spurious authentication request frame. Note that since the authen-
tication request must nominally come from the legitimate client al-
ready authenticated in order for the attack to be effective, this policy
will not affect other legitimate clients attempting to authenticate in
the presence of heavy traffic.

2.2.4 Jamming and replay attack
Advanced attack such as jamming and replay attack can be initiated
by attacker with two directional antennas. Take deauthentication
deadlock attack as an example shown in Figure 6, the attacker jams
the reception of EAPOL message four at the AP with one direc-
tional antenna, while at the same time records message four with
another directional antenna. The attacker then replays the recorded
message four to the AP so both deauthentication packet and mes-
sage four are now from the attacker which means the AoA signa-
tures are the same. However, when the attacker jams the reception
of message four, the AoA at the AP during jamming is a superpo-
sition of bearings from both the legitimate client and attacker. This
causes the AoA signature to vary significantly as shown in Figure 5,
which can be easily detected.

3. IMPLEMENTATION
SecureArray AP. The prototype SecureArray AP, shown in Fig-
ure 9, uses two Rice WARP FPGA-based platforms. Each WARP
has four radio front ends and four omnidirectional antennas. Digital
I/O pins on one of the two WARPs output a time synchronization
signal on a wire connected between the two, so that the second
WARP board records and buffers the same time-indexed samples
as the first. The WARPs run a custom FPGA hardware design ar-
chitected with Xilinx System Generator for DSP that implements
the functionality described above (§2).

We place the eight antennas attached to the WARP radios in a lin-
ear geometry (Figure 9, right). Antennas are spaced at a half wave-
length distance (6.13 cm) to yield a 180 degree spectrum range.
This also happens to yield maximum MIMO wireless capacity, and
so is the arrangement preferred in commodity APs.

AP phase calibration. Equipping the AP with multiple antennas is
necessary for SecureArray. Note that calibration is mandatory for
AoA localization purpose as described in [39] but optional for Se-
cureArray. As the random perturbation AoA scheme is employed,
SecureArray is immune to random phase offsets introduced by os-
cillators and hardware imperfections. However, as calibrated ver-
sion of AoA has the true signal arrival bearing information, the
peak corresponds to the direct path signal is relatively stable when
the client is mobile, including this calibrated version of AoA into
SecureArray reduces the false alarm rate. So we still describe the
calibration scheme employed for SecureArray:

Random phase offsets introduced by WARP: Each radio receiver
has 2.4 GHz oscillator whose purpose is to downconvert the incom-
ing radio frequency signal to its representation in I-Q space. This
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Figure 10: Floor plan of our evaluation environment. Mobile
experiment trajectories are shown by the dashed lines.

introduces an unknown phase offset to the resulting signal. These
unknown phase offsets are constant during each WARP power
on/off cycle which only need to be calibrated once.

Hardware imperfections: Because of hardware imperfections for
SMA splitters and small differences between cables of the same
nominal length, we use the following one-time (run only once for
a particular set of hardware) calibration scheme to handle these
equipment imperfections.

To remove the hardware imperfections and obtain the unknown
random phase offsets introduced by oscillators, we calibrate the ar-
ray with a USRP2 generating a continuous wave tone. The signal
from the USRP2 travels through splitters and cables (we call them
external paths, giving rise to an external phase difference) before
reaching the WARP radios. The phase offset φI we want to mea-
sure is the internal (due to RF downconversion) phase difference
between radios one and two, φI

2 − φI
1. Running cable calibration

once, we obtain offset φ1:

φ1 = (φE
2 + φI

2)−
(
φE

1 + φI
1

)
(8)

Because of equipment imperfections, φE
2 is slightly different from

φE
1 , so φ1 does not equal the quantity we want to measure, φI . We

then physically exchange the external cable connections and re-run
cable calibration:

φ2 =
(
φE

1 + φI
2

)
−

(
φE

2 + φI
1

)
(9)

Combining Equations 8 and 9, we obtain the desired quantity:

φI =
1
2
(φ2 + φ1) (10)

Testbed clients. The clients we use in our experiments are Soekris
boxes equipped with Atheros 802.11g radios operating in the
2.4 GHz band.

4. EVALUATION
We first describe our methodology (§4.1), then evaluate SecureAr-
ray’s performance when clients are static (§4.2), followed by an
evaluation under mobility (§4.3). Finally, we examine system la-
tency of SecureArray (§4.4).

4.1 Methodology
For static clients, we deploy them at 150 randomly-chosen posi-
tions (and then deploy the attacker randomly at a particular dis-
tance with respect to the client) in a 30 × 40 meter typical office

Test: Do signatures differ?
Yes No

Ground truth:
Are signatures
from different
senders?

Yes TP: Attack de-
tected

FN:
Missed attack

No FP:
False alarm

TN:
Normal traffic

Table 2: Confusion matrix defining the terms SecureArray uses
to classify signatures. TP: true positive, FN: false negative, FP:
false positive, TN: true negative.

environment, as shown in Figure 10. We aim to have both line-of-
sight (LOS) and non-line-of-sight (NLOS) clients in our test envi-
ronment. We also deliberately place the client and attacker behind
and near to human, ceramic, wood, plastic and metal materials in
the office to make our results more comprehensive and realistic. We
also run the experiments in both daytime and night time. We evalu-
ate SecureArray with signature comparisons from packets recorded
with different time gaps from one millisecond to two seconds, and
also vary the distances between the client and attacker from above
three meters down to just five centimeters to challenge our system.

For mobile clients, we evaluate the challenging scenarios when
both the client and attacker are moving at the same time. The ex-
perimenter holds the client and attacker in his two hands walking
smoothly following the predefined routes. We evaluate SecureAr-
ray with signatures from packets recorded with different time gaps.

4.2 Static experiments
We first show how SecureArray performs in a typical office en-
vironment when both client and attacker are static. We evaluate
SecureArray with all combinations of different locations, different
distances between attacker and client, and different time intervals
between the packets, which is a total of 1500 comparisons.

4.2.1 Overall system performance
As shown in Section 2.1.2, the similarity metric M obtained varies
between zero and one. This metric should be compared with a care-
fully chosen threshold η to reject packets from attacker and accept
packets from legitimate client. Table 2 shows the confusion matrix
defining the terms that we use to classify the signature comparison
test described in Section 2.1.2. To choose the best threshold η, we
examine the receiver operating characteristic (ROC) curve. This
plots the attack detection rate TP

TP+FN versus the rate of false alarms
FP

FP+TN on signature comparisons from the same sender, for varying
choices of threshold η.

We show the overall ROC curves in Figure 11, averaging across
different packet time gaps, and different distances for maximum
generality. Besides SecureArray, we also present the curves for a
phase-calibrated version (remove the phases introduced by WARP
and hardware imperfections), and a random phase version (adding
one group of eight random phases to each of the radio board). We
see that SecureArray achieves a 100% attack detection rate at a
false alarm rate as low as 0.67% with L set to 15. We see clearly
that SecureArray outperforms the two other versions with L = 1.

Choice of η. To maintain a balance between attack detection rate
and false alarm rate, we choose η = 0.7 and evaluate with this
threshold in the remainder of the evaluation.

4.2.2 Number of random-phase perturbations (L)
We show the effect of number of groups of random perturbations
employed on SecureArray here. As shown in Figure 12 and the
zoomed in version in Figure 13, with more groups of random per-
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Figure 11: Overall performance (receiver operating characteris-
tic (ROC) curve) using calibrated AoA signatures, AoA signa-
tures perturbed by one random phase, and SecureArray (with
L = 15).
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Figure 12: ROC curves for SecureArray, varying the number of
random phase perturbations attempted for each AoA signature
from L = 1 to L = 15.
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Figure 13: Detailed view of the ROC curves in Figure 12, for
high attack detection rates.

−100 −50 0 50 100−10
−5

0

P(
e)

 (d
B)

2 antennas

−100 −50 0 50 100−2
−1

0

P(
e)

 (d
B)

4 antennas

−100 −50 0 50 100−1
−0.5

0

P(
e)

 (d
B)

6 antennas

−100 −50 0 50 100−1
−0.5

0

Angle (degrees)

P(
e)

 (d
B)

8 antennas

Figure 14: Effect of the number of antennas on the AoA signa-
ture: more antennas yield more unique signatures.

turbations employed, performance improves further. The biggest
improvement gap is between L = 1 and L = 3 which demon-
strates the efficiency and necessity of our random phase pertur-
bation scheme. However, this improvement becomes insignificant
when we increase L past five. We should notice that this improve-
ment is achieved at the price of more computation with a larger
L. However, as shown later in Section 4.4, the computational load
involved for SecureArray is very little and a typical desktop can
complete the process within milliseconds. Furthermore, the L com-
putational processes are independent from each other which can be
executed in parallel at the same time. For all subsequent results
presented, if not mentioned, we employ L = 5 groups of randomly
perturbations for averaging.

4.2.3 Number of AP antennas
The number of antennas at the AP is an important factor for com-
puting the AoA signature and accordingly for SecureArray perfor-
mance as it decides the maximum number of lobes on the signature
and the sharpness of the lobes. With eight antennas, we can have a
maximum of seven lobes on the signatures corresponding to seven
incoming signals (two signals arriving at very close bearings will
merge into one lobe on the signature). With more lobes, the sig-
nature has a tendency to be more specific to each client and easier
to be differentiated, as shown in Figure 14. We present the ROC
curves for SecureArray with varying numbers of antennas in Fig-
ure 15. With a threshold η = 0.7 and L = 5, SecureArray achieves
99.2%, 99.8% and 99.3% attack detection rate and 1%, 4.7% and
11.3% false alarm rate respectively.

We observe that with our chosen threshold of η = 0.7, the attack
detection rate remains high even with four antennas. However, the
client false alarm rate does increase a little bit with fewer numbers
of antennas. As the next generation 802.11ac supports up to eight
spatial streams, eight antennas are very likely to be equipped on
one single AP in the near future.

4.2.4 Distance between client and attacker
In most scenarios, an attacker will be far away from the legitimate
client which is the scenario most prior work [24] evaluates. How-
ever, with devices becoming smaller, it’s plausible that the attacker
may be very close to the legitimate client, such as when a smart-
phone is placed in the same bag or on the same table. We would like
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Figure 15: Performance of SecureArray with different num-
bers of antennas at the AP.
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Figure 16: Performance of SecureArray with varying distances
between client and attacker.

to evaluate SecureArray’s performance for these most challenging
scenarios when the attacker is very close to legitimate client.

In this section, we present results for different distances between
client and attacker. We move the attacker from far away (above
three meters) to a medium distance (two meters and 50 cm) to very
close (10 cm and five centimeters) to see how SecureArray per-
forms. The results presented here are averaged across different lo-
cations and different time gaps. As shown in Figure 16, we observe
that when the client and attacker get closer, the client false alarm
rate is more or less the same while the attack miss rate slightly
increases. This is expected as the peaks on the AoA signatures re-
flecting the direct path signal (if not blocked) become similar when
the client and attacker are very close to each other. This brings in
some degree of similarity between the two AoAs and increases the
similarity metric especially when the direct path signal is stronger
than all the reflection path signals. We can see that the attack miss
rate is zero for large and medium distances and increases slightly to
3.7%, which is still well within an acceptable level when the client
and attacker are only five centimeters to each other. Please note
that it’s unlikely that an attacker can be placed at exactly the same
location (0 cm distance) as the client when the client is static.

4.2.5 Inter-packet time
The channel is dynamic between any particular antenna pair in both
amplitude and phase. In terms of our AoA signature stability, the
phases of most antennas at the array need to change at the same
time to the same direction in order to show a obvious effect on the
lobe peak positions on an AoA signature. From Figure 17, we can
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Figure 17: Performance of SecureArray with different time
gaps between the packets obtained for signature comparison
from client-client and client-attacker, for static senders.

see that in a typical working office environment when the clients
are static, with the inter-packet time gap increased from one mil-
lisecond to two seconds, SecureArray still performs well, with the
client false alarm rate increased slightly to around 2%, due to hu-
man movements in the environment, we believe. Note that the at-
tack detection rate is always high because the attacker’s signature
does not tend to change to be similar to the legitimate client’s sig-
nature with time. So the attack detection rate is not affected by the
large time gaps between packets employed for comparison. How-
ever, movements in the environment do change the clients’ signa-
tures, which is reflected in the slightly increased false alarm rate.

4.3 Mobile experiments
In this section, we evaluate SecureArray’s performance for mobile
clients. The two Soekris boxes serving as the attacker and legiti-
mate client are held by the experimenter with a separation of around
60 cm (this value varies during the walking process with natural
human movements) away from each other. We test SecureArray
with the experimenter walking along the three routes labeled as
dashed lines in Figure 10. To measure the attack detection rate, sig-
natures generated from packets recorded at the attacker and client
with different time gaps are compared. All the packets are recorded
when the experimenter is walking along the trajectories. To mea-
sure the false alarm rate, two signatures generated from packets
both recorded at the client with different time gaps are employed
for comparison. We choose one route to be in the same office with
a strong line-of-sight to the AP and the other two routes with many
non-line-of-sight portions. The experimenter walks at a speed of
around 4 kph so the expected coherence time is around 12 ms.

We compare the attack detection rate and client false alarm rate
with respect to different time gaps between the packets employed
for signature comparison. The results are shown in Figure 18, vary-
ing the time gaps from 200 ms to one millisecond. We can see that
the attack detection rate is always high, roughly 100%. However,
when the time gap is 200 ms and 50 ms, the client false alarm rate is
100% and 96.7% which means the legitimate client itself is hardly
ever identified with such big time gaps when client is moving.
When the time gap decreases to around 20 ms, we have the false
alarm rate decreased to 46.7% but still high. When the time gap
becomes 5 ms below the wireless coherence time, the false alarm
rate decreases dramatically to 6.7% and this value further decreases
to 0% for one millisecond time gap. One point we note here is that,
the phase-calibrated version is a special candidate among all the
perturbation groups. The false alarm rate is lower when applying
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Figure 18: Performance of SecureArray with different time
gaps for mobile clients in our testbed.

the correct calibration phases especially in line-of-sight scenarios,
as the direct path is strong and relatively stable compared with re-
flection paths during movements, which increases our metric value
and mitigates the false alarm error rate. When the AP has no idea
of the mobility status of the client, the safe option is to include this
perturbation group in for averaging. Nowadays, a lot of devices
have a variety of different sensors built in and when a device starts
moving, it can be easily detected at the client side and at the AP
side. If the AP has the information of client’s mobility status, it can
choose intelligent random perturbation options. We will explore
possible schemes to reduce the false alarm rate for mobile clients
when the packets employed for comparison are not recorded within
the coherence time in our future work. We believe one promising
direction is to explore the stability nature of the direct path peak on
the AoA signature when the client is moving.

4.4 System latency
System latency is an important characteristic for any real-time sys-
tem. As SecureArray works with any kind of packet and any part
of the packet, we choose to use the most robust preamble part for
our processing. The preamble itself contains hundreds of samples
when sampled at 40 MHz rate. In principle, one sample would suf-
fice, but because of noise, it’s preferable to employ multiple sam-
ples and average the correlation matrix to achieve a more stable
AoA signature. As shown in prior work [39], 10 samples suffice
for AoA signature stability. Once SecureArray detects the pream-
ble and records this number of samples, it begins processing while
the rest of the packet is still on the air. The components of system
latency (measured from the start of the second packet in a compar-
ison) are described below:

• T1: time taken for packet detection and samples recording
with WARP. If one short training symbol in the preamble is
employed for packet detection, T1 is 1.6 µs.

• T2: time taken for samples to be transferred to the server. As
we employ 10 samples for processing, we have 80 samples to
be transferred with a total of eight radio boards at the transfer
rate of 1 Mbps supported by the WARP second generation
platform: T2 = (80 samples)(32 bits/sample)

1 Mbit/s = 2.56 ms.

• T3: time taken for the server to compute the metric and make
the decision. For an eight-antenna array, our AoA signature
generation involves eigenvalue decomposition and process-
ing of 8x8 matrices. The peak finding and comparison algo-
rithm run very fast. More computation is needed for a larger
L value. However, these are independent processes and can

be run in parallel. For our current Matlab implementation
with an Intel Core i7 2.30 GHz CPU and 8 GB of RAM, the
processing time is in the range of 10 ms to 20 ms with L = 5.

Therefore, the total latency that our prototype incurs starting from
the start of the second packet (excluding bus latency) is around
20 ms. We expect a full FPGA implementation to operate orders of
magnitude faster.

5. RELATED WORK
Xiong et al. have proposed the use of AoA signatures as a fin-
gerprinting mechanism [38] to be used in wireless networks. Se-
cureArray expands upon this work by proposing new signal pro-
cessing techniques for enhancing AoA signature specificity, inte-
grating AoA signature checking into the existing 802.11 security
protocol framework, introducing the DataCheck (§2.2.2) protocol
for mitigating authenticated spoofing in the event of user password
compromise, and providing a comprehensive security evaluation
measuring false alarm and miss rates (§4).

SecureArray is designed to operate alongside traditional
protocol-based security, which has a history of first becoming
widely-deployed and then being compromised. In the light of
WEP’s well-known security flaws (§1), the 802.11 specification
was amended in 2004 (802.11i) to include enhanced security [1].
In 2009, the 802.11 specification was again amended (802.11w)
to include protection for deauthentication, disassociation, and cer-
tain other management frames [2]. The 2012 revision of IEEE
802.11 [3] incorporates this amendment. Nonetheless, several at-
tacks on this revision exist [9, 14, 4] and are mitigated by Secure-
Array as described above (§2). We again note that SecureArray
only mitigates active attacks. Other MIMO-based schemes such
as STROBE [5] have recently been proposed to mitigate passive
eavesdropping; these schemes complement our work.

Localization systems. In general, an accurate localization sys-
tem [39, 40] could serve as a proxy for SecureArray fingerprints,
but a key advantage of SecureArray over most RF-based location
systems is that it only requires the involvement of one AP. Pin-
Loc [32] is a recent localization system that uses per-OFDM sub-
carrier channel measurements (CSI). This is made possible on a
commodity NIC by a CSI measurement tool previously released
by Halperin [21]. PinLoc uses the phase information in CSI mea-
surements along with amplitude to fingerprint clients and then lo-
calize them in a one meter by one meter grid. One could imag-
ine PinLoc being co-opted for security purposes, but this would in
fact be undesirable from a security standpoint, because an attacks
may originate centimeters away from the victim (consider, for ex-
ample, an attacker surreptitiously placing a mobile phone in the
victim’s handbag). Like many other systems, PinLoc requires a a
time-intensive environmental calibration step to learn location sig-
natures. SecureArray requires no environmental calibration.

PHY-layer channel fingerprinting. The concept of fingerprint-
ing clients based on physical layer channel information has been
explored in many ways in the wireless systems literature. In one
of the first such designs, Faria and Cheriton propose the use of
a “signalprint” [16], the vector of received signal strengths (RSS)
that a predetermined set of nearby APs observe from a wireless
client’s transmission. In later work, Chandrasekaran et al. use RSS
to detect spoofing, achieving 10% false alarm and missed attack
rates when the two are equalized [12]. AoA information is much
more detailed than RSS, and so SecureArray can achieve orders
of magnitude better specificity and selectivity over RSS-based sys-
tems with just one AP, as is common in home settings, obviating



the need for multiple nearby APs or any coordination of differently-
administered APs.

CSITE [24] is a recent system that is perhaps closest in spirit
to SecureArray; it uses CSI magnitude measurements averaged in
time over multiple frames to form a client signature. There are
two main differences between SecureArray and CSITE. Firstly, Se-
cureArray uses AoA information at the AP instead of averaged CSI
magnitudes. As Patwari and Kasera observe in the context of RSS,
however, approaches based on channel strength can be subverted
by attackers with directional or phased-array antennas [29]. Since
RSS is simply CSI magnitude information averaged across differ-
ent subcarriers, per-subcarrier CSI approaches such as CSITE can
be subverted by attackers with phased array software-defined radios
capable of transmitting with independent beamforming weights on
different subcarriers. Secondly, CSITE uses multi-packet time-
averages of channel magnitude information, which yields a less
selective discriminator with missed intrusion attempts of up to 5%
and false alarm rates of up to 60%, depending on the traffic inten-
sity of the legitimate client.

Other candidates for wireless channel signatures at the physical
layer include time of flight [28], signal-to-noise ratio measured at
an AP [15], client-AP channel impulse response [29], and com-
bination of multi-tonal probes and channel impulse response [41].
SecureArray has an intrinsic advantage over these approaches be-
cause it is extremely difficult for an attacker to generate a signal
that arrives at the AP from the same physical directions as the le-
gitimate client without being co-located with the client to within
small fractions of the RF wavelength (i.e., 12 cm at 2.4 GHz).

PHY-layer client fingerprinting. The problem of fingerprinting
802.11 clients themselves (in contrast to fingerprinting the channel
between client and AP as do SecureArray and other prior work be-
low) has been thoroughly explored in the literature. PARADIS [11]
is a prime example of this type of device fingerprinting system
that achieves 99% accuracy. Though this device fingerprinting can
improve security, the solution is qualitatively different because an
attacker can simply acquire a legitimate client’s 802.11 device to
launch her attack. Other candidates for device fingerprinting in-
clude radio transmission startup transient signal envelope [7], the
802.11 probe request interarrival time distribution [26], and client
CPU clock skew [25, 23].

Link-layer client fingerprinting. These techniques encompass
examining MAC (hardware) addresses, active probe requests for
cached SSIDs, and requests for a certain set of network servers
from clients [20, 27]. SecureArray has an advantage over such link-
layer techniques in that it is reliable even if clients take counter-
measures, such as reprogramming their hardware addresses, cached
SSIDs, and encrypting their network-layer traffic.

6. DISCUSSION
1. SecureArray overhead: SecureArray introduces very limited
overhead because the operation is triggered only when suspicious
packets are received or unusual behaviors are detected. SecureAr-
ray is not trying to update the AoA information continuously at the
frequency decided by the coherence time.

2. Forge the legitimate client’s AoA signature: It’s very difficult
for the attacker to forge the legitimate client’s AoA signature even
if it’s equipped with an advanced phased array. There are multiple
schemes the attacker may employ:

• The attacker is placed at exactly the same location as the le-
gitimate client. The attacker may have a chance to be located

near to the client. However, it is unlikely for the attacker to
be placed at the same physical location and furthermore, the
attacker usually has a preference to be located far away in
order not to be discovered. A small five centimeters location
difference causes a significant AoA signature change which
can be easily detected.

• The attacker obtains the legitimate client’s AoA signature
and then employ an antenna array to mimic the client’s sig-
nature while the attacker is at a different location. We argue
that this is difficult to be realized. In order for the attacker to
obtain the client’s AoA signature at the AP, the attacker needs
to have the same number of antennas and all the antenna to
be at the same positions as the AP. Even we assume the AP
has successfully obtained the client’s AoA signature, it’s still
challenging for the attacker to mimic this signature at a dif-
ferent location. If the attacker is equipped with an antenna
array, the attacker can utilize it to form different radiation
patterns. However, the radiation pattern at the attacker side
is not the AoA signature generated at the AP. The AoA sig-
nature at the AP is decided by both the radiation pattern and
the physical prorogation paths between the attacker and AP.
It’s almost impossible for the attacker to create a same phys-
ical environment at a different location. The dynamic nature
of the environment makes it even more challenging.

• When the client is moving, the attacker tries to predict the
client’s future location. We argue that it’s challenging to pre-
dict a precise future location of a mobile client. A rough
location estimate does not fail SecureArray as we show ex-
perimentally in Figure 16 that even a five centimeter small
location difference presents a very high detection rate.

7. CONCLUSION
We have described SecureArray, a system that leverages multipath
propagation in the wireless channel to construct highly specific
client signatures, just as MIMO leverages multipath to increase ca-
pacity. Our testbed results show that in a typical office environ-
ment, SecureArray is able to mitigate 100% of WiFi spoofing at-
tack attempts while at the same time triggering false alarms on just
0.6% of legitimate traffic. Detection rate remains high even when
the attacker is located very close to the legitimate client. The per-
formance of SecureArray degrades very little with fewer numbers
of antennas on the AP and when clients are mobile.

To identify wireless protocol exploits, the security community
uses model checking tools such as SPIN [22], augmented with tim-
ing information. We anticipate that the tests we describe above
(§2.2) will in the future be integrated into such model checkers so
that SecureArray can check all testable points (places where a le-
gitimate client transmits two frames within a coherence time) in the
protocol for attack activity.

For mobile clients, the direct path is relatively stable compared
with the reflection paths. By identifying the stable direct path
peak on the AoA signatures when the client is moving, heavier
weight can be assigned to the direct path bearing for signature
comparison. We believe with smart process, SecureArray may be
able to break the coherence time constraint and work with packets
recorded within a larger time interval so the application scope of
SecureArray can be extended.
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