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Abstract 

Copy number variants (CNVs) have been implicated in the pathogenesis of clinically 

distinct neurodevelopmental disorders (NDDs), indicating common underlying 

pathophysiology. Yet, the frequency, genetic architecture, and phenotypic role of 

pathogenic CNVs in adults with co-morbid neurodevelopmental phenotypes has not 

yet been systematically investigated.  

Adults with intellectual disability (ID) and psychiatric co-morbidities were recruited 

from ID psychiatry services across the UK (N=202).  Using a genotype-first approach, 

chromosomal microarray analysis (CMA) was undertaken, and variants were 

categorised using the NHS regional genetics service (RGCs) clinical pipeline. Genetic 

and phenotypic data was combined with two independent samples to enable frequency 

analyses (N=599). Targeted recruitment of individuals with 2q13 CNVs was 

undertaken via a patient support group, RGCs and the online rare CNV database 

DECIPHER (N=25). 

The frequency of pathogenic CNVs was 11%, rising to 13% in the replication cohort. 

Both novel and recurrent loci were found to harbour pathogenic CNVs, with 70% at 

established NDD risk loci. A significantly higher population frequency of CNVs was 

identified in NDD risk regions (10%), compared with schizophrenia (3.1%, p<0.0001) 

and ID/autism spectrum disorder (6.5%, p<0.0008) populations. Phenotypic 

characterisation of CNVs at the 2q13 region suggests an early-onset neuropsychiatric 

phenotype with a high incidence of attention deficit hyperactivity disorder (ADHD) 

and challenging behaviours.  

There is a high yield of pathogenic CNVs in patients with co-morbid 

neurodevelopmental phenotypes. In the main part, distinct loci are not involved in co-

morbid NDD risk, but risk arises from the same loci identified in single disorder 

cohorts.  Detailed phenotypic investigation of the 2q13 locus indicates that pleiotropy 

exists, however there is a preferential psychiatric outcome – in this instance ADHD.  
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Understanding the factors which modulate a CNV region with a high general risk for 

NDDs to a preferential neuropathological pathway will be key to understanding the 

complex hierarchy of psychiatric nosology and developing successful therapeutic 

interventions. 
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Chapter 1 Introduction 

Parts of this chapter have been adapted from the following book chapter:  

Wolfe, K., Strydom, A., Bass, N. (2017) Genetics of Intellectual Disability, In Kerr, 

M., Seminars in Psychiatry, Royal College of Psychiatrists, Cambridge University 

Press. (In press) 

1.1 Terminologies 

Two of the main terminologies that will be utilised throughout this thesis have 

differential usage in the published literature and are discussed here for clarification. 

Neurodevelopmental disorders (NDDs) are a highly heterogeneous group of disorders 

characterised by perturbed cognition, communication, behaviours, and motor 

functioning, as a result of atypical brain development1. Intellectual disabilities (ID), 

autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD) and 

epilepsy are all considered to be NDDs. The category also extends to include 

neuropsychiatric disorders, such as schizophrenia2. There has been a shift in 

understanding in psychiatry, whereby many later-onset psychiatric disorders are now 

understood to have their origins in the developmental period. For example, cognitive 

deficits in schizophrenia have been shown to be present prior to the onset of the 

disorder3. However, the terms neurodevelopmental and neuropsychiatric disorder are 

still often used interchangeably in the published literature. Some authors have coined 

new terminology to describe this phenomenon, for example Moreno-De-Luca et al. 

suggested developmental brain dysfunction as a term to describe the group of 

neurodevelopmental and neuropsychiatric disorders that encompass various clinical 

diagnoses1. In the main discussion of this thesis I use the term NDDs for simplicity, 

however the exact phenotypic composition of each sample is provided in the method 

sections of the individual chapters. 

Pathogenic is a term that is also often used variably in the published literature. Broadly 

speaking, a genetic variant can be said to be pathogenic if it causes disease. However, 

the usage of this term has been complicated by the discovery that a genetic variant, 

which is thought to cause disease in some individuals, can be present in other 
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individuals with no apparent effect. This is discussed in detail in the context of copy 

number variations (CNVs) in 1.3.2. Where relevant, the exact meaning of the term 

pathogenic has been discussed in the method sections of the individual chapters. 

1.2 A brief history of genetic investigations for neurodevelopmental disorders 

In the last century there has been a revolution in the genetic investigation of NDDs. In 

the 1950s, a technique for visualisation of the complete set of chromosomes (also 

known as the karyotype) under optical microscopes was developed4. This cytogenetic 

technique enabled the identification of abnormalities of chromosome number 

(aneuploidies) and large structural abnormalities, such as translocations. 

Translocations involve the movement of stretches of deoxyribonucleic acid (DNA) 

between chromosomes and can be balanced or unbalanced, depending on whether 

there is an overall loss or gain of genetic material. One example of a disorder arising 

from aneuploidy is Klinefelter syndrome, a disorder whereby there is an extra copy of 

the X chromosome causing ID and various psychiatric phenotypes5.  

The 1970s and 1980s saw the development of molecular genetic techniques to 

manipulate DNA – such as the polymerase chain reaction (PCR). PCR became a core 

technique in molecular genetics, as it can be used to generate millions of copies of 

specific segments of the genome for a variety of subsequent genetic assays. With the 

identification of polymorphic DNA markers and application of PCR, genetic linkage 

analysis became a powerful tool for gene discovery. Linkage analysis is based on the 

concept that polymorphic DNA markers of known chromosomal position can be used 

to approximately locate disease causing genetic variation through analysis of the co-

segregation of specific alleles of the markers and the disease within families. This was 

predominantly successful for disorders with Mendelian patterns of inheritance. 

Mendelian disorders are caused by mutations of bases within a single gene, for 

autosomal dominant disorders only one copy of the mutated gene is required to give 

rise to the disease phenotype, whereas in autosomal recessive conditions two abnormal 

copies of the gene are required.  

An example of a disorder which can be mapped by linkage analysis is phenylketonuria 

(PKU), an autosomal recessive disorder that can lead to the development of ID, 
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seizures, heart problems, and a range of psychiatric phenotypes6. PKU arises due to 

mutations in the phenylalanine hydroxylase (PAH) gene. The gene encodes an enzyme 

that catalyses the breakdown of the amino acid phenylalanine. Mutations result in 

enzyme deficiency and a resultant toxic build-up of phenylalanine in the brain and 

body. Delineation of the inheritance pattern and metabolic pathology of PKU occurred 

before the PAH gene was mapped to chromosome 12 in the 1980s7. The enzyme 

deficiency can be ameliorated by implementation of a low-phenylalanine diet, 

preventing the development of ID and other disease pathology. Newborn screening 

programmes for PKU have been widely implemented and have proven to be very 

successful8.  

Around the same time, deletions and duplications of sections of the chromosome were 

identified as being involved in the aetiology of NDDs. For example, in 1981 an 

interstitial deletion of the paternal chromosome was identified at the 15q11–q13 locus 

which causes Prader–Willi syndrome (PWS)9. PWS has a characteristic clinical 

phenotype, comprising: childhood-onset obesity with extreme hyperphagia, mild ID, 

a recognisable pattern of dysmorphism, hypogonadism and growth insufficiencies. 

Behavioural problems, including tantrums and compulsive traits, are estimated to 

affect 70–90% of individuals. ASD is also present in approximately 25% of cases, and 

psychosis in 5–10%10. PWS is a disorder of DNA methylation, an important 

mechanism by which genes are switched on or off, resulting in changes in gene 

activity. Normally, genes from both the maternal and paternal chromosomes are 

expressed, however, in a process called genomic imprinting, one of the parental genes 

is imprinted (epigenetically silenced by DNA methylation) and therefore only one 

active copy of the gene is present in the offspring. In PWS a set of genes in the 15q11-

13 region are imprinted (turned off), on the maternal chromosome, so deletion of the 

equivalent region on the paternal chromosome results in the lack of any active copies 

of these genes. 

Angelman syndrome (AS) is the reciprocal condition to PWS, arising through a 

deletion of the maternal chromosome in the imprinted 15q11-q13 region. A set of 

genes in this region are imprinted (turned off) on the paternal chromosome, so deletion 

of the region from the maternal chromosome results in lack of any active copies of 

these genes. AS presents with a very different phenotype – comprising: severe ID, 
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virtual absence of speech, seizure disorders and mild dysmorphisms. The behavioural 

phenotype is particularly distinct, with hyperactivity, frequent laughter, and motor 

stereotypies11. It is still unclear which imprinted gene(s) contribute to PWS, however, 

it is known that the gene encoding ubiquitin–protein ligase E3A (UBE3A) explains 

many of the manifestations of AS and single-gene mutations can also give rise to the 

disorder12. 

The Human Genome Initiative, more commonly known as the Human Genome Project 

(HGP), was conceived in 1986 and set out to sequence all 3 billion base pairs of the 

human genome. The sequence was made publically available and has enabled the 

development of bioinformatic resources, which provide powerful tools for genetic 

investigation and clinical genetics13. Furthermore, the HGP provided the driving force 

behind the development of high-throughput next-generation sequencing (NGS). NGS 

technologies have made it possible to rapidly sequence the whole protein-coding 

region of the genome – whole-exome sequencing (WES) – or even the whole genome 

–  whole-genome sequencing (WGS), at a low cost. NGS is a very powerful tool for 

identifying pathological single-base changes in the DNA sequence, which are referred 

to as single nucleotide variants (SNVs). In particular, NGS has facilitated the 

identification of de novo mutations. By definition, de novo mutations are not present 

in the parents and have arisen for the first time during egg or sperm cell formation, or 

in early embryonic development. A combination of the ability to map changes in a 

genetic sequence to a specific gene and technological developments, enabling 

detection of submicroscopic structural variations, also gave rise to copy number 

variants (CNVs) being identified as an important class of genetic variation in NDDs. 

1.3 Copy number variations 

CNVs are structural variants of at least 1kb in size that are present at a variable copy 

number in comparison with a reference genome14. Studies of healthy control 

populations have revealed that large-scale copy number polymorphisms are common 

throughout the human genome15,16, and approximately 12% of the genome comprises 

CNVs17. Whilst there are many CNVs that are neutral in function, if the deletion (loss) 

or duplication (gain) of genetic material affects a dosage-sensitive gene this can lead 

to changes in gene expression and protein function. These variants are under negative 
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genetic selection, with a general trend of reduced fecundity as the severity of the 

phenotype increases18. Thus, rare variants of recent origin are the primary contributors 

to genetic risk, and it is the rare CNVs (typically defined as occurring at a frequency 

of <1% in the general population) that are most frequently associated with disease19. 

Particular regions of the genome are more prone to CNV. Low copy repeats (LCRs), 

also known as segmental duplications, are regions which contain repetitive DNA 

sequences. Genomic regions rich in LCRs are predisposed to non-allelic homologous 

recombination (NAHR), whereby recombination errors occur between two sequences 

with high similarity. NAHR is one of the primary mechanisms giving rise to CNVs, 

and it has been estimated that there are approximately 130 hotspots in the human 

genome which are vulnerable to CNV caused by NAHR20. As a result of this 

mechanisms multiple CNVs, which are nearly identical to one another, can arise 

independently in different individuals. These recurrent de novo CNVs have a major 

role in the pathogenesis of NDDs. Other mechanisms of structural variation include: 

non-homologous end joining, fork stalling and template switching, and L1-mediated 

retrotransposition21. Equally, non-recurrent CNVs, rearrangements which arise in 

regions that don’t contain LCRs and differ in size between patients, are another 

pathological mechanism22. 

1.3.1 Chromosomal microarray analysis 

DNA microarrays, also known as nucleic acid arrays, are small slides to which 

thousands of nucleic acid probes are bound. This enables hundreds of thousands of 

genotyping reactions to be carried out simultaneously. Currently there are two main 

types of microarray used for chromosomal microarray analysis (CMA), microarray-

based comparative genomic hybridization (array CGH) and single nucleotide 

polymorphism (SNP) microarrays. In array CGH, DNA from the patient and a 

reference control are differentially fluorescently labelled and changes in genomic copy 

number, using probes at varying intervals, are made visible by differences in 

florescence levels23. SNP platforms were primarily developed to detect changes to 

single bases of the DNA sequence. However, it is also possible to determine genomic 

copy number using SNP arrays by detecting changes in the intensity information of 

segments of DNA24. 
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1.3.2 Clinical applications of chromosomal microarray analysis 

In 2010, a consensus statement from the International Standard Cytogenomic Array 

Consortium recommended CMA as one of the first-line cytogenetic tests, replacing 

karyotyping, for postnatal investigation of idiopathic developmental delay (DD), ID, 

multiple congenital abnormalities (MCA) and ASD25. Historically medical genetics 

has adopted a phenotype-first approach, whereby a collection of patients with similar 

phenotypes are investigated with the aim of mapping the pathological genetic variant. 

The advantage of CMA is that it adopts a genotype-first model, whereby a reverse 

strategy is employed of identifying pathogenic genetic variants and analysing 

associated phenotypes26. Currently, clinical screening for pathogenic CNVs is not 

available for other psychiatric disorders, although there is ongoing debate about 

whether to introduce CMA testing for individuals with schizophrenia27,28. 

A major challenge in the clinical application of CMA has been the interpretation of 

CNV pathogenicity. Typically, variants are categorised into three main categories; 

pathogenic, variants of unknown significance (VOUS); and benign. Factors that 

influence variant categorisation include: the inheritance pattern (whether the CNV is 

inherited or arises de novo in the individual), the size and genetic content of the CNV 

(large CNVs affecting brain expressed genes are more likely to be pathogenic), the 

likely functional consequence of gene disruption, and whether the CNV is present in 

healthy control datasets14.  

One measure which attempts to quantify the functional consequence of CNV is the 

haploinsufficiency index. Haploinsufficiency is the inability of a gene to retain a 

normal function when only one copy of the gene is present, in other words a measure 

of the tolerance of particular genes to CNV deletions29. A comparable methodology 

predicting the functional consequence of CNV duplications is yet to be developed. 

Increasingly online datasets are being utilised to aid the categorisation of variants. The 

Database of Genomic Variants (DGV) catalogues variation seen in healthy control 

populations and therefore contains CNVs not thought to be implicated in disease30. 

Whereas the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl 

Resources (DECIPHER) is an international online research portal which facilitates 
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anonymised data sharing for rare CNVs, primarily ascertained in children with 

developmental disorders of unknown cause31.  

A confounding factor in interpreting pathogenicity has been the variable penetrance 

and expressivity of many CNVs. Penetrance is the proportion of people with a 

particular genotype who exhibit the phenotype associated with that genotype. A 

disorder is said to have reduced (or incomplete) penetrance when the aberrant 

genotype is present in the absence of the associated phenotype. Expressivity refers to 

the severity of the associated phenotype32. Down syndrome (trisomy of chromosome 

21) is an example of a genetic disorder with full penetrance, in that all individuals with 

trisomy 21 present with features of Down syndrome, including some degree of 

intellectual impairment. However, there is considerable variation in the associated 

phenotypes, for example, some individuals with Down syndrome may have an 

intelligence quotient (IQ) in the borderline range (IQ 70-85), whilst others are more 

severely affected with an IQ below 3533. The expressivity of the phenotype can be 

influenced by the degree of genetic pleiotropy, whereby the altered function of a gene 

can cause diverse phenotypic outcomes. For example, exonic deletions of the Neurexin 

1 (NRXN1) gene have been identified in studies of ID, ASD, and schizophrenia34. A 

growing area of discovery is CNVs which are known as neurosusceptibility loci, 

whereby CNVs are present in the general population but are enriched in NDDs35. 

Whilst guidelines exist for the categorisation of CNVs there remains an element of 

subjectivity in clinical interpretation and designation of CNV pathogenicity continues 

to be a moveable field. For example, one study re-interpreted CNV results from 67 

individuals with idiopathic ID two years after the initial analysis and found a 

statistically significant increase in potentially pathogenic CNVs36. I will now further 

discuss the genetic underpinnings of three primary disorders – ID, schizophrenia, and 

ASD – as a prelude to considering combined neuropathological mechanisms.  

1.4 Intellectual Disabilities 

1.4.1 Clinical characteristics and aetiology 

ID is traditionally defined as significant impairments in intellectual and adaptive 

functioning with onset before the age of 18 years36. Before the age of five years 
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functioning is measured on a developmental, rather than intelligence coefficient, so it 

is more typical to talk about DD, although DD does not inevitability lead to ID in 

adulthood37. The International Classification of Diseases 10th Revision (ICD-10) 

criteria for ID refer to the historic term mental retardation, however this will be 

updated in the ICD-11 revision and I will use the term ID throughout the text38. The 

first axis of the ICD-10 diagnostic guidelines for ID describes the degree, or level of 

ID, segregated by scores on IQ scales39. ID is typically equated with a score of 2 or 

more standard deviations (less than 70) below the population mean on IQ tests2. Axes 

II-V of the ICD-10 criteria characterise the presence of associated physical, mental 

and psychosocial disorders39. ID is estimated to affect 2-3% of the general population 

and for approximately 50% of individuals with ID the cause is unknown36. 

The phenotype of ID can be highly variable in terms of severity and the domains of 

intellectual function that are affected. ID also often co-occurs with other medical and 

psychiatric phenotypes, such as congenital malformations, epilepsy and ASD. ID can, 

thus, be divided into two broad categories: syndromic ID, whereby there is a co-

occurrence of particular clinical phenotypes, and non-syndromic ID. Typically, 

homogenous syndromic phenotypes are caused by large de novo events40. The 

presence of syndromic features can guide genetic investigations, for example testing 

for trisomy 21 in Down’s syndrome or single-gene testing for PKU. Whereas, genome-

wide CMA enables systematic investigation of the genome in the absence of 

syndromic features37. ID is frequently associated with co-morbid psychiatric disorders 

and/or behavioural problems. For example, the point prevalence of psychosis has been 

estimated as 10 times higher in ID41. Recent estimates from United Kingdom (UK) 

primary care records show that approximately 21% of individuals with ID have a 

psychiatric disorder and 25% have some record of challenging behaviours. More than 

two thirds of these individuals had a record of prescription of any psychotropic drug, 

with more than a quarter receiving an antipsychotic42. 

The extreme heterogeneity of ID has confounded the understanding of pathological 

mechanisms. ID has typically been considered to lie at the extreme end of the normal 

IQ distribution in the general population. However, recent research, evaluating 

1,000,000 sibling pairs and 9,000 twin pairs, has revealed that the factors influencing 

severe ID differ from those influencing mild ID. Whereas, mild ID and IQ in the 
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normal range can be considered on the same spectrum, severe ID is thought to be a 

distinct disorder43. Therefore, the severity of ID, the presence of syndromic features 

and the range of associated medical and psychiatric phenotypes are important factors 

for consideration. 

1.4.2 Genetic risk factors  

Investigation of CNVs in DD/ID has predominantly occurred in paediatric cohorts. 

Analysis of 14 recurrent CNV regions in 15,749 cases referred for diagnostic testing 

(referrals for testing were due to a combination of DD/ID, MCA, dysmorphologies 

and ASD) and 10,118 controls identified 14 deletions and 7 duplications that were 

significantly overrepresented in cases44. Another large analysis of pathogenic CNVs 

in children with similar phenotypes was undertaken by Cooper et al. in 15,767 cases 

and 8,329 controls45. Over 8% of cases carried an imbalance at one of 45 previously 

documented genomic disorder loci. A CNV burden analysis was undertaken between 

the cases and controls, excluding common CNVs (>1% population frequency). At a 

threshold of >400kb ~25.7% (4,047) cases harbored an event of at least this size, as 

compared to 11.5% of the controls. The authors conclude from this that ~14.2% of 

disease in cases is caused by CNVs >400 kb, however this conclusion presumes that 

the percentage difference, or the excess between the cases and controls, is responsible 

for disease. Whereas, it may be that that some of these large CNVs do not contribute 

to the disease phenotype. Also, the authors did not consider genes disrupted by the 

CNVs in this analysis, and it may be that CNVs of differing size are more relevant to 

the phenotypic differences between cases and controls.  

A refined CNV morbidity map, comprising data from 29,085 children with ID and 

MCA (some of which were included in the previous analysis) went on to identify 70 

CNV regions significantly associated with DD46. It is through this mechanism of 

integrating data from large datasets that new CNV syndromes are being verified and 

characterised, for example the 17q21.31 microdeletion syndrome, a multisystem 

disorder characterised by ID, distinctive facial dysmorphisms, and hypotonia47.  

Investigation of rare SNVs has also served to elucidate the aetiology of ID, particularly 

for sporadic moderate–severe ID. An early exome sequencing study focusing on de 
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novo SNVs analysed ten patient–parent trios and identified an average of five 

candidate non-synonymous de novo mutations per affected individual48. Non-

synonymous exonic mutations alter the normal amino acid sequence, which can result 

in changes in protein configuration and gene function. WGS is now also being applied 

to the study of ID. One of the first WGS studies comprised patient–parent trios in a 

cohort of 50 patients with severe idiopathic ID. The cohort had previously undergone 

extensive genetic testing, including single-gene testing, CMA and exome sequencing 

analysis. The diagnostic yield for WGS was 42%, in comparison with an average 

diagnostic yield of 12% for CMA and 27% for WES49. Interestingly, the variants 

identified were all in the coding regions of the genome and had been missed by 

limitations of the previous technologies, which highlights that intragenic variant 

interpretation remains challenging. The technological advances afforded by NGS have 

enabled rapid progress in our understanding of the genetics of ID over the last decade 

and over 700 ID relevant genes have now been identified2. 

Another major contribution to the literature on the genetic aetiology of ID has arisen 

from the UK-based Deciphering Developmental Disorders (DDD) study. The study 

aims to apply CMA and sequencing methods to families affected by severe 

developmental disorders, approximately 87% of whom had DD/ID, and the majority 

of which had no previous family history of the disorder. A combined exome and array 

based approach has enabled the detection of novel genes associated with 

developmental disorders50. The most recent results from an exome sequencing analysis 

of 4,293 families, meta-analysed with 3,287 cases from similar populations, yielded 

94 genes which were enriched for damaging de novo mutations (DNMs). Overall 42% 

of the cohort carried pathogenic DNMs with an estimated prevalence of between 1 in 

213 to 1 in 448 births, with prevalence increasing with parental age51.  

1.5 Schizophrenia 

1.5.1 Clinical characteristics and aetiology 

The core features of schizophrenia are positive symptoms (delusions and/or 

hallucinations – also known as psychotic symptoms), negative symptoms (lack of 

motivation and social withdrawal) and cognitive impairments52. Initial models of 

schizophrenia pathology centered around the dopamine hypothesis. The fact that 
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psychosis can be induced by drugs which activate the dopamine system, and that 

antipsychotic drugs target the dopamine D2/3 receptors, highlighted the system as a 

likely candidate for disease pathology53. However, the neurodevelopmental hypothesis 

gained traction following evidence from longitudinal studies showing that cognitive 

impairments preceeded the prodromal phase of psychosis and onset of clinical 

symptoms3,54. Furthermore, various prenatal and environmental risk factors were 

shown to increase risk for schizophrenia. More recently an integrated 

sociodevelopmental-cognitive model has been proposed, which incorporates the role 

of social risk factors for schizophrenia alongside the dopamine and 

neurodevelopmental hypotheses53. 

Support for a genetic component to schizophrenia susceptibility has been provided by 

numerous twin studies55–57. Latest estimates indicate that the concordance rate of 

schizophrenia is 33% in monozygotic twins and 7% in dizygotic twins, with an 

estimated heritability of 79%57. Heritability estimates of schizophrenia are second 

highest among major psychiatric disorders, with ASD being the highest58. However, 

the finding of 33% concordance in monozygotic twins also indicates a significant role 

for environmental factors in risk for developing schizophrenia57. 

1.5.2 Rare genetic risk factors 

The strongest known genetic risk factors for schizophrenia are pathogenic CNVs, 

which typically have a low population frequency but confer significant risk for 

development of the disorder (ORs 2-60)59. In an early CNV study, Kirov et al. found 

2 CNVs, a deletion at 2p16.3 and a duplication at 15q13.1, thought to be associated 

with schizophrenia60. The genes involved, NRXN1 and APBA2, code for proteins 

involved in synaptic development and functioning. Another rare CNV study was 

conducted by Walsh et al., comprising 150 patients with schizophrenia or 

schizoaffective disorder and 268 healthy controls. They identified that individuals with 

schizophrenia were more than three times likely to harbor CNVs that deleted or 

duplicate one or more genes (P = 0.0008). The significance of this finding increased 

when considering patients with an early age-of-onset (<18 years)61. 
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Later, CNV analyses in 6,882 schizophrenia cases and 6,316 controls, identified 11 of 

15 regions that were significantly associated with schizophrenia risk. The strongest 

support was for CNV duplications at the 16p11.2 locus and the AS/PWS critical 

region. Whereas, the strongest support for CNV deletions was at the 22q11.2, 1q21.1, 

2p16.3 (NRXN1) and 15q11.2 loci. Overall 2.5% of schizophrenia patients and 0.9% 

of controls had CNVs at one or more of these 15 loci62. The latest CNV analysis from 

the Psychiatric Genomics Consortium (PGC), an international collaboration of 

psychiatric disorder researchers, comprised 21,094 cases and 20,227 controls. The 

study found a global enrichment of CNV burden in cases (OR=1.11) compared to 

controls. Gene set analysis revealed that most of the signal was driven by deletion 

CNVs in synaptic or other neuronal component gene sets59.  

The role of rare SNVs in risk for schizophrenia has also been explored with the 

increasing application of exome sequencing technologies. A de novo paradigm 

analysis in 623 schizophrenia trios and controls identified a significant enrichment of 

non-synonymous mutations in genes encoding synaptic proteins in cases. This 

enrichment was particularly observed in glutamatergic postsynaptic proteins and 

interaction proteins modulating synaptic strength63. Concurrent analyses of the exome 

sequences of 2,536 schizophrenia cases and 2,543 controls confirmed an enrichment 

of rare mutations (defined as less than 1 in 10,000) in similar synaptic gene sets64. 

Furthermore, exome sequencing of 12,332 unrelated individuals, 4,877 of whom were 

affected with schizophrenia, has highlighted the role of inherited rare variants in risk 

for schizophrenia. The excess rare variant burden identified in this study, ~0.25 per 

person, compared with results from de novo paradigms, suggests that this observed 

excess must arise from inherited variants65. 

Singh et al. carried out a comprehensive meta-analysis of three different types of rare 

variant data – WES data, de novo variants from family based trio data, and CNV data 

– in cohorts of individuals with schizophrenia and healthy controls. Combined analysis 

identified that schizophrenia cases have a significantly higher burden of rare damaging 

variants in 3,488 genes, which are typically depleted for loss-of-function variants. 

These loss-of-function intolerant genes were identified by analysing exomes from 

healthy controls, without a known psychiatric diagnosis, in the Exome Aggregation 

Consortium (ExAC) exome database66. The risk variants are concentrated in risk genes 
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for NDDs in patients with schizophrenia who also have ID, and these patients have a 

higher burden of rare, damaging variants. However, the significant enrichment persists 

in other genes when excluding these co-morbid cases, meaning rare variants also 

confer risk for individuals with schizophrenia without ID67.  

1.5.3 Common genetic risk factors  

It is now understood that polygenic disorders are not caused by a single genetic event, 

but are the aggregate effect of multiple individual gene events and significant 

environmental contributions26. Schizophrenia has been shown to be polygenic in 

nature, involving thousands of common SNPs, with very small individual effect sizes 

that increase the risk for developing the disorder by 1.1- to 2-fold27. Study of case-

control frequencies of common SNPs is traditionally undertaken using a genome wide 

association study (GWAS) method. Since the first GWAS in 2009 there have been 

concurrent increases in the sample sizes of GWAS studies and the number of loci 

associated with schizophrenia68. The latest PGC GWAS, comprising 36,989 cases and 

113,075 controls, identified 108 loci achieving genome wide significance for 

association with schizophrenia69. Some of the GWAS hits tie in with existing 

hypotheses, such as involvement of the dopamine receptor D2 (DRD2) gene and 

abnormal dopamine signaling. Support for the involvement of acquired immunity is 

derived from the robust association of the major histocompatibility complex (MHC) 

region on chromosome 668. Further work to delineate the signal at this locus has 

identified a large number of common, functionally distinct, structural variants 

affecting the complement component 4 (C4) genes. Increased risk of developing 

schizophrenia was particularly associated with variants that increase expression of the 

C4A gene, which potentially drives pathological synapse loss in schizophrenia70. 

The polygenic risk score method has been developed to aggregate the effect of  

multiple SNPs of small effect into a combined composite score. Thus, a schizophrenia 

polygenic risk score, provides a quantitative measure of genetic predisposition to 

developing schizophrenia. A discovery dataset, a GWAS with available effect sizes, is 

used to weight a target dataset that has genome-wide genotype data71. Although the 

discriminative accuracy of risk scores is not yet sufficient for screening in clinical 

populations72, the score constitutes a powerful research tool. The schizophrenia 
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polygenic risk score was found to be the highest, out of ten complex traits, for 

predicting case-control status, with the best area under the receiver operating curve 

(AUC) 0.8273. 

The relationship between rare and common genetic variants and how these separable 

factors interact to contribute to risk of developing schizophrenia is an evolving area of 

research. Investigation of patients with schizophrenia who carry rare pathogenic CNVs 

has found that these patients still carry an excess of common risk alleles74. This 

provides support for a polygenic threshold model, whereby individuals with high 

penetrance schizophrenia variants possess many genetic risk factors, and it is the 

combination of these factors that is sufficient to surpass a threshold for clinical 

diagnosis.  

1.6 Autism spectrum disorders 

1.6.1 Clinical characteristics and aetiology 

ASDs are characterised by a triad of impairments, comprising social and 

communication difficulties, stereotyped and repetitive behaviours and/or a restricted 

range of interests75. An interesting feature of ASDs are that they operate across the 

spectrum of IQ, with ASD being observed in individuals with extremely high and low 

IQ. Increased risk for ASD is well documented in ID and approximately one-third of 

individuals with chromosomal and genetic abnormalities have significant autistic 

traits76. Psychological investigation of ASDs has revealed cognitive deficits in theory 

of mind, the ability to understand other people’s mental states, central coherence, and 

the ability to integrate information at different levels77. At a biological level 

abnormalities in dopamine signaling have been proposed as a model of ASD 

pathogenicity78. Finally, the observation of seizures and sensory hyperactivity being 

frequently associated, provides support for a cortical hyperexcitability model of 

ASD79. 

Evidence for a genetic component to the aetiology of ASD has been provided by 

family studies. The recurrence risk of ASD in siblings of ASD probands has been 

estimated at 10.9%, with approximately 20% of siblings displaying some phenotypic 

features of ASD80. Twin studies have revealed higher concordance rates, with 
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approximately 31% of dizygotic and 88% of monozygotic twins being concordant for 

ASD81. 

1.6.2 Rare genetic risk factors 

There is a large body of research on the role of rare pathogenic CNVs in ASDs. Weiss 

et al. found a recurrent deletion and reciprocal duplication at 16p11.2 that confers risk 

for DD and ASD, accounting for approximately 1% of cases82. Many studies have 

focused on distinguishing between simplex ASD, whereby only one family member is 

affected, and multiplex ASD, whereby multiple family members are affected. Early 

evidence that these two classes (simplex vs multiplex) are indeed genetically distinct 

was provided by the observation that de novo CNVs were more frequent in simplex 

families83. CNV analysis in 1124 simplex families identified significant associations 

with rare recurrent de novo CNVs at numerous loci and concluded that large de novo 

CNV confer substantial risks (OR=5.6) for ASD84. Regional analysis of pathogenic 

CNVs has showed an overall enrichment of brain-expressed genes in probands85, as 

compared to controls. Numerous functional gene networks have been implicated, 

including: the ubiquitination system, neuronal cell-adhesion molecules75, cellular 

proliferation, projection and motility86. One of the largest de novo CNV studies in 

ASD to date, comprising 2,591 families, found a strong association for ASD risk at six 

loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). It was also 

established that small CNVs tend to encompass high risk ASD genes, whereas large 

CNVs encompass multiple ASD genes of modest effect size87. 

There are also converging lines of evidence for the role of rare SNVs in ASD risk. 

Exome sequencing of 175 autism trios found that whilst the overall rate of de novo 

SNV mutation was not significantly elevated from that expected by chance, the set of 

genes affected were highly biologically related to each other and/or had been 

previously identified as ASD/ID candidate genes88. The findings indicate the 

polygenic nature of ASD, whereby mutations in any of a large number of genes 

increases risk for ASD by 5- to 20-fold. Two concurrent exome sequencing 

publications further delineated the relationship between SNV and risk for ASD. 

Firstly, an integrated model, accounting for de novo and inherited variants, implicated 

a large number of genes in risk for ASD, particularly those involved in synaptic 
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formation, transcriptional regulation and chromatin-remodelling pathways89. 

Inclusion of inherited variants was thought to be critical, given the large number of 

ASD risk genes and the fact that many occur in loci with incomplete penetrance. 

Investigation of de novo mutation subtypes in 2,500 simplex families also revealed 

that ~43% of likely gene disrupting events (nonsense, frameshift and splice site 

mutations) in probands contribute towards risk of developing ASD90. 

1.6.3 Common genetic risk factors 

Common genetic risk factors have also been shown to play an important role in the 

risk of developing ASD. Common genotyped SNPs are estimated to account for at 

least 20% of ASD liability91, highlighting that a proportion of the genetic risk for ASD 

resides within common variants92. The ASD working group of the PGC, failed to find 

any genome-wide significant SNPs in a recently published discovery sample (7,387 

ASD cases and 8,567 controls)93. Given the likelihood that these results reflect a lack 

of statistical power to detect an association, with the need for larger sample sizes, the 

authors also undertook a meta-analysis utilising two independent samples. This meta-

analysis revealed a genome-wide significant association at the 10q24.32 locus and a 

significant concordance between the direction of effect of the top markers in the 

discovery sample and the two independent samples. 

Recent work has further investigated the role of common polygenic variation in ASD 

and the relationship this has with rare variants. Firstly, data from 6,454 simplex 

families has revealed that polygenic risk for ASD is over-transmitted to probands, but 

not to unaffected siblings. This increase in parental polygenic risk transmission was 

still observed in the probands who had a contributing de novo variant94. Genome-wide 

common and rare variant genetic links between ASDs and typical variation in social 

and communication difficulties have also been identified in a large general population 

cohort91. This supports a continuum model, whereby multiple types of genetic risk for 

ASDs influence a continuum of traits, the severe tail of which could results in a 

diagnosis of ASD or another NDD. 
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1.7 Genetic overlap across neurodevelopmental disorders 

Wide-scale genetic screening has revealed that many variants have broad – and often 

co-morbid – NDD phenotypes, which cross traditional diagnostic boundaries. For 

example, we have already seen that 16p11.2 duplications and mutations affecting the 

NRXN1 gene are involved in the aetiology of DD/ID, schizophrenia and ASD. These 

cross-disorder findings are supported by the results of epidemiological studies, which 

have identified that increased general, rather than specific, risk for neuropsychiatric 

disorders is conferred by having a mother with schizophrenia, bipolar affective 

disorder (BPAD) or unipolar major depression95. Doherty and Owen have proposed 

that psychiatric disorders lie on a neurodevelopmental continuum, with ID being the 

most severe brain insult, followed by ASD, schizophrenia and mood disorders. The 

NDD gradient is indexed by the severity of the mutational load and cognitive 

impairment, which has implications for developing new methods of stratifying patients 

for research96. Cross-disorder research is a growing area of activity in psychiatric 

genetics and this section will provide an overview of key findings in the field. 

1.7.1 Rare variant studies 

The degree of phenotypic variability associated with pathogenic CNVs encompasses 

both early-onset neurodevelopmental disorders and adult-onset psychiatric disorders. 

Several CNVs, including those at the 1q21.1, 16p11.2, 17q12, and 22q11.2 loci, have 

been identified in individuals ascertained for different neurodevelopmental 

phenotypes21. All of the 11 robustly associated schizophrenia risk CNVs have been 

implicated in risk for other NDDs97. Likewise, all of the six main CNV risk loci for 

ASD have been shown to confer risk for ID87. I have selected two recurrent CNV loci, 

which are commonly associated with risk for multiple NDDs, for detailed discussion 

–  22q11.2 and 16p11.2 deletions and duplications.  

Clinical presentation of the 22q11.2 deletion syndrome (also known as 

velocardiofacial syndrome or DiGeorge syndrome) is highly variable, with more than 

180 clinical features described98. The 22q11.2 deletion syndrome is the strongest 

known risk factor for psychotic disorders, with prevalence rates as high as 30%99. It 

has been estimated that up to 60% of children with 22q11.2 deletions meet the criteria 

for at least one psychiatric diagnosis, notably ADHD and anxiety disorders100. The 
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22q11.2 duplication syndrome shares some features with the reciprocal deletion, 

however the phenotype is generally mild in comparison with the deletion and familial 

transmission is frequently observed101. Psychiatric and behavioural problems include 

ASD, which occurs in approximately 14-25% of carriers. Interestingly, psychosis 

phenotypes, which are common in the deletion carriers, are infrequently observed and 

the 22q11.2 duplication has been proposed as a protective variant for schizophrenia102. 

The 16p11.2 deletion syndrome is commonly associated with ID, macrocephaly, 

seizures and obesity. Zufferey et al. collected phenotypic data on 285 16p11.2 deletion 

carriers and found that their full scale IQ is typically two standard deviations lower 

than non-carrier relatives. Furthermore, more than 80% of 16p11.2 deletion carriers 

exhibit psychiatric disorders, of which 15% of children present with ASD103. Moreno-

De-Luca et al. investigated the clinical variability of de novo 16p11.2 deletions in 56 

individuals, undertaking a novel family-based study design. They identified significant 

parent-proband correlations on measures of cognition, social behaviour and 

neuromotor performance, such that the impairments in probands were most profound 

in domains where their parents are already showing lower quantitative performance104. 

This provides support for a model whereby family background has an effect on 

phenotypic variability. The clinical features of the 16p11.2 duplication syndrome 

exhibit a mirror phenotype to the deletion, for example, the duplication has been 

associated with microcephaly and a reduced body mass index. IQ testing in the 

duplication carriers revealed a higher variance than in deletion carriers105. A meta-

analysis of 16p11.2 duplication studies found that the disorder confers a 14-fold 

increased risk of psychosis and a 16-fold increased risk of schizophrenia106. 

Kirov et al. assessed the penetrance of CNVs at previously established risk loci for 

NDDs. The penetrance for schizophrenia was compared with a group of early-onset 

developmental disorders – DD, ASD, and congenital malformations. Almost all CNVs 

had higher rates in the early-onset developmental disorders group. The average 

penetrance, for developing any of the associated disorders, was 41%. It was concluded 

that most of the CNVs are highly pathogenic and are therefore more likely to cause 

earlier-onset disorders rather than schizophrenia107. 
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There is, however, evidence to suggest a degree of specificity in the NDD risk 

conferred by separate CNV loci. Moreno de Luca et al. investigated the prevalence of 

deletions and duplications at four commonly implicated NDD risk loci (7q11.23, 

15q11.2-13.1, 16p11.2 and 22q11.2) in ID, ASD, schizophrenia and controls. They 

found that some CNVs show increased risk for all disorders (e.g. 16p11.2 duplications) 

whereas others showed a degree of specificity (e.g. 22q11.2 duplications are rarely 

observed in schizophrenia and 7q11.23 deletions show risk for ID but are rarely 

observed in ASD)108. This pattern of asymmetric risk provides support for both shared 

and distinct genetic aetiology, likely due to differing dosage effects and 

neuropathological mechanisms at different CNV loci.  

Evidence has also emerged from exome sequencing studies for shared genetic 

aetiology between NDDs. Analysis of 57 schizophrenia trios identified de novo 

mutations in numerous genes that have been previously implicated in risk for ASD and 

ID, with an enrichment in genes involved in chromatin modification109. Singh et al. 

undertook a large WES in schizophrenia patients (4,264 cases and 1,077 patient-parent 

trios) and controls (n=9,343), identifying a significant enrichment of rare loss of 

function variants in the SET Domain Containing 1A (SETD1A) gene in schizophrenia 

patients. The SETD1A gene encodes a methyltransferase involved in the catalysis of 

lysine residues in histone H3. Interestingly, seven out of the ten schizophrenia patients 

identified with this variant also had learning difficulties and further variant carriers 

were identified by investigating severe developmental disorder cohorts110. Large 

exome sequencing studies in ASD have revealed similar findings, with 107 genes 

strongly enriched for ASD overlapping with 21 candidate genes for intellectual 

disability, 3 for epilepsy and 17 for schizophrenia111. 

1.7.2 Common variant studies 

Results of GWAS studies have revealed that SNPs at the same genetic loci harbour 

variants which are associated with multiple seemingly clinically distinct traits, for 

example the calcium channel, voltage-dependent, L-type, alpha 1C subunit 

(CACNA1C) gene has been implicated in risk for both schizophrenia and BPAD112. A 

large schizophrenia GWAS study found an association between schizophrenia and 

BPAD samples, whereas no association was found with six non-psychiatric disorder 
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samples113. Results from the latest ASD GWAS also identified a strong genetic 

correlation between ASD and schizophrenia, and ASD GWAS results overlap with 

regions previously implicated in risk for schizophrenia93. 

Formation of the cross disorder group of the PGC has facilitated further analysis of 

GWAS data from five psychiatric disorders (schizophrenia, BPAD, ASD, major 

depressive disorder (MDD), and ADHD). Genetic correlation using common SNPs 

was high between schizophrenia and BPAD. Three disorders – schizophrenia, BPAD, 

ADHD – also showed moderate associations with MDD114. Also joint analysis, 

including data from all five psychiatric disorders, revealed four genome-wide 

significant loci, including the CACNA1C gene – which also showed a significant 

association when only considering the schizophrenia group115. 

1.7.3 Healthy control studies  

The role of pathogenic CNVs in NDD aetiology has been further complicated by the 

finding that virtually every CNV that is associated with a psychiatric disorder is 

present at a low frequency in populations that are ascertained as healthy controls21. 

Stefansson et al. found that population controls who carry these pathogenic CNVs 

have a global assessment of functioning score 0.7 standard deviations (SDs) lower than 

population controls who don’t carry the pathogenic CNV. Cognitive testing revealed 

that these controls perform at an intermediary level between schizophrenia patients 

and population controls, both of whom did not carry a pathogenic CNV. Additionally, 

pathogenic CNVs do not all affect the same cognitive domains, so factors influencing 

cognitive deficits vary from one CNV region to another. Structural MRI was also 

performed on carriers of 15q11.2 (BP1-BP2) CNVs and reciprocal changes in the same 

anatomical regions were identified for deletion and duplication carriers, showing – for 

the first time – a dosage dependent effect of the CNV on brain structure116.  

The role of CNVs in a general population cohort was also examined by Männik et al. 

using a random sample of individuals (N=7,877) from the biobank of Estonia. 

Phenotypic analysis of the 56 carriers of syndrome-associated CNVs revealed that 

these individuals had cognitive and psychiatric co-morbidities and low educational 

attainment117. Further insight into the cognitive impact of pathogenic CNVs in control 
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populations has been provided by other analyses in large population datasets. The UK 

Biobank is a large general population dataset of ~500,000 adults that includes 

genotyping, imaging and cognitive data118. Kendall et al. assessed the cognitive 

performance of carriers of 53 NDD CNVs (total N=1,571). The majority of CNV 

carriers had impaired performance on cognitive tests, as well as lower educational and 

occupational attainment. Similar to the findings from Stefansson et al., the cognitive 

deficits were modest as compared to the deficits observed in schizophrenia patients119. 

1.7.4 Cross-disorder analyses aid gene discovery 

The complexity with case-control association analyses is that huge sample sizes are 

required to detect very rare variants. One approach which has been adopted in cross-

disorder research is to firstly identify clinically significant CNVs relevant to broader 

NDDs then test for these in single disorder cohorts. This approach has been successful 

in identifying new rare variants for ASD120 and for schizophrenia97. Gonzalez-Mantilla 

et al. undertook joint analysis of genetic and phenotypic data encompassing six NDDs 

(DD/ID, ASD, ADHD, schizophrenia, BPAD, and/or epilepsy). They focused on 

pathogenic loss of function variants affecting at least two unrelated individuals 

(N=1,960). The cross-disorder approach enabled the addition of 33 genes to the 

knowledge base and increased the evidence level for 18 genes. The study found 

significant phenotypic heterogeneity, with the majority of genes (32.8) being 

associated with two disorders and two genes, NRXN1 and PARK2, being associated 

with all six disorders. Although the picture was complex, with certain genes showing 

enrichment for particular disorders121. 

1.8 Thesis rationale and overview 

In summary, pathogenic CNVs are rare at the individual locus level, but are 

collectively common risk factors for developing a range of NDDs. Almost all 

pathogenic CNVs identified thus far are most frequent in patient groups with severe 

early-onset developmental disorders107. They also present the greatest known genetic 

risk factors for psychiatric disorders to date1. Some of these CNVs show increased risk 

for various psychiatric disorders, whereas others show a degree of specificity (such as 

the 22q11.2 deletion CNV increasing risk for psychosis)108.  
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Historically large-scale CNV research has predominantly taken place in paediatric 

cohorts referred for clinical genetic testing45,46. The limitations of this approach are 

that the available phenotype data is limited to the reason for the referral to genetic 

services. The cohort is both weakly phenotyped, with important phenotypic 

information missing, and encompasses a broad range of severe developmental 

phenotypes. Furthermore, the developmental nature of the cohort means that later-

onset psychiatric phenotypes  cannot be captured at the point of analysis. Other CNV 

research has taken place in cohorts with a single psychiatric diagnosis59. 

The discovery of CMA technologies has changed the face of clinical genetic testing 

for children presenting with various developmental disorders. CMA is now being 

applied as one of the first-line routine genetic investigations in many healthcare 

systems25. This genotype-first approach is particularly advantageous when the patient 

presents with a non-specific phenotype and there are no suspected syndromic forms of 

ID for targeted genetic testing. However, genetic investigations have not been a routine 

part of the assessment of adults with ID presenting to psychiatric services122. Clinical 

genetic testing is not routine for any other psychiatric disorders – although 

implementing CNV testing in schizophrenia is an item of recent debate123.  

Following the recognition that both rare and common variants implicated in risk for 

NDDs transcend clinical diagnostic boundaries, there has been a rise in cross disorder 

research – whereby different single disorder cohorts are tested for the same genetic 

variants. However, there remains a deficit of research on co-morbid phenotypes – 

whereby individuals present with more than one psychiatric diagnosis. Prior to the 

work described in this thesis no investigations of pathogenic CNVs in adults with co-

morbid NDDs have taken place. Researching this population has the advantage that 

the typical age of onset for psychiatric disorders has passed. This has the potential to 

reveal novel CNVs implicated in co-morbid CNV risk and/or identify previously 

established pathogenic CNVs that have a higher frequency in co-morbid phenotypes.  

The work presented in this thesis aims to research this novel population; with Chapter 

2Chapter 1 taking a clinical perspective, with a survey of psychiatrists involved in their 

care; Chapter 3 and Chapter 4 undertaking CMA to investigate the type and 

architecture of pathogenic CNVs, as compared to other populations in the literature; 



 43 

Chapter 5 undertaking follow-up in-depth phenotyping of individuals with 2q13 CNVs 

to inform genotype-phenotype correlations of individuals with these rare CNVs; and, 

finally, Chapter 6 investigating the relative CNV burden as compared to other cohorts.
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Chapter 2 Survey of intellectual disability genetic testing practices 

in child and adult psychiatry 

Parts of this chapter have been adapted from the following published journal article:  

Wolfe, K., Stueber, K., McQuillin, A., Jichi, F., Patch, C., Flinter, F., Strydom, A. & 

Bass, N. (2017) Genetic testing in intellectual disability psychiatry: Opinions and 

practices of UK child and intellectual disability psychiatrists. Journal of Applied 

Research in Intellectual Disabilities. 1–12. PMID: 28833975. 

I undertook all statistical analyses, drafted and revised the manuscript. Study design, 

survey development and data collection were conducted by: KS, AM, CP, FF, AS, and 

NB. FJ advised on the statistical analyses.  

2.1 Introduction 

A definition of ID and prevalence estimates have previously been described in section 

1.4.1. The rate of psychiatric disorders among individuals with ID is approximately 4 

to 5 times higher than in the general population124. Despite this, psychiatric disorders 

in ID are often underdiagnosed. One reason for this is diagnostic overshadowing, 

whereby symptoms which would normally be attributed to a psychiatric disorder are 

instead viewed as being a component of the existing ID diagnosis. The lack of 

appropriate diagnostic criteria and paucity of suitable assessment measures also serve 

to compound psychiatric diagnoses in ID. Individuals with ID have been shown to 

experience poorer health, compared to the general population, and are subject to health 

inequalities125. Increasingly, ID services are adopting a bio-psychosocial approach, 

considering biological, psychological and social causes, in the assessment and 

treatment of mental health problems in individuals with ID126. Personalised care and 

health action plans, including annual health checks, are also being put into place to 

help prevent health inequalities127. 

An overview of the developments in genetic testing for ID has been covered in 1.2-

1.4.2. Investigation of the cause of DD/ID predominately occurs at onset in childhood 

and there is no formalised system of diagnostic review. In childhood patients may 
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initially present to a Paediatrician or a Child and Adolescent Psychiatrist. Whereas, in 

adulthood patients present to ID Psychiatrists, a subspecialty of psychiatry with 

specialist consultant accreditation, or other treating clinicians, such as neurologists – 

for instance if the cause of epilepsy is being investigated in an individual with ID. ID 

psychiatrists sit within learning disability services, which usually comprise an 

interdisciplinary community-based health and social care team. Services generally 

have a high threshold for eligibility (IQ<70 as well as significant impairment of 

functioning, which has been present from childhood). Referrals to services are 

typically made by general practitioners (GPs), who have a key role in managing co-

morbid physical illnesses, although some services also accept referrals from patients, 

carers, or social services126. There are 23 National Health Service (NHS) Regional 

Genetics Centres (RGCs) across the UK, to which treating clinicians can make 

referrals for genetic testing services for patients and their families.  

Inequalities in access to genetic testing have been reported across different medical 

specialisms and there is a shift towards mainstreaming of genetic practices, with 

clinicians being encouraged to order genetic tests directly to improve uptake and 

access128. It has previously been discussed that recommendations have been made for 

CMA to be one of the primary genetic tests for DD/ID, MCA and ASD25. However, 

evidence suggests that the uptake of testing for genomic disorders in routine clinical 

psychiatric practice has been slow28. However, little of known about the current 

practices of psychiatrists working with patients with intellectual disabilities. 

2.2 Aims 

This chapter aims to determine current knowledge and genetic testing practices of 

psychiatrists working with individuals with ID. Furthermore, potential differences 

between child and adult sub-specialties will be investigated. 

2.3 Methods 

Psychiatrists working in UK child and adolescent mental health services (CAMHS) 

and adult ID psychiatry services were surveyed as to their attitudes towards and current 

use of genetic investigations using an online survey. 
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2.3.1 Survey development and administration 

The survey questions were developed through consultation with ID psychiatrists, a 

clinical geneticist, a genetic counsellor, a genetic researcher and a statistician. The 

primary themes under investigation were: attitudes towards genetic testing, ordering 

of genetic tests, confidence and training in the genetic testing process, concerns about 

genetic testing, feedback of genetic test results, and experiences of referring to genetic 

services. Following a pilot, a number of the questions were amended and the 

opportunity for open text responses was enabled. The 28-item self-administered 

survey was composed of yes/no responses, multiple choice Likert-scale questions, 

numeric outcomes and free text responses (see the associated publication for a copy of 

the survey questions). The survey was programmed not to force answers to questions 

and enable completion of the survey with missing responses. The survey was 

administered via the online service tool Survey Monkey (SurveyMonkey Inc. Palo 

Alto, California, USA).   

2.3.2 Survey participants  

The survey was distributed to members of the Faculty of Child and Adolescent 

Psychiatry and members of the Faculty of Psychiatry of Intellectual Disability via the 

Royal College of Psychiatrists mailing list. Psychiatrists were invited by email to 

participate in the survey. A participation reminder was sent after 1 week. Respondents 

were removed from the analysis if they were junior trainees or listed professions other 

than CAMHS psychiatry and adult ID psychiatry, if they lived outside the UK and if 

they had not seen any patients with DD/ID in the previous 12 months. 

2.3.3 Statistical analysis 

Quantitative statistical analyses were undertaken using IBM SPSS Statistics for 

Windows, Version 22.0 (IBM Corp, Armonk, NY, USA). The analysis compared 

CAMHS psychiatrists (referred to henceforth as child psychiatrists) and adult ID 

psychiatrists (referred to henceforth as ID psychiatrists). Continuous outcome 

variables were analysed using a t-test where the data was normally distributed and 

Mann-Whitney U test for non-normally distributed data. The chi-squared test was 

utilised to test categorical outcome variables. Binary logistic regression was 
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undertaken to test univariable factors related to ordering a genetic test. For Likert scale 

responses the data was collapsed from 5 to 3 scale responses by merging ‘strongly 

agree’ with ‘agree’ and ‘strongly disagree’ with ‘disagree’, or ‘very frequently’ with 

‘frequently’ and ‘very rarely’ with ‘rarely’. The 5 category scale was retained for all 

statistical analyses and categories were only collapsed to simplify presentation of the 

descriptive findings. Participants were asked whether they felt confident in 8 aspects 

of the genetic testing process. To compare these confidence ratings a composite 

confidence score was generated by assigning the 5 point Likert scale responses a 

confidence value ranging from 1 for strongly disagree to 5 for strongly agree.  These 

scores were then summed across the eight confidence measures to obtain an overall 

composite confidence score. Where analyses have been undertaken on a subset of the 

dataset due to missing values the number of respondents in the analysis has been 

indicated. A Bonferroni correction was applied and significance has been set at 0.006 

to account for multiple testing. 

2.3.4 Thematic analysis 

Open text responses were thematically coded using Nvivo qualitative data analysis 

software (QSR International Pty Ltd. Version 10, 2012).  Three open text questions 

were included in the survey, focusing on the benefits and concerns of genetic testing 

in clinical practice. A word cloud was generated using all open text responses and 

word frequency analysis was undertaken using Nvivo. Word stemming was 

undertaken to combine variations of words from the same root (e.g. genetic and 

genetics). All words mentioned greater than 5 times, excluding common words, were 

inputed into Wordle129 for the creation of the word cloud. 

2.4 Results 

Responses were received from 215 clinicians, comprising 121 child psychiatrists 

(56%) and 94 ID psychiatrists (44%); 56% were females (n=121) compared with males 

(n=94, 44%). The majority of respondents worked in England (n=170, 80%), followed 

by Scotland (n=29, 14%), Wales (n=9, 4%) and Northern Ireland (n=5, 2%). The 

majority of respondents worked in community teams (n=115, 57%) followed by 

specialist assessment inpatient units (n=23, 11%) and specialist referral centres 

(outpatient) (n=19, 9%). A further 46 respondents (23%) reported that they worked in 
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more than one of these settings. The median number of years working in the speciality 

was 10 (child psychiatrists 10 years, ID psychiatrists 11 years).  

2.4.1 Sociodemographic factors  

Available demographic factors, sex and place of work, were compared between the 

child and ID psychiatrist groups, see Table 2-1 Sociodemographic factors of child and 

ID psychiatristsTable 2-1. Chi-squared tests were undertaken and a significant 

difference between the groups was identified for sex (χ²=17.06, p<0.000). 

Table 2-1 Sociodemographic factors of child and ID psychiatrists 

  
Child 

psychiatrist 

ID 

psychiatrist 

Sex  

Female  83 38 

Male 38 56 

Place of work 

England 96 74 

Scotland 15 14 

Wales  5 4 

Northern Ireland 4 1 

2.4.2 Attitudes towards genetic testing  

Respondents were asked to estimate the percentage of people with ID for whom 

genetic factors make a significant contribution towards the cause of their ID. Estimates 

from child psychiatrists (Mean=42%, SD=24.7, Range=2-100%) were comparable to 

those of ID psychiatrists (Mean=39.6%, SD=23.1, Range=3-90%) (n=206, Mean 

difference =2.4, 95% CI (-4.25, 8.1) p=0.48). The respondents were also asked to 

estimate the percentage of patients on their caseloads with an established genetic 

diagnosis. This serves as a proxy of the actual number of patients on the caseload, 

given that psychiatrists may misestimate this figure. Child and ID psychiatrists both 

estimated a low percentage of patients on their caseload as having an established 

genetic diagnosis. ID psychiatrists estimated a higher percentage of their own patients 

to have an established genetic diagnosis (Median=10%, Range=0-70%) compared to 

child psychiatrists (Median=5%, Range=0-100%), (n=205, U=3661.5, Mean rank = 

120 vs Mean rank = 90, p=<0.001). 
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2.4.3 Ordering of genetic tests 

More ID psychiatrists (77%), compared with child psychiatrists (56%), had ordered a 

genetic test in the last 10 years (n=162, χ²=8.08, p=0.004). Respondent’s estimates of 

the percentage of ID caused by genetic factors did not influence the likelihood of them 

ordering a genetic test (n=157, OR 1.01, 95% CI (0.99-1.03), p=0.19). The percentage 

of patients on respondents’ caseloads with an established genetic diagnosis also did 

not affect the likelihood of ordering a genetic test (n= 156, OR 1.02, 95% CI (0.99-

1.05), p=0.33). 

2.4.4 Confidence in the genetic testing process 

Respondents were asked how confident they felt in eight aspects of the genetic testing 

process, as presented in Table 2-2. Child psychiatrists had a lower average total 

confidence score (Mean=22.1, SD=6.8) in comparison with ID psychiatrists 

(Mean=27.4, SD=5.5). (n=186, Mean difference=5.3, 95% CI (3.42, 7.1), p=<0.001). 

In comparison with child psychiatrists, ID psychiatrists agreed that they were 

confident in: knowledge of genetic tests (69% vs 29%); assessing for dysmorphic 

features (63% vs 47%); ordering (47% vs 24%) and interpreting genetic tests (35% vs 

12%); genetic counselling (22% vs 12%) and feeding back test results to patients (64% 

vs 32%) and their families (68% vs 34%). 
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Table 2-2: Self rated confidence scores of child and ID psychiatrists (n=186) in eight areas of the 

genetic testing process 

  Disagree 

Neither 

agree nor 

disagree 

Agree 

Knowledge of genetic tests 
Child 52 (50%) 23 (22%) 30 (29%) 

ID 11 (14%) 14 (17%) 56 (69%) 

Assessing for dysmorphic 

features 

Child 34 (32%) 22 (21%) 49 (47%) 

ID 14 (17%) 16 (20%) 51 (63%) 

Assessment of capacity to 

consent 

Child 10 (10%) 12 (11%) 83 (79%) 

ID 2 (3%) 6 (7%) 73 (90%) 

Ordering genetic tests 
Child 55 (52%) 25 (24%) 25 (24%) 

ID 16 (20%) 27 (33%) 38 (47%) 

Interpreting genetic  test results 
Child 70 (67%) 22 (21%) 13 (12%) 

ID 31 (38%) 22 (27%) 28 (35%) 

Feedback to patients 
Child 43 (41%) 28 (27%) 34 (32%) 

ID 13 (16%) 16 (20%) 52 (64%) 

Feedback to family/carers 
Child 41 (39%) 28 (27%) 36 (34%) 

ID 14 (17%) 12 (15%) 55 (68%) 

Genetic counselling 
Child 71 (68%) 21 (20%) 13 (12%) 

ID 36 (44%) 27 (33%) 18 (22%) 

 

2.4.5 Concerns with the genetic testing process 

Respondents were asked what their main concerns were in relation to the genetic 

testing process, see Table 2-3. Both child and ID psychiatrists agreed that lack of 

available treatment was one of the main concerns (58% vs 51% respectively). Another 

main concern was lack of resources, 54% of child and ID psychiatrists agreed that this 

was a concern. Implications for insurance were a greater concern for child psychiatrists 

in comparison to ID psychiatrists (50% vs 38%), whereas issues around counselling 

were a greater concern for ID psychiatrists (53% vs 43%). 
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Table 2-3: Concerns child and ID psychiatrists (n=195) report in ten areas of the genetic testing 

process 

  Disagree 

Neither 

agree nor 

disagree 

Agree 

Stigma (-ve) of patients/families 

having a genetic diagnosis 

Child 42 (39%) 39 (36%) 27 (25%) 

ID 39 (45%) 21 (24%) 27 (31%) 

Lack of available treatment 
Child 26 (24%) 19 (18%) 62 (58%) 

ID 27 (31%) 16 (18%) 44 (51%) 

Lack of resources 
Child 23 (22%) 26 (24%) 58 (54%) 

ID 21 (24%) 19 (22%) 46 (54%) 

Implications for insurance 
Child 23 (22%) 30 (28%) 53 (50%) 

ID 30 (35%) 24 (28%) 33 (38%) 

Misuse of results 
Child 22 (21%) 39 (37%) 45 (43%) 

ID 37 (43%) 17 (20%) 32 (37%) 

Difficulty obtaining a family 

history 

Child 40 (37%) 39 (36%) 28 (26%) 

ID 27 (31%) 19 (22%) 41 (47%) 

Obtaining a sample 
Child 38 (36%) 37 (71%) 31 (29%) 

ID 35 (40%) 23 (26%) 29 (33%) 

Issues around counselling 
Child 37 (35%) 24 (22%) 46 (43%) 

ID 22 (25%) 19 (22%) 46 (53%) 

Issues around capacity to 

consent 

Child 31 (29%) 32 (30%) 44 (41%) 

ID 36 (41%) 13 (15%) 38 (44%) 

 

2.4.6 Feedback of results and clinical management 

As seen in Figure 2-1 both child and ID psychiatrists agreed that a genetic diagnosis 

is more beneficial for family members than patients. In comparison with child 

psychiatrists, ID psychiatrists were more inclined to agree that a diagnosis is beneficial 

for family members (85% vs 78%) (Figure 2-1 A) and patients (58% vs 50%) (Figure 

2-1 B). 
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Figure 2-1: Percentage of child (n=72) and ID psychiatrists (n=81) who feel that a genetic 

diagnosis is helpful for family members (A) and patients with ID (B) 

 

Respondents were also asked how they fed back results to their patients with ID, more 

than one response could be selected. Of the 146 respondents 8 (5%) had utilised 

videos, 20 (14%) had received input from speech and language therapists, 48 (33%) 

had used easy read materials, and 98 (67%) had used none of these aids. Responses 

were comparable for child and ID psychiatrists. 

Figure 2-2 shows respondents’ views and experiences of clinical management changes 

following genetic diagnoses. Respondents agreed that a genetic diagnosis would help 

with patient clinical management (75%  ID vs 62% child) (Figure 2-2 A), however 

few agreed that they had seen frequent management changes in their patients (11%  ID 

vs 12% child) (Figure 2-2 B). 
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Figure 2-2: Percentage of child and ID psychiatrists who feel that that a genetic diagnosis is 

helpful for patient management (A) (child n=121, ID n=94) and who report that genetic 

information has helped their patient management (B) (child n=73, ID n=82) 

 

2.4.7 Referral to genetics services 

Respondents were asked if they had ever ordered a genetic test or made a referral to a 

clinical genetics service. Those who had made a referral were also asked to estimate 

the number of referrals in last year. A significantly higher percentage of ID 

psychiatrists, compared with child psychiatrists had ordered a test or made a referral 

(90% vs 68%, n=214, χ²=15.92, p =<0.001). ID psychiatrists also referred more 

patients per year to the genetics clinic compared with child psychiatrists (n=153, 

Range = ID 0-25, child 0-10, U= 2161.5, Mean rank = 87 vs Mean rank = 67, p=0.004).  

Respondents were asked what the main reasons for referral to clinical genetics services 

were. Of the 155 respondents the most frequent reason for referral was presence of 

dysmorphic features (46% child, 57% ID) followed by intellectual disabilities (31% 

child, 38% ID). The least likely reason for referral was pharmacological treatment (2% 

both child and ID). 

2.4.8 Service structure and training 

Both ID and child psychiatrists agreed that closer links with regional genetics services 

would be helpful (83% vs 72%, n=197). Respondents were also in agreement that they 

would prefer to refer to a regional genetics service rather than order a genetic test 
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themselves (child 85%, 77% ID n=195). Finally there was a consensus that further 

training in genetics would be beneficial (child 71%, 66% ID, n=195). 

2.4.9 Thematic analysis 

Four main themes were identified from the 76 respondents who completed the open 

response questions comprising: family concerns, clinical management, and access to 

services and training.  

Of the 23 respondents who reported family concerns, the most frequent benefits 

identified were relief from guilt and increased understanding of the patient’s condition, 

followed by ability to access a support group and family planning. Respondents who 

discussed clinical management tended to mention the positive aspects, such as tailored 

medical and psychiatric interventions and clarification of syndrome specific 

behaviours. Only three respondents stated that they did not think a genetic diagnosis 

was helpful for clinical management. One respondent commented:  

“it is something of a paradox that the advances in the understanding of 

genetics and its potential impact upon our patient group has not 

translated into a significant increase in the use of genetic testing to help 

with diagnosis and care planning.  I can only surmise that the social 

model of Disability as outlined in Valuing People has steered the 

diagnostic process away from genetic labelling”. 

Access to genetics services was mentioned by 22 respondents, who described 

problems with referring to genetics services and the variable levels of knowledge of 

professionals involved in the pathway. There was concern that psychiatrists, who have 

not specialised in genetics, do not have the skills to order genetic tests directly. Good 

working relationships with genetics services were said to be a valuable resource. Five 

child psychiatrists stated that they would defer to their paediatric colleagues to make 

decisions about genetic testing.  

Several respondents felt that current training in genetics was insufficient and that 

training is not keeping abreast of technological advances. It was suggested that quick 

reference guides and screening tools would be valuable resources to support the 

decision making process. See Figure 2-3 for a word cloud of the most frequently used 
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words in the open text responses (results from both professional groups as responses 

were comparable for child and ID psychiatrists) and a summary of positive and 

negative opinions for each of the main themes. 

Figure 2-3: Word cloud of words mentioned 5 or more times from open text responses with 

larger words mentioned more frequently. Positive and negative responses from the main themes 

are displayed in the text boxes 

 

2.5 Discussion 

The survey results reveal that the majority of child and ID psychiatrists working with 

patients with ID are already ordering genetic tests or making referrals to genetics 

services. However, there are several disparities in clinical genetic practices. In 

comparison with child psychiatrists, ID psychiatrists reported: a higher number of 

patients with genetic diagnoses, greater confidence in the genetic testing process, 

higher numbers of tests ordered and more patients referred per year to genetics 

services.  

Respondents were asked to estimate the percentage of ID caused by genetic factors. 

The responses varied greatly, with some respondents estimating as low as 2% and 

others as high as 100%. Although both child and ID psychiatrists had similar mean 



 56 

estimates (39.6% and 42%) of the percentage ID caused by genetic factors, these 

estimates were much higher than the estimated percentage of patients on caseloads 

with a known genetic diagnosis (median=10% ID and median=5% child). As we did 

not have access to the medical records, it is unclear whether psychiatrists accurately 

estimated the number of patients on their caseload with a genetic diagnosis. This would 

ideally be clarified in the first instance to test whether psychiatrists are misestimating 

the number of genetic diagnoses on their caseload, or if they do actually have a low 

proportion of patients with genetic diagnoses. Furthermore, it would be interesting to 

investigate whether genetic diagnoses are being reported to all professionals involved 

in the individual’s care. For example, following genetic diagnosis what is the process 

to communicate this to the patient’s GP and learning disability services, and for what 

proportion of cases is this being miscommunicated. This will be particularly important 

for individuals with ID and co-morbid diagnoses who are under the care of multiple 

medical professionals. 

A high proportion of ID psychiatrists (77%) and just over half of child psychiatrists 

had directly ordered a genetic test. In comparison with child psychiatrists, ID 

psychiatrists were significantly more likely to order a genetic test and also referred 

more patients to the genetics clinic per year. This may have in part been a reflection 

of the ID psychiatrist’s greater reported confidence in the genetic testing process. As 

evidenced in Table 2-2, ID psychiatrists were significantly more confident in all 

aspects of the testing process, apart from capacity testing which is likely to be more 

complex in adulthood.  

The finding that adult ID psychiatrists are more confident in the genetic testing process 

is somewhat surprising, given that clinical genetic testing in DD/ID is only routine in 

childhood. In childhood clinical care plans are not yet in place, so it is more important 

to determine any underlying genetic diagnoses that may have implications for patient 

management. Furthermore, it is more pertinent at this stage for family members to 

receive information on recurrence risk to inform family planning decisions. Given 

these factors, one could assume that child psychiatrists have more experience, and 

therefore confidence, in genetic testing practices. However, one explanation for ID 

psychiatrists being more confident and ordering more genetic tests is due to the 

different structures of child and adult ID psychiatry services. Whereas, adult ID 
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psychiatrists are often the primary clinician involved in genetic referrals, in childhood 

pediatricians are often the first point of contact for patients and the child psychiatrists 

only become involved at a later stage. In support of this, a number of child psychiatrists 

reported in the qualitative analysis that they would defer to paediatric colleagues for 

opinions on genetic testing. 

The survey highlighted a number of barriers to genetic testing in clinical ID services. 

Both child and ID psychiatrists reported that they were concerned about lack of 

available resources for genetic testing and the lack of available treatment options for 

patients. Interestingly child psychiatrists had specific concerns about implications for 

insurance. The Department of Health have released a moratorium extending until 2019 

whereby the only genetic test required to be disclosed is for Huntington’s disease on 

life insurance sums worth more than £500,000130. Therefore results from CMA should 

have no impact on insurance premiums and this misconception could be a barrier to 

clinicians ordering/referring for genetic testing. ID psychiatrists expressed concern 

about issues surrounding counselling. Feedback of genetic diagnoses to adults with ID 

could be more complex than feedback to parents of children with ID and this could be 

an important area for additional resources and research. 

Although 77% of ID psychiatrists and 56% of child psychiatrists had directly ordered 

a genetic test, both child (85%) and ID (77%) psychiatrists agreed that they would 

prefer to refer to an RGC. However, links with NHS RGCs appeared to be variable. 

Some respondents reported good links with their local genetics services, whilst others 

felt that access to service was a barrier to referring for genetic testing. Both ID (83%) 

and child psychiatrists (72%) felt that better links with genetics services would be 

beneficial. Many of these clinicians felt that they do not have the knowledge or training 

to order genetic tests directly. This finding is supported by another survey, which 

found ID psychiatrists lacked adequate knowledge about genetic testing processes131.  

The majority of respondents expressed a wish for further training (71% child, 66% 

ID). Neither child and adolescent nor ID psychiatry curricula currently have learning 

objectives that specifically cover genetic disorders associated with ID132. The curricula 

also fail to cover the genetic work-up and basic genetic counselling skills that are 

required to take more of an active role in identifying and managing patients with 
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genetic disorders. However, there are several recent initiatives to improve the 

psychiatry curriculum. For example, the Gatsby-Wellcome initiative aims to ensure 

that training focuses more on scientific advances in basic and clinical neurosciences133. 

It is, therefore, hoped that future cohorts of psychiatrists will be more confident in 

utilising technological advancements in the assessment and management of their 

patients. 

One of the reasons for undertaking genetic investigations is that a genetic diagnosis is 

likely to provide information about specific associated medical and psychiatric 

phenotypes and thus could improve treatment plans and clinical management for the 

patient. Whilst the majority of respondents felt that a genetic diagnosis would help 

with clinical management, fewer patients on their caseloads had a genetic diagnosis 

than they would expect and clinical management changes following genetic diagnoses 

were not frequently seen in practice. There are published medical guidelines available 

for several genetic disorders, for example via the Orphanet portal for rare diseases134, 

and information guides on an extensive range of chromosomal disorders are available 

from the support group Unique135. It would be of interest for further research to 

investigate whether psychiatrists are aware of these guidelines when they receive a 

genetic diagnosis for their patient.  

Another important consideration is that knowledge of behavioural phenotypes can 

place psychiatrists in a better position to deliver appropriate interventions and 

environmental adaptations. Whilst there is within syndrome variation it has been 

shown that certain behavioural features, such as repetitive and self-injurious 

behaviours, are more common in particular syndromes. There are also implications for 

health screening, for example gastro-intestinal problems are common in Cornelia de 

Lange syndrome and can exacerbate self-injurious behaviours136. A recent survey of 

ID professionals found that nine out of ten professionals interviewed felt that specific 

knowledge of a neurodevelopmental syndrome should play a key role in healthcare 

provision. A specific genetic diagnosis was particularly thought to prompt proactive 

screening for related physical and mental health problems, which is of particular 

benefit for patients with severe impairments127.  One of the main challenges in practice 

is that individual syndromes are rare and psychiatrists are unlikely to care for many 
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individuals with the same disorder, although the overall burden of rare syndromic 

disorders is substantial. 

Both child and ID psychiatrists agreed that receiving a genetic diagnosis was more 

beneficial for family members than for the patient. Research has shown that there is a 

benefit to mothers in receiving a diagnosis for a child with ID; however there is a lack 

of research as to the impact of a genetic diagnosis for adults with ID137. Several 

respondents reported that a diagnosis can help to alleviate guilt for family members, 

as well as increasing understanding of the patient’s syndrome specific behaviours and 

enabling valuable access to support groups. It seems that respondents were able to 

report on a range of psychosocial benefits, which could indirectly improve patient 

management, however tangible changes in clinical decision making following a 

genetic diagnosis were less easy to define.  

The limitations of this survey are that it was self-reported, which could have led to 

biases in estimations. There may have been an  ascertainment bias in the clinicians 

who chose to respond to the survey. It may be that clinicians who already had an 

interest in genetics were more inclined to respond, or perhaps those clinicians who had 

more extreme views on genetics. If the respondents were self-selected as individuals 

who knew more about genetics, then the lack of confidence and knowledge identified 

in the survey would be even greater than initially indicated. There was a significant 

difference identified between the child and ID psychiatrist groups on the demographic 

of sex. It may be that there are sex differences in views and practices relating to genetic 

testing, which could inflate the differences between groups. No previous research on 

the impact of sex on clinician’s genetic practices could be identified, however it is 

important to consider this as a potential factor in the interpretation of these findings. 

This survey specifically focused on psychiatrists, who are one of the medical 

specialists frequently in contact with patients with ID in the UK. These findings may 

not be generalisable to other countries where services are organised differently  

2.6 Conclusion 

Whilst a high number of child and ID psychiatrists appear to already be ordering 

genetic tests there remains a preference for referring directly to clinical genetics 
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services. Respondents highlighted several areas of the genetic testing process in which 

they particularly lack confidence, such as indications for testing, interpretation and 

feedback of genetic results. Child psychiatrists in particular felt less confident, ordered 

fewer genetic tests and referred fewer patients to genetic services. 

Genetic investigations are continuing to advance at a very rapid pace, with WES and 

WGS beginning to enter clinical practice. For example, recent WES study identified 

42% pathogenic DNMs in a cohort with severe developmental disorders51. In 

conjunction with other genetic investigations it is likely that a genetic diagnosis will 

be identifiable in a much higher proportion of patients with ID in the future. This 

should facilitate early diagnosis and tailored interventions for patients and their 

families. However, as the landscape of genetic investigations becomes more complex 

it is going to be a challenge for psychiatrists to keep pace of developments. 

Improvements in training and closer links with genetics services would appear to be 

key areas to address to meet this challenge. Phenotypic data from existing large DD/ID 

genetic investigations is limited, in that it is primarily focused on paediatric cohorts 

and is often restricted to the primary indication for CMA testing138. Thus, there is a 

need for research in adult ID psychiatry services, which offer a unique opportunity to 

delineate the neuropsychiatric phenotype of emerging NDD risk CNVs.  
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Chapter 3 The frequency and architecture of pathogenic CNVs in 

adults with idiopathic ID and co-morbid psychiatric disorders 

Parts of this chapter have been adapted from the following published journal article:  

Wolfe, K., Strydom, A., Morrogh, D., Carter, J., Cutajar, P., Eyeoyibo, M., Hassiotis, 

A., McCarthy, J., Mukherjee, R., Paschos, D., Perumal, N., Read, S., Shankar, R., 

Sharif, Saif., Thirulokachandran, S., Thygesen, J. H., Patch, C., Ogilvie, C., Flinter, 

F., McQuillin, A., Bass, N. (2017) Chromosomal microarray testing in adults with 

intellectual disability presenting with comorbid psychiatric disorders. European 

Journal of Human Genetics. 25: 66–72. PMID: 27650969. 

I undertook and supervised participant recruitment (including psychiatric 

phenotyping), analysed the phenotypic data, and wrote and revised the manuscript for 

publication. Study design and analytical input from AS, AM, NB. CNV calling and 

pathogenicity ratings: DM and JC. Participant recruitment: PC, ME, AH, JMc, RM, 

DM, NP, SR, RS, SS, ST. Critical review of the manuscript was undertaken by all 

authors.  

3.1 Introduction 

An overview of the biological underpinnings of CNVs, CMA technologies, the clinical 

definition of ID, and the involvement of CNVs in psychiatric risk has been covered in 

Chapter 1.  

Approximately 50% of adult ID is idiopathic or of unknown cause36. A large 

proportion of individuals with idiopathic ID have psychiatric co-morbidities139. There 

is evidence to suggest that there is an increased burden of CNVs as the severity of the 

neurodevelopmental phenotype increases140, and that ID plus co-morbid mental 

disorders may contribute a higher CNV burden than ID alone141. Also, a recent 

investigation in a cohort of schizophrenia patients identified a significant increase in 

the yield of pathogenic CNVs as IQ decreased142. Despite this, the majority of the CNV 

research to date has focused on paediatric cohorts, whereby later-onset medical and 

psychiatric phenotypes cannot be reliably ascertained. Given that the investigation of 
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the cause of ID predominately occurs at diagnosis in childhood, there is a large cohort 

of adults, many with later onset psychiatric disorders, who have not had a diagnostic 

assessment utilising the latest genetic technologies143.  

3.2 Aims 

The target population for this study was adults with ID (>18 years of age). Adults were 

selected, as phenotyping in children is limited by the fact that development is on-going 

and the typical age of onset for many psychiatric disorders is yet to be reached. We 

focused recruitment on adults with ID who also had challenging behaviours and/or one 

or more psychiatric diagnosis. This more severe co-morbid phenotype was selected as 

severity of phenotype has previously been associated with a greater CNV burden140, 

and this population has never previously been investigated for pathogenic CNVs. 

This study aimed to: (i) determine the yield of undiagnosed pathogenic CNVs in adults 

accessing ID psychiatry services in the UK, (ii) identify the architecture of CNVs 

involved in co-morbid NDD risk and the implicated genetic loci, (iii) describe the 

phenotypic presentation of adults with pathogenic CNVs, (iv) compare the psychiatric 

phenotype of patients with pathogenic and non-pathogenic CNVs. 

3.3 Methods  

3.3.1 Study design and participant recruitment 

Ethical approval for the study was attained from the North Wales Research Ethics 

Committee West, reference 11/WA/0370. Recruitment was undertaken with the 

support of the Mental Health Research Network (MHRN), which is part of the 

National Institute for Health Research and aims to facilitate mental health research 

within the NHS. Recruitment took place at 32 NHS trusts and 1 non-NHS provider 

across England. Consultant Psychiatrists in Intellectual Disabilities acted as local 

principle investigators (PIs) at each site. PIs identified eligible participants from their 

caseloads based upon the study inclusion criteria. Inclusion criteria were: i) idiopathic 

ID; ii) one or more psychiatric diagnoses and/or significant challenging behaviours; 

and iii) over 18 years of age. Idiopathic ID was defined as no clear genetic or 

environmental cause of ID – to the best of the PI’s knowledge. 
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Capacity to consent to the research project was assessed by the participant’s 

Consultant Psychiatrist in accordance with the Mental Capacity Act 2005144. For 

eligible participants who were deemed to have capacity to consent to the study, 

information was provided in-person utilising Easy read information sheets and consent 

was provided via Easy read consent forms. This was undertaken by the patient’s 

psychiatrist, by myself or by a Clinical Studies Officer or Research Nurse employed 

by the MHRN. All MHRN staff received training on the study protocol. In the absence 

of capacity consultees, primarily family members or carers, were identified to give 

advice as to the person’s likely wishes regarding participation in accordance with the 

MCA guidance on nominating a consultee145. Participants, or their consultees, were 

given the option for the genetic results to be fed back to the treating psychiatrist, or 

another clinician involved in their care, such as the GP. 

Clinical data including developmental, medical and psychiatric history (ICD-10 

diagnoses)146, was collected from an informant and/or medical records. General 

observations for dysmorphic features were made using a dysmorphology checklist, 

containing facial and bodily dysmorphisms. Measurements of height, head 

circumference and weight, where available, were also collected by the clinician or 

researcher. Photographs were taken (where consent was given) for corroboration by 

the study team.  

Detailed psychiatric and behavioural phenotyping was undertaken using the Mini 

Psychiatric Assessment Schedule for Adults with Developmental Disabilities (Mini 

PAS-ADD) and Behaviour Problems Inventory – short form (BPI-S). The Mini PAS-

ADD assesses psychiatric symptoms in seven diagnostic areas and provides threshold 

scores for symptoms that are likely to warrant a diagnosis in conjunction with a clinical 

assessment147. The BPI-S measures challenging behaviours over the previous six 

months and provides weekly frequency scores of behaviours on three domains, self-

injurious behaviour, aggressive/destructive behaviour and stereotyped behaviour148. 

3.3.2 Genetic analysis and feedback 

Participants were given the option to provide either a blood or saliva sample, 24% 

provided blood and 76% provided saliva. The saliva samples were collected using the 
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Oragene DNA collection kits (DNA Genotek Inc, Ontario, Canada). DNA extraction 

arrayCGH analysis was undertaken at the North East Thames Regional Genetics 

Service Laboratory on the Nimblegen 135K platform (Roche NimbleGen, Wisconsin, 

USA). Arrays were processed and CNVs were reported using in-house clinical 

diagnostic laboratory protocols, in keeping with the Association for Clinical Genetic 

Science (ACGS) best practice guidelines149.  

CNVs referred to as pathogenic include pathogenic causative CNVs and pathogenic 

susceptibility CNVs, both of which are thought to affect gene function in view of the 

associated phenotype150. As discussed in Chapter 1 there are many factors that 

influence variant categorisation. Some CNVs were classed as variants of unknown 

significance (VOUS) likely pathogenic. This categorisation typically arises when there 

is an existing single case report with similar CNV breakpoints and phenotype to the 

patient under investigation, or when a gene within the CNV interval has a compelling 

function relevant to the patient phenotype. In both instances there is insufficient 

evidence in published literature, or previous reported occurrences of the CNV, to 

warrant it being classified as pathogenic14. There is no uniform method of dealing with 

VOUS CNVs and some published manuscripts combine the VOUS likely pathogenic 

and pathogenic categories in their analyses142,151. However, VOUS likely pathogenic 

are not reported back to patients and their families. In order to take a conservative 

approach and focus on variants that are clinically reportable we did not include VOUS 

likely pathogenic in the pathogenic category. All pathogenic CNVs were added to the 

DECIPHER genome browser152. 

Pathogenic CNVs were fed back in writing to the participants’ treating psychiatrist. 

The cytogenetic report and associated publications were provided alongside 

chromosomal disorder guides from the support group Unique where available135. 

There is a paucity of appropriate and accessible information for adults with ID 

receiving diagnoses. The study team developed easy to read materials to aid feedback 

for some of the clinically relevant CNVs. Psychiatrists also had the opportunity to 

speak with a member of the research team regarding the result prior to feeding this 

back to their patients and family members and/or carers. Referral to the RGCs for 

genetic counselling was recommended for all pathogenic results.  
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A feedback survey was sent to the treating psychiatrist of participant’s with pathogenic 

CNVs one month after the genetic feedback was provided. The survey aimed to assess 

the clinician’s experience of feeding back the genetic test result and to determine 

whether there had been any clinical management changes following the genetic 

diagnosis, see appendix for details of the questions included in the survey. 

3.3.3 Statistical analysis 

Statistical analyses were undertaken using IBM SPSS Statistics for Windows, Version 

22.0. Univariate binary logistic regression was performed using Mini PAS-ADD 

thresholds and history of involuntary in-patient admission, including forensic in-

patient section, as predictor variables. The binary outcome variable was presence or 

absence of a pathogenic CNV. 

3.4 Results 

3.4.1 Frequency of pathogenic CNVs 

202 adults with idiopathic ID and co-morbid psychiatric disorders/challenging 

behaviours were recruited to the study (63% male; mean age 37 years, range 18-78 

years; 74% White British). The yield of pathogenic CNVs, including chromosomal 

abnormalities, was 11% (22/202). A further 62% of participants had a least one CNV 

classed as VOUS (126/202) and 27% (54/202) had likely benign CNVs only. An 

overview of pathogenic CNVs is presented in Figure 3-1, with detailed genetic and phenotypic 
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data presented in Figure 3-1: Overview of pathogenic CNVs identified in a sample of 202 adults 

with idiopathic intellectual disabilities and co-morbid psychiatric disorders 

 
Mb = megabases. Kb = kilobases, N= number of participants, BP = breakpoints 

 

Table 3-1 and Table 3-2. A comparison of psychiatric diagnoses, subclinical symptoms 

and section history for likely pathogenic versus likely benign (including VOUS) CNVs 

is provided in Table 3-3. There were 21 participants on a forensic in-patient section 

(section 37 or section 37/41) at the time of recruitment and no other participants had a 

forensic section history. In all, 6/21 (28.6%) forensic in-patients carried pathogenic 

CNVs compared with 16/181 (8.8%) in participants not on a forensic in-patient 

section. Thus the proportion of pathogenic CNV carriers in forensic in-patients was 

higher with an OR of 4.1 (95% CI 1.40–12.04, P=0.01). However, if a Bonferroni 

correction was applied to account for multiple testing the level of significance would 

be set to p=0.007, therefore this finding would not survive a multiple testing 

correction. 

3.4.2 Type of pathogenic CNVs 

The majority of CNVs (64%, 14/22) were observed in regions of the genome prone to 

recurrent CNV, where pathogenic CNVs have previously been described for various 
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NDDs. The second largest group was very rare CNVs, not occurring at recurrent loci, 

which were either large in size (range 1.5-9.1Mb) or in known neurodevelopmental 

genes (6/22, 27%), finally two participants had large chromosomal abnormalities 

which are also detectable by aCGH (9%). For an overview see Figure 3-1. 
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Figure 3-1: Overview of pathogenic CNVs identified in a sample of 202 adults with idiopathic intellectual disabilities and co-morbid psychiatric disorders 

 
Mb = megabases. Kb = kilobases, N= number of participants, BP = breakpoints 
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Table 3-1: Pathogenic CNVs and psychiatric phenotypes in adults with intellectual disabilities referred to psychiatric services 

Decipher 

ID 

Cytogeneti

c Location 

Gain/ 

Loss 
Chromosomal region Gender Age 

Level of 

ID 

Psychiatric 

history 
Mini PAS-ADD BPI-S Ethnicity 

327138 2p16.3 Loss chr2:51,196,189-51,745,529 Female 21 Moderate PD PSY, UNS - - + 
White 

(British) 

327136 2q13 Loss chr2:111,391,616-113,103,446 Male 19 Mild ASD ANX, PSY + + + 
White 

(British) 

327134 4p16.3 Gain chr4:116,640-2,593,260 Male 33 Mild 
ASD, ALC, 

FOR 
N/A N/A 

White 

(British 

327131 
6p25.3-

24.31 
Gain chr6:195,429-7,392,549 Male 49 

 

Mild 
ANX, DEP HYP, PSY, ASD - + + 

White 

(British) 

327120 12p13.1 Gain chr12:13,754,549-13,762,809 Female 68 Moderate CB None met + + - 
White 

(British) 

327126 
12q21.2-

21.31 
Loss chr12:79,534,629-84,535,827 Male 31 Mild 

SCZ, ALC, 

FOR 
HYP, PSY - - - 

Black 

(African) 

327125 
13q32.3-

33.3 
Gain chr13:100,465,759-109,578,071 Male 21 Mild 

ASD, 

ADHD, 

FOR 

None met - - - 
White 

(British) 

327128 15q11.2 Loss chr15:22,759,710-23,071,809 Female 42 Moderate BP 
DEP, ANX, HYP, 

OCD, PSY, UNS 
- - + 

White 

(British) 

327127 
15q11.2-

13.1 
Loss chr15:23,643,100-28,519,140 Female 33 Severe ANX ANX + - + 

White 

(British) 

327124 
15q11.2-

13.1 
Gain chr15:23,810,480-28,519,140 Male 22 Mild 

ASD, BP, 

PD, ALC, 

FOR 

N/A - + - 
White 

(British) 

327123 15q12-13.1 Loss chr15:26,587,699-29,576,869 Male 28 Severe 
ASD, 

ADHD 
OCD, ASD + + + 

White 

(Other) 

327137 
15q13.2-

13.3 
Loss chr15:30,461,189-32,804,210 Male 25 Mild ASD2 None met - - - 

White 

(British) 

327122 16p11.2 Gain chr16:29,443,979-30,192,560 Female 33 Mild AFF DEP, ANX, PSY - - - 
White 

(British) 
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Chromosomal region coordinates in hg19 using the HGVS standard nomenclature; Size, size of CNV in kilobase pairs; Age, age at date of recruitment; Level of ID, taken from 

medical records in accordance with the UK ICD-10 diagnostic system:  50-69: Mild, 35-49: Moderate, 20-34: Severe, Mini PAS-ADD, Psychiatric Assessment Schedules for 

Adults with Developmental Disabilities thresholds met (in last 2 years); BPI-S, The Behaviour Problems Inventory-Short Form (Self-injurious behaviour, aggressive/destructive, 

stereotyped) items scored as + when behaviour occurs at least weekly; PD, Personality Disorder; PSY, Psychosis; UNS, Unspecified Disorder; ASD, Autistic Spectrum Disorder; 

ANX, Anxiety Disorder; ALC alcohol abuse; FOR on forensic in-patient section; N/A, Not Available; DEP, Depression; HYP, Hypomania/Mania; CB, Challenging Behaviour; 

SCZ, Schizophrenia; ADHD, Attention Deficit Hyperactivity Disorder; BP, Bipolar Disorder; OCD, Obsessive Compulsive Disorder; AFF, Schizoaffective Disorder; 1 CNVs 

in the same participant; 2 ASD traits only; 3 Confirmed by qPCR  

 

327119 16p11.2 Gain chr16:29,746,320-30,093,460 Female 27 Mild 
ASD, DEP, 

OCD 
DEP, OCD - - - 

White 

(Other) 

327121 16p11.2 Gain chr16:29,746,320-30,093,460 Female 62 Mild 
DEP 

(psychotic) 
PSY - - - 

White 

(British) 

327133 16p11.2 Gain chr16:29,746,320-30,192,560 Male 21 Mild 

ASD, 

ADHD, 

FOR 

None met - + - 
White 

(British) 

327135 16p11.2 Loss chr16:29,746,320-30,192,560 Male 19 Mild 
None 

recorded 

DEP, ANX, HYP, 

OCD, PSY 
- - + 

White 

(British) 

327130 16p13.11 Gain chr16:14,892,210-16,616,420 Female 45 Moderate CB N/A N/A 
White 

(British) 

327132 17q11.2 Loss chr17:29,068,140-30,281,850 Male 57 Severe ASD, CB ANX, HYP, OCD + + + 
White 

(British) 

327131 
18p11.32-

11.311 
Loss chr18:141,489-6,964,200 Male 49 Mild ANX, DEP HYP, PSY, ASD - + + 

White 

(British) 

327129 19q13.32 Loss chr19:45,741,741-47,268,131 Female 58 Mild BP DEP, PSY - + - 
White 

(British) 

327139 Xq24-25 Gain chrX:118,883,247-123,283,287 Male 57 Moderate CB None met - + + 

Black 

(Caribbean

) 

Not 

applicable 
XXYY Gain Full chromosomal duplications3 Male 59 Mild DEP, FOR None met - + - 

White 

(British) 



 

 

7
1
 

Table 3-2: Medical phenotype and dysmorphic features in participants with pathogenic CNVs 

Decipher 

ID 
Cytogenetic 

Location 
Age Medical history 

Head 

circumference 

(Cm) 

Height 

(Cm) 
Dysmorphic features 

327138 2p16.3 21 Asthma 55.9 169 Abnormal facial shape, dental crowding 

327136 2q13 19 
Recurrent ear infections, urinary reflux, facial nerve 

palsy 
N/A N/A Cranial abnormality 

327134 4p16.3 33 Constipation 59 179 
Upward slanting palpebral fissures, macrotia, 

prognathia 

327131 

6p25.3-24.3 + 

18p11.32-

11.31 

49 

Bilateral sensorineural hearing impairment, epilepsy, 

psychogenic polydipsia, hypogonadism, arthritis, 

osteoperosis, dysphagia 

56 157 

Facial asymmetry, abnormal facial shape, dental 

crowding, abnormality of the fingers, large ears, 

cranial abnormality 

327120 12p13.1 68 Pes cavus (requiring callipers), gastric reflux 57 152 No gross dysmorphology 

327126 
12q21.2-

21.31 
31 None recorded 64 169 

Hypertelorism, depressed nasal bridge, wide nasal 

bridge, low set ears, microtia 

327125 13q32.3-33.3 21 Epilepsy, shuffling gait, bradykinesia 59 167 Low set ears, abnormality of the hand 

327128 15q11.2 42 Recurrent urinary tract infections 55 N/A 
Abnormality of external nose, abnormalities of the 

fingers 

327127 15q11.2-13.1 33 
Hypotonia (infant), epilepsy (infancy), probable 

diplopia, abnormality on neuroimaging 
53 161 

Upward slanting palpebral fissures, prognathia, 

protruding tongue, hypopigmentation of the skin 

327124 15q11.2-13.1 22 None recorded N/A 182 No gross dysmorphology 

327123 15q12-13.1 28 Epilepsy (grand mal and absence seizures) 55.8 170 Cranial abnormality, facial asymmetry 

327137 15q13.2-13.3 25 Type II diabetes 60 173 No gross dysmorphology 

327122 16p11.2 

33 Myopia 

 

57.9 173.4 No gross dysmorphology 



 

 

7
2
 

327119 16p11.2 27 
Renal problems (childhood), menorrhagia,  anaemia 

(severe), onychogryphosis 
54.2 

161.8 No gross dysmorphology 

327121 16p11.2 

62 
Jaundice (childhood), epilepsy (childhood), type II 

diabetes, constipation, glaucoma 

53.2 172.5 No gross dysmorphology 

327133 16p11.2 

21 

Insulin dependent diabetes, hypercholesterolaemia 

59 188 N/A 

327135 16p11.2 

19 

Seizures (infancy), acne 

59 162 Tapering fingers 

327130 16p13.11 

45 
Hypertension,  type II diabetes, constipation, asthma, 

obesity 

54 147 Abnormal facial shape, microtia 

327132 17q11.2 

57 
Pacemaker in situ (long Q-T syndrome), 

hypothyroidism, hypercholesterolaemia, cataracts 
60 179 Abnormalities of the fingers 

327131 
18p11.32-

11.31 
49 

Bilateral sensorineural hearing impairment, epilepsy, 

psychogenic polydipsia, hypogonadism, arthritis, 

osteoperosis, dysphagia 

56 157 

Facial asymmetry, abnormal facial shape, dental 

crowding, abnormality of the fingers, large ears, 

cranial abnormality 

327129 19q13.32 58 Epilepsy, incontinence, Cataracts, broad based gait 55 148 Short upturned nose 

327139 Xq24-25 57 Shuffling gait, bradykinesia 61 174 

Abnormality of the skull, abnormality of the eyelid, 

abnormal nasal morphology, abnormalities of the 

fingers 

Not 

applicable 
XXYY 

 

59 

Hypertension, hypercholesterolaemia, type I diabetes, 

absent kidney, constipation, cataracts, anaemia, 

asthma, osteoarthritis 

58.5cm 176cm N/A 

Age, age at date of recruitment ; Medical history was collected using a standard pro-forma from informants (family members and/or carers) and medical records where available. 

Dysmorphic features were recorded using a standard pro-forma by researchers carrying out the assessment. Only dysmorphic features obvious on general observation in normal 

clothing were documented no structured physical examination was undertaken. Dysmorphic features were corroborated by examination of accompanying photographs by the 

study team. Not all participants consented to be photographed; N/A, Not Available 
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Table 3-3: Psychiatric phenotype (ICD-10 diagnoses, Mini PAS-ADD thresholds and section history) for pathogenic and benign CNVs 

 

 
a P-Value from binary logistic regression analyses, ICD10  diagnoses - the psychosis group was amalgamated to comprise: F20 schizophrenia, F25 schizoaffective disorder and 

F29 unspecified nonorganic psychosis. Other ICD-10 diagnoses reported independently are: F31 Bipolar disorder, F32 Depressive episode, F41 Other anxiety disorders, F90 

Hyperkinetic disorder, F84 Pervasive developmental disorder. Mini PAS-ADD thresholds - scores were calculated using standard guidelines, Mental Health Act (MHA) section 

– previous history of involuntary admission included previous and current MHA sections and forensic sections, Forensic section - all individuals were on a forensic section at 

the time of recruitment no history of being on a forensic section was identified in any of the other participants. N.B. Several individuals had co-morbid diagnoses and are 

included in more than one category. 

 Total in sample (%) N=202 
Pathogenic CNV group (%) 

n=22 

Benign CNV group 

(%) n=180 

P-Valuea 

 

ICD-10 Diagnosis    

Psychosis 49 (25%) 3 (14%)        46 (26%) -      

Bipolar disorder 23 (11%) 3 (14%)        20 (11%) -   

Depressive episode 62 (31%) 4 (18%)       58 (32% -   

Other anxiety disorders 45 (23%)                     2 (9%)        43 (24%) -   

Hyperkinetic disorder 21 (10%) 3 (14%)        18 (10%) -   

Pervasive developmental disorder 68 (34%) 8 (36%)        60 (33%) -   

Mini PAS-ADD thresholds    

Psychosis 72 (36%) 9 (41%)        63 (35%) 0.63 

Hypomania/Mania 33 (16%) 5 (23%)        28 (16%)   0.41 

Depressive disorder 76 (38%) 5 (23%)        71 (39%)  0.12 

Anxiety disorder 80 (40%) 6 (27%)        74 (41%)   0.84 

Obsessive compulsive 55 (27%) 5 (23%)        50 (28%)   0.59 

Mental Health Act Section History    

Previous history of involuntary admission 45 (22%) 7 (32%)        38 (21%)  0.27 

Forensic section 21 (10%) 6 (27%)      15 (8%)  0.01 
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3.4.3 Recurrent CNVs 

Four of the recurrent pathogenic CNVs were identified at the 16p11.2 locus (4 

duplications, 1 deletion). The 16p11.2 region is associated with increased risk for 

ASD, schizophrenia and MDD, in keeping with the phenotypes observed in this 

cohort153. One CNV duplication was identified at the 16p13.11 locus, which has 

previously been associated as a risk factor for cognitive impairments and behavioral 

abnormalities154. A further five CNVs were identified in the 15q11.2-13.3 region 

(15q11.2 deletion, Angelman syndrome type 2, 15q12-13.1 deletion, 15q11.2-13.1 

duplication, and 15q13.3 deletion) with variable psychiatric phenotypes. The 15q11.2 

deletion, 15q13.3 deletion, 16p11.2 deletion and duplication and 16p13.11 duplication 

can be considered as neurosusceptibility loci. These CNVs have incomplete 

penetrance in that they occur at significantly higher frequencies in disease cohorts, 

however do not inevitably result in a disease phenotype and can sometimes be 

observed in healthy controls150. 

Another region prone to pathogenic recurrent CNV is the 17q11.2 locus, which 

encompasses the neurofibromatosis type 1 (NF1) tumour suppressor gene. A 

participant with a NF1 microdeletion was identified who presented with a clinical 

diagnosis of ASD and challenging behaviours. This supports previous evidence of 

ASD being associated with variants in the NF1 gene mutations155. A deletion at 2q13 

was also detected in a participant with a clinical diagnosis of ASD. Of the 29 patients 

now described with this CNV four are reported to have ASD, although assessment 

information was only available for six participants156. CNVs in this region have also 

been shown to be enriched in schizophrenia cohorts157. The participant also presented 

with sub-clinical features of psychosis in addition to anxiety and behavioural 

problems.  

Finally, a recurrent CNV was identified in the NRXN1 gene. The NRXN1 gene is 

located at 2p16.3, it encodes a cell-surface receptor which is important for 

neurotransmission. Exonic NRXN1 deletions have been associated with increased risk 

for schizophrenia and ASD158. The participant had a deletion of exon 1 of the NRXN1 
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gene, a clinical diagnosis of personality disorder and subclinical symptoms of 

psychosis and stereotyped behaviours. 

3.4.4 Non-recurrent rare CNVs 

One CNV was identified in a known neurodevelopmental gene, GRIN2B. The GRIN2B 

gene is located at 12p13.1 and encodes the NR2 subunit of a N-methyl-D-aspartate 

(NMDA) glutamate receptor heteromer, which mediates excitatory neurotransmission 

and is thought to play an important role in memory and learning. Variants in the 

GRIN2B gene have previously been associated with behavioural problems159. Three 

patients with moderate ID and facial dysmorphisms were initially described by 

Dimassi et al., who had overlapping microdeletions encompassing all or part of the 

GRIN2B gene160. Further CNV deletions were subsequently described in patients with 

ID and macrocephaly161, and DD, autistic features, dysmorphic features and congenital 

abnormalities162. Furthermore, three patients with duplication CNVs encompassing the 

GRIN2B gene were also described, all of whom had DD and dysmorphic features163. 

A duplication affecting exon 9 of the GRIN2B gene was identified in a participant 

displaying self-injurious and aggressive behaviours. This 9kb duplication only 

affected the GRIN2B gene, whereas the CNVs reported in previous literature were 

larger and encompassed multiple additional genes.  

A duplication of the 4p16.3 loci, a region where deletions give rise to the better 

characterised Wolf-Hirschhorn syndrome, was also detected. The CNV identified 

partially overlaps with the CNV reported in a case study of a patient with ADHD164. 

The participant has a clinical diagnosis of ASD and was a forensic in-patient. A 

duplication at Xq24-25 was observed in a participant with aggressive and stereotyped 

behaviours. Abnormal behaviours, primarily hyperactivity, have previously been 

associated with CNVs in this region. This region encompasses the GRIA3 gene, 

encoding glutamate receptor, ionotropic AMPA subunit 3 and the STAG2 gene, which 

encodes a component of the cohesion complex and is essential for chromosome 

segregation in dividing cells. The CNV has been identified as X-linked intellectual 

disability syndrome165. Aggregation of patients with Xq24-25 duplications has enabled 

refinement of the shortest region of CNV overlap, implicating STAG2 as the likely 

causative gene166. 



 

 76 

A CNV deletion was detected in one participant at 12q21.2-21.31 loci comprising 17 

genes. This region contains the Synaptotagmin-1 (SYT1) gene, which encodes a 

calcium-binding synaptic vesicle membrane protein involved in triggering 

neurotransmitter release at the synapse.  A variant in SYT1, with a dominant negative 

function, has recently been associated with profound cognitive impairment although 

no psychiatric phenotype is described167. Whilst this is a copy number loss and 

different phenotype a low haploinsufficiency score is suggestive of adverse functional 

consequences29. The participant has a clinical diagnosis of paranoid schizophrenia, a 

history of alcohol abuse and was a forensic in-patient.  

Another participant had a duplication at 13q32.3-13q33.3 comprising 33 genes. This 

region contains the D-amino acid oxidase activator (DAOA) gene which indirectly 

affects glutamatergic transmission and dopamine turnover. The DAOA gene has been 

reported to be associated with both schizophrenia and BPAD168. The participant had a 

clinical diagnosis of ASD and ADHD and was a forensic in-patient. Finally a 

participant had a CNV deletion at 19q13.32 comprising 56 genes. This deletion 

partially overlaps with a case reported previously, but does not include any of the 

proposed candidate genes or a psychiatric phenotype169. The participant had a clinical 

diagnosis of depression and BPAD.  

3.4.5 Clinician survey for patients with pathogenic CNVs 

The survey was distributed to 22 psychiatrists, who were the responsible clinicians for 

the participants with pathogenic CNVs, and 13 psychiatrists responded to the survey. 

All psychiatrists reported that they fed back the genetic results to family members, 

whereas 11/13 psychiatrists fed back the genetic result to their patients. One of the 

patients died, so it was not possible to feedback the result, and no reason was provided 

by the other psychiatrist who did not feedback the result. Only 4/13 (31%) of 

psychiatrists referred their patients to clinical genetics for genetic counselling – despite 

this being recommended to all psychiatrists. Three psychiatrists said that the clinical 

genetics service offered helpful advice and support, whereas one psychiatrist received 

no response. The majority of psychiatrists reported the test result to the participant’s 

GP (10/13, 77%). There were no adverse outcomes reported from feedback of the 
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genetic test results. None of the psychiatrists reported clinical management changes as 

a consequence of the genetic diagnosis. One of the psychiatrists commented: 

“A lot of what was known was clarified by result but a lot of work had 

been done already”. 

3.5 Discussion 

The yield of pathogenic CNVs identified in adults accessing ID psychiatry services 

was 11%. Previously, investigations of paediatric DD/ID cohorts have identified a 

yield of pathogenic CNVs ranging between 14-20%25,44. As the cohort was sampled 

from a population of adults with idiopathic ID, it is likely to be depleted of clinically 

recognisable syndromic disorders, which were testable with pre-CMA technologies. 

In support of this, the majority of CNV identified are recurrent CNVs, which have 

been identified via the genotype-first approach and thus named after the chromosomal 

region involved138. Whereas, there were few occurrences of syndromes in which the 

aetiology was identified prior to the application of CMA, with one Angelman’s 

syndrome, one NF1 microdeletion syndrome type 2 and two chromosomal 

abnormalities. 

The yield identified was considerably higher than that found in cohorts recruited on 

the basis of a schizophrenia diagnosis. The yield of pathogenic CNVs in adults with 

schizophrenia is reported to be in the range of 2.5-5%28,62. There have been calls for 

increased clinical use of CMA in patients with schizophrenia, although there is also 

resistance to this given the low diagnostic yields. This study suggests that 

approximately 11% new genetic diagnoses could be made by testing adults accessing 

ID psychiatry services in the UK. The higher diagnostic yield in patients with ID and 

psychiatric co-morbidities argues that this patient group should be a priority for 

consideration of routine CMA in psychiatric practice.  

A recent study by Lowther et al. also advocated for increased CMA testing in the adult 

DD/ID population, particularly for those with a dual diagnosis. The study undertook 

IQ phenotyping in a large community sample of adults with schizophrenia, identifying 

a yield of 24.1% pathogenic CNVs in individuals with co-morbid ID142. There are 
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several reasons why this study may have identified a higher yield of pathogenic CNVs. 

Firstly, the only co-morbid diagnosis included in this study is schizophrenia, and it 

may be that the yield is indeed higher for schizophrenia as compared to psychiatric 

disorders in general. Secondly, the higher yield may have arisen as the authors used a 

less stringent definition of pathogenicity, whereby they considered CNVs classed as 

VOUS likely pathogenic or pathogenic to be pathogenic. Further testing in adult ID 

psychiatry cohorts will be required to clarify the yield of pathogenic CNVs.   

A broad range of psychiatric diagnoses/symptoms were observed across the cohort. 

The pattern of comorbidities, either defined by ICD-10 diagnoses or Mini PAS-ADD 

thresholds, was complex. Inclusion of Mini PAS-ADD thresholds indicated a burden 

of psychopathology not captured by ICD-10 diagnoses. It is of interest that 41% of 

participants with pathogenic CNVs met the Mini PAS-ADD threshold for psychosis, 

whereas based upon ICD-10 criteria this was only 14%, see Table 3-3. Given the 

challenges of diagnosing psychiatric disorders in individuals with ID, particularly as 

the assessments rely on self-reported symptoms, it may be that more individuals have 

a psychotic disorder than those with a formal diagnosis. Equally, it may be that as the 

screening assessments are more challenging in an ID population this figure is falsely 

inflated. 

The frequency of particular psychiatric phenotypes was tested between the pathogenic 

and benign CNV groups. The only significant finding was that there was an excess of 

participants on a forensic section in the pathogenic CNV group in comparison with the 

benign (including VOUS) CNV group. One observation from participant recruitment, 

which may partly explain this finding, is that many of the forensic participants had a 

family history of mental health problems, often on both sides of the family. It may be 

that assortative mating in these families was contributing to a high psychiatric genetic 

loading. Additionally if many of these participant had inherited psychiatric risk CNVs 

the additional impact of the parent also having the CNV could also contribute to the 

severe phenotype. It was also observed that many forensic participants had disruptive 

childhoods and had been put into the care of social services. However, it was not 

possible to determine the significance of these factors as inheritance data was not 

readily available. Also, the significant finding does not survive a Bonferroni multiple 
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testing correction, thus may be a spurious result. No link can be made between specific 

CNVs and offending behaviour, as causality cannot be inferred. This finding warrants 

further investigation in much larger samples.  

The majority of pathogenic CNVs – 64% - were found at recurrent CNV loci. 

Interestingly, the most frequently observed CNV in this study was the 16p11.2 

duplication (4 individuals, 2%). This CNV has been widely reported in other studies, 

with a frequency of ~0.2% in DD/ID,45 ~1% in ASD82 and ~0.3% in schizophrenia62. 

Accepting the small sample size this may suggest a particular enrichment of this 

recurrent CNV in the adult population of ID and co-morbid psychiatric disorders.  

Assessment of adults with ID and formulation of the psychiatric presentation can be 

challenging. The majority of pathogenic CNVs were found at recurrent CNV loci 

where, at least some, information on the associated phenotype is available. Such 

information may aid understanding of the patient’s clinical presentation for both 

clinicians and family members. Furthermore knowledge of associated phenotypes may 

guide psychiatric evaluation. For example, the identification of a 16p11.2 duplication 

would be an indicator to screen for the presence of ASD, psychosis or affective 

disorders153. As part of the feedback process disorder support guides were provided to 

treating psychiatrists. However, survey results from psychiatrists of participants with 

pathogenic CNVs indicate that no clinical management changes were made as a result 

of the genetic diagnosis and one psychiatrist commented that a lot of the work had 

been done already. One potential explanation for this is that the mean age of the sample 

was 37 years, past the typical age for emergence of later-onset psychiatric and medical 

symptomatology. Thus, it is likely that clinical treatment plans have already been put 

in place. Further research in a larger sample, with a diverse range of ages, is required 

to further investigate this finding.  

One of the main limitations of this study is that the recruitment strategy was 

susceptible to ascertainment bias. The recruitment strategy was focused on individuals 

with a more severe psychiatric phenotype, i.e. those presenting to psychiatric services, 

and PIs may have selected patients who they thought most likely to have a genetic 

disorder. However, those with the most severe phenotypes might have been under 
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sampled because of difficulties recruiting this population group to research studies. 

This is supported by the fact that the majority of the pathogenic CNV group had mild 

ID (15/22, 68%). We took steps to facilitate the recruitment of individuals with 

moderate and severe ID by producing Easy read information sheets and consent forms, 

making the study information accessible during the capacity assessment process. 

However, it is still more time consuming to explain the study information via Easy 

read documentation, which may have been a barrier for clinicians to recruiting patients 

with more severe ID. In addition the recruitment process required the availability of a 

family member or carer to provide informant information. It may be that informants 

felt less able to dedicate their time to research if they are already dealing with extreme 

challenging behaviours or psychiatric diagnoses, which require high levels of care. 

Another approach to participant recruitment might be to ask PIs to randomly sample 

participants from their caseload, although this would initially be more labour intensive 

and may have led to delays in meeting the tight recruitment targets. 

Further limitations of this study are that the sample size was modest. Estimates of the 

penetrance of particular phenotypes would require epidemiological based studies.  

Technological limitations of the aCGH platform include; inability to detect balanced 

translocations, single gene disorders and low level mosaicism. Karyotyping enables 

the detection of chromosomal translocations and inversions, however it was not 

possible to undertake karyotyping in this analysis meaning that these genetic variants 

would be largely missed. As the array platform has not utilised in research studies of 

control populations comparisons with other studies is prone to technical confounds.  

3.6 Conclusion 

CNV screening using clinically available CMA offers over one in ten new aetiological 

diagnoses for adults with idiopathic ID presenting to psychiatric services in the UK. 

Clinical and research data on emerging CNV syndromes is strongly biased towards 

paediatric populations. However, the full extent of the phenotype associated with a 

particular CNV may only be realised in adulthood as psychiatric disorders emerge. 

Most pathogenic CNVs in co-morbid NDDs affect established risk loci, with the 

16p11.2 duplication being particularly frequent in this understudied adult population. 

The addition of psychiatric phenotypic information to very rarely observed and novel 
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likely pathogenic CNVs could be beneficial for patient clinical management and 

management of children with new emerging CNVs.   
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Chapter 4 CNV analysis in a European ID psychiatry cohort 

identifies high rates of NDD risk CNVs 

Parts of this chapter have been adapted from the following journal article, which is 

currently in press: 

Thygesen, J.*, Wolfe, K.*, McQuillin, A., Viñas-Jornet, M., Baena, N., Brison, N., 

D'Haenens, G., Esteba-Castillo, S., Gabau, E., Ribas-Vidal, N., Ruiz, A., Vermeesch, 

J., Weyts, E., Novell, R., Van Buggenhout, G., Strydom, A., Bass, N.*, Guitart 

Feliubadaló, M.*, Vogels, A.* (2018) High rates of neurodevelopmental risk CNVs in 

patients with intellectual disabilities and co-morbid psychiatric disorders. The British 

Journal of Psychiatry. In press. *Joint first-authorship 

I undertook and supervised recruitment of the London participants (including 

psychiatric phenotyping), acted as project co-ordinator for the international 

consortium, undertook phenotypic data analysis, and wrote and revised the manuscript 

for publication. Study design and analytical input from: AM, NB, MGF, AV. CNV 

calling and analysis: NB, JV, GVB. Participant recruitment: MVJ, GAH SEC, EG, 

NRV, AR, RN. JT: led quality control, data amalgamation and statistical analyses. 

Critical review of the manuscript was undertaken by all authors.  

4.1 Introduction 

In Chapter 1 of this thesis it was established that a proportion of the risk for NDDs can 

be attributed to CNVs. As previously discussed, the majority of pathogenic CNVs are 

risk factors for multiple disorders. For example, all the CNVs identified as risk factors 

for schizophrenia are also associated with risk for ID97, and the same is true for ASD 

risk CNVs87. Thus, collectively these CNVs can be referred to as NDD risk CNVs. 

Frequency estimates of these CNVs in different populations show a positive 

correlation between the severity of the phenotype and frequency of the CNV. 

Typically, there is an absence, or low frequency of CNVs in controls, whereas and the 

greatest frequency of CNVs is seen in early-onset NDDs97,107. These CNVs confer 

moderate to large risk factors for NDDs (Odds Ratio 1.5->50)97, and therefore have 

important clinical implications for affected individuals and at risk family members. 
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Research to date has primarily focused on researching cohorts from traditional 

diagnostic categories, and there is a lack of research in adults who have multiple co-

morbid NDD diagnoses. 

Building on the work from Chapter 3, a consortium was formed to bring together three 

European samples of adults with idiopathic ID and co-morbid mental disorders with 

available genome-wide CNV and phenotypic data. The frequency of pathogenic CNVs 

and rate of NDD risk CNVs has never previously been investigated in a large cohort 

of adults with co-morbid NDD phenotypes.  

4.2 Aims 

This analysis aimed to determine; (i) the frequency of known NDD risk CNVs as 

compared to large NDD cohorts from the existing literature; (ii) the overall rate of 

pathogenic CNVs; (iii) the relationship between pathogenic CNVs, level of ID and co-

morbid psychiatric diagnoses; and (iv) likely pathogenic CNVs affecting 

neurodevelopmental candidate genes. 

4.3 Methods  

4.3.1 Recruitment criteria and participant recruitment 

The GENMID (GENetics of Mental disorders in Intellectual Disability) consortium 

comprises three primary research groups based in Catalonia, Spain; Leuven, Belgium; 

and England, United Kingdom. All sites recruited adults over the age of 18 years with 

idiopathic ID and one or more co-morbid psychiatric diagnoses and/or significant 

challenging behaviours. In Catalonia participants were identified from the Mental 

Health ID regional community Service Parc Hospitalari Martí i Julià, Girona. In 

Leuven, participants were recruited at the regional inpatient psychiatric unit for adults 

with ID in the St-Camillus Psychiatric Hospital, Bierbeek. Initially, only patients 

diagnosed with psychosis were recruited, but recruitment was later extended to other 

psychiatric phenotypes. In England, participants were recruited by consultant 

psychiatrists in intellectual disabilities in accordance with the methodology described 

in Chapter 3. 
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There were no significant differences in recruitment strategy between sites, all sites 

recruited adults with ID plus either challenging behaviour and/or one or more 

psychiatric diagnosis – as per the methodology in Chapter 3. Participants were 

screened for prior genetic diagnoses. Approximately 10 participants from the Leuven 

cohort were identified as having a diagnosis of Down’s syndrome or fragile X 

syndrome and were excluded from further analyses. 

4.3.2 Phenotypic assessments 

For all sites the ID levels are in accordance with the ICD-10 ranges (<20 profound ID, 

20-34 severe ID, 35-49 moderate ID, 50-69 mild ID, 70-84 borderline ID)39. As 

previous research has proposed that the factors influencing mild ID and IQ in the 

normal range are separate from those influencing severe ID43, we combined the 

categories into two groups for further analyses. The <20-49 ranges were collapsed into 

a severe category and the 50-84 ranges were collapsed into a mild category. All sites 

identified psychiatric diagnoses from medical records and/or informants. Psychiatric 

diagnoses for Catalonia and Leuven were converted from Diagnostic and Statistical 

Manual of Mental Disorders IV170 to ICD-10 criteria (with agreement between two 

psychiatrists). 

4.3.3 Genetic analysis and CNV calling 

DNA was extracted from blood and saliva samples. Samples from Catalonia were 

analysed using the 400K Agilent platform (Agilent Technologies, Santa Clara, 

California, USA) at the Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí 

Hospital Universitari. Samples from Leuven were analysed on the CytoSure ISCA 

oligoarray set (OGT, Oxford, UK) at the Constitutional Cytogenetics Unit of the 

Center of Human Genetics, University of Leuven. Samples from England were 

analysed on the NimbleGen 135K platform (87%) (Roche NimbleGen, Madison, 

Wisconsin, USA) and the Cytoscan 750K platform (13%) (Affymetrics, Santa Clara, 

California, USA) at the North East Thames Regional Genetics Service Laboratory.  

CNV calling took place at the respective clinical laboratories. There was a two-tier 

variant categorisation process. CNVs were initially reported by the independent 
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clinical laboratories and classified into three categories: pathogenic, VOUS and 

benign. This was in keeping with internal laboratory protocols based on the American 

College of Medical Genetics best guidelines14 or the Association of Clinical Genetic 

Science Best Practice Guidelines149. The Database of Genomic Variants gold standards 

track was used as a control reference database for determining control CNV 

frequencies30, and compared with internal laboratory databases for frequencies in 

patients with severe developmental disorders referred for genetic testing. 

 None of the pathogenic variants identified were required to be homozygous or 

compound heterozygous in order to be classified as pathogenic. Secondly, between 

site discrepancies in CNV pathogenicity were reclassified in accordance with Kearney 

et al.14, see Table 4-1. CNVs designated as uncertain clinical significance were 

reclassified into likely benign or likely pathogenic using this methodology. The 

genome coordinates for all sites are reported according to the National Center for 

Biotechnology Information (NCBI) human genome build 37 (hg19, February 2009). 

Table 4-1: Between site discrepancies in CNV classifications and reclassification rationale 

4.3.4 NDD CNV frequency methodology 

A list of 63 NDD risk CNVs, that were identified from a sample of paediatric patients 

with severe developmental disorders (DD/ID, ASD and MCA)45, and CNVs associated 

CNV region Initial 

classification 

Re-

classification 

Reason for re-classification 

2p16.3(50,882,091-

50,949,412)x0 

Vous likely 

pathogenic 

Vous likely 

benign 

Non-exonic NRXN1 CNV - no 

literature proof of pathogenicity 

2p16.3(50,937,464-

51,029,090)x0 

Vous likely 

pathogenic 

Vous likely 

benign 

Non-exonic NRXN1 CNV - no 

literature proof of pathogenicity 

15q11.2(22,698,579-

23,249,693)x0 

Vous likely 

pathogenic 

Pathogenic Literature evidence of pathogenicity. 

PMIDs: 21359847, 25689425 

15q11.2(22,753,658-

23,084,392)x0 

Vous likely 

pathogenic 

Pathogenic Literature evidence of pathogenicity. 

PMIDs: 21359847, 25689425 

15q11.2(22,753,658-

23,187,967)x0 

Vous likely 

pathogenic 

Pathogenic Literature evidence of pathogenicity. 

PMIDs: 21359847, 25689425 

15q13.2q13.3(30,419,

801-32,861,612)x0 

Vous likely 

pathogenic 

Pathogenic Literature evidence of pathogenicity. 

PMIDs: 25077648,    26997942 

16p11.2(29,652,360-

30,199,696)x0 

Vous likely 

pathogenic 

Pathogenic Literature evidence of pathogenicity. 

PMIDs: 19914906,    25064419 

16p11.2(29,652,360-

30,199,696)x3 

Vous likely 

pathogenic 

Pathogenic Literature evidence of pathogenicity. 

PMIDs: 19914906, 26629640 

16p13.12p12.3(14,622

,055-17,409,257)x3 

Vous likely 

pathogenic 

Pathogenic Literature evidence of pathogenicity. 

PMIDs: 21614007,    21150890 
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with risk for schizophrenia were derived from Rees et al.97, henceforth referred to as 

NDD CNVs. The NDD CNVs were called in accordance with the criteria outlined in 

Kendall et al.119, also used by Rees et al.97 (personal communication), see Table 4-2. 

CNVs fulfilling these calling criteria were classified as pathogenic and are included in 

the diagnostic yield. Duplications or deletions of the same chromosomal region were 

counted as separate loci (e.g. 22q11.2 deletion and duplication). The patient population 

rates in healthy controls, ID/ASD (the name given by Rees et al. to a severe 

developmental disorders cohort), and schizophrenia were derived from Rees et al., 

where further information can be found about the respective samples97. Non-recurrent 

rare pathogenic CNVs and larger chromosomal abnormalities are not considered in 

this analysis. A rate percentage (rate in the sample divided by the sample size and 

multiplied by 100) was calculated to enable comparisons between different sample 

sizes and chi-square tests were used to determine the population differences. A 

Bonferroni correction was applied and significance was set at p=0.01 to account for 

multiple pairwise comparisons.  
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Table 4-2: Neurodevelopmental risk CNV critical regions and calling criteria 

Locus Name Critical Region Calling Criteria 

1p36 del/dup chr1:0-2500000 Size >50% of critical region, affecting GABRD 

TAR del/dup chr1:145394955-145807817 Size >50% of critical region 

1q21.1 del/dup chr1:146527987-147394444 Size >50% of critical region 

1q24 del chr1:169680333-173303337 Size >50% of critical region 

NRXN1 del chr2:50145643-51259674 Exonic deletions 

2p15-16.1 proximal dup chr2:61245288-61414572 Size >50% of critical region 

2q11.2 del chr2:96742409-97677516 Size >50% of critical region, affecting both LMAN2L and ARID5A 

2q13 del/dup chr2:111394040-112012649 Size >50% of critical region 

2q33.1 (SATB2) del chr2:200134224-200325255 Size >50% of critical region 

2q37 (HDAC4) del chr2:239716679-243199373 Size >50% of critical region, affecting HDAC4 

3p25.3 (JAGN1 to TATDN2) dup chr3:9932271-10322902 Size >50% of critical region 

3p11.2 (CHMP2B to POU1F1) del chr3:87267612-87531631 Size >50% of critical region 

3q13 (GAP43) del chr3:115332334-115504038 Size >50% of critical region 

3q28-29 (FGF12) del chr3:191859728-192126012 Size >50% of critical region 

3q29 del chr3:195720167-197354826 Size >50% of critical region 

Wolf-Hirschhorn del/dup chr4:1552030-2091303 Size >50% of critical region 

4q21 (BMP3) del chr4:81945477-81985327 Size >50% of critical region 

5q14 (MEF2C) del chr5:88011654-88200703 Size >50% of critical region 

Sotos syndrome del chr5:175720924-177052594 Size >50% of critical region 

Williams-Beuren syndrome del chr7:72744915-74142892 Size >50% of critical region 

WBS dup chr7:72744915-74142892 Size >50% of critical region 

8p23.1 del/dup chr8:8098990-11872558 Size >26.5% of critical region (equal to min 1Mb affected) 

9p13 dup chr9:32648800-38808255 Size >50% of critical region 

9q34 dup chr9:138460697-141036426 Size >38.8% of critical region (equal to min 1Mb affected) 

10q11.21q11.23 dup chr10:49390199-51058796 Size >50% of critical region 

10q23 del chr10:82045472-88931651 Size > 14.5% of critical region (equal to min 1Mb affected), including 

NRG3 and GRID1 

Potocki-Shaffer syndrome del chr11:43940000-46020000 Size >50% of critical region, including EXT2 

12p13 dup chr12:6471959-6825955 Size >50% of critical region 

PWS/AS del/dup chr15:22805313-28390339 Size > 71.6% of critical region (equal to min 4Mb affected) 

15q11.2 BP1-BP2 del chr15:22805313-23094530 Size >50% of critical region 
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15q13.3 del chr15:31080645-32462776 Size >50% of critical region 

15q24 del/dup chr15:72900171-78151253 Size >50% of critical region 

15q25 del chr15:85139815-85716624 Size >50% of critical region 

16p13.11 del/dup chr16:15511655-16293689 Size >50% of critical region 

16p12.1 del chr16:21950135-22431889 Size >50% of critical region 

16p11.2 distal del/dup chr16:28823196-29046783 Size >50% of critical region 

16p11.2 del/dup chr16:29650840-30200773 Size >50% of critical region 

17p13.3 del/dup chr17:1247834-2588909 Exonic deletions; whole gene duplications 

Smith-Magenis syndrome del chr17:16812771-20211017 Size >50% of critical region 

Potocki-Lupski syndrome dup chr17:16812771-20211017 Size >50% of critical region 

17q11.2 del/dup chr17:29107491-30265075 Size >50% of critical region, affecting NF1 

17q12 del/dup chr17:34815904-36217432 Size >50% of critical region 

17q21.31 del chr17:43705356-44164691 Size >50% of critical region 

22q11.2 del/dup chr22:19037332-21466726 Size >50% of critical region 

distal 22q11.2 del/dup chr22:21920127-23653646 Size >50% of critical region 

Phelan-McDermid syndrome del/dup chr22:51113070-51171640 Size >50% of critical region 
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To determine the CMA yield each individual was grouped by the most pathogenic 

CNV detected. We also examined all likely pathogenic CNVs for recurrence in the 

cohort. Regions that have been previously implicated in NDD risk in the existing 

literature which reoccur in this cohort are further described. Finally, chi-square tests 

(or Fisher's exact tests were there were five or less individuals) were undertaken to 

examine the differences between psychiatric diagnoses, ID level and CNV 

pathogenicity. Since many of the co-morbid diagnoses are correlated and thus are non-

independent, correction of p-values through Bonferroni or other methods was deemed 

too stringent. Thus, all p-values are presented uncorrected for multiple testing as 

recommended by several authors171,172. The statistical analyses were undertaken in R 

version 3.3.1173. 

4.4 Results 

There were 599 adults (Catalonia (n=80), Leuven (n=272) and England (n=247)) with 

ID and one or more co-morbid psychiatric diagnoses/challenging behaviours recruited 

to the study (376 (62.8%) male, mean age 43.2). Just over half of the sample (50.8%) 

had severe ID and the remainder had mild ID. Each participant had, on average, 1.6 

co-morbid psychiatric diagnoses, with pervasive developmental disorders being the 

most frequent diagnosis (25%), followed by unspecified non-organic psychosis (20%), 

see Table 4-3. The average number of CNVs per participant was 12.5 (7.4 deletions 

and 5.5 duplications).  
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Table 4-3: Full descriptive summary of the GENMID cohort 

 
GENMID Catalonia Leuven England 

Demographics     

N 599 80 272 247 

Ratio (Male/Female) 1.7 

(376/223) 

0.9 

(38/42) 

2.1 

(184/88) 

1.7 

(154/93) 

Mean age (std.dev) 43.2 (14.1) 37.1 (9.8) 46.2 (14.5) 41.9 (14.1) 

ID Level     

Mild 49.2% 63.7% 66.9% 25.1% 

Severe 50.8% 36.2% 33.1% 74.9% 

Psychiatric diagnoses     

Average number of co-morbid diagnoses 

(range) 

1.6 (1-5) 1.8 (1-3) 1.4 (1-4) 1.7 (1-5) 

F84 Pervasive developmental disorders 148 (25%) 9% 22% 32% 

F29 Unspecified nonorganic psychosis 121 (20%) 12% 30% 12% 

F61 Mixed and other personality disorders 108 (18%) 0% 36% 4% 

Challenging behaviours 95 (16%) 62% 1% 17% 

F32 Depressive episode 86 (14%) 4% 3% 30% 

F41 Other anxiety disorders 60 (10%) 6% 1% 21% 

F20 Schizophrenia 49 (8%) 4% 8% 9% 

F31 Bipolar affective disorder 47 (8%) 2% 7% 11% 

F90 Hyperkinetic disorders 41 (7%) 6% 4% 10% 

F42 Obsessive-compulsive disorder 37 (6%) 16% 1% 9% 

F43 Reaction to severe stress and 

adjustment disorders 

27 (5%) 19% 4% 0% 

F39 Unspecified mood disorder 25 (4%) 0% 9% 0% 

N.B. Only psychiatric diagnoses found in ten or more individuals are listed in the table 

4.4.1 NDD CNV frequency analysis 

CNVs were identified in 23 of the 63 NDD loci described by Rees et al.97. At these 23 

loci 58 CNV carriers were identified, with two subjects carrying two risk CNVs. The 

rate percentage (rate of participants with a NDD CNV) is 10.0%, while the rate 

percentage, determined from the data presented in Rees et al, is 6.5% in ID/ASD, 3.1% 

in schizophrenia and 1.2% in healthy control populations97, see Table 4-4. The NDD 

loci frequencies are most comparable with the ID/ASD population, a sample which 

consisted mainly of children with DD/ID and/or ASD46. However, we still observe a 

significantly higher proportion of NDD CNVs in our ID and co-morbid psychiatric 

diagnosis sample, 3.5% higher (95% CI = 1-6, P = 0.00084). 
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Table 4-4: Rate percentage of CNVs at 63 NDD risk loci compared with populations rates 

reported by Rees et al. (2016) 

Sample 

Sample 

size 

Rate(%) of the 

63 NDD-loci 

Rate(%) difference 

(95%CI) p-value 

Healthy control 26628 1.2 8.8 (6.3-11) 2.8e-72 

Schizophrenia 20403 3.1 7 (4.5-9.5) 9.7e-21 

ID/ASD 29085 6.5 3.5 (1-6) 8.4e-04 

GENMID 599 10.0 - - 

Rate percentage differences, 95% confidence intervals (CI) and p-values for rate comparisons are 

indicated. 

 

The frequencies of the 23 NDD CNVs identified in the dataset are shown in Figure 

4-1. The carrier frequency at each loci was the highest in our sample of ID and co-

morbid mental disorders, with the exception of four loci for which we see comparable 

frequencies to the ID/ASD cohort. The five most frequent NDD CNVs in the GENMID 

cohort, in order of frequency, are: 22q11.2 deletion (n=7, 1.2%), 15q11.2 PWS/AS 

duplication (n=6, 1%), 16p11.2 duplication (n=5, 0.8%), 15q13.3 deletion (n=5, 0.8%) 

and 16p12.1 deletion (n=4, 0.7%). A description of all CNV loci and the carrier 

phenotypes can be found in Table 4-5. 
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Figure 4-1: NDD CNV frequencies in the GENMID sample compared to frequencies in healthy 

controls (N = 26628), ID/ASD (N = 29085) and schizophrenia (N = 20403) cohorts 

 
Y axis: Rate percentage. This enables comparisons between different sample sizes, and is calculated 

by dividing the number of CNVs detected at each loci by the sample size and multiplying by 100, X 

axis: CNV region followed by the name of the associated syndrome and/or relevant genes. CNV 

deletions extend below the 0 and duplications extend above.   
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Table 4-5: Phenotypic data for carriers of NDD risk CNVs 

Locus 

N 

Observed 

N 

Expected 

GENMID 

rate(%) 

ID/ASD 

rate(%) ID Level 

Other 

pathogenic 

CNVs Diagnosis 

22q11.2 del 7 3.8 1.2 0.629 Severe (4), 

Mild (3) 

2p16.3 del (1) F29 Unspecified nonorganic psychosis (3), F61 Mixed and other 

personality disorders (3), F31 Bipolar affective disorder (2), F39 

Unspecified mood disorder (1) 

15q11.2 

PWS/AS dup 

6 0.7 1.0 0.122 Mild (5), 

Severe (1) 

 F84 Pervasive developmental disorders (3), Challenging behaviours (2), 

F29 Unspecified nonorganic psychosis (1), F31 Bipolar affective disorder 

(1), F39 Unspecified mood disorder (1), F40 Phobic anxiety disorders (1), 

F61 Mixed and other personality disorders (1), F91 Conduct disorder (1) 

15q13.3 del 5 1.3 0.8 0.218 Mild (4), 

Severe (1) 

 F32 Depressive episode (2), F41 Other anxiety disorders (2), Challenging 

behaviours (1), F29 Unspecified nonorganic psychosis (1), F31 Bipolar 

affective disorder (1), F84 Pervasive developmental disorders (1), F94 

Disorders of social functioning with onset specific to childhood and 

adolescence (1) 

16p11.2 dup 5 1.4 0.8 0.236 Severe (5)  F84 Pervasive developmental disorders (3), F32 Depressive episode (2), 

F25 Schizoaffective disorder (1), F29 Unspecified nonorganic psychosis 

(1), F42 Obsessive-compulsive disorder (1), F90 Hyperkinetic disorders 

(1) 

2p16.3 NRXN1 

del 

4 0.6 0.7 0.103 Mild (2), 

Severe (2) 

22q11.21 del (1) F31 Bipolar affective disorder (2), Challenging behaviours (1), F22 

Delusional disorder (1), F29 Unspecified nonorganic psychosis (1), F61 

Mixed and other personality disorders (1) 

15q11.2 BP1-

BP2 del 

4 3.7 0.7 0.625 Mild (2), 

Severe (2) 

Xp22.31 del (1) F29 Unspecified nonorganic psychosis (1), F31 Bipolar affective disorder 

(1), F41 Other anxiety disorders (1), F61 Mixed and other personality 

disorders (1) 

16p12.1 del 4 0.7 0.7 0.124 Mild (3), 

Severe (1) 

 F20 Schizophrenia (1), F23 Acute and transient psychotic disorders (1), 

F29 Unspecified nonorganic psychosis (1), F43 Reaction to severe stress 

and adjustment disorders (1), F61 Mixed and other personality disorders 

(1), F90 Hyperkinetic disorders (1) 

22q13.33 

Phelan-

McDermid del 

3 0.9 0.5 0.148 Severe (3)  F84 Pervasive developmental disorders (2), Challenging behaviours (1), 

F29 Unspecified nonorganic psychosis (1), F31 Bipolar affective disorder 

(1) 
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1q21.1 TAR dup 2 0.9 0.3 0.155 Mild (1), 

Severe (1) 

 F20 Schizophrenia (1), F43 Reaction to severe stress and adjustment 

disorders (1), F84 Pervasive developmental disorders (1), F90 

Hyperkinetic disorders (1) 

4p16.3 Wolf-

Hirschhorn dup 

2 0.2 0.3 0.038 Mild (1), 

Severe (1) 

12p13.33p13.32 

del (1) 

F29 Unspecified nonorganic psychosis (1), F84 Pervasive developmental 

disorders (1) 

7q11.23 WBS 

dup 

2 0.5 0.3 0.076 Mild (2)  F39 Unspecified mood disorder (1), F61 Mixed and other personality 

disorders (1), F90 Hyperkinetic disorders (1) 

16p13.11 dup 2 1.6 0.3 0.275 Mild (1), 

Severe (1) 

 Challenging behaviours (1), F29 Unspecified nonorganic psychosis (1) 

16p11.2 distal 

del 

2 0.6 0.3 0.094 Mild (1), 

Severe (1) 

 F23 Acute and transient psychotic disorders (1), F29 Unspecified 

nonorganic psychosis (1) 

16p11.2 del 2 2.1 0.3 0.347 Severe (2)  F29 Unspecified nonorganic psychosis (1), F41 Other anxiety disorders 

(1) 

22q11.2 dup 2 1.6 0.3 0.260 Mild (1), 

Severe (1) 

 F20 Schizophrenia (1), F29 Unspecified nonorganic psychosis (1) 

1q21.1 del 1 1.2 0.2 0.201 Mild (1)  F32 Depressive episode (1), F41 Other anxiety disorders (1) 

2q13 del 1 0.3 0.2 0.057 Mild (1)  F84 Pervasive developmental disorders (1) 

8p23.1 dup 1 0.1 0.2 0.017 Severe (1)  F39 Unspecified mood disorder (1), F61 Mixed and other personality 

disorders (1) 

15q11.2 

PWS/AS del 

1 1.2 0.2 0.197 Severe (1)  F41 Other anxiety disorders (1) 

16p13.11 del 1 0.9 0.2 0.142 Mild (1)  F61 Mixed and other personality disorders (1) 

16p11.2 distal 

dup 

1 0.5 0.2 0.083 Mild (1)  Challenging behaviours (1) 

17p11.2 

Potocki-Lupski 

dup 

1 0.3 0.2 0.055 Mild (1)  F61 Mixed and other personality disorders (1) 

17q11.2 NF1 del 1 0.2 0.2 0.039 Severe (1)  Challenging behaviours (1), F84 Pervasive developmental disorders (1) 

Total 60 38.8 10.0 6.512    

N Expected, number of carriers we would expect based on ID/ASD frequencies (Rees et al. 2016) of the loci and our sample size of 599 participants, Rate(%) in GENMID and 

ID/ASD samples, ID level, other identified pathogenic CNVs and psychiatric diagnosis of the GENMID carriers.  
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4.4.2 Yield of pathogenic CNVs 

At least one pathogenic CNV was identified in 78 participants (13.0%, 95% CI 10.5-

16.0), with similar yields found at all research sites (Catalonia: 13.8%, Leuven: 14.0%, 

and England: 11.7%). Pathogenic CNVs comprised those identified at the NDD loci 

previously described and a further 25 CNVs reported as pathogenic by the clinical 

laboratory services. The pathogenic CNVs were predominantly deletions (59.5%). A 

rate of 11% pathogenic CNVs has previously been was reported in a subset of 202 of 

the 247 participants from the England sample174. Removing these 202 individuals from 

the GENMID sample still provides a diagnostic yield of 13.9%, thus indicating that 

the yield of undiagnosed pathogenic CNVs in adults with co-morbid NDDs is in the 

range of 11-14%. 

4.4.3 ID level, psychiatric diagnoses and CNV pathogenicity 

Group differences between CNV pathogenicity, psychiatric diagnoses and level of ID 

were examined. There were some differences in the proportions of level of ID and 

psychiatric diagnoses between the CNV pathogenicity groups (pathogenic, likely 

pathogenic, likely benign and benign), see Figure 4-2. However, no simple 

unidirectional relationships were observed. Equally, minor differences in the severity 

of ID were found between CNV pathogenicity groups, but no overall unidirectional 

relationship was observed. 
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Figure 4-2: Association between CNV pathogenicity, diagnostic groups and ID severity 

 
Bars 1-4 show the diagnostic rates of all diagnoses with 10 or more affected, for carriers with benign, 

variant of unknown significance likely benign (VOUS B), VOUS likely pathogenic (VOUS P) and 

pathogenic CNVs. Bars 5-8 show the frequency of mild and severe ID for individuals with benign, 

VOUS B, VOUS P and pathogenic CNVs. Lines indicate nominal statistical difference between 

groups P-value <0.05 only adjacent groups within bars 1-4 and 5-8 have been tested.  

4.4.4 Likely pathogenic CNVs  

The yield of likely pathogenic CNVs in the sample was 21.5% (95% CI 18.4-25.1). 

Investigation of recurrent likely pathogenic CNVs revealed 34 CNVs in 16 regions. 

Four recurrent CNVs identified corroborate existing evidence for the involvement of 

these regions in NDD risk, see Figure 4-3.
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Figure 4-3: Chromosomal locations of four overlapping likely pathogenic CNVs  

 
The top image shows the chromosomal location of the CNV, with the region highlighted by a red box, CNV deletions are shown in red and CNV duplications are 

shown in green, UCSC genes included in the CNV are shown, the image was exported from UCSC in chromosomal build GRCh37/hg19. 
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First, we identified two carriers of exonic duplications in the CNTN6 gene at 3p26.3. 

The CNTN proteins belong to a immunoglobulin super family of cell adhesion 

molecules and have an important role in neurodevelopmental processes175. CNTN6 

duplications were first identified in patients with ASD86,176 and later in a patient with 

ID and facial dysmorphisms177. A review of 14 patients with CNTN6 CNVs revealed 

that both CNV deletions and duplications affecting CNTN6 are thought to be involved 

in variable neuropsychiatric phenotypes178. The participants with CNTN6 duplication 

CNVs both presented with mild ID. One had schizophrenia and personality disorder, 

and one had challenging behaviours and had been convicted of a serious criminal 

offence. Interestingly, the participant with schizophrenia and personality disorder also 

had a duplication in the CNTN4 gene. CNVs affecting CNTN4 are also thought to 

confer risk for various NDDs179. As CNTN4 is an important paralog of CNTN6, it may 

be that a double hit in both of these genes results in a more severe phenotype as 

multiple genes are affected in the same pathway. 

Second, two participants with CNV duplications at the 9q21.32q21.33 locus were 

identified encompassing the SLC28A3 and NTRK2 genes. SLC28A3 is a nucleoside 

transporter involved in the regulation of multiple processes, including 

neurotransmission; however, there are no prior reports of its role in psychiatric risk. 

NTRK2 is a receptor tyrosine kinase with numerous neurodevelopmental functions, 

including synapse formation and plasticity. Altered NTRK2 expression has been 

identified in the brains of patients with schizophrenia180. One participant had severe 

ID and BPAD, and the other had mild ID and unspecified non-organic psychosis. 

Third, five participants with exonic CNVs in the CHD gene family were identified. 

The CHD proteins are involved in chromatin structure remodeling and the epigenetic 

regulation of transcription. Three of the participants had exonic CNVs (2 duplications, 

1 deletion) in the CHD8 gene at 14q11.2, which also encompass SUPT16H. The 

protein encoded by the SUPT16H gene is thought to be involved in DNA replication 

and repair. CNV deletions affecting CHD8 and SUPT16H were initially described in 

children with DD and dysmorphic features181. Variants in the CHD8 gene are thought 

to confer a phenotypic subtype of ASD, comprising macrocephaly, facial 

dysmorphologies and gastrointestinal abnormalities182. Both deletions183 and 
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duplications184,185 affecting CHD8 and SUPT16H have been described with variable 

neurodevelopmental phenotypes. The two participants with CNV duplications both 

had severe ID, one was diagnosed with schizophrenia and the other with BPAD. The 

participant with the CNV deletion also had severe ID and ASD. 

Finally, two participants with exonic CNVs in the CHD2 gene at 15q26.1 (one deletion 

and one duplication) were identified. Several patients have been described with CHD2 

deletions; with a common phenotype of ID, epilepsy, and aggressive challenging 

behaviours186,187. To our knowledge, a CNV duplication in CHD2 has not previously 

been described in the literature. The deletion carrier had severe ID and schizoaffective 

disorder, and the duplication carrier had challenging behaviours and BPAD. Both 

patients also had an epilepsy phenotype. 

4.5 Discussion 

Previous investigations in this novel patient group of adults with co-morbid ID and 

psychiatric disorders identified a diagnostic yield of 11% pathogenic CNVs174. 

Combining this with data from two additional European research sites, this finding is 

replicated with a higher yield of 13% pathogenic CNVs in 599 participants (or 13.9% 

with the previously reported cases removed). There were similar rates of pathogenic 

CNVs across the separate research sites, making this a relatively robust finding of a 

high diagnostic yield in this patient group.  

In the study described in Chapter 3 the majority of pathogenic CNVs were found to 

occur at recurrent loci, which have been independently implicated in risk for various 

NDDs. This pattern was also seen in the GENMID consortium study, with 70% of 

pathogenic CNVs being identified at NDD risk loci. Out of 63 NDD risk loci, 

described by Rees et al., carriers were identified at 23 of the loci. It is unsurprising that 

no carriers were identified in the remaining 40 loci, as these CNVs are very rare with 

reported frequencies in ID between 0.01-0.26% (mean = 0.06%)97. Presuming that 

there is an additive effect of having both ID and a co-morbid psychiatric disorder, then 

one would expect to see an increased frequency of the 63 NDD CNVs. Indeed, the 

cumulative frequency was significantly higher, as compared to both ID/ASD 
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populations not selected for psychiatric co-morbidity and individuals with 

schizophrenia.  

One complication in interpreting these findings is that the ID/ASD population is poorly 

phenotyped. For example, the phenotypic information from Coe et al.46, from which 

many of these participants were derived, states that 73% of the cases suffer from ID, 

DD and/or ASD, with the remaining cases either having congenital abnormalities or 

not being annotated. Firstly not all of the individuals had ID, and secondly it is unclear 

what proportion of the cohort have an ASD diagnosis. All participants in the GENMID 

cohort had ID plus challenging behaviour and/or one or more psychiatric diagnoses, 

so overall the participants will be more severely affected. However the exact 

differences between the cohort is unknown, particularly as the ID/ASD sample was 

derived from paediatric cases and many patients may have gone on to develop later-

onset psychiatric diagnoses. 

The phenotypic presentation of the majority of NDD CNV carriers is highly variable, 

both in terms of the level of ID and the psychiatric diagnoses. This indicates a broader 

role for genes within NDD CNV loci in conferring general, as opposed to disorder 

specific, psychiatric risk. Although, previous research has highlighted that NDD loci 

can show a complex pattern of both shared and distinct risk for NDDs108. Extremely 

large sample sizes will be required to further delineate these loci specific associations. 

Interestingly, at least one CNV carrier at each of the five most frequent loci has a 

psychosis phenotype. Of particular interest are the four carriers of the 16p12.1 

deletion, which was significantly associated with risk for schizophrenia by Rees et 

al.97. The rate in the schizophrenia cohort was found to be 0.16% (33/20403), whereas 

we identified a higher rate of 0.67% (4/599) in the GENMID cohort. Three of the four 

carriers had a psychosis phenotype, offering further support for this locus as a risk 

factor for both ID and psychotic disorders. Previously, in Chapter 3, an enrichment of 

the 16p11.2 duplication (2%) was identified as compared to the frequencies reported 

in other studies. Analysis of this CNV in a larger cohort has identified a lower overall 

frequency (0.8%), although it still remains one of the most frequent CNVs identified 

in adults with co-morbid NDDs. 
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In addition to the CNVs identified at known NDD loci, a further 26 CNVs were 

reported as pathogenic by the clinical genetic services. The majority of these were 

large deletion CNVs (1.7Mb-13.2Mb), which overlapped CNVs described in single 

case reports in the existing literature. This group of CNVs are likely to be extremely 

rare and thus would not be observed at high enough frequencies in existing case-

control studies. A clear unidirectional relationship between psychiatric diagnoses, 

level of ID and CNV pathogenicity could not be identified. It is possible that this partly 

reflects the difficulty of diagnosing psychiatric disorders and assessing ID severity in 

individuals with ID and delineation of this relationship requires larger sample sizes.  

Following a literature review of likely pathogenic CNVs that recur, support is provided 

for neurodevelopmental candidate genes which have been implicated in previous 

literature. Unlike the pathogenic CNVs, the likely pathogenic CNVs supporting 

existing NDD candidate loci were small (<1Mb) and affected only a small number of 

genes. There is a growing body of literature for the role of the CNTN and CHD gene 

families in risk for ID and co-morbid psychiatric disorders. Again, there appears to be 

a highly variable phenotype associated with CNVs affecting these genes. Further 

research will be required to consider the clinical implications of these CNVs, which 

were not reported as pathogenic by the clinical genetics services. 

One of the limitations of this study is that there were some differences between the  

recruitment strategies at the different sites, for example participants were recruited 

from in-patient psychiatric services in Leuven and primarily outpatient services in 

Catalonia and England. Most individuals lacked inheritance data, which is a valuable 

aid in categorisation of rare variants and may have led to an underestimate of the 

diagnostic yield. Different array CGH platforms were utilised to detect the CNVs at 

the different sites; however, as all the platforms used were high resolution this is 

unlikely to have major effects. For the phenotype analysis the ID levels were 

categorised into two broader groups, which resulted in participants with different 

levels of ID being classified together. Finally, further characterisation of the 

relationship between NDD risk CNVs and associated phenotypes would require much 

larger case-control samples or epidemiological based studies. 
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4.6 Conclusion 

A 13% rate of undiagnosed pathogenic CNVs was detected in adults with idiopathic 

ID and co-morbid psychiatric disorders, which is much higher than in studies of 

schizophrenia alone. Consistent with the findings of Chapter 3, this suggests that if 

CMA is going to be offered more widely in psychiatric practice, ID psychiatry services 

should be a priority for increased testing. Replicating the findings of Chapter 3, the 

majority of CNVs were identified at recurrent loci – with 70% of pathogenic CNVs 

being identified at established NDD risk loci. The high rates of CNVs at established 

NDD loci support a model whereby the frequency of NDD CNVs increases with the 

severity of the phenotype. Studying this adult population also facilitates description of 

psychiatric and medical associations across the life course, for both pathogenic CNVs 

and likely pathogenic candidate loci.    
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Chapter 5 Delineating the psychiatric and behavioural phenotype 

of recurrent 2q13 deletions and duplications 

Parts of this chapter have been adapted from the following published journal article:  

Wolfe, K., McQuillin, A., Alesi, V., Boudry Labis, E., Cutajar, P., Dallapiccola, B., 

Dentici, M.L., Dieux-Coeslier, A., Duban-Bedu, B., Duelund Hjortshøj, T., Goel, H., 

Loddo, S., Morrogh, D., Mosca-Boidron, A.L., Novelli, A., Olivier-Faivre, L., Parker, 

J., Parker, M.J., Patch, C., Pelling, A.L., Smol, T., Tümer, Z., Vanakker, O., 

Haeringen, A.V., Vanlerberghe, C., Strydom, A., Skuse, D., Bass, N. (2018) 

Delineating the psychiatric and behavioural phenotype of recurrent 2q13 deletions and 

duplications. American Journal of Medical Genetics Part B: Neuropsychiatric 

Genetics. PMID 29603867. 

I designed the study, undertook participant recruitment, data analysis and wrote the 

manuscript. Support with recruitment and participant phenotyping: AV, E. BL, PC, 

BD, M.L D, A D-C, B D-B, T. DH, HG, SL, DM, A.L M-B, AN, L O-F, JP, M.J P, 

CP, A.L P, TS, ZT, OV, A.V. H, CV, Support with study design and data analysis: 

AM, AS, DS, NB. Critical review of the manuscript was undertaken by all authors. 

5.1 Introduction 

In Chapter 3 an individual with a recurrent CNV at chromosome locus 2q13 was 

identified. Whilst this is classed as a recurrent CNV, in that it is flanked by LCRs and 

thus the same CNV has arisen at 2q13 in multiple independent individuals, very few 

patients with this CNV have been described in published studies. For example, the 

latest large study of 2q13 deletions presented a summary of 29 patients from all 

previous published studies156, and even fewer published case series of 2q13 

duplication patients exist. The addition of detailed phenotypic information to very 

rarely observed CNVs could be beneficial for patient clinical management. It is 

particularly pertinent to study psychiatric and behavioural phenotypes, which have 

been less well explored in the existing literature. 
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Investigation of chromosomal rearrangements in regions of LCRs, identified 2q13 

CNVs in patients with developmental disorders188. However, the pathogenicity of 

these CNVs was initially described as of uncertain significance. This was due to a 2q13 

duplication also being found in a healthy control188 and the findings from a previous 

study that the same 2q13 deletion in two siblings with developmental problems had 

been inherited from an unaffected parent189.  

Analysis of larger samples revealed that 2q13 CNVs are associated with an increased 

risk of DD and ID. Cooper et al. reported 12 deletions and 9 duplications in cases 

(N=15,767) and observed 1 deletion and 0 duplications in controls (N=8,329). They 

found an enrichment of the deletion (P=0.032) and duplication (P=0.022) in cases, as 

compared to controls. The deletion was associated with cardiovascular disorders, 

whereas the duplication was associated with craniofacial features45. Yu et al. described 

the phenotype of five 2q13 patients alongside 14 additional cases from a literature 

review, concluding that 93% of individuals had impaired development and 63% had 

facial dysmorphisms190. Some of these patients had a diagnosis of ASD or ADHD, 

although many were too young for clinical assessment, or it was unclear whether 

assessments had taken place.  

Costain et al. found 2q13 CNVs to be significantly associated with schizophrenia 

(P=0.0002) in a community-based schizophrenia cohort (N=459), as compared to a 

large population-based control sample (N=23,838)157. They identified three 2q13 CNV 

carriers (one deletion, two duplications) in cases and four CNV carriers (one deletion, 

three duplications) in controls. However, subsequent case-control studies in larger 

schizophrenia patient cohorts have failed to find a significant association at the 2q13 

locus 59,97. In a follow up study Costain et al. (2014) undertook detailed phenotyping 

with two unrelated 2q13 duplication carriers and their families, identified in the 2013 

study. Four family members, from one patient pedigree, also carried the duplication 

and this co-segregated with a neuropsychiatric phenotype. There was a variable 

psychiatric phenotype, with one psychotic disorder, two major mood and/or anxiety 

disorders, and one mood and/or anxiety disorder and obsessive compulsive disorder 

(OCD). The original patient with schizophrenia also had OCD. None of these 
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individuals had significant DD, ASD or facial dysmorphisms, although three of the 

family members and one patient had learning difficulties191. 

Riley et al. identified three 2q13 deletion carriers and one 2q13 duplication carrier, 

and compared the phenotype with previous published cases. They concluded that 

congenital heart defects, hypotonia, dysmorphic features, and abnormal head size are 

common in deletion carriers and developmental delay, dysmorphic features and 

abnormal head size are common in duplication carriers. No ASD or psychiatric 

phenotype was described in these patients, likely because they were too young for 

clinical assessment192. Finally, Hladilkova et al. described two additional 2q13 

deletion patients, one of whom has ASD and ADHD156. 

A large study of rare CNVs estimated the rate of occurrence of 2q13 deletions and 

duplications in healthy controls (0.004% deletions, 0.015% duplications), 

schizophrenia (0.015% deletions, 0.02% duplications) and a mixed developmental 

disorders (predominantly DD/ID and ASD) cohort (0.057% deletions, 0.022%, 

duplications)97. This suggests that 2q13 CNVs can be observed in healthy controls, but 

are more common in psychiatric and DD/ID cohorts. The 2q13 CNV is now 

understood to be a susceptibility locus, which describes a CNV that can be inherited 

from a healthy or mildly affected parent, but is enriched in individuals with various 

developmental disorders35.  

A limitation of current 2q13 CNV literature is that few studies have undertaken 

comprehensive behavioural and psychiatric phenotyping, so the full extent of the 

neuropsychiatric risk associated with these CNVs remains unclear.  

5.2 Aims 

This investigation aims to further delineate the 2q13 CNV profile by undertaking deep 

phenotyping comprising: developmental, medical, dysmorphic, behavioural and 

psychiatric features. 
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5.3 Methods 

5.3.1 Participant recruitment 

In order to maximise recruitment of patients with this rare CNV a multi-faceted 

approach to recruitment was employed. Unique is a UK-based support group, working 

internationally to inform and support anyone affected by a rare chromosome or single 

gene disorder and with professionals involved in their care193. The Unique Information 

Officer identified and emailed registered contacts of Unique members with 2q13 

CNVs. Information was provided about the study, and contacts were encouraged to 

contact the study team if they wanted to participate. Patients with 2q13 deletions were 

also identified via two NHS RGCs – the North East and South East Thames RGCs 

(Great Ormond Street Hospital for Children NHS Trust and Guy's and St Thomas' 

NHS Foundation Trust respectively). Clinicians were approached in the first instance 

and where appropriate invitations to participate in the study were sent to the patient 

contact via letter. All participants recruited by KW either lacked capacity to consent 

to the research, or were deemed too young to provide consent, and consent was 

provided by a parent for participation in the study. Additionally, patients with 2q13 

CNVs on the DECIPHER database were identified and further phenotypic information 

was sought from responsible clinicians152. One participant was included from a 

previous investigation of CNV in adults recruited from ID psychiatry services174. 

Ethical approval for the study was attained from the North Wales Research Ethics 

Committee West, reference 11/WA/0370.  

5.3.2 Phenotyping and analysis protocol 

All participants recruited through Unique and NHS RGCs underwent detailed 

phenotyping (n=10), whereby clinical data, including medical and psychiatric history, 

was collected from a parent in a face-to-face interview. This was conducted by KW 

and interviews were undertaken in person for UK recruits and via Skype for overseas 

recruits. Responsible DECIPHER contacts were contacted via email to provide further 

phenotypic data about their patients and anonymised data was collected via the UCL 

web-based survey tool Opinio (n=15).  
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All phenotypes were converted to Human Phenotype Ontology (HPO) terms for 

presentation in the manuscript194. The level of ID was taken from available medical 

records or reported by clinicians and was categorised in accordance with the HPO 

criteria: borderline intellectual disability (IQ 70-79); mild intellectual disability (IQ 

50-69); moderate intellectual disability (IQ 35-49); severe intellectual disability (IQ 

20-34).  

Psychiatric phenotyping was undertaken using the Mini PAS-ADD for participants 

over 18 years of age, and the Child and Adolescent Psychiatric Assessment Schedule 

(ChA-PAS) for those under 18. These assessments provide threshold scores for 

psychiatric symptoms that are likely to warrant a diagnosis in conjunction with a 

clinical psychiatric assessment147. The Mini PAS-ADD includes ASD screening, but 

does not include an ADHD assessment. The ADHD section of the CHA-PAS requires 

a second informant, who is familiar with the individual in other contexts (typically a 

teacher). It was not possible to interview a second informant for the ChA-PAS, so both 

sections were completed by the primary informant.  

Behavioural phenotyping was undertaken using the Behaviour Problems Inventory - 

Short Form (BPI-S). The BPI-S provides frequency scores of self-injurious and 

aggressive/destructive behaviours195. Behaviours were reported as present if they were 

scored at a minimum of a weekly frequency on the BPI-S measure or were documented 

in the medical history. General observations for dysmorphic features were also made 

and photographs taken where consent given. Dysmorphic features were independently 

verified by a second investigator (NB, Consultant Psychiatrist).  

Analyses and data visualisation were undertaken using R version 3.4.2 and the ggplot2, 

Rcmdr and ontologyX packages173,196–198. For the breakdown of CNV carriers for each 

phenotype, deletion and duplication will be abbreviated to del and dup. 

5.4 Results 

5.4.1 Sample description 

A total of 25 participants were recruited to the study, 10 from the Unique and NHS 

RGCs group and 15 from the Decipher group (64% male). The participants are 
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predominantly children (23/25 <18 years of age, median age 9 years, range 4-42 years). 

The dataset comprises 21 deletion and 4 duplication carriers. The CNVs ranged in size 

from 1.4Mb to 2.1Mb with a 1.3Mb region of overlap between all CNVs, see Figure 

5-1. One family with an inherited 2q13 deletion is included in the case series, a father 

and two children, as removing the family did not change the results they are presented 

together with the rest of the cohort.  

Figure 5-1: Chromosomal location of the CNV breakpoints for 2q13 CNV carriers  

 
The top image shows the chromosomal location of the CNV, with the region highlighted by a red box, 

CNV deletions are shown in red and CNV duplications are shown in green, UCSC genes included in 

the CNV are shown, the blue highlighted region shows the 1.3Mb region of overlap between CNVs, the 

image was exported from UCSC in chromosomal build GRCh37/hg19. 

 

5.4.2 Inheritance status 

For 32% of participants the inheritance status was unknown (9 del, 1 dup). These were 

all participants from the DECIPHER group, where inheritance information was 

unavailable to responsible clinicians. A further 20% (5 del) had de novo CNVs, 12% 

(2 del, 1 dup) had a maternally inherited CNV, 28% (5 del, 2 dup) had a paternally 

inherited CNV, and finally 8% had inherited CNVs but the parental origin was 

unknown. Focusing on the 12 individuals with inherited 2q13 CNVs, 4 (34%, 2 del, 2 

dup) had no family history of ID or mental health problems, 5 had a family history of 

ID and/or mental health problems (42%, 5 del), and 3 (25%, 2 del, 1 dup) had a family 

history of ID and/or mental health problems only on the side of the family from which 

the 2q13 CNV was not transmitted. 
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5.4.3 Intellectual and learning difficulties 

Overall 76% of participants had DD (15 del, 4 dup). Just over half the participants had 

an IQ in the borderline or average range (52%, 10 del, 3 dup), and (32%, 8 del) had 

mild ID. There were no individuals with moderate ID and 12% had severe ID (2 del, 

1 dup). We also asked informants or clinicians whether the participants had any other 

specific learning difficulties, 4 participants (16%) had dyslexia, 2 participants (8%) 

had dyscalculia, and 2 participants (8%) had an auditory processing disorder (all these 

were identified in del carriers only). 

5.4.4 Psychiatric disorders and challenging behaviours 

In total 64% of participants had a formal psychiatric diagnosis, amongst these 44% (9 

del, 2 dup) had one diagnosis and 20% (4 del, 1 dup) had two. The most frequently 

diagnosed psychiatric disorder was ADHD (44%, 9 del, 2 dup), followed by ASD 

(24%, 5 del, 1 dup) and anxiety disorders (12%, 2 del, 1 dup). Both aggressive and 

self-injurious behaviours were also identified in the participants, 8 had aggressive 

behaviours (32%, all del) and 8 had self-injurious behaviours (32%, 7 del, 1 dup), for 

an overview see Figure 5-2. 



 

 110 

Figure 5-2: Clinically diagnosed psychiatric disorders and behavioural phenotype in 2q13 

deletion (n=21) and duplication (n=4) carriers 

 
Y axis: count - the number of participants with the diagnosis or behaviour; X axis: ADHD, attention 

deficit hyperactivity disorder, Aggressive, aggressive behaviours, Anxiety, anxiety disorder, Autism, 

autism spectrum disorder, Mood disorder, ODD, oppositional defiant disorder, Self-injurious, self-

injurious behaviours.  

 

Of the detailed phenotyping group (n=10), 5 had no clinical psychiatric diagnosis. For 

two of these participants, both aged 6, ADHD was suspected, but the families were 

awaiting formal clinical assessment. Additionally, ASD was suspected for one of these 

participants. Taking into account the PAS-ADD thresholds, 9/10 individuals reached 

one or more PAS-ADD thresholds. The most frequent thresholds met were anxiety 

disorder (60%, all del) and manic episode (60%, 5 del, 1 dup) followed by 20% each 

for ADHD, depressive disorder and psychosis (all del), see Figure 5-3. 
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Figure 5-3: PAS-ADD thresholds met in the 10 participants in the detailed phenotyping group (9 

deletion and 1 duplication carrier) 

     
Y axis: totals - number of participants with the diagnosis or behaviour, X axis: Thresholds on the 

PAS-ADD or CHA-PAS assessments, ADHD, attention deficit hyperactivity disorder, ASD, autism 

spectrum disorder, OCD, obsessive compulsive disorder.  

5.4.5 Medical phenotype 

The most commonly observed phenotypes were; glue ear (40%, 9 del, 1 dup), followed 

by muscular hypotonia (32%, 7 del, 1 dup), sleep disturbances (28%, 6 del, 1 dup), 

arthralgia (24%, 6 del), recurrent infections of the middle ear (20%, 4 del, 1 dup), joint 

hypermobility (20%, 5 del), and gastroesophageal reflux (16%, 4 del). See Figure 5-4 

for an overview of the systems affected.  
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Figure 5-4: Human Phenotype Ontology tree plot with ancestral ontologies for the medical 

phenotypes occurring in more than three participants 

 

5.4.6 Dysmorphology phenotype 

The most commonly observed phenotypes were: macrotia (32%, 8 del), abnormality 

of the skull (28%, 4 del, 3 dup), macrocephaly (16%, 4 del), upslanted palpebral fissure 

(16%, 3 del, 1 dup), hypertelorism (16%, 4 del), strabismus (16%, 2 del, 2 dup), and 

depressed nasal bridge (16%, 4 del). See Figure 5-5 for an overview of the systems 

affected.  
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Figure 5-5: Human Phenotype Ontology tree plot with ancestral ontologies for the 

dysmorphology phenotypes occurring in more than three participants 

 

5.4.7 Comparison with previous literature  

To combine phenotypic data for all published 2q13 CNV carriers the dataset initially 

presented by Hladilkova et al. has been adapted (permission via personal 

correspondence)156. All the patients presented are derived from patient case studies, as 

equivalent phenotypic data was not available for healthy controls carrying these 

CNVs. For deletion carriers, the cases presented by Hladilkova et al. have been added 

together with new cases from subsequent literature and the cases presented in this 

study. An equivalent version of the dataset has also been compiled for 2q13 duplication 

carriers. Table 5-1 presents an overview of all known 2q13 deletion and duplications 

carriers to date and the phenotypes observed, note the denominator differs due to the 

varying availability of phenotypic information in published case studies.
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Table 5-1: Summary of phenotypic observations in 2q13 participants in conjunction with 

patient phenotypes presented in previous published studies 

 2q13 deletions 2q13 duplications 

DD/ID 30/38 (79%) 14/20 (70%) 

ASDs 9/27 (33%) 2/12 (17%) 

ADHD/ADD 12/25 (48%) 3/5 (60%) 

Dysmorphic features 34/40 (85%) 9/10 (90%) 

Heart defect 9/34 (26%) 0/5 (0%) 

Hypotonia 16/34 (47%) 3/7 (43%) 

Seizures 9/31 (29%) 0/10 (0%) 

Macrocephaly 10/34 (29%) 1/7 (14%) 

Microcephaly 7/34 (21%) 2/7 (29%) 

DD, developmental delay, ID, intellectual disabilities, ASDs, autism spectrum disorders, ADHD, 

attention deficit hyperactivity disorder. 

5.5 Discussion 

CNVs at the 2q13 locus are rare in the population, can be observed in healthy controls 

and transmitted from unaffected parents. Despite this, multiple studies have now 

shown that CNVs at 2q13 are risk factors for DD and dysmorphisms. This study 

represents the largest ever case series of 2q13 patients, comprising detailed phenotypic 

data for 25 new cases and combined analysis in 77 individuals, refining our 

understanding of the phenotypic associations of CNVs at the 2q13 locus. 

DD was identified in 76% of participants in this study. Combined with all available 

data from existing literature 79% of deletion carriers and 70% of duplication carriers 

have DD/ID. This phenotype has been further delineated by investigating the level of 

ID, which revealed that the intellectual impairment is generally mild with 52% of 

participants having IQ in the borderline or average range. Only 12% of participants 

had severe ID, and data available for two of these participants in the detailed 

phenotyping group revealed that both were referred for further exome sequencing 

investigations, due to the 2q13 CNV not being thought to fully explain their phenotype.  

Combined analysis reveals that 80% of 2q13 deletion carriers and 90% of 2q13 

duplication carriers have dysmorphic features. Deep phenotyping in the new cases 

showed that macrotia, abnormalities of the skull, macrocephaly, upslanted palpebral 

fissures, hypertelorism, strabismus, and depressed nasal bridge were common in 
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deletion carriers. In duplication carriers, abnormalities of the skull and strabismus were 

observed. No other features achieved more than a single occurrence, however there 

were only 4 individuals who had 2q13 duplications. Combined analysis identified 29% 

of deletion carriers and 14% of duplication carriers as having macrocephaly and 23% 

of deletion carriers and 29% of duplication carriers as having microcephaly. 

Previous 2q13 CNV literature has described congenital heart defects, hypotonia and 

seizures as associated medical phenotypes. Combined analysis found that 31% of 

deletion carriers had heart defects, and this phenotype was not observed in duplication 

carriers. Combined analysis identified 44% of deletion carriers and 43% of duplication 

carriers as having hypotonia, supporting previous results on the association of the 2q13 

deletion with this feature and extending this to also affect duplication carriers. Seizures 

were only observed in deletion carriers at a frequency of 26%. Deep phenotyping in 

this study also associated novel medical phenotypes with 2q13 CNVs, including: glue 

ear, sleep disturbances and recurrent infections of the middle ear, both in deletion and 

duplication carriers, and arthralgia, joint hypermobility and gastroesophageal reflux in 

deletion carriers only. 

A limitation of published 2q13 case reports is that many are in young children, who 

are below the typical assessment age for various psychiatric disorders. Also, it is 

unclear in some studies whether comprehensive behavioural and mental health 

assessments have taken place. The new cases presented in this study had a median age 

of 9 years, and 64% already had a clinical psychiatric diagnosis. Some of the remaining 

participant either had suspected psychiatric disorders, which had yet to be formally 

tested, or met PAS-ADD thresholds, indicating that this figure could be even higher. 

To our knowledge, challenging behaviours have never previously been assessed in 

2q13 CNV carriers and we found both aggressive and self-injurious behaviours to be 

present in deletion carriers and self-injurious behaviours in one duplication carrier. 

Despite the aforementioned limitations, previous case reports of individuals with 2q13 

CNVs have reported both ASD and ADHD diagnoses. Combining analysis identified 

48% of deletion carriers and 60% of duplication carriers as having an ADHD 

diagnosis, and 33% of deletion carriers and 17% of duplication carriers as having an 

ASD diagnosis. Both 2q13 deletions and duplications have also been identified in 
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schizophrenia patients. We did not identify any participants with schizophrenia, 

although only three individuals were over the age of 16, so the typical age of onset was 

not reached in most individuals. Our study identifies a strikingly high incidence of 

ADHD in 2q13 CNV carriers. A literature review of genes in the 2q13 region was 

undertaken and no prior association of genes in this region with risk for ADHD was 

identified, although postulations have been made about the involvement of genes in 

the region in other neuropsychiatric phenotypes. 

A 1.3Mb common region of overlap was identified in CNV carriers, disrupting four 

genes: ACOXL, BCL2L11, ANAPC1 and MERTK. It has been suggested that disruption 

of the ACOXL and BCL2L11 genes may contribute to neurodevelopmental and ASD 

phenotypes190. The ACOXL gene encodes a protein responsible for fatty acid 

oxidisation, alterations in fatty acid metabolism have been proposed to play a role in 

the pathogenesis of ASD199. BCL2L11 encodes a neuronal apoptosis regulator and 

previous research has found decreased expression of this gene in the frontal cortex and 

cerebellum of autistic subjects. It has been hypothesised that an increase in apoptosis 

in these regions may contribute to the pathogenicity of autism200. ANAPC1, a 

neurodevelopmental facilitator, and MERTK, a TAM receptor and multiple sclerosis 

risk gene, have also been proposed as candidate genes for the psychosis phenotype of 

2q13 CNV carriers157. All but one participant had CNVs which extend distally to 

include FBLN7 and TMEM87B. Russell et al. undertook a functional analysis of 

candidate genes in the 2q13 region using zebrafish morpholino knockdowns. They 

found that depletion of FBLN7 and TMEM87B orthologues resulted in cardiac 

hypoplasia and FBLN7 additionally was associated with craniofacial abnormalities201. 

One theory as to why some CNVs show incomplete penetrance is that a second genetic 

hit is required to unmask the predisposition to a neuropsychiatric phenotype202. None 

of the participants in this study had another CNV that had been classified as 

pathogenic. However, as sequencing data was not available for analysis, it cannot be 

ruled out that the participants had another genetic variant contributing to their 

phenotype. Yu et al. recently identified a paternally inherited variant in the TMEM87B 

gene, one of the genes in the 2q13 region associated with the cardiac phenotype201, in 

a patient with a severe cardiac phenotype who also had a maternal 2q13 deletion. It is 
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thought that the unmasking of this homozygous variant by the maternal deletion acted 

as a second genetic hit, resulting in the severe phenotype 203. The inheritance pattern 

of CNVs was mixed, as was the family history of ID and mental health problems. It is 

of interest that 25% of participants had a family history of ID and mental health 

problems on the other side of the family from which the variant was transmitted. This 

could provide support to the second-hit hypothesis, but further genetic investigations 

would be required.  

One of the benefits of receiving a genetic diagnosis for patients and their families is 

the ability to access diagnosis specific information, which could be used to facilitate 

early intervention screening for associated medical and psychiatric phenotypes. 

Disorder guides, written for both professionals and families, are available for 2q13 

CNVs from the patient support group unique135. The findings from combined analyses 

in this study could also guide clinical management of individuals with newly 

diagnosed 2q13 CNVs, for example screening for ADHD might be considered. 

However, it must be acknowledged that whilst we find some phenotypes to occur more 

frequently, 2q13 CNV carriers still display variable phenotypic outcomes – posing 

challenges for genetic counselling of patients and their families.  

Many studies of rare CNVs have been undertaken in paediatric cohorts, and 

comprehensive psychiatric and behavioural phenotyping has not been carried out. The 

degree to which neuropsychiatric phenotypes are common in rare CNV carriers has, 

therefore, yet to be established – making it difficult to find an appropriate comparison 

group for the frequency of psychiatric diagnoses. The medical and dysmorphology 

phenotypes described are also diverse, and it is difficult to ascertain ‘core symptoms’ 

of the disorder which could be an indicator for genetic testing for 2q13 imbalances. 

However, this study had a comprehensive phenotyping protocol and it may be that a 

similar pattern of diverse phenotypes would be observed if comparable phenotyping 

approaches were to be used in other studies investigating rare neurosusceptability 

CNVs. One unusual finding is that both micro and macrocephaly were present in both 

deletion and duplication carriers, whereas in other CNVs (such as 16p11.2) it is more 

typical to find an excess of one of the phenotypes segregating with the CNV type. 

There is natural variation in head size in the general population and the ideal method 
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of measurement would be deviation from parental means, however it was not possible 

to collect parental measurement in this analysis. It may be that the observations have 

arisen from normal variation, rather than being associated with the 2q13 CNVs. 

Increasing the depth of phenotyping in rare CNV studies is an important avenue for 

future research, as well as conducting ongoing mental health assessments in 2q13 

carriers to elucidate associations with psychiatric disorders across the life course. 

Additionally, further studies of the unaffected parents and healthy controls with 2q13 

CNVs will be important to elucidate potential protective factors. 

The limitations of this study are that observations are being made in participants who 

have presented to clinical services. This may create an ascertainment bias, whereby 

the most severe cases are described. However, the accumulation of cases from a wide 

range of sources attempted to ensure as representative a sample as possible. The 

assessments of dysmorphology were not conducted by a clinical dysmorphology 

expert, although we utilised a second rater to improve the reliability of the 

observations. The PAS-ADD and ChA-PAS schedules were completed by a 

researcher, and clinical verification by a trained psychiatrist did not take place. Some 

of the participants were as young as four, meaning some of the later-onset phenotypes 

could not be accurately measured at this age. However, if anything this would have 

led to an under estimation of the phenotype frequencies.  

5.6 Conclusion 

In the largest study of 2q13 CNVs to date, we present detailed phenotypic data for 25 

new 2q13 deletion and duplication carriers. Combining this with previous literature 

yields a total of 54 deletion and 23 duplication carriers, enabling a refined 

understanding of the phenotypic associations of CNVs at the 2q13 locus. Combined 

analysis predominantly supports existing literature on an increased rate of 

developmental, medical and dysmorphic phenotypes. Psychiatric investigations reveal 

that the majority of deletion and duplication carriers have been clinically diagnosed 

with a psychiatric disorder, with a particularly high incidence of ADHD. This could 

have important implications for psychiatric screening upon clinical diagnosis of 2q13 

CNVs, and further investigation of this region may have some relevance to 

understanding the neurobiology of ADHD.   
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Chapter 6 Relative burden of rare CNVs in different 

neurodevelopmental cohorts 

6.1 Introduction 

The previous chapters have focused on the analysis of CNVs that have already been 

classified (as pathogenic, VOUS and benign) using clinical laboratory protocols for 

variant categorisation. As discussed previously, there are many factors involved in this 

variant classification process. For example, classification parameters include: the size 

and genic content of the CNV, the inheritance status, and population frequencies in 

reference disease and control cohorts. Another methodology used in the research 

literature to test the association of a class of genetic variants is a burden analysis. 

Burden analyses compare the collective frequency of variants in two groups, typically 

cases and controls. Typically, in CNV burden analyses, common CNVs are filtered 

out and the analysis is undertaken on the rare CNVs that are most likely to be 

implicated in disease pathology (<1% population frequency),.  

There are some advantages to undertaking CNV burden analyses for testing the 

differences between groups. Many CNVs are individually rare and evolutionarily 

selected against.  This means that extremely large sample sizes are required to detect 

statistically significant differences in CNV frequencies. Whereas, CNV burden 

analyses enable comparisons of rare CNVs beyond those that are currently deemed 

pathogenic, working under the general assumption that a greater CNV burden is likely 

to be associated with a greater propensity to disease142. 

One of the earliest schizophrenia CNV burden analyses was undertaken by the 

International Schizophrenia Consortium in 2008, comprising 3,391 patients and 3,181 

controls. The analysis focused on rare CNVs (<1% frequency) >100kb in size. 

Controls on average had 0.99 CNVs per person and the rate was increased 1.15-fold 

in patients with schizophrenia to 1.14 CNVs per person. When stratifying by size of 

event, larger (>500kb) deletions were enriched, whilst the opposite was true for 

duplications – with shorter duplications showing a stronger association with disease204. 

Analysis of genome-wide data from case-control studies of DD/ID have also revealed 

an increased CNV burden in DD/ID cases. As discussed previously Coe et al. analysed 
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data from 15,767 children with developmental disorders and 8,329 unaffected adult 

controls. An excess of large CNVs was identified in cases and the effect was more 

pronounced with increasing CNV size. At a threshold of 400kb ~25.7% (4,047 cases), 

compared to 11.5% of the controls harboured a CNV event of this size45.  

Girirajan et al. assessed the relative contribution of CNV burden by undertaking 

analyses in three distinct NDDs – ID, ASD and dyslexia – comprising 1,227 cases and 

337 controls. ID was most associated with a greater CNV burden. The three NDD 

groups were further characterised, as to their phenotypic severity, and it was identified 

that the most severe phenotype is correlated with a greater size of CNV and a greater 

gene density of genes affected by the CNV. The phenotype groups in order of severity 

are: ID with MCA, idiopathic ID, ID with ASD, ASD without ID, dyslexia, controls. 

No differences were identified when segregating by CNV type (deletion and 

duplication), although analysis of inheritance status revealed a trend of increased de 

novo CNVs with increased severity of the disorder140.  

CNV burden has also been investigated in patients with ID and co-morbid 

schizophrenia. Derks et al. studied patients with ID only (n=66), versus patients with 

ID and schizophrenia (n=64). No differences were found in the burden of CNV 

deletions and duplications >100kb in patients with ID only versus patients with ID and 

co-morbid schizophrenia. However, a higher burden of duplications larger than 1Mb 

was identified in patients with ID and schizophrenia. This was largely driven by 

duplications at the 15q11.2 region141. Lowther et al. also investigated CNV burden in 

546 schizophrenia patients who were segregated into various IQ groups, ranging from 

low (< 85) to average (≥ 85) IQ. They identified a significantly (p=0.002) increased 

burden of rare genic duplications in individuals in the low IQ schizophrenia group. 

This higher burden persisted even after excluding individuals with a pathogenic CNV. 

142.  

CNV burden analyses have also been undertaken in  patients with BPAD, however the 

results do not follow the expected trend of an increased CNV burden with increased 

phenotypic severity. In fact, multiple studies have shown that there is actually a 

reduced burden of rare large CNVs in BPAD patients as compared to controls205–207. 

One study by Malhotra et al. investigated parent proband trios with BPAD (n=185) 
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and healthy controls (n=426) and found an increased frequency of large de novo CNVs 

in BPAD patients. However, this effect only remained significant when considering 

BPAD cases with an age of onset below 18 years of age208. Noor et al. also found no 

increased burden of CNVs in BPAD cases as compared to controls209.  

Marshall et al. conducted the largest genome-wide CNV burden analysis for any 

psychiatric disorder to date, comprising 21,094 schizophrenia cases and 20,227 

controls. Several parameters were significantly greater in schizophrenia cases, as 

compared to controls, including: total CNV distance (kb) covered, number of genes 

affected by CNVs and the number of CNVs. When split by CNV type, the effect size 

for CNV deletions was greater than for CNV duplications. Interestingly, this 

enrichment in CNV burden persisted even after exclusion of CNV loci implicated as 

schizophrenia risk factors in previous studies. Furthermore, CNV burden was enriched 

for  genes associated with synaptic function and neurobehavioral phenotypes in mice59. 

There are now several lines of evidence to support the theory that there is an increased 

CNV burden as the severity of the NDD phenotype increases. ID is generally the most 

severe phenotype observed – although ID with MCA or ID with co-morbid 

schizophrenia are more severe phenotypes associated with a greater CNV burden. 

BPAD is the only psychiatric phenotype, that has been systematically investigated, 

which does not have an increased CNV burden as compared to controls. It is also 

towards the milder end of the spectrum of developmental and psychiatric disorders 

investigated. Some studies only find this increased CNV burden to be true for certain 

types of CNV and for CNVs of particular size. For example, in ID patients with co-

morbid schizophrenia CNV duplications appear to be driving the significant 

differences in CNV burden. In one study, the significant difference was further limited 

duplications larger than 1Mb. To the best of my knowledge, no previously published 

study has compared the CNV burden between ID plus co-morbid mental disorders and 

schizophrenia.  
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6.2 Aims 

The aim of this analysis is to compare CNV burden in a cohort of patients with ID plus 

co-morbid psychiatric disorders (ID+) with CNV burden in schizophrenia patients and 

healthy controls. The impact of CNV size and type will also be considered. 

6.3 Methods 

6.3.1 Sample collection and DNA preparation 

The samples analysed in this section comprise participants from the DNA variation in 

adults with learning disability sample, described in Chapter 3 and Chapter 4, for which 

genomic DNA was available for analysis (n=228 out of N=248). Participants with 

large-scale chromosomal abnormalities were excluded from the analysis. Sample 

collection for this dataset has been described in Chapter 3. The UCL schizophrenia 

and control samples were derived from the DNA polymorphisms in Mental Illness 

(DPIM) study have been described elsewhere210. Briefly, patients with a clinical ICD-

10 diagnosis of schizophrenia were recruited through NHS services. Diagnoses were 

confirmed and additional phenotypic data collected with the Schizophrenia and 

Affective Disorders Schedule (SADS-L)211. Controls were recruited with an absence 

of personal history of mental illness as well as an absence of mental illness in first-

degree relatives. Data from a subset of the schizophrenia (N=1529), BPAD (N=1445) 

and control (N=1285) cohorts were used in this analysis. For the ID+ sample 17% of 

the sample (38/228) were of non-European ancestry, all of the DPIM participants were 

of European ancestry. DNA extraction for the ID+ study was undertaken at the North 

East Thames Regional Genetics Service Laboratory and for the DPIM sample DNA 

was extracted in-house. DNA quantifications were undertaken using the Qubit 

quantification protocol212. A number of students and Post-Doctoral researchers 

quantified the DNA samples from the DPIM study, I personally quantified all the 

samples for the ID+ study.  

6.3.2 Genotyping and Quality Control 

The PsychChip, also known as the PsychArray, is a high density (>500,000 markers) 

customised microarray chip containing 265,000 proven tag SNPs found on the 
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Infinium Core-24 BeadChip, 245,000 markers from the Infinium Exome-24 

BeadChip, and 50,000 markers known to be associated with psychiatric disorders213. 

For the DPIM samples genotyping was performed at the Broad Institute of MIT and 

Harvard and the ID samples were genotyped at the University of Bonn.  

Quality control of the data was undertaken in PLINK214. Samples were excluded if 

they: did not match the SNP sex, if they had excessive heterozygosity (more than 5 SD 

above the mean, measured using common SNPs, MAF>0.05), if more than 5% of the 

SNPs genotyped had missing information, and SNPs failing Hardy-Weinberg 

equilibrium (HWE), a test which measures if the observed allelic distribution fits 

within the expected distribution. This is in line with quality control protocols described 

in relevant literature215. 

For the ID+ dataset the PsychChip raw intensity files, (*.idat), were converted into 

*.gtc files via Illumina’s GenomeStudio software216, *.gtc files were supplied by the 

Broad Institute for the DPIM samples. The signal intensity file was exported from 

GenomeStudio containing, SNP information, B allele frequency (BAF) and log R ratio 

(LRR). The BAF is a normalised representation of how often the B allele is called. A 

normal BAF plot has three distinct bands, with homozygous calls at the top and bottom 

and heterozygous in the middle. Absence of the middle band could be indicative of a 

CNV deletion, whereas the presence of extra bands could be indicative of a CNV 

duplication. LRR is a metric that normalises signal intensity for CNV analysis, when 

the fluorescence values are above 0 this might indicate a CNV duplication and 

florescence below 0 could indicate a CNV deletion. See Figure 6-1 for an example of 

the BAF and LRR plots exported from GenomeStudio for an individual from the ID+ 

sample. Data was exported from GenomeStudio for the ID+ sample in accordance with 

the methods described on the PennCNV website217. 
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Figure 6-1: CNV plots for a participant with a CNV deletion on chromosome 5 

 

 
Plots exported from GenomeStudio, The top image shows the log R ratio (LRR) and B allele 

frequency (BAF) of each marker, with the CNV deletion region highlighted, below is the region of 

chromosome 5 that is affected and the implicated genes, the bottom image has the same content as the 

top but the perspective is zoomed out to show the whole of chromosome 5. 

6.3.3 CNV calling in PennCNV 

Postdoctoral Researcher Dr Johan Thygesen wrote the scripts ‘prep_calling.sh’, 

‘call_cnvs_array.sh’, and ‘post_calling.sh’, to call the CNVs via PennCNV for the 

DPIM dataset. I ran these scripts to call the CNVs for the ID+ dataset to ensure 

methodological consistency. The script ‘prep_calling.sh’ modifies the signal intensity 

file to the format which is accepted by PennCNV. The script ‘call_cnvs_array.sh’ calls 

CNVs from the signal intensity data using the PennCNV algorithm. Finally, the 

‘post_calling.sh’ script performs post calling quality control checks. These scripts 

were created in accordance with the CNV calling guidelines on the PennCNV 

website218. Samples with more than 300 CNVs, with a BAF drift bigger than 0.01 and 
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with a LRR SD bigger than 0.5 were removed. Copies of these scripts are available in 

the appendix. Both autosomal and X chromosome CNVs were called. The X 

chromosome is of particular interest to the ID phenotype, given that 5-10% of ID in 

males is caused by genetic variants on the X chromosome and over 150 X linked ID 

syndromes have been identified219. It is typical to undertake X chromosome burden 

analyses separately for males and females, given the sex differences in the number of 

X chromosomes. The participants in the ID+, schizophrenia, and healthy control 

groups with CNVs called on the X chromosome were separated by sex, see Table 6-1. 

It was not possible to undertake the X chromosome analysis segregated by sex given 

the low number of females in the ID+ group. The analysis protocol will therefore focus 

on autosomal CNVs. 

Table 6-1 The number of males and females with X chromosome CNV calls in the three 

participants groups 

  Female (%) Male (%) 

Controls 266 (20.7) 347 (27.0) 

Schizophrenia 65 (4.3) 765 (50) 

ID+ 20 (8.8) 89 (39.0) 

6.3.4 CNV burden analysis – PLINK 

The PennCNV output files were converted to the PLINK format. As the focus of the 

CNV burden analysis was rare autosomal CNVs, a new CNV file was created on a 

filtered subset of the data. It is typical to use a frequency cut off of <1% for rare 

CNVs59,204, therefore CNVs were excluded that were present in >1% of the dataset. 

This frequency filter removed 74,112 CNVs from further analyses. CNV segments 

were considered to cover the same region if the minimum reciprocal breakpoint 

overlap was at least 50%. For the remaining CNVs the number of CNVs per individual 

was plotted to investigate individuals with a greater than expected number of CNVs. 

Taking a cut off of greater than 30 CNVs per individual, a histogram was plotted using 

IBM SPSS Statistics for Windows, Version 24.0 (IBM Corp, Armonk, NY, USA), see 

Figure 6-2. Furthermore, we decided to reduce the exclusion cut off of number of 

CNVs per individual from 300 to 100 to ensure a conservative cut off for possible 

falsely called CNVs. This resulted in 17 participants being excluded from further 

analyses. The BPAD cases were included for the frequency filter, to increase the 

sample size and reliability of the filter, however are not included in further analyses as 
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research has shown that there patients with BPAD have a lower burden of large rare 

CNVs than controls..  

Figure 6-2: Histogram of number of CNV segments per person in individuals with 30 or more 

CNVs 

Y axis: frequency, the number of individuals, X axis: NSEG, number of CNVs (or segments – the term 

used in the PLINK software), participants to the right of the vertical line (>100 CNVs per individual) 

were excluded from further analyses.  

A MAP file was then created, which maps the start and stop of CNV segments 

facilitating subsequent CNV parsing and analysis. Burden analyses of segmental CNV 

data were undertaken, which compares the metrics of cases versus controls evaluated 

by permutation. A phenotype file was included to enable separate comparisons: ID+ 

versus controls, schizophrenia versus controls and ID+ versus schizophrenia. In 

accordance with previous literature CNVs >100kb were analysed204, as calling of 

smaller CNVs can be less reliable and the primary interest is the role of rare and large 

CNVs in disease pathology. Additional size cut offs, >200kb and >400kb, were also 

considered. Furthermore, the role of CNV type, deletion or duplication, was also 
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considered. The script for this analysis was written by myself in accordance with the 

protocols described on the PLINK website220. An excerpt from this script for the ID 

versus controls analysis at a 100kb cut off for all CNVs, CNV deletions only, and CNV 

duplications only is detailed below. 

6.3.5 CNV analysis script 

#Creating a new CNV file on a filtered subset - excludes CNVs present more than 45 

times (1% frequency in a 4,487 sample size) with a minimum reciprocal overlap of 

50% 

./plink1 --noweb --cnv-list pchip_comorbid_auto_over100rem.cnv --fam 

pchip_comorbid.fam --map plink.cnv.map --cnv-freq-exclude-above 45 --cnv-overlap 

0.5 --cnv-write --out rarecnvless1per 

./plink1 --noweb --cnv-list rarecnvless1per.cnv --cnv-make-map --out rarecnvless1per 

 

#id versus controls all CNVs over 100kb in size 

./plink1 --noweb --map rarecnvless1per.cnv.map --cnv-list rarecnvless1per.cnv --fam 

rarecnvless1per.fam \ 

--cnv-indiv-perm --mperm 10000 \ 

--cnv-kb 100 \ 

--pheno pchip_comorbid.pheno --pheno-name $pheno \ 

--out $pheno.allover100kb 

 

#id versus controls CNV del over 100kb in size 

./plink1 --noweb --map rarecnvless1per.cnv.map --cnv-list rarecnvless1per.cnv --fam 

rarecnvless1per.fam \ 

--cnv-indiv-perm --mperm 10000 \ 

--cnv-kb 100 \ 

--cnv-del \ 

--pheno pchip_comorbid.pheno --pheno-name $pheno \ 

--out $pheno.100kbdel 

 

#id versus controls CNV dup over 100kb in size 

./plink1 --noweb --map rarecnvless1per.cnv.map --cnv-list rarecnvless1per.cnv --fam 

rarecnvless1per.fam \ 

--cnv-indiv-perm --mperm 10000 \ 

--cnv-kb 100 \ 

--cnv-dup \ 

--pheno pchip_comorbid.pheno --pheno-name $pheno \ 

--out $pheno.100kbdup 

6.4 Results 

The PLINK burden analysis of segmental CNVs reports four comparisons between 

cases and controls. The rate test compares the rate (number of segments or CNVs) per 
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person, the prop test compares the proportion of cases/controls to have at least one 

event, Totkb compares the total distance spanned by segments or CNVs per person, 

and the Avgkb compares the average segments or CNV event size per person. Results 

are presented uncorrected for multiple testing, in accordance with equivalent literature, 

where multiple testing corrections are only applied to breakpoint and gene-based 

association tests59. As the ID+ sample comprised participants with non-European 

ancestry (38/228), post-hoc analyses were also undertaken with these individuals 

removed. Where this changed the significance of the results this has been indicated.  

6.4.1 ID plus mental illness versus controls 

The results from the ID plus co-morbid mental disorders (ID+) versus control 

comparisons can be seen in Table 6-2. ID+ cases have a significantly increased rate of 

CNVs per person, as compared to controls. When filtering on CNV type this only 

remains significant for deletion CNVs and this remains significant at all size cut offs. 

The proportion of ID+ cases versus controls to have at least one event is only 

significant when considering CNVs >200 and >400kb, again filtering by CNV type 

this only remains significant for deletion CNVs. The total kb spanned by CNVs is 

significantly different between ID+ cases and controls except for at the 400kb cut off, 

again this only remains significant for deletion CNVs. For the average kb, or CNV 

event size per person, there is only a significant difference at the >100kb cut off and 

this is only significant when including both deletion and duplication CNVs. This result 

no longer remains significant when removing individuals with non-European ancestry. 

To further investigate the distribution of average CNV kb per individual a histogram 

was plotted, see Figure 6-3, and it appears that the significant difference between cases 

and controls is being driven by a small number of individuals who have high average 

CNV size in the ID+ group. 
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Table 6-2: CNV burden permutation test results for ID+ versus controls 

ID+ (n=228) versus controls (n=1285) 

  Size CNVs 

cases 

CNVs 

controls 

P Values 

CNV type (kb) (n) (n) Rate Prop TotKb AvgKb 

Del+Dup >100 818 1277 1.00E-04 0.082892 1.00E-04 0.0046 

  >200 294 437 1.00E-04 0.0009 1.00E-04 0.067993 

  >400 75 140 1.00E-04 1.00E-04 0.044296 0.209179 

Del >100 695 697 1.00E-04 0.017598 1.00E-04 0.013899 

  >200 236 180 1.00E-04 1.00E-04 0.0014 0.190981 

  >400 49 46 1.00E-04 1.00E-04 0.140486 0.294671 

Dup >100 123 580 0.19678 0.39836 0.112189 0.368063 

  >200 58 257 0.159784 0.59644 0.082392 0.283572 

  >400 26 94 0.094991 0.344966 0.10179 0.432957 

Key: Rate = Number of segments, Prop = Proportion of sample with one or more segment, Totkb = 

Total kb length spanned, Avgkb = Average segment size, Del = deletion, Dup = duplication, Bold = 

results that are significant at a significance threshold of P <0.05 

 

 

Figure 6-3 The average kb of CNVs for individuals from the ID+ group (N=228) 
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6.4.2 Schizophrenia versus controls 

There were no significant differences identified in CNV burden between schizophrenia 

cases and controls, see results in Table 6-3. 

Table 6-3: CNV burden permutation test results for schizophrenia versus controls 

Schizophrenia (n=1529) versus controls (n=1285) 

 Size CNVs 

cases 

CNVs 

controls 

P Values 

CNV 

type 

(kb) (n) (n) Rate Prop TotKb AvgKb 

Del+Dup >100 1241 1277 0.674633 0.40256 0.654835 0.09669 

 >200 460 437 0.371663 0.446955 0.534847 0.560644 

 >400 150 140 0.343666 0.359264 0.707929 0.687031 

Del >100 733 697 0.394561 0.418458 0.465653 0.290071 

 >200 203 180 0.323468 0.231577 0.627637 0.735226 

 >400 44 46 0.647135 0.70213 0.456454 0.487551 

Dup >100 508 580 0.906309 0.487951 0.79732 0.053495 

 >200 257 257 0.565943 0.257374 0.811919 0.305869 

 >400 106 94 0.171983 0.161484 0.534647 0.728327 

Key: Rate = Number of segments, Prop = Proportion of sample with one or more segment, Totkb = 

Total kb length spanned, Avgkb = Average segment size, Del = deletion, Dup = duplication, Bold = 

results that are significant at a significance threshold of P <0.05 

6.4.3 ID+ versus schizophrenia 

ID+ cases have a significantly increased rate of CNVs per person compared to 

schizophrenia only cases, see Table 6-4. When filtering on CNV type this only remains 

significant for deletion CNVs and this remains significant at all size cut offs. The 

proportion of ID+ cases versus schizophrenia to have at least one event is only 

significant when considering CNVs >200 and >400kb, again filtering by CNV type 

this only remains significant for deletion CNVs. The total kb spanned by CNVs is 

significantly different between ID+ and schizophrenia cases except for at the 400kb 

cut off, again this only remains significant for deletion CNVs.  
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Table 6-4: Permutation results for ID+ versus schizophrenia 

ID+ (n=228) versus schizophrenia only (n=1529) 

 Size CNVs 

cases 

CNVs 

controls 

P Values 

CNV 

type 

(kb) (n) (n) Rate Prop TotKb AvgKb 

Del+Dup >100 818 1241 1.00E-04 0.10159 1.00E-04 0.011499 

 >200 294 460 1.00E-04 0.0007 1.00E-04 0.051395 

 >400 75 150 1.00E-04 1.00E-04 0.023498 0.144386 

Del >100 695 733 1.00E-04 0.019898 1.00E-04 0.020398 

 >200 236 203 1.00E-04 1.00E-04 0.0004 0.123188 

 >400 49 44 1.00E-04 1.00E-04 0.142086 0.282772 

Dup >100 123 508 0.071693 0.39796 0.093291 0.674033 

 >200 58 257 0.132287 0.742826 0.046795 0.380462 

 >400 26 106 0.134087 0.573343 0.057694 0.283672 

Key: Rate = Number of segments, Prop = Proportion of sample with one or more segment, Totkb = 

Total kb length spanned, Avgkb = Average segment size, Del = deletion, Dup = duplication, Bold = 

results that are significant at a significance threshold of P <0.05 

6.5 Discussion 

A greater burden of large CNVs was identified in ID+ individuals, as compared to 

controls. Also a higher proportion of individuals with ID+ have at least one CNV 

event, as compared to controls, for CNVs >200 and >400kb. Whilst there has been no 

previous burden analysis in an ID+ cohort, analyses in paediatric cohorts with severe 

developmental disorders support this trend of greater CNV burden for individuals with 

ID and co-morbidities45. When segregating by CNV type, the association only 

remained significant for CNV deletions. Previous literature has been mixed as to the 

effect of CNV type on CNV burden. Research in severe developmental disorders found 

deletions to be twice as common as duplications45, a study investigating a range of 

NDD phenotypes found no bias towards deletions or duplications140, whereas a study 

of ID with and without schizophrenia only identified a significant difference between 

the groups for large CNV duplications141. It is unclear why these inconsistencies 

between studies exist. All of these studies have a slightly different ascertainment focus 

for their case samples, so it may be that the relationship with CNV type differs with 

the NDD under investigation.    

For the size analyses the total kb of CNVs per person was found to be larger for ID+ 

cases versus controls, however this does not remain significant when filtering by 
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CNVs >400kb. This is surprising given that individuals with ID+ were already found 

to have a significantly greater number and proportion of CNVs >400kb as compared 

to controls. Potentially this is due to that fact that CNV >400kb are rarer and there are 

fewer CNVs contributing to the total kb metric (75 CNVs in cases and 140 CNVs in 

controls). There are only significant differences between the average kb in ID+ cases 

versus controls for both deletions and duplications at the >100kb cut off. This is the 

weakest association in the study and it no longer remains significant when cases are 

removed from the analysis to control for the effects of ancestry. As evidenced by 

Figure 6-3 this results is likely driven by a small number of individuals with CNVs 

with large average kbs. Therefore, there does not appear to be major differences in the 

average CNV size between ID+ cases and controls. 

Surprisingly, no significant differences in CNV burden were identified between 

schizophrenia cases and controls. The rate, proportion, total kb, and average kb 

remained very similar between cases and controls at all size cut offs and for both 

deletions and duplications. A limitation of the analysis methodology was that the gene 

content of the CNV was not considered. The number of genes affected by CNVs has 

previously found to be the strongest signal of enrichment for schizophrenia burden 

analyses59. One explanation for the differences between this analysis and other 

published literature is that the study was underpowered to detect an effect, as the main 

schizophrenia CNV burden analyses to date have comprised much larger sample 

sizes59,204. Another factor may be that the schizophrenia samples recruited via the 

DPIM study are likely to be deselected for ID. Whilst having ID wasn’t an exclusion 

criteria for entry to the study, the study did require that the participant has capacity to 

consent to the research project. This may have reduced the number of participants at 

the lower end of the IQ spectrum. It is unclear what this result means for the 

interpretation of other schizophrenia CNV burden analyses to date. Recent work has 

shown that having a low IQ, or ID phenotype, does increase CNV burden in 

schizophrenia patients142. Also findings from a WES study found that more than half 

of the patients with a significantly enriched variant (in the SETD1A gene) also had 

learning difficulties. Data on the intellectual functioning of patients is not provided in 

the published large CNV burden studies59,204. This will be an important consideration 

for future research in the field. 
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Finally, significant differences in CNV burden were found in a case-case analysis of 

ID+ and schizophrenia only cases. The significant results were nearly identical to those 

found in the ID+ versus control analyses, except in this instance none of the average 

kb tests were significant. Given that there were no significant results when comparing 

schizophrenia cases against controls, the results indicate that differences in CNV 

burden are more pronounced as the severity of the NDD phenotype increases. In other 

words, there are greater differences in CNV burden between ID+ and schizophrenia 

compared with schizophrenia versus controls. 

This study has several potential limitations. Whilst all samples were analysed on the 

same platform, the PsychChip, the samples were processed at two different sites – The 

Broad Institute of MIT and Harvard and the University of Bonn. It could be that there 

were some differences in sample processing that are influencing the findings, for 

example differences in in-house genotype calling quality control measures. However, 

these results should still be more comparable than samples analysed on different 

platforms, whereby different densities of probes affect the calling sensitivity. CNV 

calling from SNP arrays is known to be less reliable than array CGH methodologies, 

which could have led to some false positive and negative CNV calls. Typically, there 

is greater noise – or a higher number of false calls – for small CNVs, which was 

attempted to be control for by only considering CNVs >100kb. However, it is unclear 

whether 100kb was the best size cut off to use as the previously referenced literature 

was published in 2008 and the Psychchip is a high-density array, which could 

potentially mean a smaller size cut off would have been more appropriate. 

A further limitation is that the cases were included in the filter to remove CNVs 

occurring at a >1% frequency in the dataset. It may be that some CNVs were removed 

which were absent in controls and only observed in cases. As the focus of this analysis 

was rare CNVs, and rare CNVs typically have much lower population frequencies, this 

is unlikely to have a major impact on the results. However, a more conservative 

common variant exclusion method would have been to use a publically available 

dataset with controls only to exclude common CNVs. The common CNV exclusion 

process was the same for participants from ethnic minority groups, whereas a more 

robust approach would have been to filter out common CNVs using ancestrally 
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matched control cases. Furthermore, the CNVs were only called using one calling 

algorithm – PennCNV. It has been shown that the number of CNVs per individual 

varies according to the algorithm used to call the CNVs221. Ideally multiple algorithms 

would be used and only CNVs that are called by more than one algorithm included in 

the analysis. Inheritance data was not available for this sample and so the role of de 

novo CNV burden could not be considered. Finally, the role of sex was not considered 

and this analysis was only undertaken on autosomal chromosomes due to the small 

group sizes for called X chromosome CNVs when dividing the groups by sex. Also it 

was not within the remit of this analysis to consider the gene content of CNVs, 

although this would be a natural next step for this work. 

6.6 Conclusion 

It has been hypothesized that psychiatric disorders lie on a neurodevelopmental 

continuum, of which ID is the most severe brain insult, followed by ASD and 

schizophrenia96. This CNV burden analysis compared, for the first time, ID plus co-

morbid psychiatric disorder cases, schizophrenia patients and controls with CNVs 

called from the same SNP array platform. One could hypothesize that ID with co-

morbid mental disorders lies at the extreme end of the neurodevelopmental continuum. 

Interestingly, ID+ appears to be more different from schizophrenia than schizophrenia 

does from controls, suggesting that CNV burden becomes more pronounced at the 

severest end of the neurodevelopmental continuum. 



 

 135 

Chapter 7 Future directions 

Historically, research has followed psychiatric nosology systems, ascertaining patients 

for the presence of distinct NDDs of interest. It soon became clear that, for the main 

part, psychiatric disorders do not follow simple Mendelian patterns of inheritance and 

that they are polygenic in nature, with a range of rare and common variants 

contributing to risk of developing the disorder. This extreme genetic heterogeneity, for 

example with over 700 ID related genes identified, presents challenges for uncovering 

molecular mechanisms of disease pathology. Furthermore, studies of pathogenic 

CNVs and SNVs have revealed that the same variant can be involved in risk for 

multiple NDDs. The full extent of this genetic pleiotropy is still under investigation, 

however it appears that there is a complex pattern of risk conferred by different loci. 

Cross-disorder genetic investigations, whereby groups ascertained for different NDDs 

are analysed together, are becoming common-place in psychiatric genetics. However, 

there remains a paucity of research in individuals with co-morbid NDD phenotypes. 

7.1 Summary of research findings 

This thesis has focused on the investigation of CNVs in individuals with co-morbid 

NDDs. In Chapter 2, findings from clinical practice were investigated, with a survey 

of child and adolescent and adult ID psychiatrists. The survey aimed to determine the 

extent to which genetic investigations are being utilised by psychiatrists working with 

patients with ID, and psychiatrists’ opinions around genetic testing practices. A need 

for increased training was identified, given the challenges clinicians face in keeping 

up to date with the genomic advances relevant to ID psychiatry. Currently, 

psychiatrist’s training curriculum fail to cover genetic disorders and there is a wide 

geographical variability in links and access to genetic testing services and genetic 

counselling. It is important to address these issues to ensure that the advances in 

genetic testing reach patients, this is particularly important given the health 

inequalities already faced by individuals with NDDs. It would be of interest to 

undertake further research on clinical management changes following genetic 

diagnoses, which were rarely reported in clinical practice, despite there being a large 

number of disorder guides with clinical management guidelines. 
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In Chapter 3 adults with idiopathic ID and co-morbid psychiatric disorders (N=202) 

were recruited from ID psychiatry services with the aim of determining the frequency, 

type, and associated phenotype of pathogenic CNVs.  An 11% frequency of pathogenic 

CNVs was identified, an important finding for clinical practice – that over 1 in 10 ID 

psychiatry patients have an undiagnosed aetiological CNV. This argues for more 

routine consideration of CMA in ID psychiatry services. The majority of pathogenic 

CNVs were found at recurrent loci, which have already been described in the literature. 

A higher proportion of pathogenic CNV carriers were forensic in-patients, as 

compared to non-pathogenic CNV carriers (OR 4.1). It would be an interesting avenue 

of future research to undertake CMA in forensic populations, however no cohorts 

could be identified to undertake this analysis within the remit of this thesis. No other 

significant differences in the frequencies of psychiatric symptomatology were 

identified between pathogenic and non-pathogenic CNV groups. This may mean that 

presence of a particular psychiatric disorder might not be a useful marker for 

prioritising patients for CMA testing. Again, further research on the phenotypic profile 

of pathogenic and non-pathogenic CNV carriers is needed to further investigate this. 

In Chapter 4, the findings of Chapter 3 were replicated in a larger multi-population 

patient cohort (N=599). A similar frequency of pathogenic CNVs was identified in 

these patients with ID and co-morbid pscyhiatric disorders (13%). To further 

investigate the genetic architecture of the pathogenic CNVs the rate of established 

NDD risk CNVs, as compared to single-disorder cohorts, was analysed. Again, 

pathogenic CNVs were frequently found at recurrent CNV sites, with 70% of 

pathogenic CNVs at sites already known to be involved in NDD risk. Taking this 

sample and comparing it to large healthy control, schizophrenia, and ID/ASD cohorts 

from previous studies unveiled the highest sample rate of NDD CNVs. This large 

multi-centre cohort also enabled the detection of overlapping likely pathogenic CNVs, 

providing valuable contributions to the literature on the pathogenicity of the CNTN 

and CHD gene families and 16p12.1 deletions. Future research could focus on adding 

further samples to this existing dataset, which will likely lead to the emergence of other 

multiply occurring rare pathogenic CNVs.  
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In Chapter 5, deep phenotyping was undertaken in patients with CNVs at the 2q13 

locus (N=25). Whilst developmental and psychiatric phenotypes had been described 

in previous published studies, these phenotypes had not been systematically 

investigated. A common phenotype of DD, mild intellectual impairment and a high 

frequency of psychiatric and behavioural disorders was identified. There appeared to 

be a global risk to developing a psychiatric disorder, with a wide-range of symptoms 

and diagnoses. However, the frequency of clinical ADHD diagnoses was particularly 

striking – with 44% of participants being diagnosed. Delineation of the phenoypes 

associated with rare CNVs is important to enable syndrome-specific phenotype 

information, which may guide therapeutic interventions. Furthermore, the 

identification of a high rate of ADHD diagnoses may guide functional follow up in 

this region in investigations of the neuropathological mechanisms of ADHD. This 

multi-faceted research approach – utilising RGCs, a patient support group and a rare 

CNV database, was particularly successful and enabled the largest case series of 2q13 

patients reported to date. A similar approach could be undertaken in future research to 

facilitate phenotypic delineation of rare CNVs. Another further avenue of research 

would be to undertake WES or WGS in the 2q13 participants to test the second-hit 

model as a theory for the incomplete penetrance of this CNV.  

Finally in Chapter 6, a burden analysis was undertaken to compare the individuals with 

co-morbid NDDs (ID+) to controls and schizophrenia only patients. Significant 

differences in rates of CNVs per individual, the proportion of cases with at least one 

CNV event and the total kb of CNVs spanned per person were found between the ID+ 

and controls. When filtering by CNV type and size this only remained true for CNV 

deletions at the larger size cut offs. No differences were found between schizophrenia 

cases and controls, although it may be that this analysis was underpowered. The ID+ 

cases showed significant differences in CNV burden, as compared to schizophrenia 

patients, indicating that the CNV burden is particularly high in the co-morbid ID+ 

cohort. There were several limitations of this analysis and further analysis is required 

to investigate this finding, in particular re-calling the CNVs using a different 

algorithm, investigating the impact of sex, and undertaking a gene-set analysis would 

be appropriate extensions of this analysis.  
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7.2 Insights from participant recruitment 

Being personally involved in participant recruitment has afforded me unique insights 

into the challenges of undertaking psychiatric research. One observation, which 

recurred throughout my research visits, is that family members are hesitant to divulge 

mental health information. On many occasions a family member would answer ‘no’ 

when asked whether themselves or their child had a diagnosed mental health problem. 

However, it would emerge through later questioning in the interview that this was 

incorrect. For example, one family member said their child did not have a mental 

health problem, however following a discussion about medication history it emerged 

that the child was taking anti-depressants and did have a diagnosis of depression. It 

was far less frequent that a family member would misanswer questions relating to 

physical health. It is unclear why this phenomenon occurred, it may have arisen from 

family members’ misunderstanding of the term ‘mental health’. It could also be linked 

to that fact that mental health problems are more stigmatised than physical health 

problems, and thus the family finds it difficult to discuss or they are reluctant to share 

the information. 

Another interesting observation was that during collection of family history 

information for patient pedigrees, family members would refer to their relatives using 

terms such as ‘a bit odd’ or ‘a bit of a loner’. These relatives were never investigated 

for psychiatric illness, although family members often felt that they would meet 

diagnostic criteria. From a historical context awareness of, and screening for, mental 

health problems is much improved in current healthcare systems. There is an ongoing 

debate about whether mental health problems are increasing in prevalence or whether 

the increase is a consequence of improvements in psychiatric screening. For example, 

it is thought that raising awareness and screening for ASD may explain the rapidly 

increasing prevalence rates of the disorder. Research utilising US special education 

enrolment data has shown that as diagnoses of ASD have risen those of ID have 

decreased, suggesting that misdiagnosis of ASD as ID in the past may in part account 

for the increasing prevalence of the disorder222. This highlights the difficulties of 

ascertaining an accurate psychiatric family history from research participants. Ideally 

all family members would be re-screened using modern assessment procedures – 
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however the requirement for trained clinicians and lengthy screening processes are a 

barrier to implementing this in research practice. 

Another element of the recruitment process required review of available medical 

records. This comprised records from a variety of practitioners involved in the care of 

the participant, including: psychologists, speech and language therapists, occupational 

therapists, psychiatrists, and clinical geneticists. Surprisingly, patient information was 

often inconsistent between reports. In some instances the wrong genetic or medical 

diagnosis was included on practitioner reports, or the reports failed to mention 

important information relating to the participant’s diagnosis. This issue is particularly 

pertinent for individuals with ID and co-morbid mental illness, as there are often 

multiple medical professionals involved in the patient’s care who have not necessarily 

communicated directly about the patient. This raises the important issue of whether 

medical records are a reliable source of information about the medical and psychiatric 

history of these individuals. Due to the study design, direct liaison with an informant 

and the treating psychiatrist made it feasible to resolve any discrepancies during the 

recruitment process. However, study designs which only utilise medical records are 

likely to be more error prone.  

7.3 NDD risk CNVs and clinical heterogeneity  

CNVs associated with risk for developing NDDs have been shown to have variable 

phenotypic outcomes. Taking the 2q13 CNV as an example, a wide range of medical, 

dysmorphic, behavioural and psychiatric features were identified in participants with 

2q13 CNVs. However, nearly half of the individuals (44%) had an ADHD diagnosis. 

This work provides support for the asymmetric risk model, whereby rare CNVs confer 

both shared risk and distinct aetiology108. In this instance, shared risk for general 

psychiatric pathology, with a propensity for ADHD pathology.  

It is important to consider the potential modifying factors that influence outcomes for 

these CNV carriers. Firstly, only one type of genetic variation – CNVs – was taken 

into account and many other forms of genetic variants affect phenotypic outcomes. For 

example, it is typical for every individual to have around 1-2 de novo exonic SNVs223, 

and the rate is likely higher in severe NDD cohorts51. Furthermore, rare inherited 
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variants, identifiable by WES and WGS, also modify phenotypic outcomes. Research 

investigating the contribution of both rare and common variants to schizophrenia 

pathology has provided support for a polygenic threshold model, whereby a multitude 

of common and rare risk variants are involved in the disease phenotype74. Common 

variants were also not considered in this thesis, and it is likely that the burden of 

common risk variants acts as a modifier of phenotypic outcomes. 

Currently, separate tests are required to reliably detect each type of genetic variant, 

making it challenging to consider all the contributing genetic factors. As WGS 

becomes cheaper and the methods for detection of other variants (such as CNVs) from 

sequencing data improve, it is likely that genetic testing in the future will be more 

comprehensive. Another challenge is that little is known about how modifier genes or 

gene-gene interactions modify phenotypic outcomes. Large well-phenotyped samples 

with comprehensive genetic data will be required to delineate these relationships. It is 

of interest to identify variants operating in the same molecular pathways, which likely 

exacerbate disease phenotypes, and compensatory or protective variants. For the 2q13 

CNV carriers, 25% of participants had a family history of ID and mental health 

problems on the other side of the family from which the variant was transmitted. It 

may be that assortative mating and/or multiple hits in NDD gene pathways are 

contributing to the diverse phenotypic outcomes observed. A further challenge will be 

ascertaining genetic history for available family members, and teasing out the 

contribution of inherited variants. 

It is not only genetic factors which contribute to phenotypic outcomes. Recent 

estimates of the concordance rates between monozygotic twins for schizophrenia are 

around 33%57, highlighting that outcomes are often variable for genetically identical 

individuals. Non-genetic factors, including environmental factors – such as obstetric 

complications, drug abuse, and migration – have been shown to contribute to 

phenotypic outcomes in schizophrenia224. Stochastic, or chance factors, also play a 

role, given that the brain is a highly complex organ and neuronal development is error 

prone. Similar to the novel de novo mutations that arise by chance at the genetic level, 

there are comparable chance errors in the cellular processes involved in the developing 

brain.  
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7.4 Complexities with phenotyping and co-morbid phenotypes 

One of the primary differences between the research presented in this thesis and other 

large cohort studies in psychiatric genetics is the degree of phenotypic information 

collected. GWAS analyses typically class disease as a categorical phenotype. For 

example, the presence or absence of schizophrenia defines the case and control groups 

respectively. Whereas, the term deep phenotyping is used for studies that comprise 

measurements on a number of clinical, behavioural, and neuropsychiatric assessments. 

The challenge for more comprehensive phenotyping is that there is no standardised 

method for deep phenotyping in psychiatry, meaning there is methodological 

inconsistency across the measures used. Deep phenotyping is also very time 

consuming, resulting in a limited number of subjects and often requiring collaboration 

with other researchers225. As previously discussed, family members do not necessarily 

answer research questions correctly and the information available from medical notes 

is not necessarily accurate. This poses questions about the validity of shallow 

phenotyping techniques, whereby limited information is collected.  

A complexity with interpreting the findings from this thesis, with a more 

comprehensive phenotyping protocol, is that it is unclear how the research participants 

relate to those presented in other studies. As discussed in Chapter 4, the large paediatric 

severe developmental disorder cohorts are poorly phenotyped and it is unclear exactly 

how many had DD/ID and/or psychiatric disorders. Also the paediatric nature of the 

cohort means that the age of onset for many psychiatric disorders is yet to be reached. 

Furthermore, diagnosis of psychiatric illness in ID is challenging, and it is not routine 

practice for a standardised set of psychiatric assessments to be undertaken. Thus, 

diagnostic practices are variable, and it may be that individuals categorised as having 

ID only also have undetected mental health problems. This is particularly the case at 

the severe end of the ID spectrum, where non-verbal individuals are unable to self-

report psychiatric symptoms.  

The work in this thesis shows that patients with ID plus psychiatric co-morbidities 

have a greater frequency of CNVs at NDD risk loci and a higher burden of rare CNVs, 

as compared to other patient groups. The neurodevelopmental continuum model has 

already proposed that ID is the most severe early brain insult which has a higher burden 
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of CNVs and deleterious mutations96,226. It may be that ID plus co-morbid 

neurodevelopmental or neuropsychiatric phenotypes is located on the most severe tail 

of the neurodevelopmental continuum model, being a more severe phenotype than ID 

alone. However, the aforementioned limitations with a lack of suitable reference 

populations precludes confirmation of this hypothesis. Ideally, a comparable reference 

population of patients with ID and the absence of co-morbid mental illness would be 

required to fully test the difference between groups. However, this is a difficult 

population to ascertain.  

The challenges in ascertaining an ID population with the absence of co-morbid 

psychiatric phenotypes is multifold. One could only study this in adulthood, after the 

age of onset for most psychiatric disorders. As previously discussed there is a historical 

context whereby many adults with ID will have not undergone psychiatric screening. 

It may be that there has been diagnostic overshadowing – whereby the ID is thought 

to be the cause of the phenotype, so appropriate screening for other disorders wasn’t 

undertaken. Also previous versions of the psychiatric diagnostic manuals precluded 

some co-morbid diagnoses, for example only in DSM5 was it possible to diagnose 

ADHD and ASD in the same individual226. In order to rule out psychiatric co-

morbidities, the most robust approach would be to re-screen everyone with ID using 

modern psychiatric screening schedules – although this would be complex and 

resource intensive. 

Several lines of evidence suggest that diagostic categories, used in clinical psychiatric 

practice, map poorly onto the underlying biology. From a phenotypic perspective, 

there is also a wide variability within diagnostic categories and symtom overlap 

between diagnostic categories226. There is also a movement towards recognising the 

complex continuous nature of NDDs, and how their different patterns of impairments 

lie on a continuum marked by the severity of the brain insult1. However, it is difficult 

to determine where an individual with mild ID and schizophrenia lies in relation to an 

indiivudal with severe ID. Perhaps a better measure of impairment, rather than crude 

diagnostic status alone, would be to undertake a functional assessment of the degree 

of impairment to daily living skills. This might take into account some of the 



 

 143 

complexities of studying co-morbid diagnoses, but would require an overhall of 

current research practices.  

7.5 Further discussion of ascertainment bias 

As discussed in previous chapters, one of the limitations of the findings of this thesis 

is that there is likely to be an ascertainment bias arising from the methodology used to 

recruit participants. Routine genetic testing for CNVs in psychiatric practice is 

currently only taking place in the context of paediatric DD/ID, MCA and ASD25. The 

next obvious group for routine genetic testing is adults with co-morbid psychiatric 

phenotypes, the target population for this body of research. This research aimed to 

sample participants directly from clinical services, with ID psychiatrist being the main 

point of contact for recruitment. It is hard to determine the extent to which 

ascertainment bias affected the results, as the bias could have operated in both 

directions – both in terms of psychiatrists selecting patients who they suspect have 

underlying genetic disorders, and de-selecting participants with more severe 

phenotypes who are harder to recruit.  

Individuals with ID and co-morbid psychiatric disorders are a particularly hard-to-

reach population. The recruitment strategy employed in this thesis was very successful, 

recruiting nearly 250 individuals in 18 months. It is challenging to think of alternative 

research methods to reduce ascertainment bias whilst maintaining recruitment levels. 

Indeed, all of the severe developmental disorders studies will have an element of 

recruitment bias, as many have captured patients referred for clinical genetic testing 

and a certain threshold of impairment must be passed to reach referral for clinical 

testing44,45. Ideally, a large population based longitudinal study, with available genetic 

data, would be the most representative sample, as it would enable detection of 

neurodevelopmental CNV carriers across the whole phenotypic spectrum – from 

healthy controls to patients with co-morbid phenotypes. 

7.6 Clinical implications and utility 

Several participants in this study received a genetic diagnosis, of previously 

undiagnosed pathogenic CNVs that were related to the individual’s ID and/or 
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psychiatric condition. The implications of receiving a genetic diagnosis for patients 

and their families are widespread. For some families receiving a genetic diagnosis can 

help to alleviate feelings of self-blame, particularly for mothers who may falsely 

believe that they did something wrong during pregnancy. One study investigated self-

reported quality of life scores in mothers whose child had received a genetic diagnosis 

from array CGH. They found that having an aetiological diagnosis for the child’s 

DD/ID and/or MCA improved maternal quality of life. It is described as an ‘emotional 

relief’ to have a name for the disorder and understand the cause of the child’s 

diability137.  

Confirmation of an aetiological diagnosis can also aid clinical symptom-based 

diagnosis. An aetiological diagnosis can facilitate screening for associated medical and 

psychiatric disorders, and in some instances provide information on likely 

responsiveness to treatments. Information leaflets with clinical guidelines are available 

for an increasing number of rare genetic syndromes134,135. More clear cut information 

about a syndrome can be helpful, particularly if it helps the patient understand 

phenotypic presentations. For example, a patient who has a syndrome which has a 

common phenotype of self-injurious behaviour136.  

A genetic diagnosis can also be empowering for patients and families, enabling them 

to access disorder-specific or general support groups, such as the Unique chromosomal 

disorder support group. For school age children a genetic diagnosis can be beneficial 

for a statement of special educational support, or access to disorder-specific support 

services. Furthermore, a genetic diagnosis may have broader implications for the 

family and indicate genetic counselling, genetic risk to subsequent offspring, and 

cascade testing via Regional Clinical Genetics Services. Genetic counselling in 

schizophrenia patients, who had been fed back aetiological CNV results, was found to 

improve understanding of the disorder, and significantly reduce internalized stigma 

and self-blame227. Recurrence risk information can be hugely beneficial to family 

planning, for example if a rare variant is found to be de novo in origin then there the 

recurrence risk for siblings is equal to the population prevalence of the disorder.  

The full range of CNVs implicated in NDD risk are still being delineated. It is likely 

that many of the highest penetrance variants have already been identified, given their 
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stronger associations with specific phenotypic outcomes. However, more 

neurosusceptability CNVs (which are present at higher frequencies in NDD patients, 

but also present at low frequencies in healthy controls) may yet be identified. 

Neurosusceptability CNVs, at the 2q13 locus, were described in detail in this thesis. 

Further delineation of the phenotype, and it’s association with childhood onset 

psychiatric disorders, could have important clinical implications for screening for 

psychiatric disorders. However, there were also a diverse range of medical and 

dysmorphology phenotypes observed. It is clear that the relationship between 

neurosusceptability CNVs and phenotypic outcomes will be even more challenging to 

delineate, and will pose greater challenging for genetic counselling of patients and 

their families. Description of the phenotype of participants with VOUS likely 

pathogenic CNVs in Chapter 4 may also help to guide the clinical interpretation of 

these CNVs in the future, given that reviewing published literature on the CNVs is an 

integral part of the categorisation process14. As evidenced in Chapter 2, there are 

barriers to translating the advances in genetic understanding of NDDs into clinical 

practice. Psychiatrists lack confidence in genetic testing practices and require further 

training and better links with genetic services. It is unclear how these findings link to 

other areas of medicine where genomic testing is on the rise. For example, many 

advances have been seen in genetic testing for various cancers and it would be 

interesting to research clinician’s views in this branch of medicine. One of the major 

challenges in psychiatric research is that it still relies on self-reported symptom 

information to diagnose patients, whereas parallel tests in oncology have biological 

markers from blood tests and tumor biopsies.  

In the broad field of psychiatry, ID psychiatry is likely to have the most utility for 

genetic testing in the clinic given the high rate of pathogenic variants. However, as it 

currently stands the onus is on psychiatrists to choose which patients, if any, to refer 

for clinical genetic testing. Implementing a routine genetic screening programme, at 

least for pathogenic CNVs, in ID psychiatry would enable comparable – or greater – 

success rates as in paediatric DD/ID. However, this would need to be supported with 

training for clinicians in the genetic testing process and the additional demand for 

genetic counselling would need to be supplemented by increased service provision in 

Regional Genetics Services. If the current scope of routine testing is expanded to 
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encompass this patient group this could also facilitate the discovery of further risk 

variants for NDDs.  

There are currently limited therapeutic success stories that have arisen from discovery 

of underlying NDD genetic aetiologies. Drug discovery in psychiatry in general has 

stagnated, with no major developments in the previous 40 years and many 

pharmaceutical companies scaling down psychiatric drug research226. In cancer 

genetics the pathogenic effects of genetic variants arise at the cellular level, and drugs 

can be targeted to biochemical pathways. In psychiatry there is a complex myriad of 

genetic interactions, which has cascading effects on complex neural circuits and 

pathways. One study has reported a pharmacologically guided treatment in a patient 

with 15q13.3 deletion syndrome who had an aggressive phenotype. The CNV deletion 

was found to encompass the Cholinergic Receptor Nicotinic Alpha 7 Subunit 

(CHRNA7) gene. Administration of galatamine, a modulator of nicotinic cholinergic 

receptor function, led to a decline in the frequency and intensity of rage outbursts228. 

Further advances in pharmacogenomics will be dependent upon better characterisation 

of the region specific molecular consequences of pathogenic CNV. 

7.7 Concluding remarks 

One of the greatest challenges to the future of psychiatric research is how to reconcile 

these findings within the current system of psychiatric nosology and determine the 

type of patient stratification that is most appropriate for genetic analyses. More studies 

of rare pathogenic CNVs, with a focus on functional analysis of candidate genes and 

pathways, will be required to delineate the nature of asymmetric loci-specific risk. It 

will be imperative that this research cuts across cohort groups, traversing from healthy 

controls to individuals with co-morbid NDDs. Concurrently, phenotyping methods 

need to be developed – currently phenotyping is basic and the lack of standardised 

methods preclude comparisons between studies. Indeed, investigations of ‘healthy 

controls’ with pathogenic CNVs have revealed that many do show cognitive 

impairments and psychiatric symptomatology. Thus, better psychiatric and cognitive 

phenotyping, to encompass sub-clinical aetiology, is important for future genetic 

studies. Additionally, consideration of familial genetic background and the interaction 
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between genetic variants is likely to uncover protective mechanisms for the pentrance 

of pathogenic CNVs and expressivity of disease phenotypes. 
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Appendix 

Clinically significant CNV questionnaire 

Did you feel it was appropriate to feedback the genetic test result to your patient?  

Yes ☐ No ☐ 

If YES what was your experience of feeding back the result? 

If NO why did you not feel it was appropriate to feedback the result? 

Did you feel it was appropriate to feedback the genetic test result to the patient’s 

family members/carers?  

Yes ☐ No ☐ 

If YES what was your experience of feeding back the result? 

If NO why did you not feel it was appropriate to feedback the result? 

Was the patient referred to clinical genetics?  

Yes ☐ No ☐ 

If so what was your experience of the referral process?  

Have family members of the patient undergone genetic testing?  

Yes ☐ No ☐ Unknown ☐ 

If so have you been informed of the results?  

What do you think was the psychological impact of receiving the diagnosis 

outcomes (for patient/family/carer)? 
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Has the patient been in contact with any support groups? 

Yes ☐ No ☐Unknown ☐ 

Please provide details if known 

Has your patient’s GP been informed of the genetic test result?  

Yes ☐ No ☐ 

Have any other professionals involved in the patient’s care been informed of the 

genetic test result?  

Yes ☐ No ☐ 

If so please provide details 

Have there been any management changes (medical and social) for the patient 

related to their genetic diagnosis? Examples given below; please provide relevant 

details 

Medical screening investigations (e.g. blood tests, echocardiogram, neuroimaging) 

Specialist medical referral (e.g. cardiology, ophthalmology, endocrinology) 

Discontinuation of previously recommended medical screening 

Changes in medication 

Changes to medical services input or eligibility 

Changes to social circumstances or eligibility including care/housing/benefits 

Other, please describe
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Prep_calling.sh script 

## Script to prepare for penncnv call of illumnia psychchip samples 

projectdir=/home/rejujht/molpsych/projects/penncnv/psychchip 

listdir=$projectdir/lists 

# mkdir -p $listdir 

## 1) Generate listfiles for array submission of penncnv jobs 

# find $projectdir/psychchip_intensity-data/ -iname "*.gtc.txt" -type f > 

$listdir/listfile_all.txt 

## 1b) (OPTIONAL) Remove very bad samples identified from first round from the 

list 

### Script takes 3 arguments: 1) listfile to update, 2) very_bad_exclude list as 

generated by qc_cnvs_find_really_BAD.R, 3) sampleSheet cleened 

# Rscript remove_very_bad_from_list.R $listdir/listfile_all.txt cnv-

calls_130317/pchip.penn_really_BAD.excluded SampleSheet_cleaned.txt 

# ## 1- continued) split listfile all into 10 

# awk 'NR>=1&&NR<=500' $listdir/listfile_all.txt > $listdir/listfile1.txt 

# awk 'NR>=501&&NR<=1000' $listdir/listfile_all.txt > $listdir/listfile2.txt 

# awk 'NR>=1001&&NR<=1500' $listdir/listfile_all.txt > $listdir/listfile3.txt 

# awk 'NR>=1501&&NR<=2000' $listdir/listfile_all.txt > $listdir/listfile4.txt 

# awk 'NR>=2001&&NR<=2500' $listdir/listfile_all.txt > $listdir/listfile5.txt 
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# awk 'NR>=2501&&NR<=3000' $listdir/listfile_all.txt > $listdir/listfile6.txt 

# awk 'NR>=3001&&NR<=3500' $listdir/listfile_all.txt > $listdir/listfile7.txt 

# awk 'NR>=3501&&NR<=4000' $listdir/listfile_all.txt > $listdir/listfile8.txt 

# awk 'NR>=4001&&NR<=4500' $listdir/listfile_all.txt > $listdir/listfile9.txt 

# ## awk 'NR>=4501&&NR<=5500' $listdir/listfile_all.txt > $listdir/listfile10.txt 

# ## 2) Strip header to file and change name of B-allel and R header to prepare for pbf 

file creation and CNV calling 

# while read p;  

# do echo $p 

#     idcode=$(basename $p) 

#     head -n12 $p > $p.header 

#     sed -i '1,11d' $p 

#     sed -i 's/bAllele Freq/${idcode}.B Allele Freq/g' $p 

#     sed -i 's/Log R Ratio Illumina/${idcode}.Log R Ratio/g' $p 

#     sed -i 's/SNP Name/Name/g' $p 

#     sed -i 's/Chromosome/Chr/g' $p 

# done < $projectdir/lists/listfile$SGE_TASK_ID.txt 

## 2) Generate pbf file 
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# /share/apps/genomics/PennCNV-1.0.3/compile_pfb.pl --listfile 

$listdir/listfile_all.txt --output $projectdir/pchip.pfb 

## 3) Generate GCmodel 

# wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/gc5Base.txt.gz 

# gzip -fd gc5Base.txt.gz     

# sort -k 2,2 -k 3,3n gc5Base.txt > gc5Base.sorted.txt 

## use pennCNV function to calulate GC 

/share/apps/genomics/PennCNV-1.0.3/cal_gc_snp.pl $projectdir/gc5Base.sorted.txt 

$projectdir/pchip.pfb -output $projectdir/pchip.gcmodel 

## clean up 

# rm $projectdir/gc5Base.sorted.txt 

# rm $projectdir/gc5Base.txt 

## 4) Generate a sex file with updated info from the gwas data 

Rscript generate_sex-file.R 
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Call_cnvs_array.sh script 

## In .bashrc 

# export PERL5LIB=/share/apps/genomics/PennCNV-1.0.3/kext/5.10.1/x86_64-

linux:$PERL5LIB 

projectdir=/home/rejujht/molpsych/projects/penncnv/psychchip 

outdir=$projectdir/cnv-calls # output dir for raw cnv calls 

penncnv=/share/apps/genomics/PennCNV-1.0.3 # Penncnv executables 

outprefix=pchip.penn 

mkdir -p $outdir 

## Autosome detection 

$penncnv/perl-5.10.1/bin/perl $penncnv/detect_cnv.pl -test \ 

  -hmm $projectdir/hhall.hmm \ 

  -pfb $projectdir/pchip.pfb \ 

  -gcmodel $projectdir/pchip.gcmodel \ 

  -list lists/listfile$SGE_TASK_ID.txt \ 

  -confidence \ 

  -log $outdir/$outprefix.$SGE_TASK_ID.log \ 

  -out $outdir/$outprefix.$SGE_TASK_ID.rawcnv \ 

 



 

 166 

# ## ChrX detection 

$penncnv/perl-5.10.1/bin/perl $penncnv/detect_cnv.pl -test \ 

  -hmm $projectdir/hhall.hmm \ 

  -pfb $projectdir/pchip.pfb \ 

  -gcmodel $projectdir/pchip.gcmodel \ 

  -list lists/listfile$SGE_TASK_ID.txt \ 

  -chrx -sexfile $projectdir/pchip_penncnv_gender.txt \ 

  -confidence \ 

  -log $outdir/$outprefix.$SGE_TASK_ID.sex.log \ 

  -out $outdir/$outprefix.$SGE_TASK_ID.sex.rawcnv \
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Post_calling.sh script 

## Variables 

projectdir=/home/rejujht/molpsych/projects/penncnv/psychchip 

outdir=$projectdir/cnv-calls # output dir for raw cnv calls 

prefix=pchip.penn 

Rpath=/share/apps/R-3.1.1/bin/Rscript 

## Convert output to coloumn style 

cat $outdir/*.rawcnv > $outdir/$prefix.rawcnv 

mkdir $outdir/sexlog 

mv $outdir/*sex.log $outdir/sexlog 

cat $outdir/*.log > $outdir/$prefix.log 

# Clean up  

rm $outdir/$prefix.*.rawcnv 

rm $outdir/$prefix.*.log 

# Arguments: 1) rawcnv file, 2) Sample_id file 

$Rpath $projectdir/convert_cnv_output.R $outdir/$prefix.rawcnv 

$projectdir/SampleSheet_cleaned.txt 

## Get values from log 

pennlog=$outdir/$prefix.log 
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grep "NOTICE: quality summary for" $pennlog | sed 's/NOTICE: quality summary for 

//g' > ${pennlog/.log/.log.qc} 

## Run QC 

mkdir -p $outdir/plots 

# Arguments: 1) cnv-call dir, 2) penncnv output prefix, 3) penncnv log, 4) listfiles, 5) 

Sample_id file 

$Rpath $projectdir/qc_cnvs.R $outdir $prefix $pennlog $projectdir/lists/listfile_all.txt 

$projectdir/SampleSheet_cleaned.txt 

## Find CNV regions of interest # Arguments: 1) cnv-call dir, 2) cnv-inputfile, 3) 

region of interest file path 

$Rpath $projectdir/call_regions_of_interest.r $outdir $prefix.qc 

$projectdir/input/regions_of_interest_80.txt
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