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Abstract

This project uses bioinformatics protocols to explore the impacts of non-synonymous
mutations (nsSNPs) in proteins associated with diseases, including germline, rare dis-
eases and somatic diseases such as cancer. New approaches were explored for deter-
mining the impacts of disease-associated mutations on protein structure and function.
Whilst this work has mainly concentrated on the analysis of cancer mutations, the meth-
ods developed are generic and could be applied to analysing other types of disease
mutations. Different types of disease causing mutations have been studied including
germline diseases, somatic cancer mutations in oncogenes and tumour-suppressors,
along with known activating and inactivating mutations in kinases. The proximity of
disease-associated mutations has been analysed with respect to known functional sites
reported by CSA, IBIS, along with predicted functional sites derived from the CATH clas-
sification of domain structure superfamilies. The latter are called FunSites, and are highly
conserved residues within a CATH functional family (FunFam) — which is a functionally
coherent subset of a CATH superfamily.

Such sites include key catalytic residues as well as specificity determining residues
and interface residues. Clear differences were found between oncogenes, tumour sup-
pressor and germ-line mutations with oncogene mutations more likely to locate close to
FunSites. Functional families that are highly enriched in disease mutations were identi-
fied and exploited structural data to identify clusters within proteins in these families that
are enriched in mutations (using our MutClust program). We examined the tendencies
of these clusters to lie close to the functional sites discussed above.

For selected genes, the stability effects of disease mutations in cancer have also
been investigated with particular focus on activating mutations in FGFR3. These stud-
ies, which were supported by experimental validation, showed that activating mutations
implicated in cancer tend to cause stabilisation of the active FGFR3 form, leading to its
abnormal activity and oncogenesis. Mutationally enriched CATH FunFams were also
used in the identification of cancer driver genes, which were then subjected to pathway

and GO biological process analysis.



Impact Statement

The work presented in this thesis describes a novel approach for detecting and analysing
disease variants on a protein and cellular level. The approach was mainly applied to cancer
as there are now significant amounts of data on disease variants linked to cancer. It used a
multi-level strategy which first aggregated mutations across protein domains in families, to find
mutationally enriched families. It then considered how cancer mutations cluster in 3D protein
structures as a mechanism for finding putative driver mutations. By mapping putative driver
genes to cellular pathways it was possible to analyse the affected cellular pathways. Structural
analyses of the location of the 3D clusters highlighted how protein functions are affected and
which protein regions are most targeted in cancer. Novel driver mutations were identified for
Fibroblast Growth Factor receptor, a protein implicated in bladder cancer.

This work serves as valuable step in making sense of the vast amounts of next genera-
tion sequencing (NGS) data, by bridging genetic research to protein science. Since 2017, the
methodology developed has formed the basis of ongoing collaborations with the Swanton re-
search group in the Francis Crick Institute to analyse disease variants in lung cancer, linking
protein bioinformatics to a clinical context. The approach is helping to pinpoint driver events in
cancer - to find molecular convergence within heterogeneous genetic data, and provide a coher-
ent explanation for disease pathogenesis. In turn this will hopefully guide drug treatment and
provide insight into the nature of cancer evolution. In addition to cancer, this methodology can
be applied to other disease types eg rare genetic diseases. It could also be applied to study the
mutations in bacterial proteins that result in antibiotic resistance.

In terms of commercial activity within front line healthcare, the methods presented in this
work could form the basis of a diagnostic characterisation tool for genetic variants, providing
clinicians insight into the analysis of NGS data, and in turn guiding patient treatment. Because
these methods characterise genetic variants, when linked with drug response data, they can help
advance personalised medicine by increasing drug specificity, and reducing side effects - thereby
increasing the quality of therapy for the patient.

The tools developed will also be valuable to pharmaceutical companies, to aid drug trials by
providing complementary insights that could help rationalise structure-activity relationships for
drug lead selection, thereby increasing efficiency and decreasing costs within drug lead optimi-

sation.



As well as being reported in scientific journals, the outputs of the published research will
be discussed on an online podcast within the International Creative Disturbance media outlet.
This posting will highlight the analogy between protein and disease evolution and evolution in the
artificial intelligence and creative arts industries - thereby bridging the gap between the intricate

details of fundamental scientific research and everyday phenomena.
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Chapter 1

Introduction To Thesis

The efforts of various genome sequencing studies has shed light on the profuse amount
of sequencing data, and on the importance of mutations within genetic and somatic dis-
eases. In this thesis, the analysis of missense mutations within different cancer types
were mainly considered, but the methods developed can be applied to all kinds of dis-
ease causing mutation. Since cancer harbours an abundance of genetic mutations due
to its high replicative turnover, here methods were developed to identify cancer driver
genes, and to distinguish cancer mutations that drive carcinogenesis from passenger
mutations.

This was done using CATH protein domain family data and pathway information to
identify cancer driver genes and mutations, and to understand their mechanisms. This
chapter provides a general overview to disease mutations and their impacts of protein
structure and function, whilst also providing a review of the methods which use such
impacts to predict pathogenicity. This thesis is structured so that at the beginning of each
chapter there is a literature review for the work specific to the subject of the chapter in
question, followed by the methods and results performed in this work.

It was found that using CATH protein domain data enhanced driver genes detection
which were implicated in cancer related processes, providing a complementary list to
other domain based driver gene methods. In addition to this, CATH protein domain
data also enabled the identification of driver mutations which showed greater functional

relevance than other disease mutations in both cancer and non-cancer disease cases.

Mutations

Germ line mutations are inherited from the parents, and can be associated with dis-
eases, namely inherited diseases. Mutations within the embryo, post-fertilization are re-
ferred to as de novo mutations [255], and can be implicated in rare diseases [225], or can

contribute to the progression of adult cancers [109]. After birth, mutations which occur
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throughout life are called somatic mutations, and can lead to various diseases including
cancer. These types of genetic variations can include; single nucleotide polymorphisms
(SNPs), insertion and deletion events and copy number variants [228].

Common SNPs are defined as occurring in at least 1% of the ‘normal’ population and
at an approximate frequency of 1 in every 1000 bases [235]. These SNPs can be both
non-synonymous (ns) and synonymous(s), where the single base change affects and
does not affect the encoded amino acid respectively. This project is concerned with nsS-
NPs which lead to an amino acid change. Both types of SNP can exert either a neutral or
negative effect on the phenotype, and would thus be described as neutral or damaging
mutations respectively [263], where the latter has been implicated in diseases [27]. The
emergence of nsSNPs enables the widening of the protein functional repertoire in evolu-
tion and is an important contributor to allelic variation amongst individuals - affecting the
efficiency and activity of cellular events [132][236]. Despite the benefits of mutations in
creating variation in evolution, the presence of nsSNPs can manifest in different disease

susceptibilities and different responses to drugs between individuals [52] [116] [144].

Mendelian disease and cancer

A study of mutations involved in Mendelian, rare diseases and cancer is presented in
this thesis, where the former two diseases are caused by mutations in one gene, whilst
cancer is a complex disease, generally caused by mutations in many genes [165] [243]
[279]. Mutations in Mendelian diseases occur at low frequencies in the population, but
the proportion of mutations that cause disease are high. This is defined as them having
high penetrance and is hypothesised to be a consequence of their disruptive effects on
the protein and phenotype, which means that they tend to be under negative selection
[273] [232].

Cancer mutations have variable selection pressures, dependent on the nature of the
mutation itself. There are mainly two types of mutation, drivers and passengers. Driver
mutations are primarily responsible for the oncogenic phenotype and are advantageous

to cell growth [238]. These are therefore under positive selection pressure in tumour
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evolution, promoting oncogenesis and drug resistance [83] [18] [198] [107]. Passenger
mutations are under neutral selection pressure, as they confer no survival advantage
to the tumour. Although recently, there has been a suggestion of a different type of
mutation that has characteristics of a passenger mutation which eventually becomes a
driver mutation due to the presence of other mutations [170]. Because of this altered
structural context, the passenger mutation contributes more directly to the oncogenic
phenotype. This type of mutation is referred to as a latent driver mutation.

Recently, it has been shown that certain inherited mutations can predispose an indi-
vidual to cancer by altering the structural context, leading to the tolerance of otherwise
harmful cancer mutations, or acting alongside them to engender carcinogenesis or drug

resistance, which is referred to as mutation co-morbidity [150].

Impacts of Mutations

The impacts of mutations can be divided into structural and functional effects on the
protein. The former primarily affects attributes, such as the stability and/or fold of the
protein product, and the latter affects functional sites. Both effects can be consistent
with damaging nsSNPs occurring at conserved regions involved in protein stability, fold-
ing and function [70] [155] [219] [246] [253] [229] [231] [66]. In terms of the amino acid
substitution itself, studies showed that cancer mutations and disease nsSNPs involve
substitutions which are less conserved in their amino acid physiochemical properties
than non-disease associated mutations - accounting for their abnormal effects with re-

spect to the wild type [66].

Structural Impacts

Structural destabilisation can be caused by the formation of voids and clashes in the
protein as a result of substitution to a smaller and bigger amino acid respectively [229].
Both clashes and voids cause disturbance within buried regions which can in turn affect
residue packing [256] [39]. This is supported by studies of Stitziel et al [229] which found

that 88% of damaging nsSNPs compared to 68% of non-disease associated nsSNPs
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form voids within the core of the protein. Martin et al [144] investigated the effects
of mutations in the tumour suppressor gene, p53. They showed that mutations from
glycine and to proline resulted in p53 undergoing conformational rearrangements as
seen in Ramachandran plots. In total, 7.7% of mutations caused steric clashes, and
48.1% mutations showed disruption of residues involved in hydrogen bonding. Other
studies show cancer mutations from COSMIC [15] to occur in pockets of proteins [258].

Studies by Vitkup et al and others [256] [43] show that mutations from tryptophan and
cysteine residues have the highest probability of causing disease, followed by those from
arginine and glycine, the latter accounting for 30% of genetic diseases. This reflected
their roles in forming the hydrophobic core, disulphide bond formation, salt bridges, hy-
drogen bond creation and protein flexibility, all of which contribute to the structural in-
tegrity and therefore the functional state of the protein. Stability is a major feature dictat-
ing the protein evolutionary rate, as it determines the tolerance to a particular mutation
[248]. Many studies have shown that damaging nsSNPs impact protein stability, and that
this is a major cause of pathogenicity for monogenic missense mutations [16] [83] [277].
Wang et al showed that 83% of disease-causing nsSNPs affect stability by 1-3 Kcal/mol
[263] [277]. Such a decrease in protein stability can be invoked by mutations interfering
with hydrogen bonding [38], resulting in backbone strain.

Non-synonymous SNPs (nsSNPs) in buried regions are less likely to be tolerated, as
these regions show a weaker ability to compensate by local mutation - due to packing
constraints and the altering of complex intra-molecular interactions [16]. These impacts
are especially seen with Mendelian mutations, as they tend to occur more in buried
regions compared to non-disease and cancer mutations [83] [135]. Disruption of intra-
molecular interactions are also seen if a mutation affects hydrogen bonding and disul-
phide bonds [30] [274] [62], both of which are fundamental to acquiring and maintaining
the native protein fold. Other structural effects of a mutation include aggregation and the
formation of amyloid-beta proteins due to changes in hydrogen bonding [225]. Such ef-
fects have been seen in recent studies that measured both the stability and aggregation

propensities of proteins, showing that disease-associated mutations increase the protein
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aggregation potential compared to neutral polymorphisms [45].

Although structural aggregation is generally regarded as a loss in protein function,
reviews of p53 demonstrate that mutations within it can lead to neomorphic changes in
p53 function. Mutations at aggregation prone sites in p53 can result in self-aggregation,
and sequestering of the functional wild type p53 forms. [261] [161]. In addition to this,
mutations can also affect the charge distribution in the protein, which can alter pH de-
pendence and catalysis [225]. An example of the latter includes the L861Q mutation in
EGFR (Epidermal Growth Factor Receptor), where a mutation to a polar residue causes

a dramatic conformational change of the activation loop, favouring the active state [56].

Functional Impacts

Other damaging effects of mutations include impacts on protein function [165]. Mutations
can affect specific functional sites, resulting in the increasing, decreasing or switching of
protein function, all of which can lead to disease [248]. This may involve a mutation
affecting catalytic residues or neighbouring regions in the active site thereby interfering
with the chemistry or affecting substrate and metal binding [160] [230]. It is important to
note that not all proteins have evolved to maximise stability, lower stability being a trade-
off for their functioning [225] [248]. There are some functional sites that are inherently
unstable, and mutations in these residues can even result in stabilising these structures,

for example mutations involved in cancer progression [160][260] [9] [54] [177].

Catalytic Sites

An example of a mutation leading to a loss of function was reported for the tumour
suppressor gene, p53 [144], where mutations occurring in DNA binding sites caused a
change in solvent accessibility of > 5% for the site between bound and unbound DNA.
All residues within these sites were found to have mutations likely to be decreasing DNA
binding and therefore the tumour suppressive role of p53.

In contrast, a mutation can also lead to an increase in function. This is demon-

strated by the V600E mutation in the B-Raf kinase activation loop, implicated in malig-
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nant melanoma. This mutation causes an increase of 500 fold in basal B-Raf kinase
activity, causing abnormal oncogenic signalling [260], by affecting local electrostatics.
Recent studies by Marino et al [143] show that such functional effects are due to a novel
salt-bridge within the mutant structure which in turn increases the barrier for transitioning
to the inactive state, as well as increasing the flexibility of the activation loop, thought to

promote its phosphorylation.

Figure 1.1: Formation of a salt-bridge in the V6OOE mutant of BRAF. Key salt-bridge
forming residues in (a) the active site of both WT and mutant B-Raf and (b) mutant B-Raf

only. Taken from [143].
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In addition to loss and gain of function, a mutation can also result in a switch of func-
tion, by altering the active site chemistry or substrate specificity of a protein [4] [37]. For
example, this is seen in enzymes with promiscuous activity which bind many substrates
[78] and enzymes involved in antibiotic resistance e.g the beta-lactamases [4]. Other
types of switch of function include mutations that occur in protein interaction interfaces,
where they can affect the affinity and/or specificity of binding, altering protein binding
profiles and downstream networks [37] [169]. Mutations can alter post-translational-
modifications (PTM), by affecting the protein motif itself or by affecting the local arrange-
ment of the site, both important for PTMs [252]. This in turn can affect the recruitment,

activity and maturation of proteins [196].
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Disordered Regions

Other kinds of functional sites include conserved sites in disordered regions. These in-
clude short linear motifs (known as SLIMS) which are involved in transient and tuneable
interactions such as those involved in transcription, regulation and signalling [53]. Spe-
cific roles of these motifs include binding of nucleotides and ligands, and forming sites for
post translational modifications such as phosphorylation, methylation and ubiquitination.
Due to the sequence variability of these regions, they are less likely to be under negative
evolutionary pressures and are therefore more likely to tolerate mutations [43] [135]. De-
spite this scope for variability, these transient interactions are nevertheless precise and
mutations can result in a loss of wanted, or gain of unwanted, interactions. This can alter
binding specificity, affinity and accessibility, as well as affecting protein targeting, all of
which can lead to disease [98] [283].

Examples of disease causing mutations affecting disordered regions include those
in Noonan-like syndrome, Rett syndrome, Liddles syndrome [53] [252] and cancer [103].
Studies have shown that 20-25% of disease mutations obtained from UniProt, occurred
in regions with predicted disorder [171] and IUPred [59]. 20% of the disease-associated
mutations affected the disorder to order transitions. This in turn affects binding and
activity, leading to altered signalling, gene expression and regulatory networks.

However, studies be Lu et al [135] show that pathogenic mutations in germ line dis-
eases (from OMIM) [10] and cancer (from COSMIC) [15] had high propensities to occur
in ordered regions, measured by DISOPRED [264] within Pfam domains, especially for
germ line mutations. Furthermore, disease mutations reported in the UniProt Humsvar
and HGMD databases also showed a preference to occur in protein interaction sites of
low flexibility, measured by the Dynamic flexibility index (DFI) derived from molecular

dynamic simulations [24].

Allosteric sites

Allostery is a form of protein regulation, whereby sites remote from the active site can

have an effect on function. Effectors such as cofactors and ligands binding to these
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sites can control protein function. Effector binding can be accompanied by large or small
conformational changes, such as domain or residue rotations respectively. Mutations in
allosteric sites, or communication paths between allosteric and functional sites, can per-
turb allostery and result in deregulated function [124]. Dixit et al showed that oncogenic
mutations in kinases can occur in regions susceptible to conformational transitioning,
due to their inherent instabilities. These sites tend to overlap with sites of allosteric
importance [54]. In addition, oncogenic mutations have been shown to alter both the
flexibility and energetics of residues distal to the mutated site, favouring the active states
in ABL and EGFR kinase. This is also seen in studies which show that cancer driver
mutations in BRAF and JAK2 affect structural disorder at distal sites by means of long-
range coupling [135]. These studies, among others [88], suggest that disease causing
mutations can be far from conserved and functional sites in the protein structure and yet
still have an effect on function.

Other studies by Torkamani et al [250] and Dixit et al [56] reported germ line muta-
tions in kinases occurring in regions not directly involved in ATP binding and catalysis
[252] [66] [5]. This is seen in dystrophin and Ras, where mutations can have structural
effects over long distances [68] [53]. Although the structural explanation of long dis-
tance effects of mutations remains controversial, suggestions include changes of charge
distributions and disruption of packing in the protein core, along with affecting the con-
formational landscapes of proteins [230] [5].

In 2016, Clarke et al developed a method called STRESS [35], which predicts two
types of allosteric site: using Monte Carlo simulations and normal mode analysis to iden-
tify surface-critical and interior critical residues respectively within a protein structure.
Mutations from the 1K genomes project of varying minor allele frequencies (MAF) were
mapped to protein structures. They found that both types of predicted allosteric residues
had fewer rare mutations. In addition to this, they found that variants within these critical
residues possessed significantly higher pathogenicity scores reported by Polyphen rel-
ative to non-critical residues, highlighting the potential pathogenicity of these predicted

allosteric residues when mutated.
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Cancer

Unlike mutations in Mendelian diseases, the effects of mutations are less well defined
in cancer. This is partly because it depends on whether the genes affected are onco-
genes or tumour suppressors. In a tumour-suppressor gene, the effects are similar to
Mendelian disease mutations and tend to be detrimental structural effects, including de-
creasing the stability and activity of the protein [70] [161] [226]. Specifically studies by
Shi et al showed that 50-60% of mutations in tumour suppressors decrease stability and
result in impairment of protein activity [214]. Studies also showed that mutations in tu-
mour suppressors occur more at solvent inaccessible/buried sites, similar to Mendelian
diseases [214][271] [61].

In contrast, driver mutations in oncogenes tend to have less disruptive effects on the
wild type protein, supported by studies which showed a lack of structurally deleterious
effects for oncogenic mutations compared to mutations in tumour suppressor genes in
cancer [61]. Additionally, other studies on protein stability show mutations in oncogenes
to be 4 times less likely to destabilise the protein than those in tumour suppressors [226].
In cases where drivers in oncogenes do affect stability, studies show destabilisation of
kinase inactive states, where oncogenic drivers shift the equilibrium towards more ac-
tive kinase forms [230]. This is consistent with these mutations being often associated
with an enhancement of activity, driving cancer progression. Interestingly, studies have
shown driver mutations in oncogenes to be in loops and unstructured regions, on the
protein surface in hydrophilic areas [83] [226] [61]. These may correspond to functional
sites as it has been shown these are often in catalytic loops such as in kinases [54] and
in the TIM barrel fold which is present in many enzyme structures [210]. The lack of
structural constraints associated with disordered regions may explain why some cancer

mutations are tolerated [267], but this subject is controversial.

Analysing Mutations

There are various public resources and tools described below, which analyse the ef-

fects on structural and functional features, to determine the impacts of a disease causing
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mutation on the protein.

SAAP Data Analysis Pipeline (SAAPdap)

The on-line SAAP (Single Amino Acid Polymorphism) database (SAAPdap) [101], uses
data from PDB, doSNP, OMIM and other LSMDB (Locus-Specific Mutation Databases)
for mutation analysis, and pre-calculates the effect of a given mutation based on a series
of structural analyses in known structures. These include effects on hydrogen bond-
ing, salt-bridges, conserved sites, UniProt annotated functional sites, clashes and voids.
The conserved sites used here are measured using an in-house methodology, ImPACT,
which identifies residues that have ’significant conservation’ across a diverse selection of
species, which suggests functional importance. The effects, if any, are reported for each
mutation within a UniProt entry. The authors also developed a mutation predictor, called
SAAPpred, which uses the reported effects to determine whether a given mutation is
pathogenic or not [9].

A recent study performed by Baraessia and Pearl et al analysed the structural ef-
fects of a cancer driver mutation — V60OE- on the active and inactive state of the BRAF
oncogene [14]. This found that the driver mutation is ’structurally tolerated’ and does not
cause any structural effects within the active conformations — as reported by the SAAP-
dap analysis. In contrast, in the inactive BRAF state, the V600E was predicted to cause
protein destabilisation by producing buried charges within the protein, thereby favouring

the active conformation of BRAF.

Platinum

Other tools characterising mutations include the Platinum database developed by Pires
et al [186]. Platinum is a manually curated and literature derived resource which uses
in-house prediction tools to determine the effect of a mutation on ligand binding affinity
for known ligand bound complexes in the Protein databank (PDB). Such tools include
the stability predictors DUET [187], and mCSM-PPI[185]. Although Platinum does not

provide an online prediction tool for query mutations, it nevertheless provides a compre-
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Figure 1.2: Summary of the structural and functional effects reported by SAAPdap.
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hensive resource for characterised ligand binding complexes with known mutations from

the literature.

Cancer and kinase specific analysis tools

There are also specific tools and resources for analysing cancer mutations. Cancer3D is
a database [190] which provides information on whether a mutation is a driver, obtained
by using the e-driver method to analyse its occurrence in regions or domains in Pfam,
associated with cancer [189]. Cancer3D also applies the e-drug method, which provides
a residue level annotation of drug specificity and activity, creating a bio-marker potential.
This uses data from the CCLE database which contains mutation data and correspond-
ing drug activities in 906 human cancer cell lines [17]. Similarly the canSAR database
[22] reports the propensity of both missense and copy-number variations at particular
sites and their drug sensitivities, but focuses on the whole protein level and integrates
protein networks.

One of the main goals in cancer bioinformatics is to identify driver genes by analysing
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mutational frequencies and functional impact scores. Despite this being effective for
a subset of drivers, such methods do not distinguish between driver oncogenes and
tumour-suppressor genes which differ in these properties [226] [247] [91].
Kinase-specific mutation analysis tools include wKinMut [104] and MoKCa [199]. The
former incorporates data from COSMIC and UniProt and performs structural analysis of
the mutation using SAAPdap. The wKinMut tool also employs mutation predictors, such
as SIFT [164] and MutationAssessor [198] described below. MoKCa is a similar tool
which deals with mutations from the Cancer Genome Project and COSMIC which are
then mapped onto Pfam kinase domains, where PROSITE annotations were used to

identify functional residues.

Predicting SNP Pathogenicity

Various methods attempt to distinguish disease-causing mutations from neutral nsS-
NPs, as well as identifying the effects on protein structure and function that are likely
to be disease-causing. Such pathogenicity prediction tools can facilitate both diagnos-
tics and therapeutics, by prioritising mutations for study and as drug targets. The main
approaches used in mutation pathogenicity prediction are based on sequence and struc-

ture based features, and are still limited in their accuracy [191].

Methods For Assessing Changes In Sequence

Sequence based methods largely exploit the effect of mutations on sequence conserva-
tion at a given residue position. Studies in 2001 by Miller et al [155] used a sequence
and phylogeny based prediction to analyse several disease genes. Since then there
have been a plethora of methods that predict the severity of a given mutation based on

the pattern of amino acids observed at that position [165].

SIFT

SIFT scores the pathogenicity of a given mutation based on how well it is tolerated at

a particular position within a given alignment of homologous sequences, obtained from



CHAPTER 1. INTRODUCTION TO THESIS 39

Swissprot/TrTEMBL [164]. The score is based on the type of amino acid introduced,
along with its prevalence in the alignment position, and is therefore dependent on the
diversity of the aligned sequences. Changes to a completely different amino acid at
positions with conserved wild type character will therefore be considered deleterious.
The false positive error of SIFT is 20% and it has been used in many Meta-Predictors

[84](discussed below).

FATHMM

Another sequence based method is called FATHMM, which scores the deleterious ef-
fects of mutations within HMMs derived from proteins and domains [215]. Such HMMs
are created from homologous sequences derived from UniRef90 [11] and were further
annotated using domain sequences within SUPERFAMILY [89] and Pfam [222]. Amino
acid characteristics of both native and mutant residues are then compared to amino acid
divergences at a particular HMM position, measured by the Kullback-Leiber methodol-
ogy. Amino acid sequences for the family are taken from Swissprot/TrEMBL [11]. The
effects of a mutation are based on whether it alters the amino acid propensities at a
given position. One of the main advantages of this method is the use of species specific
weightings with respect to human mutations, based on the frequency of known disease

and neutral mutations from HGMD [227] and Uniprot HUMSVAR [11] respectively.

The Use Of Protein Subfamily Conservation

Some approaches detect preferentially conserved sites in a protein subfamily. If the sub-
families are functionally coherent, these partially conserved sites are likely to be associ-
ated with functional specificities. ManChon et al [140] showed that partial conservation
i.e in subfamilies, is one of the top features for identifying SNP pathogenicity. Related

studies explored signalling specificities in the kinome [37].



CHAPTER 1. INTRODUCTION TO THESIS 40

Mutation Assessor

Existing SNP prediction methods which use subfamily conservation usually generate
HMM profiles to represent the sequence profile of a protein family and/or subfamily
[198]. Mutation assessor (MA) which produces a Functional Impact Score (FIS) of a
mutation, by averaging a conservation score and specificity component score based on
the conservation in a protein family and subfamily respectively. The Combinatorial En-
ergy optimization method (CEQO) methodology clusters sequences within protein family
and subfamily, where the latter groups were optimally separated based on a set num-
ber of 'specificity residues’ which differ between these subfamilies [197]. Although MA
has been shown to be an effective method for predicting SNP deleteriousness, reaching
79% in recognition accuracy, it doesn’t distinguish between gain of function and loss of
function mutations [183], nor does it distinguish between the different types of conserva-
tion scores derived from protein family and subfamilies. MA predictions were validated
using disease mutations from OMIM [10], making it more appropriate for assessing the

pathogenicity of germline disease mutations as opposed to cancer mutations.

HMMvar-func

A more recent derivative of Mutation Assessor, HMMvar-Func [134], uses the same
method of identifying protein family and subfamily clusters as MA [198], but distinguishes
mutations that cause gain, loss, switch or conservation of protein function. The 4 predic-
tion classes are based on the different combinations of two logistic equations describing
the probabilities of a mutation to cause a loss of function (LOF) or acquire a new function
(GOF). The LOF and GOF equations themselves are derived from residue propensities
in the HMMs of protein family clusters, from the wild type sequence and mutant sequence

respectively.
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Methods for Predicting The Functional Effects Of SNPs — Using struc-

ture and functional site data

There are limitations to sequence based approaches as they do not take into account
the structural impact of the mutation likely to be important for an accurate nsSNP predic-
tion and exploit only indirect functional information [107] [262] [57][204]. Incorporation of
structure enables the mapping of the mutation in 3D and the use of structural character-
istics, such as stability, intra-molecular interactions, surface accessibility, and conserva-
tion. Other features include functional site data in a 3D context. Studies by Saunders et
al [204] highlighted the advantage of incorporating structural terms such as solvent ac-
cessibility and the C-beta density (as a proxy for degree of burial) in deleterious nsSNP

prediction, especially in the case where few homologues are available.

SNPeffect

SNPeffect assesses whether a mutation affects various individual attributes related to
protein homeostasis, which are then combined to produce an overall prediction score[196]
[195]. Such attributes include; the co-location to catalytic sites from CSA [192], effect on
protein aggregation and amyloid predictions measured by TANGO [64] and WALTZ [147]
respectively, and protein stability using FoldX [208]. Variant data from the HUMSVAR
database are mapped onto known protein structures and their occurrence in known and

predicted functional sites is assessed.

PolyPhen-2

Studies by Sunyaev et al analysed the effect of mutations on various structural features
[231], which serve as inputs for a probabilistic Naive Bayes classifier to build the SNP
predictor PolyPhen, and the more recent PolyPhen-2 (PPH2) [6]. The structural features
used in PPH2 include: solvent accessibility, B-factor, CpG context, position of mutation
within a Pfam domain, change in residue volume and the difference in PSIC (Position

specific independent counts) scores between wild type and mutated residue. The latter
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feature reflects the propensity of an amino acid to occur in a position, considering the pat-
tern of amino acid substitutions within an observed alignment using the PSIC algorithm
[233]. Benchmarking showed that PPH2 is more effective than Polyphen, measured by
true positive percentage values for damaging mutations (93%) in Mendelian diseases in
UniProt HumDiv mutations in a mixture of diseases (cancer and non-cancer) in Uniprot
HumsVar (73%). This further highlights the importance of considering specific types of

genes and types of diseases in predictors of mutation pathogenicity.

SAAPpred

SAAPpred uses structure based features from SAAP analysis pipeline (SAAPdap) [101],
as previously discussed (see section [1.4.1) to obtain a SNP prediction of pathogenicity

[9].

SNPs & GO 3D

SNPs & GO and its successor SNPs & GO 3D incorporates Gene Ontology information,
along with sequence and structural based features to describe the mutated residue en-
vironment respectively. These and other features are inputs to a support vector machine

for SNP prediction [26] [157].

SuSPect

SuSPect uses sequence, structural, functional, and network features to predict a SNP
phenotype [272]. Disease and neutral mutation data were taken from UniProt HUM-
SAVAR [11], dbSNP [113], and PhenCode [81], where the disease mutations were from
a mixture of different disease types. A number of features were combined in a machine
learning SVM including: sequence conservation measured by Jensen-Shannon diver-
gence, difference in propensities of the wild type and mutant amino acids in a Pfam
HMM position, difference in PSSM scores between wildtype and mutant in an align-
ment of UniRef50 sequences, protein solvent accessibility using NACCESS [127] and

NetSurfP [180] and protein network centrality using DOMINE [275]. Protein-protein in-
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teraction (PPI) based features were found to be beneficial for phenotype prediction.
Other studies which have used known structures in nsSNP prediction include the
probalistic classifier of Chasman et al [30], and SNPs3D by Yue et al [278] which have

been described in various reviews [115].

Cancer Specific Prediction Methods

The methods described above, although effective for predicting pathogenicity for germline
diseases, are often less effective for cancer mutation prediction. This is because cancer
mutations appear to have rather different effects on proteins [226]. CanPredict [111] is
a classification method trained on known cancer variants from COSMIC [15], Mendelian
disease variants from UniProt and common variants from NCBI. Features include: pre-
diction scores from SIFT and gene type similarities classified using a Gene Ontology
similarity score.

More structure-based approaches for identifying cancer mutations include the re-
cently developed Index of Carcinogenicity (InCa) [62]. This used neutral mutations from
the 1K genomes project [3], somatic cancer mutations from COSMIC and known driver
mutations in oncogenes and tumour suppressors from the Vogelstein cancer gene list
[257]. These mutation groups were ranked according to various features including; rela-
tive accessible and buried surface area, secondary structure, physicochemical similarity,
co-location to in house PISA derived interfaces and effects on the structural environ-
ment of the mutation. The structural environment was measured using the normalised
frequencies of all amino acids in the vicinity (5 A) of the mutation. Features were incorpo-
rated in a machine learning, random forest algorithm to give an Index of Carcinogenicity

(InCa) score for identifying a cancerous phenotype. [28].

Meta-Predictors of SNP pathogenicity

As described above, there are many different mutation predictors using a range of fea-
tures to assess mutation pathogenicity. Meta-Predictors have been developed which

combine such methods enabling feature complementarity in SNP predictions. Most of
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them incorporate SIFT, mutation assessor and Poly-phen2 in their predictions. The most
popular meta-predictors include CONDEL [84], and IntOgen [86] which are designed for
general and cancer mutation predictions respectively, where the latter focuses more on
identifying driver genes within cancer. IntOgen uses the methods in CONDEL (such as
SIFT and Mutation Assessor), and also incorporates scores describing the degree of mu-
tation clustering within genes using OncoDriveCLUST [240] and a combined functional

impacts score from OncoDriveFM [85].

Limitations of current prediction methods

Although meta-predictors such as IntOgen [86] use a whole range of features to identify
driver genes based on their mutations, they rarely consider the different types of disease,
nor the different types of mutations seen within cancer genes, all which can diverge in
their protein clustering patterns, functional impacts and stability effects within the protein.
Most methods, both general and cancer specific, classify pathogenicity based on
dramatic effects on structure and stability and proximity to conserved/functional sites.
Therefore they can sometimes miss disease mutations which are more tolerated i.e be-
cause they have little or subtle effects on structure or lie far from known conserved/functional
sites[158]. Furthermore, there is a need for additional structurally derived information-

such as dynamic effects and more comprehensive functional annotation.

Molecular Dynamic Simulations (MDS)

The use of MDS enables the modelling of the dynamic motions of proteins - provid-
ing a quantitative spatio-temporal means of studying protein behaviour, by sampling the
conformational landscape which is difficult by other means [58]. Thus, MDS proves ex-
tremely beneficial for gaining insight into the stability, folding and behaviour of the protein
on a dynamic level. Kumar et al [118] studied the effects of the G325W mutant in Aurora-
A kinase implicated in hepatocellular carcinoma. The mutant caused a decreased kinase
stability and binding affinity to the kinase substrate, measured using free energy calcula-

tions. The mutant also led to greater flexibility in the kinase shown by RMSF (root mean
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squared fluctuation) calculations.

MDS studies have also been performed to study drug efficacy profiles of the FGFR1
and FGFR3 receptors, which are often mutated in cancer [23]. This provided a structural
rationale for why some cancer-associated FGFR mutants become resistant to certain
drugs. MDS has also been shown to increase the accuracy of SNP prediction, by in-
corporating the global effects of mutations such as on the stability, flexibility and solvent

accessible surface over time [194].

Other resources used in SNP impact analysis

There are many different types of functional annotations used in mutation analysis, which
span the scales from the protein residue level up to biological processes and disease
hallmarks, as can be seen from figure [1.3). For each level of biological abstraction used

in this thesis, the data resources are described below.



Figure 1.3: Summary of the resources used in disease mutation analysis in this thesis - from the residue level to biological pathways and
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Resources For Mutation Data: Germ-line Diseases And Cancer

Online database of Mendelian Inheritance in Man (OMIM)

OMIM(Online database of Mendelian Inheritance in Man) is an online resource that cat-
alogues the germline amino acid variants and their associated diseases|[10]. Mutation
entries are from a range of genomic regions including those from the 22 non-sex chro-
mosomes (autosomes), from the X and Y sex chromosomes (allosomes), and from mito-
chondrial DNA. The data within OMIM gives the genotype and phenotype relationships of
inherited diseases, which range from monogenic rare diseases to more complex cases
such as cancer, where the latest version contains 24,378 entries as from December
2017. In terms of genetic pleiotropy, the majority of genes within OMIM (68.5%) are
associated with one phenotype. The phenotypes themselves are classified into four
different groups which are; single gene disorders, susceptibility to complex diseases,

somatic cell disease, and non disease.

UniProt HUMSAVAR
Human disease mutations are also provided by UniProt HUMSAVAR. This resource con-
tains human variants associated with a range of germline and somatic diseases, includ-
ing cancer and non cancer. The HUMSAVAR variants are all the missense mutations
annotated within human UniProtKB entries, curated as being associated with diseases
according to literature reports. [11]. The latest update from July 2015 contained a total
of 71,795 entries, which were from 3 different associated phenotypes of "disease asso-
ciated”, neutral or "polymorphism” variants, and "unclassified”. Many studies use this
dataset as a reference when studying the general effects of disease causing mutations

on protein function [76] [42] [43].

Cancer mutations: COSMIC
For cancer mutations, the main repository is the catalogue of somatic mutations in cancer
(COSMIC) database, which currently serves as the worlds largest and comprehensive

resource for cancer mutations, specifically containing 4 million coding mutations across
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all cancer types, along with 10 million non-coding mutations [71]. There are 2 main
sections within COSMIC, the first of which encompasses large scale data from genome
sequencing studies, which has been taken from other cancer mutation resources such as
The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium
ICGC. Since cancer is a heterogeneous disease with many genomic errors contributing
to its pathogenicity, it is hard to infer which genes are most important in driving the can-
cer. Therefore there is a second section within COSMIC which is cancer mutation data
that has been curated by experts covering over 600 key genes known to be implicated in
cancer, called the cancer genome census (CGC) [71]. The CGC also contains additional
information on the likelihood of the gene to be either a tumour suppressor gene (TSG)

or an oncogene (ONC).

PinSnps: OMIM, COSMIC, dbSNP
PinSnps is an interactive web based tool which enables the analysis of mutations in
different types of diseases such as different cancer types from COSMIC [15], germline
diseases from OMIM [10] , and common variants from dbSNP [213]. In total there are
1,101,990 cancer mutations, 10,850 germline disease mutations, and 3,209,256 com-
mon SNPs. Proteins are annotated on their Pfam domain content [222], which are in
turn linked to their available 3D structures or a homologous structure. Information on
functional sites from UniProt are also available [11], along with predicted disordered
inter-domain regions by DISOPRED [264]. This data was used by the same authors in
analysing the enrichment of the disease mutations in such functional sites and disor-
dered regions[135], and a more detailed discussion is provided in chapter 2. In addition
to considering annotations within the protein structure, PinSnps also maps mutated pro-
teins to human protein-protein interaction networks (PPINs) [136], enabling the analysis
of mutations at both an atomic resolution and within a system level context, where the

effects of mutations on binding protein partners can be investigated.
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Resources for functional site annotations

A range of resources report functionally important sites in protein structures, derived

from both the literature or predicted using sequence or structure based approaches.

Catalytic sites
The Catalytic Site Atlas (CSA) provides residue annotations for enzymes that have struc-
tures within the protein data bank (PDB)[192]. There are two types of catalytic sites
within the CSA, the first is based on manual curation from the literature. The second
set are catalytic residues identified in homologues of proteins in the first set and inferred
from a PSI-BLAST multiple sequence alignment against the original entries. The latest
version of CSA, CSA 2.0, contains 968 curated and 584 homologous entries with cat-
alytic sites [72]. CSA also incorporates information from other databases such as MACIE
[97] that provide information on the reaction mechanism for an enzyme, and the roles of

the residues in catalysis.

Protein-protein interaction sites
NCBI-IBIS is a resource [216] which analyses and predicts protein binding partners and
their interfaces based on known structural complexes from within the NCBI molecular
modelling database [138]. The different types of protein interfaces within IBIS range
from; protein-protein, protein-DNA, protein-RNA, protein-ion, protein-small molecule,
and protein-peptide. In the latest release in January 2017, the number of chains which
have these observed interactions are shown in table In addition to providing ob-
served entries, IBIS also predicts protein interfaces based on homologous complexes,

where similar sites are clustered and inferred based on evolutionary conservation.

Ligand binding sites
Another resource for ligand binding sites is the ccPDB database [218], which uses pre-
diction tools to identify ligand binding motifs for ligands which have binding sites within

at least 30 proteins in the PDB. From the sets of structures for a given ligand, the ccPDB
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Table 1.1: The number of observed chains containing the different types of protein inter-

action within latest release of IBIS, January 2017.

Type of interaction | No of protein domains/chains with observed interactions

Protein-DNA 6700
Protein-RNA 19833
Protein-Protein 220808

Protein-Chemical 105184

Protein-Peptide 7649

Protein-lon 58906

analysis module deciphers the residue preferences for this ligand and incorporates this
into a propensity-based predictor for ligand binding residues. The ccPDB in turn uses

this predictor to annotate PDB structures.

UniProt functional features
The UniProtKB [11] resource contains a range of sequence based functional features,
including residues involved in: DNA and RNA binding, active site chemistry, part of a
protein domain, metal binding, and sites for various post-translational modifications such
as polysaccharide addition, and methylation. These range in size from specific residues
involved in functions such as post-translational modifications and catalysis, to whole pro-

tein domains.

Predicted allosteric residues
Recent efforts have used protein structure data to identify putative sites of allosteric im-
portance. These include the works of Clarke et al [35], who developed the predictor
STRESS which identifies both surface based and interior based allosteric sites. The
STRESS methodology uses protein structure properties such as residue connectivity,

and correlated movements upon ligand binding to infer allosteric function.
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Resources for protein domain annotations

The use of domain annotation can enable a finer approach to assessing the effects of
mutations on proteins and how this leads to disease. This is due to the increased cov-
erage of protein sequences by domain family annotations as compared to whole protein
family annotations and the fact that they tend to have conserved structures as inherited
units of evolution. Pfam is a sequence based domain family resource which has been
used by some mutation analysis tools [222]. However in this project the domain structure

resource CATH will be used as it provides more structural information.

Sequence based domain annotations in Pfam
Pfam is a widely known resource for sequence based domain annotation[222]. There are
two multiple sequence alignments used to describe a Pfam superfamily, the first of which
is called the seed alignment and is composed of a smaller subet of protein sequences
which are representive of the family. The second sequence alignment is more extensive
since it includes sequences from all family members taken from UniProtKB. The Pfam
protein families are either made by manual curation, or generated automatically and are
called Pfam-A and Pfam-B families respectively. Both Pfam family types can be profiled
using a Hidden Markov Model (HMM), derived from a multiple sequence alignment of
relatives within the family. The latest version of Pfam version 31.0 [69] contains 16,712
protein families, and at least 73% of UniProt protein sequences match to at least one
Pfam family. For a given protein sequence, domain annotations are inherited if the query

falls within the boundaries of a Hidden Markov Model for a protein superfamily.

Structure and sequence based domain annotations in CATH
CATH is a hierarchical database which classifies protein structures from the Protein
Data bank (PDB) according to their Class, Architecture, Topology and Homology [172].
Multi domain proteins from the PDB are split into distinct domains in CATH. Structural
domains are assigned to superfamilies using structure comparison methods (SSAP,

CATHEDRAL) and sequence based HMMs to confirm homology. Distant homologues
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are validated by manual curation. Currently there are 300,000 domains in CATH, classi-
fied into 2,700 superfamilies [217].

To assign new sequence domains to a superfamily in CATH, their sequences are
scanned against a sequence pattern or Hidden Markov Model (HMM) derived from a
multiple sequence alignment of relatives in the superfamily. Superfamilies are subdi-
vided into more specific functional families, by means of an hierarchical agglomerative
clustering method, GeMMA [128] and the more recent FunFHMMer [40]. FunFHMMer is
a method that separates relatives into more functionally and structurally coherent protein
domain families, called FunFams, based on specificity determining positions identified by
the GroupSim method [25]. CATH uses Scorecons to calculate conserved sites within a
FunFam, likely to be functionally important sites [253]. Scorecons calculates conserva-
tion at a specific position based on Shannon’s entropy measure of diversity. Conserved
sites within a FunFam, encapsulate residues conserved within a superfamily, and in ad-
dition conserved residues specific to that FunFam, referred to as specificity-determining-
positions (SDPs). Since CATH FunFams are functionally coherent, these SDPs are likely

to be involved in dictating different functional specificities.

Resources for pathway and biological processes annotation

Gene ontology (GO) annotations

The Gene Ontology (GO) resource provides a unified representation of gene product
attributes, using a controlled vocabulary to annotate protein function in terms of cellular
compartment, molecular function, and biological process [13]. The annotations are from
a range of species, from eukaryotes, prokaryotes, single and multi-cellular organisms.
The terms are structured in a directed acyclic graph, where each term can have one
or more defined relationships with another term within the same domain or functional
grouping. For a given gene list, enrichment studies can be performed for each of the GO

attributes, in order to gain an insight into its biological relevance.
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Cellular pathway annotations from Reactome
There are a number of resources which enable insights into cellular pathways. These
include resources such as Reactome [63], which contains pathways from a range of re-
sources such as KEGG [241], NCBI [80], and literature derived reactions. The reactions
are grouped into networks where they together represent pathways. There are resources
which include GO and reactome pathway analyses to give information on enrichment of
genes within biological contexts as described above - called ReactomeFVIZ, which is

described more in chapter 3 [269].

The Atlas of Cancer Signalling Networks (ACSN)
The Atlas of Cancer Signalling Networks (ACSN) is a resource which provides a list
of expert curated cancer hallmarks [120], which are known to be implicated in cancer
progression. The ACSN is an interactive web based environment, displaying 4600 bi-
ological mechanisms covering 564 proteins involved in cancer. These are grouped in
5 major cellular processes which are effected in cancer, and are therefore considered
hallmarks: cell survival, apoptosis, EMT cell motility, cell cycle, and DNA repair. The
enrichment of gene lists within these hallmark processes provides an insight into their

possible molecular mechanisms and contribution to the carcinogenic phenotype.

Thesis Summary

A novel method was developed to identify cancer driver mutations, and cancer driver
genes within CATH FunFam domains. Cancer driver genes were identified using the
MutFam protocol, which identifies significantly mutated CATH FunFam domains within
22 cancers reported in the COSMIC database [15]. The MutFam method succesfully
identified domain families highly implicated in cancer, including those containing P53
and PTEN. Cancer driver mutations were then identified in 3D clusters within signifi-
cantly mutated domains in the 3D protein structure. This approach filtered out mutational
noise and passenger mutations. MutClusters were analysed on their proximity to both

known and in-house predicted functional sites, and were compared to unfiltered cancer
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mutations, mixed disease, and germline disease mutation datasets. The putative cancer
driver mutations occur significantly closer to catalytic residues, protein-protein interac-
tion interfaces, ligand binding sites, and in-house derived CATH FunSites compared to
the non-clustered disease mutations.

A more detailed study was undertaken of the FGFR3 receptor implicated in blad-
der cancer. A number of analyses were performed including impacts on structure and
proximity to functional sites, including protein-protein interfaces and catalytic sites. The
effects on stability and folding rate were also examined. For a subset of mutations, the
results were compared against experimental characterisation of mutation impacts on
activation of the kinase. In order to characterise the functional impacts and clinical rel-
evance of the predicted MutFam driver genes, further analyses were performed using
enrichment studies based on Gene Ontology annotations, and known cancer hallmarks
respectively. It was found that the MutFam driver genes were enriched in known can-
cer hallmarks affecting cell survival and cell motility. Gene Ontology enrichments were
used to compare the MutFam driver genes within early and late stage gliomas, identi-
fying common and distinct functional effected processes, which reflected the respective
clinical phenotype of the gliomas. Whilst this work has mainly concentrated on the anal-
ysis of cancer mutations, the methods developed are generic and could be applied to

analysing other types of disease mutations.



Chapter 2

Exploring The Proximity of Disease and Predicted

Driver Mutations To Functional Sites

Introduction

In this chapter the proximity of putative driver mutations to functional sites was anal-
ysed. Below is a literature review of this field, followed by a summary of the work per-
formed in this chapter.

As introduced in chapter 1, various approaches have been used to study the likely
structural and functional effects of disease causing residue mutations (non synonymous
single nucleotide polymorphisms, nsSNPs). These include analysing 1) the proximity of
mutations to known and predicted functional sites 2) the detection of mutation hotspots
in either the sequence or the structure and 3) the use of protein domain annotations.
Each of these features will be discussed in more detail below.

The aims of the work described in this chapter were to establish new approaches
for determining the impacts of disease associated mutations on protein structure and
function. The different types of disease causing mutations considered included those in
germ-line diseases (i.e cancer and non-cancer), and somatic cancer mutations in onco-
genes and tumour-suppressors. The proximity of disease-associated mutations in pro-
teins to known functional sites reported by CSA catalytic residues, IBIS protein-protein
interfaces, UniProt functional features, and in house predicted functional sites were in-
vestigated. The latter are called FunSites and are highly conserved residues in CATH
functional families (FunFam). FunFams are functionally coherent subsets of relatives in
CATH superfamilies. Such sites have been shown to be enriched in known functional
sites, e.g. catalytic sites and specificity determining residues [41].

In addition to analysing single mutations within PDB structures, the project also in-
vestigated whether disease mutations which clustered in the protein i.e. 3D hotspots

showed tendencies to lie close to the functional sites discussed above. The use of
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hotspots in mutation analysis has been shown to be important in deciphering pathogenic
mutations, especially for cancer driver mutations. It provides a means of filtering out
noise or neutral mutations and highlighting protein positions under positive selection and
therefore more likely to be of functional importance in cancer. In this chapter, a prox-
imity analysis was performed for a range of disease causing mutations, and in-house

predicted driver mutations to known and predicted functional sites.

Tendency of nsSNPs to be on or near to functional sites

Some cancer mutations are passenger mutations, which do not drive the oncogenic phe-
notype, whilst others are likely to be drivers which engender the cancerous phenotype.
Many of the cancer mutation data resources are polluted with passenger mutations and
so efforts have been made to identify mutations which are likely to be drivers. In 2009,
kinase specific studies performed by lzarzugaza et al [105] used a statistical measure-
ment to report the significance of germ-line disease mutations from OMIM [1Q]) to be
close to known kinase functional regions. These included conserved residues derived
from the alignments of relatives in 8 kinase families in KinBase [121] , where conserva-
tion was measured using S3Det. Buried sites were those with a relative solvent acces-
sibility <16%, and catalytic sites were taken from CSA [192] and FireDB [139]. Results
showed that germline cancer mutations in OMIM have higher tendencies to be close to
or co-located with catalytic residues and all other defined regions, compared to neutral
mutations in dbSNP [213].

A related study by Talavera et al [239] analysed cancer mutations in genes having
a broad range of functions, including kinases. Driver mutation sites were identified as
having a dN/dS ratio >1, which is a proxy for positively selected residues. Functional
sites were 9 residue windows containing residues involved in ligand, metal and nucleic
acid binding and protein-protein interfaces, obtained from the WSsas webserver [237].
Conserved sites were identified by AL2CO [179] and buried sites were measured by
ICM [2]. The authors found that cancer mutations, especially the driver mutations, were

enriched at functional sites, the highest proportion being in protein-protein interaction
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sites, ligand binding sites, metal and nucleic acid binding residues. They also found that
genes involved in cell adhesion, multicellular development and DNA-binding functions
were over-represented in the driver mutation sets.

A later study of Stehr et al [226] analysed the tendency of cancer mutations in an-
notated oncogenes (ONC) and tumour suppressor genes (TSG) from COSMIC, to lie
within a distance threshold of 8 A to a functional site. The proximity of C-3 atoms of
mutations was measured to catalytic, ATP/GTP and post-translational modification sites
within protein domains, defined by Domain Parser [270]. Neutral mutations (snp) from
dbSNP were also included [213], and 1000 random mutations were derived from the
amino acid sequence (rnd) as an extra control. Significance was assessed based on the
difference in the distributions of the disease mutations and random or neutral mutations.
FOLDX [208] analysis was also performed to study the effects of the mutations on pro-
tein stability, and NACCESS analysis was performed to measure buried residues having
a solvent accessible surface of >15%.

The results showed that oncogenic mutations were over-represented at < 8 A from
functional sites, specifically GTP/ATP binding sites and also on the surface of the protein.
In contrast TSG mutations were shown to be under-represented at distances < 8 A from
functional sites and were more likely to destabilise the protein and occur in buried sites.
These results are shown in figure These results therefore also highlighted the
importance of analysing regions proximal to functional sites which might have a role in

altering function.
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Figure 2.1: Summary of the structural and functional effects of cancer mutations, taken
from . The groups of mutations analysed here are; Rnd = random, Onc =mutations
in oncogenes, Sup = mutations in tumour suppresser genes, Mut = all cancer mutations,

Snp = neural mutations taken from doSNP.
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In contrast to Stehr et al [226], other studies do not constrain analysis of mutation
proximity to within 8A. These include the works by Gao and co-workers [75] who anal-
ysed the proximity of disease mutations from cancer and non cancer germline and so-
matic mutations (described as mixed mutations here), and neutral mutations catalogued
in UniProt and PDB structures, to predicted functional protein protein interaction sites
(PPI) (see figure [2.2). Residues involved in protein-protein interaction sites (PPI) were
calculated using distances <4.5 A between complexed partners. The closest atomic dis-
tances between the mutated residue and functional site residues were determined. This
showed that UniProt mixed disease mutations have higher tendencies to occur close to
PPI sites than neutral mutations. This enrichment was particularly prominent for proxim-
ity to residues 3-6 A away from the PPI site, as opposed to the PPI sites themselves,
which gave a significant odds ratio of disease to neutral mutations of 1.75 and 1.23

respectively.

Figure 2.2: Analysing the proximity of UniProt mutations to in-house derived PPI sites,
taken from [75]. The Cumulative density plots in A) are at distances from 0-40 A B) are
at distances from 0-25 A . C) odds ratio plot of the enrichment of mutations at distances

from 0-12 A).
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Mutation co-location analyses were also performed on other types of sites, including
functionally discriminating residues in enzyme families, predicted using EFICAz [119]
and predicted ligand binding sites using FINDSITE[21]. Known functional sites included
residues with a PDB header containing a “HETATOM” type as either ligand, metal or ion

binding found by the LPC (Ligand Protein Contacts) method [220]. The degree of en-
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richment at these sites was determined by calculating an odds ratio of disease to neutral
mutations, and the results of these are shown in figure Disease mutations were
found to be statistically enriched in or close to all predicted functional sites, particularly

EFFICAZ sites with an odds ratio of 16.9 compared to neutral mutations at this position.

Figure 2.3: Co-location of UniProt mixed disease-associated mutations versus neutral
ones to different functional regions. (A) All mutations. (B) Subset of mutations from the
same set of proteins that contain both disease-associated and neutral mutations. The
y axis represents the fraction of mutations in either disease-associated or neutral data
sets. The numbers above pairs of bars are the odds ratios. The different types of func-
tional sites are; LBS = ligand binding site derived from PDB, Buried = buried site, PPI
= protein-protein binding site derived from PDB, Pocket = residues within predicted pro-
tein pockets, FINDSITE = predicted ligand binding sites, EFICAz= predicted functional

determinants, Surface = surface sites. Taken from [75].
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Mutations within germline and somatic cancer diseases have been shown to differ
in their selection pressures, as they appear to be associated with different structural
and functional consequences [83] [90]. As the volume and quality of mutation data
increased over time, separate studies were conducted on these different types of dis-
ease causing mutations. Such studies include the work by Yang et al [175] who per-
formed an extensive analysis of somatic and germline disease mutations within the COS-

MIC/TCGA/ICGC/IntOGen and dbSNP resources, respectively. The authors analysed
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the co-location of mutations to UniProt and CDD functional features [11] [142] includ-
ing active sites, chemical binding sites and post-translational modification sites. Other
PTM sites were also included from dbPTM[131] and conserved sites were derived from
a BLAST alignment of proteomes from human and 5 other species. Amino acid con-
servation was also measured from the percentage of homologues in which the site was
conserved. Significance of mutation co-location was measured using a binomial statis-
tic. The results of this analysis showed that somatic cancer variants were generally
closer to functional and conserved sites compared to the germline variants. The most
significant over-representation being in UniProt binding and active sites with a P-value
of 4.81E-32 and 1.83E-4 respectively. Interestingly, phosphorylation sites were shown to
be under-represented for both germline and somatic variants. This study also analysed
PanCancer mutations, and again revealed that different cancers exhibit discrete impacts
on different functional sites.

Similar studies of germline co-location have been performed by Martinez et al [108],
and included allosteric sites from the allosteric site database ASD2.0 [99]. The disease
mutation data was taken from the Human Gene Mutation Database(HGMD) [227], and
neutral mutations were taken from dbSNP [213]. The functional sites included were: N-
linked glycosylation sites and different metal binding sites and residues 3 A from these
sites. Catalytic sites were taken from CSA [192]. Phosphorylation, protein-protein inter-
action, and DNA-binding sites were from previous studies, allosteric sites from ASD2.0

[99] and RNA and ligand sites from the [218].

Proximity of disease mutations to protein interfaces

There have been many studies analysing the frequency of mutations in interfaces of pro-
tein complexes linked to diseases, including cancer, where mutations in such functional
sites can manipulate cellular signalling and perturb binding of native binding partners
leading to abnormal signalling and disease [169] [37]. For example, analysis of mixed
disease mutation data from UniProt — including germline non cancer disease and so-

matic cancer mutations — showed that protein-protein interaction sites are hotspots for
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disease mutations using a UniProt neutral background as a control [42]. The interface
sites were composed of residues <5 A to residues on the binding partner in PDB struc-
tures. Later work, by the same authors [43], extended this analysis by splitting the in-
teraction sites into core and rim segments, based on being fully or partially buried upon
complex formation respectively. Mutations were analysed on their co-location to these
interface regions, showing that disease mutations were 35% more likely to occur at an
interface compared to the rest of the surface and are 49% more likely to occur in the
core of the PPI sites compared to the rim, where they coincide with more conserved
residues according to BLOSUMG62 and residues important for the binding affinity of the
complex, measured by FoldX [208]. Subsequent studies have further confirmed that
protein-protein interaction sites are hotspots for disease causing mutations [274][24],
showing particular relevance in cancer [169] [37].

Other work analysing the effects of cancer mutations on protein-protein interaction
sites, includes that of Epinosa and co-workers [62], who showed that known cancer
driver mutations within COSMIC putative oncogenes and tumour-suppressor genes are
enriched in the partially exposed and buried residues within PISA derived protein-protein
interaction (PPI) sites. Solvent accessibility was measured using PISA absolute acces-
sible and buried surface areas as a ratio of the respective amino acids in the G-X-G
peptide. The authors found that driver mutations were more likely to co-locate to PPI
sites than neutral mutations, especially at partially exposed residues, where they disrupt
electrostatic interactions across interfaces by replacing amino acids involved in hydrogen
bonds. This information was used to develop a mutation pathogenicity score called Inca
(Index of carcinogenicity).

Much like the work of Epinosa et al [62], more recent studies by Egnin et al [61]
also performed independent co-location analyses of oncogenes and tumour suppres-
sor genes from COSMIC, to PDB derived protein oligomerisation sites, and other sites
of varying solvent accessibility measured by ASA [251]. In addition to this, Egnin et al
also measured the effects of mutation on protein stability using FoldX [208], and the pre-

dicted functional impact measured by VEST [60]. An important point to note is that this
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functional impact score is trained on Mendelian disease genes from the Human Gene
Mutation Database (HGMD) [227], which are known to differ in their functional impacts
to cancer mutations [214] [83]. Therefore predicted functional mutations from VEST may
be biased towards more Mendelian like features, often seen in tumour-suppressor gene
mutations, but not seen so much for mutations in oncogenes [226] [247].

In agreement with Epinosa et al [62], both oncogenes and tumour-suppressor genes
showed an enrichment of mutations within interfaces compared to other surface residues,
showing on odds ratio of 1.17 and 1.28 respectively. This analysis by Egnin et al [61]
further confirmed the tendency of tumour-suppressor mutations to be more prevalent in
the protein core than oncogene mutations, where they lead to protein destabilisation.
This result is consistent with previous studies [16]. Egnin et al also showed that tu-
mour suppressor genes harboured more mutations at known homo-oligomerisation sites
compared to oncogenes.

Other recent studies include the work of Porta-Pardo et al [189] [188] who developed
a method called e-driver, which detects driver genes based on them containing protein
functional regions which have a cancer mutational bias compared to the rest of the pro-
tein. PPl interfaces were residues 5 A distance from residues within a separate chain
in a multi-chain PDB structure. This approach was performed on cancer mutations from
TCGA [249]. e-driver identified significantly mutated protein regions by comparing the
observed number of mutations in a specific region to an expected distribution in a given
protein structure, normalised by the length of the given region. Statistical significance of
mutation enrichment was assessed using a right sided binomial test, and genes showing
significant bias were considered to be candidates for driving cancer. Again, this analysis
highlighted the frequent targeting of protein interaction interfaces amongst driver gene
mutations in cancer (e.g TP53,EGFR and HRAS). This study also highlighted different
mutated regions within PPI sites as being implicated in different cancer types, consistent
with more recent studies [61] [262] [271].

The results showed that the germ-line disease variants have a greater enrichment of

mutations for all functional sites compared to neutral variants, particularly at ligand bind-
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ing sites, with a relative proportion of 3.07 and 0.87 for the disease and neutral mutations
respectively. Other enriched sites included metal binding sites, with relative proportions
of 2.88 and 0.10 for the disease and neutral mutations respectively. Sites with the lowest
proportions of both disease and neutral mutations were the post translational modifica-

tions and allosteric sites.

Proximity of disease mutations to allosteric sites

More recently, analyses of proximity to allosteric sites have been performed. The precise
functions and locations of these sites are harder to infer, and in the past have solely
relied on experimental validation and manual curation. Allostery plays an important role
in modulating protein functions, distinct to the functional site itself.

Kinase specific studies, performed by Dixit et al [54] used predicted allosteric sites,
and analysed their co-location to somatic cancer mutations in kinases. These authors
demonstrated that residues at certain sites within the kinase have an inherent instability
which makes them more likely to experience conformational transitions, which would
result in slight structural changes. These sites were also described as “frustrated sites”,
and were found to overlap with allosteric residues which play a role in initiating functional
allosteric transitions. This study showed that cancer mutations from COSMIC [15] altered
the position of frustrated sites, affecting the activation equilibrium of ABL and EFGR
kinases implicated in oncogenic signalling, thereby favouring the active forms.

More recently, Kumar et al [234] performed an extended study of frustrated sites in
many protein types, in the analysis of cancer driver mutations from COSMIC and TCGA
and cancer genome census (CGC) which were separated into oncogenes (ONC) and
tumour-suppressor genes (TSG) mutations. Pathogenic germline mutations were taken
from HGMD [227]. For each of the mutation data sets, Kumar et al explored their co-
location to predicted unstable regions within the protein, termed frustrated sites, as in
the Dixit study. Frustrated sites within protein structures were defined as interacting
amino acid pairs, which when mutated to all possible amino acids, possess a relative

instability compared to the whole protein in the wild type form, and were measured using
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the Frustratometer tool [176]. Solvent accessibility was also measured using NACCESS,
where core residues had a relative solvent accessibility of <25%. Results showed that
oncogenic cancer mutations are more likely to co-locate to frustrated residues on the
protein surface, compared to pathogenic germline and cancer TSG mutations, which
lead to greater disruptions to frustrated sites within the protein core. This result is also
consistent with other studies by Stehr et al [226] and Egnin et al [61].

Another related study analysed the co-location of germline disease variants from
ClinVar [209] and HGMD [227], and benign variants from ExAC [221] to predicted al-
losteric sites. Unlike the Dixit study, this study [35] predicted 2 types of allosteric site
which are STRESS-surface and STRESS-interior. STRESS-surface sites were residues
which exhibited significant conformational changes upon ligand binding, and were mod-
elled using Monte Carlo simulations. STRESS-interior residues are residues with a high
betweenness centrality within a protein residue network, which was calculated using
normal mode analysis, and were hypothesised to act as communication hubs and there-
fore sites of allosteric action within the protein. This analysis showed that both of the
STRESS-sites harbour statistically more disease mutations from HGMD, ExAC, and Clin-

Var, compared to non-STRESS residues.
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Using enrichment studies to identify disease driver mutations and

assess co-location to functional sites

Information on protein regions, residue hotspots or mutation clusters

The enrichment of mutations at particular sites within linear protein sequences and indi-
vidual positions (described as 1D hotspots) and structures (described as 3D hotspots)
has been widely regarded as an indicator of positive selection, and is of particular rele-
vance in diseases such as cancer. In order to aid functional validation of these predicted
driver mutations, various studies identifying such 1D and 3D hotspots have analysed
their co-location to various functional sites to infer effects on function. Within the last
10 years, there have been a plethora of sequence based 1D hotspot detection meth-
ods, which are based on identifying a statistically significant enrichment of mutations at
protein positions [126] and regions within protein sequences [152], where such regions
can be defined using domain annotations or adjacent residues surrounding the mutation
[240]. The use of a domain centric approach in hotspot identification can help refine
driver mutation analyses, as domains from a particular domain family can occur within
many genes [273] so the accumulation of mutation data for domains within a single fam-
ily can increase statistical power in predicting the functional impacts of mutations. With
regards to identifying 1D hotspots, many studies have exploited the use of domain based
annotations in hotspot analysis, and these will be discussed below.

Peterson et al explored the clustering tendencies of non-cancer and cancer muta-
tions from OMIM and SwissProt in a variety of protein domain annotations [182]. The
domain annotations used were taken from CDD (Conserved Domain Database), Pfam,
COG and SMART. A domain-significance score (DS-score) was calculated for each po-
sition within the domain to measure the mutational enrichment. This score is based on
a method developed in earlier work performed by Yue and Forrest et al [276], and was
used to determine the probability of observing a mutation cluster of a particular size at
a single residue, given the number of mutations in total and their positions in a domain.

Positions with high DS-scores were referred to as disease hotspots and were further



CHAPTER 2. EXPLORING THE PROXIMITY OF DISEASE AND PREDICTED
DRIVER MUTATIONS TO FUNCTIONAL SITES 67

analysed according to their co-location to CDD functional features and conserved sites
measured by AL2CO. This work identified disease hotspots in both germline cancer and
germline non-cancer diseases, shown in figure [2.4) where 58.1% of the cancer and
51.2% of the germline non cancer hotspots occurred in highly conserved positions. In
addition to this, the authors found that a greater proportion of germline cancer mutation
hotspots (69.8%) were co-located with functional features compared to germline non
cancer disease hotspots (35.9%).

Interestingly according to figure the germline cancer mutations showed 2 groups
of mutations possessing different DS-scores, the first associated with a peak at lower
scores, similar to the germline non-cancer mutations. The second peak was primarily
composed of putative oncogenes, which more frequently gave higher DS-scores, sug-
gesting high mutational enrichment. The results highlighted again the importance of
considering germline non cancer and cancer mutations separately, since their clustering

patterns differ.

Figure 2.4: The DS-score distribution for a) germline cancer and b) germline non cancer

mutations. Taken from [182]).
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More recent work by Miller et al [154] explored both the domain and position based
enrichment of cancer mutations in Pfam domains [222]. Miller et al analysed somatic
cancer mutations obtained from 22 cancer types from the TCGA [249]. The domain
enrichment was referred to as domain burden and was quantified by an enrichment
score, shown in equation 1. The expected mutation burden in this study was based
on the total number of mutations observed and the fraction of amino acids assigned as
domains compared to the total number of residues of all genes in a domain family.

Equation 1:
ed(domainenrichmentscore) = md(observedmutationburden)/me(expectedmutationburden)

The enrichment score in equation 1 was made by tallying mutations across multiple
domain relatives identified within specific domain boundaries. These were compared to a
random mutation permutation test outside the domain, 10° times across each gene. The
P-values were calculated as the proportion of permutations that contained a larger mu-
tation count compared to the observed mutation counts in a specific domain. This work
revealed 14 significantly enriched domains involved in canonical signalling, in particular
kinase domains, which were enriched in cancer causing mutations. As well as consid-
ering whole domain enrichments, this study also calculated a within-domain 1D hotspot
based on whether certain positions possessed significantly higher mutation counts in a
multiple sequence alignment of domain containing genes, compared to other residues
within the domain. The process of both domain and positional enrichment, applied in

this study, is illustrated in Figure [2.5
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Figure 2.5: Schematic of the method for determining domain and positional enrichment

of mutations within Pfam domains, taken from .
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This work identified 82 hotspots encompassing well known mutations, along with
68 novel mutations which would not have been detected by individual gene analysis.
These mutations were within known cancer-associated genes including receptor tyrosine
kinases such as; EGFR, FGFR1 and EPH. The results of this analysis are available from
an online webserver, MutationAligner [79]. For selected examples, the authors also
analysed the co-location of specific hotspots to known conserved regions. An example
of this is a hotspot within the Forkhead domain, which was located in the 3rd helix of the
conserved wing structure, involved in DNA binding.

Similar to the works of Miller et al, Fan Yang et al [271] used Pfam domains in the

analysis of pathogenic mutations predicted by the IntOGen platform [86], taken from 21
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cancer types from COSMIC [15], ICGC [281], TCGA [249]. Mutations with high, medium
and low impact predictions were used in detecting significantly enriched Pfam domains
and position based 1D hotspots within each cancer type. In contrast to Miller’s work,
Yang et al didn’'t aggregate mutations across a Pfam domain family, but identified 1D
hotspots as significantly mutated positions within genes containing a significantly en-
riched Pfam domain, where oncogenes (ONC) and tumour suppresser genes (TSG)
were considered separately. A Fisher’'s exact test was performed to see if a domain
instance or 1D hotspot was significant in a given cancer type. In addition to this, they
performed a co-location analysis of the 1D domain hotspots to general functional sites:
catalytic sites from the CSA 101, post-tanslational modification sites from phosphosite-
plus 109 and interface residues from ProtInDB [193] and Mechismo [20]. Significantly
mutated domain instances (SMD) were calculated as the total number of somatic mis-
sense mutations in the Pfam domain region of a particular gene, normalised by the
corresponding domain length.

This analysis found that mutations in tumour-suppressor genes have strong biases
towards particular domains, in agreement with Miller et al [154]. They also found that a
single gene could be mutated in different domain regions in different cancers, therefore
requiring discrete therapeutic attention, also shown in [189]. 1D hotspot co-location
analysis revealed that mutations in oncogenes occur more on catalytic and phosphosite
functional sites compared to tumour suppressor genes, by 32%. For the latter, mutations
were shown to occur more at domain interaction sites and within the protein core. Finally
mutations in oncogenes showed higher clustering tendencies than mutations in tumour
suppressor genes which had a more dispersed distribution, in agreement with previous
studies [226].

More recently studies have used other domain families and regions to analyse cancer
mutations and identified 1D hotspots using alternative statistical approaches. For exam-
ple Peterson et al adapted their methods, developed for previous studies [181] of TCGA
[249], and analysed somatic missense mutations from 20 cancer types, within CDD and

Pfam protein domains. In contrast to their previous work [182], they used an alternative
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approach for 1D hotspot detection. For each of the 20 cancers, in each domain model,
mutated domain hotspots were identified by counting the number of mutations at each
position in a domain, across all patients. Significantly mutated positions in the domain
were associated with an FDR derived P-value of 0.05 or 0.01. This was modelled us-
ing a hybrid distribution of a zero-inflated Poisson which accounts for a large amount of
zero counts, and adjusts this accordingly. Random mutation models were derived by a
random distribution of residues of equal number to the observed mutations.

The mutation hotspots were then analysed for their co-location to various functional
sites including: UniProt functional features (nucleotide binding sites, DNA binding sites,
calcium binding site, active site, and metal binding sites), and predicted conserved
residues using the AL2CO method. A Fisher’s exact test was used to measure the
degree of enrichment at these sites, which was corrected for multiple testing using Bon-
ferroni correction. The authors identified domains which contain hotspot(s) - derived
from one or more genes in the domain alignment - as “Oncodomains”. Candidate cancer
genes were identified if they contained variants in an identified domain hotspot, and were
analysed for enrichment in particular GO terms, using Pfam2GO annotations. Gene
overlaps with other driver gene predictors were performed, including genes identified by
MutSigCV, and known cancer genes from the Cancer Genome Census (CGC) and the
NCI cancer gene index.

This analysis identified 185 CDD and 673 Pfam mutated protein families across 20
cancer types, containing 2126 CDD and 3563 Pfam hotspots respectively. The hotspots
were found in very different locations in different cancer types and between patients.
Functional feature analysis showed a statistical enrichment of oncodomain hotspots on
all UniProt functional features (P-value <3.63E-87) - the highest co-location being for
nucleotide binding sites, together with a significant enrichment of hotspot mutations on
conserved residues (P-value <1.45E-9). In total, 3041 candidate cancer genes were
identified, which included 56% of genes predicted by CHASM [28], 34% of genes pre-
dicted by MutSigCV, and 34% of CGC and NCI-CGI genes. Since many cancer genes

can harbour mutations on many distinct interfaces, this study also highlighted the phe-
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notypic pleiotropy within cancers, seen in previous studies [188].

Various studies have also incorporated other types of genetic variations, such as in-
sertions and deletions (INDELS). Baissa et al [14] recently analysed the enrichments of
3 different mutation types, taken from COSMIC, in Pfam domains; missense mutations,
INDELS, and truncations. This work used Pfam domains, but considered the annota-
tion of the cancer gene types: oncogenes (ONC) genes and tumour suppressor genes
(TSG) genes. Enrichment of mutations in Pfam domains were performed by counting
the frequencies of the mutation type in that domain, and comparing this to the frequency
in all other Pfam domains. This was further normalised using domain frequency, do-
main length, and number of samples. Statistical significance was measured using a
Chi-squared association test.

This analysis was done for genes annotated as either ONC or TSG using the PAN-
THER functional classification tool [153], for dominant or recessive genes respectively.
In order to measure the clinical significance of these cancer gene enrichments, the mu-
tation frequencies of each Pfam domain containing cancer gene were compared to the
mutation frequencies within 450 'random’ domains considered "not cancer associated”,
where significant domains were identified using a Bonferroni correction. In addition to
identifying enriched Pfam domains for the different types of genetic variation, 1D hotspots
were identified for each variation type, as variations across gene members within a
Pfam family were accumulated for common positions. Functional annotations of the
Pfam domain, specifically GO annotations, were taken from the MOCKa database [199],
where residues implicated in PTM (phosphorylation, glycosylation, ubiquitinylation), and
PROSITE patterns are annotated. Pathway enrichments were taken from the KEGG
database.

This study reported that the most frequent type of genetic variation in ONC and TSG
genes were somatic missense mutations, showing a mutation percentage of 85% and
62% respectively. The ONC and TSG cancer genes types were associated with 310
and 197 Pfam domain families respectively, with 44 common Pfam domains between

them. The Pfam domain enrichment results were further used in a machine learning
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classification tool, in order to predict if a query gene is either an ONC or TSG based
on their domain content (e.g types of Pfam domains). The classifier was trained on
CGC genes, and assessment of performance showed an AUC of 0.72. For the hotspot
analysis, the method identified 341 hotspots in total for the 3 mutation types, within 66
domains. The ONC genes had fewer mutation hotspots per domain, overall, compared
to TSG genes for all 3 mutation types considered. In agreement with other studies, the
1D hotspots were in different locations within the overlapping ONC/TSG Pfam domains
(SET, PKinase, RhoGAP). The 481 ONC and 133 TSG genes, derived from the en-
riched Pfam domains, were analysed for pathway enrichments, revealing 306 Pathways
for ONC genes including those involved in biosynthetic processes, transcription, and pro-
tein amino acid phosphorylation. There were 76 pathways reported for the TSG genes,
implicated in the cell cycle, cellular stress response, and DNA Damage response. GO
analysis revealed that the ONC genes contain more transcription factors, and the TSG
genes contain more enzymes. For genes containing both ONC and TSG Pfam domains,
14 enriched pathways were reported involved in the immune system, cell proliferation,
and apoptosis.

So far, the studies discussed have considered the analysis of all mutations in pro-
tein structures. However, in more complex diseases such as cancer, the presence of
both passive passenger and active driver mutations is likely to hinder mutation analy-
sis. Therefore, in order to prioritise mutations which are more likely to be causing the
disease phenotype, various approaches have used mutation clustering methods in or-
der to identify protein positions enriched in mutations, which are therefore likely to be
sites of driver mutations [189]. Furthermore, many studies have assessed the enrich-
ment of mutations within defined regions within the protein sequence. These regions
can include 1) residues surrounding a frequently mutated residue, 2) within protein do-
mains, and 3) within disordered regions. For example, Tamberero et al [240] developed a
method called OncodriveCLUST that analyses the enrichment of cancer mutations within
a residue window in a protein sequence, and calculates a clustering score. A binomial

model was used to identify significantly mutated residues and positions containing mu-
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tations within 5 amino acids. Genes identified by this method were enriched for known
cancer driver genes in the Cancer Genome Census, mostly having a dominant pheno-
type suggestive of oncogenes. Clusters were also found for recessive cancer genes but
mutations within these clusters were more dispersed in their nature, and more likely to
be associated with loss of function genes, consistent with studies described above [226]
[271] [247).

Other studies used enriched domain annotations in driver gene detection. For ex-
ample, the work of Lu et al [135] who compared the propensities of common (con-
trol), germ line and cancer variants - from OMIM and COSMIC respectively - in pro-
tein regions. Such protein regions were defined using Pfam domain annotations and
disordered residues measured by DISOPRED [264]. The regions studied were intra-
domain ordered, intra-domain disordered and inter-domain disordered regions. The use
of propensities provides another means of quantifying regional enrichment of mutations
in the protein sequence, and here this was normalised using region length and the rel-
ative frequencies of mutations in the rest of the protein. Both germ-line and cancer mu-
tations were significantly depleted in both types of disordered regions, while possessing
high propensities for ordered regions, especially in the case of germ-line variants.

More recent studies have also incorporated structure-based domains from the CATH
database in driver gene detection. Hashemi et al [94] analysed the enrichment of can-
cer missense mutations in 29 cancers from the TCGA, within sequence based Pfam and
structural CATH superfamily domains in identifying candidate driver genes. Significant
mutation enrichment of mutations within a domain region was based on a binomial model
of observing k mutations within a specific gene or domain of length |, compared to their
occurrence within all coding regions of the genome of length L. Significantly mutated do-
mains/genes were identified for each cancer type, using a p-value cut-off of 0.05, which
underwent a Bonferoni correction. For the candidate genes within domains, these were
also analysed on their degree of connectivity within the STRING database, compared
to a random set of genes of equivalent size. In addition, domain candidate genes were

compared with known cancer genes from COSMIC to test for cancer gene indication.
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Lastly the SNPeffect predictor was used to predict impact scores for mutations within the
Pfam and CATH domain genes.

Mapping domain annotations on mutated genes identified 759 CATH domain fami-
lies within 2993 proteins, for 19 cancers. For the Pfam domain genes, there were 6009
Pfam domains within 17,722 genes, for 29 cancers. Although the CATH domains had a
lower coverage of mutated genes, compared to Pfam domains, the CATH domain genes
showed a higher overlap with cancer causing genes from COSMIC (that have specific
domain type), at 65%, compared to the Pfam dataset, which gave a 52% overlap. In addi-
tion to this, the SNPeffect analysis showed that 14.3% and 17.7% of the mutations were
reported as likely to have a high functional impact within the Pfam and CATH domains
types, respectively. For the STRING connectivity analysis, the CATH domain candidate
genes showed a significantly higher connectivity compared to random. This was not
the case for the Pfam gene sets which showed a lower degree of connectivity between
cancer types. This study therefore highlighted that the use of CATH domains in muta-
tion analysis may provide a more informative and more functionally coherent insight into

cancer genes and the mutations within them.

Structure-based Enrichment: 3D hotspots

Despite the success in detecting 1D hotspots, they are limited to detecting recurring and
frequent mutations within the same nucleotide position, and depend on the number of
samples available. A more sensitive method for detecting rare mutations is to see how
mutations cluster within structural space. Therefore, other studies identify 3D hotspots,
which also include the region surrounding highly mutated residues.

By considering the clustering of mutations in 3D, this not only detects positive selec-
tion at a given position, it also detects hotspots formed by mutations far from each other
in the sequence but brought together in 3D upon folding, which may be overlooked by
1D hotspot methods. Other studies have shown that oncogenes are more likely to have
mutation clusters at individual sites, compared to tumour suppressor genes which are

more likely to contain mutations dispersed throughout the protein sequence [271] [247]
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To date, many of the analyses of the 3D clustering of mutations have been performed
with cancer missense mutations in whole protein structures. One of the earliest studies
was performed by Stehr et al in 2011 [226]. They developed a clustering score for
each gene which was proportional to the sum of distances between the centroids of
mutated pairs across the protein, and normalised by the number of mutated residue
pairs. Clustering was performed in protein domains, defined by DomainParser [270], to
avoid bias of domain architecture and gene size. Significance of clustering was based
upon a random control population, which was derived from a 1000 random mutations
within the amino acid sequence. Much like the work on 1D hotspots, this approach
revealed that mutations in oncogenes have higher tendencies to cluster within protein
domains compared to tumour-suppressor gene mutations.

Another early study [200] also measured distances between mutation pairs. Ryslik et
al analysed mutations from COSMIC comprising both oncogenes and tumour suppres-
sor genes. The SpacePAC method was applied, which identifies spheres of different radii
(between 1-10A ) around each mutation in the protein structure [200] and reports signif-
icantly mutated clusters based on the observed mutational counts falling in the tail of a
Poisson distribution. Spheres of various radii from a central clustering position are anal-
ysed, where the cluster centre has the maximum normalised mutation count compared
to randomly simulated mutations. SpacePAC identifies between 1 to 3 non-overlapping
spheres of various radii, where different sphere combinations are assessed by their P-
value to identify which combination encapsulates the most mutations. In doing this, one
of the main assets of SpacePAC is that sphere combinations are assessed using the
most enriched amino acids first, and so once an optimal sphere combination is found
for a given protein, the programme terminates. This removes the necessity of having to
sample every possible combination of overlapping spheres to capture mutations, unlike
earlier approaches [201].

SpacePAC successfully identified 3 clusters in the ALK tyrosine kinase, at positions
known to harbour activating mutations, thus further supporting the use of clustering in

studying activating mutations in cancer. Other results from this study included the obser-
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Figure 2.6: SpacePAC detects 3 mutation clusters within the known cancer driver BRAF
kinase. The cluster centre positions are labelled and coloured in red, blue, and purple.

Taken from [201].

vation of co-location of these spheres to larger functional regions derived from UniPro-
tKB. These include domain types, and other residue specific features; ATP/GTP binding
sites, and other binding sites. Analysis showed that 77% of the hotspots within 18 pro-
teins overlapped with a binding site or a domain. These included 3 within the BRAF
kinase domain, which contains the known driver mutation position V600 on the activa-
tion loop (shown in figure [2.6).

Whilst 3D clustering methods have helped identify regions of cancer driver muta-
tions, so far the methods treated all distances between cluster residues equally, and
mutation frequencies were not explicitly accounted for in the clustering scores. In 2015,
a similar method measuring centroid distances between mutated residue pairs was de-
veloped by Kamburov et al [110], called CLUMPS. A weighted average proximity (WAP)
score was used, where distances between mutation pair centroids were accumulated for
each residue, and then weighted by how many samples the residue was found mutated

in (Figure [2.7). CLUMPS was used to analyse cancer mutations from COSMIC [15]
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and the PanCancer compendium. Both oncogenes and tumour suppresser genes were

considered.

Figure 2.7: CLUMPS methodology applied to the KRAS domain from the PanCancer
dataset. A) Distance arcs of less than 13 A between mutated centroids (red) are shown,
where thicker arcs are shown for closer distances, within the protein sequence. B) Struc-
ture of KRAS where the mutated residues in hotspots are shown in red, and the GDP

substrate is shown in blue. Taken from [110].
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Unlike 1D hotspot enrichment studies, CLUMPS analysis showed a comparable en-
richment of clusters in both oncogenes and tumour suppressor genes. As with earlier
studies, the identified clusters were analysed according their co-location to functional
annotations taken from PDBsum [123], which identified an enrichment of tumour sup-
pressor gene clusters on protein-protein interaction sites.

Another recent analysis identifying 3D mutation hotspots in oncogenes and tumour
suppressor genes includes the method of Tokheim et al [247]. This work also measures
the structural properties of the hotspots, which were assessed according to region size,
mutational diversity, amino acid physico-chemistry, and evolutionary conservation. Evo-
lutionary conservation was measured using Shannon’s entropy. The cancer mutations
were taken from TCGA for 23 tumour types, and the hotspots were significantly mutated
regions within the whole protein structure. A local mutation density for each residue
(r) in a given structure was measured as the sum of the missense mutation count at
the residue r and those residues occurring proximal to it, within 1nm or 1 amino acid

side chain away. The observed value of this local density was compared to 1000 ran-
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dom simulated permutations, where a significant local density has a P-value of 0.01 with
Bonferroni correction.

This analysis found that hotspots in oncogenes were smaller in their size and encom-
pass a smaller range of amino acid variant types compared to those within tumour sup-
pressor genes, which were more diverse in their physicochemical properties and more
dispersed throughout the structure, in agreement with related analyses [226] [271]. The
authors also found an increased tendency for hotspot mutations to contain more evolu-
tionary conserved mutations and occur within protein-protein interaction sites compared
to non-hotspot mutations. These features were then used to identify 3D hotspots in
different cancer genes, using a Naive Bayes classifier.

The results of this analysis showed that cancer associated proteins from the Cancer
Genome Census (CGC) [257] contained 3D clusters of mutations exhibiting a signifi-
cantly higher degree of cluster closeness than those found in non-cancer proteins. Re-
gions of high cluster closeness correlated with Pfam functional domains, and there was
significant preference of clusters to occur in conserved regions as measured by Phast-
Cons, assessed using a T-test. However, this method only prioritises clusters with high
closeness scores and therefore overlooks mutated regions of the protein that are more
disordered, less globular, and that contain more dispersed clusters - such as in tumour
suppressor genes.

More recent studies have also included an additional filtering step to select genes
that are expressed above a certain threshold, thereby reducing genetic noise. These
include the works of Gao et al [74] who studied 3D cancer mutation using TCGA and
ICGC somatic missense mutation data from 41 cancers. Genes with low RNA expression
levels (<0.1 TPM) in 90% of tumours were excluded. Clusters were identified using a
threshold of 5A , and mutations were aggregated across all samples using protein struc-
ture alignment. A robust statistical method was applied involving 10° randomisations
of mutated residues. For specific examples, mutations coinciding with known functional
sites reported in the literature were identified, and western blot analysis was used to

measure the abundance of activated downstream signalling effectors (Phosphorylated
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ERK1) and activated mutated genes (GTP-RAC1). The authors found 943 significant 3D
clusters, in 503 genes and identified 3D hotspots in known tumour suppressor genes -
PTEN, CDH1, and KEAP1. Further analysis showed the 3D clusters to occur near the
catalytic site in PTEN, within the ca* binding region of CDH1, and in the NRF-2 bind-
ing region of KEAP1. Western blot analysis revealed that the 3D cluster mutations in
MAP2K - occurring in the regulatory helixA region - disrupted MAP2K activity, leading to
its abnormal activation, and elevated downstream phosphorylated-ERK1 levels.

In this chapter, domain annotations from the CATH database were used to detect
cancer missense mutation enrichment in domains and enriched 3D clusters, and thereby
predict putative driver genes. Specific examples of these 3D clusters (MutClusters) are
analysed in further detail to determine possible functional effects based on functional
site proximity. In summary, a large-scale analysis of proximity to functional sites was
performed for germline non-cancer, somatic cancer, and predicted driver mutations. This
showed that putative driver mutations were enriched at various functional sites from
known sources, and in house predicted sites based on conserved residues seen in CATH

FunFams.
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Materials and Methods

Mutation Data

Germline mutations:

Germ-line disease mutations from OMIM: OMIM germ line mutations were taken from

the Gene3D Database containing the OMIM version in 2012 [10], and labelled according
to whether they were associated with cancer or not. This was done using a perl script to
identify different terminologies describing cancer; “Cancer”,”Carcinoma” and “Blastoma”.
This resulted in a non cancer dataset of 212,544 mutations. The OMIM cancer dataset
was further divided into oncogenes and tumour suppressor genes using a cancer gene
list containing oncogene and tumour suppressor gene annotations created by Vogelstein

et al [257] and the TSGene database [282] respectively.

Disease mutations from UniProt: UniProt disease associated mutations and neutral

mutations were taken from UniProt-HUMSVAR release March 2014 [11], annotated as
“disease” and “polymorphisms” respectively. To avoid bias of heavily mutated genes,
both UniProt mutation datasets were filtered to exclude UniProt accessions with more
than 50 mutations. Furthermore, if a position harboured more than 1 mutation, one
variant was selected at random. Both of these criterion have been used in previous
studies [75]. Filtering the UniProt datasets reduced the disease mutation dataset from
770 genes to 688 genes for the disease mutations set, and the neutral dataset from 1947
genes to 1926 genes. This gave a total of 6300 mutations in 688 UniProt accessions for

the disease mutations, and 8838 mutations in 1926 UniProt accessions for the neutral

group. See table

Somatic cancer mutations:
Somatic mutations implicated in cancer were taken from the COSMIC Cancer Gene
Census curated by Wellcome Sanger for genes [15]. These 600 genes included somatic

missense mutations in annotated oncogenes and tumour-suppressor genes.The cancer
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mutations within the COSMIC datasets were within 29 oncogenes and 40 tumour sup-

pressor genes.

Mapping of mutations to 3D structures

For each of the mutation groups, the UniProt to PDB mapping was extracted from the
Gene3D tables in the CATH database, which are based on the SIFTS mapping algorithm
[254]. The best structure for a UniProt sequence was selected based on 1) the maximum
mapped UniProt sequence length and the best structural resolution, as in studies by
Stehr et al [226]. The number of mapped entries for each mutation type is shown below

in table

Table 2.1: The different disease mutations analysed and the number of entries mapped

to a PDB structure.

Mutation Total
dataset Mapped Entries
OMIM Non cancer 7,523
COSMIC oncogenes 1,893

COSMIC Tumour suppressors | 3,184

UniProt Disease 6,300

UniProt Neutral 8,838

Identifying domains enriched in mutations (MutFams) and 3D clusters enriched in

mutations (MutClusters)

We identified CATH domain functional families (FunFams) that are enriched in muta-
tions (MutFams). A number of cancer disease mutation datasets were analysed to iden-
tify MutFams, which included mutations implicated in bladder cancer (BLCA), glioblas-
toma multiforme (GBM), low grade glioma (LGG), gliomas (GLI), breast cancer (BRCA),
lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), kidney and renal

cell carcinoma (KIRC), prostate adenocarcinoma (PRAD), skin cutaneous melanoma
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(SKCM), acute myeloid leukemia (LAML), stomach adenocarcinoma (STAD), renal ade-
nocarcinoma (READ) and colorectal adenocarcinoma (COAD). Cancer mutations were
taken from COSMIC [15], TCGA [249] and the ICGC [281] resources. Mutations were as-
sociated with their respective CATH FunFam domains to detect enriched FunFams (Mut-
Fams) for each cancer type. The enrichment analysis was performed using a program
written by Dr Paul Ashford in the Orengo group, and a schematic of the methodology to
detect enrichment is shown in figure

Akin to previous methods by [154], we used a mutation enrichment score for a CATH
FunFam, described by equation 6. The FunFam enrichment score is based on the ob-
served mutations in a FunFam (mf) by summing all mutations in all domains within a
FunFam domain boundary. The expected mutation count (me) is calculated based on
the total number of mutations observed in all genes containing the FunFam, and the

fraction of amino acids within FunFams compared to the total length of the genes.

Figure 2.8: Enrichment of mutations in CATH FunFams(FF). The red bars reflect the
number of mutations. The equation calculates the enrichment factor for the FunFam in
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To assess the significance of the observed enrichment (ef) of mutations in each Fun-
Fam, a permutation test was used based on previous work by Miller et al [154])). For each
FunFam, the set of (human) genes was collected. To create a random mutation model,
these genes were then subjected to a residue based permutation test. For each of the
1000 permutation iterations, the total number of mutations within the FunFam genes
were counted, as mi. The P-value was defined as the proportion of iterations where mi

>mf, where mf is the observed mutations count for a FunFam, see equation 6.

Equation 6:

ef(enrichment factorscore) = m f(observedmutationburden)/mi(expectedmutationburden)

Correction for multiple testing

To reduce noise, for each cancer type, positions where the total mutations count was
<than 10 were excluded. This was applied within FunFam boundaries across all human
genes, and for multiple-spanning discontinuous sequence ranges, where applicable. Ad-
ditionaly, MutFams with enrichment factor ef <1 , were removed as these are, by defi-
nition, not enriched. P-values obtained for MutFams were corrected for multiple testing,
using the Benjami-Hochberg (BH) correction. A false Discovery Rate (FDR) of 5% was

applied using the R function “p.adjust” on all filtered MutFams, for each cancer type.

Identification of mutationally enriched 3D clusters (MutClusters)

MutClusters are distinct from 1D mutation hotspots as they involve multiple residues that
cluster in 3D, as opposed to an enrichment of mutations at a single residue. Firstly,
mutationally enriched regions within CATH FunFam domains were identified by the Mut-
Cluster program written by Dr Paul Ashford in the Orengo group. For each MutFam with
a significant enrichment factor of >1.5 and corrected P-value <0.01, the observed mu-
tations at a specific MutFam position are tallied from all FunFam gene members and
mapped onto the FunFam representative structure. This is the structure with the high-

est average structural similarity, measured by SSAP [173] to all other relatives in the
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FunFam. The density of mutations within a spherical volume of 5A is calculated and a
permutation test is performed for each sphere, to identify regions which harbour more
mutations than expected by chance, with a P-value of <0.01. The permutation test is

done by generating 5000 random mutations within the protein structure.

Proximity analysis of single and clustered mutations to functional

sites

Known functional sites

To analyse the proximity of single mutations and MutCluster mutations to functional sites,
we used known functional site data including; catalytic residues from CSA [192], and
protein-protein interaction sites from NCBI-IBIS [216]. We also used UniProt functional
features extracted from the UniProt functional features table on May 2009 [11]. These
were mapped to the PDB structure, as described in (section [2.2.1.7). The functional
feature types include; MOD_RES, METAL, NP_BIND, ACT_SITE, SITE, CARBOHYD, see
table Other UniProt features which were considered but excluded due to lack of data
were; CA_BIND, ZN_FING, DNA_BINF, MOTIF, ACT_SITE. CARBOHYD and LIPID.
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Table 2.2: UniProt functional features included in the proximity analysis and their de-

scriptions.

UniProt feature | Description

Post translational modification of a residue. Includes, Acetylation, amidation, hydroxylation,

MOD_RES methylation, phosphorylation, formylation, blocked group, pyrrolidone and

sulfation
METAL Binding site for a metal ion, such as iron or copper
ACT SITE Amino acids involved in the catalytic activity of an enzyme.

Amino acids involved in the binding of a chemical group, such as a prosthetic
BINDING

group or a co-enzyme.

Describes the occurrence of the attachment of a glycan (mono- or polysaccharide) to a
CARBOHYD

protein residue. This include C-,N-, or O- linked glycans.

Any interesting amino acid on the sequence that is not defined by any other
SITE feature key. It can also apply to an amino acid bond which is represented by

the positions of the 2 flanking amino acids, such as a cleavage site for a

protease

Other known functional residues included ligand binding residues, were taken from
the IBIS resource [216], and from ccPDB [218]. The ccPDB data were from compiled
datasets updated in 2012 available online. The choice of ccPDB ligand types was based

on a recent article by Martinez et al [108] as shown in table

Table 2.3: Ligands considered in the MutDist proximity analysis

Ligand abbreviation | Molecule name
ATP Adenosine triphosphate
ADP Adenosine diphosphate
Flavin adenine
FAD
dinucleotide
FMN Flavin mononucleotide
GDP Guanosine triphosphate
Protoporphyrin IX
HEM porphy
containing Fe
Nicotinamide adenine
NAD
dinucleotide
PLP Pyridoxal — 5’- phosphate
UDP Uridine diphosphate
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Predicted functional sites

In addition, proximity to predicted functional sites was analysed using predicted sites

from a range of resources.

Sequence based: Conserved sites within a FunFam alignment - FunSites
For a given FunFam, predicted functional sites (named FunSites) were identified using
an in-house programme called Scorecons [253], which detects sites with highly con-
served residues. Scorecons scores range from 0 for unconserved to 1 for completely
conserved sites, where significantly conserved residues possess a scorecons value of
greater than or equal to 0.7. Proximity to scorecons sites was analysed only if the mu-
tated protein was in a FunFam with a Diversity Of Positions (DOPS) score of at least
70. DOPS score measures the information content of a FunFam multiple sequence
alignment. Here a DOPS threshold of 70 has been shown to be optimal in obtaining

conserved positions enriched in known functional sites [41].

Structure based - Predicted allosteric sites
We predicted allosteric residues in a protein structure by using a novel in-house method,
BC-Site (Aurelio Goya Marcia, personal communication). The protein domain structure is
modelled as a residue network, where each residue is a node connected to other residue
nodes. The protein domain contact network is derived from the cross correlation matrix
obtained by normal mode analysis (NMA). This matrix is based on whether 2 residues in
a pair exhibit correlated fluctuations, and network edges are weighted by the degree of
strength of these motions. These weights can be transformed into “effective distances”
between contacting nodes, where a high correlation suggests a strong information flow
between the 2 residues, associated with shorter effective distances [35].

The effective distance between 2 residues nodes are referred to as vertices. The
betweenness centrality of a residue is the number of shortest paths from all vertices that
pass though that residue, compared to all other vertices. This method measures the

residue’s position in linking between residue communities, and captures sites involved in



CHAPTER 2. EXPLORING THE PROXIMITY OF DISEASE AND PREDICTED
DRIVER MUTATIONS TO FUNCTIONAL SITES 88

transferring signals between distal regions within the protein [35]. Since these residues
have been shown to be important in controlling the flow of information within a residue
network, they are thought to be important for allosteric communication [50] [112]. The
BC- site residues do not distinguish between surface/non surface or sites that are directly
affected upon ligand binding on the surface of the protein, but rather residues which act
as linkers between residue hubs within the protein to facilitate cross-protein communi-
cation. Therefore in addition to considering BC sites, for specific analyses of MutCluster
residues, we used surface allosteric sites predicted by the STRESS program [35]. These
predicted allosteric residues were identified based on them undergoing significant con-
formational changes upon ligand binding, measured using Monte Carlo simulations (see

Chapter 1, page 61).

MutDist method

The MutDist program written in perl consists of a number of modules which parse the
mutation data, structural data and functional site data. Subsequently, the closest atomic
distance between a mutated residue and a functional site residue is determined. This
was performed for each of the mutated residues in the OMIM and COSMIC datasets,
which could be mapped to a structure. The proximity of mutated residues within Mut-
Clusters to functional site residues was also analysed, again taking the closest atomic
distance between the mutated residue to the nearest functional site residue. Further-
more, a program was written in R to generate plots of the cumulative density functions
(CDF) of these distances for each mutation dataset, where the cumulative probability
of mutations was plotted for each distance to the functional site being considered. An
example of this is shown in figure

Statistical Tests: Whilst a number of statistical tests could be applied to test for
significance (e.g Fisher’s exact text, KS-test), the Fisher’s exact test was used as this has
been widely reported in the literature for these types of studies and allows us to directly
compare our results with those of Gao et al [75]. In order to assess the significance of the

different distributions of the disease causing mutations compared to neutral mutations,
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Figure 2.9: An example of a cumulative density plot (CDF) for proximity of disease

mutations from COSMIC-ONC to IBIS-PPI sites
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odds ratios (OR) were calculated and the Fisher's Exact test was performed in R for the
contingency table [2.4] shown below. This is a similar analysis to that employed by Gao
et al [75]. In this work, the significance of a mutation type to occur close to a functional
site (between 0-8A ) is described by a P-value, which was considered significant if the

P-value is less than or equal to 0.01, representing the 1% significance threshold.

Table 2.4: Contingency table for disease versus neutral mutations at a given distance,

for odds ratio calculations

Distance (X or Y) boundary | Disease mutations | Neutral mutations

(X-Y) or (0-X) A c

Not in boundary or threshold | B D

Comparing the results obtained by MutDist with those for similar analyses of prox-

imity of mutations to functional sites

In order to test the reliability of MutDist and the developed computational framework,

analyses of UniProt disease mutations and neutral mutations were compared to the re-
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sults obtained from similar studies performed by Gao et al [75]. The study by Gao et
al explored the proximity of mutations to in-house defined protein protein interaction
sites, where the complexes used were identified as entries in the PDB which had a “pro-
tein complex” label within their biological unit. The interface sites were then defined
as residues having heavy atom distances of at most 4.5A between protein partners.
MutDist was run on protein protein interaction sites collected from IBIS [216] which are
obtained from both experimental data reported in the literature and homology analyses.
The cumulative density functions for each of the studies are shown below in figure

In both studies, disease mutations show higher probabilities to be close to interface
sites than neutral mutations in UniProt. This relationship is similar in the 2 studies.
In terms of differences, Mutdist showed overall higher probabilities of both neutral and
disease mutations to be close to a PPl site, at each distance. This is likely to to be due to
the fact that the interaction sites used in the MutDist analysis were more comprehensive
as they were derived from a wider set of sources. The similarity in the trends observed

justified the use of MutDist in larger scale studies.



Figure 2.10: Comparing the proximity of UniProt disease and neutral mutations to PPI sites, analysed using the Skolick method and the

MutDist method
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Results

Analysis of the proximity of known disease associated mutations

and predicted cancer driver mutations to functional sites

MutDist analysis was performed on germline mutations using datasets taken from OMIM,
for non-cancer diseases. We also considered mutations in different types of cancer
genes identified in COSMIC — oncogenes and tumour suppressor genes, which included
both germline and somatic cancer mutations. To analyse the functional effects of the
MutClusters on a large scale, a proximity analysis using MutDist, was also performed for
all MutClusters. As discussed already in methods, the MutCluster protocol is designed
to detect mutationally enriched regions and thereby filter out noise from passenger mu-
tations. For each dataset, the distances of mutations to functional sites were shown as

an empirical cumulative density functions for each functional site type.

Analysis of proximity of mutations to catalytic sites

According to figure UniProt disease mutations show a modest tendency to occur
close to CSA sites, similarly germline non cancer mutations. The UniProt disease muta-
tion dataset were included for reference and contain both germline non cancer and can-
cer mutations. This result is consistent with studies by [75], which reported that 17% of
UniProt disease mutations co-locate to predicted enzyme functional determinants iden-
tified by EFFICAZ [75].

Somatic cancer mutations in both oncogenes and tumour-suppressor genes showed
the lowest tendency to occur close to CSA sites. However MutClusters showed a high
tendency to be close to CSA sites, producing the highest enrichment with an odds ratio
of 2.98 at distances 0-8 A, compared to UniProt neutral mutations ( see table In
summary, all disease mutations show a higher tendency to be close to catalytic residues
than neutral mutations. This is enhanced for cancer mutations by filtering out passenger

mutations using the MutCluster enrichment protocol.
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Figure 2.11: Comparing the proximity of UniProt disease and neutral mutations to CSA

sites.
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Table 2.5: Overall tendencies of disease mutations to occur close to CSA sites com-
pared to the UniProt neutral mutations. Fisher’s exact test was performed against all

mutation types to the UniProt neutral.

Mutation type Number of distances | Distance boundaries | Odds ratio P-value | significance
Germline non cancer | 2598 (0-8) 2.270614922 | 2.20E-16 | **

Cosmic oncogenes 78 (0-8) 1.723322684 | 0.05304

Cosmic tumour supp | 187 (0-8) 1.715344338 | 0.004351 | **

UniProt disease 1562 (0-8) 2.809229542 | 2.20E-16 | **
MutClusters 319 (0-8) 2.981621786 | 3.34E-15 | **

UniProt neutral 2111
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Analysis of proximity of mutations to protein-protein interaction sites

According to figure the UniProt disease mutations, consisting of both non-cancer
and cancer mutations, show a slight but significant tendency to occur close to IBIS-PPI
sites, consistent with results from previous studies [42] [43] [75] showing PPI sites to be
hotspots for UniProt disease mutations. But since this dataset contains a mixture of dis-
eases in both non-cancer and cancer, we also analysed germline non-cancer mutations.

The OMIM germline non cancer mutations showed no significant tendency to occur
close to IBIS-PPI sites. This may be due their propensities to occur within the protein
core, where they cause protein destabilisation [277], or their occurrence in ligand binding
sites [108]. Schuster et al has also showed that only 4% of germline disease mutations
from OMIM and UniProt are involved in protein interaction sites [206]. A recent large
scale study was performed by Gress at al in 2017 [90], who compared cancer and non-
cancer disease missense mutations. They revealed that protein-protein interaction inter-
faces are not enriched for either disease causing mutations. However, somatic cancer
mutations in oncogenes and tumour-suppressor genes both show significant tendency
to occur close to IBIS-PPI sites. This tendency is further increased for the MutCluster

mutations, which show the highest odds ratio of 2.51 compared to neutral mutations.
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Figure 2.12: Cumulative density functions of germline and somatic cancer single muta-

tions and MutCluster mutations to protein-protein interaction sites.
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Table 2.6: Overall tendencies of disease mutations to occur close to IBIS-PPI sites

compared to UniProt neutral mutations. Fisher’'s exact test was performed against all

mutation types to the UniProt neutral

Mutation type Number of distances | Distance boundaries | Odds ratio P-value | significance
Germline non cancer | 5479 (0-8) 1.049274235 | 0.2018

Cosmic oncogenes 990 (0-8) 1.71150847 | 3.53E-13 | **

Cosmic tumour supp | 1179 (0-8) 1.709584988 | 4.65E-15 | **

UniProt disease 4478 (0-8) 1.412395121 | 2.20E-16 | **
MutClusters 1897 (0-8) 2.517012866 | 2.20E-16 | **

UniProt neutral 6582
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Analysis of proximity of mutations to ligand binding sites

According to figure the UniProt disease mutations show a significant enrichment
at ligand binding sites, with an odds ratio of 1.6. A significant signal is also seen for the
germline non cancer mutations from OMIM, consistent with other studies showing that
germline disease mutations from HGMD, exhibit a high tendency to co-locate to ligand
binding sites [175] (see table [2.7).For the somatic cancer variants, the mutations in
oncogenes produced a significant enrichment at ligand binding sites, with an odds ratio
of 1.46. In contrast, somatic mutations in tumour suppressor genes were not significantly
enriched. Mutations within MutClusters showed the highest enrichment at ligand binding

sites, with a significant odds ratio of 1.78.
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Figure 2.13: Cumulative density functions of germline and somatic cancer single muta-

tions and MutCluster mutations to ligand binding sites.
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Table 2.7: Overall tendencies of disease mutations to occur close to ligand binding sites
compared to the UniProt neutral mutations. Fisher’s exact test was performed against

all mutation types to the UniProt neutral.

Mutation Type Number of Distances | Distance Boundaries | Odds Ratio | P-value | significance
Germline non cancer | 5575 (0-8) 1.202882585 | 5.28E-07 | **

Cosmic oncogenes 936 (0-8) 1.462814882 | 9.39E-08 | **

Cosmic tumour supp | 788 (0-8) 1.096129955 | 0.2269

UniProt disease 4205 (0-8) 1.6235527 2.20E-16 | **
MutClusters 1584 (0-8) 1.776610699 | 2.20E-16 | **

UniProt neutral 6414

Analysis of proximity of mutations to predicted FunSites

According to figure the UniProt disease mutations show a modest but significant
tendency to occur close to FunSites. This dataset contains germline non cancer, and
cancer mutations. Germline non cancer mutations showed a higher and very significant
tendency to lie close to these conserved sites, suggesting a possible functional expla-
nation of the impacts of germline non cancer mutations. However, a low proportion of
these mutations are close to catalytic and interface residues (see figure [2.11]and figure
[2.12), suggesting that these mutations may be impacting other types of sites identified
by the FunSite protocol, i.e ligand binding sites or allosteric sites.

Somatic cancer mutations in oncogenes also produced a significant tendency to lie
close to FunSites, which was further enhanced for the MutCluster mutations which pro-
duced the highest odds ratio of 84.7 compared to neutral mutations shown in table
There was not enough distance data for the somatic mutations in tumour-suppressor
genes, and so they were not analysed.

In summary, all disease mutations showed a significant tendency to occur close to
FunSites, and the highest tendency was seen for MutCluster mutations and the germline
non cancer mutations. This is consistent with studies that show both germline non cancer

and somatic cancer disease mutations to occur close to conserved sites [140].
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Figure 2.14: Cumulative density functions of germline and somatic cancer single muta-

tions and MutCluster mutations to predicted FunSites.
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Table 2.8: Overall tendencies of disease mutations to occur close to predicted FunSites

compared to the UniProt neutral mutations. Fisher’s exact test was performed against

all mutation types to the UniProt neutral.

Mutation type Number of distances | Distance boundaries | Odds ratio P-value | significance
Germline non cancer | 2360 (0-8) 25.50585912 | 2.20E-16 | **

Cosmic oncogenes 278 (0-8) 2.451820678 | 3.54E-11 | **

UniProt disease 1289 (0-8) 1.365189157 | 3.36E-05 | **
MutClusters 845 (0-8) 84.67358626 | 2.20E-16 | **

UniProt neutral 1613
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Analysis of proximity of mutations to UniProt functional features

In addition to CSA, IBIS-PPI and predicted Funsites, UniProt functional features were
also considered. The first is the “MOD-RES” functional feature, which describes residues
that play a functional role in post translational modifications, such as acetylation, ami-
dation, hydroxylation, methylation, sulfation, formylation, pyrrolidone addition, and phos-

phorylation.

Modified residues (MOD_RES)

All disease mutation types show significant tendencies to occur near MOD _RES sites,
shown in figure [2.15/and table [2.9] The somatic cancer oncogenes shows the highest
tendency to be proximal compared to neutral mutations, producing an odds ratio of 2.45.
In contrast, the somatic cancer mutations in tumour-suppressor genes produced the
lowest tendency to be proximal to the MOD-RES sites. The tendency of MutCluster
mutations to be proximal to MOD_RES sites is in-between the somatic oncogenes and
tumour-suppressor genes, producing the second highest significant odds ratio of 2.15.

A difference between oncogenic and tumour-suppressor gene mutations was also
seen in studies by Stehr et al [226] , who also examined proximity to post translational
modifications. Studies by Fan Yang et al [271] also showed that oncogene hotspots co-
locate more with post-translational modifications, than hotspots within tumour-suppressor

genes.
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Figure 2.15: Cumulative density functions of germline and somatic cancer single muta-

tions and MutCluster mutations to UniProt MOD_RES sites.
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Table 2.9: Overall tendencies of disease mutations to occur close to UniProt MOD_RES

sites compared to the UniProt neutral mutations.

against all mutation types to the UniProt neutral.

Fisher’s exact test was performed

Mutation type Number of distances | Distance boundaries | Odds ratio P-value | significance
Germline non cancer | 1570 (0-8) 1.842581789 | 2.00E-09 | **
Cosmic oncogenes 392 (0-8) 2.44789357 | 6.42E-10 | **
Cosmic Tumour supp | 378 (0-8) 1.520661157 | 0.009245 | **
UniProt disease 1385 (0-8) 1.568368174 | 2.90E-05 | **
MutClusters 185 (0-8) 2.150649351 | 0.00012 | **
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Metal binding residues (METAL)
According to figure all disease mutations show significant enrichment to UniProt
metal binding residues. The MutCluster mutations show the highest proximity to UniProt
metal binding residues (see table [2.70). This high enrichment for cancer driver mutations
agrees with the study by Talavera et al [239], which showed that cancer mutations under
positive selection are enriched at metal binding sites compared to cancer passenger and

neutral mutations.
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Figure 2.16: Cumulative density functions of germline and somatic cancer single muta-

tions and MutCluster mutations to UniProt metal binding sites.

Uniprot METAL Proximity

1.00{ Uniprot disease 1.00 Germline
2 2 non cancer
kel k<]
g g
50.75 50.75
£ 1S
ks) ks)
E name "? name
20.50 uniprot_disease 20.50 omim_nc
[ uniprot_neutral [0] uniprot_neutral
o [=]
g g
T0.25 T0.25
= =
g g
o ) o

0.00 0.00

0.0 25 5.0 7.510.0 0.0 25 5.0 7.5 10.0
Distance Nictanrg
1.00 Cosmic Tumour
suppressors
0.75
name
cosmic_tsg

uniprot_neutral

Cumulative Density of mutations
o o
N ()
(6} o

0.00
0.0 25 5.0 7.5 10.0
Distance

1.00 MutClusters
2
k<]
s
50.75
£
k)
,‘;‘ name
20.50 MutClusters
8 Uniprot_neutral
)
=
®0.25
>
£
=1
(&)

0.00

0.0 25 5.0 7.5 10.0
Distance



CHAPTER 2. EXPLORING THE PROXIMITY OF DISEASE AND PREDICTED
DRIVER MUTATIONS TO FUNCTIONAL SITES

108

Table 2.10: Overall tendencies of disease mutations to occur close to UniProt metal

binding sites compared to the UniProt neutral mutations. Fisher's exact test was per-

formed against all mutation types to the UniProt neutral.

Mutation type Number of distances | Distance boundaries | Odds ratio P-value significance
Germline non cancer | 507 (0-8) 2.169788107 | 8.88E-07 | **
Cosmic Tumour supp | 59 (0-8) 3.05974026 | 0.0004567 | **
UniProt disease 428 (0-8) 2.77913391 1.66E-10 | **
MutClusters 31 (0-8) 26.83982684 | 1.05E-15 | **
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Analysis of proximity of mutations to predicted allosteric sites

According to figure the germline non cancer mutations show a statistically signif-
icant enrichment at betweenness centrality (BC) sites, with an odds ratio of 1.92 and a
P-value of 2.2E-16 between 0 and 8A from BC sites (table . This tendency of
germline disease variants to occur proximal to sites of high betweenness centrality is
consistent with studies by Clarke et al [33].

In contrast, the unfiltered cancer mutations from COSMIC show no enrichment com-
pared to the UniProt neutral model. Furthermore, the MutCluster mutations show a sta-
tistically significant depletion with an odds ratio of 0.25. This trend conflicts with studies
by Shen et al [211] which showed cancer mutations to be enriched at allosteric residues.
However, the predicted allosteric sites used in such studies were more frequently found
on the surface compared to BC sites.

Other studies have also showed that cancer mutations are more likely to be observed
on the surface of the protein than germline disease mutations [135] [83], which may
explain the depletion of cancer mutations at BC sites. In contrast, the enrichment of
germline disease mutations at BC sites is likely to be due to the fact that these mutations

tend to occur in the protein interior.
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Figure 2.17: Cumulative density functions of germline and somatic cancer single muta-

tions and MutCluster mutations to predicted betweenness centraility (BC) sites.
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Table 2.11: Overall tendencies of disease mutations to occur close to predicted allosteric

sites compared to the UniProt neutral mutations.

against all mutation types to the UniProt neutral.

Fisher’s exact test was performed

Mutation type Number of distances | Distance boundaries | Odds ratio P-value | significance
Germline non cancer | 3649 (0-8) 1.920792423 | 2.20E-16 | **

Cosmic oncogenes 625 (0-8) 0.9297891166 | 0.545

Cosmic tumour supp | 1337 (0-8) 0.8579148061 | 0.07905

UniProt disease 3038 (0-8) 1.123280002 | 0.09929

MutClusters 1574 (0-8) 0.2495323392 | 2.20E-16 | **

UniProt neutral 4188
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Specific examples of mutationally enriched clusters close to func-

tional sites

We identified 42 MutFams using the enrichment method described in materials and
methods (section 2.2), which uses mutation data from the PanCancer datasets obtained
from COSMIC/TCGA/ICGC [15] [249] [281]. The clustering algorithm detected 175 clus-
ters within the 42 MutFams, comprising 970 mutations. Table A.1 in the appendix sum-
marises the proximity of the clusters to the different types of functional sites. Mutationally

enriched clusters in MutFams are described as MutClusters.

MutCluster mutations in Chk2 kinase

It has been shown that MutCluster mutations show a tendency to locate close to catalytic
sites. This is particularly prominent in regions between 3-5A from the active site residues
(figure [2.11). Such positions are likely to be affecting substrate binding or primary
shell electrostatics. An example of MutCluster mutations affecting a catalytic residue in
this way is shown in figure Chk2(checkpoint kinase2) is a driver gene in both
low-grade glioma (LGG) and glioblastoma multiforme (GBM) cancers. This is a kinase
which helps to maintain genomic integrity during the cell cycle checkpoint and there is
increasing evidence that Chk2 plays a tumour suppressive role in cancer [7] where it
evokes downstream signalling processes that activate proteins that regulate cell cycle
progression, genomic integrity and the activation of proteins resulting in cell death —
including P53. It is activated in response to DNA damage. The 4 clusters of mutations
within Chk2 kinase are located in 2 major regions in CHK2, known to be important for
kinase function. These regions are shown as, a) the ATP binding pocket and b) the
activation loop/APE motif in figure [2.18|[117][242]. The location of MutClusters here are
consistent with studies showing that both of these regions preferentially harbour cancer
causing mutations in protein kinases [55] [105] [156].

Region A in figure [2.18|shows a single cluster centred on residue 355 - spanning the

ATP binding pocket and the hinge region connecting the two lobes. This region is close
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to a ligand binding site and very close to the catalytic site and has also been implicated
in co-ordinating global kinase motions [54] [56], when the protein undergoes conforma-
tional changes initiated by substrate binding. The second region, B, encapsulates the
clusters centred on positions 392,394,396 — and spans the activation loop of the kinase

and the APE motif, both of which are heavily involved in kinase function and activation

[242] [117].

Figure 2.18: CHK2 kinase MutCluster Mutations. Transferase (Phosphotransferase)
domain 1 is shown from a MutFam domain commonly found in LGG, GBM gliomas,
which occurs in the FunFam Calcium/calmodulin-dependent protein kinase type Il Fun-
Fam (CATH id 1.10.510.10, 79008). The central cluster residues are coloured red and
are located in the functional regions labelled A and B. The CSA residues are coloured
in green. Coloured boxes in the table below the structure indicate the functional site that

the MutClust is close to ( less than or equal to 5A).

Cluster Residue CSA IBIS_PPI |LIGAND |FunSite
A A355

B
B M394
B AZOE




CHAPTER 2. EXPLORING THE PROXIMITY OF DISEASE AND PREDICTED
DRIVER MUTATIONS TO FUNCTIONAL SITES 114

MutCluster mutations in p53

One of the most mutationally enriched MutFams in the COSMIC/TCGA PanCancer dataset
contains the cellular tumour antigen p53 domain, within the TP53 gene. Figure [2.19
shows that this domain contains two MutClusters (see A and B) which are near to each
other, and within 5A of an IBIS-PPI site (blue residues), that binds to a homologous
transcriptional factor, P63. Therefore, any mutations proximal to the p63 binding site
would disrupt its binding, and the tumour suppressive role of p53 in preventing DNA
damage and maintaining genomic quality control within the cell cycle [65]. Affect-
ing DNA repair is one of the main hallmarks of cancer and it can lead to further genetic

abnormalities within the tumour [92].

Figure 2.19: MutClust mutations in the TP53 domain which is in the FunFam cellular
tumour antigen p53 (CATH id 2.60.40.720, 232) found in all cancers. The central cluster

residues 195 and 199 are coloured red, and the IBIS-PPI site is coloured blue.

Cluster Residue IBIS_PPI |[FunSite |Betweenness centrality
A Cc195 1 1 0
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The two clusters are centred on residues 195 and 199. The cluster at position 195
is 5 residues away from a known DNA binding site of P53. Therefore the mutations
within the cluster, and possibly those within the second cluster at 199 may have addi-
tional functional effects on the P53 interactions to other transcriptional regulators i.e in
addition to affecting binding to p63 [34]. The proximity of TP53 mutations to functional
sites has also been shown by Sahni et al [202]. Other functional sites close to the mu-
tations in the MutClusters include conserved sites (FunSites) and sites possessing a
high betweenness centrality i.e containing residues predicted to be involved in allosteric

communication within the protein, which lie close to the cluster residue 199.
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MutCluster mutations within predicted allosteric residues in EGFR

Epidermal growth factor receptor (EGFR) is a growth factor signalling receptor which
governs cellular proliferation and is one of the most well-known cancer causing genes.
Several MutClusters were identified within the extracellular region of EGFR, in the L-
domain, responsible for receptor dimerization, imperative to its activation.

The binding of the cognate ligand to an EGFR monomer, epidermal growth factor
(EGF), induces dimerization of the receptor monomers mediated by the extracellular do-
mains. This dimerization event then evokes a conformation change in the receptor which
is transmitted via the transmembrane regions to the intracellular kinase domains. This
causes their auto-phosphorylation, leading to subsequent kinase domain activation and
the recruitment of signalling adaptor proteins and growth factor signalling [44]. In total,
there were 6 MutClusters within this domain, spanning the residues between positions
276-304. According to Figure it can be seen that this mutated region lies on top of
the L domain within the dimerization arm, which is involved in making disulphide contacts
between the EGFR monomers, imperative for receptor dimerization and subsequent re-

ceptor activation [44].
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Figure 2.20: Mutations in the FunFam Epidermal Growth Factor Receptor domain (1mox
structure). The central cluster residues are coloured red. a) the 297 cluster b) and all
MutCluster mutations, shown in orange. The surface allosteric sites are shown in cyan.
The IBIS-PPI and FunSites were not highlighted in the diagram for clarity. Coloured
boxes in the table below the structure indicate the functional sites that the MutCluster is

closeto (<5A ).
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This critical position provides a focal point for altering the orientation of the L domain.
The MutCluster locations shown in figure suggest a functional effect. Specifically
the clusters occur proximal (0-5A ) to surface allosteric sites, which are involved in en-
abling allosteric communication upon ligand binding, and also to IBIS-PPI sites involved
in protein binding. These observations agree with studies by Porta-pardo et al [189]
which used e-driver to identify significantly mutated regions in whole protein structures.
The authors also showed that mutations lay in the dimerization interface, and caused
increased EGFR phosporylation by affecting dimerization in GBM [188]. Furthermore,
mutations at residue 289, have been shown to increase mean intracellular phosphopro-

tein levels, compared to wild type EGFR [129]. The activating nature of these mutations
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are consistent with studies showing that glioblastoma tumour cells, harbouring these

mutations, display a carcinogenic phenotype, of anchorage independent growth [129].
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MutCluster mutations in metal binding and predicted allosteric sites in DICER

RNAase

Figure shows an example of a cluster within the RNAase domain in the DICER
gene, located close to a magnesium binding residue. DICER uses magnesium ions to
bind RNA and catalyses RNA cleavage to produce small interfering RNA and MicroRNA
molecules. According to figure it can be seen that all MutCluster residues in clus-
ters A and B (highlighted in red in figure are within 5 A to conserved FunSites, and
predicted allosteric residues of high betweenness centrality. Both MutClusters contain at
least 1 residue within 5 A to a UniProt metal binding site, which binds magnesium. This
observation is consistent with studies showing that many somatic mutations in DICER
affect its metal binding activities within ovarian tumours [96]. It has been suggested that
this effect contributes to the oncogenic phenotype by altering the production of micro
RNAs (miRNAs), which are important for cell differentiation and fate determination [96]).
Germline non-cancer mutations and mutations from a range of disease including can-
cers, have shown enrichment at metal binding sites reported by studies performed by

Martinez et al [108]
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Figure 2.21: Mutations within the RNAase DICER domain ( PDB code 2eb1) in the en-
doribonuclease Dicer homolog 1 domain FunFam ( CATH id 1.10.1520.10, 4026) found
in all cancers. The central cluster residues are coloured red, and the magnesium ions
are coloured as orange spheres. Coloured boxes in the table below the structure indicate

the functional site that the MutCluster is close to (<5 A ).
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MutCluster mutations in DYRK kinase with apparently no functional effect

We also examined a MutCluster within the DYRK-1A kinase, involved in regulating DNA
splicing and apoptosis [223]. Both processes have been implicated in cancer, where
the former has recently been linked to protein network rewiring. DYRK-1A showed no
MutCluster residues within 5A to any of the functional sites considered in the previous
studies, i.e CSA, IBIS-PPI, ligand binding, allosteric, or predicted functional sites (Fun-
Sites).

One possible explanation for this would be that no FunSites were predicted for the
DYRK-1A structure. One of the main determinants for producing the FunSites requires
the structure to be a member of a FunFam with an appropriate DOPS score ( > 70).
Lower DOPS scores imply less informative multiple sequence alignments involving less
diverse sequences, and therefore less reliable conserved site identification. The DOPS
score for the the MutFam containing DYRK-1A was lower than 70 (at 68.45) and so the
conservation sites for this MutFam could not be safely identified.

To explore the consequences of this mutation further, FunSites were inherited from
the closest FunFam with a DOPS score >70, specifically a predecesor of the DYRK-1A
FunFam in the FunFam tree hierachy. These FunSites may encapsulate some of the
functional residues within DYRK-1A. The MutCluster residues and inherited FunSites
were mapped to the DYRK-1A structure, and show a high degree of co-location with the
MutCluster residues, illustrated in the figure

Furthermore, literature searches revealed that the inherited FunSite residues are
conserved between different isoforms of DYRK kinases in different species. In a related
isoform - DYRK2 kinase - these inherited FunSites facilitate autophosphorylation of the
activation loop, and are referred to as NAPA-1 and DH-box regions. Although the DYRK-
1A structure lacks such regions, this suggests that mutations in this region of DYRK-
1A mimic the enhancing effects on autophosphorylation, seen in relatives, to increase

kinase activity [223].
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Figure 2.22: Mutations in the DYRK-1A kinase (structure 2vx3) in the Dual-specificity
tyrosine-phosphorylation-regulated kinase 1B domain FunFam (CATH id 3.30.200.20,

64610). The central cluster residues are coloured red.

MutCluster residues
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Conclusion

The functional impacts of different disease mutations have been explored, by analysing
the proximities of germline non-cancer, cancer, and putative cancer drivers within Mut-
Clusters to known and predicted functional sites. In terms of the specific trends of prox-
imity reported from the MutDist analysis, this revealed that the different disease mu-
tations show some enrichment at specific functional sites, highlighting possible mech-
anisms of pathogenicity, which are summarised in table These patterns are
consistent with the literature, suggesting that cancer mutations are more likely to af-
fect protein-protein interaction sites than germline non cancer mutations [169][271], and
that germline non cancer mutations show more enrichment at betweenness centrality

sites, which are buried within the protein core [83].

Table 2.12: Proximity trends of different disease mutations to the various functional sites.
A significant enrichment within 0-8A of the functional site is where P-value is less than
or equal to 0.01. All P-values are based on the enrichment of mutations at the functional
sites highlighted in bold, apart from the BC-site P-value for a mutation depletion indicated

by an asterisk (*). N/A indicates sparse data.

Mutation

CSA IBIS-PPI | Ligand FunSite | MOD_RES | Metal BC-sites
type
Germline non cancer | 2.2E-16 | 0.201 5.28E-07 | 2.2E-16 | 2.0E-09 8.88E-07 | 2.2E-16*
Cosmic oncogenes 0.053 3.53E-13 | 9.39E-08 | 3.54E-11 | 6.42E-10 N/A 0.545
Cosmic tumour supp | 0.0044 4.65E -15 | 0.23 N/A 0.0092 0.00046 | 0.08
UniProt disease 2.2E-16 | 2.2E-16 2.2E-16 | 3.36E-05 | 2.9E-05 1.66E-10 | 0.099
MutClusters 3.34E-15 | 2.2E-16 2.2E-16 | 2.2E-16 | 0.00012 1.05E-15 | 2.2E-16*

According to table it can be seen that cosmic oncogene and tumour suppres-
sor gene mutations differ in their proximities to some sites, where oncogenes are more
enriched at ligand binding sites, and the tumour suppressor gene mutations are more
slightly enriched at CSA sites. The predicted driver mutations within the MutClusters,
show even greater enrichment at such sites. This study also demonstrates the utility of

the CATH FunFams protocols and structural mapping to identify putative cancer driver
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mutations in selecting more functionally relevant mutations compared to analysing a mix-
ture of passenger and driver cancer mutations. The predicted driver mutations show the
highest enrichment at various functional sites compared to all other mutation types con-
sidered, as summarised in table 2.12

An additional dataset was included in this analysis, comprising of the disease and
neutral mutations from UniProt. These underwent filtering to avoid the bias of heavily
mutated genes, according to the approach used in Gao et al [75]. Further work would
include analysing the excluded genes on their specific functions. Since the study of
proximity to post-translational modifications (PTMs) treated all PTMs as one type of site,
as more data becomes available, more detailed analyses of each site type would also
provide a valuable focus for future study.

3D mutation clustering can detect mutations distributed throughout the protein se-
quence, and is therefore more likely to identify rare driver mutations than 1D based
hotspot methods. In addition to identifying MutClusters, the use of CATH FunFams has
extended functional site information by predicting functional sites - FunSites, shown to
be highly enriched for all types of disease mutations in germline non cancer, and can-
cer variants. For those genes mapping to a FunFam with low information content, it is
possible to infer functional sites by mapping to a closesly related FunFam, by using the
FunFam hierarchy structure, referred to as FunTree [73].

Clearly proteins can have different numbers of functional sites and different numbers
of residues within them, and this can have an effect on the proximity analysis. For pro-
teins that have multiple sites, there will be a greater likelihood of mutations lying near
functional sites, by chance. The main purpose of this analysis is to show that the cancer
mutation residues, which cluster within 3D, have a greater tendency to lie near functional
sites. Here the same genes are being used for comparison. That is, the bias has been
addressed by performing our analysis of proximity to functional sites, also for neutral mu-
tations observed in the same proteins. Our results demonstrate that disease mutations,
especially cancer mutations filtered by clustering (MutClusters), are statistically signifi-

cantly more likely to be close to functional sites than neutral mutations.lt is possible that
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proteins in the other datasets eg proteins with OMIM germline mutations, do not have as
many functional site residues in them as the proteins with cancer mutations. This possi-
ble bias could be explored in future analyses. Other future work would be to include the
study of 3D clusters within other disease mutation types and also within neutral mutation
datasets. It would also be of interest to analyse the structural and chemical properties of
the clusters themselves such as, such as cluster size, polarity or hydrophobicity.

In our study, we developed a new method for cancer cluster detection, to see whether
cancer mutations in the MutFam genes are clustered in 3D, and whether these 3D clus-
ters are located on or close to known and predicted functional sites. In the future, it
would be interesting to compare the cancer mutation 3D clusters (MutClusters) identi-
fied by our approach with those identified by other algorithms which use structure for

driver gene detection, for example CLUMPS [110], e-driver [189], and HotMAPS [247].



Chapter 3

The Use Of CATH Functional Families In Cancer

Mutation Analysis

Introduction

In this chapter, putative driver genes in cancer were identified and subjected to func-
tional analyses. Below is a literature review of this field, followed by a summary of the
work performed in this chapter.

Chapter 2 described the identification of CATH domain families enriched in cancer
associated mutations (MutFams). Therefore, human genes within these MutFams can
be considered as putative driver genes containing a common mutated functional domain.
Our putative driver genes were compared with driver genes predicted by another domain-
based method, based on Pfam [154] [271]

A gene ontology (GO) biological process analysis was performed on the common
genes and for the each of the non-overlapping driver genes within the MutFam and Pfam
based methods, to see whether the different predicted driver genes converged on their
enriched biological processes, thereby suggesting shared mechanisms of pathogenicity.
In order to assess the clinical relevance of these driver genes within the cell itself, the
GO biological processes for each driver gene set were compared to the literature to infer
their relevance in cancer. Further validation of the MutFam driver genes was done by
comparing their ACSN hallmarks to those associated with known cancer genes from the
Cancer Genome Census (CGC) [257]. In addition, functional analyses were performed
on MutFams within the specific cancers; LGG and GBM. These included pathway and

GO biological process enrichment studies.

MutFams

As described in chapter 2, MutFams are significantly mutated CATH FunFam domains,

where a FunFam is a functionally coherent set of protein domain sequences. Relatives
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within a FunFam are grouped based on structural and sequence similarity and are as-
sociated with at least one experimentally characterised GO functional term [41]. Since
FunFams are functionally coherent domains families, this approach offers greater ac-
curacy in analysing the functional impacts of mutations compared to previous domain
based approaches which used less functionally specific domain families e.g Pfam [154]
[182].

There are two advantages of this increased functional resolution, the first is more
accurate identification of driver mutations within protein domains, as mutated positions
are aggregated from each member of the FunFam multiple sequence alignment on to a
FunFam representative structure and clustered in 3D. This thereby increases statistical
power and filters out noise due to passenger mutations. In addition to this, MutFams
can aid driver gene detection, since membership of a MutFam implies a common, sig-
nificantly mutated functional domain. We hypothesised that identifying driver genes in
this manner may produce a more refined set of driver genes, specific to a set of cellular
pathways, and cancer hallmarks from the ACSN online tool [120] than using functionally

coarser Pfam domain families.

Cancer — a heterogeneous disease

Cancer is an evolutionary disease, where the various genetic abnormalities act in concert
to promote net growth, while also providing a genetic buffer for adapting to selection
pressures. Within a given cancer, there are regions of the tumour (subclones) that have
distinct mutational profiles in specific pathways. These sub-clones can be geographically
distinct within the tumour, and can also emerge at different times. This is referred to a
spatio-temporal heterogeneity, which makes therapeutic intervention a great challenge.
It is known that these subclones can act together to reach functional complementarity,
where mutated pathways support the growth of new clones, which in turn shape the
evolutionary trajectory of the tumour [148]. For example, this sub-clonality can be seen
for a lung tumour where an initial mutation occurring within P53 causes the outgrowth

of a major clone containing this mutation (grey zone in figure 1a). Within this major
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clone, later mutational events including; EGFR amplification (blue zone), PTEN deletion
(red zone), and APOBEC and PIK3CA mutations (green zone) cause the emergence of

other sub-clones, further complicating the mutational profile of the tumour over time.

Figure 3.1: Modes of cancer evolution. A) Age related lung tumour, containing different
mutational events that lead to emergence of subclones. B) Glioblastoma tumour evo-
lution before and after treatment with Temozolomide (TMZ). Different colours represent

the different clones and their effected pathways. Taken from [148].
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In addition to age related mutational processes, tumour subclonality can also be
invoked by anti-cancer treatments, such as Temozolomide (TMZ), shown in figure
TMZ has been used in chemotherapy for treating glioblastoma multiforme, which is one
of the most common and aggressive adult brain tumours [280]. It can be seen that even
though this drug acts to prevent tumour recurrence, it also causes mutations within the
genes; MTOR and CDKN2A. This in turn initiates 2 separate tumour subclones, further
shaping the evolutionary trajectory of the tumour. Therefore, analysing pathways within
cancer cells can help make sense of this mutational diversity, whereby different mutations
in the same gene or differences in mutated genes, may be affecting the same pathway.
By mapping genes to pathways, we can highlight the main pathways effected within the
tumour as a whole, or that are under positive selection in cancer, thereby providing a

therapeutic opportunity.
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Cancer hallmarks

Cancer is one of the most complex diseases to date, where cancers differ in their affected
components and pathways. Elucidating and identifying the different processes affected
can be a challenging endeavour, due to genomic instability and the heterogeneous na-
ture of cancer. However, it has been suggested that the various effects converge into
11 main cellular hallmarks [92]. These have been used as a means of classifying the
diverse effects of the neoplastic disease, and a summary of these is shown in figure
The hallmarks range from interfering with genome stability, growth factor signalling, inva-
sion and metastasis, cell cycle and apoptosis regulation, and altering cellular energetics
such as metabolism.

It has been proposed that there are 2 general categories of hallmarks within cancers,
the core and the emerging hallmarks [92]. The core hallmarks are ones which are af-
fected in nearly all cancers, such as impacting genome stability and the endowment of
genomic errors which alter growth factor signalling and resistance to cell death. Another
core hallmark is the promotion of inflammation, leading to an infiltration of immune cells.
These core hallmarks alone can result in a carcinogenic phenotype of abnormal cell pro-
liferation and are present in both early and late cancers. In order to sustain this level of
cell growth, the emerging hallmarks play an important role. It is within these hallmarks
that different cancers have adopted distinct mechanisms to enable sustained prolifera-
tion. These emerging hallmarks include those affecting energetics and carbon-based
metabolism to increase ATP production for the increased energy demand.

Other emerging hallmarks include those which exploit the immune response, whereby
immune cells are incorporated into the tumour environment and provide support for tu-
mour growth. Here it is thought that immune cells provide a defence mechanism for
the tumour against other immune factors and also against external drugs [92]. These
emerging hallmarks, particularly the latter, are mainly characteristic of later stage can-
cers, which have already established a sustained level of abnormal cellular growth.

Other emerging hallmarks, associated with later stage cancers include promoting an-

giogenesis to increase oxygen uptake, especially in response to hypoxic conditions [178].
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Figure 3.2: The 11 cancer hallmarks (blue writing), Taken from [92].
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In order to metastasise, tumour cells leave the primary site and colonise elsewhere. This
is initiated by invading the extra-cellular matrix (ECM) and surrounding tissues. This can
involve many different processes, such as affecting cellular adhesion to other cells and
the underlying ECM components, degrading of the ECM, and changing cell morphology
to be more conducive to migration. Processes encapsulating such invasive events are
within the “activating invasion” and “metastasis” hallmarks. In order to figure out which
of the hallmarks and corresponding pathways are being affected by a set of genes im-
plicated in a given cancer, various studies have exploited online resources to determine
and characterise pathway enrichments [125].

The complex nature of cancer, caused by its genomic instability, leads to a plethora
of mutated components in multiple pathways. In addition to mutations which confer a
growth advantage to the cancer, referred to as driver mutations, there are also mutations
that happen as a result of genomic instability and do not contribute to a carcinogenic

phenotype. The latter are referred to as passenger mutations. When considering the
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mutation data in its entirety, there is a lot of noise due to passenger mutations, and
it can be hard to prioritise which mutational events contribute most to carcinogenesis.
Therefore, in order to prioritise proteins for study, various efforts have used mutation en-
richment methods, to detect genes that are significantly mutated and likely to be drivers.
The various methods for detecting driver cancer genes have been discussed in chapter

2.
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Assessing the functionality of candidate genes

To make sense of driver gene lists on a cellular level, functional analyses are needed.
There are many ways of doing this, some of which are summarised in ([125])) and illus-

trated in figure [3.3

Figure 3.3: Overview of gene list analysis and enrichments of functions. Edited from

[125]
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Analysing functional enrichment in putative gene driver lists

Pan et al [175] analysed somatic pan-cancer mutations from TCGA, in 127 significantly
mutated genes, annotated with known UniProt functional sites [11]. The aim of this study
was to detect whether functional sites were affected in specific pathways from GO [13]
and PANTHER [153]. This study identified 10 main types of functional sites affected.

In order to see whether the mutated functional sites were associated with distinct
cellular events, the gene lists were subjected to GO term and PANTHER pathway en-
richment tests, and the mutation events affecting functional sites were then clustered
based on the similarity of enrichments in GO and PANTHER pathways. A P-value was
determined which reflected the enrichment of the pathway in genes with mutations on
functional sites compared to genes with mutations not located on functional sites. P-
values were calculated for each type of functional site. This resulted in a heat map of
enriched GO biological processes and enriched pathways, shown in figure

The genes identified as having the most mutations were TP53, HIST1H4A, HIST1H3A,
RELN, SMAD4, CTNN81, DICER1, KRAS, NRAS, BRCA2 and PTEN. This gene list was
enriched in pathways mainly involved in cell-cell adhesion, the nervous system, and em-
bryonic development. Genes with mutations in ubiquitylation and acetylation sites were
associated with similar PANTHER pathway terms. The data also showed mutations in
phosphorylation sites to be enriched in many PANTHER pathways, consistent with the

impacts on growth factor kinase signalling processes, often affected in cancer [169].
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Figure 3.4: Clustering of mutated UniProt functional sites using a) GO term and b) PAN-
THER pathway enrichments. Unique terms are along the vertical, under and over repre-
sentation are coloured red and blue respectively. The columns show the association of

functional site mutations with a particular GO term. Taken from [175].
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Analysing enrichment of putative driver genes in protein networks

Various studies have also analysed gene functionality by mapping genes onto protein
networks, which describe the functional relationships of the genes to one another. This
enables a more comprehensive representation of a gene list, to identify sets of gene
nodes which are functionally coherent. Wu et al [269] constructed a functional interaction
(F1) network based on data from protein-protein interactions, as described in figure [3.5

This comprised 10,956 proteins and included functional relationships predicted us-
ing a trained naive Bayes classifier. It was used to analyse cancer genes associated
with Glioblastoma Multiforme (GBM), taken from the TCGA, and occuring in 2 or more

samples. The majority of cancer causing genes from GBM were found to be closer in
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the network than expected by chance, forming clusters of functionally related genes.
Enrichment studies revealed two main cellular locations of the cytoplasm and plasma
membrane. Many pathways were enriched within these clusters, four of which had an
FDR < 8.0x10-4, including pathways involved in focal adhesion, signalling by PDGF and

p53, and cell cycle regulation.

Figure 3.5: Functional Interaction network of genes, taken from .

| Human PPI[45-47] | | FlyPPI[45] | | WormPPI[45] |

[ Yeast PPI [45] ] [ GO BP Sharing [51] ][ Domain Interaction [52] ]

[ Lee’s Gene Expression [49] ] [ Prieto’s Gene Expression [50] ]

[ PPIs from GeneWays [53] ]

Data sources for predicted Fls

{ Reactome [23]

J ~ trained by —{  Panther [60]

<

Naive Bayes Classifier
 validated by |_|_

CellMap [61]

NCI-BioCarta [62]

[
[
[
~{  KEGG [63]
[

TRED [64]

J
]
)
NCI-Nature [62] |
)
J
)

v h 4

[ Predicted Fls J Annotated Fls } Data sources for
[ | annotated Fls

A 4

| FINetwork |




CHAPTER 3. THE USE OF CATH FUNCTIONAL FAMILIES IN CANCER MUTATION
ANALYSIS 136

Studies by Ung et al [146] used gene networks to study the topological relationships
between three gene groups; genes containing germ-line variants from GWAS studies
(GGNSs), genes containing cancer somatic mutations (SMNs), and genes which were
known drug targets(DTNs). The analysis pipeline used in this study is shown in figure
[3.6] To elucidate any differences in the cellular components between the three classes,
gene lists were analysed based on their GO cellular component annotations, using the
DAVID web tool [49]. Gene centrality measures were also calculated to determine the

control, closeness and betweenness scores.

Figure 3.6: Flowchart analysis of three gene sets using gene network measures. GWAS
studies (GGNs), genes containing cancer somatic mutations (SMNs), and genes which
were known drug targets (DTNs). Left pipeline:Network analysis was performed to iden-
tify topological relationships between the genes, middle pipeline:random networks gen-
erated to measure statistics, right pipeline:hierarchical analysis was performed between

node classes, which were then subject to cellular component analysis. Taken from [146].
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Control centrality reflects the ability of a node to control other nodes in a directed
weighted network, which is arranged hierarchically. A high control centrality node con-
trols many other downstream nodes (e.g a signalling receptor at the plasma membrane).
Closeness centrality measured the connectivity of a gene to other genes in a network,
whereby genes of high closeness are referred to as “hubs” and are often crucial to many
cellular processes. Betweenness centrality identifies genes which are between sub-
network communities, and therefore play a role in communications between biochemical
pathways. All of the network centrality measures were then compared to a random null
distribution.

This analysis showed that the drug target genes (DTNSs) have the highest control and
closeness centrality, and exert greater control over the entire gene network by acting as
“hubs” and controlling downstream genes. This was consistent with their cellular location
being primarily on the cell surface, where the majority of drug targets are receptors. The
somatic and GWAS variants both showed a high betweenness centrality, suggesting that
they act to communicate signals across biological pathways. This was further supported
by both gene sets being enriched in the nucleoplasm and cytosol cellular locations.

Other methods which have used a functional network to analyse candidate genes
include the protocol of Vihinen et al [168], who analysed mutation datasets including
those from 30 different cancers, COSMIC [15], ClinVar [122], and from the Database of
Curated Mutations (DoCM) [8]. The mutations were mapped to proteins and analysed
on their pathogenicity scores using PON-P2 [167], to prioritise harmful mutations. Can-
didate genes were identified based on frequencies of pathogenic mutations, which were
normalised to the corresponding gene length. Proteins with the top 5% of harmful mu-
tation ratios were analysed using the network developed by Wu et al [269], for network
edge centrality and pathway enrichments, using the ReactomeFVIZ tool. The enriched
pathways for each cancer are shown in figure [3.7]

The authors found that proteins containing harmful mutations were centrally located
in protein interaction networks. Enriched pathways included those involved in the cell

cycle, apoptosis, and growth factor signalling by EGFR, MAPK, MTOR and PI3K. All of
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these are consistent with hallmarks of cancer [92]. Other pathways enriched included
those involved in developmental signalling, such as WNT and NOTCH pathways, partic-

ularly for specific cancers, such as those in the colorectum and uterus.

Figure 3.7: Summary of the enriched pathways for each cancer. Each row represents a
pathway, where each colour represents the different parent pathways within the reactome

hierarchy. Taken from [92].
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Co mutated pathway network analysis

More recently, Jiang et al analysed the tendencies of pathways to be co-mutated
within cancers. Mutation data were taken from 1284 tumour samples from a range of
cancers in The Cancer Genome Atlas (TCGA). Namely, uterine corpus endometrial car-

cinoma, colon/rectum adenocarcinoma, stomach, lung and skin carcinomas. Each so-
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matic mutation was predicted as deleterious, either by the predictor CADD [145] or if
they were insertions or deletions. Pathways were taken from the EnrichmentMap path-
way repository [151]. For any pair of pathways, the mutated frequencies were subject to
bayesian conditional probability modelling. The significance of pathway pair co-mutation
was compared to a simulated random model, using a one sided fisher’s test. For the
random permutation model, a subset of the EnrichmentMap repository was used which
consisted of 217 pathways. The number of co-mutated pathways in each cancer and the

combined pan-cancer dataset is shown in figure

Figure 3.8: The number of co-mutated pathways in each cancer mutation dataset. Taken
from [245]. N=number of mutations. The cancer names and abbreviations are in the table

under the graphs.
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Analysis of the pan-cancer data from all 6 cancers, showed that pathways involved in
IP3 metabolism and PI3K were significantly co-mutated, the most heavily mutated gene
being PTEN. Other gene mutations were detected, where different gene pairs were co-
mutated in different patients. Both IP3 and PI3K pathways have been shown to increase
the second messenger PIP3, leading to activation of downstream signalling to the cell
survival pathways involving MTOR and Akt. Interestingly, it was also found that the num-
ber of significantly co-mutated pathways did not correlate with the size of the mutation

dataset for a given cancer.
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In order to determine the co-mutated hallmarks, the Molecular Signature database
was used [133]. A pair-wise enrichment score was computed for the pan-cancer muta-
tions, by normalising the number of significant co-mutated pairs of pathways by the total
number of pathways in each hallmark category. Consistent with their pathway analysis,
the main hallmarks were those involved in signalling and cellular component categories,
and effects related to DNA damage and proliferation were less frequent. In terms of
the mutations in colorectal cancer, it was found that co-mutated pairs of pathways were
enriched for cellular hallmarks within the proteosome and apoptosis pathways. Another
interesting observation from the study was the lack of co-mutated pathways within lung

cancer.

Comparing cancer and non-cancer gene sets using network analysis

As well as analysing genes implicated in cancer, other studies have also included other
disease genes, and considered their cellular affects. Studies by Pinero et al [87] per-
formed a systematic analysis of 4 different disease gene sets by analysing their network
properties. Cancer and complex disease genes were extracted from the DisGeNET
database based on the phenotypes of neoplastic process, congenital abnormalities, and
mental or behavioural dysfunction. Other cancer genes were taken from the cancer
genome census (CGC) [15]. The mendelian disease genes were retrieved from OMIM
[10].

For each of these gene sets, 10,000 randomly selected samples of gene sets were
extracted of the same size as the gene sets being studied, as a control. For each gene
mutated in disease, different non-disease mutations from EXAC were also considered;
non synonymous and synonymous mutations, stop and start site mutations, frameshift
and splice site mutations. Mutations in the disease genes were predicted deleterious
according to CADD. In order to assess the tolerance of genes to deleterious mutations, a
High-impact to Synonymous ratio (HS) was calculated for each gene, based on the ratio
of deleterious variants and the non-deleterious variants to the synonymous mutations.

To construct the protein network, experimentally derived interactions were retrieved
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from 5 major resources; HIPPIE [102], BIANA [77] , BioGRID [224], IntAct [114], Ire-
findex, andS [159]. In addition, 2 further experimental protein interaction datasets were
included — from a yeast two hybrid assays, and an affinity capture using mass spectrom-
etry (ACMS) study. To make the gene network, Pinero et al [87] partitioned the protein
interaction networks using community detection. This analysis showed that all disease
genes possessed a higher degree and betweenness centrality compared to the random
control. Specifically, cancer genes showed the highest scores, reflecting their more cen-
tral role in the network and their role in bridging network communities. It was also shown
that for each of the cancer and complex disease gene sets, their tolerance to germ line
disease variants was inversely correlated to their centrality within a protein network. Ex-
amples of intolerant genes, include VHL, PIK3CA, TP53, and proteins related to the RAS
family.

In this chapter, driver gene lists were identified in the MutFams described in chap-
ter 2 and compared to driver gene lists identified by Miller et al [154] and Yang et al
[271] using a Pfam based approach. Analysis was performed for enrichments in Gene
Ontology (GO) annotations in the driver gene lists, using a well-known network based
method developed by [269]. GO Biological process enrichments demonstrated that the
unique MutFam and Pfam derived driver genes by Miller et al [154] and Yang et al [271]
affect different steps within common biological pathways, which are implicated in cancer.
Unique pathways identified for the MutFam and Pfam driver genes could be explained
by tissue bias in the cancers analysed. A cancer hallmark analysis, using ACSN, found
that the MutFam and Pfam driver genes were enriched in survival and EMT cell motility
hallmarks.

In order to see if the MutFam driver genes captured specific functional events within
different stages of glioma, the MutFam driver genes for early stage low grade glioma
(LGG) and more advanced Glioblastoma multiforme (GBM) were analysed for their GO
and pathway enrichments and compared to their phenotypes, as reported in the litera-

ture.
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Materials and methods

Identifying putative cancer driver genes

The MutFam protocol, described in chapter one, identified significantly mutated FunFam
domain families. In order to assess the value of these MutFam functional families in
understanding disease mechanisms associated with cancer, we contrasted the genes
in the MutFams with known cancer genes in the Cancer Gene Census [15], and with
predicted cancer driver genes identified using alternative approaches based on Pfam
families.

For each MutFam, putative human driver gene sets were derived by taking the top
25% of mutated genes in the MutFams for the 22 cancers in table For a control,
neutral mutations were taken from the UniProt HUMSAVAR resource [11], where proteins

having “polymorphism” mutations were selected.

Driver genes obtained from the literature

In order to compare the driver genes identified in MutFams with those identified by other
groups, we compared our genes with predicted driver genes reported in the study of
Miller et al [154] and Yang et al [271]. The Miller driver genes were identified using a
Pfam based protocol (see chapter 2, section 1.1.2.2) and obtained from the Mutation-
Aligner website [79] which provides information on all mutationally enriched Pfam do-
mains. Significantly mutated Pfam domain families were selected based on a Bonferroni
corrected P value < 0.05 and the top 2 genes mutated were used for subsequent anal-
ysis. This gave a set of 271 genes -referred to here as Miller genes. We also compared
our predicted driver genes to those identified by Yang et al [271], based on a method
that also looked for mutationally enriched Pfam domains, and then used for subsequent
analysis. Yang driver genes were those which only contained mutations which had a
“functional” effect according to the IntOgen tool predictor. These are referred to as Yang
genes, of which there was 94, which were extracted from the supplementary material

given in Yang et al [271].
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Table 3.1: Cancers included in the MutFam driver gene set, where the number of Mut-

Fams and samples are shown.

Code | Description Num. Samples | Num. MutFams
BLCA | Bladder cancer 364 17
BRCA | Breast invasive carcinoma 1142 13
COAD | Colon adenocarcinoma 371 36
DLBC | Lymphoid Neoplasm Diffuse Large B-cell Lymphoma | 161 4
ESCA | Esophageal carcinoma 286 4
GBM | Glioblastoma multiforme 492 18
GLI Gliomas 870 27
KIRC | Kidney renal clear cell carcinoma 603 18
LAML | Acute Myeloid Leukemia 276 18
LGG Low grade gliomas 378 7
LIHC | Liver hepatocellular carcinoma 891 15
LUAD | Lung adenocarcinoma 606 29
LUSC | Lung squamous cell carcinoma 287 18
ov Ovarian serous cystadenocarcinoma 516 6
PAAD | Pancreatic adenocarcinoma 667 7
PRAD | Prostate adenocarcinoma 244 4
READ | Rectum adenocarcinoma 145 13
SKCM | Skin Cutaneous Melanoma 633 87
STAD | Stomach adenocarcinoma 319 15
THCA | Thyroid carcinoma 428 11
UCEC | Uterine Corpus Endometrial Carcinoma 248 36
ucs Uterine Carcinosarcoma 23 2
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Known cancer genes from the Cancer Genome Census (CGC)

The known driver genes were those given in the Cancer Gene Census from Wellcome-
Sanger [15] [257]. We selected CGC genes that harbour missense mutations (232

genes).

Hallmark enrichments

To analyse enrichment within hallmark processes, we used hallmark information taken
from the Atlas of cancer signalling networks (ACSN), which have been curated based on
studies reported in the literature (Hanahan2011). ACSN provides a specialised GSEA
tool, which we used to study gene enrichment in these hallmark processes. Genes from
MutFams, associated with a cancer, were subjected to gene set enrichment analysis for
different hallmark processes using the GSEA online tool of The Atlas of Cancer Sig-
nalling Networks (ACSN) [120]. Significance was determined using the whole human
genome as a background. We also considered enrichment in hallmark processes. 'Pro-
cesses’ are pathways, which can be grouped together into a particular hallmark. An
example of a hallmark process is ’survival: MAPK’, where the hallmark is survival and a
specific process within this hallmark is the MAPK pathway. Correction for multiple testing

was also performed and significant hallmarks were those with a P-Value < 0.01.

GO slim enrichments

GOslim was used here since it provides a high level GO annotation and a very broad
view of protein functions and has been widely used and cited in the literature by groups
performing similar studies of GO term enrichment [175]. GOslim enrichments for the
gene sets were executed using the PANTHER online tool using statistical over represen-
tation test [153]. Significant GOslims were those with a P value < 0.01 for each gene

set considered.
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Reactome GO biological process enrichments

For the GO biological process annotations and analyses, the ReactomeFVIZ was used
as this enabled the clustering of genes into more functionally coherent modules, and also
the analysis of pathways within Reactome. This functionality is not provided by GOslims.
The tool Reactome FVIZ takes an input set of genes and maps these onto the human
protein network built by Wu et al [269], described in section This network com-
prises functional associations between genes based on known and predicted data, using
curated pathway databases such as Reactome and KEGG, known and predicted protein-
protein interactions from yeast, worm and human, and Gene ontology (GO) annotations.
Putative cancer genes were clustered into sub-network modules, using community de-
tection methods [82].The modules were then subject to gene ontology biological process
(GO-BP) enrichment studies, and were selected if they had an FDR < 0.005 compared
to a random distribution within Reactome FVIZ. This strict threshold ensured that only

most significant GO-BP were included.
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Results

Mutationally enriched FunFams (MutFams) in different cancer types

For each of the 22 cancer types considered (see Material and methods, table [3.7),
mutations were accumulated across CATH FunFam domains, and statistically signifi-
cant FunFams were selected, referred to as MutFams (see chapter 2, section 2.2.1.2).
The number of MutFams identified for a cancer were not dependent on the number of
mutations recorded for that cancer, both values provided in table According to
the heatmap in figure the most common MutFam is the cellular tumour antigen
P53, which contains the well-known cancer gene p53. This MutFam also possesses the
largest additive enrichment factor. In contrast, the neutral polymorphisms from UniProt
show the fewest enriched MutFams, with relatively low enrichment factors, consistent
with their neutrality. The most enriched MutFam (with an enrichment factor of 2.499) for
the neutral mutations is the MHC Class Il antigen FunFam, whose members undergo
somatic hyper-mutation within the adaptive immune response. SKCM (Skin cutaneous
melanoma) harbours the highest number of enriched MutFams, which is likely to be due
to the skin being exposed to a higher number of external carcinogens, but further stud-
ies would be needed to investigate this. It can also be seen in figure that thyroid
carcinoma (THCA) is near to the POLY in the dendogram, due to it not having the p53
enriched MutFam. Since p53 is known to be effected in THCA and almost all cancers,
the literature has suggested that altering p53 function in THCA is engendered by other
means than missesne mutations, such as truncation mutations, and mutations in tran-

scription factors which in turn regulation p53 function [141].



CHAPTER 3. THE USE OF CATH FUNCTIONAL FAMILIES IN CANCER MUTATION
ANALYSIS 147

Figure 3.9: Heatmap of the 22 cancers and their enriched MutFams. The cancer types
are along the x axis, and the MutFams are along the horizontal where one MutFam is a
coloured bar. More enriched MutFams are coloured a darker shade of red. The heatmap

clustering is not based on mutation number, but on the common enriched MutFams in
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Considering cancer types that are from the same tissue, it can be seen that the
gliomas (i.e found in brain tissue) cluster together, since they share a similar set of en-
riched MutFams. Other related cancer types include LUSC and LUAD which are the
2 main histological subtypes of non-small cell lung cancer (NSCLC). There are some
common enriched MutFams between them, but they differ in their overall MutFam en-
richment profiles, in that LUAD contains more enriched MutFams (29) than to LUSC
(18). This difference has been shown in previous studies by Bruin and Swanton [46]
[47], which showed that LUAD harbours 20% more driver mutations compared to LUSC,

in the context of APOBEC mutations.

Assessing the functional relevance of predicted driver genes and

known driver genes from the Cancer Genome Census (CGC)

Analysis of gene overlaps between predicted driver and CGC genes

We compared the MutFam predicted driver genes and the driver genes predicted by
Miller et al and Yang et al (based on Pfam) to known cancer genes with missense mu-
tations in CGC. The overlaps of the gene sets are shown in figure below. It can be
seen that the MutFam gene set has the most genes in common with CGC set accounting
for 21.2% of the CGC gene set.

The Yang and Miller driver genes showed a relatively modest overlap of CGC genes,
of 12.9% and 14.7% respectively. Although each of the driver gene methods produces
a modest coverage of CGC genes, when we look at the coverage of genes from all 3
methods, this produces a greater percentage overlap with CGC genes, of 38.3%. This
complementarity between driver gene methods has also been highlighted in studies by
Karchin and co-workers who evaluated the different ways of assessing driver gene po-
tential [247].

As with our approach here, Karchin and co-workers assessed the validity of predicted
driver genes by examining their overlap to known cancer genes from the Cancer Genome

Census (CGC). In agreement with our results, they showed that the combination of pre-
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dicted genes from 8 driver gene predictors, considered in their analysis, showed signifi-
cant enrichment of CGC genes, whereas the individual methods did not. It must be noted
that the CGC gene list contains manually curated genes, included because experimental
studies have suggested that these are drivers, and also genes suspected to be drivers

but with no clear evidence that they induce cancer.

Figure 3.10: Comparison of predicted driver genes with known missense driver genes
in CGC. a) The overlap of the driver methods with CGC genes b) comparison of the gene
overlaps between driver gene methods, where the consensus driver genes are shown in

a box to the right of the venn diagram.

a) MutFam Miller
CGC CGC
Number of total unique |Number of DATASET genes | % of DATASET genes in CGC
DATASETS genes within CGC to total CGC
MutFam 472 49 21.12

Miller 271 30 12.9

Yang 94 34 14.7

CGC 232 -
b)

Common Driver genes:

RAC1, SPOP, EGFR, PIK3CA, KRAS,
NRAS, FBXW7, TP53, HRAS, SMAD4,
BRAF, VHL,

Which are also seen within the CGC
gene set
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In order to statistically elucidate the enrichment of predicted driver genes within the
CGC genes, the MutFam and Miller genes were analysed on their overlaps within CGC
genes relative to a random background of all human genes within SwissProt. Both Mut-
Fam and Miller driver gene sets showed a significant odds ratio of enrichment of 12.4
and 12.2 respectively, which were assessed using a Fisher’s exact test, where both gene
sets showed a P-value of test 2.2x10-16.

Enrichments in GO slim processes were performed to see if there was any conver-
gence of non-overlapping driver genes from MutFam, Miller, and Yang sets, on particular
cellular processes and how these processes compared to the consensus driver gene
set. The Venn diagram in figure shows the gene overlaps between the 3 driver
gene methods considered. There are 420 MutFam only genes, 224 Miller only genes,
65 Yang only genes, and 12 consensus genes (all of which are within the CGC gene set).
These 4 gene sets will be referred to as MutFam only, Miller only, and Yang only, and
consensus driver genes respectively. Each was subjected to GOslim term enrichment

analysis.
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GOslim term analysis of the putative driver genes

The results of the GO slim analysis of the non-overlapping driver genes, and the 12 con-
sensus driver genes are shown below. The 420 MutFam only genes were enriched
in 14 GO slim terms, which were then manually categorised into 8 different cellular
events as shown in table [3.2) Embryonic development, differentiation, cellular sig-
nalling/membrane and cytosolic transport, metabolic processes, DNA related processes,
cell division, cell adhesion/migration, and stress response. The 224 Miller driver genes
were enriched in 28 GO slims, within 6 different cellular event categories, including pro-
cesses involved in biosynthetic processes and metabolism, shown in table [3.3

There were common processes between the Miller and MutFam only genes, includ-
ing terms implicated in adhesion/morphogenesis (light purple) and development (light
blue). The 65 Yang only genes were enriched in 1 GOslim term, which was intracellular
transduction. The consensus genes were enriched in GOslim terms involved in cytosolic
signalling and vesicular mediated transport, where one of the terms specifically affected
immune related signalling events of “I-KappaB Kinase/NF-KappaB cascade” shown in
table Although this analysis provides a general depiction of the functional attributes
of the driver gene sets, further analysis on the specific biological processes involved was

carried out, in order to characterise the processes in more detail.
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Table 3.2: GOslim enrichments of the MutFam only driver genes. All GOslim enrich-

ments have a P-value <0.01.

MutFam only genes (420)

endoderm development

developmental process

nervous system development

system development

ectoderm development

cell-cell adhesion

cell adhesion

biological adhesion

cellular component morphogenesis

anatomical structure morphogenesis

cell differentiation

response to stress
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Table 3.3: GOslim enrichments of the Miller only driver genes. All GOslim enrichments

have a P-value <0.01.

Miller only genes (224)

Sensory response to sound

mesoderm development

developmental process

system development

I-kappaB kinase/NF-kappaB cascade

intracellular signal transduction

Signal transduction

cell communication

Cellular process

receptor-mediated endocytosis

endocytosis

vesicle-mediated transport

Intracellular protein transport

Biosynthetic process

Metabolic process

Primary metabolic process

RNA - Metabolic process

Nitrogen compound metabolic process

regulation of transcription from RNA polymerase Il promoter

regulation of nucleobase-containing compound metabolic process

nucleobase-containing compound metabolic process

Transcription, DNA-dependent

Cytokinesis

Mitosis

cellular component movement

cellular component morphogenesis

Muscle contraction

Table 3.4: GOslim enrichments of the consensus driver genes. All GOslim enrichments

have a P-value <0.01.

Consensus driver genes (12)

|-kappaB kinase/NF-kappaB cascade

intracellular signal transduction

receptor-mediated endocytosis

endocytosis

Unclassified
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Network analysis and enrichment of GO biological processes for the
unique driver genes from the MutFam, Miller,Yang, and com-

mon gene sets

In order to filter out noise within the driver gene sets, the genes within MutFam, Miller,
and Yang driver gene based methods were clustered based on functional associations to
identify modules. This analysis was done using a method developed by Wu et al [269],
whereby genes are mapped onto a network, in which genes are connected based on
their functional associations (See section 3.2.6 Materials and Methods). The network is
then clustered into modules of functionally related gene groups, which are in turn sub-
ject to a GO biological process enrichment analysis. The module-based GO biological
process enrichments were then compared and contrasted between the MutFam, Miller,
Yang unique genes, and the consensus genes.

These process are enriched with an FDR <0.0001, and are within modules com-
prising 3 or more genes. These modules are small nevertheless, where one or more
putative driver genes are sufficient to cause a statistically significant enrichment given
the background. Therefore we only show the putative driver genes within the tables 3.5

to 3.10, and tables 3.12 to 3.16, and have not listed all the genes in the module.

Module comparison between MutFam, Miller, Yang, and common gene sets

The modules identified for the unique driver gene sets can be seen in table 3-6, where
modules enriched in GO biological processes are highlighted in red. It can be seen that
the Yang only genes in table have no modules with enriched processes at this FDR
( <0.001), whereas there are 5 out of 7 modules and 12 out of 21 modules with enriched
GO biological processes, within the MutFam and Miller genes respectively within tables
and respectively. The common driver genes form 2 modules (table [3.6), both
of which have enriched GO biological processes. It is important to note that not all
driver gene sets mapped to functional modules, either because of their lack of functional

associations, or because they could not be mapped to the network itself. The percentage
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of mapped genes for each set are summarised in table (3.5

Table 3.5: Percentage of common and non-overlapping driver genes mapped in network

modules.
Driver gene set | total genes | mapped to modules | percentage in network modules
MutFam 420 193 46
Miller 224 119 53.1
Yang 65 20 31
Common drivers | 12 9 75
Table 3.6: Gene module mapping for the common driver genes.
Module | Nodes in module | Node list Significantly enriched GO biological processes (FDR >0.001)
0 5 EGFR,KRAS,NRAS,PIK3CA RACT | 9
1 4 BRAF,FBXW7,HRAS,TP53 1
Table 3.7: Gene module mapping for the Yang driver genes
Module | Nodes in module | Node list Significantly enriched GO biological processes (FDR >0.001)
0 6 CDKN2A,IRF4,KRT6A,MYC,PBRM1,PIM1 | none
1 3 ITPR3,PRKACB,PRKCB none
2 3 CTNNA3,PCDH11X,PCDH11Y none
3 2 BCL2,PPP2R1A none
4 2 MT-ND1,MT-ND6 none
5 2 PRPF19,U2AF1 none
6 2 BLNK,CD79B none
Table 3.8: Gene module mapping for the Miller driver genes
Module | Nodes in module | Node list Signifificantly enriched GO biological processes (FDR >0.001)

ACVRL1,AKT2,ANXA1,ANXA6,AR,BMPR1B,CDK8,CEBPA,CREBBP,CSNK1D,
CSNK1E,CSNK1G1,CSNK2A2,DBP,DMBT1,DYRK1A,EEF1A1,EGR2,EP300,EPHA2,
ERBB3,ERBB4,FGFR1,FLT4,GEM,GSK3B,HCK,HLF IKBKE,LATS2,MAP3K4,

0 63 MAPK1 1,MAPK8, MARK2,MYNN,MYO5A, MYO9A, MYT1,NF1,NFIL3,PDGFC,PDGFRA, 18
PPIE,RAB27A,RAP1A RAP1B,RASA1,RASA2,RASAL1,RHOA, RHOB,RHOG,RHOUJ,RRAS,
RUNX2,SMAD3,SNAI2,SOX17,TEK, TP63,

ZAP70,ZBTB17,ZBTB24
ZFP2,ZNF117,ZNF180,ZNF181,ZNF184,ZNF208,ZNF250,ZNF260,ZNF28,ZNF286A,ZNF286B,
, , ZNF320,ZNF34,ZNF345,ZNF461,ZNF468,ZNF470 ZNF483,ZNF527.ZNF540,ZNF546 ZNFS54, |
° ZNF568,ZNF571,ZNF572,ZNF583,ZNF616,ZNF620,ZNF624,ZNF681,ZNF70,ZNF71,ZNF768,
ZNF836,ZNF845,ZNF883,ZNF92

2 9 CDK12,HNRNPA3,HNRNPF,HNRNPH1,HNRNPH2, MAP2K5,MAPK7, MAPKAPK2,RBM5 20

3 3 KCNB1,KCNB2,KCND2 16

4 3 AZIN1,BAAT,0DC1 12

5 2 ATP5B,ATP6V1B2 none

6 2 CDC42BPAMYO18A none




CHAPTER 3. THE USE OF CATH FUNCTIONAL FAMILIES IN CANCER MUTATION
ANALYSIS

156

Table 3.9: Gene module mapping for the MutFam driver genes.

Module | Nodes in module | Node list enriched GO p (FDR >0.001)
ANGPT1,CA2,CA9,CBL,CYP4A11,FOXA3,GCK,HGFHIF1A,HK2,

0 33 HK3,HKDC1,HLA-DQA1, HLA-DQB1,INSR,MET,NKX2-2,NTRK3,PI4KB,PIK3C3,PIK3CG,PIK3R1,PIP4K2A,PIP4K2B, | 7
PRKD1,PTPN11,RET,SEC24A,SEC24B,SH3GL1,SLC4A2,TNC, TPTE
AKAP13,ARHGEF12,ARHGEF18,CDC42,DCC,DES,EPHA7 EPHB1,

1 27 EPHB3,GRIK1,GRIK2,GRIK4,ITSN1,ITSN2,KALRN,NET1,NGEF, 21
OBSCN,RHOF,RHOV, ROBO1,TGFBR2,TTN,UNC5C,UNC5D,VAV2,VAV3
ACTA1,ACTB,ACTC1,COL14A1,COL19A1,COL4A1,COL4A3,COL4A5,

2 25 COL5A3,COL8A1,DNAJC5B,DNAJC6,DSC2,DSP,EVPL,FLNB,FOXC1, 9
HSPA8,IRF6,MYH1,MYH13,MYH2,PLEC,RALA,SF3B1
CDH1,CDH5,CELSR2,PCDHA1,PCDHA13,PCDHA2,PCDHA3,PCDHA4,

3 o4 PCDHA5,PCDHAG,PCDHA8,PCDHA9,PCDHB10,PCDHB12,PCDHB13, s
PCDHB14,PCDHB16,PCDHB2,PCDHB3,PCDHB8,PCDHGA1,PCDHGA2,

PCDHGAS,PCDHGA6
ACSL4,AQP7,ATRX,BCL6,CHD7,CTCF,DUSP1,DUSP22,EZH2,FOXA1,

4 22 FOXA2,FOXE1,FOXF1,FOXQ1,IRF2,KMT2C,NKX2-1,RXRA,SOX1, 4
SOX15,S0X3,TBK1

5 17 ZNF100,ZNF138,ZNF267,ZNF429,ZNF43,ZNF430,ZNF431,ZNF479,ZNF492, 5
ZNF506,ZNF585A,ZNF585B,ZNF676,ZNF708,ZNF714,ZNF83,ZNF98

6 6 CALML6,CAMK1,CNGA2,MYLK,MYLK3,PYGM none

7 4 MARK1,RPS6KA3,SIK3,STK11 1

8 4 C6,C7,C8A,C8B 7

9 4 KRT13,KRT15,KRT6C,KRT77 none

10 3 ABCC1,ABCC3,PIK3C2G none

1" 3 POU3F4,POU4F3,S0X9 2

12 3 NOTCH2,NOTCH4,PCSK5 3

13 3 PRDX1,PRDX2,PRDX6 5

14 3 PLXNA1,PLXNA2,PLXNA4 14

15 2 POU4F1,POU4F2 none

16 2 CPE,PCSK1 none

17 2 RPL8,RPS16 none

18 DUSP5,DUSP6 none

19 2 SYT3,SYT9 none

20 2 BMPR1A BMPR2 none
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Enriched GO biological processes in the network modules identified for the com-

mon driver genes

The common driver genes mapped to 2 modules within the protein network, which were
enriched in 10 biological processes, as shown in table The processes include
those in cell signalling linked to various growth factor receptors, specifically “vascu-
lar epidermal growth factor receptor signalling”, “fibroblast growth factor receptor sig-
nalling”, “epidermal growth factor signalling”, and ”Insulin signalling”. These processes
are all consistent with the GO slim processes implicated in intracellular signal transduc-
tion, where the mutated genes NRAS, PIK3CA, KRAS, and RAC1 form a signalling hub
between these pathways. The diverse effects of this set of mutated genes is further
demonstrated in other processes in Module 1, which are implicated in immunity, such as
the “Fc-epsilon receptor signalling pathway”. All of these enriched processes are impli-

cated in sustaining proliferative signalling, and inducing angiogenesis, both of which are

known hallmarks in cancers [92].

Table 3.10: The enriched GO biological processes for the network modules identified for

the common driver genes

Module | GeneSet Nodes

1 vascular endothelial growth factor receptor signaling pathway | NRAS,PIK3CA,KRAS,RAC1
1 nerve growth factor receptor signaling pathway NRAS,PIK3CA,KRAS,RAC1
1 Fc-epsilon receptor signaling pathway NRAS,PIK3CA,KRAS,RAC1
1 blood coagulation NRAS,PIK3CA ,KRAS,RAC1
1 leukocyte migration NRAS,PIK3CA,KRAS

1 fibroblast growth factor receptor signaling pathway NRAS,PIK3CA KRAS

1 insulin receptor signaling pathway NRAS,PIK3CA,KRAS

1 epidermal growth factor receptor signaling pathway NRAS,PIK3CA,KRAS

1 innate immune response NRAS,PIK3CA ,KRAS,RAC1
2 positive regulation of ERK1 and ERK2 cascade FBXW7,BRAFHRAS
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Enrichment of GO biological process in the network modules identified for the

unique MutFam and Miller gene sets

The MutFam and Miller studies cover different cancers (as shown in table and this
is likely to affect the mutationally enriched families identified. However, it is also interest-
ing to see that the genes identified also map to distinct gastrulation layers. The mutated
genes from the Miller and MutFam datasets are derived from various cancer types, some
of which occur in different tissues. This difference may affect the enriched biological pro-
cesses within each driver set, by enriching tissue specific processes. Therefore, in order
to examine this tissue bias, the cancer types of each driver gene set (MutFam and Miller)
were compared with respect to their tissue origins in gastrulation, see table The 3
gastrulation layers, ectoderm, mesoderm, and endoderm are formed during embryoge-
nesis, and are shown in the image under figure The cancers that are common and
unique to the Miller and MutFam studies are listed in table The number of cancers

found in the 3 gastrulation layers are also shown.

Table 3.11: Comparing the cancers within the MutFam and Miller driver genes. The 3
different gastrulation layer columns contain the numbers of the different cancers in each

group. The cancer abbreviations are listed in Materials and methods.

Datasets Cancer count | Cancers Ectoderm | Mesoderm | Endoderm

SKCM, LIHC, GBM, STAD, UCS
LUSC, BLCA, QV, LGG,

Miller MutFam | 17 3 6 8
UCEC, LUAD, COADREAD, THCA,

KIRC, LAML, BRCA, PRAD,

THCA,LUSC,KICH, OV, KICH,
Miller 12 SKCMHNSC,CESC, ACC, 2 6 4
UCS, LUAD, KIRP

MutFam 4 DBLC, ESCA, GLI, PAAD, 2 1 1
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Figure 3.11: The 3 gastrulation layers within the embryo form distinct tissue types.

Taken from [1].
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The cancers in the Miller study show a relative bias towards mesodermal tissues
compared to cancers in the MutFam study which are more evenly spread across the 3
layers with a slight relative bias towards ectoderm tissues. Therefore, there is a differ-
ence in tissue bias between the two driver gene sets, which may partly explain the low

overlap in driver genes, and should be accounted for when comparing cellular processes.
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Processes implicated in cellular development and differentiation in MutFam and

Miller modules

More detailed analysis of modules involved in cellular development was performed to see
if there was convergence on common or related biological processes for the MutFam and
Miller gene sets. This showed that both Miller and MutFam modules were enriched in
biological processes implicated in cellular development, but within different gastrulation

layers.

MutFam modules For the MutFam genes, there are three gene modules which
are enriched in developmental processes within the endoderm layer (which eventually
forms the lung, thyroid, and digestive tract) and the ectoderm layer (which forms the
skin epidermis, neurons in the brain, and pigment cells). This tissue bias in the MutFam
cancer set explains the specific enriched processes of “nervous system development”,
“axon guidance”, and “synapse assembly”, to mention a few. The full list of develop-
mental pathways enriched are shown in table Processes affecting neuronal and
system development have been implicated in some cancers, where changes in neuronal
guidance, migratory contacts, and Ephrin signalling contribute towards breast cancer

carcinogenesis [93][163].
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Table 3.12: Enriched GO processes in the network modules identified for the MutFam
genes in cellular development. Processes common to the Miller genes are highlighted in

bold.

Module | GO Biological process Gene list

1 ephrin receptor signaling pathway ITSN1,KALRN,EPHB1,EPHB3,EPHA7,VAV2,NGEF

. axon guidance ITSN1,KALRN,ROBO1,EPHB1,EPHB3,EPHA7,DCC,
UNC5C,UNC5D,VAV2,NGEF

1 retinal ganglion cell axon guidance EPHB1,EPHB3,EPHA7

1 nerve growth factor receptor signaling pathway ITSN1,KALRN,ARHGEF18,VAV2,NET1,0BSCN,NGEF

1 glutamate receptor signaling pathway GRIK4,GRIK1,GRIK2

1 ionotropic glutamate receptor signaling pathway GRIK4,GRIK1,GRIK2

1 synaptic transmission, glutamatergic GRIK4,GRIK1,GRIK2

1 anterior/posterior axon guidance DCC,UNC5C

1 negative regulation of collateral sprouting EPHA7,DCC

1 peptidyl-tyrosine phosphorylation TTN,EPHB1,EPHB3,EPHA7

1 dendritic spine development EPHB1,EPHB3

1 regulation of cell-cell adhesion EPHB3,EPHA7

1 regulation of GTPase activity EPHB3,VAV2,NGEF

1 dendritic spine morphogenesis EPHB1,EPHB3

1 central nervous system projection neuron axonogenesis EPHB1,EPHB3
PCDHB12,PCDHA1,PCDHB2,PCDHA5,

3 nervous system development PCDHA4,PCDHA3,PCDHA2,PCDHB3,PCDHAS,
PCDHA6

3 synapse assembly PCDHB14,PCDHB13,PCDHB10,PCDHB2,
PCDHB16,PCDHB3

3 synaptic transmission PCDHB14,PCDHB13,PCDHB10,PCDHB2,
PCDHB16,PCDHB3

14 regulation of axon extension involved in axon guidance PLXNA2,PLXNA1,PLXNA4

14 branchiomotor neuron axon guidance PLXNA2,PLXNA1,PLXNA4

14 semaphorin-plexin signaling pathway PLXNA2,PLXNA4

14 axon guidance PLXNA2,PLXNA1,PLXNA4

14 chemorepulsion of branchiomotor axon PLXNA4

14 cerebellar granule cell precursor tangential migration PLXNA2

14 postganglionic parasympathetic nervous system development PLXNA4

14 vagus nerve morphogenesis PLXNA4

14 anterior commissure morphogenesis PLXNA4

14 dichotomous subdivision of terminal units involved in salivary gland branching | PLXNA1

14 glossopharyngeal nerve morphogenesis PLXNA4

14 trigeminal nerve structural organization PLXNA4

Miller modules In contrast, the Miller genes were implicated in developmental pro-
cesses within the mesoderm layers. These form the cardiac, smooth and skeletal muscle
tissues, kidney tubules, and red blood cells, shown in table 3.13] The specific GO biolog-
ical processes of the Miller genes are consistent with mesodermic processes affecting
“cardiac rhythm” and “regulation of smooth muscle contraction”, and other processes.
Manipulation of the cellular cytoskeleton, using contractile elements such as those used
in muscle contraction, is a common event within cell migration — specifically the amoe-

boid mode of migration - which enables invasion through the surrounding extracellular
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matrix [174].

The Miller genes also include RhoGTPases (see table [3.13). In the context of cellular
development, the RhoGTPases are downstream effectors of Ephrin receptor signalling,
where RhoGTPase activation leads to actin monomer assembly into larger cytoskeletal
structures, imperative for cellular adhesion and migration, and in turn axon guidance,

which has been shown to be implicated in cancer [203].

Table 3.13: Enriched GO processes in the network modules identified for the Miller

genes in cellular development. Processes common to the MutFam genes are highlighted

in bold.
Module | GO Biological process Gene list
1 fat cell differentiation GSK3B,AKT2,EP300,CEBPA,EGR2
1 axon guidance GSK3B,PDGFRA,RHOG,RHOB,RASA1,RASA2,
EPHA2,RASAL1,RRAS,ERBB4,FGFR1
1 circadian rhythm GSK3B,DBP,EP300,DYRK1A,NFIL3
3 regulation of smooth muscle contraction | KCNB2
3 locomotor rhythm KCND2

Both the MutFam and Miller genes showed enrichment in processes affecting the
Notch signalling pathway involved in cellular differentiation, but via contrasting mecha-
nisms, shown in table The MutFam genes are enriched in the “Notch receptor
processing” process, and the mutations are within the receptors themselves, NOTCH2
and NOTCH4. Whereas the Miller genes are enriched in the “Notch signalling pathway”,
affecting upstream and downstream regulators of the Notch pathway such as EP300 (Hi-
stone acetylase in chromatin modification), CENPA (Histone H3 alternative involved in
kinetochore assembly), and the transcriptional regulators CDK8 and SNAI2. It has been
suggested that altering cellular development in cancer, implicated by both the MutFam
and Miller genes, plays a role in maintaining a pluripotent cellular state, which is more
adaptable and genetically flexible upon changing conditions, contributing to cancer cell
survival ??. Therefore mutations in proteins involved in such developmental pathways

may act to maintain this pluripotent state, contributing to the carcinogenic phenotype.
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Table 3.14: Enriched GO processes in the network modules identified for both the Mut-

Fam and Miller genes, involved in cellular differentiation.

Module | GO biological process (MutFam) | Gene list

12 cell fate determination NOTCH2,NOTCH4
12 Notch receptor processing NOTCH2,NOTCH4
12 hemopoiesis NOTCH2,NOTCH4

Module | GO biological process (Miller) Gene list

1 keratinocyte differentiation TP63,ANXA1,LATS2,EPHA2

1 Notch signaling pathway EP300,TP63,CEBPA,CREBBP,CDK8,SNAI2

Common processes in the MutFam and Miller modules implicated in DNA binding

and transcriptional regulation

In addition to cellular development and differentiation, there are other common GO pro-
cesses between MutFam and Miller-unique gene sets including those affecting DNA
transcription. Both the MutFam and Miller modules include proteins with a zinc-finger
domain (as shown in figure which enables DNA binding, and is known to be im-
plicated in cancer (Jen2016). Effect on genome stability and regulation is one of the
cancer hallmarks, where further genetic errors arise as a result of compromised DNA
quality control [92]. Although the MutFam and Miller genes map to different modules
shown as shown in figure these modules are enriched in the same processes
of regulation of transcription, DNA-dependent. This result further highlights the conver-
gence of GO biological processes in the different driver gene sets. In this case they

contain a related DNA binding domain, specifically the zinc finger binding domain.
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Figure 3.12: Unique zinc finger DNA binding genes in the Miller and MutFam sets map
to network modules, which are associated with common GO biological processes. The

figures are made in cytoscape.
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Different GO biological processes identified in the network modules identified for

the unique driver genes

Cell adhesion: Unique MutFam modules Unique to the MutFam modules, there
is enrichment of genes in the Proto-cadherin family, which are involved in cell adhesion
and migration (see table 6, module 3). The specific processes enriched for this module
are “homophillic cell adhesion” and “calcium dependent cell adhesion” shown in table
both of which have been implicated in cancer. Proto-cadherin genes are believed
to act as a chemical conduit between intracellular signalling and migratory processes
during cancer cell invasion [100] [19].

This is further supported by studies that show ECM reorganisation and alteration
of such cell-cell junction proteins give an increased invasion in carcinomas [92] [203].
These effects (i.e activation of focal adhesions and the break-down of cell-cell adher-
ences such as cadherin-based adheren’s junctions) are all reminiscent of a phase that
cancer cells undergo to increase invasion and metastasis called the Epithelial to Mes-

enchymal Transition (EMT) [92].

Table 3.15: Unique GO biological processes identified in the MutFam modules involved

in cellular adhesion

Module | GO biological process Gene list

PCDHGA6,PCDHGA3,PCDHGA2,PCDHGA1,PCDHB14,
PCDHB13,PCDHA13,PCDHB12,CELSR2,PCDHB10,CDHS5,
3 homophilic cell adhesion PCDHA1,PCDHB2,CDH1,PCDHB16,PCDHA5,PCDHAA4,
PCDHA3,PCDHA2,PCDHB3,PCDHA9,PCDHA8,PCDHBS,
PCDHA6

3 calcium-dependent cell-cell adhesion | PCDHB14,PCDHB13,PCDHB10,PCDHB2,PCDHB16,PCDHB3

PCDHB12,PCDHA1,PCDHB2,PCDHA5,PCDHA4,PCDHAS,
3 cell adhesion

PCDHA2,PCDHB3,PCDHA8,PCDHA6
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RNA splicing: Unique Miller modules The GO biological processes unique to
the Miller driver gene set include those implicated in RNA splicing, RNA processing, and
gene expression, all of which have been implicated in cancer [205]. Specifically, the
affected genes include various Heterogeneous Nuclear Ribonucleoproteins (HNRNP),
cyclin dependent kinase 12 (CDK12), and RNA Binding Motifs (RBM), as shown in ta-
ble All genes play a crucial role in facilitating transcription by preventing RNA
secondary structures, and aiding mRNA pre-processing and nuclear exportation steps,

recently been shown to be implicated in tumour progression [244] .

Table 3.16: Unique GO biological processes identified in the MutFam modules, involved

in RNA splicing
Module | GO biological process Gene list
HNRNPA3,HNRNPH1,HNRNPF,HNRNPH2,CDK12,
2 RNA splicing
RBM5
2 nuclear mRNA splicing, via spliceosome | HNRNPA3,HNRNPH1,HNRNPF,HNRNPH2,RBM5
2 regulation of RNA splicing HNRNPH1,HNRNPF,CDK12
HNRNPA3,HNRNPH1,HNRNPF,MAPKAPK2,HNRNPH2,
2 gene expression
RBM5
2 RNA processing HNRNPH1,HNRNPF,RBM5
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Analysis of enriched cancer hallmarks from the Atlas of Cancer Sig-

nalling Networks (ACSN)

To assess the validity and clinical relevance of MutFams for identifying driver genes, the
sets of MutFam genes for the 22 cancers were analysed for their enrichment in different
ACSN hallmark processes using the ACSN online tools [120]. The hallmark analysis was
also performed on the driver cancer genes from the Miller and Yang studies, identified
using Pfam domains [154] [271]. Hallmarks for the mutated genes for the MutFams,
Miller, and Yang sets were also compared to known cancer genes within the Cancer
Gene Census (CGC) [15].

In order to see which cancer hallmarks were enriched for the predicted and known
driver gene sets, the online tool for the Atlas of Cancer Signalling Networks (ACSN)
[120] was used. The ACSN resource contains 4600 reactions covering 564 genes,
which are then grouped into 5 main cellular processes; Apoptosis, Survival, Epithelial-
mesenchymal transition (EMT), cell cycle, and DNA repair. To see the hallmarks en-
riched for the predicted and known cancer genes, a gene set enrichment analysis was

performed for the MutFam, Miller, Yang genes, and CGC genes. The results of this are

shown in figure

Figure 3.13: Summary of mapped ACSN hallmark modules for the predicted and known
cancer genes. The colour blocks indicate an enriched process within the hallmark cate-

gories of Survival, EMT cell motility, DNA repair.
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This analysis showed that the MutFam, Miller, and Yang genes show enrichment of
hallmarks for 2 main cellular processes: Survival, and EMT Cell motility, which is consis-
tent with the enriched GOslim processes in table Specifically, the enriched hallmark
processes comprised MAPK and PI3K, AKT and MTOR growth factor signalling genes,
which affect processes involved in cell to cell adhesions and polarity. These results are
consistent with studies that show PI3K and MTOR pathways are highly mutated in pan-
cancer mutations [245] [29].

The CGC genes mainly affect DNA repair events, with only one affecting a survival
process. Unlike the predicted driver genes sets, there was no enrichment in hallmarks
affecting EMT and cell motility. It must be noted that some of the CGC genes, whilst
mainly containing missense mutations, also contain other mutation types such as inser-

tions and deletions [257].
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Detailed analysis of MutFam driver genes in brain cancers

Analysing the driver gene overlaps between glioma subtypes

Specific analysis of predicted MutFam cancer genes, within a subset of brain cancers,
was performed, namely for the gliomas; low grade glioma (LGG), glioblastoma multi-
forme (GBM) and glioma (GLI). LGG is a grade Il glioma and is the least invasive of the
subtypes, but can progress into later stage glioma subtypes, including the more aggres-
sive grade IV glioblastoma multiforme (GBM)[36]. Glioma (GLI) encapsulates mutations
from both LGG and GBM, along with other subtypes of different grades and differing
brain cell types [36]. GBM is one of the most mature (stage V) of invasive gliomas
with a poor prognosis [259]. LGG, GBM, and GLI were chosen as they share many Mut-
Fams. The driver genes analysed for each glioma subtype, were the top quartile mutated
genes in each cancer MutFam. The overlap between the MutFam genes for each cancer
is shown in figure [3.14]

It can be seen from figure [3.14]that 3 well-known cancer genes, TP53, PTEN, and
CHEK2, are common to all three glioma types. The genes within LGG are either common
to GBM (3 genes), or are within GLI (4 genes), and all but CHEK2 are within the Cancer
Genome Census (CGC). GBM and GLI do contain other mutated genes not in LGG, and
GLI contains genes neither in LGG nor GBM. To investigate the GO biological processes
of the three glioma gene sets, network analyses for each of the driver gene sets were

performed.
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Figure 3.14: Venn diagram comparing MutFam genes between LGG, GBM, and GLI
gliomas. Overlaps to CGC genes are shown in the table below. Genes in bold are those
common to the CGC genes.
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GBM LGG GLI 3 TP53 PTEN CHEK2
LGG GLI 4 CIC BRAF NOTCH1 IDH1
GBM GLI 10 ZNF646 HIF1A HSPAS8 ZNF429 GSTMS EGFR
PIK3R1 LZTR1 FKBP9 TBK1
GLI 7 PIK3CA PCDHA1 KRT13 ATRX KRT15 CACNA1S
PCDHA3

Enrichment of GO biological processes and network analysis of glioma MutFam

driver genes

To enable a deeper analysis of GO biological processes and pathways represented by
the low grade glioma (LGG), glioblastoma multiforme (GBM), and glioma (GLI) genes, a
gene network was constructed using ReactomeFVIZ [269] for the LGG and GBM Mut-
Fam gene sets respectively, as described in the materials and methods section (3.2
Materials and methods).

A total of 3, 8, and 12 genes from the LGG, GBM, and GLI gene sets could be
mapped to the functional network. These were then clustered into gene modules for
further analysis, shown in table There were a total of 1, 2, and 3 gene modules in
LGG, GBM, and GLI respectively, which parallels the progression of the glioma cancers

from an early stage LGG to later stage gliomas, such as GBM which harbours more
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mutated genes. To get an insight into what processes are affected within these modules,
and whether this reflects the distinct clinical phenotypes of the cancer subtypes, further
analyses of the GO biological process enrichments were carried out on the gene network

modules. For clarity, figures including networks for just LGG and GBM are shown.

Table 3.17: Network modules of the LGG, GBM, and GLI MutFam (Top quartile) genes.

Cancer | Module | Nodes in modules | Node list

LGG 1 3 CHEK2,PTEN,TP53

Cancer | Module | Nodes in modules | Node list

CHEK2,HIF1A,PIK3R1,
GBM 1 5

PTEN,TP53

GBM 2 3 EGFR,HSPA8, TBK1

Cancer | Module | Nodes in modules | Node list

HIF1A,NOTCH1,PIK3CA,

GLI 1 6
PIK3R1,PTEN, TP53
CHEK2,EGFR,HSPAS,
GLI 2 4
TBK1,
GLI 3 2 PCDHA1,PCDHA3

Common gene modules detected in all gliomas: DNA repair and cell cycle
checkpoint There is one gene network module (module 1 in table common
to all gliomas; LGG, GBM, and GLI, containing the core genes of TP53, CHEK2, and
PTEN. All genes are known tumour-suppressors [257], and are involved in DNA repair
pathways, regulation within cell cycle checkpoint, and the regulation of growth factor
signalling. This result is consistent with the biological pathways identified, i.e those im-
plicated in p53 downstream events involved in DNA repair and the cell cycle checkpoint
mediated by CHEK2, whereby p53 alters the DNA damage response and appropriate
entry to the cell cycle [51].

Interference with DNA quality control and repair pathways would be expected to lead
to further genomic errors, and is one of the core hallmarks of all cancers [92]. This com-

mon module is circled in figure and reflects the fact that these cancers, which come
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from the same tissue type, have shared mechanisms, although GBM has developed into

a more aggressive and invasive form, which contains other mutated genes.

Figure 3.15: Network modules in LGG and GBM. The common module 1 is in blue, and
a GBM/GLI specific module is in green. Common genes between the two cancers are

circled.

Early stage - Low Grade Late stage - Glioblastoma Multiforme
Glioma (LGG) (GBM)

(8K1 )

Gene modules unique to GBM and GLI: Developmental signalling Genes within
module 1, which are both in GBM and GLI are HIF1A and PIK3CR1. GLI has an addi-
tional gene involved in developmental signalling — NOTCH1 (see table These extra
genes mediate various extracellular nutrient and growth factor signals involved in the in-
tracellular hypoxia response and engendering angiogenesis and vasculature formation
for tumour growth. This observation is consistent with studies by Gavalas et al [166].
It has been shown that these processes predominate in later stage carcinomas, and
represent an adaptive response which promotes increased circulation and absorption
of nutrients to support the neoplastic growth of the tumour [92] [12]. These results are
also consistent with the reported biological processes for these GBM and GLI cancers
shown by GO enrichments analysis (see table [3.18), which includes processes effecting

“hypoxia response via HIF activation” and the “HIF-1 signalling pathway”.
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Table 3.18: Enriched biological processes for the LGG, GBM, and GLI cancers.

Cancer

Total biological process

Biological process

LGG
GBM
GLI

AP-1 transcription factor network(N)
p53 pathway feedback loops 2(P)
Prostate cancer(K)

Central carbon metabolism in cancer(K)
Melanoma(K) Small cell lung cancer(K)
p53 pathway(N)]

Hepatitis B(K)

PLKS3 signaling events(N)

p53 pathway(P)

p53 signaling pathway(K)

Endometrial cancer(K)

Sphingolipid signaling pathway(K)
Glioma(K)

DNA Double Strand Break Response(R)

LGG

Cell Cycle Checkpoints(R)
Cell cycle(K)
Direct p53 effectors(N)

GBM

Hypoxic and oxygen homeostasis regulation of HIF-1-alpha(N)
hypoxia and p53 in the cardiovascular system(B)

HTLV-I infection(K)

GBM
GLI

21

Hypoxia response via HIF activation(P)
HIF-1 signaling pathway(K)
Phosphatidylinositol signaling system(K)
Proteoglycans in cancer(K)

Thyroid hormone signaling pathway(K)
Pancreatic cancer(K)

Choline metabolism in cancer(K)

mTOR signaling pathway(K)
Apoptosis(K)

Renal cell carcinoma(K)

Colorectal cancer(K)

Chronic myeloid leukemia(K)

PIP3 activates AKT signaling(R)

PI Metabolism(R)

p75(NTR)-mediated signaling(N)
VEGFR1 specific signals(N)

Pathways in cancer(K)

Non-small cell lung cancer(K)

PI3K-Akt signaling pathway(K)

Signaling events mediated by Stem cell factor receptor (c-Kit) (N)

BCR signaling pathway(N)
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Gene modules unique to GBM and GLI: immune response and protein folding
GBM and GLlI also contain gene modules implicated in the immune system and protein
folding (TBK1, HSPAG), shown in figure (Green circles). TBK1 is a regulatory sig-
nalling kinase which lies directly upstream from the main inflammatory pathway involving
NFKB, and mutations in this protein have been found in various cancers [212]. This is
consistent with other studies reporting pathways involved in immunity, such as “B cell
receptor signalling” in table [3.1§].

HSPAG is a molecular chaperone within the HSP70 chaperone family, and acts in
response to cellular stress to maintain proteostasis and prevent protein mis-folding. It
also plays a role in antigen presentation in immunity. The role of chaperones in cancer
is controversial, since although they ensure correct protein folding, they can also mask
internal errors within mutated proteins and therefore contribute to their abnormal func-
tioning [106]. Abnormal activity in HSPA6 and other Hsp70 members has been seen
in cancer, and is associated with tumour progression and poor prognosis [162]. These
effects are consistent with the reported increased involvement of the mature immune
response in late stage cancers such as GBM [92] [12], and are often associated with in-
creased drug resistance due to the recruitment of immune cells which form a protective
barrier around the tumour, and are often associated with a poorer prognosis [259] .

Unique to GLI, there is a gene module that contains a range of enriched processes
involving proto-cadherin genes, which are implicated in cellular adhesion and cell sig-
nalling. This module has already been discussed in the analysis of the MutFam genes,
within the section The unique genes within the GLI glioma are associated with

different stages of tumour progression and occur within different types of brain cells.
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Conclusion

The heterogeneous nature of cancer complicates the analysis of the mutational land-
scape, whereby driver genes and their mutations are hidden amongst the noise of less
functionally significant passenger mutations. The MutFam protocol has been developed
for prioritising cancer driver genes, based on the enrichment of missense mutations in a
common functional domain, a CATH FunFam. The performance of the MutFam protocol
compared to Pfam domain based prediction methods, shows that MutFams identify the
highest coverage of known cancer genes in the CGC. i.e. 21.2% compared with other
studies: 12.9% for Miller and 14.7% for Yang. The remaining CGC genes, not found
in the MutFam, Miller, or Yang genes, may contain higher proportions of other types of
variants i.e. deletions and splice variants, and are enriched in DNA repair processes.

Although protein structures are intensively studied, there needs to be at least one
protein structure to identify the family. In contrast, Pfam can identify families purely from
sequence data and this resource therefore contains more protein entries and more fami-
lies and accounts for a higher proportion of human domains than CATH families. For our
analysis we used functional subfamilies from CATH to aggregate mutations across the
family. We have demonstrated that CATH FunFams are functionally more coherent than
Pfam families. This means that using CATH FunFams for mutation aggregation is more
likely to identify a statistically significant signal of enriched mutations than using Pfam
families, in which some relatives will have different function and therefore may not be
mutationally affected for a particular disease. Figure schematically illustrates this
concept. In this context, it is not surprising that CATH FunFams identify more mutation-
ally enriched domain families than Pfam families. Whilst, some of these may represent
false positives, it is not possible to compare the level of false positives between FunFams
and Pfams, but it is reassuring that genes from mutationally enriched families identified
by both methods, map to similar pathways and processes as demonstrated in the Reac-
tomeFVIZ analyses.

Figure [3.16/shows the benefit of sub-classifying evolutionary relatives into functional

families for the purposes of aggregating mutation data. The top half of the figures shows
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a set of protein domains in a family — this can be a broad CATH superfamily or a more
closely related set of domains in a Pfam family. Mutations in each domain are shown by a
vertical bar, the height which reflects the number of mutations. It can be seen that the top
3 relatives have many disease associated mutations in a number of sites common to the
relatives. However, the bottom 3 relatives have very few mutations. The lower half of the
figure shows the sub-classification of these relatives into functional families (FunFam1
and FunFamz2). Mutation enrichment studies analysing the set of relatives in the top half
of the figure (eg across a CATH superfamily) would return a low enrichment score as
only half the relatives have significant mutations. In contrast, enrichment analyses of the
functional families, FunFam1 and FunFam2, would indicate that FunFam1 is significantly
enriched in disease associated mutations.

It is possible that CATH contains more families comprising domains that are highly
ordered, than Pfam, since each family has at least one solved structure. However, re-
cent work by the Pfam team have identified families for most proteins having structures
deposited in the PDB. Therefore it is unlikely that this feature would represent a large
enough difference in the number of families with ordered structures, to account for the
differences in the number of mutationally enriched families between CATH FunFams and

Pfam.
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Figure 3.16: Comparing mutation aggregation within a CATH superfamily, a Pfam family,

and a CATH FunFam.
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Analysis of the GO biological processes demonstrated that the non-overlapping Mut-
Fam and Miller driver genes show convergence on common biological processes, and
encapsulate mutated proteins in different parts of these pathways. Many of these pro-
cesses have been reported in the literature, in connection with cancer. The unique
pathways for each driver gene set could be rationalised by considering the gastrulation
layer tissue biases of the cancer types analysed by each driver gene detection method.
We used a very strict background for enrichment studies as we used the whole human
genome. Since human genes only map to 70% of human genes map to CATH domains,
by using the whole human genome as the background rather than the smaller set of
human genes mapping to CATH families, we effectively applied an overly stringent back-
ground. Any enrichment would have been more significant had we used the smaller
background of human genes mapping to CATH as a background.

The driver genes were also analysed on their enrichment for cancer hallmarks using
The Atlas of Cancer Signalling networks (ACSN). This showed that the putative driver
genes from all the domain based methods were enriched in the two hallmark modules
of survival and EMT cell motility. Specific analyses of MutFam driver genes within LGG
and GBM revealed that both the common and unique MutFam genes reflect well known
biological processes present in each cancer, such as processes implicated in growth
factor signalling and P53 related events. GBM driver genes also affect advanced im-
mune related processes, hypoxia, and angiogenesis. These processes reflect the more
advanced nature of GBM relative to the more benign glioma subtype, LGG, thereby
demonstrating the ability of the MutFam driver genes to capture the specific functional

events within different stages of cancer.



Chapter 4

Structural and Stability Analyses of Cancer Mu-

tations in FGFR3

Introduction

In contrast to the large scale analyses performed within chapters 2 and 3, In this
chapter, various structural and functional analyses of cancer mutations within FGFR3
were conducted. Below is an introduction to FGFR3 kinase structure and function, fol-
lowed by a summary of the work performed in this chapter.

Chapter 2 and 3 presented general trends detected by analyses of large scale data
covering many protein families. This chapter reports the impacts of mutations in a spe-
cific family of interest, the Fibroblast Growth Factor Receptor(FGFR) family, which con-
tains the FGFR1-4 receptor tyrosine kinases, involved in cell signalling pathways, which
are heavily implicated in diseases such as cancer.

The FGFR receptor tyrosine kinases are located in the cell membrane, and are ac-
tivated by ligand binding (fibroblast growth factor) to the extracellular domain leading
to conformational changes within the receptor, that are transmitted to the intracellular
kinase domains within the cytosol. Ligand binding results in activation of the kinase
domains, which in turn results in their auto-phosphorylation and initiation of kinase activ-
ity leading to the phosphorylation of tyrosine residues on substrates, and recruitment of
downstream adaptor proteins and signalling messengers. These act together to cascade
the ligand binding event down to the transcription factors within the nucleus, engendering
cellular growth.

Studies were performed on the FGFR kinase superfamily as mutations in these do-
mains are implicated in bladder cancer, a disease being studied by our collaborator, Dr
Matilda Katan Muller. Computational studies were performed to determine the distance
of mutations from functional sites using the MutDist program. Clusters of mutations

(MutClusters) were also identified within the FGFR kinase domain using the MutClust
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programme. MutDist and MutClust are described in chapter 2. In addition to this, other
bioinformatics tools were used, which measured the impacts of the mutations on pro-
tein stability, and structural and functional features. The results of these methods were
compared to experimentally characterised effects on FGFR3 activation, measured by

members of the Katan-Muller lab at UCL.

Structural and functional features of FGFR3 Kinase

All FGFR receptor kinases contain an intracellular kinase domain, which has a con-
served structure between family members. This consists of 2 lobes, the C-lobe and
N-lobe and the catalytic site resides in the cleft between them. Surrounding the central
catalytic cavity, there are other residues which control the catalysis, regulate kinase ac-
tivity, and provide a scaffolding role which supports the various elements in performing
kinase activation. A summary of the main functional regions in FGFR kinase are de-
scribed in a review by Taylor et al [242]. A PYMOL structure of FGFR3 and the main
functions of the residues are given in figure

One of the first steps in kinase activation is phosphorylation of a tyrosine residue in
the activation loop in the C-lobe (A-loop). This event includes initiation of a hydrogen
bonding network between residues within the activation loop and residues in the N-lobe,
causing subsequent conformational shifts, including the outward extension of the A-loop,
facilitating active state progression [117]. Such effects can be mimicked by mutations, re-
ferred to as phosphomimetic mutations, including the cancer mutation K650E in FGFRS3,
which triggers the formation of this hydrogen bonding cascade, promoting active state
formation [98].

Establishment of the hydrogen bonding network within the activation loop also pro-
motes the rotation of the upstream DFG motif, causing the inward flipping of the as-
partate and glycine residues, and the outwards movement of phenylalanine away from
the active site within the catalytic loop. The resulting conformation of the DFG motif is
known as the "DFG in” state and is conducive to kinase activation, since this enables

metal binding by the aspartate residue, and increases accessibility to the active site,
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Figure 4.1: Summarising the main functional regions of FGFR3, based on [242]. The
FGFR3 structure is taken from the Protein Data Bank (PDBcode 4K33)
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BLUE alpha-F helix {C-lobe) and beta-4/alphaC loop (N-lobe) Scaffolding kinase elements/Molecular brake
RED P+1 loop and APE motif Substrate binding and anchoring kinase elements
P loop and activation loop Phosphate coordination and catalysis
hydrophobic residues spanning the lobes Lobe coordination and active state stabilisation
MAGENTA catalytic loop and gatekeeper residue ATP binding
The D in the DFG motif Metal binding
adjacent to the APE motif Allosteric site
GREEN between the activation loop and P+1 loop Site for autophosphorylation
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priming the active site for catalysis.

In the N-lobe, there is a $4-aC loop which contains residues which form hydrogen
bond contacts within the loop and the adjacent aC helix, leading to the formation of the
molecular brake and preventing the progression into the kinase active state [32]. This
region regulates the 30 degree inward rotation of the downstream «aC loop, towards
the central catalytic core. Release of this molecular brake is evoked by activation loop
phosphorylation, where the phosphate group withdraws the hydrogen bonds of the aC
helix from the $4-aC loop, triggering the inwards rotation of the aC helix towards the
catalytic cleft where it forms vital salt bridge contacts that support catalysis.

In addition to this, ATP binding takes place in the cleft upstream of the catalytic loop,
and is regulated by an adjacent gatekeeper residue in the N lobe. The ATP phosphates
are coordinated by residues within the adjacent P-loop in the N-lobe. The adenine ring
of the ATP, along with the outwards facing DFG - phenyalanine in the C-lobe, forms a
hydrophobic strip referred to as the C-spine, which spans the 2 kinase lobes across the
catalytic site, further stabilising the active state [117].

After priming the kinase elements for catalysis, a substrate is docked onto the P+1
loop which is responsible for substrate binding, while also providing a scaffolding role
for the kinase active site. The P+1 loop lies directly downstream of the activation loop,
and is in turn supported by the C-lobe scaffolding helices including the aF helix. The aF
helix is a scaffolding element for the catalytic core and is essential for anchoring various
parts of the kinase elements for catalysis.

Mutations within or near to a functional region, can result in a loss or gain of kinase
activity if the mutation affects functional site residues [83] [226]. Loss of function is
easier to characterise since this can involve structural effects which also have an effect
on protein stability - for example, a mutation causing a steric clash, impairing function.
Furthermore, many mutations that are within functional sites often impair protein function
since natural selection favours certain residue combinations that perform the functions
efficiently.

However, there are cancer mutations which act via more subtle means, and are tol-
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erated within the protein structure because they occur in residues under less negative
selection pressures. These include mutations which cause a gain of function by altering
the electrostatics of a functional site enhancing its catalytic efficiency, or by exerting a
stabilising effect on the active form, thereby leading to an increase in activity.

It is important to characterise these mutations according to their effects, to provide
insights into mechanisms altering protein function and to ultimately determine which

therapeutic intervention will be most effective.

Methods for assessing changes in protein stability

There are many different methods to determine the impacts of mutation on protein sta-
bility, ranging from the use of empirical free energies, to use of probabilistic functions
and graph based signatures. These are complementary approaches and were therefore
used in parallel in the analyses of FGFR3 mutations.

FoldX was used for the empirical calculations reported in this chapter. This was
developed by Schymkowitz et al in 2005 [208] and predicts protein stability using a sim-
ulated force-field in silico. FoldX calculates the free energy changes for each atom,
based on a range of features to determine the effects on the stability of the whole protein
[208]. These features include electrostatic energies, van der waals contacts, residue
hydrophobicity, hydrogen bonding energies, and solvent interaction energies, and are
derived from experimental data for each atom type. Other features include calculations
related to the free energy changes on restricting backbone conformations, based on the
permitted dihedral angles of adjacent amino acids pairs, and the permitted side chain
angle conformations of each amino acid.

In addition to empirical methods, stability predictors based on probabilistic functions
and graph based signatures were used. Site Directed Mutator (SDM) is a statistical po-
tential method developed by Worth et al in 2011 [268], which considers the structural
environment of the mutation and compares this with the wild type. This method captures
the structural propensities of residues in the environments of the mutation, in the form

of an environment-specific-substitution table (ESST) based on hydrogen bonding, sec-
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ondary structure and solvent accessibility features. The ESST then gives a probability of
an amino acid within an environment being substituted for another amino acid, which is
proportional to its tolerability and inversely proportional to its potential effects on protein
structure and stability [264] [130].

Like SDM, mCSM [185] captures the structural environment of a mutation, but via an
alternative description using structural signatures generated as a graph representation
of the mutated residue environment, accounting for geometric and physico-chemical pat-
terns, using pharmocaphores. Instead of using probability functions, mCSM uses these
structural signatures in a machine learning predictor to predict the effects of a mutation
on protein stability. More recently the stability predictor, DUET, uses SDM in an opti-
mised combination with mCSM [187]. DUET was used in the analysis of FGFR cancer

associated mutations, in conjunction with FoldX.

Analysing the effects of mutations on protein structure and predict-
ing mutation pathogenicity

Chapter 1 gave an overview of the many mutation predictors available, which use se-
guence based and structure based features to predict mutation pathogenicity. In the
analyses presented in this chapter, a subset of mutation pathogenicity predictors (SAAP-
pred, CONDEL) [9][84] were used to study cancer associated mutations in FGFR3. One
of the main advantages of SAAPpred compared to other analysis tools is that it explicitly
reports the structural effects of a mutation within a protein. For example the impacts
of the mutation on hydrogen bonding, and steric clashes. CONDEL was also used in
this study, as it is currently regarded as one of the best meta-predictors of mutation
pathogenicity, and uses a combination of sequence and structure based predictors in-
cluding SIFT, Mutation Assessor, and PolyPhen-2. A more detailed summary of mutation

predictors of pathogenicity are described in chapter 1.
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Materials and methods

Cancer mutations in FGFR3

A set of 57 mutations within FGFR3 were obtained from the COSMIC and TCGA databases
[15] [249] and analysed. 12 of these mutations had undergone preliminary analysis by
our collaborator Dr Katan-Muller at UCL, and were suspected to result in a gain of func-
tion (GOF) effect on FGFR3, and so were referred to as suspected driver mutations.
The experimental work included assays measuring FGFR3 auto-phosphorylation and
substrate phosphorylation. Further experimental details are given in Patani et al [177].
Mutation clusters (MutClusters) in FGFR3 were identified using the MutClust method

described in chapter 2.

Structures used in the analysis

The structure of the active FGFR3 form was used (PDB code 4K33). For the FoldX
analysis, the PDB structure was stripped of its ions, ligands, solvent atoms, and all other
non-mutated chains of the FGFR3 kinase were removed from the PDB file, so only the
stability of the mutated chain A was measured.

The structure for the FGFR3 active form already contains mutations, including the
known cancer mutation K650E, and two mutations made to facilitate protein purification
S482C, and A582C. Therefore it was necessary to backmutate to give an unmutated
structure, which was made using the PYMOL mutator plug-in [48]. There are no struc-
tures for active FGFR3 with CSA information. Therefore, for analysing the proximity of
mutations to catalytic sites, a close homologous structure of active FGFR1 (83% se-
guence identity) was used which contains known catalytic residues from CSA (1AGW).

To assess the relative impacts of the mutations on FGFR3 protein stability, both the
active and inactive forms were used. Since there is no structure of the FGFR3 inactive
form, a 3D model was made based on the FGFR3 sequence and the FGFR1 inactive
structure (PDB code 4UWY). This was generated using MODELLER [265] by Dr Nethaji

Thiyagarajan in Dr Matilda Katan’s group. Various tests measuring structure similarity
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were used to assess for model quality, including 1) measuring BLAST sequence identity
between the FGFR1 and FGFR3 sequences [137] 2)SSAP [173] 3) MolProbity [33] 4)
ProsA-web [266] and 5) ModEval [184] as shown in table All tests validated that
the model was of good quality. SSAP was used to align the FGFRS inactive model and
the inactive FGFR1 structure. The alignment was used to generate a superposition of
the structures by PROFIT, which uses the fitting algorithm developed by McLachlan et al
[149].

Table 4.1: Summary of the model quality checks for the 3D model of the FGFR3 inactive

form
Model tests | Assesses Value Range
BLAST Sequence Equivalence 83% Good Sequence identity >40% is good
SSAP Structural Equivalence 98.54 SSAP score from 0-100 >80 is good
Combined score of the clashes, rotomers, and
MolProbity | Sterio-chemistry and topology 1.98 ramachandran scores. Acceptable scores are those
<3.
Z-score A good z- score is within the Z-scores of PDBs
ProsA-Web | Statistical Energy Score
within range included in the ProsA dataset.
DOPE-=-1.438
ModEval native likeness, template, compactness, RMSD Good DOPE score <-1, Good RMSD score is <2 A

RMSD=1.735

Predicting mutation pathogenicity and reporting structural effects

To test for pathogenicity, two mutation predictors were used, CONDEL [84] and SAAP-
pred [9]. The input for SAAPpred was the active FGFR3 structure, PDB code 4K33. Mu-
tations were modelled using the PYMOL Mutator plug-in [48], and the mutated residue
conformation with the fewest rotomeric clashes was selected. Within SAAPpred, there
is an analysis pipeline, SAAPdap, that reports the structural and functional effects of a
mutation on a protein, which are then incorporated and used in the predictor SAAPpred.
Effects of the mutation include; effects on hydrogen bonding, salt bridges, charge and
hydophobicity change, steric clash and void formation and co-location in functional and

conserved sites.
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Methods for analysing the impacts of the FGFR3 mutations on sta-
bility
FoldX Method: The FGFR3 active structure (4K33) and the FGFRS3 inactive model were
subject to energy minimization in FoldX, using the Repair PDB option, to alleviate any
unfavourable clashes and interactions that may be present within the structure. To take
into account the different rotameric conformations, three runs were executed. Mutations
of each residue to every possible amino acid were made for that codon, using the Posi-
tionScan option in FOLDX [208]. This was to create a tolerance landscape of the protein,
which was used as a background to compare with the FGFR3 cancer mutation energies.
To assess the effects of a mutation within a single protein structure, the energy differ-
ences for each mutation were calculated with respect to the wild type form, to determine
the free energy change using equation 1, which is for an individual structure (FGFR3
active structure or FGFRS3 inactive model).

Equation 1:
00G(FreeEnergyChange)) = 0G(mutant) — §G(wildtype)

To assess the effects of a mutation on the equilibrium between the two protein states,
the relative stability of the inactive to the active form was calculated using equation 2.
These calculations are based on those used in Hashimoto ef al [95].

Equation 2:
J0G(Stability)) = 0G(Inactive) — 6G(Active)

The energy differences were categorised according to their effect relative to the wild
type as follows; most stabilising (top 5%), highly stabilising (top 10%), stabilising (top
20%) and slightly stabilising (30%) and obtained by summing all the mutation energies
in the structure. Stabilising effects are associated with a negative free energy difference.

DUET Method - Another measure of how a mutation effects protein stability was per-
formed using DUET. Within DUET, SDM calculates a statistical measure which gives

an indication of the impact on stability [187], based on the propensity of the native and
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mutated residues to occur within a particular structural environment. A structural envi-
ronment here is defined by secondary structure, hydrogen bonding, and solvent accessi-
bility patterns. DUET combines SDM, and graph based signatures using mCSM. A more

detailed description of this is provided within the Introduction section 4.1.2
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Results

Analysing the 57 cancer mutations from COSMIC by effects on pro-

tein structure, function, and stability

Analyses of mutation effects using SAAPdap, SAAPpred and CONDEL

With regards to the predicted effects reported by SAAPdap analyses, 37/57 cancer mu-
tations were associated with effects ranging from the occurrence in conserved sites,
causing buried charges, and disturbing hydrogen bonding. The remaining 20 cancer
mutations in FGFR3 showed no structural or functional effects reported by SAAPdap.
For each of the 57 mutations in FGFR3, pathogenicity predictions were also made using
CONDEL and SAAPpred in table Only a few of the mutations are predicted to be
pathogenic by both CONDEL and SAAPpred, which is interesting since these mutations
are implicated in cancer and some have been experimentally characterised as activat-
ing. Only 9/57 mutations were predicted pathogenic by SAAPpred, 8/9 of these also
showed significant pathogenicity scores reported by CONDEL. Most of the CONDEL ef-
fects related to the mutations being in conserved sites, consistent with its methodology

in primarily assessing the impacts of mutations on conserved sites.

Identification of regions significantly enriched for cancer mutations in FGFR3 -

MutClusters

Clusters of cancer mutations were identified using the MutClust program (see section
2.2.1.4). This was done to restrict the set of mutations to those most likely to be driving
the cancer, and is a technique many studies have used to infer mutation pathogenicity. In
addition to using the mutations in FGFR3, the MutClust programme also includes other
cancer mutations taken from the FGFR relatives that belong to the same CATH FunFam
as the FGFR3 kinase domain.

This analysis identified 3 significantly mutated clusters in the 3D structure of the

FGFR3 kinase domain (circled in black in figure compared to a random model, en-
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Figure 4.2: The MutCluster regions identified within FGFR3 are located in the 3 main

functional regions involved in kinase activity and regulation

Randomised model MutCluster regions in FGFR3

‘ Catalytic loop ‘ Activation loop

capsulating 20/57 cancer mutations. The 3 MutClusters were located in the 3 main func-
tional regions involved in kinase activity and its regulation. The first region includes the
residues of the molecular brake and the pharmacologically relevant gatekeeper residue
(V555) of the ATP binding site. The second region is within the catalytic loop, and the

third is within the activation loop, as illustrated in figure 4.2

Analysing the effects of cancer mutations on FGFR3 stabilty

Energy changes were calculated for all 57 cancer mutations by FoldX performed in the
structure of the active FGFRS form, and in the modelled inactive FGFR3 form, as shown
in table [4.2] The comparison of energies between the 2 forms enabled insight into
how the cancer mutations effected the equilibrium between the 2 states. From the 57
cancer mutations considered, it can be seen from table [4.2] that 26 of these have a
stabilising effect on the FGFRS3 active form relative to the inactive form. Interestingly, the
cancer mutations which had no effects reported by SAAPpred, were predicted as having

a stabilising effect by FoldX.
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In summary, analyses of the 57 mutations by SAAPdap showed effects for 37 of the
mutations. MutClust identified clusters comprising 20 mutations. 26 of the mutations
had effects on stability as reported by FoldX, and 9 were predicted as pathogenic by
SAAPpred. It can be seen from table that 84% were associated with at least one
characterised impact, and 58% with two impacts, and 42% with 3 impacts.

According to table it can be seen 28 out of the 57 mutations are reported by
both SAAPdap analyses and stability analyses using FoldX. Of these, 79% were shown
to have a stabilising effect on the active FGFR3 form, and were associated with a range
of SAAPdap effects. An example of this includes the mutation N540K, which exerts a
very high stabilising effect on FGFR3, and is associated with effects including impacting
hydrogen bonding. However, not all mutations affecting stability were associated with
SAAPeffects, including K650E.In terms of mutations occurring in MutClusters, 8/19 were
reported by SAAPdap to be near a conserved or functional site. For example, mutations

at the D646N position are reported by SAAPdap to occur near a conserved site.



Table 4.2: Summary of the analyses for the 57 putative driver mutations in FGFR3. The FOLDX stability change is between the active and

inactive FGFR3 forms.

Residue Frequency SAAPpred
WT | MUT MutCluster Features FoldX stability CONDEL SAAPdap effect
number (COSMIC) prediction
No
466 GLU | LYS | 7 Neutral PD SNP
structural effects identified
No
469 ARG | GLN | 4 Destabilising - low PD SNP
structural effects identified
No
490 GLU | GLY | 2 Neutral SNP SNP
structural effects identified
No
500 ALA | THR | 1 Stabilising - low SNP SNP
structural effects identified
Conserved
505 VAL | ILE 1 Stabilising - high PD SNP
site
Clash—Conserved
507 VAL MET | 3 Destabilising - low PD PD
site
Molecular No
538 ILE PHE | 4 1 Stabilising - very high | PD SNP
brake structural effects identified
Molecular No
538 ILE VAL | 4 1 Destabilising - low SNP SNP
brake structural effects identified
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Table 4.2 continued from previous page

Residue Frequency SAAPpred
WT | MUT MutCluster Features FoldX stability CONDEL SAAPdap effect
number (COSMIC) prediction
Molecular HBonds—Conserved
540 ASN | LYS | 61 1 Stabilising - very high | SNP SNP
brake site
Molecular Conserved
540 ASN | SER | 61 1 Stabilising - low SNP SNP
brake site
Conserved
555 VAL | MET | 2 Gatekeeper Stabilising - low SNP SNP
site
No
569 ALA | VAL | 1 Neutral SNP SNP
structural effects identified
No
572 PRO | ALA | 1 Stabilising - medium SNP SNP
structural effects identified
No
576 ASP | ASN | 2 Neutral SNP SNP
structural effects identified
Surface
582 CYS | PHE | 4 Stabilising - high SNP SNP
Phobic
Conserved
603 ARG | GLN | 6 Neutral SNP SNP
site
Conserved
608 LEU | MET | 2 Stabilising - medium PD SNP
site
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Table 4.2 continued from previous page

Residue Frequency . SAAPpred
WT | MUT MutCluster Features FoldX stability CONDEL SAAPdap effect
number (COSMIC) prediction
Catalytic o Core
614 ILE ASN | 1 1 Destabilising - low PD PD
loop Philic—Conserved site
Catalytic o ) Buried
616 ARG | GLY | 4 1 Stabilising - medium PD PD
loop,HRD motif Charge—HBonds—Conserved site
Catalytic o . Buried
617 ASP | GLY | 1 Stabilising - very high | PD PD
loop,HRD motif Charge—HBonds—SProtFT
Catalytic HBonds—Conserved
621 ARG | HIS | 3 Destabilising - low PD SNP
loop site
No
627 GLU | ASP | 6 Neutral SNP SNP
structural effects identified
No
627 GLU | GLY | 6 Neutral SNP SNP
structural effects identified
No
627 GLU | LYS | 6 Neutral SNP SNP
structural effects identified
Surface
627 GLU | VAL | 6 Neutral PD SNP
Phobic
Conserved
630 VAL | ALA | 2 Neutral SNP SNP
site
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Table 4.2 continued from previous page

Residue Frequency SAAPpred
WT | MUT MutCluster Features FoldX stability CONDEL SAAPdap effect
number (COSMIC) prediction
Conserved
630 VAL | MET | 2 Neutral SNP SNP
site
Activation
loop, Conserved
636 PHE | LEU | 1 Destabilising - low PD SNP
DFG motif, site
Regulatory spine
Activation
Conserved
637 GLY | TRP | 2 loop, Stabilising - very high | PD SNP
site
DFG motif
Activation Conserved
640 ARG | TRP | 3 1 Destabilising - low PD PD
loop site—Surface Phobic
Activation No
641 ASP | ASN | 5 1 Neutral SNP SNP
loop structural effects identified
Activation
641 ASP | GLY | 5 1 Destabilising - low SNP HBonds SNP
loop
Activation No
643 HIS | ARG | 4 Stabilising - medium SNP SNP
loop structural effects identified
Activation No
643 HIS | ASP | 4 Destabilising - low SNP SNP
loop structural effects identified
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Table 4.2 continued from previous page

Residue Frequency . SAAPpred
WT | MUT MutCluster Features FoldX stability CONDEL SAAPdap effect

number (COSMIC) prediction
Activation Conserved

646 ASP | ASN | 7 1 Stabilising - low SNP SNP
loop site
Activation Conserved

646 ASP | GLY | 7 1 Stabilising - high SNP SNP
loop site
Activation Conserved

646 ASP | TYR | 7 1 Stabilising - high SNP SNP
loop site
Activation loop,

Conserved
647 TYR | CYS | O Phosphorylated Neutral PD SNP
site

tyrosines
Activation Buried

650 LYS | ASN | 210 1 Stabilising - very high | SNP SNP
loop Charge
Activation Buried

650 LYS | GLN | 210 1 Stabilising - very high | SNP SNP
loop Charge
Activation No

650 LYS | GLU | 210 1 Stabilising - very high | SNP SNP
loop structural effects identified
Activation Buried

650 LYS | MET | 210 1 Stabilising - very high | PD PD
loop Charge—HBonds
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Table 4.2 continued from previous page

Residue Frequency . SAAPpred
WT | MUT MutCluster Features FoldX stability CONDEL SAAPdap effect
number (COSMIC) prediction
Activation Buried
650 LYS | THR | 210 1 Stabilising - medium | SNP SNP
loop Charge
Activation Conserved
653 ASN | HIS | 2 Stabilising - low SNP SNP
loop site
Activation Conserved
653 ASN | SER | 2 Neutral SNP SNP
loop site
No
669 ARG | GLN | 5 1 Neutral SNP SNP
structural effects identified
No
669 ARG | GLY | 5 1 Neutral SNP SNP
structural effects identified
Conserved
677 VAL | ILE 4 Neutral SNP SNP
site
HBonds—Conserved
679 SER | PHE | 2 Stabilising - high PD PD
site
Buried
686 GLU | LYS | 4 Stabilising - low PD PD
Charge—HBonds—Conserved site
689 THR | MET | 1 Destabilising - low PD HBonds SNP
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Table 4.2 continued from previous page

Residue Frequency . SAAPpred
WT | MUT MutCluster Features FoldX stability CONDEL SAAPdap effect

number (COSMIC) prediction
Surface

696 PRO | LEU | 1 PD SNP
Phobic
Conserved

697 GLY | CYS | 47 Destabilising - low PD SNP
site
No

700 VAL | ALA | 1 Neutral SNP SNP
structural effects identified
HBonds—Conserved

715 LYS | MET | 2 Stabilising - low SNP SNP
site
Buried

716 PRO | HIS | 4 Stabilising - very high | PD PD
Charge—Core Philic
No

725 MET | ILE 1 Neutral SNP SNP

structural effects identified
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A more detailed analysis of the structural and functional effects of

the 12 putative driver mutations within FGFR3

From the 57 cancer mutations analysed in FGFR3, 12 mutations were selected as sus-
pected drivers, because they were shown to be activating by experimental assays, which
are shown in the FGFR3 structure in figure In addition to the SAAPdap, MutCluster,
and FoldX analyses that had already been conducted on these, they were also analysed
on their proximity to known catalytic and protein-protein interaction sites, their effects on
the stability of the local protein environment using DUET, and their effects on the fold-
ing rate of the FGFR3 active form using FoldingRaCe. A more detailed discussion of
the analyses conducted for these 12 mutations is given below - summarising both the

previous studies and the additional studies undertaken for these 12.

Figure 4.3: The 12 putative driver mutations within the FGFR3 active structure. The

mutated positions are highlighted in red

12 putative driver mutations in
FGFR3

T E466K

N540K

G637W/V

L608S
D617G

skssowmwem

R669G
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Mutation pathogenicity

Table [4.4shows that 4/12 putative driver mutations were predicted pathogenic according
to CONDEL - specifically the mutated positions L608S, G637V/W, and D617G. Although
SAAPdap analysis reported these mutations as occurring within a conserved site, only
the D617G was also predicted as pathogenic by SAAPpred, since this also disrupted hy-
drogen bonding and caused buried charge. In terms of their experimental effects, all 4 of
these mutations were shown to decrease both auto-phosphorylation of FGFR3, consis-
tent with their predicted pathogenicity. However, the remaining putative driver mutations
at positions N540K, K650M/N/H/E/Q, and R669G were not predicted as pathogenic by
either CONDEL or SAAPpred.

Colocation analysis to identified MutCluster regions in FGFR3

The MutClust analysis had identified 3 main regions enriched for cancer somatic muta-
tions in FGFR3 compared to a random permutation (see figure [4.4). 7/12 of the driver
mutations occurred within the clusters, while another 3 mutations were 1 residue away in
the sequence from the MutCluster residues, as shown in table [4.4] As well as capturing
well characterised cancer driver mutations that have a high mutation frequency at the
position, such as K650 (210 mutations in COSMIC), the MutClusters also include rare
mutations such as those at position R669 (5 mutations in COSMIC), which were also

shown experimentally to be activating.



CHAPTER 4. STRUCTURAL AND STABILITY ANALYSES OF CANCER MUTATIONS
IN FGFR3 201

Figure 4.4: The occurrence of 10 of 12 putative driver mutations in or near the Mut-
Clusters identified for the FGFR3 kinase domain. MutClusters were identified using all

COSMIC mutations for the FGFR3 kinase FunFam

MutCluster regions in FGFR3

Molecular Brake Catalytic loop | Activation loop

N540K Mutations 1 KB650M/N/E/H/Q
residue away: R669G

DB17G
GB37TW/V
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Analysing the effects of the 12 putative driver mutations on FGFR3
stability

FOLDX stability analyses reported that all but one mutation exerted a stabilising effect
on the FGFR3 active form, shown in table The exception - R669G - had a neutral

effect.

Analysing the effects of the 12 putative driver mutations on the fold-

ing rate of FGFR3

It has been proposed that fitness of a protein is governed by both its stability and con-
centration within a cell [207]. Therefore as well as analysing the stability equilibrium
between inactive and active states using FoldX, FoldingRaCe was used to analyse the
effects of cancer mutations on the folding rate of FGFR3 [31], to provide a proxy for the
amount of folded FGFR3 present in the cell. This is based on the logic that if a mutation
increases the folding rate, this would in turn increase the amount of folded protein, and
hence concentration available to transition to the active state.

FoldingRaCe assesses how a mutation effects the rate of folding of a protein [31].
It applies a knowledge based technology which uses information from the single point
mutation in the protein folding database, for proteins with 2 states. This was performed
on the 12 putative driver mutations shown in table The input for this method was
the active FGFR3 structure and the residue mutation.

It can be seen in table that some mutants cause an increase in folding rate,
which could contribute to their activating effects in vitro. One mutation, N540K, which
was found to be stabilising by FoldX was also found to have an accelerating effect on
folding rate and also found to have an activation effect experimentally. Similarly, E466K
also has an accelerating effect on folding rate. Further studies would be needed to
validate this. The FoldingRaCe results suggest that some mutations decrease folding
and therefore the effective concentration of the FGFR3 form, and may contribute to loss

of kinase function in the mutations L608S, G637W and D617G.
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Table 4.3: The effects of mutations on the folding rate of FGFR3, measured using Fold-

ingRaCe. The increased folding rates are in bold

Residue.label | Native | Mutant Folding RaCe Score: logarithmic rate of folding
(/s)
608 L S -1.67
637 G WNV -3.66
617 D G -2.18
540 N K 5.68
650 K M 0.32
650 K N -1.88
650 K E -2.22
669 R G -0.83
466 E K 34

Proximity analysis to catalytic sites and protein-protein interaction sites

A proximity analysis of the putative driver mutations to known functional sites (CSA and
IBIS-PPI sites) was performed using the MutDist method (chapter 2, section 2.2.2) The
12 putative drivers were analysed for their proximity to functional sites,including catalytic
residues from the Catalytic Site Atlas (CSA) or protein-protein interface residues taken
from IBIS (Inferred Biological Interactions Server) database. This was performed using
the MutDist method which calculates the closest atomic distance between the mutation
and functional site residue. It was found that all but one of the mutations were within
an IBIS protein-protein interaction site and the remaining mutation lay 5A away from an
IBIS-PPI site, as shown in table This is consistent with the role of the FGFR3 kinase,
since it is heavily involved in cellular signalling, and mutations within these residues may
have effects on protein recruitment affinity and specificity [37] [169]. In contrast, only
2 mutations co-located to a catalytic residue, G617V and G617W, which caused a de-
crease and abolishment of FGFRS3 activity respectively. Table summarises the var-
ious analyses conducted on the 12 putative driver mutations. More detailed discussion

is given below for each of the mutations.



Table 4.4: Summary of the analyses for the 12 putative driver mutations in FGFR3. CONDEL and SAAPpred predictions of pathogenic (PD)

and neutral (SNP) mutations are shown. For the proximity analysis to known functional sites, a mutation is annotated if it is within 5 Ato either

a CSA or IBIS protein protein site.

Mutation | Frequency (COSMIC) | MutCluster | Kinase functional feature FoldX stabllty SAAPdap effect SAAPpred prediction | CONDEL prediction Within § Angstroms to functional sites
effect (CSA and IBIS)

E466K 7 NO Neutral No structural effects identified SNP PD IBIS

N540K 61 YES Molecular brake Stabilising - very high | HBonds—Conserved site SNP SNP IBIS

L608S 2 NO Stabilising - medium | Conserved site SNP SNP IBIS

D617G 1 NO Catalytic loop Stabilising - very high | Buried Charge—HBonds—SProtFT | PD PD IBIS

G637V 2 NO Activation loop, DFG motif | Stabilising - very high | Conserved site PD PD IBIS/CSA

G637W 2 NO Activation loop, DFG motif | Stabilising - very high | Conserved site SNP PD IBIS/CSA

K650N 210 YES Activation loop Stabilising - very high | Buried Charge SNP SNP IBIS

K650Q 210 YES Activation loop Stabilising - very high | Buried Charge SNP SNP IBIS

K650H 210 YES Activation loop Stabilising - very high | No structural effects identified SNP SNP IBIS

K650M 210 YES Activation loop Stabilising - very high | Buried Charge—HBonds PD SNP IBIS

K650E 210 YES Activation loop Stabilising - medium | Buried Charge SNP SNP IBIS

R669G 5 YES Neutral No structural effects identified SNP SNP IBIS
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Discussion of the possible impacts of the 12 putative driver mutations

D617G:According to the effects reported by SAAPdap, the predicted pathogenic mutant
D617G affects a hydrogen bond and disrupts a buried charge, as shown in figure
It is also co-located to an active site residue listed in SwissProt, which agrees with the
MutDist analysis showing co-location to a catalytic residue in CSA (see table [4.4). Since
polar residues commonly mediate active site chemistry, loss of charge at this position will

likely have an impact on function.

Figure 4.5: The predicted pathogenic mutation, D617G, loses a hydrogen bond (shown
as a yellow dashed line) in the catalytic site. Images were made in PYMOL, using the

Mutator tool.

L608S: The L608S mutation occurs within an alpha helix in the C-lobe, and is not
co-located to a known catalytic residue or an IBIS interaction site. Nevertheless, this
residue was reported as conserved by SAAPdap analysis. This mutation may have an
effect on the scaffolding and stabilisation of the active site, much like the effect of the ad-
jacent alphaF helix (see figure [4.7). Another possible explanation is that the mutation is

affecting protein-protein binding site since this mutation lies 4.49A from an IBIS-PP!I site.

G637V/W: SAAPdap analysis reports that the G637 residue is a conserved site.
G637 is within the C-lobe and forms part of the conserved DFG motif within protein ki-
nases ( see figure [4.1). The inherent flexibility of the native glycine residue is known

to be important in communicating conformational changes within the activation loop to
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trigger rotation of the upstream phenylalanine and aspartate residues, enabling access
to the catalytic site, and to the metal ion for additional co-ordination by other residues in
the N-lobe. Therefore mutations to any amino acid at this residue, such as the observed
mutants G637WY/V, would inhibit this rotatory movement of the glycine, resulting in the
phenylalanine lying in an inwards conformation, and pointing into and blocking the active
site, and preventing metal binding functions by the aspartate within the ATP binding site.

This would impact on active kinase function [117]

N540K:The N540K mutation is also reported by SAAPdap analysis to be within a
conserved region. It is within the 84-aC helix loop in the kinase N-lobe, known as the
molecular brake region of the kinase ( see figure and involved in the functional
coupling of the 2 kinase lobes and regulating the movement of the adjacent N-lobe aC
helix during catalysis [250] [32] [242]. The native asparagine at this position forms a
hydrogen-bond triad with a conserved glutamate in the adjacent aC helix in the N-lobe
and a catalytic lysine in the catalytic site [156], restricting entry into the active state,
shown in figure [4.6] Therefore, mutations that disturb or alter hydrogen bonding at this
conserved residue triad in the molecular brake, would release the molecular brake and
lead to kinase activation.

Closer examination of the N540K mutation in the $4-aC loop in the active FGFR3
structure, shows that the native residue makes 3 hydrogen bond contacts of 2.7A, 4.4A and
2.8A to residues on the adjacent loop regions, and not to residues in the molecular
brake triad. These distances are smaller when the residue is mutated to lysine i.e. 2.1A,
2.4A and 2.8A respectively (see figure [4.6]). This is consistent with the SAAPdap anal-
ysis report, that hydrogen bonding is affected (see table [4.4). The shorter bond lengths
suggest that this mutation creates stronger hydrogen bonding contacts within this loop
region, which would enhance the rigidity of this part of the structure, creating a more ap-
propriate position for the aC helix to establish the active state. Other studies have also
suggested that mutations which enhance the rigidity of the 54-a.C helix loop are likely to

facilitate active state formation, by regulating the position of the aC helix between an out
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(inactive) and an in (active) conformation [55].

Figure 4.6: Hydrogen bonding contacts of the wild type and N540K mutant amino acid
to adjacent loop regions. (left) Native N540, (right) Mutant K540. The N40 residue is the

residue in the middle of the image. Images were made in PYMOL.

K650M/N/E/H/Q: Mutations at the position K650 were the only mutations predom-
inantly affecting electrostatics, as mutations change the charge on the residue. The
literature has reported that the residue K650 harbours many cancer mutations, which
cause kinase activation [98], and is an established driver position in cancer. SAAPdap
reports a disruption of hydrogen bonding and buried charge within the core respectively.
K650E is close to the auto-phosphorylation site within the activation loop, a tyrosine,
which when phosphorylated leads to kinase activation. As mentioned already, activation
is caused by the phosphyl group forming hydrogen bond contacts with activation loop
residues leading to a cascade of hydrogen bonding with residues along the activation
loop, DFG motif, and catalytic site - priming residues for kinase activity [117] [98]. Since
a mutation from lysine to glutamate would create a negative charge at this position, this
would mimic the hydrogen bonding networks akin to those evoked by the phosphate
group in the auto-phosphorylation site, leading to establishment of the active state and

abnormal kinase activation.
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E466K:The E466K mutant showed no reported effects by SAAPdap, but was co-

located to an IBIS-PPI site according to the MutDist analysis.

R669G: The mutation at residue R669G, produced no effects reported by SAAPdap,
nor is it predicted pathogenic by either CONDEL or SAAPpred, but it is nevertheless
shown as experimentally activating. It does however occur within an identified MutClus-
ter. The MutDist analysis also shows this mutation to occur within an IBIS-PPI site,
directly downstream of the activation loop within the APE motif as shown in figure
Various studies have shown this region to be involved in allosteric signalling and such
sites have been shown to be affected by cancer mutations [54] [117], and so a pos-
sible mechanism of R669G pathogenicity is by having an effect on allosteric signalling.
As regards stability, the mutation of Arginine to Glycine at position 669 had no effect
on FGFRS stability on the active form. Although, according to the experimental studies,
this mutation activates the native FGFRS3 active form. Therefore, it has been suggested
that the stabilising effects of mutations at R669 are dependent on the presence of a

phosphate group, an ATP molecule, or a ligand already bound to the kinase [177].

Figure 4.7: The R669G mutation (red) in FGFR3 lies just beneath the activation loop
(cyan) within the APE maotif
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Furthermore, since there were discrepancies between the computational and exper-
imental analyses, further structural analyses were carried out. The R669G mutation was
studied using an alternative stability method, the predictor DUET, that combines SDM
and mCSM [187]. These use probabilistic functions and graph based approaches re-
spectively. DUET provides a more local stability measure, since it accounts for changes
in the local structural environment of the mutation, rather than the global protein stabil-
ity that FoldX considers. SDM reports the local stability of the mutated region by using
the propensity of a given residue to occur with a given structural environment of sec-
ondary structure, solvent accessibility, and hydrogen bonding. It was hypothesised that,
the subtle impacts of R669 mutations may act more locally, and could be overlooked
by global stability measures. According to table |4.5, it can be seen that DUET-SDM
predicts the R669 mutation (R669G) to exert a local stabilising effect in both the FGFR3
active and FGFR1 active structure, whereas the mCSM method predicted R669G to be

slightly destabilising on the active form.

Table 4.5: Effects of the predicted pathogenic and activating mutations in FGFR3 active

form.

Position | Native | Mutant | SDM (Kcal/mol) | mCSM(Kcal/mol) | FoldX effect

669 Arg Gly 0.6 -1.28 Neutral
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Conclusion

In this chapter, a comparative analysis of 57 cancer mutations in FGFR3 was per-
formed, using both experimental and computational approaches. The use of both ap-
proaches enabled a more comprehensive characterisation of cancer mutations, high-
lighting the importance of complementary methods in mutation analysis.

The in-house program MutClust was run to identify regions enriched for cancer mu-
tations in FGFRS3, based on mutations from COSMIC within FGFR3 and other FGFR
domains in the same functional family. This clustering resulted in the identification of
3 main regions - all of which coincided with functional regions known to be involved
in kinase activity and regulation. These included a cluster within the molecular brake
involved in regulation of the active state, the catalytic loop which performs the kinase
chemistry, and thirdly the activation loop of the FGFR3 kinase. As well as detecting
frequently mutated residues, the MutClusters also encapsulated rare cancer mutations
known to cause activation, including the putative driver, R669G.

The effects of cancer mutations on FGFR3 stability were measured using FoldX anal-
ysis, which showed that 46% cancer mutations exerted a preferentially stabilising effect
on the FGFRS active form. These included the putative driver mutations that were within
identified MutClusters within the activation loop and molecular brake region. In paral-
lel to this, the structural effects of the mutations were analysed using SAAPdap, which
reported 60% of the cancer mutations to have structural impacts, including the putative
drivers K650E, R669G, and E466K. A summary of the 57 cancer mutations and their
characterised effects are illustrated in figure where 84% of mutations could be ex-
plained by at least 1 method. All mutations predicted by more than one method are
putative drivers, but the more methods that predict pathogenic effects, the more confi-

dence there is in it being a driver mutation.
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Figure 4.8: Venn diagram summarising the analyses performed for the 57 cancer muta-

tions in FGFRS.
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A subset of mutations exerting an activating effect on FGFR3 in the experimental
assays, were analysed in further detail - referred to as the putative driver mutations. It
can be seen from figure [4.9|that all the putative drivers can be explained by at least 1

method.

Figure 4.9: The number of analyses reporting mutation pathogenicity and/pr structural

and/or functional effects for the 12 putative driver mutations in FGFRS3.
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Further characterisation of the mutations effect on folding rate was analysed using
FoldingRaCe, which provided another means of describing the pathogenicity of the pu-
tative drivers, N540K and E466K. Further analysis on the effects of folding rate could
be undertaken using in vitro analyses. Such experiments could include performing a
phi-value analysis [67], which measures the contribution of a mutation to protein folding.
Alternatively, performing a hydrogen-deuterium exchange assay upon mutation would
enable elucidation of the in vitro folding rate, using NMR spectroscopy.

In summary, where very detailed characterisation studies could be performed for 12

of the mutations, there were often multiple plausible contributions to pathogenicity.



Chapter 5

Conclusion

Cancer is a genetically heterogeneous disease, where many mutation events occur
throughout the evolutionary trajectory, leading to the common phenotype of uncontrolled
cellular growth. In order to filter out genetic noise within cancer, and select putative
driver events from passenger mutations. In this thesis methods using protein domains
from CATH were developed to prioritise more functional cancer mutations, and to identify
driver genes.

Two main approaches were used to prioritise and filter cancer mutations, both of
which use CATH FunFams. The first of which involves identifying statistically enriched
CATH FunFam domains (MutFams) for a range of cancers, in order to detect driver
genes. These were subject to biological process and cancer hallmark analysis to char-
acterise their clinical relevance. The second approach detects driver mutations within
these enriched MutFams using 3D clustering within the protein structure, referred to as
MutClusters. These predicted driver mutations were then in turn compared to other dis-

ease mutations on their proximity to known and predicted functional sites.

In chapter 2, MutFams were identified based on the statistical enrichment of can-
cer missense mutations within CATH FunFams. Subsequently, significiantly enriched 3D
clusters of mutations were identified (MutClusters). A large scale analysis of proxim-
ity to functional sites was then performed for the MutClusters and for mutations within
germline non cancer cases, and mutations within a large cancer dataset from COSMIC.
Overall, this showed that mutations in MutClusters showed a greater tendency to be
proximal to both known and predicted functional sites compared to the unfiltered can-
cer mutations. In particular, the predicted FunSites showed the greatest enrichment
for all disease causing mutations compared to other functional sites considered. Other
functional sites which showed great mutation enrichment were protein-protein interac-

tion sites from IBIS, in particular for the cancer mutations. Germline non cancer variants
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however showed greater tendency to be proximal to betweenness centrality sites, which
are more buried within the protein core.

For MutClusters, occuring in a FunFam with low information content, predicted Fun-
Sites could be inferred from a closely related FunFam.This analysis showed the func-
tional relevance of MutCluster mutations, along with highlighting the use of CATH in
predicting clinically relevant functional sites. Studies have shown greater benefits of 3D
mutation clustering, for capturing mutations within both oncogenes and tumour suppres-
sor genes, than using 1D hotspot methods. Therefore, further studies from this would
be to analyse the MutClusters on their structural properties within tumour suppressor
genes and oncogenes, such as solvent accessibility and stability, and compare this to
unfiltered cancer and germline non cancer mutations. It would also be interesting to ex-
amine whether the putative driver genes identified in MutFams were closer together in a
human protein network than expected from a random model. Our work suggested this

as the genes tended to enrich in particular processes and pathways.

In chapter 3, the putative driver genes within 22 cancers were derived based on them
containing a common MutFam domain, which were then analysed on their biologial and
clinical relevance using Gene Ontology (GO) biological process enrichments, and enrich-
ments in known cancer hallmarks from The Atlas of Cancer Signalling Networks (ACSN)
respectively. Comparisons to other domain based methods - from Pfam - were also
performed. This analysis showed convergence of the MutFam driver genes and Pfam
derived genes on different steps of the same biological pathway - such as events involved
in cellular development, and cell migration - many of which have been reported in the
literature as being implicated in cancer, and are consistent with the enriched ACSN hall-
marks. In cases, where there were different biological processes enriched, these unique
pathways could be attributed to the tissue bias between the cancer types analysed by
the Pfam and MutFam driver methods. Here the MutFam genes were associated with
more processes seen in tissues from an ectodermic origin, and the Pfam genes were

more associated with processes in tissues from a mesodermic origin.
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In addition to analysing the MutFam driver genes across the 22 cancers, the MutFam
driver genes were compared between two stages of glioma - low grade glioma (LGGQG)
and glioblastoma multiforme (GBM). GO biological process enrichments showed that
the MutFam driver genes captured the specific clinical phenotypes associated with the
different stages of glioma, where the GBM driver genes were implicated in processes in-
volved in immunity, angiogenesis, and proteostasis, which are more reminiscent of later
stage carcinomas. Considerations for the future include analysing the biological path-
ways associated with individual cancers, to inspect any convergence of cancer specific
MutFam genes on specific enriched cellular events. This in turn could highlight therapeu-

tic redundancies, since many cancers could be targeted by considering a single pathway.

Chapter 4 presented a detailed study for the cancer mutations in FGFR3, implicated
in bladder cancer. The use of computational approaches, in conjunction with exper-
imental work, performed by collaborators, were complementary in characterising the
structural and functional impacts of cancer mutations in FGFR3. Computational tools in-
cluded analysing the effects on FGFRS3 stability using FoldX, which reported that 37/57 of
the analysed FGFR3 cancer mutations affected the stability of the active form of FGFRS3,
70% of which exerted a stabilising effect on the FGFR3 active form. Other tools in-
cluded analysing the specific structural and functional effects of mutations in the protein
structure using SAAPdap. SAAPdap reported effects for 35/57 of the cancer mutations,
ranging from impacting hydrogen bonding, and occurring in conserved sites to disturbing
electrostatics. Predictions of mutation pathogenicity were also performed using CON-
DEL and SAAPpred, which showed 8 and 9 mutations to be pathogenic respectively.

In addition to known bioinformatic tools, an in-house method developed in chapter
2, MutClust, was used to identify driver mutations in FGFR3. The MutClust method de-
tected 3 main clusters of cancer mutations in the FGFR3 kinase domain, which occurred
within functional regions associated with the kinase activity; molecular brake, the cat-
alytic loop, and the activation loop. As well as capturing high frequency mutants such

as the known driver position K650, the MutClusters also included rare mutations which
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were nevertheless shown as experimentally activating, such as the position R669. It was
shown that the SAAPdap proved helpful in explaining how stability could be effected, and
also in confirming the proximity of putative driver mutations to functional sites. Further
work would be to study the putative driver mutations in FGFR3 on other experimentally
derived features, such as the impacts on protein folding rate, using methods such as

phi-value analysis and NMR spectroscopy.
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Table A.1: Summary of the proximities of the MutCluster central residues to known and predicted functional sites. A cluster residues is

annotated as having a 1 or 0 if it lies within or not within 5 Angsroms to a functional site respectively.

Superfamily | FunFam | FunFam | Cluster CcSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
1.10.1520.10 | 4026 2eb1 B152 0 0 1 1 1 0
1.10.1520.10 | 4026 2eb1 B167 0 0 1 0 1 0
1.10.1520.10 | 4026 2eb1 B47 0 0 1 1 1 0
1.10.1540.10 | 596 1t77 A2342 0 0 1 0 1 1
1.10.1540.10 | 596 1t77 A2344 0 0 1 0 1 1
1.10.1540.10 | 596 1t77 A2353 0 0 1 0 1 1
1.10.1540.10 | 596 1t77 A2355 0 0 1 0 1 1
1.10.1540.10 | 596 1t77 A2392 0 0 1 0 1 1
1.10.196.10 | 1070 2gtp C66 1 0 1 0 0 0
1.10.196.10 1070 2gtp Ce7 1 0 1 0 0 0
1.10.196.10 | 1070 2gtp C68 1 0 1 0 0 0
1.10.196.10 1070 2gtp C70 1 0 1 0 0 0
1.10.220.60 71 1rd4a F2187 0 1 0 0 0 1

'V 431dVHO

8l¢



Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
1.10.220.60 71 1rda F2189 0 1 0 0 0 1
1.10.260.40 46829 1ic8 B125 0 0 1 0 0 1
1.10.418.10 4640 1dxx C106 0 1 1 0 1 0
1.10.472.10 9821 2r79 A755 0 1 1 0 0 1
1.10.510.10 | 78531 3ppj A583 1 1 1 0 0 1
1.10.510.10 | 78531 3ppj A589 1 1 1 0 0 1
1.10.510.10 78531 3ppj A591 1 1 1 0 0 1
1.10.510.10 | 78531 3ppj A593 1 1 1 0 0 1
1.10.510.10 78531 3ppj A594 1 1 1 0 0 1
1.10.510.10 | 78531 3ppj A595 1 1 1 0 0 1
1.10.510.10 | 78531 3ppj A596 1 1 1 0 0 1
1.10.510.10 78531 3ppj A615 1 1 1 0 0 1
1.10.510.10 79008 2ycf A355 1 1 1 0 0 1
1.10.510.10 79008 2ycf A392 1 1 1 0 0 1
1.10.510.10 79008 2ycf A394 0 1 1 0 0 1
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Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
1.10.510.10 79008 2ycf A396 1 1 1 0 0 1
1.10.510.10 79298 3my0 1383 0 0 1 0 0 0
1.10.630.10 29426 3mdr B143 0 0 1 0 1 0
1.10.630.10 29426 3mdr B144 0 0 1 0 1 0
1.10.630.10 29426 3mdr B244 0 0 1 0 1 0
1.10.630.10 29426 3mdr B245 0 0 1 0 1 0
1.10.630.10 29426 3mdr B248 0 0 1 0 1 0
1.10.630.10 29426 3mdr B435 1 0 1 0 1 0
1.20.920.10 4440 3tlp A491 0 1 1 0 0 1
1.20.920.10 4440 3tlp A550 0 1 1 0 0 1
1.20.920.10 4440 3tlp A551 0 1 1 0 0 1
1.20.920.10 4440 3tlp A554 0 1 1 0 0 1
1.20.920.10 4440 3tlp A588 0 1 1 0 0 1
1.20.920.10 4440 3tlp A590 0 1 1 0 0 1
1.20.920.10 4440 3tlp A591 0 1 1 0 0 1
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Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
1.20.920.10 4440 3tlp A594 0 1 1 0 0 1
2.10.110.10 5817 2xjz B95 0 1 0 0 0 1
2.10.220.10 11249 1mox A287 0 1 0 0 0 1
2.10.220.10 11249 1mox A293 0 1 0 0 0 1
2.10.220.10 11249 1mox A295 0 1 0 0 0 1
2.10.220.10 11249 1mox A297 0 0 0 0 0 1
2.10.220.10 11249 1mox A299 0 1 0 0 0 1
2.10.220.10 11249 1mox A300 0 1 0 0 0 1
2.10.220.10 11249 1mox A302 0 1 0 0 0 1
2.10.220.10 5834 1s78 A284 0 1 0 0 0 1
2.10.220.10 5834 1s78 A286 0 1 0 0 0 1
2.10.220.10 5834 1s78 A287 0 1 0 0 0 1
2.10.220.10 5834 1s78 A288 0 1 0 0 0 1
2.10.220.10 5834 1s78 A289 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2385 0 1 0 0 1 1
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Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
2.130.10.10 102894 | 20vq B2391 0 1 0 0 1 1
2.130.10.10 102894 | 20vq B2399 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2400 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2420 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2423 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2424 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2425 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2426 0 1 0 0 0 1
2.130.10.10 102894 | 2ovq B2436 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2437 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2438 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2441 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2443 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2460 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2462 0 1 0 0 1 1
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Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
2.130.10.10 102894 | 20vq B2463 0 1 0 0 1 1
2.130.10.10 102894 | 20vq B2464 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2465 0 1 0 0 0 1
2.130.10.10 102894 | 2ovq B2466 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2476 0 1 0 0 0 1
2.130.10.10 102894 | 2ovq B2479 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2480 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2481 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2482 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2483 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2497 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2500 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2502 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2504 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2505 0 1 0 0 1 1

'V 431dVHO

€ec



Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
2.130.10.10 102894 | 20vq B2518 0 1 0 0 1 1
2.130.10.10 102894 | 20vq B2542 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2543 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2544 0 1 0 0 1 1
2.130.10.10 102894 | 2ovq B2580 0 1 0 0 1 1
2.130.10.10 103908 | 2uzx B427 0 1 1 0 1 1
2.30.29.30 22238 2x18 B37 0 0 1 0 1 0
2.30.29.30 22238 2x18 B50 0 0 1 0 1 0
2.30.29.30 22238 2x18 B51 0 0 1 0 1 0
2.40.128.20 5800 3apu A120 0 0 1 0 1 1
2.60.120.260 | 35252 3nru D90 0 0 1 0 1 0
2.60.200.10 492 1dd1 A326 0 1 0 0 0 1
2.60.200.10 492 1dd1 A332 0 1 0 0 0 0
2.60.200.10 492 1dd1 A337 0 1 0 0 0 1
2.60.200.10 492 1dd1 A338 0 1 0 0 0 1
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Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
2.60.200.10 492 1dd1 A352 0 1 0 0 0 1
2.60.200.10 492 1dd1 A355 0 1 0 0 0 1
2.60.200.10 492 1dd1 A492 0 1 0 0 0 0
2.60.200.10 492 1dd1 A496 0 1 0 0 0 0
2.60.200.10 492 1dd1 A504 0 1 0 1 0 1
2.60.200.10 492 1dd1 A505 0 1 0 1 0 1
2.60.200.10 492 1dd1 A506 0 1 0 1 0 1
2.60.200.10 492 1dd1 A524 0 1 0 1 0 1
2.60.200.10 492 1dd1 A533 0 1 0 0 0 0
2.60.200.10 492 1dd1 A536 0 1 0 0 0 0
2.60.200.10 492 1dd1 A537 0 1 0 0 0 0
2.60.210.10 2360 1d0a A373 0 1 1 0 0 1
2.60.210.10 2360 1d0a A374 0 1 1 0 0 1
2.60.40.10 134913 | 2edl A9 0 1 1 0 1 1
2.60.40.720 232 3qyn C195 0 1 1 0 0 1
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Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
2.60.40.720 232 3qyn C199 0 1 1 0 1 1
2.60.40.720 236 ”1e50” E146 0 0 1 0 1 0
2.60.40.720 236 "1e50” E162 0 0 1 0 1 0
2.60.40.720 236 "1e50” E164 0 0 1 0 1 0
2.60.40.720 236 "1e50” E165 0 0 1 0 1 0
2.60.40.780 50 4b95 117 0 0 1 0 1 0
2.60.40.780 50 4b95 126 0 0 0 0 0
2.60.40.780 50 4b95 127 0 0 1 0 0 0
3.10.320.10 2577 4996 B71 0 1 0 0 1 0
3.30.200.20 1872 2w96 B10 0 1 0 0 1 1
3.30.200.20 1872 2w96 B22 0 1 0 0 1 1
3.30.200.20 1872 2w96 B23 0 1 0 0 1 0
3.30.200.20 1872 2w96 B24 0 1 0 0 1 0
3.30.200.20 1872 2w96 B31 0 1 0 0 1 0
3.30.200.20 1872 2w96 B9 0 1 0 0 1 0
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Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster IBIS Uniprot | Betweeness | STRESS
CSA FunSite
ID number | structure | residue PPI feature | Centrality surface
3.30.200.20 3475 2rfn B1111 0 0 0 0 0 0
3.30.200.20 3475 2rfn B1112 0 0 0 0 0 0
3.30.200.20 64610 2vx3 B158 0 0 Psuedo 0 0 0
Funsite

3.30.200.20 65851 2dyl A168 0 1 1 0 0 1
3.30.200.20 65851 2dyl A169 0 1 1 0 0 1
3.30.200.20 65851 2dyl A170 0 1 1 0 0 1
3.30.200.20 65851 2dyl A171 0 1 1 0 0 1
3.30.40.10 59876 1fbv A396 0 1 0 0 0 1
3.30.40.10 59876 1fbv A398 0 1 0 0 0 1
3.30.40.10 59876 1fbv A400 0 1 0 0 0 1
3.30.40.10 59876 1fbv A401 0 1 0 0 0 1
3.30.40.10 59876 1fov A404 0 1 0 0 0 1
3.30.40.10 59876 1fov A408 0 1 0 0 0 1
3.30.40.10 59876 1fbv A416 0 1 0 0 0 1
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Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
3.30.40.10 59876 1fbv Ad17 0 1 0 0 0 1
3.30.40.10 59876 1fbv A418 0 1 0 0 0 1
3.30.40.10 59876 1fov A419 0 1 0 0 0 1
3.30.40.10 59876 1fov A420 0 1 0 0 0 1
3.30.505.10 1631 3tlo A61 0 1 0 0 1 1
3.30.505.10 1631 3tlo A63 0 1 0 0 1 1
3.30.505.10 1631 3tlo A7A1 0 1 0 0 1 1
3.30.505.10 1631 3tlo A72 0 1 0 0 1 1
3.30.505.10 2646 2cr4 A25 0 1 0 0 1 1
3.30.505.10 2646 2cr4 A28 0 1 0 0 1 1
3.40.190.10 203444 | 1n84 A24 0 1 1 0 1 1
3.40.190.10 203444 | 1n84 A26 0 1 1 0 1 1
3.40.190.10 203444 | 1n84 A28 0 1 1 0 1 1
3.40.50.10140 | 4333 2js7 A22 0 0 1 0 1 1
3.40.50.10140 | 4333 2js7 A89 0 0 1 0 1 1
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Table A.1 continued from previous page

Superfamily | FunFam | FunFam | Cluster CSA IBIS FunSite Uniprot | Betweeness | STRESS
ID number | structure | residue PPI feature | Centrality surface
3.40.50.300 630744 | 4dlt A117 0 1 1 0 1 1
3.40.50.300 630744 | 4dlt A12 0 1 1 0 1 1
3.40.50.300 630744 | 4dlt A13 0 1 1 0 1 1
3.40.50.300 630744 | 4dlt A4 0 1 1 0 1 1
3.40.50.300 630744 | 4dlt A15 0 1 1 0 1 1
3.40.50.300 630744 | 4dlt A61 0 1 1 0 1 1
3.80.10.10 105163 | 1xwd C71 0 0 0 0 1 1
3.90.1290.10 | 1257 1lm7 A2364 0 1 1 0 0 1
3.90.1460.10 | 12 2dn4 A36 0 0 0 0 1 1
3.90.1460.10 | 12 2dn4 A38 0 0 0 0 1 1
3.90.1460.10 | 12 2dn4 A40 0 0 0 0 1 1
3.90.190.10 11605 3ezz A221 0 0 1 0 0 1
3.90.70.10 17143 1fh0 B2175 0 0 1 0 0 0
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