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Abstract Cost-effectiveness analyses (CEA) of ran-

domised controlled trials are a key source of information

for health care decision makers. Missing data are, however,

a common issue that can seriously undermine their validity.

A major concern is that the chance of data being missing

may be directly linked to the unobserved value itself

[missing not at random (MNAR)]. For example, patients

with poorer health may be less likely to complete quality-

of-life questionnaires. However, the extent to which this

occurs cannot be ascertained from the data at hand.

Guidelines recommend conducting sensitivity analyses to

assess the robustness of conclusions to plausible MNAR

assumptions, but this is rarely done in practice, possibly

because of a lack of practical guidance. This tutorial aims

to address this by presenting an accessible framework and

practical guidance for conducting sensitivity analysis for

MNAR data in trial-based CEA. We review some of the

methods for conducting sensitivity analysis, but focus on

one particularly accessible approach, where the data are

multiply-imputed and then modified to reflect plausible

MNAR scenarios. We illustrate the implementation of this

approach on a weight-loss trial, providing the software

code. We then explore further issues around its use in

practice.

Key Points for Decision Makers

Cost-effectiveness analysis of randomised trials with

missing data should assess the robustness of their

findings to possible departures from the missing at

random assumption.

Multiple imputation provides a flexible and

accessible framework to conduct these sensitivity

analyses.

Sensitivity analysis results should be reported in a

transparent way, allowing decision-makers to assess

the plausibility of their respective assumptions.

1 Introduction

Cost-effectiveness analyses (CEA) of randomised trials are

an important source of information to help decide which

health care programmes to provide. A common issue is that

there may be missing data, for example, because patients

withdrew from the trials or failed to respond to study

questionnaires, and this could result in biased findings and,

ultimately, wrong decisions being taken.
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There is now greater awareness that simple approaches,

such as discarding the participants with missing data, are

generally unsatisfactory [1–5]. The benefits of methods that

make use of all the available data and offer valid inference

under ‘missing at random’ (MAR) assumptions are now

well recognised, and recent years have seen an increase in

the use of such methods in CEA, in particular multiple

imputation (MI) [6, 7].

A key concern, however, is that conditional on the

observed data, the probability of cost-effectiveness data

being missing may still depend on the underlying unob-

served values, i.e. data may be ‘missing not at random’

(MNAR). For example, after adjusting for observed prog-

nostic factors, the chances of completing quality-of-life

questionnaires may depend on the patient’s (unobserved)

quality-of-life status. This raises particular challenges to

cost-effectiveness inferences because the analyst cannot

formally choose between MAR and MNAR given the data

at hand. Therefore, conducting sensitivity analyses to

assess whether conclusions are robust to plausible depar-

tures from MAR is widely recommended [1, 2, 8–10], and

these are particularly relevant for CEA which usually rely

on patient-reported outcomes. However, a recent review

has found that, in practice, cost-effectiveness studies rarely

conduct such a sensitivity analysis [7]. We discussed this

issue with stakeholders (academics from the University of

York and the London School of Hygiene and Tropical

Medicine analysing or reviewing cost-effectiveness evi-

dence for health care decision making), and an important

barrier that was identified was the lack of software tools

and guidance to conduct these analyses.

This tutorial paper aims to address this gap by present-

ing an accessible framework and practical guidance to

conduct sensitivity analysis for trial-based CEA with

missing data. This builds on previous guidance on missing

data in CEA [1, 3, 4], by focusing on sensitivity analysis

approaches to address MNAR. This paper introduces dif-

ferent approaches to MNAR analyses, but focuses partic-

ularly on the implementation of pattern-mixture models

using MI [11] as it was highlighted as the most accessible

and flexible approach during our discussions with stake-

holders. This tutorial assumes familiarity with the conduct

of MI (under the MAR assumption), which has been cov-

ered elsewhere [3, 4, 12, 13].

The remaining sections of this paper are organised as

follows. Section 2 provides a brief overview of the dif-

ferent approaches for MNAR analysis. Section 3 illustrates

a framework for MNAR sensitivity analysis, based on a

weight-loss trial, the Ten Top Tips (10TT) study. Section 4

discusses possible extensions to the proposed approach and

further considerations for implementing it in practice.

2 Overview of Missing Not at Random (MNAR)
Analysis Methods

2.1 Missing Data Mechanisms

The classification of the missing data mechanisms pro-

posed by Little and Rubin [14] provides a useful context.

Data are said to be missing ‘completely at random’

(MCAR), when missingness occurs for reasons unrelated to

the analysis question, and hence independent of the vari-

ables of interest. In this case, the observed data are repre-

sentative of the overall data and analysing the participants

with complete data will give valid results. A less restrictive

assumption is that the data are ‘missing at random’ (MAR),

so that the probability of a value being missing may be

dependent on observed data (e.g. intervention group, or

participants’ age), but—given the observed data—inde-

pendent of the underlying value itself. Finally, if, after

taking into account the observed variables, the chance of

observing the data is still associated with its value (for

example, if, after controlling for preceding data, a patient is

less likely to complete a health questionnaire when in

poorer health), the data are said to be ‘missing not at

random’ (MNAR, also called ‘informative’, or ‘non-ig-

norable’ missingness).

When missing data are MAR, valid conclusions can be

drawn from the data available using an appropriate

approach, such as MI [15]. MI has been widely recom-

mended as a flexible, practical approach to handle missing

data in CEA studies [1, 3–5, 12], and its uptake has been

steadily increasing [6, 7]. The idea of MI follows from

regression imputation (using the observed data to predict

the missing values), but appropriately takes into account

the uncertainty in the imputed values. To achieve this,

missing observations are replaced by plausible values

drawn from an appropriate predictive distribution of the

missing values given the observed data. To reflect the fact

that imputed values are estimated rather than known, and

hence uncertain, this process is repeated several times to

create several complete datasets. The analysis model is

then fitted to each ‘complete’ dataset, and the results are

combined for inference using Rubin’s MI rules [15], which

recognise the uncertainty both within imputations (sam-

pling uncertainty) and between imputations (uncertainty

due to missing data).

Analysis under MNAR is more challenging, as it implies

some relevant information is unobserved, and it requires

additional untestable assumptions to proceed with the

analysis. This naturally makes the MAR assumption the

typical starting point for the primary analysis of clinical

trials [16, 17]. However, because we cannot determine the

true missing data mechanism, sensitivity analyses should
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be conducted in order to assess whether conclusions are

robust to plausible departures from the MAR assumption

[1, 2, 8–10].

2.2 MNAR Modelling Frameworks

Various approaches have been proposed in the statistical

literature to conduct analysis under MNAR. These vary

according to how they formulate the MNAR model, how

they fit this model, and how the unobserved parameters are

informed and results reported as part of a sensitivity

analysis strategy. Here, we briefly review some of the main

MNAR modelling frameworks; for a more comprehensive

description, see Molenberghs et al. [11]. There are two

main ways to model possible departure from MAR:

selection models and pattern-mixture models.

Selection models specify the mechanism by which the

data are observed (or ‘selected’) as a function of the

underlying data values [15, 18]. For example, ‘for each

decrease of 0.1 in quality of life, the chance of being

missing doubles’ formulates the MNAR problem in

selection model terms. Selection models were commonly

used in early work on informative missing data; an

example in econometrics is Heckman’s selection model

[19], which is used to address selection bias. They have the

attractive feature that the missing data model can be

directly incorporated into the analysis model, for example,

using an inverse probability weighting approach [18, 20] or

numerical integration [21]. However, selection models

make untestable assumptions about the conditional distri-

bution of the unobserved data, and results can be very

sensitive to departure from these assumptions, as has been

shown elsewhere [14, 22–24]. This limitation is particu-

larly relevant for CEA studies, as the cost and effectiveness

endpoints tend to be difficult to parametrise. Another dis-

advantage is that selection models formulate sensitivity

analysis in a way that is not readily interpretable. For

example, a typical sensitivity parameter is the (log-)odds

ratio of how a unit change in the partially observed out-

come affects the chances of observing the data. This

specification makes the elicitation of such parameters

challenging, as well as the interpretation and communica-

tion of the sensitivity analysis results.

Pattern-mixture models, on the other hand, formulate

the MNAR problem in terms of the different distributions

between the missing and observed data. The overall dis-

tribution of a variable is seen as a mixture of the distri-

bution of the observed and the distribution of the missing

values (‘pattern-mixture’) [18, 25]. For example, ‘partici-

pants with missing data have a 0.1 lower quality of life than

those observed’ corresponds to a pattern-mixture formu-

lation. Pattern-mixture models have received increasing

attention over time [26], a key advantage being that they

rely on more easily interpretable parameters

[3, 18, 27–29]—such as the mean difference between

missing and observed data—and have therefore been

favoured in the context of clinical trial sensitivity analysis

[30, 31]. Different approaches can be used to formulate and

analyse pattern-mixture models, as we will see in the next

section.

Other forms of MNAR modelling have also been pro-

posed, but these can be seen as special cases of selection or

pattern-mixture models. In shared-parameter models, the

outcome and the missingness are linked through a latent

(unobserved) variable [32]. They have been particularly

used in the context of structural equation modelling.

Another approach which is gaining interest for use in

longitudinal trials is ‘reference-based’ or ‘controlled’

imputation, where missing data are assumed to follow a

distribution borrowed from another trial arm [33]. This

approach is yet to be explored in the CEA setting.

While any of the methods above would allow an

appropriate assessment of departures from MAR, we will

focus on the pattern-mixture approach in the remainder of

this paper because (1) it allows for more interpretable pa-

rameters, hence making this approach more accessible and

transparent; (2) it seems to be the main approach currently

used in clinical trial sensitivity analysis [7, 34]; (3) our

discussion with stakeholders confirmed this approach was

also appealing in the CEA context; and (4) pattern-mixture

models can be easily implemented using standard missing

data methods, such as MI, and build naturally on the MAR

analysis, as we will see below.

2.3 Sensitivity Analysis with Pattern-Mixture

Models

An approach for MNAR sensitivity analysis that has often

been suggested—under various forms—is to perform a

pattern-mixture model with a parameter capturing how the

distribution of the missing values Ymiss could differ from

the conditional distribution based on the observed data Yobs
[15, 18, 30, 35]. This can be done, for example, by using an

‘offset’ parameter d (delta) representing the average dif-

ference between the missing and observed values

(Ymiss ¼ Yobs þ dÞ: An alternative modification is to use a

multiplicative ‘scale’ parameter c, so that Ymiss ¼ Yobs � c.

For example, missing values could be assumed to be 10%

lower than those observed, or c ¼ 0:9. Figure 1 illustrates

an example of such modelling with a rescaling parameter.

In that example, a participant who drops out from the trial

is assumed to have on average a 10% lower quality of life

compared to a participant with similar characteristics who

remained in the trial. Note that this parameter is not derived

from the data, but is used to express one possible

assumption about the (unknown) missing data mechanism.

Sensitivity Analysis for Not-at-Random Missing Data



Sensitivity analyses are then typically conducted over a

range of plausible values for this parameter, assessing how

different assumptions could result in different findings.

Several approaches can be used to inform the values of the

parameter in practice, and these are discussed further in

Sect. 4.3. We also discuss in Sect. 4.2 alternative

parametrisations that can be used to capture how missing

and observed data might differ.

Several approaches have been proposed to fit pattern-

mixture models, for example, within a Bayesian framework

[28, 36] or as an arithmetic function of the observed esti-

mates and using bootstrap or sandwich estimators to derive

the standard errors [18, 28]. But a particularly convenient

and flexible framework to fit these models is MI

[11, 15, 26, 37]. An approach commonly adopted in

practice consists of simply modifying multiply-imputed

data to reflect possible departures from the MAR

assumption [3, 7, 16, 38]. It involves the following steps:

1. Use MI to impute the missing values under an MAR

assumption.

2. Modify the MAR-imputed data to reflect a range of

plausible MNAR scenarios, for example, by multiply-

ing the imputed values by c, or by adding d:
3. Analyse the resulting dataset as one would a usual

multiply-imputed dataset, fitting the analysis model to

each imputed dataset and combining the results using

Rubin’s rules.

This approach is straightforward to implement in any

statistical software, and allows the effect of different

MNAR mechanisms on the conclusion to be easily asses-

sed, as we will illustrate in the next section.

3 Illustrative Application

3.1 The Ten Top Tips (10TT) Trial

3.1.1 Overview of the Trial and Cost-Effectiveness

Analysis

The 10TT trial was a two-arm, individually randomised,

controlled trial of a weight-loss intervention for obese

adults attending general practices in the UK [39]. The

intervention comprised self-help material delivered by a

practice nurse, providing the patients with a set of ten

simple weight-control behaviours, with strategies to make

them habitual. The participants randomised to the control

arm received care as usual from their general practices.

The primary trial outcome was weight loss at 3 months,

but participants were followed for 2 years to assess longer-

term outcomes and cost-effectiveness. Health-related

quality of life (HRQoL) was measured by EQ-5D-3L

questionnaires [40, 41] completed during study visits at

baseline and 3, 6, 12, 18 and 24 months, and quality-ad-

justed life years (QALYs) were derived by the ‘area under

the curve’, combining both time and utilities [10]. Total

costs were measured from the National Health Service

(NHS) perspective over the 2-year study period and based

on the intervention costs and the health resource use data

collected from the practice records at the end of the trial.

More details on the trial and CEA can be found in the

respective publications [39, 42, 43].

3.1.2 Missing Data

The trial recruited 537 participants, but only 313 (58%)

completed the last follow-up at 2 years. Missing data were

a major challenge for the CEA because only 31% of ran-

domised participants had complete HRQoL and cost data.

Missing data were mostly driven by missing EQ-5D data,

from participants who had either withdrawn from the trial

(76% of the missing HRQoL) or missed a follow-up

appointment (24%). Resource use data were derived from

the general practitioner records and were complete for 73%

of the participants (all the health care data were missing for

the remaining 27%). Details of the missing data by arm are

shown in Fig. 2. Although non-significant, missing data

appeared to be more common in the intervention arm (27

vs 34% of complete cases, p value = 0.075).

The primary CEA of the trial [43] was conducted under

the MAR assumption, using MI to impute the missing cost

and HRQoL values. It is, however, recognised in weight-

loss trials that participants who drop out could be those

with poorer outcomes [44]. This means that the chance of

Fig. 1 Example of pattern-mixture assumptions with rescaling.

Quality-of-life score over time for a trial participant, where missing

data are assumed to be 10% lower (c = 0.9) than would have been

imputed under a missing at random assumption. MAR missing at

random, MNAR missing not at random
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observing endpoints such as weight loss or HRQoL could

be dependent on their actual value, i.e. data are likely to be

MNAR. It is therefore important to assess the cost-effec-

tiveness results under different assumptions regarding the

missing data, including plausible MNAR mechanisms, as

we will illustrate in Sect. 3.2.

3.1.3 Cost-Effectiveness Analysis Methods

The CEA conducted in this tutorial follows the main

characteristics of the methods used for the trial’s primary

CEA [43], with some simplifications made to allow a clear

focus on the sensitivity analysis. Details of the analysis

variables are presented in Online Appendix 1 [see the

electronic supplementary material (ESM)]. Effectiveness

was measured in QALYs, and costs were captured by the

total health care use over the trial period (Sect. 3.1.1), as

derived for the primary analysis [43]. A discount rate of

3.5% per year was applied to both cost and effect.

Results are presented in terms of incremental cost,

incremental QALYs and incremental net monetary benefit

(INMB) at a cost-effectiveness threshold of £20,000 per

QALY. These were estimated alongside their 95% confi-

dence intervals (CIs) using non-adjusted linear regression,

comparing the 10TT arm to the control arm. Non-para-

metric bootstrap [45] was also used to produce the cost-

effectiveness plane [46], representing the uncertainty in

incremental cost and effect estimates, and the cost-

effectiveness acceptability curve (CEAC) [47], represent-

ing the probability of 10TT being cost-effective at different

thresholds. We focus on INMB rather than the incremental

cost-effectiveness ratio (ICER) as the intervention was

cost-saving. All the analyses were conducted in Stata

version 15 [48].

3.2 Sensitivity Analysis Example

In this section, we use the 10TT trial to illustrate MNAR

sensitivity analyses using a pattern-mixture approach fol-

lowing MI, as described at the end of Sect. 2.3.

3.2.1 MNAR Scenarios Explored

Several approaches can be used to decide on the relevant

MNAR scenarios for the sensitivity analyses, and this is

discussed further in Sect. 4.3. In this example, we con-

sidered that the missing HRQoL data may be MNAR,

while the MAR assumption is likely to hold for the

missing cost data (MNAR costs are discussed in

Sect. 4.1). It was postulated that patients who failed to

complete an EQ-5D questionnaire at a specific follow-up

assessment were likely to have been in relatively poorer

health (Sect. 3.1.2). More specifically, we assumed

patients’ HRQoL could be up to 10% lower (c = 0.9),

compared to the MAR setting (c = 1). This sensitivity

parameter c was allowed to differ by arm, with up to a

5% difference between the two arms (this reflects that the

missing data mechanism may not be the same in the two

arms, but that it is unlikely to be perfect MAR in one arm

and strong MNAR in the other). This resulted in seven

different MNAR scenarios, with c = 1.0, 0.95, or 0.9 for

either arm (Table 1).

3.2.2 Implementation of the Analysis in Stata

The annotated Stata code to conduct the analysis is pro-

vided in Online Appendix 2 (see the ESM), and the dataset

is described in Online Appendix 1.

Step 1. Performing Multiple Imputation

The first step of the analysis is to conduct standard MI

(under an MAR assumption), to ‘fill in’ the variables with

missing data. The missing HRQoL at each time point and

total costs were imputed stratified by arm, using a linear

model based on each other, and baseline characteristics

(age, sex, study centre, weight, body mass index and

baseline HRQoL). We conducted MI by chained equations,

using predictive-mean matching, and created 50 imputa-

tions. Note that alternative MI approaches, for example,

linear regression, would not affect the proposed sensitivity
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analysis strategy. More detailed guidance on conducting

MI in Stata is provided elsewhere [3, 13, 49].

Step 2. Modifying Imputed Data

To obtain the imputed data under MNAR, we simply need to

multiply each MAR-imputed value by c. For example:

replace qol_3=qol_3*0.9 if miss_qol_3==1 & arm==0 

will multiply the imputed values of qol_3 in the control

arm by 0.9.

Different versions of the modification could be imple-

mented at this stage (see Sect. 4.2), for example, by

alternatively considering an ‘offset’ additive parameter d:

replace qol_3=qol_3 + d if miss_qol_3==1 & arm==0 

This can be done in turn for each of the scenarios, or

storing each of the scenario parameters in a table (matrix)

allows Stata to execute this in one step, using a loop. The

modified data can then be saved in a single large dataset to

facilitate the remaining steps.

Step 3. Analysing the MNAR Dataset

The CEA analysis is then applied as usual to each of the

MNAR multiply-imputed datasets. To estimate the incre-

mental costs, QALYs and net monetary benefit and their

95% CIs, we have used the ‘mi estimate’ command, which

fits the analysis model on each of the imputed datasets,

then combines the results using Rubin’s rules [15]. We

have also used a non-parametric bootstrap approach to

produce the cost-effectiveness plane and the CEAC, with

the implementation described in Online Appendix 2 (see

the ESM). Further guidance on the analysis of multiply-

imputed cost-effectiveness data can be found elsewhere

[1, 3, 4, 12].

Step 4. Reporting

Clear reporting of the sensitivity analysis results is key to

ensure their implications are well understood. We recom-

mend a table which presents the summary findings for each

scenario (Table 1). Figure 3, which plots the cost-effec-

tiveness plane for the different MNAR scenarios is also

useful to understand the effect of each MNAR assumption,

as discussed in the next section. Our discussions with

stakeholders indicated that the most intuitive way to sum-

marise the findings was probably overlaying CEACs,

showing the probability of the intervention being cost-ef-

fective at different thresholds, for each MNAR scenario

(Fig. 4). Alternative presentations of the sensitivity analy-

sis results are discussed in Sect. 4.5.

3.2.3 Results

The 10TT CEA results under the different missing data

scenarios are reported in Table 1, Figs. 3 and 4. In par-

ticular, the CEAC (Fig. 4) shows that the probability of

10TT being cost-effective remains relatively stable when

Table 1 Cost-effectiveness of 10TT under different MNAR assumptions for missing quality-of-life data

Scenario

number

MNAR

rescaling

parametersa

Incremental costb (£) [95% CI] Incremental

QALYs [95% CI]

INMBc (£) [95% CI] Probability

cost-effectivec

(%)

ccontrol c10TT

1 (MAR) 1 1 - 35 [- 504 to 434] - 0.004 [- 0.074 to 0.066] - 49 [- 1632 to 1534] 48

2 1 0.95 - 35 [- 504 to 434] - 0.037 [- 0.107 to 0.032] - 713 [- 2280 to 853] 19

3 0.95 1 - 35 [- 504 to 434] 0.026 [- 0.044 to 0.095] 550 [- 1022 to 2121] 75

4 0.95 0.95 - 35 [- 504 to 434] -0.008 [- 0.076 to 0.061] - 115 [- 1670 to 1440] 44

5 0.95 0.90 - 35 [- 504 to 434] - 0.041 [- 0.109 to 0.027] - 780 [- 2321 to 762] 16

6 0.90 0.95 - 35 [- 504 to 434] 0.022 [- 0.046 to 0.091] 484 [- 1063 to 2030] 73

7 0.90 0.90 - 35 [- 504 to 434] - 0.011 [- 0.078 to 0.057] - 181 [- 1714 to 1352] 41

All results are based on imputed data and comparing the 10TT arm to the control arm (n = 537). For participants with complete cost and

effectiveness data (n = 166; 31%), the observed incremental cost was - £65 [95% CI - 924 to 794], incremental QALYs was - 0.040 [- 0.169

to 0.088], INMB was - £741 [- 3645 to 2163], and probability cost-effective was 31%

CI confidence interval, INMB incremental net monetary benefit, MAR missing at random, MNAR missing not at random, QALY quality-adjusted

life year, 10TT Ten Top Tips
aHow missing quality-of-life data are assumed to differ from the MAR-imputed values. ccontrol = 0.9 means that all imputed quality-of-life values

in the control arm have been reduced by 10%
bMissing costs assumed to be MAR in all scenarios
cAt a cost-effectiveness threshold of £20,000/QALY

B. Leurent et al.
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MAR departures are assumed to be the same across ran-

domised arms (scenarios 1, 4 and 7). This is also seen in

Table 1, where the alternative departures from MAR had

little effect on the incremental QALYs in these scenarios.

This will usually be the case when the missing data pattern

is broadly similar across treatment arms, as the MNAR bias

applies roughly equally to each arm and cancels out in the

treatment comparison.

As we move through the other scenarios, however, 10TT

alternates between being cost-effective and not depending

on which arm is assumed to have a stronger MNAR

mechanism. For example, 10TT appear unlikely to be cost-

effective when we assumed stronger MNAR (lower c) for

the treatment arm, with a probability of being cost-effec-

tive around 0.2 at £20,000 per QALY. Table 1 also shows

how the incremental QALYs vary across the different

scenarios, while the width of the 95% CI remains relatively

similar. Since the magnitude of the incremental QALYs

was relatively small, different missing data mechanisms

across arms led to substantially different incremental

QALYs estimates.

The impact of the different MNAR assumptions can also

be readily described in the cost-effectiveness plane

(Fig. 3). On the diagonal, where the MAR departures are

assumed to be the same in both arms, the joint distribution

of incremental QALYs and cost remains relatively

unchanged. However, differential changes of the sensitivity

parameter (c) between arms lead to a shift in the distribu-

tion of incremental QALYs to the right (10TT more cost-

effective) or left (10TT less cost-effective). These shifts

essentially reflect the impact of the MAR departures on the

incremental QALYs seen in Table 1. For example, for

scenarios where c is lower (stronger departure from MAR)

in the treatment arm (upper-right off-diagonal plots), the

joint distribution is shifted to the left and the proportion of

points below the cost-effectiveness threshold (£20,000 per

QALY) is lower (10TT less likely to be cost-effective).

4 Extensions

Section 3 provided a relatively simple example of a sen-

sitivity analysis. In this section, we discuss possible

extensions and further issues around their implementation

in practice.

4.1 Missing Cost

In our base-case example, we considered departures from

the MAR assumption for the effectiveness endpoint

(HRQoL) only. However, it is possible to consider MNAR

sensitivity analysis for the cost data as well, following a

similar approach.

Table 2 presents the results of a sensitivity analysis for

10TT when both the missing cost and HRQoL data were

considered to be MNAR. This involves four parameters,

capturing the MAR departure in total costs and HRQoL, in

each arm. The missing costs were assumed to be some-

where between MAR and up to 10% higher than observed

(i.e. participants who dropped out may have higher health

care use). Table 2 suggests that the departures from MAR

for the cost endpoint would only have a marginal effect on

the overall results, while departures for the HRQoL end-

point can strongly affect the conclusions, particularly if the

missing data mechanisms differ between arms. More

details on the analysis and the Stata code are provided in

Online Appendix 3 (see the ESM).

As the number of variables increase, so does the number

of sensitivity parameters, whose values we have to specify.

The number of plausible combinations of these parameters

can quickly become overwhelming, and it may be best to

focus on a limited number of scenarios, or on the param-

eters that affect the results the most, to allow for a mean-

ingful interpretation.

4.2 Alternative MNAR Parametrisation

In our example, we have rescaled the MAR-imputed

HRQoL by a multiplicative factor. As discussed in

Sect. 2.3, another popular pattern-mixture approach is to

‘offset’ the data by an additive factor. This is commonly

used for continuous outcomes measured on a readily

interpretable scale, such as EQ-5D, which is anchored at 0

(death) and 1 (full health). However, for cost data, a

multiplicative reduction may be more intuitive; for exam-

ple, a ‘10% reduction’ may be more readily understood

than a ‘£200 reduction’ as the latter is context specific. A

multiplicative transformation may therefore be more

appealing in the CEA context.

The values of the MNAR parameters could also be

varied according to other factors. With longitudinal data,

the departure from MAR can be assumed constant over

time—as was considered here—or changing over time, for

example, with the parameter increasing with time since

withdrawal [31, 37]. The parameter can also be applied at

different levels of data aggregation, for example, assuming

only one of the resource use components is likely to be

MNAR. Different parameters could also be used according

to the reasons for discontinuing the trial.

In principle, pattern-mixture models are very flexible

and the distribution of unobserved data could take any

shape or form. While it can be tempting to consider more

complex models (e.g. additional parameters), it can make

elicitation and interpretation challenging. In our view,

simple offsets or rescaling of the MAR distribution (al-

lowed to differ by arm) should usually provide sufficient

B. Leurent et al.



span for a comprehensive sensitivity analysis, while

remaining sufficiently transparent.

4.3 Choosing the MNAR Parameters

One of the main concerns about conducting an MNAR

analysis is how to choose plausible sensitivity parameter

values. Several approaches and sources of information can

be used for this purpose. One potential approach is to

formally elicit ‘experts’ beliefs on the missing data distri-

bution [28]. These ‘experts’ can be anyone who can con-

tribute knowledge in understanding the missing data, such

as trial investigators, clinicians, or patients. Mason et al.

have developed a useful framework for eliciting expert

opinion about MNAR mechanisms in CEA [36]. The

experts’ beliefs, capturing the most likely value for the

MNAR parameters, and the uncertainty in that value, can

then be incorporated into the analysis model (see

Sect. 4.4).

Alternatively, one could simply use a ‘tipping point’ or

threshold analysis approach. This involves changing the

MNAR parameter until a different conclusion is reached

(for example, being or not being cost-effective). The ana-

lyst can then discuss with the relevant experts the plausi-

bility of this value. This approach is appealing because it is

more readily implemented and less time-consuming than

formal elicitation, and may provide sufficient information

for the decision problem at hand, especially when results

are robust to a wide range of assumptions. However, what

constitutes a ‘change of conclusion’ may not be uniquely

defined, and it may be difficult to implement with multiple

sensitivity parameters.

An intermediate approach would be to agree on plau-

sible sensitivity scenarios with those involved in the trial

or regulators, for example, at a steering committee

meeting. A ‘most likely’ scenario and several ‘most

extreme’ scenarios could be agreed on, without formally

eliciting the uncertainty in the parameters. The scenarios

should cover all plausible situations, so that readers can

be confident that missing data are unlikely to affect the

CEA conclusions beyond what is reported in the sensi-

tivity analysis.

Analysts should also consider how missing data are

addressed in the trial primary (clinical) analysis, and the

elicitation could be done jointly when suitable. The elici-

tation should ideally be conducted around the final stages

of data collection and be ‘pre-specified’ before the trial

results are known.

Overall, a clear understanding of the reasons for missing

data in the specific trial context, discussions with relevant

‘experts’, and insights drawn from the literature are key to

inform the choice of sensitivity parameters.

4.4 Probabilistic Parameters

An alternative to reporting results for specific sensitivity

parameters values is to incorporate the uncertainty around

the parameters into the analysis model. This is a natural

approach when a formal elicitation of the parameter’s value

and its uncertainty has been conducted (Sect. 4.3). While

the analysis can be conducted using a Bayesian framework

[36], it can also be implemented using MI [28, 37]. To do

so, instead of rescaling all the imputed dataset by a fixed

value, a random parameter value is drawn from the elicited

Table 2 Cost-effectiveness of 10TT under different MNAR assumptions for missing cost and effectiveness quality-of-life data

Scenario description Incremental cost

(£) [95% CI]

Incremental

QALYs [95% CI]

INMBa (£)

[95% CI]

Probability

cost-effectivea (%)

MAR - 35 [- 504 to 434] - 0.004 [- 0.074 to 0.066] - 49 [- 1632 to 1534] 48

Same MNAR parametersb in the two arms

- 10% QoL in both arms - 35 [- 504 to 434] - 0.011 [- 0.078 to 0.057] - 181 [- 1714 to 1352] 41

? 10% cost in both arms - 25 [- 512 to 462] - 0.004 [- 0.074 to 0.066] - 59 [- 1650 to 1532] 47

- 10% QoL and ? 10% cost - 25 [- 512 to 462] - 0.011 [- 0.078 to 0.057] - 191 [- 1733 to 1350] 40

Different MNAR parametersb in the two arms

- 10% QoL in intervention arm - 35 [- 504 to 434] - 0.071 [- 0.139 to - 0.002] - 1378 [- 2932 to 176] 4

- 10% QoL in control arm - 35 [- 504 to 434] 0.056 [- 0.014 to 0.125] 1148 [- 415 to 2711] 93

? 10% cost in intervention arm 20 [- 459 to 499] - 0.004 [- 0.074 to 0.066] - 104 [- 1691 to 1483] 45

? 10% cost in control arm - 80 [- 558 to 398] - 0.004 [- 0.074 to 0.066] - 4 [- 1591 to 1583] 50

All results are based on imputed data and comparing the 10TT arm to the control arm (n = 537)

CI confidence interval, INMB incremental net monetary benefit, MAR missing at random, MNAR missing not at random, QALY quality-adjusted

life year, QoL quality of life, 10TT Ten Top Tips
aAt a cost-effectiveness threshold of £20,000/QALY
bHow missing cost and QoL data are assumed to differ from MAR-imputed values
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distribution for each of the imputed datasets. An example is

provided in Online Appendix 4 (see the ESM).

This probabilistic approach is particularly appealing as it

incorporates the uncertainty related to MNAR into the

analytical model, providing a ‘single’ answer. It can be

particularly relevant, for example, if the result is to be

incorporated in a larger decision model.

However, some stakeholders found this approach less

comprehensive than the reporting under different MNAR

scenarios. Indeed, this approach also relies on making a

single assumption (that the uncertainty was captured

appropriately), whereas a range of plausible scenarios may

be more readily interpretable in showing how different

missing data mechanisms could result in different

conclusions.

4.5 Presentation of Results

We have shown how to report the results for different

MNAR scenarios by displaying the resulting CEACs. This

was flagged by stakeholders as an accessible way to report

the results, but they have also recognised that alternative

graphical representations may be preferred depending on

the decision problem at hand. In this section, we illustrate

some of these graphical tools (Stata code provided in

Online Appendix 5; see the ESM).

For example, Fig. 5 shows the INMB (and CIs) for

values of the c parameter, ranging from 0.8 to 1. The

parameter is applied to both arms simultaneously, or only

one of the arms.

Alternatively, a more comprehensive description of

possible combinations of the sensitivity parameters across

treatment arms is plotted in Fig. 6. This ‘colour-coded

graph’ (or contour plot) provides a useful tool to interpret

the implications of different departures from MAR on the

overall decision. For example, it illustrates that for lower

values of c (stronger departure from MAR) in the inter-

vention arm compared to the control group, the 10TT

intervention is unlikely to be cost-effective (red/orange

area).

5 Discussion

In this tutorial, we have outlined different approaches for

conducting sensitivity analysis for missing data in CEA.

We focused on one particularly accessible approach, based

on pattern-mixture modelling with MI, and illustrated how

it can be implemented in practice. While this is not, in any

sense, the final word, we believe that more widespread use

of the approach described here would represent a sub-

stantial step towards realising the regulatory call for sen-

sitivity analysis.

As Sect. 2 highlights, numerous approaches to MNAR

analyses are possible, and there is a large literature on this

topic [11, 18, 37]. However, we believe the approach

illustrated here has the key advantages of accessibility,

flexibility, and transparency. Transparency is indeed the

principal requirement for these sensitivity analyses to serve

their purpose, as the plausibility of their underlying

assumptions needs to be clearly understood and critically

assessed by a broad readership [2, 16, 31]. The straight-

forward implementation of the analysis within an MI

framework makes it accessible to the increasing number of

analysts who are routinely using MI. It can also be readily

implemented within any statistical software with MI (Stata,

R, SAS, SPSS, etc.).
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Fig. 5 Alternative presentation: incremental net monetary benefit of

10TT compared to control arm (at £20,000/QALY), for different

values of the MNAR rescaling parameter. CI confidence interval,

MAR missing at random, MNAR missing not at random, QoL quality

of life, 10TT Ten Top Tips

Fig. 6 Alternative presentation: contour plot of the probability of

10TT being more cost-effective than control (at £20,000/QALY), for

different values of MNAR rescaling parameters in the control and

intervention arms. MAR missing at random, MNAR missing not at

random, QALY quality-adjusted life year, QoL quality of life, 10TT

Ten Top Tips
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Ready implementation allows the focus to be on iden-

tifying relevant MNAR scenarios and assessing their

plausibility. We discussed here several approaches that can

be used in practice, whose suitability will depend on each

situation. Some approaches are more rigorous, but more

time-consuming, while others are cruder, but still infor-

mative. Deciding on the relevant scenarios is likely to

involve discussion with other collaborators, and the ana-

lysts should be able to explain the different assumptions in

non-technical language. Another challenge is the reporting

of the results: how can the analyst ensure that the sensi-

tivity analysis is comprehensive, without being over-

whelming for the readers? We have suggested a framework

where the analysis is conducted under a limited number of

plausible scenarios, and the results reported in a table and

on a combined CEAC, but also discussed alternative

presentations.

The proposed framework is not without some limita-

tions, however. First, every trial raises different issues, and

it is not possible to recommend a universal framework for

MNAR sensitivity analyses. The framework suggested here

is nevertheless relatively flexible, and should be suitable in

a wide range of settings, including longitudinal and cluster-

randomised trials. Secondly, an assumption such as ‘the

missing HRQoL are 10% lower’ could be too simplistic to

capture the varied reasons behind missing data. However, it

is important to consider this in light of several aspects. We

are primarily interested here, as is usually the case in

randomised trials, in estimating mean differences between

groups. To obtain valid conclusions, it is therefore not

necessary to predict accurately each missing value, but

only the average difference between observed and missing

data. Also, the true missing data mechanism is always

unknown, and the aim of the sensitivity analysis is not to

provide a definitive answer, but to indicate how conclu-

sions could differ under different missing data assump-

tions. Finally, the framework proposed here was for

continuous outcomes such as cost and quality of life. While

the main ideas of the framework are relevant for other

outcomes (e.g. binary or survival), they do raise additional

challenges, especially around model compatibility and

elicitation [37]. For example, differences between observed

and missing data in terms of ‘odds ratios’ may be more

difficult to elicit and interpret.

While this tutorial focuses on within-trial CEA, a similar

sensitivity analysis approach could possibly be used in

observational settings, for example, when analysing rou-

tinely collected data, where the issue of informative

missing data may arguably be even more important.

This tutorial highlights several areas where further

research could improve the value of CEA for decision

making in the presence of missing data. A particularly

interesting alternative MNAR approach is ‘reference-

based’ or ‘controlled’ imputation, where the missing data

are assumed to follow a distribution that is ‘borrowed’

from another group. For example, in a trial comparing a

drug to placebo, it could be assumed that patients dropping

out from the experimental arm have stopped taking their

treatment, and therefore follow a similar pattern to that

seen in the control arm [33]. This approach is appealing as

it sidesteps the elicitation of quantitative parameters

required for selection or pattern-mixture models, and

instead formulates the MNAR assumption in a qualitative

way. It was well received when discussed with stakehold-

ers, but, to our knowledge, has not yet been used in the

CEA context. Relevant areas for further research also

include incorporating the sensitivity analysis results into

broader decision models and, related to this, conducting

sensitivity analysis without patient-level data. One possi-

bility could be to approximate the MNAR bias based on the

proportion of missing data, and to retain the analysis

standard errors as a measure of sampling uncertainty.

Further guidance on how to best address missing binary

and survival endpoints is still needed. While we propose

some routes for eliciting sensitivity parameters, this critical

aspect deserves further attention, and is likely to evolve as

MNAR analyses become more routinely performed.

In summary, CEA based on incomplete data should

routinely assess whether the study’s conclusions are robust

to potential departures from the standard MAR assumption.

This paper described some approaches to conducting these

sensitivity analyses, and illustrated the application of a

practical, accessible framework using pattern-mixture

models with MI. This approach builds on the increasing use

of MI in CEA and should provide an important step

towards improving practice in trial-based CEA.
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