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Figure 1. A resource of high-resolution promoter interactions in human embryonic stem cells (ESCs) and ESC-derived neuroectodermal cells (NECs). (A)

Overview of the experimental design. Human embryonic stem cells (ESCs) and ESC-derived neuroectodermal progenitors (1) were analysed with

Figure 1 continued on next page
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Figure 1 continued

Promoter Capture Hi-C to profile interactions involving 21,841 promoter-containing HindIII fragments (2). Signal detection with the CHiCAGO pipeline

revealed ~75,000 high-confidence promoter interactions in each cell type (3). These data were integrated with histone modification and gene

expression profiles in the same cells (4) to study chromatin and interaction dynamics during lineage commitment. Characterisation of ESCs and NECs is

shown in Figure 1—figure supplement 1. (B) Genome browser representation of the SOX2 promoter interactome in ESCs (upper) and NECs (lower).

Significant interactions are shown as purple arcs, with one end of the interaction within the SOX2 promoter and the other end at a promoter-interacting

region (PIR). ChIP-seq (H3K27me3, H3K27ac, H3K4me1, H3K4me3; from [Rada-Iglesias et al., 2011]) and mRNA-seq tracks are shown. Chromatin states

for each genomic region were defined by ChromHMM (Ernst and Kellis, 2012) using ChIP-seq data (active chromatin, green; poised chromatin,

orange; Polycomb-associated chromatin, red; intermediate, yellow; background, grey). Conventional Hi-C heatmaps of contact frequencies reveal

chromatin topology over this region. As an additional example, the PAX6 promoter interactome is shown in Figure 1—figure supplement 2. Read

count interaction profiles for SOX2 and PAX6 are shown in Figure 1—figure supplement 4. (C) PIRs are significantly enriched in regions that contain

histone marks associated with putative regulatory functions, compared with promoter distance-matched control regions (permutation test p-value<0.01

for each mark) (ESCs, left; NECs, right). Blue bars show the number of overlaps observed in detected PIRs, and grey bars show the mean number of

overlaps observed in distance-matched random regions over 100 permutations. Error bars show 95% confidence intervals across permutations. (D)

Promoters and their associated PIRs show significant concordance in chromatin states. Heatmaps show the log2 odds ratios for the co-occurrence of

each combination of promoter and PIR chromatin state compared with that expected at random. p-Values are from Pearson’s c2 test on the

corresponding contingency tables. Clustering of chromatin states and additional examples of promoter interactomes are shown in Figure 1—figure

supplement 3.
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Figure 1—figure supplement 1. Characterisation of ESCs and NECs. (A) Phase contrast images of undifferentiated ESC colonies (left) and day 7 NEC

spheres (right). (B) Flow cytometry analysis of ESCs (blue) and NECs (red) using lineage-specific cell surface markers. CD56 is expressed by ESCs and

Figure 1—figure supplement 1 continued on next page
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Figure 1—figure supplement 1 continued

NECs; EPCAM (CD326) is expressed by ESCs but not NECs (Gifford et al., 2013). Percent positive cells in each quadrant is shown. (C) Genome

browser representations of RNA-seq data from our study and from (Rada-Iglesias et al., 2011) shows expression levels of the ESC-specific genes

POU5F1 and NANOG; of SOX2 and CDH2, which are expressed by both ESCs and NECs, and of the NEC-specific genes ZIC4 and PAX6.

DOI: 10.7554/eLife.21926.004
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Figure 1—figure supplement 2. PAX6 promoter interactome and CTCF enrichment at PIRs. (A) Genome browser representation of the PAX6 promoter

interactome in ESCs (upper) and NECs (lower). Significant interactions are shown as purple arcs. ChIP-seq (H3K27me3, H3K27ac, H3K4me1, H3K4me3;

Figure 1—figure supplement 2 continued on next page
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Figure 1—figure supplement 2 continued

from [Rada-Iglesias et al., 2011]) and mRNA-seq tracks are shown. Chromatin states for each genomic region were defined by ChromHMM (Ernst and

Kellis, 2012) using ChIP-seq data (active chromatin, green; poised chromatin, orange; Polycomb-associated chromatin, red; intermediate, yellow;

background, grey). Conventional Hi-C heatmaps of contact frequencies are shown for ESCs and NECs and reveal chromatin topology over this region.

(B) PIRs in ESCs are significantly enriched in regions that contain CTCF binding sites, compared with promoter distance-matched random control

regions (permutation test p-value<0.01). The blue bar shows the number of overlaps observed in detected PIRs, and the grey bar shows the mean

number of overlaps observed in distance-matched random regions over 100 permutations. Error bars show 95% confidence intervals across

permutations.

DOI: 10.7554/eLife.21926.005
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Figure 1—figure supplement 3. Integrated view of chromatin states and PCHi–C data. (A) Definition of 16 ChromHMM emission states based on the

relative presence or absence of signals from H3K27me3, H3K4me1, H3K27ac and H3K4me3 ChIP-seq data. Similar states were pooled to form six

Figure 1—figure supplement 3 continued on next page
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Figure 1—figure supplement 3 continued

categories defined as active, poised, Polycomb, mixed, intermediate and background (see Materials and methods for details). (B) Integration of

promoter interactions with chromatin states in ESCs (upper tracks) and NECs (lower tracks) for six different promoters. Purple arcs indicate significant

interactions between the baited promoters and PIRs. Open circles denote background interaction signals and filled circles identify significant

interactions (i.e. those exceeding the defined threshold CHiCAGO score, see Materials and methods). Filled circles have been coloured according to

the chromatin state of the PIR (active, green; poised, orange; Polycomb-associated, red; intermediate, yellow; background, grey). The arrows

correspond to the transcriptional state of the baited gene in ESCs and NECs (sharp end, active; blunt end, inactive).

DOI: 10.7554/eLife.21926.006
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Figure 1—figure supplement 4. Read-count interaction profiles for baited promoters presented in Figures 1–3. Plots show the read counts

corresponding to the interactions of baited promoter fragments (grey line) with other HindIII fragments. Significant interactions detected by CHiCAGO

(score �12) are shown in red, and sub-threshold interactions (score �11 in the cell type shown, and score �12 in the other cell type) are shown in blue.

(A) SOX2, from Figure 1B. (B) PAX6, from Figure 1—figure supplement 2A. (C) POU3F2, from Figure 2A. (D) SNAI2, GLI2, PRDM1 and POU3F1, from

Figure 3E–H.
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Figure 2. Promoter-interacting regions can function as tissue-restricted developmental enhancers and identify associated target genes. (A) A genome

browser representation of the POU3F2 promoter interactome in NECs. Genome coordinates are shown underneath. Chromatin states are indicated
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Figure 2 continued

(active chromatin, green; poised chromatin, orange; Polycomb-associated chromatin, red; intermediate, yellow; background, grey). Significant

interactions are shown as coloured arcs. Five of the identified POU3F2 PIRs have been tested experimentally using a transgenic reporter assay as part

of the VISTA Enhancer Browser (Visel et al., 2007). Of those five, four regions (indicated by blue arcs) can drive tissue-restricted LacZ expression in

E11.5 mouse embryos. Representative images of X-gal stained mouse embryos are shown for each sequence. These show neural-restricted enhancer

activity within the forebrain, midbrain, hindbrain and neural tube, which are tissues derived from NECs. The mRNA expression pattern of Pou3f2 in an

E10.5 mouse embryo (EMAGE gene expression database; EMAGE:1689; [Richardson et al., 2014]) broadly matches the combined tissue-restricted

pattern of its enhancers. One experimentally tested PIR (indicated by brown arc) is inactive at this developmental stage in mouse embryos. (B) PIRs

identified in NECs are enriched for sequences that can drive reporter gene activity in neural tissues and other neuroectodermal derivatives (see also

Figure 2—figure supplement 1A). The barplot shows the distribution of tissue-specific reporter expression patterns for all experimentally tested PIRs

identified in ESCs (n = 219) and NECs (n = 267). Embryo reporter assays and enhancer activity patterns are from the VISTA Enhancer Browser (Visel et

al., 2007). The number of PIRs active within a particular tissue is shown above each bar. PIRs with an active chromatin state in NECs showed an even

more pronounced enrichment for enhancer activity in neural tissues (Figure 2—figure supplement 1B). (C) Representative images of X-gal stained

mouse embryos from the VISTA Enhancer Browser (Visel et al., 2007) reveal neural-restricted reporter gene activity for six example NEC PIRs. Shown

underneath is the gene promoter assignment for the associated enhancer in VISTA and in our PCHi-C dataset.

DOI: 10.7554/eLife.21926.008
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Figure 2—figure supplement 1. Active PIRs are enriched for enhancers with neural-specific activity. (A) In ESCs and NECs, PIRs are significantly

enriched for VISTA-validated enhancer regions, compared to promoter distance-matched regions (p-value<0.001 for all six permutation tests based on

100 permutations). Black bars show the number of overlaps observed in PIRs, and light grey bars show the mean number of overlaps observed across

the random samples. Error bars refer to 95% confidence intervals. (B) The barplot shows the distribution of tissue-specific reporter expression patterns

for all experimentally tested PIRs with an active chromatin state in ESCs (n = 46) and NECs (n = 49). Embryo reporter assays and tissue expression

patterns are from the VISTA Enhancer Browser (Visel et al., 2007). The number of PIRs active within a particular tissue is shown above each bar.
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Figure 3. Characterisation of cis-regulatory units (CRUs). (A) Boxplot shows the distributions of the number of PIRs per interacting promoter in ESCs (n

= 17955) and NECs (n = 18146). Promoters with no detected PIRs are not shown (4121 in ESCs; 3930 in NECs). The number of interactions per promoter
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Figure 3 continued

showed only a minor dependence on transcriptional activity and promoter chromatin state (Figure 3—figure supplement 1A,B). (B) A schematic

illustrating the concept of a CRU as a collection of all PIRs together with their associated promoter. Note that it cannot be ruled out that some PIRs

may provide alternative rather than concurrent interactions. (C) Boxplot shows the distributions of CRU span in ESCs and NECs. We observed a

moderate dependence between the span and the number of PIRs (Figure 3—figure supplement 1C). (D) CRUs are preferentially contained within an

individual TAD. Line graph shows the percentage of CRUs with different proportions of interactions that reside within an individual TAD (purple) and

the summary statistics (mean and 95% confidence error bars) obtained for 1000 random samples, keeping the same CRU structure (grey). There is a

significant tendency for CRUs to be contained entirely within a TAD ( * denotes permutation test p-value<0.001). In addition, fewer CRUs span entirely

over a TAD boundary (* denotes permutation test p-value<0.001). The 1000 random samples were generated by permutations of CRUs across all

promoter fragments, retaining the same overall CRU structure. Error bars show 95% confidence intervals. Data shown are for ESCs (n = 9008 CRUs);

data for NECs are shown in Figure 3—figure supplement 1D. We found that CRUs crossing TAD and IN boundaries generally contained a higher

number of PIRs (Figure 3—figure supplement 1F,G). E–H) Genome browser representations of CRUs in ESCs. Examples include the SNAI2 CRU (E)

and GLI2 CRU (F), which both fit entirely within a TAD and INs; PRDM1 CRU (G), which fits entirely within a TAD but extends beyond INs, and POU3F1

CRU (H), which extends over a TAD boundary and also beyond an IN. (I) CRUs are preferentially contained within INs, but interactions can extend

beyond IN boundaries. The line graph shows the percentage of CRUs with different proportions of interactions that reside within an individual IN in

ESCs (coordinates obtained from [Ji et al., 2016]). There is a significant tendency for CRUs (purple) to be contained entirely within an IN, compared to

random (grey) (* denotes p-value<0.001 from a permutation test done with 1000 random samples). In addition, fewer CRUs span entirely beyond an IN

(* denotes p-value<0.001 from a permutation test done with 1000 random samples). Error bars show 95% confidence intervals. Promoters outside of a

defined IN were excluded from the analysis.
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Figure 3—figure supplement 1. Additional CRU characterisation. (A) Boxplots showing the number of PIRs per promoter in ESCs (left) and NECs

(right), separated by gene expression quartiles. (B) Number of PIRs per promoter in ESCs (left) and NECs (right), separated by promoter chromatin

Figure 3—figure supplement 1 continued on next page
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Figure 3—figure supplement 1 continued

state. (C) Number of PIRs per CRU in ESCs (left) and NECs (right), separated by CRU span length. These variables are significantly positively correlated

in both cell types according to Spearman’s association test (r = 0.063, correlation test p<0.001 in ESCs and r = 0.111, correlation test p<0.001 in NEC).

(D) CRUs are preferentially contained within an individual TAD in NECs (n = 9361 CRUs). Line graph shows the percentage of CRUs with different

proportions of interactions that reside within an individual TAD (blue) and the summary statistics (mean and 95% confidence error bars) obtained for

1000 random samples, keeping same CRU structure (grey). There is a significant tendency for CRUs to be contained entirely within a TAD (* denotes

permutation test p-value<0.001). In addition, fewer CRUs span entirely over a TAD boundary (* denotes permutation test p-value<0.001). The 1000

random samples were generated by permutations of CRUs across all promoter fragments, retaining the same overall CRU structure. Error bars show

95% confidence intervals. (E) Percentage of CRUs that cross TAD boundaries in ESCs and NECs. Orange bars show results for ESCs and NECs; grey

bars show results for 1000 random permutations of CRUs across all promoter fragments, keeping the overall CRU structure. Error bars show 95%

confidence intervals. For ESCs, we show the results obtained with TADs called by two different methods (left, Dixon et al., 2012; right, this study).

Promoters overlapping TAD boundaries were excluded from this analysis, as were interactions where both ends were not included in any TAD. CRUs in

both ESCs and NECs cross TAD boundaries less frequently than expected by random as the difference in height between the orange and grey bars is

larger than the 95% confidence interval (permutation test, p-value<0.001). (F) Number of PIRs per CRU in ESCs (left) and NECs (right), separated by

whether the CRU crosses a TAD boundary (‘Inter-TAD’) or is contained within an individual TAD (‘Intra-TAD’). In both cell types, CRUs crossing TAD

boundaries have significantly more interactions than CRUs fully contained within a TAD (ESCs - p-value<0.001, NECs - p-value<0.001, according to two-

sided Wilcoxon rank sum tests). (G) Number of PIRs per CRU in ESCs, separated by whether the CRU crosses an IN boundary or is contained within an

IN. CRUs crossing IN boundaries have significantly more interactions than CRUs fully contained within INs (p-value<0.001 according to two-sided

Wilcoxon rank sum test). (H) Strength of TAD boundaries, separated by whether they are crossed or not crossed by promoter interactions in ESCs (left)

and NECs (right). (I) The line graph shows the percentage of CRUs with different proportions of interactions that reside within the largest span of each

overlapping IN set (coordinates calculated from [Ji et al., 2016]). Fewer than 50% of CRUs, but significantly more than expected at random, were fully

contained with the extremities of IN boundaries (* denotes permutation test p-value<0.001). In addition, fewer CRUs span entirely over an IN boundary

(* denotes permutation test p-value<0.001). The 1000 random samples were generated by permutations of CRUs across all promoter fragments,

retaining the same overall CRU structure. Error bars show 95% confidence intervals. Promoters outside of a defined IN were excluded from the analysis.
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Figure 4. Clustering of CRUs according to chromatin state of each PIR in ESCs. (A) CRUs from ESCs were clustered hierarchically according to the

distribution and fractions of their PIRs that correspond to each chromatin state. Boxplots show the distribution of PIR fractions for each chromatin state

(Act, active; Pois, poised; PcG, Polycomb-associated; Bg, background). Heatmaps show the log2 odds ratios of observing each promoter state

associated with a CRU in each cluster (p<0.001, c2 test on the contingency table). Data for NECs are shown in Figure 4—figure supplement 1. (B)

Genome browser representations of CRUs in ESCs. U2AF1 CRU from cluster 1 and TBX3 CRU from cluster 2, each exemplify cases where non-

background PIRs within a CRU are associated with a uniform chromatin state. SUV39H2 CRU from cluster 6 and CDKN2B CRU from cluster 7, each

exemplify cases where PIRs within a CRU are associated with multiple chromatin states. Interaction arcs are coloured according to PIR chromatin state

(active, green; poised, orange; Polycomb-associated, red; background, grey). See Figure 4—figure supplement 2 for additional examples, and

Figure 4—figure supplement 3 for read count interaction profiles.
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Figure 4—figure supplement 1. Clustering of CRUs according to chromatin state of each PIR in NECs. CRUs

were hierarchically clustered according to their fractions of PIRs from different chromatin states in NECs. Boxplots

depict the distribution of PIR fractions for each chromatin state (Act, active; Pois, poised; PcG, Polycomb-

associated; Bg, background). Heatmaps coupled to boxplots show log2 odds-ratios of promoter states (p-

value<0.001, c2 test on the contingency tables).
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Figure 4—figure supplement 2. Additional examples of CRUs in ESCs. Genome browser representations of CRUs in ESCs. Interaction arcs are

coloured according to PIR chromatin state (active, green; poised, orange; Polycomb-associated, red; background, grey).

Figure 4—figure supplement 2 continued on next page
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Figure 4—figure supplement 2 continued

DOI: 10.7554/eLife.21926.014

Freire-Pritchett et al. eLife 2017;6:e21926. DOI: 10.7554/eLife.21926 21 of 29

Tools and resources Developmental Biology and Stem Cells Genes and Chromosomes

http://dx.doi.org/10.7554/eLife.21926.014
http://dx.doi.org/10.7554/eLife.21926


A

C

CNPY1

ESC

●

●

●

●

0

5

10

15

25

20

30

0 500 kb 1 Mb

●

●

● ● ●

●

●

● ●

●

●

●

●

●●

MAP2

ESC

0 500 kb-500 kb-1 Mb

0

10

40

20

30

●

●

●

●

●

●

●

●

●

●

●

AGAP2

ESC

0-200 kb

0

10

40

50

20

30

200 kb 400 kb 600 kb

RXRG

ESC

0 50 kb
0

10

40

50

20

30 ●

● ●

●

●

-50 kb 150 kb100 kb 200 kb

CARS

ESC

0

5

10

15

20

● ●

●

● ●

●

0 200 kb100 kb50 kb 150 kb-50 kb-100 kb-150 kb

PAX9

ESC

0 600 kb 1 Mb-200 kb

0

5

10

15

20

●

●

●

●

●●

●

●

●

●

●●

-400 kb 800 kb400 kb200 kb

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

RGMB

NEC

0

5

10

15

25

20

30

0-500 kb-1 Mb

35

-1.5 Mb

●

● ●

●

●

●

●

●

●

●

●

RGMB

ESC

0

5

10

15

25

20

30

35

0-500 kb-1 Mb-1.5 Mb

●

●

●

●

●

●

●

●

●

KCNE3

ESC

0 100 kb-100 kb

0

10

40

50

20

30

-200 kb

●

●

●

●

●

●

●

●

●

●

●

●

KCNE3

NEC

0

60

10

40

50

20

30

0 100 kb-100 kb-200 kb

●

●

●● ● ●

●

● ●

●

●

●

●

●

●

●

MAP2

NEC

0

10

40

20

30

0 500 kb-500 kb-1 Mb

●

●

● ●

●

●

●

●

●

●

●

U2AF1

ESC

0

40

10

50

60

20

30

0 600 kb-200 kb 800 kb400 kb200 kb

●●

●

●

●

●● ●

●

TBX3

ESC

0

40

60

80

20

0 500 kb 1 Mb-500 kb-1 Mb 1.5 Mb-1.5 Mb

● ●

●

●

●

●

SUV39H2

ESC

0

10

40

20

30

0-200 kb-400 kb-600 kb-800 kb

50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

CDKN2B

ESC

0

5

10

15

25

20

30

0 100 kb 200 kb-100 kb-200 kb

35

B

Figure 4—figure supplement 3. Read-count interaction profiles for baited promoters presented in Figures 4 and 5. Plots show the read counts

corresponding to the interactions of baited promoter fragments (grey line) with other HindIII fragments. Significant interactions detected by CHiCAGO

Figure 4—figure supplement 3 continued on next page
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Figure 4—figure supplement 3 continued

(score �12) are shown in red, and sub-threshold interactions (score �11 in the cell type shown and score �12 in the other cell type) are shown in blue.

(A) U2AF1, TBX3, SUV39H2 and CDKN2B from Figure 4B. (B) CARS, PAX9, CNPY1, RXRG and AGAP2 from Figure 4—figure supplement 2. (C)

RGMB, MAP2 and KCNE3 from Figure 5D–F.
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Figure 5. CRU state transitions occur during ESC differentiation and are associated with changes in gene transcription. (A) Pie chart summarising CRU

state transitions that occur upon ESC to NEC differentiation. The number of CRUs within each transition category are shown. Transitions that involve
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Figure 5 continued

dual-state to single-state, and single-state to dual-state, are further subdivided into whether the single-state is classified as active or repressed

(Polycomb-associated or poised). (B–C) Heatmaps show the log2 odds ratios for CRU state transitions and associated changes in gene expression. (B)

Single-state transitions showing a non-random segregation withgene expression changes (p-value=0.0031, Fisher’s exact test); (C) dual-state transitions

showing a non-random segregation with gene expression changes (p-value=0.0014, Fisher’s exact test). Number of CRUs within each transition

category are shown. Genes differentially expressed between ESCs and NECs were identified using DESeq2 (FDR < 0.05 and a log2 fold change of

>1.5). Repressed state includes Polycomb-associated and poised states. (D–F) Genome browser representations of CRU state transitions that occur

upon the differentiation of ESCs (top image) to NECs (lower image). (D) RGMB provides an example of a CRU transitioning from a single repressed to a

single active state and an associated increase in RGMB transcription. (E) MAP2 provides an example of a dual-state to a single active state CRU

transition and an associated increase in MAP2 transcription. (F) KCNE3 provides an example of a single active state to a dual-state CRU transition and

an associated decrease in KCNE3 transcription. Arcs are coloured according to PIR chromatin state (active, green; poised, orange; Polycomb-

associated, red; background, grey).
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Figure 6. Interaction Dynamics: ‘recolouring’ versus ‘rewiring’. (A) A schematic of interaction dynamics during cell differentiation. In a ‘recolouring’

interaction (left)the PIR undergoes a change in chromatin colour (reflecting a change in chromatin state) between the two cell types. In a ‘rewiring’

Figure 6 continued on next page
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Figure 6 continued

interaction (right), an interaction is gained or lost upon cell differentiation. In a ’rewiring + recolouring’ interaction, the loss or gain of an interaction is

concomitant with changes in chromatin colour at the respective PIR. (B) Heatmap of log2 odds ratios showing the association between different PIR

chromatin state transitions (recolouring) and PIR interaction dynamics (rewiring) on ESC to NEC differentiation (p-value<0.001, Fisher’s exact test). (C–D)

Genome browser representations of interaction dynamics upon ESC to NEC differentiation. Note that only one interaction is shown for each example.

Arcs are coloured according to PIR chromatin state (active, green; Polycomb-associated, red). (C) Rewiring and recolouring: upon differentiation, NR2F1

gains an interaction with a PIR that is active in NECs, but repressed in ESCs. (D) Rewiring: the JAG1 promoter gains an interaction with an active PIR in

NECs. Additional examples are shown in Figure 6—figure supplement 1A,B. (E) Pie chart summarising the different scenarios in which an interaction

is retained upon ESC to NEC differentiation. (F) Recolouring: the IRX3 promoter retains an interaction, but the PIR changes from repressed (in ESCs) to

active (in NECs). (G) Boxplots revealing the transcriptional changes as a function of active PIR dynamics during recolouring (left) and rewiring (right)

events. In either scenario, there was a significant association between the acquisition and loss of an active state and changes in gene expression (p-

values<0.001 for both recolouring and rewiring according to one-sided Wilcoxon rank sum tests).
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Figure 6—figure supplement 1. Interaction dynamics involving recolouring and rewiring. Genome browser

representations of interaction dynamics upon ESC to NEC differentiation. Note that only one interaction is shown

for each example. Arcs are coloured according to PIR chromatin state (active, green; background, grey). (A)

Rewiring and recolouring: ZSCAN2 loses an interaction with a background PIR that was previously classified as

active in ESCs. (B) Rewiring: HAPLN3 promoter loses an interaction with an active PIR. (C) Recolouring: RAB3B

promoter retains an interaction, but the PIR changes from active to background.
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