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Abstract 

INTRODUCTION: The 4 allele of the apolipoprotein E (APOE) gene is a prominent risk 

factor for Alzheimer’s disease (AD), but its implication in other dementias is less well 

studied. 

METHODS: We used a dataset on 2858 subjects (1098 AD, 260 vascular dementia [VaD], 

145 mixed AD and VaD [MIX], 90 other dementia diagnoses, 1265 controls) to examine the 

association of APOE polymorphisms with clinical dementia diagnoses, biomarker profiles and 

longevity. 

RESULTS: The ε4 allele was associated with reduced longevity as ε4 vs ε3 homozygotes 

lived on average 2.6 years shorter (p=.006). In AD, ε4 carriers lived 1.0 years shorter than 

non-carriers (p=.028). The 4 allele was more prevalent in AD, MIX and VaD patients 

compared to controls, but not in other dementia disorders. 

DISCUSSION: The APOE ε4 allele is influential in AD, but might also be of importance in 

MIX and VaD; diseases in which concomitant AD pathology is common. 



1. Introduction 

Apolipoprotein E (apoE) is a protein involved in lipid metabolism and transport of cholesterol 

to neurons [1, 2]. There are three common alleles of the APOE gene (2, 3 and 4) that 

encode three isoforms of the protein (E2, E3 and E4) [3]. Being an 4 allele carrier is the most 

prominent genetic risk factor for late onset Alzheimer’s disease (AD), and has a reported 

prevalence of 24% in the Nordic population [4, 5]. Being a homozygous ε4 carrier increases 

the risk of developing sporadic AD by a factor 10-20 compared to being an ε3 homozygote 

[6-8]. APOE ε4 has also been implicated in other settings including atherosclerosis [9], 

depression [10], accelerated progression in multiple sclerosis [11] and brain atrophy in HIV 

patients [12].  The ε2 allele may be a protective trait, lowering the risk of developing AD [13], 

as compared to ε3, the most common allele. APOE has also been targeted for examination in 

longevity studies, where the ε4 allele has been found associated with early mortality [14]. 

The association of the APOE 2/3/4 polymorphism with dementias other than AD is less 

clear. In vascular dementia (VaD), studies on the role of the APOE polymorphism has yielded 

conflicting results, possibly due to lack of consensus on the criteria required for diagnosis and 

the high overlap of VaD with other dementia disorders, primarily AD [15]. In meta-analysis, 

an increased VaD risk has been identified in APOE ε4 carriers [16], a result that has been 

confirmed by population-based data [17]. Dementia with Lewy bodies (DLB) and Parkinson’s 

disease dementia (PDD) patients share clinical and biochemical features; however, the impact 

of APOE genotype in these conditions might diverge. Evidence suggests an association of 

increased risk of DLB with a APOE ε4 carrier status [18, 19]. By contrast, the ε2 allele, but 

not ε3 or ε4, has been associated with increased risk of Parkinson’s disease [20], although 

associations between ε4 and PDD has been reported [21]. Studies of APOE in frontotemporal 

dementia (FTD) have again produced conflicting results, but, in meta-analysis, carriage of the 



ε4 allele was found to be associated with a slightly increased risk of disease [22]. In 

amyotrophic lateral sclerosis, another neurodegenerative disease which commonly overlaps 

with FTD, evidence suggests that ε4 carriage is associated with earlier onset and faster disease 

progression [23, 24]. 

In this study, we explored the prevalence of the APOE genotypes across a wide array of 

dementia disorders in a large dataset drawn from the Swedish dementia registry (Svedem) and 

the Swedish mortality registry. We hypothesized that (i) APOE ε4 would be most prevalent, 

and 2 least prevalent in AD, (ii) the ε4 allele would be associated with AD-like CSF 

biomarker profiles in AD and in other neurodegenerative diseases, and (iii) the 4 allele 

would be associated with shorter survival.  

2. Methods 

2.1 Subject cohort 

Four sources of information were joined to prepare the dataset used in this study.  

The first source was of a complete set of archived data on all clinical practice APOE genotype 

analyses and CSF Aβ42, T-tau and P-tau measurements made at the Sahlgrenska University 

Hospital, Sweden, from January 2002 to June 2012 extracted from the laboratory database.  

The second source of information was the Swedish mortality registry, a national resource 

maintained by the Swedish National Board of Health and Welfare, keeping complete records 

on all deaths in Sweden, including causes of death as established by the physician issuing the 

death certificate. This database was queried for underlying cause (i.e. diagnosis codes) and 

date of death for the patients in our dataset, and information on 1166 records was retrieved.  



The third data source was Svedem (the Swedish dementia registry) an initiative started in 

2007, with an aim to improve the quality of diagnostics, treatment and care in dementia by 

collecting clinical information on dementia patients in Sweden [25, 26]. From this data source 

information on 557 patients was fetched including clinical diagnosis coded as one of nine 

preset options: early onset AD (EAD, < 65 years of age), late onset AD (LAD, > 65 years of 

age), FTD, dementia with Lewy bodies (DLB), Parkinson’s with dementia (PDD), VaD, 

mixed AD and vascular dementia (MIX), dementia not otherwise specified (dementia NOS) 

and a group for the collected remainders of named dementia diagnoses called “other 

dementias”, including corticobasal syndrome, alcohol-related dementias, and other rare 

diagnoses. Reporting clinicians are instructed to follow diagnostic guidelines as specified in 

ICD-10 to secure a unified basis for diagnosis [27]. For the purposes of this study, and since 

we lacked diagnosis date for the patients drawn from the mortality registry, the EAD and 

LAD groups were merged into a joint AD group, and the NOS and “other dementias” groups 

were stripped out of the dataset. The study cohort was further sub-classified into 

biochemically positive or negative profile according to the international working group (IWG-

2) [28]. The following cutoffs for pathological biomarker concentrations were used: Aβ42 ≤ 

550 pg/mL, T-tau ≥ 400 pg/mL, P-tau > 60 pg/mL for patients < 60 years, and P-tau > 80 for 

patients ≥ 60 years [29]. Pathological concentrations of Aβ42 and at least either T-tau or P-tau 

were required for a biochemical AD positive classification. 

These data sources were cross-referenced using the Swedish personal identity number. Note 

that there was an overlap between the Svedem and the mortality registry records, where both 

sources were combined to retrieve data for a subset of the study cohort. Also note that date of 

death only was available for patients taken from the mortality registry. 



The fourth source of information was a set of 1265 healthy control subjects from a previous 

study by Zetterberg et al. [30]. The controls were all western Swedish residents and the 

majority (n = 980) were selected from population-based cohort studies, while 285 were 

recruited by advertisements in newspapers and at senior citizen meetings.  

2.2 Biochemical measurements 

CSF T-tau and P-tau concentrations were measured using enzyme-linked immunosorbent 

assays (ELISAs) (INNOTEST hTau Ag and Phospho-tau [181P]; Fujirebio, Ghent, Belgium) 

as previously described [31, 32]. CSF Aβ42 concentration was measured using a sandwich 

ELISA (INNOTEST β-amyloid[1-42]), specifically constructed to measure Aβ containing 

both the 1st and 42nd amino acids, as previously described [33]. The between-assay 

coefficients of variation (CV) for the T-tau and P-tau tests were 10.35 % and 10.19 % 

respectively (as determined by internal control samples during the entire study period). 

All CSF analyses were performed in clinical routine by board-certified laboratory technicians 

using procedures accredited by the Swedish Board for Accreditation and Conformity 

Assessment (SWEDAC). Longitudinal stability in the measurements was ascertained using an 

elaborate system of internal quality control samples and testing of incoming reagents, and 

further verified in the Alzheimer’s Association CSF Quality Control Program [34]. 

2.3 APOE genotyping 

APOE (gene map locus 19q13.2) genotyping was performed in blood by minisequencing or 

by TaqMan Single Nucleotide Polymorphism (SNP) Genotyping. Genotypes were obtained 

for the two SNPs, which are used to unambiguously define 2, 3, and 4 alleles (rs7412 and 

rs429358). 



2.4 Statistics 

Age distributions in subject groups were tested with ANOVA, and sex distribution by χ2 

statistics. Allele frequency and distributions in diagnosis groups and biochemical AD 

subgroups were analyzed by χ2-statistics and group differences by Kruskal-Wallis. 

Differences in life length between APOE genotype groups and between gene carriers and non-

carriers were analyzed by ANOVA, as was analysis of differences in age of diagnosis in AD. 

2.5 Ethics 

The study was approved by the regional ethical committee at the University of Gothenburg. 

 

3. Results 

3.1 Dataset description 

Demographics of study subjects are detailed in Table 1. The FTD subjects were significantly 

(p < .001) younger than the AD, MIX and VaD subjects. The VaD subjects were older (p 

< .05) than the AD, FTD, CJD and PDD subjects. Gender had no influence on any of the 

associations reported below.  

3.2 APOE allele frequencies across diagnoses 

Table 2 shows allele frequencies across diagnoses. The AD subjects had a higher ε4 allele 

frequency than the FTD (p<.001), VaD (p<.001) and healthy control (p<.001) groups. The 

MIX groups had a higher ε4 allele frequency than the FTD (p<.002), VaD (p<.001) and the 

healthy control groups (p<.001). The VaD group had a higher ε4 allele frequency than the 

healthy controls (p<.001).  



The AD subjects had a lower ε3 frequency than the VaD (p<.001) and FTD (p=.012) subjects 

and the healthy controls (p<.001). The VaD subjects had a higher ε3 frequency than the MIX 

(p=.002) and the healthy controls (p=.003). The MIX subjects had a higher ε3 frequency than 

the FTD group (p=.031). 

The ε2 allele frequency was lower in the AD and MIX groups than in the healthy controls 

(p<.001, p=.03).  

3.3 APOE ε2/ε3/ε4 allele carriers across diagnoses 

The AD group had a lower ε2 carrier proportion compared to the healthy controls (p<.05) 

(figure 1A). The ε3 carrier proportion was lower in the AD and MIX groups than in the 

healthy controls and VaD groups (p<.05) (figure 1B). The ε4 carrier proportion was higher in 

the AD and MIX groups than in the FTD, VaD and the healthy controls (p<.05), and also in 

VaD compared to the healthy controls (p<.05) (figure 1C). There were no other significant 

differences in ε2, ε3 and ε4 carrier proportions between subject groups. 

3.4 APOE in the biochemically AD-like  

Disregarding clinical diagnosis the ε4 allele frequency was higher (p<.001), and both the ε2 

and ε3 allele frequency was lower (p<.001, p<.001) in the biochemical AD positive subjects 

(Figure 2A). 

Figure 2 B shows the distribution of APOE alleles in the AD group, sub-classified into 

biochemical AD positive and negative subjects. The ε4 allele frequency was higher in the 

biochemical AD positive group than in the biochemical AD negative group (p<.001), and the 

ε3 allele frequency was lower (p<.001) but the ε2 allele frequency did not significantly differ 

(p=.262). 



3.5 APOE and life length 

In the full study cohort, excluding the healthy controls, the ε4 homozygous subjects had 

significantly shorter life length than the ε3 homozygous subjects (mean diff=2.1 years, 

p=.026). There were no other significant differences in life span between APOE genotype 

groups in the full study cohort. 

When comparing life length within the individual diagnostic groups, the ε4 homozygous AD 

subjects had shorter life length those who were ε2/ε4 (mean diff=4.5 years, p=.048), ε3/ε3 

(mean diff=2.6 years, p=.006) and ε3/ε4 (mean diff=2.3 years, p=.014) genotypes. There were 

no statistically significant differences in the other diagnostic groups. 

The ε4 carriers in the AD group had significantly (mean diff=1.0 years, p=.028) shorter life 

length than the ε4 non-carriers. There were no other significant differences in mean life length 

between ε4 carriers and non-carriers in any of the diagnosis groups. In this analysis ε2 carriers 

were excluded, since ε2 might serve as a protective trait.  

 

3.6 Age at diagnosis in AD 

In the subgroup of patients with AD pathology (AD + MIX) where dates of diagnosis were 

available (n=434), patients who were ε4 homozygous were younger at the date of diagnosis 

than the ε3 homozygous patients (mean diff=3.5 years, p=.01), and the patients with an ε3ε4 

configuration (mean diff=3.77 years, p=.001). 

 

4. Discussion 

We compared the APOE 2/3/4 genotype frequencies across a wide array of dementia 



disorders in a large cohort drawn from Swedish health registries. We found that the APOE ε4 

allele was most common in patients with AD, and that the ε4 allele was associated with a 

shorter lifespan and a more distinguished AD-like biomarker pattern in AD. 

Being an APOE ε4 carrier is a well-established and major genetic risk factor for AD[3, 8], and 

this was further corroborated in this study as the ε4 allele frequency was higher in the AD and 

MIX subjects than in any other group. The frequency of ε4 homozygous subjects and the 

proportion of ε4 carriers vs. non-carriers were also highest in AD with the MIX group a close 

second. Furthermore, the average lifespan of both ε4 carriers and homozygous ε4 subjects in 

AD was significantly shorter than non-carriers’. Previous studies have found evidence of the 

ε2 allele being associated with a longer lifespan [35], and that the ε4 allele is linked to a 

shorter life expectancy [36]; however, although the ε4 allele’s link to poor survival in AD 

might be indirectly implied, it has not been thoroughly investigated [37]. The shorter lifespans 

of the ε4 carriers might, at least in part, be attributed to an earlier onset of disease, as we 

found ε4 homozygotes to be younger than ε3 homozygotes and patients with an ε3ε4 

configuration at the date of diagnosis, corroborating previous studies [1, 38]. In fact, some 

studies have indicated that APOE might be a timing gene, rather than merely a risk gene, by 

showing that although disease onset is brought forward by being an ε4 carrier, the lifetime 

susceptibility of the disease might be unaffected [39]. We also found that the ε4 allele was 

associated with a biochemical AD-like profile, corroborating previous studies [40, 41].  

In the other diagnostic groups, we found that the VaD subjects had a significantly higher ε4 

allele frequency than the healthy controls, as previously shown in the literature [42]. 

However, these results should be interpreted with caution as AD and VaD are clinically hard 

to distinguish and concomitant AD pathology is common in VaD [43], as was further 

corroborated by the correlations between an biochemical AD positive biomarker profile and 



the ε4 allele in this study [41]. The FTD subjects, also keeping with previous studies [44], 

closely resembled the healthy controls in APOE allele and genotype frequencies. The DLB 

and PDD groups were small, which might explain why, although the ε4 allele frequency was 

found to be higher in these groups compared to the healthy controls, this failed to reach 

statistical significance. These results were, however, in keeping with previous studies, as the 

ε4 allele has previously been found to be associated with a greater risk of developing DLB 

and PDD. The presence of ε4 has also been related to a greater amount of senile plaques and 

neurofibrillary tangles in these diseases, suggesting that this may be driven by concomitant 

AD, a promoting effect of ɑ-synuclein on β-amyloid accumulation, or the other way around 

i.e. a promoting effect of β-amyloid on ɑ-synuclein accumulation [21, 45]. 

We studied only a small number of patients with CJD; whilst these individuals had had a 

lower ε2 and higher ε4 allele frequency than the healthy controls, no significant differences 

between them and the other groups were found, likely reflecting the small sample size. These 

results are, however, keeping with previous studies. In meta-analysis an association between 

the ε4 allele and CJD has been shown [46], and synergistic effects between APOE ε4 and the 

PRNP gene, the most prominent risk factor of CJD, has been suggested in both AD and CJD 

[47]. 

The main strength of this study was the large study population size and the diversity of 

dementia disorders represented in it, but there are also a number of limitations to this study. 

The main one was that most APOE genotypes analyzed in this study were determined in 

clinical routine, introducing a risk of circular reasoning as the results of the genotyping might 

have influenced the physician’s diagnostic formulation. Another limitation is that the majority 

of patients were diagnosed only clinically, which is known to introduce a high misdiagnosis 

rate, with low specificity figures (44-71%) for AD, and a large proportion (39%) of clinically 



diagnosed FTD, LBD and VaD patients showing AD pathology at autopsy [48]. On the other 

hand, APOE genotype is not included in any of the diagnostic criteria for AD or any of the 

other dementia disorders and there are no guidelines on how to interpret APOE genotype 

results in clinical practice. Some of the diagnostic information in this study was taken from 

the death certificates of the included subjects, and some from Svedem. The diagnostic 

information taken from the death certificates might be more unreliable as the issuing 

physician is typically not an experienced neurologist or expert in dementia, in contrast to the 

physicians who report into Svedem, all of whom are specially trained in the evaluation of 

dementias. In the absence of autopsy confirmation, the clinical diagnosis may be less accurate 

in a proportion of cases. Finally, the lack of detailed genetic information on our study subjects 

preclude GWAS style analysis of other potential genes and SNPs that might influence the 

impact of the ApoE genotype in the diseases covered in this study.  

 

5. Conclusions  

The APOE ε4 allele frequency and ε4 carrier proportion was significantly higher in AD than 

in healthy controls and the ε4 allele was associated with a shorter lifespan and a more AD-like 

CSF biomarker pattern in AD. The APOE 4 allele frequency was also higher in MIX and 

VaD as compared to the healthy controls. The results of this study highlight the significance 

APOE genotyping, and confirm the relationship between APOE 4 and AD. Our finding that 

APOE 4 genotype influences not only the CSF profile, but also life-span, may have clinical 

application not only in AD, but also in mixed dementia and VaD. 
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Figure legends 

Figure 1. Allele carrier proportions 

Proportions of allele carriers vs. non-carriers in the study cohort groups. Diagnosis groups 

are represented on the x-axis, and percentages on the y-axis. 

A. ε2. Proportions of ε2 carriers. 

B. ε3. Proportions of ε3 carriers. 

C. ε4. Proportions of ε4 carriers. 

Figure 2. APOE genotypes 

Proportions of APOE genotypes in biochemical AD positives vs. biochemical AD negatives. 

Genotypes are represented on the x-axis, and percentages on the y-axis. 

A. Full study cohort. Proportions in the full study cohort. 

B. AD group. Proportions in the collected AD group (LAD+EAD+MIX). 

 



Table 1. Demographics of study cohort 

Diagnosis   HC AD MIX VaD FTD DLB PDD CJD 

Sex F (n) 792 654 79 107 23 3 6 5 

 M (n) 473 444 66 153 26 10 15 2 

Age at sampling n 1265 1098 145 260 49 13 21 7 

 Mean (SD) 73 (6) 72 (8) 75 (6) 76 (7) 64 (9) 70 (8) 69 (6) 66 (12) 

 Mdn (IQR)  73 (67-78) 75 (71-79) 76 (71-81) 64 (58-72) 72 (64-76) 69 (67-74) 63 (61-78) 

Aβ42 [ng/L] n 160 1077 145 254 48 13 21 6 

 Mean (SD) 712 (189) 404 (164) 436 (179) 521 (221) 624 (240) 589 (277) 587 (207) 402 (198) 

 Mdn (IQR)  380 (290-485) 400 (330-490) 480 (360-620) 577 (500-750) 570 (430-800) 619 (410-687) 355 (260-573) 

T-tau [ng/L] n 160 1017 144 246 48 13 21 7 

 Mean (SD) 351 (155) 744 (397) 639 (322) 475 (277) 423 (188) 345 (201) 370 (185) 2844 (1460) 

 Mdn (IQR)  697 (485-900) 590 (410-820) 410 (280-596) 389 (290-568) 340 (220-390) 340 (250-394) 3810 (1280-4040) 

P-tau [ng/L] n 130 618 131 163 37 13 18 5 

 Mean (SD) 62 (18) 95 (40) 83 (33) 59 (29) 55 (15) 51 (24) 53 (21) 49 (25) 

  Mdn (IQR)  89 (67-114) 80 (57-104) 53 (42-66) 54 (43-66) 48 (35-60) 52 (37-60) 36 (34-68) 

 

  



Table 2. Allele frequencies 

 

Alleles ε2 ε3 ε4 χ2 p-value  ε2/ε2 ε2/ε3 ε2/ε4 ε3/ε3 ε3/ε4 ε4/ε4 χ2 p-value 

HC 188 (7.4%) 1956 (77.3%) 386 (15.3%) n.a.  10 (0.8%) 140 (11.1%) 28 (2.2%) 760 (60.1%) 296 (23.4%) 31 (2.5%) n.a. 

AD 60 (2.7%) 1195 (54.4%) 941 (42.9%) ***  0 (0.0%) 30 (2.7%) 30 (2.7%) 335 (30.5%) 495 (45.1%) 208 (18.9%) *** 

MIX 8 (2.8%) 158 (54.5%) 124 (42.8%) ***  0 (0.0%) 6 (4.1%) 2 (1.4%) 38 (26.2%) 76 (52.4%) 23 (15.9%) *** 

VaD 78 (5.6%) 1173 (68.5%) 549 (26.0%) ***  3 (1.2%) 20 (7.7%) 3 (1.2%) 122 (46.9%) 92 (35.4%) 20 (7.7%) *** 

FTD 7 (7.1%) 71 (72.4%) 20 (20.4%)   0 (0.0%) 4 (8.2%) 3 (6.1%) 26 (53.1%) 15 (30.6%) 1 (2.0%)  

DLB 2 (7.7%) 17 (65.4%) 7 (26.9%)   0 (0.0%) 1 (7.7%) 1 (7.7%) 6 (46.2%) 4 (30.8%) 1 (7.7%)  

PDD 3 (7.1%) 28 (66.7%) 11 (26.2%)   0 (0.0%) 3 (14.3%) 0 (0.0%) 8 (38.1%) 9 (42.9%) 1 (4.8%)  

CJD 0 (0.0%) 11 (78.6%) 3 (21.4%)   0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (57.1%) 3 (42.9%) 0 (0.0%)  

 

*** p < .001, ** p < .01, * p < .05 

P-values were derived from the comparison of each patient group and controls. 

 



 

 









 

 

 


