An Index for T-wave Pointwise Amplitude Variability Quantification
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Abstract

The comparison between the pointwise amplitude of dif-
ferent T-waves provides insight into ventricular repolar-
ization liability. However, T-wave pointwise amplitude
variability can be confounded by time-domain variability.
We, first, compared two algorithms for removing (warp-
ing) time-domain variability, one using the original and
another one using a transformed T-wave (SRSF). We, next,
compared the robustness against noise of two markers,
dy and d,, of pointwise amplitude variability, after warp-
ing the underlying temporal variability with the preferred
warping algorithm. d, was obtained from the transformed
T-waves while d, was proposed in this work and was de-
rived from the original T-waves. We, finally, used the most
robust marker to measure the T-wave pointwise amplitude
variability between every T-wave recorded during a Tilt
test and their mean T-wave. Results showed that the pre-
ferred warping algorithm was the SRSF because it is not
affected by differences between the amplitudes of the orig-
inal T-waves. In addition, the marker d, presented lower
relative error values than d,, for every level of noise. The
analysis of electrocardiogram records showed that d, was
significantly lower during the tilt than in supine position (-
5.5 % vs 6.5 %, p<0.01). In conclusion, d, robustly quan-
tifies physiological variabilities of the T-wave amplitude,
showing its potential to be used as an arrhythmic risk pre-
dictor in future clinical situations.

1. Introduction

The T-wave on the electrocardiogram (ECG) reflects the
spatio-temporal repolarization heterogeneity of the ven-
tricular myocardium and its duration and amplitude are
commonly used to diagnose pathologies and assess risk
of malignant arrhythmias [1]. Variabilities in such spatio-
temporal repolarization heterogeneities are associated with
increased arrhythmic risk [2], and this motivates the quan-
tification of the variations of the amplitude of the T-
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wave. However, those repolarization heterogeneities, or
other physiological situations like changes in the heart rate,
might induce variabilities in the temporal domain (such as
stretches and translations of the T-wave) that need to be
separated (warped) from the variability along the ampli-
tude domain. This motivates the seek for a robust marker
of T-wave pointwise amplitude variability, independent
from the underlying time-domain variability. The most
traditional algorithm for time-domain warping is the dy-
namic time warping (DTW) [3], which performs a sample-
to-sample projection of two T-waves that aims at minimiz-
ing the Euclidean distance between them. DTW leads to a
warping function that can be used to remove the time do-
main variability present in the original T-waves. Recently,
a variation of DTW based on a mathematical representa-
tion of the signals, called the “square-root slope function”
(SRSF), was proposed [4,5]. The SRSF transformation
improves alignment and provides fundamental mathemat-
ical equalities that lead to a formal development of the
warping problem. In this framework, a marker of ampli-
tude variability, d,, is defined as the Euclidean distance of
the difference between the SRSFs of the reference and the
warped T-waves.

The first objective of this study is to compare the per-
formances of the DTW and SRSF warping algorithms
in removing time-domain variability. Next, we propose
a biomarker of T-wave pointwise amplitude variability,
dq, and compare its robustness against additive Laplacian
noise with that from d,, after warping the underlying tem-
poral variability with the preferred warping algorithm. Fi-
nally, we use the marker with higher robustness to measure
the pointwise amplitude variability induced by a Tilt test.

2. Methods

2.1. Amplitude Variability Quantification

Consider f"(t") = [f"(t"(1)),..., f7(t"(N,))]T and
7)) = (), L N))], as two T
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waves, where t" = [t"(1),...,t"(N,)]T and t* =
[t°(1),...,t5(N,)]T, and N, and N, are the total duration
of t" and t°, respectively. We take f"(¢") as the reference
T-wave and f*(t°) as the T-wave to be compared with re-
spect to f"(¢").

Let «y(t") be the warping function that relates " and
t°, such that the composition f*(~(t")) denotes the re-
parameterization or time domain warping of f°(¢°) using
~(t"), i.e. f°(y(t")) represents the amplitude values of
7 (t%) if its temporal vector was t”. Then, the DTW algo-
rithm finds the optimal warping function, v (t"), as:

Y () = arg(tmr)in UF" @) = £y @D - M

The SRSF of a T-wave f(t) is defined in the following
form [4,5]:

a; () =sign (F (1)) -

If we warp a f(t) by v(t), the SRSF of f(~(¢)) is given
by: q;(v(t)) - \/7(t). Now, the optimal warping function
was proposed in [4, 5] as the function that minimizes the
Euclidean distance of the difference between the SRSF of
the original signals, obtaining a transformed warping func-
tion, denoted as v, (t"):

Vi (t7) =angmin ([la (@) - ap. (v (¢) - VA

@) @

3

Using the optimal warping function we can define two

markers of pointwise amplitude variability, that are inde-
pendent from the underlying time-domain variability:

Vy

s (&) —qps (viw (7)) - \/Fiw (E) |l

dy =sign (ey) - | ar @] x 100,
NT
ey = Z vy (n). (C))
n=1
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dq=sign (e,) - [ )||frf(t£’)7]| @) x 100,
N,
eazz Ve (n). 5)
n=1

2.2.  Signal Preprocessing

Preprocessing of the ECG signals included low-pass fil-
tering at 40 Hz to remove electric and muscle noise but to
allow QRS detection, cubic splines interpolation for base-
line wander removal and ectopic beats detection. Principal
Component Analysis was calculated lead-wise over the T-
waves from the available leads to emphasize the T-wave
energy, improve its delineation and enhance morphologi-
cal differences [6].

).

Each T-wave from the first principal component was
selected using the T-wave onset and T-wave offset delin-
eation marks [7]. Then, each T-wave was further low-pass
filtered at 20 Hz to remove the components that could po-
tentially corrupt the T-wave shape.

2.3. Simulation Study

The accuracy of the different markers of T-wave ampli-
tude variability, d,, and d,, in detecting T-wave amplitude
variations was assessed by simulating, under the presence
of different levels of additive noise, controlled variations
in the T-wave duration and amplitude.

Let the T-wave from a reference noise-free cardiac beat,
sampled at 1 kHz, be the reference T-wave, f"(t").

T-wave amplitude variability was modelled by multiply-
ing the deviations from the iso-electric line of each i-th
T-wave by a sinusoidally evolving factor in the following
way:

FEA)=f () (1 +0.25 - sin <7T§Z_11)>) , (6)
i=1,.,1

) )

T-wave time domain modulation was introduced by
modifying the temporal domain of f"(¢") according to the
following equation:

T o__ 47 a(i)
b=+ ) - ). (AT

a(i) = <0'4}r’(1:1) +0.8> ,oi=1,..,1 (7)

where 7 indexes each heart beat, and [ is the total num-
ber of modulated beats. The i-th modulated cardiac beat
was obtained by transforming f"(t") to f;(¢;). Then, a
simulated ECG signal was obtained by concatenating the
I = 300 modulated cardiac beats following the reference
cardiac beat. This led to a 301-beat ECG signal. This sim-
ulated ECG signal was preprocessed, QRS detected and
delineated, and the T-waves were delimited as explained
in section 2.2. The reference d,, = [d}(1),...,d}(I)] and
d, = [dy(1),...,dy(I)] series were obtained by warping
each f;(t7) with respect to f"(¢"), using (3) and applying
egs. (4) and (5).

Then, zero mean Laplacian noise was iteratively added
to the simulated ECG signal, such that the signal-to-noise
ratio (SNR) was, in decibels (dB): SNR = {5, 10, ..., 35}.
The estimated dy " = [d3"[1],...,d3"[I]] and d)* =
[dy"[1], ..., d3"[I]] series were obtained by comparing the
T-waves from the noisy modulated ECG signal with the
noisy reference T-wave, located in the first beat. The esti-
mation errors were, then, calculated as:

L (™ (6) — dr (i)’
Sy (dr (i)?

eq (SNR) = x 100, (8)
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Original data: Warping using SRSF
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Figure 1. Comparison of DTW and SRSF warping algorithms. Panels (a) and (c) show £ (") (solid blue) and o0 (tsy) (dashed red). The dotted
lines illustrate the relation between ¢” and ¢° using 4, (t") and v, (£"), respectively (plotted in panel (e)). Panels (b) and (d) show f5,(~vw (")) and

T 500 (Vaw (t7)), respectively.

where d = {d,,d,}. The noise generation and relative
error measurement steps were repeated 50 times in order
to have robust relative error values.

2.4. Real ECG

ECG recordings from a database acquired at the Univer-
sity of Zaragoza for the study of the autonomic nervous
system (ANS-UZ) were analyzed [8]. Recordings were
obtained from 17 healthy subjects (age 28.542.8 years,
11 males) with no previous medical history related to car-
diovascular diseases. Each recording consisted of 8 ECG
leads, sampled at 1 KHz, acquired during a 13-min head-
up tilt test (4-min supine, 5-min at 70°, 4-min supine).

The ECG recordings were preprocessed and delineated
and d,, series were obtained for each subject by comparing
each T-wave with the mean of the T-waves in each ECG
recording.

We assumed stationariness in three intervals, early supine,
Tilt, and late supine, as done in [9]. These windows had a
length of 20 beats and finished 30 s before any transition
during the tilt test. The statistical significance between the
median RR values and the median of d,, calculated within
each interval, was evaluated using the Wilcoxon signed-
rank test.

3. Results and discussion
3.1.

Figure 1 shows an example of DTW (eq. (1)) and SRSF
(eq. (3)) warping algorithms for ¢ = 200 in the simulation
study. Panel (a) shows f"(¢") (solid blue) and f3, (t5,)

(dashed red), where the simulated amplitude scaling (by

Simulation Study

a factor of 1.2) and temporal asymmetry (o(20) = 1.1)
can be appreciated. The warping algorithm is expected to
selectively compensate for the time-domain variability, so
the resulting warped T-wave should be a scaled version
of f"(t"). However, this is obtained only using SRSF
(right panels), because DTW (left panels) jointly compen-
sates for time and amplitude, providing a warped T-wave
different from the expected one. The black dotted lines
illustrate the pointwise warping reflected by % (¢") (de-
picted on panel (e)). The resulting warped fi (v ("))
is shown in panel (b). It can be observed how DTW pro-
duces a singularity, or unintuitive warping, leading to a de-
generate warped T-wave. This occurs because DTW com-
pares amplitude values, rather than match the features of
both T-waves (up-/downslopes, peaks, etc). For instance,
in panel (a), v%(t") has matched the peak of f"(t") to
the first point found in f; (¢5,) with the same amplitude
value, without considering if this point is also the peak.
Panels (c) and (d) show the same process, but using the
SRSF warping algorithm. SRSF is based on the compar-
ison of two transformed functions that are proportional to
the derivative of the original signals so that, together with
its built-in regularization term, 1/~ ("), SRSF achieves
a feature-to-feature warping (green dotted lines, panels (c)
and (e)), leading to a warped f; (v%,(t")) that is just a
scaled version of f"(¢"), as expected. Therefore, we will
use X, (t") as the optimal warping function in the rest of
this document.

Figure 2 shows the mean+standard deviation of the rel-
ative error between d;* and d;, (blue), and d;* and d
(red), for different values of SNR. The relative error val-
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Flgure 2. Relative error between reference and estimated dg (solid
blue) and d, (dashed red) under the presence of additive Laplacian noise.

ues of d,, are higher than those from d, for every value of
SNR (Figure 2). This is because the SRSF transforma-
tion used for the calculation of d, (eq. 4) highlights the
high-frequency components of the signal, resulting in less
robust estimates against additive broadband noise.

3.2. Real ECG
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Figure 3. Median (blue) and median + median absolute deviation
(red) of the RR (top panel) and d, (bottom panel) series during a Tilt
test, calculated across subjects. Vertical lines indicate the start and end of
the change in the table tilt.

We used d, to measure the T-wave amplitude variability
produced by a Tilt test, after warping its time-domain vari-
ability with v, ("), since, as previously shown, %, (¢")
efficiently removes the underlying time-domain variability,
and d,, is more robust against noise than d,,.

The median + median absolute deviation of the resulting
RR and d,, series, calculated across subjects, are reported
in Figure 3. It can be observed how the d, series follows
the same dynamic as the RR series, with negative values
during the Tilt, showing that an orthostatic challenge pro-
vokes a reduction in the amplitude of the T-waves. Table 1
shows that the median values of RR and d, were signifi-
cantly smaller during the Tilt than during supine position.

Early Supine Tilt Late Supine
RR [s] 1.01 (0.1) 0.77(0.2)* 1.06(0.2)F
d, [%]  6.54(14.5) —5.54(22.6)*  6.56(6.9)F

* Indicates significantly different (p<< 0.01) with respect to Early Supine.
t Indicates significantly different (p<< 0.01) with respect to Tilt.

Table 1. Temporal evolution of the median (interquartile range), cal-
culated across subjects, of RR and d, during a Tilt test.

4. Conclusions

The present paper proposes a novel bio-marker for T-
wave pointwise amplitude variability quantification, d,,

independent from the underlying time domain variability.
The index, d,, was proven to be robust against noise and
showed that significant changes occur in the pointwise T-
wave amplitude during head-up tilt.

The predictive value of this new marker of T-wave vari-
ability will be assessed in future studies to determine
whether it may improve or complement existing markers
[2,10].
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