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Abstract
Alzheimer’s disease (AD) is associated with extensive alterations in grey matter microstruc-

ture, but our ability to quantify this in vivo is limited. Neurite orientation dispersion and

density imaging (NODDI) is a multi-shell diffusion MRI technique that estimates neuritic

microstructure in the form of orientation dispersion and neurite density indices (ODI/NDI).

Mean values for cortical thickness, ODI, and NDI were extracted from predefined regions of

interest in the cortical grey matter of 38 patients with young onset AD and 22 healthy con-

trols. Five cortical regions associated with early atrophy in AD (entorhinal cortex, inferior

temporal gyrus, middle temporal gyrus, fusiform gyrus, and precuneus) and one region rela-

tively spared from atrophy in AD (precentral gyrus) were investigated. ODI, NDI, and cortical

thickness values were compared between controls and patients for each region, and their

associations with MMSE score were assessed. NDI values of all regions were significantly

lower in patients. Cortical thickness measurements were significantly lower in patients in

regions associated with early atrophy in AD, but not in the precentral gyrus. Decreased ODI

was evident in patients in the inferior and middle temporal gyri, fusiform gyrus, and precu-

neus. The majority of AD-related decreases in cortical ODI and NDI persisted following

adjustment for cortical thickness, as well as each other. There was evidence in the patient

group that cortical NDI was associated with MMSE performance. These data suggest distinct

differences in cortical NDI and ODI occur in AD and these metrics provide pathologically rele-

vant information beyond that of cortical thinning.
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1 | INTRODUCTION

There is considerable interest in quantifying the neuropathological

alterations associated with Alzheimer’s disease (AD) using in vivo imag-

ing techniques. An extensive body of literature utilizing volumetric T1-

weighted MRI has highlighted that widespread cortical atrophy occurs

in multiple brain regions affected by AD pathology (Apostolova et al.,

2007; Becker et al., 2011; Bourgeat et al., 2010; Chetelat et al., 2012;

Dickerson et al., 2009, 2001; Fox et al., 2001; Frisoni, Prestia, Rasser,

Bonetti, & Thompson, 2009; Harper et al., 2017; Jack et al., 2015;

LaPoint et al., 2017; Lerch et al., 2004; Prestia et al., 2010; Singh et al.,

2006; Thompson et al., 2003; Whitwell et al., 2013, 2008; Xia et al.,

2017). Decreased dendritic arborization, loss of dendritic spines, and

loss of synapses have been observed in neuropathological studies of

AD and have been shown to be associated with cognitive deficits

(Baloyannis, Manolides, & Manolides, 2011; Davies, Mann, Sumpter, &

Yates, 1987; DeKosky and Scheff, 1990; Masliah, Terry, DeTeresa, &

Hansen, 1989; Scheff, Price, Schmitt, & Mufson, 2006; Scheff, Price,

Schmitt, DeKosky, & Mufson, 2007; Scheff, Price, Schmitt, Scheff, &

Mufson, 2011; Scheff and Price, 1993; Terry et al., 1991).

However, research into imaging techniques that can quantify AD-

related differences in cortical microstructure in vivo has been relatively

limited. Diffusion MRI, which measures the directionally-dependent dif-

fusion of water molecules, has been extensively applied to the study of

white matter in AD, and has also been proposed as a method of assess-

ing the microstructural properties of grey matter (Weston, Simpson,

Ryan, Ourselin, & Fox, 2015). Many diffusion MRI studies investigating

AD published thus far have used diffusion tensor imaging (DTI) analysis.

Differences in DTI metrics in the cortex have been associated with clini-

cally established AD (Rose, Janke PhD, & Chalk, 2008), conversion to

AD from mild cognitive impairment (Scola et al., 2010), cognitive decline

(Jacobs et al., 2013), cerebrospinal fluid (CSF) biomarkers of AD pathol-

ogy in cognitively normal individuals (Montal et al., 2017), and have

been used to differentiate dementia subtypes (Kantarci et al., 2010).

A limitation of the DTI model is that it can only assess diffusion of

water molecules across the entire voxel. An important development

has been multi-shell diffusion MRI techniques that allow more

advanced modeling of the diffusion signal, such as neurite orientation

dispersion and density imaging (NODDI) (Zhang, Schneider, Wheeler-

Kingshott, & Alexander, 2012); a clinically feasible approach that can

derive tissue-specific microstructural information from multiple com-

partments within a voxel. The NODDI model assumes that water mole-

cules in neuronal tissue can be considered within three separate

compartments: (a) free water, representing CSF; (b) restricted water,

representing neurites; and (c) hindered water, representing diffusion

within glial cells, neuronal cell bodies and the extracellular environment.

This enables estimation of the neurite density index (NDI), with values

ranging from 0 to 1 (higher values reflecting increased neurite density);

and orientation dispersion index (ODI), which provides information

regarding the extent of neurite dispersion (values of 0 equating to no

dispersion and values of 1 equating to full dispersion). This and related

modelling approaches in the context of grey matter provides informa-

tion regarding the structural organization of neuronal dendritic trees.

Furthermore, the capacity to model the fraction of free water reduces

the risk of partial volume effects from CSF contamination influencing

NODDI metrics, something which is not explicitly considered within

the DTI model (Zhang et al., 2012) and often significantly influence DTI

based studies of grey matter in AD (Henf, Grothe, Brueggan, Teipel, &

Dyrba, 2017; Jeon et al., 2012). Differences in cortical NODDI metrics

have been reported in ageing (Nazeri et al., 2015), Parkinson’s disease

(Kamagata et al., 2017), schizophrenia (Nazeri et al., 2016), multiple

sclerosis (Granberg et al., 2017), and transgenic murine models of AD

tauopathy (Colgan et al., 2016). To date, no studies have been

published assessing cortical microstructure using NODDI in human AD.

Within the wide clinical spectrum of AD, an interesting and rela-

tively understudied patient group is those with young onset AD

(YOAD—defined as symptom onset<65 years). Although less preva-

lent than in older age ranges, AD still represents the biggest cause of

dementia before the age of 65 (Harvey, Skelton-Robinson, & Rossor,

2003) and often poses a significant diagnostic challenge and is more

likely to present with nonamnestic phenotypes (Rossor, Fox, Mum-

mery, Schott, & Warren, 2010; Slattery et al., 2017). An advantage of

studying such patients is they often have fewer age-related co-morbid-

ities than patients with later onset disease, where co-existing patholo-

gies can confound analyses of brain structure. Studies specifically

focusing on grey matter atrophy in YOAD have revealed extensive

cortical atrophy compared to healthy controls (Cho et al., 2013; Frisoni

et al., 2007; Harper et al., 2017; Ishii et al., 2005; M€oller et al., 2013;

Ossenkoppele et al., 2015). Similarly, recent data from tau PET imaging

studies have provided evidence of diffuse neurofibrillary tangle deposi-

tion in the neocortex in YOAD (Ossenkoppele et al., 2016).

In this article, we applied a cross-sectional surface-based region of

interest (ROI) cortical analysis approach using NODDI metrics and cort-

ical thickness derived from T1-weighted images to a population of

patients with YOAD, as well as age-matched healthy controls to inves-

tigate the following hypotheses: (a) differences in NODDI metrics mir-

ror patterns of macroscopic atrophy in regions known to undergo early

AD-related pathological change, (b) NODDI metrics provide distinct
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information regarding AD-related pathology above and beyond meas-

ures of cortical thickness, (c) differences in NODDI metrics are evident

in a brain region vulnerable to AD pathology but known to be relatively

spared of atrophy (the precentral gyrus) (Albers et al., 2015; Braak

and Braak, 1991; Buchman and Bennett, 2011; Frisoni et al., 2007;

Horoupian and Wasserstein, 1999; Suv�a et al., 1999), implying NODDI

is a more sensitive marker of cortical pathology than macroscopic

measures, and (d) NODDI metrics are associated with a global score of

cognition.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 45 patients meeting consensus criteria for probable AD

(McKhann et al., 2011) with symptom onset <65 years were recruited

prospectively from 2013 to 2015 from a specialist cognitive disorders

clinic (Slattery et al., 2017). All participants underwent detailed clinical

assessment, which included the Mini–Mental State Examination(MMSE)

(Folstein, Folstein, & McHugh, 1975). Documentation of the age at

symptom onset and the presenting cognitive symptom were recorded

for all patients. Patients were classified as having a typical (McKhann

et al., 2011) or atypical AD (Tang-Wai et al., 2004) phenotype according

to published criteria. Twenty-eight of those patients were classified as

having typical AD (amnestic presentation), while 17 patients were classi-

fied as having atypical AD (14 of which had a visual symptom-led poste-

rior cortical atrophy phenotype). Twenty-four participants with no

history of cognitive concerns were recruited as healthy controls

matched for mean age and gender and were predominantly spouses of

the YOAD patients. Ethical approval was obtained from the National

Hospital for Neurology and Neurosurgery Research Ethics Committee

and written informed consent was obtained from all the participants.

2.2 | MRI acquisition

All participants were scanned on the same Siemens Magnetom Trio

(Siemens, Erlangen, Germany) 3 Tesla MRI scanner using a 32-channel

phased array receiver head coil. Sequences utilized for this analysis

included sagittal 3D MPRAGE T1-weighted volumetric MRI (TE/TI/

TR52.9/900/2,200 ms, matrix size 256 3 256 3 208, voxel size 1.13

1.1 3 1.1 mm3), B0 field mapping (TE1,2/TR54.92,7.38/688 ms, matrix

size 64 3 64 3 55, voxel size 3 3 3 3 3 mm3; total time59 min 23 s),

and a three shell diffusion sequence optimized for NODDI processing

(Slattery et al., 2017) (64, 32, and 8 diffusion-weighted directions at

b52,000, 700, and 300 s/mm2; 14 interleaved b50 images; 55 slices;

voxel size 2.5 3 2.5 3 2.5 mm; TE/TR592/7,000 ms; total time516

min 13 s). A twice-refocused spin echo was utilized to minimize distor-

tion effects from eddy-currents. All scans were visually assessed for

quality control purposes, based on coverage and movement artefact.

2.3 | Cortical reconstruction of structural imaging

Automated surface-based reconstruction of T1-weighted volumetric

images was performed using Freesurfer version 6.0 (http://surfer.nmr.

mgh.harvard.edu/). This procedure has been described in detail and

validated in previous publications (Dale, Fischl, & Sereno, 1999; Fischl

and Dale, 2000). Briefly, the image processing involves intensity

normalization, skull stripping, segmentation of white matter, and tessel-

lation of the grey/white matter boundary. This surface is then used as

the starting point for a deformable surface algorithm to find the grey

matter/white matter and grey matter/cerebrospinal fluid surfaces.

All cortical segmentations were visually inspected slice by slice for

accuracy (Figure 1, panel a).

2.4 | Cortical thickness estimation

Cortical thickness estimates were obtained using Freesurfer by calcu-

lating the mean distance between grey matter/white matter and grey

matter/cerebrospinal fluid surfaces at each vertex across the cortical

mantle (Dale et al., 1999; Fischl and Dale, 2000). These thickness meas-

ures were then mapped to the inflated surface of each participant’s

reconstructed brain.

2.5 | Diffusion-weighted MRI processing

Images were confirmed by visual inspection to have minimal eddy-

current distortion and were corrected for motion by rigidly registering

each diffusion-weighted image to the first b50 image from the

b52,000 s/mm2 series using FLIRT (Jenkinson, Bannister, Brady, &

Smith, 2002; Jenkinson and Smith, 2001). ODI and NDI maps were

estimated using the NODDI Matlab toolbox (http://www.nitrc.org/

projects/noddi_toolbox). The acquired field maps were then registered

to the first b50 and used to correct the ODI and NDI maps for EPI

distortion (Daga et al., 2014). To provide a mask for field map process-

ing a total intracranial mask (Malone et al., 2015) generated from

SPM12 (http://www.fil.ion.ucl.ac.uk/spm) segmentation was propa-

gated from the T1 to diffusion volumes by a union of direct affine

transformation and nonlinear transformation to provide maximal cover-

age before and after susceptibility correction. Structural T1 to diffusion

b50 and diffusion to field map magnitude registration was carried out

using Niftyreg (Modat et al., 2014) (Figure 1, panel b). All registrations

were visually inspected for accuracy. ODI and NDI values were then

sampled from the midpoint of the cortical ribbon (i.e. 50% of the corti-

cal thickness along the surface normal to the grey matter/white matter

surface) and subsequently projected to an inflated surface to create

ODI and NDI surface maps using the mri_vol2surf function in Freesur-

fer (Figure 1, panel c).

2.6 | Cortical ROIs

Mean cortical thickness, ODI, and NDI values across both hemispheres

were extracted for a number of a priori cortical ROIs from Freesurfer’s

gyral based Desikan parcellation using the mris_anatomical_stats func-

tion in Freesurfer (see panel d in Figure 1). Five of the ROIs were cho-

sen on the basis of being early sites of neuropathological change in AD.

These included four regions that comprise the Mayo Clinic cortical sig-

nature of AD (entorhinal cortex, inferior temporal gyrus, middle tempo-

ral gyrus, and fusiform gyrus) (Jack et al., 2015; Schwarz et al., 2016),
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all of which have been implicated to undergo grey matter atrophy at a

relatively early stage of AD (Braak and Braak, 1991; Dickerson et al.,

2011; Jack et al., 2017; Petersen et al., 2016; Weston et al., 2016) and

the precuneus, which has been reported to undergo more pronounced

atrophy in YOAD patients (Ishii et al., 2005; Karas et al., 2007; M€oller

et al., 2013). To investigate if cortical NODDI metrics are potentially a

more sensitive marker of AD pathology than cortical macrostructural

metrics, the precentral gyrus (primary motor cortex) was included as a

ROI. The precentral gyrus is relatively spared from atrophy in YOAD

(Frisoni et al., 2007), but there is evidence from neuropathological stud-

ies that the primary motor cortex is vulnerable to significant levels of

AD related pathology (Albers et al., 2015; Braak and Braak, 1991;

Buchman and Bennett, 2011; Horoupian and Wasserstein, 1999; Suv�a

et al., 1999).

2.7 | Exclusions

One patient with typical AD was found to have an autosomal dominant

genetic cause of dementia (Beck et al. 2014) and was excluded from

the analysis. YOAD patients with language-led or behavioral pheno-

types were not included in the analysis due to limited numbers (n52

and n51, respectively). One YOAD patient failed Freesurfer process-

ing. Three YOAD patients and two healthy control participants were

excluded on the basis of severe motion artefact identified during visual

inspection of the diffusion weighted MRI images.

2.8 | Statistical analysis

Sixty participants (38 YOAD and 22 controls) were included and Stata

version 14 was used for analysis. Demographics and clinical characteris-

tics were compared between each group. For continuous characteristics

two-sample t tests were used, or where there was a material departure

from a normal distribution, a Wilcoxon rank sum test was used. Categori-

cal characteristics were compared between groups using Fisher’s exact

test due to the relatively small numbers in each group. Unadjusted com-

parisons of cortical thickness, ODI and NDI between patient groups for

each ROI was performed using two-sample t tests, with Satterthwaite’s

approximation to allow for unequal variances. Given the large voxel size

of diffusion-weighted MRI images and the consequent increased risk of

contamination of the cortical ribbon with non-grey-matter voxels with

cortical thinning, linear regression comparing mean ODI and NDI values

between groups after adjustment for mean cortical thickness values in

each ROI (with robust standard errors to allow for heteroscedasticity)

was also performed. The NODDI model, by construction, treats NDI and

ODI as two independent measures that quantify distinct, but comple-

mentary aspects of microstructure. To investigate whether YOAD-

related differences in ODI or NDI occurred independent of each other

we performed linear regression models in each ROI (again with robust

FIGURE 1 Steps involved in surface-based region of interest
cortical analysis of NODDI maps. (a) Reconstruction of structural
imaging, (b) NODDI maps registered to structural imaging, (c) neo-
cortical midpoint values from ODI/NDI maps projected to inflated
surface, and (d) mean ODI/NDI values at each neocortical midpoint
extracted for each ROI from Desikan atlas. Key: GM5 grey matter;
WM5white matter; CSF5 cerebrospinal fluid; ODI5orientation
dispersion index; NDI5 neurite density index; ROI5 region of
interest [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Demographics, clinical, and genetic characteristics

HC (n5 22) YOAD (n538) p value

Age (years) 60.6 (5.6) 61.1 (4.9) .71a

% Female 54.5% 60.5% .79b

Age at onset (years) n/a 56.3 (4.4) n/a

Disease duration n/a 4.8 (2.6) n/a

MMSE score 29.5 (0.7) 21.2 (4.6) <.0001c

Years of education 16.5 (3.3) 15.5 (2.4) .15a

Note. Abbreviations: HC5healthy controls; YOAD5 young onset
Alzheimer’s disease; n5 number; SD5 standard deviation;
MMSE5Mini-Mental State Examination.
All data are mean (SD) unless stated otherwise.
aTwo-tailed t test.
bTwo-sided Fisher’s exact.
cWilcoxon rank sum.
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standard errors to allow for heteroscedasticity) where NDI and ODI

were corrected for each other, as well as cortical thickness. The associa-

tion between cortical thickness, ODI, and NDI values for each ROI with

MMSE score was assessed using Spearman’s correlation coefficient in

the YOAD group alone. To preserve a family-wise error rate of 5% to

detect differences in cortical thickness, ODI, and NDI, a threshold of

p< .008 for formal statistical significance was used after Bonferroni cor-

rection for comparison across the 6 ROIs.

3 | RESULTS

3.1 | Demographics and clinical characteristics

Basic demographic and clinical data are summarized in Table 1. There

were no significant differences in age, gender, or years of education

when comparing healthy controls with YOAD patients. As expected,

MMSE scores were significantly lower in YOAD patients compared to

controls. 27 patients had a typical amnestic presentation and 11 had an

atypical visual-led posterior cortical atrophy presentation. There were no

significant differences between typical and atypical AD patients in terms

of age, gender, age of symptom onset, disease duration, MMSE score, or

years of education (see Supporting Information).

3.2 | Direct comparisons of cortical thickness, ODI,

and NDI values in ROIs between patient groups

Mean values for cortical thickness, NDI, and ODI for each ROI and

their statistical comparisons by participant group are detailed in Table 2

and via boxplots in Figure 2. For all ROIs investigated, NDI was

significantly lower in YOAD patients compared to healthy controls

(p< .008—Bonferroni corrected threshold). Cortical thickness was sig-

nificantly lower in YOAD patients compared to healthy controls in the

ROIs associated with early atrophy in AD (entorhinal, inferior temporal,

middle temporal, fusiform, and precuneus) (p< .008—Bonferroni cor-

rected threshold), with a trend toward lower cortical thickness in

YOAD patients in the precentral ROI (p5 .01). ODI was lower in

YOAD patients compared to healthy controls in the ROIs associated

with early atrophy in AD (inferior temporal, middle temporal, fusiform,

and precuneus) (p< .008—Bonferroni corrected threshold), except the

entorhinal cortex where no statistically significant difference was

observed. There was also a trend toward lower ODI in YOAD patients

in the precentral ROI (p5 .026). There was no evidence for a difference

in NDI or ODI between the typical AD and atypical AD groups,

although there was evidence of reduced fusiform cortical thickness in

the atypical compared to typical YOAD patients (see Supporting

Information).

3.3 | NODDI metrics adjusted for cortical thickness

Differences in mean ODI and NDI values adjusted for mean cortical thick-

ness values in each ROI between healthy controls and YOAD are dis-

played in Table 3. Following adjustment for cortical thickness, NDI was

still significantly lower in YOAD patients compared to controls in the infe-

rior temporal, middle temporal, and precentral ROIs. There was also a

trend toward lower NDI in patients in the entorhinal and fusiform regions,

with no statistically significant differences observed in the precuneus. Fol-

lowing adjustment for cortical thickness mean ODI for all ROIs except the

entorhinal cortex was lower in YOAD patients compared to controls.

TABLE 2 Comparisons of cortical thickness, NDI, and ODI for each region of interest by participant group

Region of interest HC (n522) YOAD (n538) p value

Entorhinal Cortical thickness (mm) 3.48 (0.24) 2.92 (0.36) 2 3 1029**

NDI 0.359 (0.028) 0.267 (0.075) 1 3 1028**
ODI 0.494 (0.022) 0.490 (0.035) 0.6

Inferior temporal Cortical thickness (mm) 2.81 (0.11) 2.55 (0.19) 7 3 1029**

NDI 0.383 (0.013) 0.295 (0.062) 1 3 10210**
ODI 0.499 (0.024) 0.464 (0.035) 3 3 1025**

Middle temporal Cortical thickness (mm) 2.87 (0.12) 2.55 (0.21) 5 3 10210**

NDI 0.393 (0.014) 0.273 (0.064) 8 3 10213**
ODI 0.543 (0.019) 0.511 (0.020) 2 3 1027**

Fusiform Cortical thickness (mm) 2.76 (0.097) 2.41 (0.24) 5 3 10211**

NDI 0.389 (0.016) 0.309 (0.057) 1 3 10210**
ODI 0.525 (0.014) 0.476 (0.029) 7 3 10212**

Precuneus Cortical thickness (mm) 2.37 (0.10) 2.01 (0.17) 4 3 10214**

NDI 0.357 (0.025) 0.249 (0.068) 7 3 10212**
ODI 0.507 (0.013) 0.483 (0.030) 8 3 1025**

Precentral Cortical thickness (mm) 2.51 (0.16) 2.40 (0.19) 0.018*

NDI 0.346 (0.031) 0.276 (0.064) 4 3 1027**
ODI 0.498 (0.019) 0.484 (0.026) 0.026*

Note. Abbreviations: AD5Alzheimer’s disease; HC5 healthy controls; n5number; NDI5neurite density index, ODI5 orientation dispersion index;
SD5 standard deviation.
All data are mean (SD) unless stated otherwise.
*p< .05; **p< .008; Bonferroni corrected threshold: p5 .05 divided by 6 (total number of regions of interest).
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FIGURE 2 Box plots - cortical thickness, NDI, and ODI in healthy controls and young onset Alzheimer’s disease in a priori cortical regions-of-
interest (NDI5 neurite density index; ODI5orientation dispersion index): *p< .05 **p< .008. Bonferroni corrected threshold: p5 .05 divided

by 6 (total number of regions of interest) [Color figure can be viewed at wileyonlinelibrary.com]

3010 | PARKER ET AL.

http://wileyonlinelibrary.com


3.4 | ODI and NDI adjusted for each other
as well as cortical thickness

Comparisons between YOAD patients and healthy controls of mean

NDI adjusted for mean cortical thickness and mean ODI, as well as

mean ODI adjusted for mean cortical thickness and mean NDI, for each

region of interest are displayed in Table 4. Following adjustment for

mean cortical thickness and mean ODI, mean NDI was still significantly

lower in YOAD patients compared to controls in the inferior temporal,

middle temporal and precentral ROIs. There was also a trend toward

lower NDI in patients in the entorhinal, fusiform, and precuneus

regions. Following adjustment for cortical thickness and mean NDI,

mean ODI for all ROIs except the entorhinal cortex was lower in

YOAD patients compared to controls.

3.5 | Association with MMSE score

Association of mean NDI, ODI, and cortical thickness for each ROI with

MMSE scores in YOAD patients only is displayed in Table 5 and Figure 3.

There was evidence that lower MMSE was associated with lower NDI

and reduced cortical thickness with the strongest associations in the pre-

cuneus, inferior temporal, and middle temporal ROIs. No associations

were observed between MMSE and ROI values for ODI. No associations

were observed between MMSE and ROI values for cortical thickness,

NDI, or ODI in healthy controls (data not shown).

4 | DISCUSSION

We report evidence that there are widespread alterations in cortical

microstructure in YOAD, with reductions in NDI in YOAD patients

compared to healthy controls in all ROIs investigated (entorhinal, mid-

dle temporal, inferior temporal, fusiform, precuneus, and precentral)

TABLE 3 Comparisons of cortical thickness adjusted-NDI and corti-
cal thickness adjusted-ODI for each region of interest by participant
group

Region of
interest

Mean difference HC
vs YOAD (p value)

Entorhinal NDIadjusted for cortical thickness 20.048 (0.022*)

ODIadjusted for cortical thickness 0.003 (0.73)

Inferior temporal NDIadjusted for cortical thickness 20.038 (0.002**)

ODIadjusted for cortical thickness 20.03 (0.006**)

Middle temporal NDIadjusted for cortical thickness 20.05 (0.0003**)

ODIadjusted for cortical thickness 20.032 (7 3 1026**)

Fusiform NDIadjusted for cortical thickness 20.027 (0.011*)

ODIadjusted for cortical thickness 20.03 (0.0003**)

Precuneus NDIadjusted for cortical thickness 20.026 (0.16)

ODIadjusted for cortical thickness 20.032 (0.0002**)

Precentral NDIadjusted for cortical thickness 20.055 (2 3 1025**)

ODIadjusted for cortical thickness 20.019 (0.004**)

Note. Abbreviations: HC5 healthy controls; n5 number; NDI5neurite
density index; ODI5orientation dispersion index; SD5 standard
deviation; YOAD5Young onset Alzheimer’s disease.
*p< .05; **p< .008; Bonferroni corrected threshold: p5 .05 divided by 6
(total number of regions of interest).

TABLE 4 Comparisons between YOAD patients and healthy con-
trols of NDI adjusted for cortical thickness and ODI, as well as ODI
adjusted for cortical thickness and NDI, for each region of interest

Region of
interest

Mean difference HC
vs YOAD (p value)

Entorhinal NDIadjusted for cortical thickness & ODI 20.048 (0.022*)

ODIadjusted for cortical thickness & NDI 0.003 (0.8)

Inferior
temporal

NDIadjusted for cortical thickness & ODI

ODIadjusted for cortical thickness & NDI

20.039 (0.003**)
20.031 (0.007**)

Middle
temporal

NDIadjusted for cortical thickness & ODI

ODIadjusted for cortical thickness & NDI

20.055 (0.001**)
20.034 (7 3 1025**)

Fusiform NDIadjusted for cortical thickness & ODI 20.013 (0.27)

ODIadjusted for cortical thickness & NDI 20.025 (0.001**)

Precuneus NDIadjusted for cortical thickness & ODI 20.042 (0.022*)

ODIadjusted for cortical thickness & NDI 20.036 (0.0002**)

Precentral NDIadjusted for cortical thickness & ODI 20.076 (6 3 1028**)

ODIadjusted for cortical thickness & NDI 20.032 (4 3 1026**)

Note. Abbreviations: HC5 healthy controls; n5 number; NDI5neurite
density index; ODI5orientation dispersion index; SD5 standard
deviation; YOAD5Young onset Alzheimer’s disease.
*p< .05; **p< .008; Bonferroni corrected threshold: p5 .05 divided by 6
(total number of regions of interest).

TABLE 5 Association between region of interest metrics (cortical
thickness, NDI, and ODI with MMSE)

Region of
interest

Association with MMSE score

Spearman’s rho (p value)

All YOAD (n538)

Entorhinal Cortical thickness (mm) 0.36 (0.028*)

NDI 0.33 (0.045*)
ODI 20.15 (0.38)

Inferior
temporal

Cortical thickness (mm)
NDI
ODI

0.47 (0.003**)
0.49 (0.0019**)
20.08 (0.64)

Middle
temporal

Cortical thickness (mm)
NDI
ODI

0.49 (0.0018**)
0.57 (0.0002**)
20.11 (0.53)

Fusiform Cortical thickness (mm) 0.35 (0.029*)

NDI 0.33 (0.044*)
ODI 0.09 (0.58)

Precuneus Cortical thickness (mm) 0.60 (0.0001**)

NDI 0.50 (0.0013**)
ODI 20.20 (0.23)

Precentral Cortical thickness (mm) 0.13 (0.42)

NDI 0.32 (0.054)
ODI 20.076 (0.65)

Note. Abbreviations: AD5Alzheimer’s disease; HC5healthy controls;
n5number; NDI5neurite density index; ODI5orientation dispersion
index; YOAD5Young Onset Alzheimer’s disease.
*p< .05; **p< .008; Bonferroni corrected threshold: p5 .05 divided by 6
(total number of regions of interest).
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and reductions in ODI in YOAD patients compared to healthy controls

in inferior temporal, middle temporal, fusiform, and precuneus ROIs.

In ROIs associated with early atrophy in AD (entorhinal, inferior

temporal, middle temporal, fusiform, and precuneus) both mean

NODDI metrics (except entorhinal ODI) and cortical thickness differed

between healthy controls and those with YOAD. Associations between

cortical thickness and diffusion imaging metrics have been reported in

brain regions associated with atrophy in AD previously (Jacobs et al.,

2013). One potential interpretation of such results is that the decreases

in cortical thickness may result in decreases in diffusion metrics

because of partial volume effects rather than a purely biological associ-

ation (Henf et al., 2017; Jeon et al., 2012). This has been a longstanding

FIGURE 3 Scatter plots showing relationship between MMSE score (MMSE5mini mental state examination) and orientation dispersion
index (ODI)/neurite density index (NDI)/cortical thickness in YOAD patients only: *p< .05, **p< .008. Bonferroni corrected threshold:
p5 .05 divided by 6 (total number of regions of interest) [Color figure can be viewed at wileyonlinelibrary.com]
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criticism of diffusion MRI studies focusing on the cerebral cortex in

neurodegenerative disease (Weston et al., 2015), given the thin nature

of cortex and the limited spatial resolution of diffusion MRI acquisition

sequences (2.5 mm 3 2.5 mm 3 2.5 mm voxel size in this study) lead-

ing to increased risk of contamination with non-grey-matter voxels.

The NODDI model does attempt to account for this by modeling the

fraction of free water, with the aim of reducing the risk of partial vol-

ume effects from CSF. However, in the context of atrophy, there is still

a risk of partial volume effects from adjacent white matter, which is

not explicitly accounted for in the NODDI model. To explore the

impact of cortical thinning further, mean NDI and ODI values were also

adjusted for mean cortical thickness values in each ROI using regres-

sion models. After adjustment, the results still demonstrated statisti-

cally significant reductions in NDI and ODI when comparing YOAD

patients and healthy controls in the majority of the ROIs examined.

These results suggest that these microstructural metrics do provide

information regarding cortical structure above and beyond cortical

atrophy alone. Furthermore, it suggests that differences in NODDI

metrics are unlikely to be due to contamination from non-grey-matter

voxels. Findings in the aforementioned study by Nazeri et al. (2015)

describing ODI associations with increasing age also survived adjust-

ment for cortical thickness, providing further evidence that NODDI

metrics provide information beyond cortical macrostructure. The differ-

ence in precuneus NDI between YOAD patients and controls did not

survive adjustment for cortical thickness, although differences in ODI

did. The precuneus is one of the earliest brain regions to undergo vol-

ume loss in the course of YOAD (Ishii et al., 2005; Karas et al., 2007;

M€oller et al., 2013) and the patients included in this study all had estab-

lished disease. This finding is consistent therefore with the hypothesis

that whilst neurite loss may be an early feature of the disease, by the

time the disease becomes more advanced the likely inherent patho-

physiological relationship between NDI and cortical thickness becomes

more apparent. As discussed previously, it is however still possible that

cortical NDI is more susceptible than ODI to partial volume effects

from adjacent subcortical white matter.

We also report evidence that the majority of YOAD-related differ-

ences in ODI and NDI survive correction for each other, as well as cort-

ical thickness. The NODDI model (Zhang et al., 2012) proposes that

ODI estimates neurite dispersion, which in the context of grey matter

may reflect the degree of complexity of dendritic trees, while NDI is an

estimate of neurite density. Although, this requires histopathological

confirmation, these data support the notion that ODI and NDI provide

estimates of distinct microstructural properties, and they may be differ-

entially affected in YOAD.

It is interesting that there was significantly decreased NDI in the

precentral gyrus in YOAD patients compared to healthy controls, while

there was only weak evidence that these groups differed on a measure

of cortical macrostructure (cortical thickness). This is a region that is rel-

atively spared from atrophy in YOAD (Frisoni et al., 2007), however

there is evidence from neuropathological studies that it can be is a site

of AD-related pathology (Albers et al., 2015; Braak and Braak, 1991;

Buchman and Bennett, 2011; Horoupian and Wasserstein, 1999; Suv�a

et al., 1999). Although limited by its cross-sectional nature these data

raise the possibility that such decreases in NDI may precede macro-

scopically detectable differences in cortical structure and may be a

more sensitive marker of AD pathology.

We report evidence that lower NDI values in the precuneus, infe-

rior temporal, and middle temporal were associated with a lower global

score of cognition, in the form of MMSE, and may provide information

regarding disease severity. The capacity of cortical NODDI to provide

information regarding cognitive status is further supported by the fact

that associations between cortical differences in NODDI metrics and

cognition have also been demonstrated by Nazeri and colleagues in the

context of normal ageing (Nazeri et al., 2015) and major psychotic dis-

orders (Nazeri et al., 2016).

Colgan et al have published evidence that murine models of AD

tau pathology (rTg4510 transgenic mice) have lower cortical ODI com-

pared to wild type mice but increased cortical NDI. Increased cortical

NDI was also associated with an increased percentage of tau immuno-

reactivity (Colgan et al., 2016). The increases in NDI are discordant

with our data, which demonstrated consistent decreases in NDI in AD

patients. However, the mean symptom duration of YOAD patients in

this study was �4.8 years, which according to hypothetical models of

pathophysiological change in AD is likely to be decades after initial

deposition of hyperphosphorylated tau (Jack et al., 2010, 2013, 2017)

making direct comparison to such mouse models difficult. There is evi-

dence from human imaging studies suggesting that apparently paradox-

ical increases in grey matter volume and cortical thickness may occur in

the early stages of AD before a phase of accelerated atrophy (Ch�etelat

et al., 2010; Fortea et al., 2010, 2011, 2014; Montal et al., 2017;

Pegueroles et al., 2017). It is possible such nonlinear relationships may

occur in microstructural properties, but further studies are required to

fully elucidate these relationships. In particular, relating measurements

of cortical grey matter microstructure with data from in vivo PET radio-

tracers of beta-amyloid (Clark et al., 2011; Joshi et al., 2012; Klunk

et al., 2004) and tau deposition (Marqui�e et al., 2015) may be helpful to

delineate this relationship more precisely.

YOAD is notable for the degree of phenotypic heterogeneity and

our dataset did include a small number of patients (n511) with an

atypical, visual-led presentation consistent with a clinical diagnosis of

posterior cortical atrophy. No clear differences in ODI or NDI were

noted when comparing typical and atypical phenotypes in the ROIs

chosen for the purpose of this analysis. Previous larger scale analyses

have revealed differences in cortical macrostructure (Lehmann et al.,

2011) between typical AD and posterior cortical atrophy. In addition to

the small sample size, the lack of difference between phenotypes in

this analysis may also reflect the fact that the patients included were at

a relatively late stage of the disease and that differences in these

potentially more sensitive microstructural metrics were well established

in both phenotypes at this time point.

Limitations of this study include the fact that five participants

were excluded due to diffusion imaging movement artefacts (as well as

one participant failing Freesurfer processing). Furthermore, there was a

sole focus on AD patients with a young onset and replication in those

with later onset AD will be required in the future to further validate

the findings of this study. Furthermore, there is currently limited
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histopathological evidence to specifically validate NODDI metrics in

human cortical grey matter. However, NODDI-derived indices have

been shown to closely correlate with histological counterparts on post-

mortem examination in the context of multiple sclerosis spinal cord

lesions (Grussu et al., 2017). In addition, some discrepancies between

the NODDI model and emerging multi-shell diffusion techniques that

utilize linear and spherical tensor encoding (as opposed to the single

diffusion encoding approach of NODDI) have been reported (Lampinen

et al., 2017). Refinement of multi-shell diffusion analysis techniques is

an important avenue of research and may enable further insights into

grey matter microstructure in AD in the future.

Compared to the other ROIs, there was weaker evidence for sig-

nificant AD-related differences in NODDI metrics in the entorhinal cor-

tex. This may reflect the fact that precise localization of this

comparatively small region is difficult and combined with relatively

large voxels used in diffusion MRI make it more prone to noise. A fur-

ther limitation is the study’s cross-sectional nature and longitudinal

datasets comprising participants at different stages of the AD patholog-

ical continuum (including presymptomatic cohorts) will be required to

further tease out the temporal progression of cortical microstructural

change in AD. Another focus for future research, as previously high-

lighted, would be to investigate associations between cortical micro-

structure and neuroimaging modalities that quantify other pathological

processes in AD such as: beta-amyloid (Clark et al., 2011; Joshi et al.,

2012; Klunk et al., 2004) and tau deposition (Marqui�e et al., 2015), as

well as neuroinflammation (Fan, Brooks, Okello, & Edison, 2017) and

cerebrovascular disease (Sudre, Cardoso, & Ourselin, 2017) to further

disentangle the key pathological drivers of alterations in cortical

microstructure.

5 | CONCLUSIONS

These data provide in vivo evidence of differences in the NODDI den-

sity and dispersion indices of neurites in the cortex of YOAD patients

compared to age-match controls, which persisted in the majority of

ROIs following adjustment for cortical thickness. Differences in NDI

were present in brain regions known to undergo early atrophy in AD,

but also in a region typically spared of significant atrophy (precentral

gyrus). Furthermore, there was also evidence that cortical NDI was

associated with MMSE performance. These data suggest cortical

NODDI metrics provide information regarding AD-related pathology

above and beyond that of cortical thinning alone and support the

potential utility of cortical NODDI metrics as sensitive biomarkers of

cortical pathology in AD.
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