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Abstract

Several properties of a system of correlated spins contribute to the macro-
scopic behaviour, and amongst them are those of quantum versus classical
magnetism, frustration or dimensionality of the system, Ising or Heisenberg
interactions, which on their own can lead to a rich and diverse phenomenol-
ogy. This thesis investigates three materials in order to explain the diverse
manifestation of their magnetic excitations and relate it to their physical
properties.

The excited spectrum of an ideal antiferromagnetic Ising chain is either
bow-tie-shaped continua or a series of discrete cosine-like modes, depending
on the presence or absence of a staggered magnetic field. In one physical
realization of this system, the hexagonal halide RbCoCls, which possesses
three distinct magnetic phases, both a continuum and discrete Ising spins
are observed in the lowest ordered magnetic phase, while only a continuum
is found in the other phases. We propose that this is due to the nearest and
next-nearest interactions perpendicular to the plane, which lead to either
long-range or short-range order. In this compound an unstaggered ordered
Ising chain can be observed down to 0 K, allowing for studies of the thermal
Ising chain and providing a material where the effect of frustration can be
tuned with temperature and affects the dispersion.

In the ferromagnetic insulating pyrochlore LusVo0O7 magnons display a
novel thermal equivalent of the Hall effect induced by the Dzyaloshinskii-
Moriya interaction (DMI). In an in-depth study of its spectrum, we have
measured the full spectrum of LusVoO7 and confirmed that a minimal
Hamiltonian is sufficient to describe it, obtaining the ratio between the fer-
romagnetic interaction and the DMI, which is the parameter controlling the
magnon Hall effect.

SrCug(BOs3)2 is a two-dimensional frustrated square compound where
the spins form antiferromagnetic dimerized singlets whose elementary exci-

tation is an intra-dimeric singlet-to-triplet transition. Temperature causes
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the excited spectrum to decrease in intensity at a temperature much lower
than the gap. The exchange between the polarized shells created around
the dimers has been suggested to provide the main decay channel for the
excited triplets. In this thesis we investigate the @—dependence of this decay
channel.

Only part of the results summarized in this thesis have been published,
in a PRL paper on the magnon dispersion of Lus V2O~ of which I am first au-
thor. I am currently drafting a paper on RbCoCls, with an additional paper
authored by N. Hanni on the subject having been already submitted to PRL.
Furthermore, I am collaborating on a joint publication on SrCuy(BOs3)s with

D. Lancgon.
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CHAPTER 1

Introduction on Magnetism

1.1 Classical Magnetism

Electromagnetism is one of the four fundamental forces of the universe,
along with the nuclear strong, nuclear weak and gravitational interaction.
It couples electrical and magnetic charges. Amongst many excellent books
on the topic, noteworthy texts are J. Jackson’s Classical Electrodynamics [1]
or R. Feynman’s Lectures on Physics [2].

Classical electromagnetism, one of the most important historical
branches of physics, culminated with Maxwell’s equations, which express
relations between the electrical field E and the magnetic field B (shown

here in ST units) [3, 4]:

v E=2L,

€0

V-B=0,
. 9B
VxE=_"
% ot’

where p is the spatial density of electrical charges, €g is the permittivity of
free space, o is the permeability of free space and J is an electrical current
(i.e. a drift through space of electrical charges).

Interestingly, in his original 1865 paper, Maxwell formulated a set of 20

equations, since he didn’t use vectors and included additional laws such as
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Ohm’s J = o E (curiously, Maxwell himself in 1879 edited Henry Cavendish’s
unpublished notes into a book and found that Cavendish had discovered
Ohm’s law 50 years earlier than Ohm had [5]). The first person to write
Maxwell’s equations as we know them today is, thus, not Maxwell but Oliver
Heaviside in 1892 [6].

These fields are used to calculate the Lorentz force, i.e. the force expe-

rienced by a charged object via its electromagnetic interaction:

where ¢ is the charge and ¥ is the velocity of the particle. While this law
was written in this form to Lorentz in 1893, the contribution of the magnetic
field was first derived by Heaviside in 1889 [7].

A magnetic object in an external magnetic field experiences a potential
energy U = —[i - B where w is the magnetic moment. This interaction will
appear throughout this work as the Zeeman coupling.

Understanding the nature of the magnetic moment in microscopic terms
turned out to be difficult for the classical theory of electromagnetism. A
dipolar electrical term is written as p = ql_: where [ is the vector separating
the two monopoles. However a similar formulation of i in terms of two
spatially separated monopoles is impossible since no magnetic monopole
can exist due to Maxwell’s second law and hence [ cannot be non-zero.

This is not a problem for magnetic fields that are generated by currents:
an electrical charge that rotates around a loop has an angular momentum L
and creates a circular current J_; and its magnetic moment is ji = ny, where

~ is the gyromagnetic ratio.

1.2 Spins in Quantum Physics

When it became apparent that electrons possess an intrinsic magnetic mo-

ment that cannot be explained in terms of currents, a new fundamental
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quantum number was introduced relating to the spin angular momentum
operator. The expectation of the square of the total spin angular mo-
mentum (S - S) = hS(S + 1), where S is the total spin quantum number
(for electrons, S = 1/2). This is related to the spin magnetic moment fig
via |fis| = 2up\/S(S +1), where up = eh/2m, is the Bohr magneton.
Being a quantum number, the spin operator obeys commutation relations
[S’j, S'k] = h ejklgl, where €y, is the Civita-Levi symbol and % the reduced
Planck constant. A further magnetic quantum number, the projection mg,
is allowed to have values between —S and S in steps of 1, meaning that for
an electron it can only take the values of —1/2 and 1/2 (spin up and spin
down).

Atoms then have a total spin quantum number, which is the sum of the
individual spin quantum numbers. In filling an orbital shell (of azimuthal
quantum number [), each sub-orbital level (of magnetic quantum number
m € [-l, l]) can host at most two electrons of opposite spins, and Hund’s
rule predicts that in order to minimize energy electrons will avoid being in
the same sublevel if there is an empty sublevel, and will have the same spin
direction if they are in half-filled sublevels. This means that the total spin
will be zero on a filled shell and will be maximal on a half-filled shell: For
instance a half-filled p shell (I = 2) will have 5 unpaired electrons, and a
total spin of 5/2. As a consequence, not all elements and compounds present
strong magnetic properties: especially if elements bond ionically and lose or

gain electrons to form an empty or filled shell, which is magnetically inert.

1.3 Solid State Magnetism

The scientific questions in this thesis are going to be centred on aspects of
quantum (S = 1/2) magnetism in solid state theory, for which it is important
to define a certain number of properties.

In the context of solid state physics, explaining the macroscopic mag-
netic properties of a material is often achieved by understanding it as an

array of interacting spins. The interactions originate not from the direct
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electromagnetic exchange between electrons, but rather is ultimately moti-
vated by Pauli’s exclusion principle: the wave functions of single electrons
in a solid-state system can present substantial overlap — which is impor-
tant when considering pairs of neighbouring electrons and their quantum
numbers. Depending on the specific wave function of the pair (which is an-
tisymmetric with respect to the exchange of particles since it is a system of
fermions) and on material-specific parameters, the ground state will require
the electrons to be parallel - or antiparallel - and the first excited state will
determine the energy required to flip a spin (i.e. to allow two spins to have
antiparallel, or parallel, spins without all of their quantum numbers being
otherwise the same). This is called an exchange energy.

A simple bilinear formulation of an interactive spin Hamiltonian is:
H = ZS’}LJﬁkS”k + Zﬁj . S_;
Jk J

where j, k are indexes of all the magnetic sites of the system, and J;, is the
exchange matrix, whose special cases are going to be discussed later, and the
second term is the Zeeman energy. Additional exchanges can be introduced,
such as a quadratic sz, to go beyond this linear model, but corrections of
this sort are not going to be discussed here.

This general expression couples each spin j in the system with every
other spin k, but often the Hamiltonian is simplified to contain only the most
dominant interactions: in the most usual case, only the nearest-neighbour
(nn) coupling is preserved (i.e. S;j = 0if |k —j| > 1). Further terms, such
as the next-nearest neighbour (nnn) and so on, can be included.

Many magnetic systems feature ordered states (i.e. long-range ground
states of the Hamiltonian) that minimize the energy. These ordered states
can exist only below a certain critical temperature T, above which the
system becomes disordered (i.e. a phase transition). Examples of famous
ordered magnetic states include the ferromagnetic and antiferromagnetic

configurations, i.e. all spins lying parallel or antiparallel respectively to their
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neighbours. A phase transition is usually described with an order parameter,
a physical property that is zero above the phase transition and non-zero
below it. Good order parameters for a ferromagnet are the magnetization
or the intensity of a magnetic Bragg reflection, i.e. a Bragg reflection that
is due to the periodic order of the magnetic lattice (see the next chapter for
more information on Bragg peaks).

Furthermore, many magnetic systems possess distinctive magnetic quan-
tized excitations, such as spin waves or solitons. These excitations are gener-
ally observed only below T>. While phonons are naturally gapless Goldstone
modes (i.e. there is at least one phonon branch whose excitation energy goes
to zero for C_j, its wave vector, going to zero), magnetic excitations are di-
vided between gapless and gapped (i.e. no excited state, at any propagation

vector, has an energy lower than the gap energy A).

1.3.1 Dimensionality of the system

While what was discussed in the previous section applies best to three-
dimensional systems, changing the geometrical properties of the lattice can
change the behaviour of a magnetic system drastically.

When the magnetic terms are aligned along chains so that the only
non-negligeable interaction is between sites in the same chain (e.g. the
nearest-neighbour distance between sites in the chain is much smaller than
any other distance between sites), the system will be dominated by the in-
chain exchanges, leading to a one-dimensional (1D) material. Similarly,
when ions have non-negligeable interactions with other ions on a specific
plane, but negligeable interactions to ions on a parallel plane, the system
is called two-dimensional (2D). Only network of exchanges where ions have
non-negligeable interactions along all crystallographic directions leads to a
three-dimensional (3D) exchange. Intermediate stages also exist, such as
ladder systems (i.e. systems of coupled chains, which are between 1D and
2D).

A number of physical properties can change depending on the symmetry
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and the dimensionality. For instance, a 3D system with ferromagnetic Ising
interactions (explained in the next section) possesses a long-range ordered
(LRO) phase (at temperatures below T) while an ideal 1D systems doesn’t
even at 0 K, and can at most display short-range order (SRO). This will be

discussed in a later chapter.

1.3.2 Spins: Heisenberg, XY and Ising exchanges

The spins of free electrons have three components, S; 4 ., of which only one
(conventionally along the magnetization axis z) can be observed. This is
not necessarily true of the spins in solid state physics, where the “free” spin
is not necessarily a quantum number.

The exchange matrix Jj, as introduced earlier, couples these different
components. Depending on the nature of the interaction and on the orbital
electronic physics, several simplified typologies of interactions between two
spins in a quantum magnetic system can be found: as extremal cases, in
Ising-like systems only one spin component couples (conventionally, z) [8],
in the XY systems two components couple (conventionally z and y), and in
Heisenberg systems all components are coupled [9]. This usually is visualized
by interpreting Ising spins as lying along a quantization axis, xy spins as
lying on a quantization plane, and Heisenberg spins as being unconstrained.

All of the interactions listed so far have the common feature that (within
one coordinate transformation) the matrix Jj is diagonal, and the differ-
ence between these typologies of interaction becomes related to the num-
ber of non-zero eigenvalues (one in Ising systems, two in XY, three in
Heisenberg) and ideal XY and Heisenberg also require that all the eigen-
values be the same. A notable example of an off-diagonal interaction is the
Dzyaloshinsky-Moryia interaction [10, 11], ﬁjk(S’J x S},), which is equivalent

to a traceless matrix with no real, non-zero eigenvalue.

The origin of Ising-like behaviour Ising-like interactions require spins

to point along one axis, which can happen due to large anisotropy [12]. One
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notable ion that is characterised by Ising-like physics is Dy®* [13], such as
for instance in DyBaoCugO7_s, whose magnetic behaviour is that of Ising
spins arranged on a square 2D lattice [14], or in DySb [15, 16].

In Co?*, another Ising-like ion, the ground state for electrons is *F, which
splits under an octahedral ligand field so that the ground state becomes the
4T19 state. However the angular orbital momentum is not quenched and
thus spin-orbit couplings lead to additional splittings into Kramers doublets,
hence the effective spin is 1/2. The Jahn-Teller distortion can then act on
the Kramers doublets and, depending on the kind (i.e. whether it stretches
or compresses) can drive the spin towards an Ising-like or an XY behaviour.

This ion, therefore, is very well suited to build non-Heisenberg spin systems.

1.3.3 Geometrical frustration

No matter the dimensionality, the geometry can provide a network of com-
peting interactions so that the pair-wise interactions cannot be all simulta-
neously minimised: this can influence the order and even suppress T¢ to zero
Kelvin, resulting in no specific, ordered ground state [17, 18, 19, 20, 21, 22].
A typical example is that of antiferromagnetically interacting spins on a
triangular lattice, as sketched in Fig. 1.1: no configuration of three spins
on the three vertexes of the triangle can simultaneously minimize all pair-
interactions. Although antiferromagnetic triangular, hexagonal, or Kagomé
lattices are prime candidates, frustration can also be exhibited by more com-
plex structures, such as spinels [18, 23] or in pyrochlores [24], where it can

lead to the spin ice behaviour [25].

1.3.4 Quantum phase transition

A quantum phase transition (QPT) is a transition that is driven by a control
parameter other than temperature, and as such can happen even in the limit
of 0 K [26, 27, 28, 29, 30, 31], see Fig. 1.2 for two examples. Possible tuning
parameters are, for instance, pressure or the chemical potential. In the limit

of T'= 0 K, the transition from a phase to another cannot be due to thermal
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Figure 1.1: Example of a simple frustrated geometry: three
antiferromagnetically-interacting Ising spins on a triangular lattice. If any

two ions align up and down, the third is equally likely to align up or down.

fluctuations: it must thus be due to quantum fluctuations, which originate
from Heisenberg’s uncertainty principle.

One specific example of a phase transition is the application of a per-
pendicular magnetic field in Ising-like systems. As discussed in the previous
section, Ising-like systems order with their spins all pointing along one phys-
ical direction (by definition z): however at a critical value of the magnetic
field He spins will minimize their energy by pointing along the magnetic
field and not along z, creating a forced collinear ferromagnet. Such a phase
transition would happen continuously, which means that if the excitation
were gapped at H = 0, increasing the field would diminish the gap energy
until “closing the gap” at H = Hc¢.

1.4 Compounds studied in the thesis

In this thesis, the three compounds offer three unique combinations of as-
pects of dimensionality and interaction, from 1D to 3D, and from Ising to
Heisenberg, with various degrees of frustration, which highlights how the
properties of a system depend on such fundamental factors.

The compound RbCoCl3 (see Chapter 3), is a material dominated by
one-dimensional Ising-like chains. Perpendicular to the chains, the spins lie

on a hexagonal grid and have ferromagnetic interactions, leading to frustra-
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thermal fluctuations

quantum
critical

classical —»

tamperatura (K)

critical
ordered disordered o3
state state Joamum
0 1 L ‘ L 1
QCP p ’ ! mevarm g 1409 *
(a) (b)

Figure 1.2: (a) Simplified example of a QPT: both temperature 7" and the
control parameter p can induce a phase transition from an ordered state to a
disordered state. Figure reproduced from [32]. (b) Phase diagram of LiHoF 4,
experimentally determined by Bitko et al by measuring the magnetic sus-
ceptibility [26]. This material is an Ising ferromagnet which becomes a
paramagnet when a magnetic field is applied perpendicular to the Ising di-
rection. The thermal paramagnet and the quantum paramagnet phases are
connected continuously through the quantum critical region, where thermal
and quantum fluctuations are “equally important” to determine the prop-
erties of the sample. The phase transition deviates from mean-field theory
(an effect visible between 40 kOe and H¢) due to the nuclear hyperfine

interaction. Figure reproduced from [33].
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tion. Since this compound is Ising-like, it is supposed to display a QPT at
a certain magnetic field Hc¢.

The compound LuyV20s (see Chapter 4) crystallizes in a pyrochlore
lattice. While for Ising-like exchanges this compound can exhibit frustra-
tion due to its structure being comprised of vertex-sharing tetrahedra, spins
in LuaVoO7 obey a Heisenberg Hamiltonian and order into a collinear fer-
romagnet despite the presente of the antisymmetric Dzyaloshinskii-Moriya
interaction. This system exhibits the magnon Hall effect, which will be
described later.

In the final compound SrCuy(BO3)2 (see Chapter 5) the magnetic ions
align in square planes that are characterised by strong in-plane and weak out-
of-plane interactions, leading to marked two-dimensionality of the magnetic
system. Moreover the spins form antiferromagnetic couples (i.e. dimers) and
their (Heisenberg) interactions with the spins in other dimers is frustrated.
In this system, the dispersion is not dominated by the direct exchange but
by the Dzyaloshinskii-Moriya interaction.

In order to investigate the magnetic properties of these compounds we
have employed the techinque of neutron scattering, which will be described

in the next chapter.



CHAPTER 2
Introduction to Neutron

Scattering

2.1 Theory and Background

2.1.1 Theory of Neutron Scattering
Fundamentals of Neutron Scattering

Neutron scattering is a versatile non-invasive investigation technique that
measures density correlations. It is closely related to the complementary
technique of X-ray scattering. There are several good graduate-level books
developing its theoretical background, such as Introduction to the Theory
of Thermal Neutron Scattering by Gordon Leslie Squires [34] or Theory of
Neutron Scattering from Condensed Matter by Stephen W. Lovesey [35],
as well as good lecture notes on the subject. I will proceed with a brief
introduction on the theoretical fundamentals.

In general, a flux of neutrons is directed at a sample and the number of
scattered neutrons per second and per flux unit - i.e. the double derivative
of the total neutron density o - is measured as a function of the scattered

neutron energy dE; and solid angle element df2:

d’c number of scattered neutrons per second
x .
dQdE; dQdE;

(2.1)

where k' is the wave vector of the outcoming neutron.

This cross section requires all informations about the system and the

11
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interaction between the system and the neutrons, which can be calculated
using Fermi’s Golden Rule — expressing the probability p;_,; of the system
to transition from the initial state 7 to the final state f through the effect

of the perturbating (interacting) Hamiltonian V as:
2m N 12
pimy = VIO oy (2.2)

where |7, f) are eigenfunctions of some Hamiltonian # (which doesn’t com-
mute with the perturbation V) and py is the density of states function
evaluated for the final state. In this case, we assume that neutrons trigger a
transition in the sample from an initial state A of probability p) to a state \’
via the interaction potential V(r); the neutrons are scattered from a state
(EE’ E) to a state (E];,, K ). The conservation of energy is included via the
delta function 0(Ex — Ex + Ep — E;), which allows the energy of the sample

to be increased/decreased only by the neutron energy loss/gain.

d*o
dQdE;

k?/ m 2 - N
= (573)" 22 DI WX IVIEN) [* S(Bx—Ex+E;—Bp). (23)
A N

This is usually written as

d20' k‘/ Otot =
— [ Ttot 5y 2.4
dE; ~ k 4x 5(Q,w) (2.4)

where S(@, w) is called the scattering law, Q = k—k is the scattering vector,
see Fig. 2.1, N is the number of atoms in the sample and oy, is the total
scattering, a material-dependent intensity factor.

In the case of nuclear non-magnetic scattering, S (@, w) obeys the follow-

ing relations to the intermediate function 1(Q,t):
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Figure 2.1: Scattering triangle. Neutrons have an initial momentum k and
a final momentum &’ (black arrows) after scattering on the sample (green

sphere). The momentum transfer is Q = k — & (red arrow).

1G.1) = (-G 04 1) (25)

where b is the the Fourier transform of the collection of atomic neutron
scattering lengths 5(@, t) = Zj bje_ié'ﬁj(t), 7 being an indexing of the atoms
in the system. Here ||...|| denotes the expectation value. The scattering
radius b; is the same parameter that describes Compton scattering.

We can therefore say that neutron scattering probes the Fourier trans-
form (both in space and in time) of the correlation function between all
components of a material.

Furthermore it can be separated between elastic and inelastic scattering
depending on whether energy is exchanged between the sample and the
incident neutron. In the case of an ordered lattice, elastic scattering reduces

to the expression:

2, . )
(d(czldEE,) x ’F(Q”Q; 3(Q —7) (w) (2.6)

el

—

where 7 are all reciprocal lattice vectors and F'(Q) =), ann(@) e iQdn,
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with n counting all atoms contained in a unit cell, is called the structure fac-
tor. Here W,(Q) = exp(—aTQ?/2) is the Debye-Waller factor, which takes
into account the small deviations of ions from their lattice site due to the
temperature T' (« is a material-dependent constant in this approximation).

This formula can be shown to be related to Bragg scattering: elastic
scattering from a crystal will only be observed when Cj = T, i.e. when the
momentum transfer matches a reciprocal lattice vector. Since C} =k— K
and |k| = || (elastic condition), then Q := |Q| = 2|k|sinf = 47 /Asinf =
|T| = 2n/d, i.e. A = 2dsinf, the condition of the first Bragg reflection.
Therefore elastic neutron scattering, i.e. neutron diffraction, is commonly
used to determine the structure of crystalline materials.

Inelastic scattering, on the other hand, does not preserve the energy of
the incident neutron. Due to the conservation of energy and momentum,
this requires a quasi-particle to have been excited in the material, carrying
a momentum and an energy that can be deduced from the change in speed

and direction of the neutron.

Magnetic Neutron Scattering

Neutrons have a magnetic moment and are able to couple to spin density
distributions — both elastically and inelastically. This enables a direct probe
of magnetic structures and excitations.

The introduction of the spin formalism allows to write a scattering law

analogous to Equation 2.4:

d*c N K 5 1 =1 -
(0ar;) . = 2™ 3 s =) Guabi @) (e (@)
e—Wd(Q)—Wd/(Q)Sgﬁ(Q,w) (2.7)

where d is an index that runs over all magnetic atoms in the unit cell, o and
B are x, y and z, 7 is the gyromagnetic ratio and ry the classical electron

radius; £ = Q / |C§ | is the direction of aQ, Wd(Q) is the Debye-Waller factor,
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—

F4(Q) is the magnetic structure factor, i.e. the time-independent Fourier
transform of the magnetization distributions of each atom in the unit cell.
The magnetic scattering law Sf[ﬁ (Cj, w) is a new measure of the correlation of
the system that differs from Eq. 2.5 by considering operators of the magnetic
density instead of structural densities.

In analogy to nuclear scattering, magnetic scattering probes the correla-
tion in magnetization density in reciprocal space but, in contrast to nuclear
scattering, the term (Jo8 — Kkakp) selects the transverse component of the
magnetization. To show this, it is useful to look at the limit case that all
correlation is along z — i.e. Sgﬁ = 0 for «, 8 other than z: if Cj is along z
as well there will be no magnetic scattering, while if Q is along z or y the
observed signal will be maximal. This term is called the polarization factor,
and neutron scattering is unable to probe magnetic moments parallel to the
transferred momentum Q.

It has also to be noted that in nuclear scattering neutrons interact with
nuclei, which can be considered to be point-like objects with respect to
the wavelength of neutrons; the contribution of the probed object to the
form factor is the Fourier transform of a delta function — i.e. a constant.
In magnetic scattering neutrons interact with magnetic distributions that
are not point-like; if they are assumed to be similar to Gaussian functions
centred on the atoms then their Fourier transform also has the shape of
a Gaussian centred at C_j = 0. This has the effect that magnetic neutron

scattering will suffer a significant decrease of intensity as |@Q)| increases.

Instrumental resolution

While the technical part of a neutron scattering experiment has not been
discussed yet, one important side of it is the instrumental resolution, which
affects the signal as a convolution of the scattering law and the instrumental
resolution function R(Q,w), which in most cases is an ellipsoidal pseudo-

Voigt function:
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S(Q,w)exp = S(Q,w) @ R(G,w) (2.8)

where ® is a convolution.

This effectively means that, while the mathematical expressions con-
tain delta functions, an experimental result will always have a certain,
instrument-dependent intrinsic width.

Important instrumental factors that affect the resolution are, for in-
stance, the size of the detector and of the sample, the divergence of the
neutron beam (which is produced by focusing), or the distance between the
neutron source, the sample and the detector. Most of these properties also
affect the neutron flux — for instance, focusing the neutrons on the sample
will increase the flux but introduce an uncertainty on the incoming wave-
vector, worsening the resolution. This relation between the resolution and
the flux leads to a tradeoff between the accuracy of the data and the time

required to acquire them.

2.1.2 Experimental techniques

The purpose of this section is to give a short summary of the instruments
used in neutron scattering. A brief sketch of the triple-axis and ToF instru-

ments employed during this thesis will be included.

Producing and guiding neutrons

The first way to produce a beam of neutrons is to use the excess neutrons
from a stable uranium fission core. This generally produces a bright and
continuous flux of neutrons. A notable such source is at the Institut Laue-
Langevin (ILL) in Grenoble, France.

The second way requires directing a beam of protons (sped up in an
accelerator) towards a metallic target (e.g. tungsten). In the subsequent

spallation process, some atoms of the target have a chance of absorbing an
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incoming proton and then releasing a series of light particles (e.g. alpha
particles and neutrons). Some of the experiments in this thesis have been
performed at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, a
continuous spallation source, and others at the ISIS facility in Didcot, United
Kingdom, which uses a pulsed spallation source.

Once the neutrons leave the fission or spallation core, their kinetic energy
is excessive for a neutron experiment. They are therefore moderated and
thermalized, usually by passing through water (which is a powerful scatterer
due to the presence of hydrogen, and thus a good moderator). For reference,
a neutron which thermalises in room-temperature water will have a kinetic
energy of roughly 30 meV. Standard terminology separates neutrons into
cold (below 5 meV), thermal (between 5 and 100 meV), epithermal (between
100 meV and 1 eV) and above.

Neutrons exit the moderator and propagate to the measurement instru-
ment. Lacking an electrical moment, neutrons cannot be deviated or accel-
erated by electrical fields, which is a challenge when trying to manipulate
their path. Being waves, they are subject to the phenomenon of total reflec-
tion, which allows to create supermirrors that reflect the beam: this can be
used to bend its path over long distances, or provide some degree of focusing

to maximize the flux on the sample.

Selecting the incoming energy and detecting the outcoming neu-

trons

All but a handful of techniques (such as Laue or ToF diffraction) require
neutrons with a precise energy or wavelength (i.e. a monochromatic beam)
to reach the sample position.

In general this is achieved by discarding all neutrons of other incoming

energies, which can be achieved by:

e employing a monochromator, i.e. a single crystal in the beam that di-
verts neutrons with a specific wavelength according to Bragg’s law:

controlling the angle at which the beam is incident on the monochro-
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mator allows us to change the energy of the neutrons that are deflected

out of the beam (i.e. deflected towards the sample).

e employing a chopper system, i.e. a set of rotating parts that allow
neutrons to pass through only at a certain time (e.g. a rotating disc
with a window in it). By absorbing all the neutrons that do not pass
at the right time through all the openings, only neutrons with the

desired speed reach the sample position.

After the sample position, neutron detectors are installed to count the
signal in a specific region of the outcoming solid angle. Detectors are based
generally on the absorption of neutrons and measure the electrical impulses
that follow the relaxation of the excited nuclei. Historically the most relevant
absorber in detectors is 3He.

As neutron spectroscopy investigates the energy transfer, it is necessary
to measure the kinetic energy of the outcoming neutrons. Again, there
are fundamentally two ways (although other possibilities, such as spin-echo

techniques, are available and will not be discussed here).

e An analyser crystal is placed between the sample and the detector:
relying again on Bragg diffraction and working like a monochromator,
the analyser deflects into the detector only the neutrons with the en-
ergy and wavelength that satisfy the Bragg condition. Rotating the

analyser allows to scan over a range of outcoming energies.

e If the time at which the neutron hits the sample is known (which is
typically the case with pulsed sources or with chopper systems) then
measuring the time at which the neutron hits the detector allows to
calculate the speed of the outcoming neutron, and thus its kinetic
energy. This technique, called time-of-flight (ToF), measures over a

continuous range of outcoming energies for each pulse.
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Triple-axis spectroscopy

A common instrumental setup for INS is the class of triple-axis spectrome-
ters (TAS), which relies on a monochromator and an analyser to determine
the energy transfer. Refer to Fig. 2.2 for an example.

While their magnitude is controlled by the energy, the wave vectors k
and k' are controlled via the instrument geometry: k points along the axis
between the monochromator and the sample, and K along the axis that
unites the sample and the analyser. These are controlled by physically
moving the parts of the instrument.

In order to match Cj to a desired reciprocal lattice vector the sample
can be rotated. Commonly the sample is attached to a vertical sample
stick, which allows a horizontal rotation of 360; however there are ways of
achieving any rotation in the solid angle if one uses, for instance, a Euler
cradle.

The advantage of this technique is the potential control over many ex-
perimental parameters; the instruments tend to be modular, allowing the
setup to be changed to best suit the experiment — such as in the case of
polarized analysis. These experiments, however, generally allow only one
single combination of £ and Cj to be probed at one time, so that measuring
the intensity of the scattering over a large volume of Q—space will require a
proportional number of scans.

During my PhD I have had the chance to take part in experiments per-
formed at the TAS instruments IN20 and IN22 (ILL), EIGER and TASP

(SINQ).

ToF spectroscopy

In ToF instruments, the time of flight of the neutron is used to calculate their
velocity and hence their energy. This technique relies on a pulsed monochro-
matic incoming neutron beam and time-sensitive detectors. While the same
geometric argument is valid for Q, the speed of the outgoing neutron deter-

mines the energy transfer to the sample and, as the intensity of neutrons
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Figure 2.2: Schematic view of a typical triple-axis instrument (IN14 at ILL).
A flux of neutrons (red) travels inside a neutron guide (light gray). At the
monochromator, part of the beam is directed towards the sample (orange)
via Bragg diffraction. The sample table (deep blue) is in general a modular
space where the required equipment can be deployed (e.g. cryostat, magnet,
pressure cell). After the scattering event, the outcoming energy is selected
by the analyser (light green), and the neutrons that have undergone Bragg
diffraction are counted in the detector (yellow). Al to A6 are the angles
that can be controlled to select the correct incoming and outcoming energy,
as well as the projection of Cj on the reciprocal space of the sample. Further
components, such as the monitor, the incoming slits, the outgoing slits, a 3He
polarization filter (not shown) allow further control over the instrumental

conditions. Image reproduced from Ref. [36].
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can be recorded as a function of time, one single detector measures the in-
tensity as a function of transfer energies for the same value of k//|k’|. There
is therefore no need for an analyser based on Bragg diffraction. See Fig. 2.3
for an example.

ToF spectrometry has seen substantial development in the last decades
in the direction of pixelated wide-angle detectors in order to maximize the
measured volume of @-space. This is made advantageous by the fact that
no analyser is required between the sample and the detector, simplifying the
design, and these detectors can today have a total angular coverage of ~180
degrees horizontally and ~60 degrees vertically. As the signal is a function
of two physical coordinates and one time component, such a detector maps
a three-dimensional curved submanifold in (Cj, w)-space.

A clear advantage of this technique is the huge area that can be si-
multaneously measured and the possibility to theoretically map the entire
(@, w)-space within the kinematic limits.

During this thesis experiments have been performed at the ToF spec-

trometers MERLIN, OSIRIS and LET (ISIS).

Data treatment and visualization

On instruments such as Merlin or LET, the data is collected by single detec-
tor units, which work like pixels. The dataset originally thus has two space
coordinates (the pixel ID, which tells the horizontal and vertical position)
and one time coordinate (i.e. the time elapsed between the pulse of the
source and the time of impact of the neutron in the detector). This infor-
mation is converted to energy and momentum transfer and is normalized
for detector efficiency, integrated neutron flux and sometimes mass of the
sample.

The pixels lie on a three-dimensional submanifold of (Q,w). A technique
that compensates for the lack of data in the rest of (Q,w)—space is the so-
called Horace scan, in which the sample itself is rotated in order to provide

a third space coordinate.
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Figure 2.3: Schematic view of the time-of-flight spectrometer LET (ISIS)
from the top (top) and from the side (bottom). A flux of neutrons (red)
travels inside a focusing neutron guide (light gray) from the pulsed moder-
ated source (yellow) to the sample (orange). A series of choppers (black)
allow only the neutrons with the correct incoming energy to reach the sam-
ple (note: several ToF instruments have a much simpler chopper system).
After the sample, the neutrons travel through an evacuated tank (light blue)
and are collected in the detectors (red), a series of 4 m tall He tubes ar-
ranged on a half-cylinder around the sample. The time of absorption of the
neutron is measured and allows determining of the energy transfer. Image

reproduced from Ref. [36].
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In order to be displayed, the data is usually binned: all pixels are sorted
into bins according to an arbitrary grid and then averaged within the bin,
so that the density of pixels in different bins, which is not constant, does not
increase the overall intensity in the bin. Furthermore, the data is presented
in cuts, which are one-dimensional, and slices, which are two-dimensional.
The visual data is therefore projected, binned, and averaged within the bin.
The reduction from full four-dimensional data to a two-dimensional slice
or a one-dimensional cut is to be done carefully and potentially introduces
problems that must be taken into account: for instance, in one-dimensional
systems, the dispersion does not vary with respect to two Q directions but
the its intensity does (e.g. the magnetic form factor decreases the intensity
of the as a function of |Q[2). Therefore it is e.g. possible to measure a certain
part of the spectrum in a part of @—space where it has a significant structure
factor, and another part of the spectrum in a volume where the structure
facture is much lower: this creates a modulation of intensity that is equally
explained by the scattering function and by the instrumental measurement.
This will be the case for instance in RbCoCls, in the next chapter, where the
signal in the L — F slices is strong for L between -1.5 and -0.5 r.l.u. and much
weaker outside of that. Slices of 3D systems can be even more complex, as
they will “flatten” one spatial dimension, creating a picture that explicitly
depends only on two coordinates (say, H and K) but where each pixel has
a different L and E coordinate: this will be the case in LusV5O7, where the
spectrum should have a certain symmetry (say, spherical at some energies, or
cubic at other energies) but the averaging deforms what should be perfect
rings or squares, making them appear more ovoidal or rounded. All of
these possible issues can be taken into account in the calculation if the full
four-dimensional spectrum is simulated, and remain of importance only in

understanding the visual representation of the data.



CHAPTER 3
The temperature-dependent
soliton spectrum of the 1D

chain compound RbCoClj;

3.1 Scientific background

The interest in low-dimensional physics, especially concerning the magnetic
properties, is the rich typology of phenomena and excitations that derive
from a deceivingly simple — and often exactly solvable — Hamiltonian. A
notable example of these, of particular relevance to the thesis, is the Ising
system.

The recent technological developments in spectroscopy, particularly
in neutron scattering, offer a chance and give a reason to revisit one-
dimensional (1D) quantum magnetic systems and investigate in much
greater depth their properties.

Amongst the most ideal 1D quantum magnetic systems are the realiza-
tions of the Ising-like Hamiltonian, of which the ABX3 (A = Cs, Rb; B =
Co, Cu; C = Cl, Br) compounds are notable examples. As this family has
never before been investigated with a modern high-resolution instrument,
we have performed a comprehensive series of experiments on RbCoCls, in-
cluding neutron diffraction [37] and neutron spectroscopy.

As it will be discussed, RbCoCls has two magnetic ordering phase tran-
sitions. This allows an experiment to tune and access distinct regimes of

the thermal Ising chain — at the lowest temperature the sample displays a

24
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perfectly ordered ferrimagnetic honeycomb pattern; between temperatures
it is described as a partially disordered antiferromagnetic state; and above
the phase transition the chains are isolated from other chains due to thermal
fluctuations.

An additional reason of interest in the 1D systems is the presence of
quantum phase transitions. A system such as RbCoCl;s is a prime candi-
date to observe this phenomenon and part of our motivation in studying
this compound was the hope that the gap could be closed; however it will
be discussed how the magnetic field required exceeds the current technical
capabilities.

The structure of this chapter is as follows: I will start by describing
the cases of CoNbgOg [38] and BaCoyV2Os [39], prototypical examples of
1D Ising-like physics and quantum phase transitions which have been the
subject of numerous recent experiments.

I will then proceed to describe the experimental details of our inelastic
neutron scattering experiment on RbCoCls and to describe the data.

I will then summarize the relevant literature, with particular attention
to the theory. I will argue for a unique interplay between the long-range 3D
order and the 1D excitations of the system. Having established the terms of
the Hamiltonian, I will then show the fits. I shall claim an excellent agree-
ment between the data and the simulations to a set of exchange parameters.

The last section will be dedicated to a discussion of the long-range 3D
order, including Monte Carlo simulations to interpret the fitted relative in-
tensity parameters.

This work is part of a collaboration between N. Hénni (University of
Bern, Switzerland), who has investigated the structural phase transitions
[40, 37], Dr. E. Hirtenlechner (ETH Ziirich, Switzerland), who has investi-
gated the effects of temperature in greater detail [41], and myself. I was the
main investigator in the experiment at LET, and I took part in the mag-
netic susceptibility and elastic neutron scattering measurements performed

by N. Hénni. I performed the analysis, writing and improving the formulas
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for the cross section and the Hamiltonian, and subsequently implemented a
Monte-Carlo algorithm to relate structural and dynamic properties of this

compound. A number of papers on this compound are in preparation.

3.2 Examples of Ising-like 1D physics

3.2.1 CONb206

CoNbyOg is an insulating quasi-1D ferromagnet where the magnetic Co?*
ions form zigzag chains of spins whose interaction is close to the Ising model
[38, 42, 43]. This compound orders ferromagnetically at Ty = 2.95 K and,
due to its Ising-like nature, its excitations are couples of moving domain
walls. The weak intra-chain interactions, which lead to 3D order, induce a
uniform staggered field on all sites.

When applying a field transverse to the direction of the spins, e.g. along
I;, it is possible to drive the system through a quantum phase transition at
Be = 5.5 T, to a transverse ordered state whose elementary excitations are
spin-flip quasiparticles [38].

A picture of the zero-field excitations of CoNbsQOg is reproduced in Fig.
3.1. Above the critical temperature the spectrum is comprised of a broad
two-domain continuum and a kinetic bound mode, while below the critical
temperature the continuum splits into confined bound states. These bound
states can be understood in terms of a Zeeman ladder induced by the weak
intra-chain interactions.

Its excitations under a quasi-critical field obey a description that can be
linked with the Eg Lie symmetry. This behaviour may be found in other, if

not all, Ising chains, but is so far only found in this compound.

3.2.2 BaCOQVQOg

The magnetism in the tetragonal BaCosVsOg is characterised by screw
chains of Co®t ions along the ¢ axis, with the magnetic ordering emerg-

ing at Ty = 5.5 K. A fit of the spectrum, shown in Fig. 3.2, reveals that



3.2. Examples of Ising-like 1D physics 27

Energy (meV)
Energy (meV)

5

a|C h,=0 oD h, =0.02J
2 m'f m
25 . bound .~ 25 /—/_’/:— bound §
= S state < % state :“Q\__:; =
[l N 4 [ — ~————
£ / E | == N ———
= - — N ———
52 59 = S
3 ] - d ——p
(~ / \ = s q
w e b = Qﬁ’ ‘b%%ttmmmnﬂ/
15 two-kink e 15 ## con finement -~
.~ continuum* RS bound states %W

-15 -1 -0.5 0 <15 -1 -0.5
L (rlu) in 1.25 A" L (rlu) in 1.25 A"

Intensity (arb units)

1.0 1.2 1.4 1.8 -1.5 A 05 0
Energy (meV) L (rlu) in 1.25 A
; o H O data @
kink confinement 16 & Kink confinement - ~
] m,
TTrrrert £ ® ‘
Jr XA XX e 1.4 e my
R i & m,
—_ — 2 121{@
oVVe I m
1.0
1 2 3 4 5

Bound state level

Figure 3.1: Zero-field excitations in the Ising-like 1D ferromagnet CoNbyOg,
figure courtesy of [38]. Above the ordering temperature Ty = 2.95 K the
spectrum consists of a two-kink (spin-flip) continuum and a kinetic bound
state (panels A, C), while below Tx the two-kink continuum splits into
confined bound states (panels B, D). This behaviour was discussed in terms

of a “kink confinement” model.
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the main interaction J is 5.6 meV and the Ising-like anisotropy € is 0.46.

The excitations of this system display discrete bound modes within a
bow-tie-like area, see Fig. 3.2. The energies of the bound modes can be
explained using the zeros of the Airy function.

The magnitude of € places this compound almost exactly half-way be-
tween prototypical Ising and prototypical Heisenberg models. In a domain-
wall system, we can define transverse (longitudinal) modes as characterised
by an odd (even) number of spins being flipped. The intensity of longi-
tudinal modes typically scales with €2 [44], so that they can be observed
only for large €. Owing to its € =0.46, the longitudinal modes are however
measured in BaCoyV20Og, and can be distinguished experimentally by their
dependence on the polarization factor.
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Figure 3.2: Magnetic excitations in BaCo2V2Osg, figure courtesy of [39].
Longitudinal and transverse modes form discrete bound modes in a bow-tie

shaped area (between the gray curves).
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3.3 The magnetic properties of RbCoClj

RbCoCl3 is a hexagonal perovskite that crystallises in the P63/mmec space
group (a = b = 7.0003 and ¢ = 5.9989 A). In this crystal structure, which is
sketched in Fig. 3.3, the Co?* ions are contained into Cl~ antiprisms and
form straight chains along the ¢ axis. The distance between Co?* ions is 3
A along the ¢ axis and 7 A along @ or 5, creating a strongly one-dimensional

environment.

(@) (b)

Figure 3.3: Structure of RbCoCls and its interactions. (a)View of the a-
¢ plane. The Co?* ions (blue) are embedded into Cl~ antiprisms (light
green) and their spins interact most strongly with spins along the ¢ direction
(with exchanges Ji, Jo2) than with spins located along a or b: this results
in the formation of spin chains along the ¢ axis. The two yellow ovoids
contain two solitons, at which ends are domain walls: the domain walls
can be distinguished as they are comprised of two parallel spins, instead of
being antiparallel. (b) View of the a-b hexagonal plane perpendicular to the

chains, and of the two“in-plane” interactions J,, and Jyn..

As preliminary work to the INS part, it is useful and necessary to dis-
cuss briefly the magnetic properties of RbCoCl3 as revealed by magnetic

susceptibility and neutron diffraction experiments.
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3.3.1 Magnetic susceptibility

The molar magnetic susceptibility of RbCoCls was measured and the results
are displayed in Fig. 3.4. The behaviour is consistent with the models for
Ising chains, with a more structured response along the ¢ axis, a kink at 12
K (the temperature, as discussed later, of a phase transition), and a broad

maximum around 70 K, suggesting a coupling in the order of 70 K [40].

20

X [mm? mol™]

— Crystal, H || ¢
5 — Crystal, H L ¢ |]
— Powder
O 1 1 1 1 1
0 50 100 150 200 250 300
T [K]

Figure 3.4: Molar dc magnetic susceptibility of both powder and crystalline
RbCoCl3 [40].

3.3.2 Diffraction and phase transitions

A series of neutron scattering experiments were performed, notably on
HRPT, TRICS and EIGER (SINQ, PSI, Switzerland). A comprehensive
summary of these results and their analysis can be found in [37, 40].

Neutron powder diffraction down to 1.5 K confirmed the P63/mmc sym-
metry, preserving thus both the linearity of the chains and the hexagonality
of the planes.

Furthermore, diffraction reveals two low-temperature magnetic phases,
at Tyo = 12 K and T = 28 K. Exemplary scans along the (H H 1)
direction, performed at the triple-axis neutron spectrometer EIGER (SINQ),

PSI, Switzerland), are shown in Fig. 3.5 at three temperatures: below T2,
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between To and 11, and above Thx.

105 E T T T T T T T T

Intensity [arb.]
==

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Momentum transfer (H H 1) [r.l.u.]

Figure 3.5: (a) Neutron diffraction scans performed at EIGER at "= 1.5 K,
18 K and 35 K. The peak at (2/3 2/3 1) is purely magnetic, vanishing above
Tn1. The peak at (1 1 1) is present above T despite being structurally
forbidden, due to imperfections in the crystal. (b) Fits of the scan at 18
K. Each peak is the sum of two components: a sharp Gaussian peak (red,
green) and a broad Lorentzian peak (magenta, cyan). Below 0.45 and above
1.2 the tails of the (1/3 1/3 1) and (4/3 4/3 1) Bragg peaks can be measured

and have been included in the fit. An additional peak can be resolved at

(1/21/21).

The intensities of the purely magnetic (2/3 2/3 1) and (1 1 1) peaks
are plotted in Fig. 3.6. It can be seen how the (1 1 1) reflection disappears
at 12 K (aside from a residual peak that is due to an imperfection of the
sample), while the (2/3 2/3 1) undergoes two power-law-like drops at both
phase transitions.

Each magnetic reflection is modelled as the sum of two components:
a resolution-limited Gaussian peak of constant width, and a broader

Lorentzian peak whose width varies with temperature, which is diffused
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scattering due to short-range order. The integrated intensity of the two
components changes in temperature, with all intensity in the Gaussian peak
at the lowest temperature, and a transfer of the intensity to the Lorentzian
component in the proximity of the phase transition.

Below Tns both peaks are resolution-limited, signifying a perfect 3D
honeycomb order throughout the sample. Between Tho and T the signifi-
cant diffuse scattering is due to partial disorder and lack of long-range order
(which later will be identified as a partially disordered antiferromagnetic
state). Above T1 the ordered moment vanishes quickly but not completely
due to the permanence of short-range order, which is expected to be observed
up to 70 K (as confirmed by the magnetic susceptibility).

The diffraction on RbCoCl3 has outlined as well the presence of the (1/2
1/2 1) magnetic reflection below Tiyo!, which has been interpreted in terms
of a second k-vector. A full discussion on the magnetic ordered structure
of this compound can be found in [40]. Due to the weakness of this peak,
however, in the present work we consider it as the expression of an impurity

phase.

3.4 Experimental work on RbCoClj;

I measured and studied the spectrum of RbCoCls as a function of temper-
ature in order to establish its properties in the three phases.

An initial INS experiment was performed on the ToF spectrometer LET
(ISIS, UK) in autumn 2011. Three single crystals, see Fig. 3.7, were grown
using the Bridgman technique in a vertical moving furnace with a temper-
ature gradient [40] and were coaligned with (HHL) in the horizontal scat-
tering plane. The sample was sealed in a Helium can due to its sensitivity
to air.

For the experiment, the sample was inserted in a conventional Orange

cryostat (1.5 to 300 K) and orientated with &; parallel to (00L). Data were

Tt has been confirmed not to be spurious, e.g. a so-called A/2 (1 1 2) peak, and to be

magnetic in nature.
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Figure 3.6: Integrated intensities of (a) the (2/3 2/3 1) peak and (b) the (1 1
1) peak as a function of temperature. Each peak is modelled as a resolution-
limited Gaussian peak (i.e. Bragg scattering) and a broader Lorentzian
peak (i.e. diffuse scattering), signifying a shift from perfect order to short-
range correlation with temperature. The black vertical dotted lines mark
the transition temperatures. Note that the intensity of the (1 1 1) peak does
not vanish above Ty1, as the (2/3 2/3 1) peak does, due to an imperfection

of the crystal.
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Figure 3.7: Photo of the coaligned RbCoCl; sample used in the LET ex-
periment. The three single crystals (black) were secured to an aluminium

mount, which was sealed inside a can.

collected at 4 K < Tg, Tno < 18 K < Ty and T < 35 K, i.e. in the
two ordered phases and just above the Néel temperature, with FE; = 25
meV (chopper frequency: 200 Hz, calculated resolution at the elastic line:
0.8 meV) and measuring times typically around 18 hours per temperature.
Additional, measurements with lower counting statistics scans at 8.5, 10.5
and 23 K were performed using E; = 20 meV (chopper frequency: 200 Hz,
calculated resolution at the elastic line: 0.6 meV), a configuration that offers
a higher neutron flux but samples a decreased section of (@, w)-space.

The data were normalized with respect to the proton integrated current
which the ISIS target received and were corrected for detector efficiency
and outcoming versus incoming wavevector ratio ky/k; using the program
MANTID [45, 46]. The resulting S (Q,w) datasets were analysed with the
HORACE [47] software package.

At the time of the experiment the pixelated detector of LET counted
40960 detector units (of typical size a square inch), of which 33397 were
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retained in the final dataset. The time of flight was transformed into 242
energy bins, producing roughly 8 million individual pixels.
The first question to be addressed regards the one-dimensionality of the

measured spectrum.

3.4.1 One-dimensionality of the spectrum

Figure 3.8 shows slices of the data at 4 K as a function of K and L, while
Fig. 3.9 shows the energy of the four main modes and their fits. It is shown
that the H and K dependence of the dispersion of the modes (over several
periods) is smaller than 0.3 meV, which is the instrumental resolution at
that energy transfer.

It is hence concluded that the system can be satisfyingly described as 1D
within the goodness of the data. Therefore for the rest of the discussion all
the data is projected to the L — E plane and averaged in order to maximize

the statistics.

Energy transfer [meV]
Energy transfer [meV]

K [rlu]

Figure 3.8: Two slices of the data, averaged for all values of H and for (a)

-1.05 < L < -0.95 and (b) -0.55 < L < -0.45.
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Energy transfer [meV]
Energy transfer [meV]

Figure 3.9: Fits of the energies of the modes from Fig. 3.8. All four modes,
both for (a) -1.05 < L < -0.95 and (b) -0.55 < L < -0.45, are fitted to
cosinusoidal curves whose fitted widths are smaller than the instrumental

resolution.

3.4.2 Overview of the data

The data collected during the experiment is displayed in Fig. 3.10 for E; =
25 meV and in Fig. 3.11 for E; = 20 meV?. Cuts around L = -1 and L =
-0.5 are presented in Fig. 3.12 for 4, 18 and 35 K, and in Fig. 3.13 for 8.5,
10.5 and 23 K.

A number of preliminary observations are summarized below:

e At 4 K and L = -1 the first feature is a peaked continuum with a
maximum at its lowest edge (about 11 meV). A sharp mode at about
12.5 meV is also observed. The presence of two modes is an indica-
tion of the presence of two inequivalent magnetic sites, each with a

characteristic spectrum, which will be discussed later.

e Still below Tno, there are at least 3 modes between 11 and 13 meV at

2The data collected with E; = 20 meV was multiplied with a normalization factor for
its background to match the background with 25 meV, in order to compensate for the
different flux and scaling. This is due to the normalization being in terms of the proton

integrated flux and not the neutron monitor.
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Figure 3.10: Slices of the experimental data at (a) 4, (b) 18 and (c) 35 K.
The data is averaged with respect to H and K, and is displayed with a

common logarithmic scale.

L = -1 at 8.5 and 10.5 K. Figure 3.14 compares a cut at 4 and 8.5 K
to display the appearance of one such peak: the number of dispersive

modes, and their relative intensity, changes with temperature.

e The temperature shifts the intensity to a central broad peak, as for
instance at 18 K. At 35 K the peak’s intensity decreases but its tails

become more prominent.
The soliton is thus characterised as a function of temperature:

e Above T a continuum is observed, most prominently between L =
-1.5 and -0.5, with its intensity dominated by a cosine-like dispersive
mode at its lowest edge. A similar continuum would be observed be-
tween -0.5 and 0.5 (due to its periodicity), but is not seen due to the
overall decrease in intensity in this sector. This spectrum is, in first
approach, bow-tie shaped and consistent with the idea of an Ishimura-

Shiba solution for an isolated Ising chain, as will be discussed.
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Figure 3.11: Slices of the experimental data at (a) 8.5, (b) 10.5 and (c) 23
K. The data is averaged with respect to H and K, and is displayed with a

common logarithmic scale.

e Between T2 and T a similar picture is measured, although the

central peak is sharper and the tails are less pronounced.

e Below Tx1 we observe a series of sharp lines. The lowers-lying in
energy (between 11 and 13.8 meV) is not a single mode but a very
sharp continuum, while the modes at higher energies (respectively be-
tween 12.5 and 14.25 meV, 15 and 16.5 meV, 17 and 18 meV) are
resolution-sharp. At 8.5 K and 10.5 K more dispersive lines can be

seen at intermediate energies.

3.4.3 Further experiments on RbCoCly

While I will be discussing mostly the data obtained in the 2011 LET exper-
iment, there have been a number of other INS measurements.
Part of them were performed at triple-axis instruments, namely IN20

(ILL, France) and EIGER (SINQ, PSI, Switzerland), performing scans a
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Figure 3.12: Cuts of the experimental data at 4 (red), 18 (blue) and 35 K
(black). The data is averaged for (a) -1.05 < L < -0.95 and (b) -0.55 < L <

-0.45, i.e. the point of maximum and minimum extent of the dispersion.

much smaller number of @—points but at more temperatures. The analysis
of this data has been performed Dr. E. Hirtenlechner, and these results can
be found in her thesis [41].

Another experiment on LET was however performed in spring 2015. The
goal of this experiment was to apply a magnetic field to observe its effect on
the soliton dispersion, but it also offered some other insight. These results

will be discussed later, and only briefly.

3.5 Modelling of the system

The problem of the low-energy effective spin Hamiltonian of the family of
compounds ABX3 has attracted attention for being one of the closest realiza-
tions of several ideal theoretical paradigms. However, the spin Hamiltonian
is still the subject of some controversy. A short historical perspective follows

here.
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Figure 3.13: Cuts of the LET experimental data at 8.5 (red), 10.5 (blue)
and 23 K (black). The data is averaged for (a) -1.05 < L < -0.95 and (b)
-0.55 < L < -0.45.
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Figure 3.14: Cuts of the LET experimental data at 4 (red) and 8.5 K (blue).
The data is averaged for -1.05 < L < -0.95 and displays the appearance of
a mode at 11.9 meV, as well as a decrease in the intensity of the mode at

12.5 meV.
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The solution of the Ising model The one-dimensional Ising model,
named after Ernst Ising [8, 77, 20], is one of the simplest and most cele-
brated models for spin systems. It was the basis for the understanding of
several thermodynamic magnetic systems, as well as being the starting point
for several, more complex systems it is worth mentioning Lars Onsager’s
analytical solution of the 2D lattice [78].

In its original formulation, it studies the 1D ferromagnetic Hamiltonian:

N-1 N
7"[Ising =-2J Z S'; A;—‘,—l - Z hjg;¢ (31)
=1 j=1

where J is a (positive) exchange interaction and h; is a (local) magnetic field
acting on the spins (in meV)3. The energy is trivially minimized by parallel
spins.

The problem of the behaviour with respect to temperature of this system
was first studied with statistical mechanics. As a reminder, given a spin

configuration {S%} = (5%)v; we can write the partition function* as

Z Z BHIsulg {S }) (32)
{57}

where 8 = 1/kpT, with kp the Boltzmann constant. The probability of a

single configuration obeys the Boltzmann statistics:

e—ﬁHIsing ({SZ})

P57 = . (33)

The expectation of any observable f of the spin configuration (e.g. the

magnetization) can be calculated as a weighted average:

3Notations vary in literature. In this convention, flipping the j-th spin has an energy

cost of hj.
4Temperature dependences of several functions, such as £ = Z (T), are omitted
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()= f({s7h) p({57}) (3-4)
{5}

and, without derivation, the energy of the system is

102 am(2)
WI=Tz95 = o

(3.5)

It is a well-known fact that the magnetization of the 1D Ising chain (in

a homogeneous field) is

1 oln(Z2)
) =58 "an

_ sinh(5h) (3.6)

\/coshQ(ﬁh) — 2e~*8Jsinh(4.J) .

There are no magnetic phase transitions in the absence of a magnetic
field, as m(T) o sinh(Sh) = OVT if h = 0. This is interpreted in terms
of the maximization of entropy prevailing over the minimization of energy.
This is not true in higher dimensions due to the increase in the coordination
number, which already in 2D is enough to induce a phase transition [78].

This is a strong argument for the relevance of the interactions in the

plane in RbCoCl3, without which the system could not order.

The Ising problem and the Bethe solution. A more general expres-
sions for a spin Hamiltonian is the xzz model, which can also be identified

with a generalized anisotropic Heisenberg model®:

5As a remark about conventions, the convention used through this work is such that
S% = £1/2 and the energy required to excite a spin from the ordered AF ground state,

i.e. creating two domain walls, is 2J.
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Hows = 22 J22S78% 1+ Juy (ST S0 + SYSY, 1))
ZJZ (S757,1 + €(S7SF + SYSY ). (3.7)

This expression has several special cases, notably the isotropic Heisen-
berg Hamiltonian for J,, = J,, or e = 1 [9], the Ising Hamiltonian for
Jey = 0 or € = 0 [8], and the zy model J,, = 0. The case € < 1 is called
Ising-like, or quasi-Ising.

The properties of the anisotropic Heisenberg model have been studied
extensively since the 1930’s [48, 49, 50]. Famously, the Bethe Ansatz [51, 52,
53] permits the determination of the spectrum both in the case e = 1, i.e. the
Heisenberg case [54], and in the case € < 1 [55]. These solutions are called
respectively the des Cloizeaux-Pearson (dC-P) and des Cloizeaus-Gaudin
(dC-G) spectra.

The excitation can be characterized as singlet-to-triplet and therefore has
three branches, corresponding to the quantum number of the quasi-particle:
hw_1, hwy and hwi, which in neutron scattering can be interpreted as flips,
or lack thereof, of the spin of the neutron. To express the dispersion one
needs to define the intermediate variable ¢g, which for € =: 1/cosh(®) < 1

satisfies:

[e'S) 7’L7T2
|L| = % - % Z (atan(exp(i(lb + ?)) — atan(exp(q)))). (3.8)

n=—oo

This relation maps bijectively ¢g € [—m,7] into L € [0,1]. Then:

JT sinh(® sinh(®
D) = 5g 3 (o - ) (39)
o \cosh(52 + “5-)  cosh(Zz + "3-)
Jsinh(®) <= e "% 4 (—1)"

ne_
Figure 3.15 shows the dispersions for three values of e: hwg are gapless

spin waves, while hw4; are gapped.
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There are several compounds, e.g. in CuCl-2N(C5Dj) [56], that realize

these predictions.

10|

8 —hwﬂ, e=0.1 I

---- hwpy, e = 0.1
6f 7hwi17620.3 1
---- hwy, €e=0.3
— hwiy, €= 0.5 ]
---- hwy, €= 0.5

fw/J [unitless]

Figure 3.15: dC-G dispersion of the 1D XXZ model calculated for three
values of € according to Eqs. (3.8-3.9). Dotted curves are hwy and solid

curves are huw41. For e = 1, all modes are degenerate.

M. Mekata (1976) and the magnetic order of the planes. An AF
hexagonal lattice is a prototypical candidate for frustration, yet several
diffraction experiments had found evidence of planar order in the isostruc-
tural compounds CsCoCls, CsCoBrs and RbCoCls, namely magnetic reflec-
tions at (1/3 1/3 1) and (1 1 1) [57, 58, 59, 60]. M. Mekata [61] rigorously
showed that an hexagonal lattice with an AF nn interaction (J,,) and a
weaker FM nnn interaction (Jypy) in the absence of an external magnetic
field can have up to three local energy minima. By labelling < 023 > the
average relative magnetizationS of the chains of the three inequivalent sites
of the extended unit cell” of the hexagonal lattice, the non-trivial solutions

are:

e < 01 >=< 09 >= — < 03 >, the ordered honeycomb lattice. This

5The total magnetization of an AF chain is clearly zero. Consistently with the nomen-
clature used by M. Mekata, the relative magnetization is calculated as Zj(—l)ij and is

non-zero when the chain is ordered.

"In the extended unit cell, the lattice vectors (which are /3 times longer) connect a

magnetic site with its next-nearest neighbour. The ¢ axis remains the same.
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phase is ferrimagnetic.

e < o0; >=0and < 03 >= — < 03 >, the partially disordered (PD)
phase. The average magnetization of a plane is zero. < o1 > = 0 mean

that the chain is disordered, which does not preclude short-range order.

e < 0] >=< 09 > and < 01 >#< 03 >, a solution that is sometimes

called the 3-site ferrimagnetic phase. There is no constraint on < o3 >.

It was shown that these solutions exhibit magnetic reflections of different
magnitude at (1/3 1/3 1); it was moreover suggested that the appreciable
change in intensity measured in the experiments was due to a transition
between the ferrimagnetic state (T' < Tn2) and the PD state (Tye < T <

Tn1). The Néel temperature was approximated as

652

—(2Jnnn — Jnn) (3.11)
kp

Tn1 =

although no equivalent expression was derived for Txo. In this first anal-
ysis the Néel temperature does not depend on the dominant in-chain AF

exchange J.

N. Ishimura and H. Shiba (1980) and the domain-wall solution.
As experimental evidence was being presented that several 1D compounds
did not display spin waves or spinons, it was argued by N. Ishimura and H.
Shiba [44] that the Bethe Ansatz did not capture the behaviour of the system
in the Ising-like regime. It was then proposed that e acts as a perturbation
of the pure Ising limit, whose ground state consists of spins pointing along
z. Unlike in the gapless dC-G spectrum, the excitations of an Ising system
are couples of domain walls (i.e. solitons), which require an energy transfer
around 2J to be created.

Furthermore, using S* = S% 4 45Y one can rewrite Eq. (3.7) as.
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His = QJZ (S5S74 + (S} 8541 +57551) =

= H” + HE. (3.12)

While H?* fixes the ground state (i.e. Ising chains) and its excited states
(i.e. couples of domain walls), H* allows the domain walls to move inde-
pendently one from the other along the chain.

In order to analytically find the excitations of this system, we start
with the doubly-degenerate Néel ground states of the unperturbed chain,
INéel,x—) = |... TI 1] ...) and |Néel, =) = |... [T{1 ...), but due to symme-
try we can consider just one Néel state. The base elements of the excited

Hilbert space are:

Q1) = \/ % Z ei@'ﬁij |Néel, 2= ) ,
J
- 2
1Q,3) = ‘/N ZelQ Ra5+5]+15+ 5 |Néel, 2= ),

- 2 = =
1Q,v) = 4 /NZeZQ‘RJW 57, INGel, 2=,
J

where N is the number of spins in the chain and v represents the distance
between the domain walls. In this base we can now express the Hamiltonian

His in matrix form:

2J forv=1

. R \% forv=v -2

(Q,v|His|Q, V) = (3.13)
V¥ forv=v+2

0 otherwise

with V = eJ (1 + e=27L). Figure 3.16(a) shows the solutions of the di-
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agonalization of this matrix: for N — oo they form a continuum of ex-
citations between the extremal modes hw;(L) = 2J(1 — 2ecos (wL)) and
hwa(L) = 2J(1 + 2ecos (wL)).

The next question to be addressed is the spectral weight of the modes,
which are dominated by the transverse response S;,. Using Green theory,

we can express it in the first order of € as:

Syz(L,w) o~ 417r1m<(1 — €COS (WL))2Q(1, 1) —..

*

(1 —€ecos(mL)) (K G(1,2) + v G(2,1)) + 0(62)>

2J 2J
(3.14)
with the Green’s function G(v, ') defined as:
g(V7 V/) = <@7 V| (hw - HIS + Z‘(S)il ‘67 VI) (315)

where 0 is small enough. A simulation of S, is presented in Fig. 3.16(b-c).

The equivalence between Sy, (L,w) and Sy, (L,w) is trivial due to the
symmetry of the Hamiltonian. N. Ishimura and H. Shiba also computed the
other terms, such as S,,(L,w), concluding that their spectral weight is two
orders of magnitude weaker than Sy, (L,w). This term will be neglected in

this work.

H. Shiba (1980) and the Zeeman ladder. The Ishimura-Shiba (IS)
solution holds only for ordered chains that do not interact with their sur-

rounding. N. Shiba [62] added a molecular field to Eq. (3.12):

Ms =His — Y h;S; (3.16)

J
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Figure 3.16: Simulations of the Ishimura-Shiba Hamiltonian. (a) The com-
plete spectrum of the Hamiltonian (3.13) for an arbitrary value of ¢ = 0.2.
The soliton excitations form a bow-tie-shaped continuum around 2.J. (b)
Simulation of the neutron scattering intensity in the (0 0 L) plane calcu-
lated using Eq. (3.14). The red curve represents the maximum intensity as

a function of L. (c¢) The same as (b) in logarithmic colour scale.
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where the staggered field h; is the sum of the interactions in the plane; under

the assumption that only nearest-neighbour interactions are relevant, this is

hj = Jun Y Sk (3.17)
ke

where (k, j) are the six spins on the j-th plane that neighbour the j-th spin
of the chain. This expression can be generalized to the next-nearest neigh-
bours, or to any number of neighbours, by introducing a series of interaction
parameters (Jp,, and so on).

It was noted that this Hamiltonian is formally equivalent to that of
the 1D tight-binding model for electrons in a uniform electric field. The
excitations of the latter system are quantized and referred to as Stark lad-
der; by analogy the quantized soliton spectrum was called a Zeeman ladder.
Previous magnon Raman spectra [63, 64] were interpreted in terms of a Zee-
man ladder, the nn interaction explaining the staggered field. At the phase
transition at To the weight associated to each staggered field changed: at
lower temperatures the Raman scattering was dominated by h; = 6.J,, in
accordance with Mekata’s prediction for the honeycomb lattice, while at
intermediate temperatures the Zeeman ladder induced by 2.J,, and 4J,,
gained intensity because of the thermal disorder. In analogy to Eq. (3.13),

this Hamiltonian can be expressed as:
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2J(14+€%) +h forv=1v =1
2J(14 3e*)+vh forv=1v>1
Vv forv=1v'-2
(@ vHs|Q, V) = S v+ forv=1v+2 (3.18)
Va forv=1v -4
Vs forv=1v+14
0 otherwise
with Vo = —%J (1+e~%mL). The quadratic terms in € are included in order

to offer a better qualitative agreement with the experimental data.

It was moreover noted that Eq. (3.11), having been derived in a purely
two-dimensional context, was insufficient to relate the phase transition tem-
peratures and the magnitude of the exchange interactions. Using Scalapino-

Imry-Pincus theory [65], the following set of conditions could be obtained:

QkBTNQ G_J/kBTN2 = _6Jnnna

2kpTn1 e 7/*BTNL = 37, — 6. (3.19)

Applied to CsCoClg, this means J = 6.46 meV, J,, ~ 0.36 meV and
Jnnn ~ 0.01J 4.

F. Matsubara (1991) and further Raman scattering. While H.
Shiba had provided a good model to motivate the ladder of excitations and
W. Lehmann et al. [66] further compared calculations and experimental
results (mostly Raman spectroscopy), F. Matsubara et al. [67] noticed that
some outstanding discrepancies remained unaddressed: firstly, different val-
ues of € had been proposed for each branch of the Zeeman ladder (a result
necessary for the fitting but unphysical), and that the experimental weights
associated with different staggered fields didn’t behave as theoretically pre-
dicted.
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In order to solve these important issues, a FM nnn interaction J, along
the chains was introduced (the nn AF interaction, previously J, is from here

onwards noted as J1). The Hamiltonian is then written as

Myt =3 201(S75 4 + e(S]S54 + 71 0))+
J

S 205(8587,, + e(STSTy + SYSY L))+
J

> hics, (3.20)
J

and its matrix form is

(2J1(1 +€%) 4+ 2J5(1 —ecos (2xL)) +h forv=1'=1
2J1(1 + 3€%) +4J> + vh for v =1/
14 forv=1v'-2
(@ vHu|Q, V) = S v+ forv=1v'+2
1% forv=v -4
Vi forv=1v"+4
kO otherwise.
(3.21)

Consistently, the Hamiltonian (3.18) is a special case of (3.21) for Jo = 0.
The authors claimed to have “excellently explained” the magnon Raman
scattering in CsCoCls, CsCoBrs and RbCoCls in terms of Ising chains with
an AF nn interaction and a FM nnn interaction, |Ji/Ja| ~ 0.135, and
staggered fields induced by the in-plane nn interaction. They remarked
that the weights associated with the staggered fields could be understood
by considering the presence of ferrimagnetic domains in the planes: the
typical domain size required to explain their ratios was typically 10 unit

cells in the ordered phase and 5 unit cells in the intermediate phase.
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J. Goff (1995) and the exchange mixing. Regarding the result
|J2/J1| ~ 0.1 by F. Matsubara et al. as being unphysically large, J. Goff et
al. [68] described the splitting of the lowest Kramers doublet as asymmet-
ric. In other terms, the energy difference between [11]) and [111), noted
as J — A, is different from the energy difference between |11]) and [{1]),
which is J + A. As a consequence, while exciting a soliton of length 1 spin
costs 2J, exciting a soliton of length 3 or more costs 2J + 2A. The best
approximation for A, self-consistently calculated starting from the known
crystal-field parameters, was 0.09.J. Equation (3.13) is therefore modified

as:

2J +h forv=v =1

2J +2A +vh forv=1

(@ VIHcl@, V)=V forv=1v -2 (3.22)
\% forv=v+2
0 otherwise.

\

No second-order terms in € were introduced. A neutron inelastic experi-
ment at MARI (ISIS, UK) was interpreted as in agreement with this model,
and the authors suggested that there was no evidence for a large in-chain

nnn interaction.

H. Shiba (2003) and the crystal-field excited states. Disagreements
between the approaches and conclusions of F. Matsubara and J. Goff were
apparent enough for H. Shiba et al. [69] to publish a theoretical study
mentioning as a motivation, in their introduction, that “the relation between
the two proposals as well as the question of which one is appropriate has
not been clarified yet”.

This study developed a theory of the crystal field states, analogous to
that done by J. Goff, but to a different degree of approximation. Relations

could be established between the (unknown) coefficients of the wave function
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of the electrons around the Co?* ions and the parameters Ji, Jo, €; and €z
— the last one being the anisotropy of the nnn interaction. With some

educated guesses it was then suggested that:

e the sign of Jy is opposite to the sign of Jp, i.ethe in-chain nnn inter-

action is FM if the nn interaction is AF;
e ¢; and ey have distinct values;
e ¢ is likely to be small (Ising-like);

e ¢ is likely to be close to unity.

No information about the in-plane interactions J,, and J,,, could be
derived using his method.

Comparison between experimental magnetization curves of CsCoCls and
theoretical predictions based on this theory give an overall good agreement
for J; ~ 6.5 meV, ¢ = 0.16, —J2/J; ~ 0.07 and ez ~ 0.7. This study
concluded noting that the presented approach is in agreement with F. Mat-
subara’s phenomenological model, and is not in contradiction with J. Goff’s
proposal — pointing out that the mean-field approach used in the latter is

the reason why the Hamiltonians are different.

Todoroki (2004) and the phase transitions of the plane. The exact
nature of the two phase transitions, as well as the role of the 3-site ferrimag-
netic phase described by M. Mekata, was not perfectly clear. Using a Monte
Carlo algorithm, Todoroki et al. [70] argued that the 3-site ferrimagnetic
phase is never realized. They also calculated the density of domain walls
along the chains on each sublattice of the extended unit cell, revealing a
sharp increase in one site at roughly 7' = J/5kp, a temperature compatible
with Ths. They concluded that the transition from the ferrimagnetic phase
to the PD phase is physically explained by a discontinuous increase in do-
main wall density in one site, which becomes disordered. Since the number

of domain walls is small compared to the number of spins in the sample,
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hw/J [unitless]
Tw/J [unitless]
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Figure 3.17: Simulations of S, (Q,w) for three Hamiltonians. The staggered
field results in the appearance of a Zeeman ladder. The white dotted curves
mark the boundaries of the IS continuum, see Fig. 3.16, outlining the ves-
tigial bow-tie shape of the Zeeman ladders. The intensity is in logarithmic
scale. (a) Syz(Q,w) calculated after H. Shiba’s Hamiltonian, Eq. (3.18), for
arbitrary values ¢ = 0.2 and h = J/10. (b) Suz(Q,w) calculated after F.
Matsubara’s Hamiltonian, Eq. (3.21), for arbitrary values e = 0.2, h = J/10
and J' = J/6. (¢) Sz2(Q,w) calculated after J. Goff’s Hamiltonian, Eq.
(3.22), for arbitrary values € = 0.2, h = J/10 and A = J/10.
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this also explains why this 1st order phase transition has a minimal latent

heat.

Summary The low-energy spin Hamiltonian of the compounds of the fam-
ily ABX3 (importantly CsCoCls, CsCoBrg and RbCoCls), and its excita-
tions, have been studied in several iterations. A summary of its proposed

key properties is given here.

e The 1D chains are dominated by AF nn Ising-like interactions, whose
lowest-lying excitations are couples of moving domain walls, i.e. soli-
tons, and form a continuum in the case of the isolated chain (N.

Ishimura and H. Shiba).

e The crystal field induces corrections to the in-chain interactions, either
an asymmetric splitting of the Kramers doublet (J. Goff) or a FM nnn
interaction (F. Matsubara, H. Shiba).

e The in-plane neighbours are necessary to explain the emergence of
the honeycomb order, and have been linked to two phase transitions
at temperatures much lower than the main exchange interaction J.
In particular, there is a strong indication that AF nn and FM nnn
exchanges in the plane are necessary to induce the ferrimagnetic state

at the lowest temperatures (M. Mekata).

e The in-plane interactions induce a staggered field that splits the con-
tinuous spectrum into a Zeeman ladder (H. Shiba). Each staggered
field is associated with a population factor, which depends on the or-

der of the plane.

Literature values for the various exchange parameters are given in Table
(3.1). While they vary depending on the compound and on the specific
modelling, there seems to be an agreement on J ~ 6 meV, € between 0.1
and 0.2, and J,, between one and two orders of magnitude below J. The

study on T1CoCl3 by A. Oosawa et al. [71] is the only experimental work,
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to the best of our knowledge, to have interpreted the scattering exclusively
as a IS continuum, while all other major works have modelled it in terms of
a Zeeman ladder. Conversely H. Shiba was the only author to attempt at

evaluating the nnn interaction Jy,.

Spectral weight While the Hamiltonians are sufficient to calculate the
energies, the spectral weight presented in Egs. (3.14-3.15) has to be com-
pleted for the scope of a neutron scattering experiment by adding the polar-
ization factor and the magnetic form factor, which for radially symmetrical

ions has the general formula:

P(Q) = Ae~alQP | BetAP | ce=d@P 4 p. (3.23)

The parameters for Co?T are known: A = 0.4332, a = 14.355 A%, B =
0.5857, b = 4.608 A%, C' = 0.0382, ¢ = 0.134 A2, D = 0.0179 [74].
Additionally, in order to compensate the approximations used in obtain-

ing 3.14, we introduced an empirical correction factor:

Crp(L) =1+ ficos(wL/2) + fasin(wL/2) + fscos(nL) + fysin(wL).
(3.24)

This is just a Fourier Ansatz containing only L/2 and L as frequen-
cies with coefficients f, to be fitted experimentally. It must be noted
that while this expressions only contains L, it should be understood as
Cp(H(L),K(L),L). By construction C(L) is difficult to associate to physi-
cal properties of the system, but merely serves to compensate to all the other

approximations done during the derivations of the spectral weight.

3.5.1 Effects of the temperature

The effect of temperature is threefold. Firstly, the population factors as-
sociated with each staggered field depend on temperature. At the lowest
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Compound Author J [meV] € Other exchanges [meV]
Lehmann [66] 7.81 ~0.2 | J,, = 0.15
Nagler [72 670 | 0.14 | J, =04
CsCoBrs gler [72] J 0-40
J' =0.61
Matsubara [67] 6.14 0.17
Jnn = 0.16
: JInn = 0.39
Shiba [62] 6.46 0.13
Innn = 0.004
Lehmann [66] 6.05 ~0.1 | J,, = 0.076
Nagler [72] 6.19 0.12 | J,, = 0.12
CsCoCl3 J' = 0.52
Matsubara [67] 5.48 0.15
JInn = 0.062
A=0.7
Goff [68] 6.37 | 0.15
Jnn = 0.051
Lockwood [73] ~6.0 | ~0.1] J,, ~0.18
RbCoCl3 J' =084
Matsubara [67] 6.19 0.15
Jnn = 0.12
T1CoCl3 Oosawa [71] 6.4 0.14

Table 3.1: Values for the exchange parameters of ABX3 quasi-Ising chain

compounds as described in literature, ordered chronologically. These values

have been found using various methods, such as Raman spectroscopy (e.g.

F. Matsubara et. al.) or inelastic neutron scattering (e.g. J. Goff et. al.).

Results are displayed to the second meaningful place if available, with no

€rrors.
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temperature we expect a honeycomb lattice with 1/3 of the spins experienc-
ing a staggered field of -6.J,,,, and 2/3 of the spins experiencing none (their
neighbours being inevitably three ups and three downs). At intermediate
temperatures we expect the disorder in the plane to populate all possible
fields. At the highest temperature we expect the staggered fields to aver-
age to zero due to the high population of solitons, and thus every chain to
scatter similarly to an isolated chain.

The temperature also affects the order by introducing domain walls along
the chains [70]. The density of domain walls grows continuously and leads
to a reduction of the lifetime and of the mobility of the solitons.

Several studies focus on the dynamic structure factor of the thermal
quasi-Ising chain. A result of particular interest to us [75] is that an increase
in temperaturature leads to a narrower band, i.e. a decreased value for €;
(with no shift in J;). This can be understood in terms of a decrease in

mobility, as 61(5’;5’311

+ Sj_ S;-LH) is the propagative term of the soliton.

A simplified model for the soliton lifetime is to assume an exponen-
tial decay, and Fourier transform of e 1%, which is /2/7 (T'%2/(T? + w?) +
I'2/(I'? — w?)), two Lorentzians. Hence, via the convolution with the Gaus-
sian instrumental resolution, the lineshape of the soliton is expected to be
a Voigt function with a fixed instrumental resolution ¢ and a temperature-
dependent dampening I'(T") linked to the lifetime of the soliton.

The previously cited theoretical analysis [75] also highlights that this

widening is in truth asymmetric. However we will use a conventional Voigt

function as a simplified model for the lifetime of the particle.

3.5.2 Fitting procedure

The fitting was performed using functionalities of the MATLAB packages
Horace [47] and Specld [76]. While the fit algorithm is conventional, the

following points are brought to the attention of the keen reader:

e The four-dimensional data was simulated in its completeness (which

makes a difference e.g. for the ]Q|2—dependent magnetic form factor,
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or the polarization factor). The simulation was then averaged to a L

vs E slice, which was compared to the experimental data.

e The high-statistics data (i.e. 4, 18 and 35 K) were multifitted (i.e.
fitted simultaneously) while the low-statistics data were not fitted.

The result is therefore the best fit to the high-statistics data.

e In the absence of a reference run, the background was fitted to a

collinear term ag + a1 E.

e The in-plane nnn FM interaction, of magnitude Jy,,,, is expected to be
at least one order of magnitude below the in-plane nn AF interaction
Jnn. Given a Jy, in units of some tenth of a meV, i.e. comparable

with the instrumental resolution, J,,, is too small to be observed.

e There are therefore four modes that should be observed experimen-
tally, belonging to the staggered fields h;. = 0, 2J,n, 4Jnn and 6J,,,.
The intensities of each single modes are expressed by a scale factor W,
— as a convention, the staggered field h;. = nJ,, relates to W,,8. We
will however more often present this as a population factor, i.e. I, =

Wi/ (Wo + Wo + Wy + W), expressed as a percentage.

3.6 Analysis according to Matsubara’s Hamilto-
nian

A multifit was performed to a x> = 1.96. The exchange parameters are
presented in Table 3.2, where they are compared to F. Matsubara’s results
for CsCoBrg, CsCoCls and RbCoCl3 for reference.

The values are found to be generally consistent with those found across
the whole ACoXgs family. A close comparison between the results for

RbCoCls highlights lower estimates for Ji, €; and Js, and a good agreement

8Conventions vary in literature. Particularly, Shiba [62] and Matsubara [67] use Wc for
1o, W32 for Is, WBI for I4 and WA for Is. This study prefers a more systematic naming

scheme.
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Present work | RbCoCls [67] | CsCoCl; [67] | CsCoBrs [67]
Ji 5.880(1) 6.19 5.48 6.14
€1 0.126(1) 0.15 0.15 0.17
Jo 0.518(1) 0.84 0.52 0.61
€ 0.605(1) 0.15 0.15 0.17
Jn || 0.129(1) 0.12 0.06 0.16

Table 3.2: Comparison of the fitted parameters between the present work
(first column) and F. Matsubara’s analysis of several ACoXs compounds
[67]. The errors on these results are not available. All exchange parameters
J are in meV, and isotropies e are unitless. For the values of €, only the
result at 4 K is presented for this work. F. Matsubara’s work assumed e; =

€1.

for J,,. It must be noted that the comparison is not completely accurate as
in F. Matsubara’s work it was assumed that ¢; = e5. However, as predicted
by H. Shiba [69], we find €3 to be much closer to 1.

The instrumental resolution at the transfer energy of the soliton is
0.324(8) meV. The empirical correction factors, as explained in Eq. 3.24,
are f1o34 = 0.25(1), 0.52(1), 0.12(3) and -0.12(2).

In the following section, the fits will be presented and will be followed by
an in-depth analysis of the changes with temperature of specific aspects, such
as anisotropy, Lorentzian width, and distribution of the staggered fields. The
problems of the higher branches of the Zeeman ladder will then be discussed.

3.6.1 Results at 35 K

A comparison between the experimental data and the associated fit result
at 35 K is shown in Fig. 3.18. Cuts at the zone boundary and zone centre
are shown in Fig. 3.19.

At this temperature we find €; = 0.0955(4) and I" = 0.93(2) meV, which
is much bigger than the instrumental resolution. Finally, 71(3) % of the
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Figure 3.18: Slice of (a) the experimental results at 35 K and (b) fit thereof.
In the fit, the grey lines mark the extent of the continuum and the red curves

mark the bound mode that separates from the continuum L = -0.5.

scattering is associated to the non-staggered chain, h;. = 0, and 28(4) %
with h;. = 2J,,, with almost no contribution from more coordinated con-
figurations. This is compatible with a scenario where thermal fluctuations

prevent higher staggered fields from forming.

3.6.2 Results at 18 K

A comparison between the experimental data and the associated fit result
at 18 K is shown in Fig. 3.20. Cuts at the zone boundary and zone centre
are shown in Fig. 3.21.

As expected, €; has increased to 0.112(1) and I" has decreased to 0.25(1)
meV, comparable with the instrumental resolution and roughly one quarter
of its value at 35 K. The scattering is distributed as 38(1) % to h;. = 0,
34(1) % to hic = 2Jpn, 26(1) % to hi = 4Jp, and a negligible contribution
from hj. = 6J,,.
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Figure 3.19: Comparison between cuts of the data (black) and the fit (red).
The dotted blue-to-green curves show the contribution of single staggered
fields h;., which are integer multiples of J,,. The fit is dominated by the
continuum-like spectrum of the isolated Ising chain, although there is a

meaningful contribution from h;. = 2J,,.
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Figure 3.20: Slice of (a) the experimental results at 18 K and (b) fit thereof.
In the fit, the grey curves mark the extent of the continuum and the red

curves mark the bound mode that separates from the continuum around L

= -0.5.
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Figure 3.21: Comparison between cuts of the data (black) and the fit (red).
The dotted blue-to-green curves show the contribution of single staggered

fields h;., which are integer multiples of J,,,.

3.6.3 Results at 4 K

A comparison between the experimental data and the associated fit result
at 4 K is shown in Fig. 3.22. Cuts at the zone boundary and zone centre
are shown in Fig. 3.23.

At the lowest temperature, €; has reached its maximum value of 0.125(1)
and I' = 0.102(8) meV is negligible next to the instrumental resolution. The
scattering is distributed as 66(2) % to h,. = 0, 3(1) % to hjc = 2Jpp, NO
contribution from h;. = 4J,, and 30(1) % from h;. = 6J,,, i.e. distributed
according to a honeycomb geometry.

Considerations about the higher modes of the Zeeman ladder, i.e. the
two faint modes visible between 15 and 19 meV, will be discussed in section

3.8.2.
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Figure 3.22: Slice of (a) the experimental results at 4 K and (b) fit thereof.
In the fit, the grey curves mark the extent of the continuum and the red

curves mark the bound mode that separates from the continuum around L

= -0.5.
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Figure 3.23: Comparison between cuts of the data (black) and the fit (red).
The dotted blue-to-green curves show the contribution of single staggered

fields h;., which are integer multiples of J,,,.

3.6.4 Fits at 8.5, 10.5 and 23 K

Subsequent fits were performed on the low-statics data using the results
of the high-statistics data to ensure consistency. These fits are shown and
explained in Figs. 3.24-3.26.

The decrease in incoming energy E; from 25 to 20 meV severely affects
the dynamic range that is sampled by neutrons; as a consequence the edge
of the detector is much closer to the region of interest — this can be clearly
appreciated in the much higher background at L = -1. Combined with the
lower statistics, this results in a fit of lower precision.

The specific fitted parameters will be listed in the following sections when

reviewing the evolution of single aspects with temperature.
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Figure 3.24: (a) Experimental data at 8.5 K. (b) Slice of the fit of the exper-
imental data. The fit clearly displays four separate modes, corresponding to
hic from 0 to 6.J,,. (c) Cut of the data at L = -1.0, showing the fit and the

single components. Refer to Fig. (3.23) for the legend. (d) Cut of the data
at L = -0.5.
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Figure 3.25: (a) Experimental data at 10.5 K. (b) Slice of the fit of the ex-
perimental data. The fit clearly displays four separate modes, corresponding
to hjc from 0 to 6.J,,. (c) Cut of the data at L = -1.0, showing the fit and
the single components. Refer to Fig. (3.23) for the legend. (d) Cut of the
data at L = -0.5.
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Figure 3.26: (a) Experimental data at 23 K. (b) Slice of the fit of the exper-
imental data. The fit clearly displays four separate modes, corresponding to
hic from 0 to 6.J,,. (c) Cut of the data at L = -1.0, showing the fit and the
single components. Refer to Fig. (3.23) for the legend. (d) Cut of the data
at L =-0.5.
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3.6.5 Mobility and lifetime as a function of temperature

Figure 3.27(a-b) show the anisotropy €; and the Lorentzian width I' as a
function of temperature. As expected from the phenomenological argument
from decreasing lifetime and mobility, €; is a decreasing function of temper-

ature while I' is increasing.
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Figure 3.27: (a) Ising-like parameter €; as a function of temperature. The
decrease in €; marks a decrease in the mobility of the solitons. Red (blue)
points are taken from high-statistics (low-statistics) datasets. Dotted con-
stant lines are drawn in each phase as a guide to the eye. (b) Lorentzian
linewidth I" as a function of temperature. The increase in I' marks a decrease
in lifetime. The azure exponential is a guide to the eye. The anomalous data
point at 8.5 K is most likely the result of the imperfection of the fits of the
low-statistics datasets. (c¢) Weights associated to each staggered field versus
temperature, normalized so that their average is 1. The black data points

are the integrated intensity of the raw data, also roughly scaled to unity.
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TIK | I I I Is
4 | 66(2) | 3(1) | 0(1) | 30(1)
8.5 || 50(9) | 16(3) | 14(3) | 18(3)
10.5 || 41(8) | 25(5) | 24(4) | 9(2)
18 || 38(1) | 34(1) | 26(1) | 0(1)
23 || 29(7) | 48(9) | 23(4) | 0(1)
35 || 71(3) | 28(4) | 0(2) | o(1)

Table 3.3: Summary of the behaviour of the percentage of chains in a certain
configuration. I, is the percentage of scattering on a chain that experiences
a staggered field h;. = nJ,,. The sum of the intensities does not reach 100%

due to the errorbars.

3.6.6 Population factors as a function of temperature

Figure 3.27(c) shows the distribution of staggered fields as a function of
temperature.

Aside from the integrated scattered intensity, which can be thought of
as being roughly constant, Table 3.3 summarizes the percentages associated
to each staggered field as a function of temperature.

Previous studies on RbCoCls, while generally agreeing on the popula-
tion factors of the honeycomb lattice, considered diversified approaches to
the thermal frustrated hexagonal lattice. A list of results in literature is
presented in Table 3.4. For instance, for their only scan between T2 and
Tni, at 17 K, J. Goff [68] assumed a perfectly random PDAF with coeffi-
cients of 5/12, 3/12, 3/12 and 1/12 (i.e. 42 %, 25 %, 25 % and 12 %) for h;.
from 0 to 6.J,,, a distribution which is remarkably close to the populations
factors found at 10.5 K — still below T2, but where the meaningful diffuse
scattering suggests detectable amounts disorder.

The complexity of the temperature evolution of the population factors

observed in this study is not fully grasped in the previous studies on these
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T [K] Author Io | Ir | Iy | Ig
2 Lehmann [66] 41 [ 18 | 7 | 37

2 Goff [68] 67 | 0 | 0 |33

2.3 Matsubara [67] || 31 | 19 | 13 | 37
12 Lehmann [66] | 14 | 43 | 29 | 10
13.7 | Matsubara [67] || 18 | 40 | 29 | 13
17 Goff [68] 42 [ 2525 | 12
T>Tyi| Goff [68] 00| 0|00

Table 3.4: Overview of the population factors of the chains in literature.
Note that the results by Lehmann and Goff refer to CsCoCls, while the
results by Matsubara are for RbCoCls.

compounds, between which the results vary significantly. Qualitatively un-
derstanding the population factors requires a full thermodynamic modelling
of the order in RbCoCl3, which will be obtain via a Monte Carlo algorithm,

as explained in the next section.

3.6.7 Cluster Heat Bath Monte Carlo method

Monte Carlo algorithms [79, 80] are a common numerical method to find
simple solutions to complicated problems. The Metropolis-Hastings algo-
rithm is a Markov chain’ Monte Carlo method [82, 83, 84, 85, 86] that is
commonly used in solid state physics [87]. In systems where only spin-flips

are allowed, as is the case in Ising systems, it can be summarized as follows:

e Randomly create an initial set of spins.

e Randomly pick one spin. Calculate the energy difference dE between

9A Markov chain is a stochastic process (i.e. a collection of random variables that
evolve in time) that satisfies the Markov property of being memoryless (i.e. a state can
influence the probabilities that create the next state in the process, but does not influence

any subsequent probability) [81].
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the system before and after flipping the spin.

o If dFE is negative, i.e. the total energy would decrease, always flip the
spin. If dFE is positive, i.e. the total energy would increase, there is a
probability e # ¥ that the spin is flipped. Flips are thus more likely
when going against small energy gaps dE, or when the temperature is
higher (and (3 smaller). This prevents the system from stopping in a

local minima, and introduces thermal fluctuations and disorder.
e Randomly pick a new spin and repeat until convergence/equilibrium.

e Once equilibrium has been reached, compute and average the relevant
observables (e.g. magnetization, energy) over a number of subsequent

iterations.

The Metropolis-Hastings algorithm, while a good generalist method, is
less suited for a system such as RbCoCls since it focuses on a single spin
at a time: as the system orders locally, the number of spins likely to flip
decreases, slowing the process progressively.

In order to prevent the critical slowing down of the process, a number
of cluster Monte Carlo algorithms have been developed. They rely not on
flipping a single unit, but rather on clustering units and operating on them
globally.

The Cluster Heat Bath (CHB) algorithm has been developed specifically
for quasi-one dimensional Ising compounds [88, 89, 90]. In its essence, the
CHB method does not focus on a single spin but instead rearranges simul-
taneously entire chains according to the Boltzmann distribution, Eq. 3.3.

At any step of the algorithm, one entire chain of the sample is considered.
Its configuration is determined using the probability functions that the j-
th spin is pointing upwards or downwards, p(S7 =1) and p(S7 =]). The
staggered field is h;.

This algorithm will be first sketched for a single chain to simplify the

notation. For the first spin in the chain:
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5 e_Bhl
p(Sl :T) = Zl )
etBh
p(ST =) = —%—, (3.25)
1

where Z; is a normalization factor to ensure that the total probability is
1 —1ie. 21 = exp(—Ph1) + exp(+Sh1), the partition function for a one-spin
system. A positive (negative) value for hj, i.e. most neighbouring spins
pointing upwards (downwards), favours the probability that the spin points
downwards (upwards), enforcing the AF order in the chain. Note that this
criterion is for now equivalent to the Metropolis-Hastings approach.

Then, for any further spin along the chain, the probabilities are treated
as conditional: the question is the probability of the spin j being up or down
given the probabilities for the site j-1 and given the staggered field. This

can be expressed symbolically as:

p(S3 =1) = (p< s =) p(SE =1 IS5y =1) + ..

p(S71 =) p(S7 =1 |87, =1) ) p(S3 =t |hy),  (3.26)

where the conditioned probabilities can be easily calculated and the proba-

bilities of the j-1-th spin are known iteratively:

p(5; =1 = (p(S50 = e

z _ 26J € J
P(qu =) et > 7Zj )

p5; =0 = (PS50 =N ¢
ethh;

(3.27)
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Simplifying the notation, in general it is written that:

P(S;) =5 Do p(Sjy) e SN, (3.28)

The probabillity of a specific sequence {S*} can be then, according to
[88, 89, 90], be computed as:

I3
M )
j J

N—-1 N
1
=([Iz) exp(—287 ) 855500 = 8D hiS5) =
i j=1 j=1

B Hising({57}))

-— (3.29)

This proves that the probabilities behave according to Boltzmann statis-
tics: the clusters (i.e. chains) are generated in thermal equilibrium with the
heat bath of their surroundings.

The algorithm works as follows:

e Randomly create an initial set of spins of a certain size.

e Randomly pick one chain of spins. Compute the staggered field h; and
the probabilities p(S7) for each spin of the chain.

e Rearrange the chain according to p(57): if p(S; =1) > ¢, where ¢ €

[0,1] is a random number, then S7 =1.
e Pick a new spin and repeat until convergence/equilibrium.

e Once equilibrium has been reached, compute and average the relevant

observables over a number of subsequent iterations.

This method has been proven to reproduce closely the magnetic phase
transitions of CsCoBrs and CsCoCls [90]. Its applications are, however, very

general, and CHB simulations have been performed e.g.to demonstrate a
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glass phase transition in a 2D random Ising model or to show the ferromag-
netic transition in SrTiOsg.

The application in RbCoClg is straightforward. The two interactions in
the plane can be included to compute hj;, while including a next-nearest
neighbour interaction along the chain (associated to an exchange parameter

J2) requires a slight extension of Eq. 3.28:

P(S7) = oo PhST,

Z
p(S3) = Zi ZP(Sf) ¢~ 2615755 Bh; S5
2 5z
1 —2BJ15%_,S%—-2BJ25%_,S%—pBh;S%
P(S7) = 5 D D p(So)p(S7y) e ST A (3.30)
J 5z 82
j—2%5-1

I will here further propose one expansion of this method in the following

section.

Extension of the CHB method to the order in the plane

This method can be generalized to order the planes faster by increasing the
size of clusters — considering sequences of chains instead of single chains.
The planar CHB (pCHB) method used for this study can be formulated

as follows:

e Randomly create an initial set of spins of a certain size.

e Randomly select a path v = {(xk, yx) }ker, I being an index set. The
coordinates (xy, yx) reference a specific chain of spins, i.e. a set ( jk)

The following list of conditions has been used through this study:
— v defines a connected path between an initial spin (z1,y1) and a
final spin (zy,, yn).
— The path doesn’t loop on itself.
— The path can be of any length.

— Periodic boundary conditions are imposed.
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An exemplary sketch of a path is sketched in Fig. 3.28.

For each spin in 7 the probability p(S%,) is calculated iteratively and
conditionally. Importantly enough, the probabilities of p(Sﬁ,€ 41) do
not influence p(Sjk) in the same way that p(S,fj) doesn’t depend on

p(S5;1 ). This allows for a faster exit from local minima.
Rearrange the spins in 7 according to p( jZ 5)-
Repeat from 2 until convergence/equilibrium.

Once equilibrium has been reached, compute and average the relevant

observables over a number of subsequent iterations.

Figure 3.28: Sketch of a possible situation in the planar CHB method. A

single plane of a set of random spins are generated (black and white), and

a path ~ (yellow) is chosen. The spins are to be rearranged as to being in

thermal equilibrium with their heat bath.

Similarly to the conventional CHB method, the rearranged spins satisfy

Boltzmann statistics by construction. Simultaneously flipping large amount
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of spins allows to propagate changes in the spin structure faster than the

Metropolis-Hastings method — hence improving performance.

3.7 Comparison between the CHB method and
the fits

CHB simulations were performed on a 120x120x5000 spin lattice, running
over 8000 cycles. During even-numbered cycles a random'® number of con-
ventional CHB operations took place (i.e. chains were flipped individually),
while the odd-numbered cycles consisted in a single pCHB loop (reorder-
ing, however, a random number of chains). Additionally the temperature
of the system was lowered during the 8000 cycles (similarly to simulated
annealing).

The fitted interaction constants Ji 2 », were used for this simulation. In
the absence of a better approximation it was furthermore assumed that J,,,
= Jun/10.

Table 3.5 shows comparisons between fit results and CHB calculations.
It has to be noted that the CHB calculations were not set to stabilize the
temperature, but rather to obtain the best fit to the experimental population
factors (i.e. the temperature of the simulations is not necessarily 4 and 18

The spin configurations are then visualized allowing a direct comparison.
For the visualization in Fig. (3.29-3.30), what is shown is not a single plane
but a 2D collapsed schematic view: a single chain {SJZ } is used to compute
the sum } (-1)78 %, which is +1 for fully ordered chains, and between these
extremes for partially disordered chains.

Furthermore the spin structure can be Fourier-transformed along the (H
H 1) to simulate the Bragg scattering from the magnetic lattice, as in Fig.
3.5. A full simulation of the diffraction data is not within the scope of the

present study, and thus no other terms and corrections (e.g. the magnetic

107 ess than 120.
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T [K] Igt Ié}HB IQﬁt IQCHB Li;lt IEHB IGﬁt Ié}HB
4 |le6(2)| 61 | 31) | 6 |o@1) | 5 |3001)] 28
85 || 50(9) | 51 |16(3) | 17 |14(3)| 14 |18(3)| 18
105 || 41(8) | 40 |25(5) | 29 |24(4)| 19 | 92) | 9
18 || 38(1)| 35 |34(1)| 32 |26(1)| 18 | 0(1) | 5
23 || 29(7) | 35 |48(9)| 32 |23(4)| 18 | 0(1) | 5

Table 3.5: Comparison between population factors (in percentage of the
total scattering) as obtained in the fits and in the CHB algorithm for 4 and
18 K, as explained in the text. The CHB calculations for 18 K do not add
up to 100% due to weight being allocated to negative staggered fields (which
were neglected during the fits).

form factor) are included except for a convolution with a Gaussian profile
to simulate the instrumental resolution.

The spin configuration obtained for 4 K displays large domains of
honeycomb-ordered spins, in agreement with the known structure. The
interfaces between domains have simple shapes (resembling straight lines)
to minimize the geometrical frustration. Most of the chains are fully or-
dered. The Fourier transform of this spin structure is dominated by a peak
at (2/3 2/3 1), with a peak at (1 1 1) roughly one order of magnitude less
intense. This is in excellent agreement with the behaviour described in the
introduction to this chapter.

The spin configuration for 18 K lacks the large domains that charac-
terise the 4 K structure, but does retain meaningful local honeycomb order.
Moreover the number of domain walls inside the chains has increased to a
very relevant amount. At this temperature the AF nn in-plane interaction
is still relevant, creating a situation where spins in the plane prefer to be an-
tiparallel, but the FM nnn in-plane interaction that stabilises the long-range
hexagonal order is no longer relevant compared to thermal disorder.

Fig. 3.31 shows the simulated Bragg diffractions from the spin structures
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Figure 3.29: (a) Schematic view of a section of the Monte Carlo simulation
of RbCoClj for 4 K as discussed in the text. Black and white hexagons are
ordered chains of opposite orientations, while grey hexagons are disordered
chains. There are wide domains of honeycomb-ordered spins with mostly-
straight “well-behaved” domain walls. This phase is ordered. (b) Simulation
of the Bragg diffraction from the spin structure for 4 K. Peaks can be found
at (2/32/3 1) and (1 1 1) with an order of magnitude of difference in their

intensity, in satisfactory agreement with the experimental data, see Fig. 3.5.



3.7. Comparison between the CHB method and the fits 81

%
b ¢ ’e
% .
(@) 1LI%IP 318 K (b)
) _ 94 1
o0 %% o o
%2 g
9 % ?
8L 1 be
X I 9
. .
e % o
% 4 =
e e ’ <
5 e 5 Red 1 =
¢ '
q ) > )
EEED 3
' e e % ‘ot =)
o o ¢ ? > o0 15)
S S %9 =
o, &% =)
b4 1 b 4
o o ) _ b 9 ¢ ¢
' ]
y *e 0
o g Y
L b e
P2 % 0 %t e 29
* * o 00 %%)
o Te? o
P o o0
1% S o e o se % Yos S % sf . . : .

(H H1) [rlu]

Figure 3.30: (a) Schematic view of a section of the Monte Carlo simulation
of RbCoClg for 18 K. There are no long-range domains to be found, but the
structure displays considerable local ordering. We propose this structure as
a more physical generalization of the simplistic PDAF structure as explained
in literature. (b) Simulation of the Bragg diffraction from the spin structure
at 18 K. A peak can be found at (2/3 2/3 1) while there is none at (1 1 1);
additionally the tails of the peaks are much broader — a result compatible

with the rise of the diffuse scattering, see Figs. (3.5-3.6).
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Figure 3.31: Simulation of the Bragg diffraction from the calculated spin
structures at all experimental temperatures except 35 K along the (H H 1)
direction. The magnetic structure peaks are sharp at the lowest tempera-

tures and become broader and less intense as the temperature increases.

at all temperatures. In good agreement with the experimental diffraction
data presented in the beginning of the chapter, the magnetic peaks are
sharper at lower temperatures and broader at higher temperatures, and
their intensity decreases with temperature. Simultaneously, the scattered
intensity at Q—points outside of the peaks increases, which is an indication
of the diffuse scattering emerging around the peaks. At this stage the re-
sulting scattered patterns still show many computational artifacts (e.g. not
many peaks are close to be Gaussians, or Lorentzians), but this is due to
the insufficient size along x and y of the simulated spin array, which is a
computational constrain. However, even at this stage the calculation con-
firms some important experimental observations on RbCoCls: namely, the
transition from a more ordered to a more disordered spin structure is asso-
ciated to the weakening of sharp Bragg peaks and the emergence of diffuse
scattering around them.

It has to be reiterated that this is calculated entirely from the popu-
lation factors (themselves a result of the fitting of the spectrum) and the

spin Hamiltonian, without any information about the experimental Bragg



3.8. Further aspects of the spectrum 83

diffraction being required or considered.

The agreement between fitted and simulated population factors is satis-
fying but not perfect: for instance with the CHB predicting 5 % occupation
for Ig for 18 K when the fit does not allocate any weight to that component.
There are however a number of physical considerations that haven’t been
included in the Monte Carlo calculation, such as imperfections in the lattice
which can lead to pinning.

Finally, the CHB simulation did not give any comparably accurate re-
sult for 35 K. We interpret this as an indication that the population factors
above T are not deduced from a static structure — which does not exhibit
any sort of detectable order — but rather from dynamic considerations, i.e.
the staggered field on a chain is no longer the sum of the interactions with
the neighbouring chains but also the time average: since at that tempera-
ture there are abundant thermally-excited solitons (which flip spins when

propagating) the time-average drives the staggered fields towards zero.

3.8 Further aspects of the spectrum

3.8.1 The Villain mode

While the gapped excitations between 10 and 20 meV are the result of
scattering on an ordered chain, it is possible to scatter on a domain wall as
well. This excitation is, thus, intrinsically gapped, and is called a Villain
mode [49].

The Villain mode is theoretically predicted to be centred on L = +1,
being otherwise H- and K-independent, and its intensity scales with the
Bose-Einstein factor n(hw,T).

Usually ToF instruments have intense elastic lines, owing to the elastic

tll

and incoherent scattering on components such as the cryostat™, which is

a problem to detect a gapless mode. However, by modelling the signal at

1A conventional way to reduce these contributions would be via the use of a radial

collimator; however LET is not provided with one at this point in time.
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temperature T' — S (Cj, hw)p — as the sum of a temperature-independent part

A(Q) and a temperature-dependent part B (Q, T), it is true that

—

S(@, hw)r, — S(Q, hw)r, = V(Q,T2) — V(Q, Th)

and by assuming that B(@, T1) = n(hw, T)V(@) —i.e. the Villain spectrum
does not evolve with temperature but is rather weighted by a conventional

statistical distribution — then the Villain mode is found as

V(G.w) = ! (S(G. )z, — S(G. ) ).

- n(hw, Ty) — n(hw, Ty)

Figure 3.32 shows the Villain mode for all high-statistics datasets. It
follows the known expectations for such a mode. While a more in-depth look
into its properties is not required in this present study, we note here that
the mere presence of the Villain mode reinforces the position of RbCoClj3 as

an almost-ideal quasi-1D Ising-like chain.

3.8.2 Higher modes of the Zeeman ladder

At 4 K the presence of additional modes at a higher energy transfer is partic-

t'2, see Fig. 3.22. These modes are particularly problematic

ularly apparen
as they are not explained by our fits: in Fig. 3.23(a) the presence of two
Zeeman ladder higher modes, at about 15 meV and 17 meV, is highlighted —
yet the fitted Hamiltonian only predicts one Zeeman ladder mode, at about
16 meV.

The difficulty lies firstly in the low statistical weight of these higher
modes: the fitting procedure is sensitive exclusively to the continuum spec-
trum and to the first mode of the h;. = 6., chain.

A way to circumvent this problem is to fit the modes to the energy of the

modes (which can be accurately obtained by fitting 1D cuts with Gaussian

12 At higher temperatures the Lorentzian broadening of the modes makes it impossible

to distinguish them from the background.
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Figure 3.32: Villain mode at three temperatures. In general the mode can

be characterised as being gapless and depending only on L, and is the result

of scattering on domain walls.

functions). This approach neglects the intensity of the mode and cannot
address issues such as the lineshape, but it is a useful exercise. Its results

are displayed in Fig. 3.33.

The reader might be interested in some clarifications on the fitting pro-

cedure:

e During the fits either three or four curves will be considered. The first
is not a mode but is rather the maximum of the continuum, while the
other three are the first three modes of the Zeeman ladder belonging

to h;e = 6J,, chain.

e All exchange parameters can be fitted, although the first mode is as-
sumed to have h;,. = 0. Figure 3.33(a) shows an unconstrained fit,

while (b) shows a fit where J; was constrained to be equal to the

previously fitted one.

A picture of the fits is presented in Fig. 3.33. Table 3.6 summarizes the
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results.
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Figure 3.33: Fits of the modes. The energy of the maximum of the intensity
of the continuum and the energies of the three visible steps of the Zeeman
ladder (black data points) were fitted from the data (semitransparent col-
ormap) and fitted to the model (red). (a) Fits with free parameters. (b) Fit

with the constraint on J; to be as fitted previously.

It must be noted that even the fits that neglect the intensity fail to fully
reproduce the higher excited states of the Zeeman ladder, seen between 15
and 18 meV in Fig. 3.33. However, this calculation is sufficient to get an
approximate value for their average energy.

While it must be concluded that the Hamiltonian is missing terms nec-
essary to describe the higher modes of the Zeeman ladder, it provides a

satisfying explanation for the first, and most intense, mode.

3.8.3 Analysis according to Goff’s Hamiltonian

All of the preceding results were obtained using F. Matsubara’s model. A

similar analysis can be carried through using J. Goff’s Hamiltonian.
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Jl [meV] €1 JQ [meV} €9 6Jnn
Reference 5.889(1) | 0.126(1) | 0.518(1) | 0.605(1) | 0.77(1)
“Free” 6.00(8) 0.12(1) 0.48(5) 0.6(1) | 0.63(4)
“Constrained” 5.889 0.135(9) | 0.59(3) 0.45(7) | 0.60(4)

Table 3.6: Comparison between the fitted parameters of the Hamiltonian as
fitted previously (“reference”), freely fitted to the modes (“free”), or fitted

with a fixed J; (“constrained”).

Present work | CsCoCls [68]
J [meV] 6.79(1) 6.37
¢ 0.17(1) 0.145
A [meV] 0.92(1) 0.70
Jon [meV] || 0.088(1) 0.05

Table 3.7: Comparison of the fitted parameters between the present work
(first column) and J. Goff’s analysis. The errors on these results are not

available. For the values of €, only the result at 4 K is presented.

A multifit was performed to a x? = 2.21. The exchange parameters are
presented in Table 3.7, where they are compared to J. Goff’s results for
CsCoClg for reference.

The values are found to be close to the results in literature, although
with an unusually high value for e. The fits are displayed in Fig. 3.34.
While the agreement at higher temperatures is sufficient, this model fails
to reproduce the dispersion at low temperature, specifically concerning the
sharpness of the continuum, see panel 3.34(b), and the spacing between the
modes, 3.34(c).

We propose, as one of the results of this study, that F. Matsubara’s

Hamiltonian, which has been used in all the previous part of the study, is

the best suited to describe this class of compounds.



3.8. Further aspects of the spectrum 88

100 500

fo

S(Q,w)

Energy [meV]
['qre] Aysusyuy

-1 -0.5
L [rlu] Energy [meV]

Figure 3.34: Results of the fitting procedure according to J. Goff’s proposed
Hamiltonian. All averaging intervals are the same as before, see Fig. 3.18-

3.19. (a,d,g) Simulation of the fitted model at 4, 18 and 35 K. (b,c,e,f)h,i)
Cuts at each temperature for L = -1.0 and -0.5 r.lL.u.
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3.8.4 Higher energy-transfer data

As mentioned in Section 3.4.3, an experiment on RbCoClg was performed
at LET in 2015. For this experiment we employed two of the three single
crystals used in 2011.

While the focus was applying a magnetic field, improvements on the in-
strumental data collection procedure meant that multirep (see introduction)
could be employed. This allowed to simultaneously measure at different in-
coming energies — specifically at E; = 88 meV, offering an insight in the
high-energy-transfer data of the spectrum of RbCoCls.

Figure 3.35 shows the data measured with E; = 88 meV. A sharp mode
appears at 40 meV: while to the best of our knowledge there is little literature
on this topic, we suggest that it is a crystal field excitation, due to its extreme
flatness'® and their Q—dependence: phonon intensities tend to increase with
@, while magnetic or crystal field excitations tend to decrease in intensity

(owing to the form factor of the orbital shells).

3.9 Conclusions and outlook
As the conclusion of this study we can summarise the results as follows.

e We have measured the soliton dispersion in RbCoCls and explained
it in terms of a simple, fundamental model (following Matsubara and

Shiba’s proposals).

e We have assessed that the dominant exchange parameter .J; is 5.889(1)
within the model. That is much bigger than those found in similar
other chain compounds such as CoNbyOg and BaCoyV2Og, and the
critical magnetic field required to trigger a quantum phase transition

in RbCoClj is beyond modern neutron scattering capability.

13Crystal fields excitations can be thought as almost perfectly localized in space. Their
@—dependence is in first approximation negligible as the Fourier transform of a delta

function is a constant.
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Figure 3.35: (a) Slice of the data collected at F; = 88 meV, T' = 4 K, and
no magnetic field. The data was normalized to the proton current, meaning
an overall scaling of the intensities compared to the previously shown data.
Dominant features are the bright elastic line, the first modes of the soliton
spectrum between 10 and 20 meV, and a further mode at ~ 40 meV. The
data at L < 3 r.l.u. also shows heavy background contamination due to the
cryostat and the magnet. (b) Cut of the data for -1.15 < L < -0.85. The
various branches of the soliton cannot be distinguished, and a resolution-
sharp mode appears ~ 40 meV. It has to be noted that the shape of the
background up to 50 meV could be due to the elastic line, while the increase

of signal above 70 meV is due to the next pulse of the beam.
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e We have shown that the one-dimensionality of the system is outstand-
ing, with an Ising-like coefficient €; of 0.15 (compared e.g. with 0.46
in BaCo2V320s). This solidifies the position of the ACoX3 compounds
as being amongst the closest realizations of spin chains in the Ising

limit.

e We have explained the spectrum in terms of dispersions associated
to staggered fields. A vanishing staggered field is associated to an
Ishimura-Shiba-like continuum (which can display a bound mode, sim-
ilarly to CoNbyOg), while non-vanishing staggered fields are associated
with a series of bound modes called a Zeeman ladder. The simultane-
ous presence of a IS continuum and of a Zeeman ladder is due to the

honeycomb geometry.

e We have traced the evolution of the spectrum as a function of temper-
ature in all the magnetic regimes of the phase diagram of RbCoCls,
in excellent agreement with several models for the structure. We have
furthermore modelled the effects of temperature in terms of mobility

and lifetime of the excitations, obtaining a self-consistent picture.

e We have furthermore explained the population factors associated to
each staggered field not just qualitatively, but with a special Monte
Carlo algorithm which we have developed for this purpose (pCHB)
from an already specialized pre-existent algorithm (CHB). The agree-
ment between our simulation and the fitted population factors is ex-

tremely encouraging.

We have no doubt that this understanding of the system is an important
step forward in both the ACoX3 compounds, but also Ising-like physics in
general.

This study leaves some questions unanswered, and highlights several new

aspects to be further investigated.

e The question of the quantum phase transition of RbCoCls, and its



3.9. Conclusions and outlook 92

excitations, are still open due to the magnitude of the gap, around 11
meV. We have to stress that, in order to answer these question in an

INS experiment, significant technological advances have to be made.

e What is the full evolution versus temperature of the Ising-like
anisotropy €;1(7T), of the Lorentzian width I'(T"), and of the popula-
tion factors? With at most three temperatures in any phase, our data
are not sensitive enough to accurately explain the effects of thermal
disorder, although it is more than sufficient to establish a trend. Part

of this can be found in E. Hirtenlechner’s thesis [41].

e Can the effect of temperature be modelled in more realistic terms?
While the argument from mobility and lifetime is accurate within the
goodness of the data, theoretical studies have presented more nuanced
models. For instance, some authors [75] have presented results that are
compatible with a decrease in €7, but have also introduced an asym-
metric and more complicated linewidth, while our data were analysed

on the assumption of a simple Lorentzian widening.

e What is the value of J,,,?7 A ferromagnetic next-nearest neighbour
interaction is necessary in order to lift the frustration and enforce the
honeycomb order, but its value is less than the instrumental resolution.

Further studies are needed to shed light on this issue.

e How can the higher modes of the Zeeman ladder be explained? While
the most intense modes of the fits at all temperatures are satisfyingly
explained, the modes that can be measured between 15.5 and 18 meV
are as of now not modelled correctly. We hope that this study will
motivate interest from the theoretical community on this particular

issue.

A new set of experiments would be needed to address these questions.
On one hand measurements of the full Q—dependence of the diffuse scattering

(for instance on an instrument like WISH, at ISIS) would allow to test the
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CHB model as a function of temperature and obtain a good understanding
of the evolution of the local staggered field. Alternatively, depending on the
crystallographic location where they stop, muons might be used to determine
the number, value and prevalence of staggered fields in the compound at any

given temperature.



CHAPTER 4
The spin-wave spectrum of

the magnon Hall pyrochlore
LU2V207

4.1 Scientific background

In the cubic pyrochlore lattice, ions can form vertex-sharing tetrahedra: in
such configuration each ions has six equidistant neighbours, or three in each
tetrahedra (see Fig. 4.1). Due to its unique geometry, this structure allows
for high frustration depending on the nature of the magnetic interactions and
the spin symmetry. A variety of interesting phenomena have been reported
when the magnetic sites are decorated with “classical” spins (large S) [91].

The most famous example is the spin-ice behaviour, first reported in
Ho,TisO7, which emerges from Ising spins and leads to the description of
magnetic monopoles [25, 92, 93, 94, 95, 96, 97, 98, 99]. Amongst other
noteworthy properties are the spin-liquid ground state [24, 100, 101], spin-
glass behaviour [102], order-by-disorder transitions [103, 104, 105], giant
or colossal magnetoresistance [106, 107], superconductivity [108] and more
subtle effects such as the spin-driven Jahn-Teller distortion [109].

The class of RE2V207 (Re = Lu, Yb, Tm), which will be described in
more detail later, are insulating Heisenberg ferromagnets (FM) [110] that ex-
hibit several remarkable properties, such as large negative magnetoresistance
[111, 112, 113] and orbital ordering [114, 115, 116, 117]. These compounds

received wide attention with the discovery of the thermal magnon Hall effect

94
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Figure 4.1: View of the magnetic sites in the unit cell of LusVoO7. There are
16 V4 (dark blue) ions per unit cell (black lines) forming four tetrahedra
(vellow faces). Each ion lies in the vertex of two tetrahedra. (a) View from
the side. (b) View along the [1 1 1] direction. In this projection, a single

plane of magnetic ions has the structure of a Kagome lattice (red lines).

[118, 119, 120, 121, 122, 123].

There are several generalizations of the Hall effect. A multitude of par-
ticles, or quasi-particles, and potentials can be involved in a Hall effect
equivalent. Notably a thermal Hall effect involves the application of a tem-
perature gradient to induce a heat current — and the carriers can be, for
example, both electrons or phonons [124, 125, 126, 127]. In conductors this
effect is also called the Righi-Leduc effect [128]. In general this is also re-
lated to several thermoelectric effects that couple a temperture gradient to
a voltage, such as the Seeback, Peltier and Thompson effects.

In the thermal magnon Hall effect, a temperature gradient is applied on
the material (typically thin-film like). Since the RE9V2O7 compounds are
insulating (i.e. electrons are not a convenient carrier due to low mobility),
it is quasi-particles such as phonons and magnons that carry the thermal
current across the temperature gradient, and it is found that an external
magnetic field will cause a transverse thermal response (i.e. one “side”

gets warmer than the other). Furthermore once the phonon contribution
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to the thermal conductivity has been subtracted, the dependence on the
magnetic field of the thermal magnon conductivity shows a remarkable if
not unexpected behaviour, shown in Fig. 4.2 [118].

Lu,V,0; HII[100]

oL 80K 170k

Ky (10°° W/Km)
S

.! 'y -+ =4

Licewl L L Liieil Liaeal L L L
5 0 5 5 0 5 5 0 5 5 0 5
Magnetic Field (T)

Figure 4.2: The thermal magnon Hall conductivity xg, as a function of
temperature and magnetic field, figure from reference [118]. The solid lines

are fits to the model propose by Onose et al.

Magnons are electrically neutral and thus unaffected by the Lorentz
force, which stimulated theoretical research in order to determine how a
magnetic field can modify their path. The conventional explanation for this
phenomenon relies on the Dzyaloshinsky-Moriya interaction (DMI) [10, 11],
which is present due to the centre of the V-V bonds not being a point of
inversion symmetry. For reasons that will be discussed later, the DMI en-
ters the magnon dispersion via its projection to the external magnetic field
[118], and thus the magnetic field — by changing the energy of the magnon —
effectively forces all magnons to turn in one sense (an “upwards” magnetic
field will force the magnons to travel clockwise or anticlockwise depending
on the direction of the DMI). Heat will be released on the side the magnons
travel through, creating an imbalance with the side that few magnons reach.

To summarize the analogy between the conventional Hall effect and the

thermal magnon Hall effect, the temperature takes the place of the electric



4.1. Scientific background 97

potential (used to move the particles from one side to the other) and the DMI
substitutes the magnetic field as a vector potential (inducing a statistical
drift perpendicular to the current direction).

While this explanation is broadly agreed upon, there have been several
competing theoretically formulations. The transverse thermal magnon con-
ductivity can be shown to depend on the ratio between the DMI parameter
D and the FM exchange parameter .J. However proposed ratios for D/J
have been diverse for LuyVoOr. The original study suggested an unusually
high value 1/3 [118], while a study based on a DFT calculation proposed
1/20 [113]. A more recent fit of the data suggested 1/200, although this
calculation assumed a 2D Kagome geometry and not a 3D pyrochlore struc-
ture [121]. Without direct measurements of the DMI, the suggested values
for D/J span two orders of magnitude.

Another recently discussed property of LusVoO7, and in general of ma-
terials that display the thermal Hall effect, is a topological magnon insulator
behaviour: in analogy to conventional topological insulators, edge magnons
have non-trivial topological properties that are determined by the bulk
[129, 121, 122, 130]. While a discussion of this effect is beyond the scope of
this thesis, it potentially allows for the realization of magnon wave guides at
the interface between magnon Hall insulators whose Dzyaloshinsky-Moriya
constants differ in sign [123].

The disagreement around the value of D/J gives us a prime reason to
investigate this compound in an inelastic neutron scattering experiment in
order to directly measure the magnon dispersion and determine the spin
Hamiltonian. In this chapter I present the results of one experiment on this
compound that I performed, and my subsequent analysis, which required a
full simulation of the inelastic cross section and a rebinning procedure we

devised to maximize the signal to noise ratio.
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4.2 Introduction to Luy,V,0;

All of the rare-earth compounds RE;V,07 (Re = Lu, Yb, Tm) are cubic
pyrochlores that crystallise in the Fd3m space group (a = b = ¢ = 9.9366 A
for LuaVoOr) [131, 132, 133]. In this structure, both the rare earth and the
vanadium sites build a network of vertex-sharing tetrahedra, as sketched in
Fig. 4.1.

Magnetically, all of these compounds are described as Mott-insulating
ferromagnets with a Curie temperature To ~ 70 K. In LupsVoO7 the V4+
ions are the only to carry an unpaired electron, resulting in a system of spin
1/2 sites (small S). A summary of its magnetic properties is presented in

Fig. 4.3.

Lu,V,0,
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Figure 4.3: Summary of the magnetic properties of LusV2O7, taken from
[118]. (a) Magnetization as a function of temperature, showing a FM phase
transition around 70 K. (b) Magnetization as a function of external mag-
netic field, showing the required fields to fully saturate the sample in any
direction. This quasi-isotropic behaviour is typical of soft magnets. (c)
Electrical resistivity, showing a typical insulating behaviour. (d) Parallel

thermal conductivity as a function of temperature.



4.2. Introduction to Luy V707 99

4.2.1 The Hamiltonian of Lu,V,0-

During the studies of the magnon Hall effect, several Hamiltonians have
been considered. In the original paper on this topic, Onose et al. considered
a minimal Hamiltonian containing only a FM nearest-neighbour direct ex-
change, of magnitude J, a Dzyaloshinskii-Moriya term ﬁjk, and a Zeeman

term:

He 03 55— By (508) —ausf - (3°85). (@)
Ik Ik J

Constraints for l_jj,k can be obtained by applying the symmetry rules
of Moriya [11]. Namely, labelling the four spins in a tetrahedra from 1 to
4, the vector 5172 connecting the site 1 and 2 is parallel to the direction
vector that spatially connects the site 3 and the site 4. In other words, the
DMI vector between two sites on a side in a tetrahedron is parallel to the
opposed side. By symmetry the DMI magnitude is a constant D, and the
sign is constrained to two global choices (i.e. one can flip all the directions
of the DMI, which is also equivalent to inverting the sign of D): however
(as will be explained later) our inelastic neutron scattering experiment is
unable to distinguish them. For simplicity we have chosen D > 0. It can be
simply verified that D’jﬂk = —ﬁkd-, as required by Moriya’s rules.

Hamiltonian 4.1 can be simplified using the Holstein-Primakoff transfor-

mation [134], i.e. expressing it in terms of a basis of bosons:

H(Q) = gupH +257 - (3 - AQ)), (4.2)
where
0 M 2 cos(K—L) My 3cos(H+K) My 4cos(L—H)
= M3 1 cos(K—L) 0 My 3 cos(H+K) Mz 4 cos(H—K) 4.3
(Q) M3,1 cos(H+K) M3z cos(H+Z2) 0 M3 4 cos(K+L) ( )
My 1 cos(L—H) My cos(H—K) My 3 cos(K+L) 0
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with Mj, = 1 — iﬁj,k -7/J, and i = H/|H|. This means that the
direction of the magnetic field modifies the dispersion via a projection on
B

The dispersion is sketched in Fig. 4.4. In general there are four modes,
which for D = 0 can be described as a gapless acoustic mode between 0 and
2J, an optical mode between 2J and 4.J, and a doubly-degenerate flat mode
at 4J. The introduction of the DMI term splits the modes even further,

with particularly visible effects at the zone center I, at some points of the

zone boundary (e.g. W) and at an energy of 4.J.
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Figure 4.4: Magnon dispersion of LusVoO7 following Eq. 4.1 for D zero and
non-zero. I', X, W and K are conventional notations for the reciprocal space
of a face-centred cubic symmetry. (a) Dispersion of the simple ferromagnetic
pyrochlore. There are four modes (owing to the fact that there are four spins
per tetrahedron), resulting in an acoustic mode between 0 and 2.J, an optical
mode between 2J and 4.J, and a doubly-degenerate flat mode at 4J. (b)
Dispersion in the case of D/.J = 1/3, for H parallel to (1 0 0), in blue, or
(0 10), in red. The DMI lifts the degeneracy in a way that depends on the

direction of the external magnetic field.

While this is the theoretical treatment used by Onose et al. in their
original study of the magnon Hall effect, this Hamiltonian lacks any single-
ion anisotropy. Such terms are however very relevant in several pyrochlores,
leading e.g. to the Ising-like spins that are necessary for spin-ice behaviour.

Xiang et al. [113] performed a calculation based on density-functional
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theory plus on-site repulsion (DFT+U) and obtained an Hamiltonian with
an additional anisotropy term AZ(S} . 2;)2, with the vector zj pointing
along the local threefold symmetry axis (i.e. pointing to the “centre” of the
tetrahedra). This calculation found J = 7.09, D = 0.048 and A = -3.64
meV, with a ratio |[D/J| & 0.048, one order of magnitude below the original
result.

In the same publication however the author renormalized the single-ion
anisotropy term, merging it into the DMI term with a renormalized coupling
D¢/T which depends on the spin configuration but can be as large as 1 meV.
If the second-order terms in the renormalized Hamiltonian are small enough,
it might be impossible to identify the terms via a measure of the spectrum.

Our study, while not sensitive to “bare” couplings, is crucial in order to find

deviations from the spectrum predicted by Hamiltonian 4.1.

4.3 Experimental work on Lu,V,0

In order to determine the values of D and J, as well as the overall accu-
racy of the Hamiltonian, we have performed an inelastic neutron scattering
experiment on Merlin (ISIS, RAL, UK) in Autumn 2011.

Two high-quality single crystals, with a total mass of 3.6 g, were co-
aligned with (H H L) in the horizontal plane and cooled to base temperature,
4 K, without a magnetic field. Data were collected for incoming energies (E;)
of 25, 50 and 80 meV with an instrumental resolution (FWHM) of 3.0, 5.3
and 7.2 meV, respectively, at the elastic line. Typical measurement times
were approximatively 16 hours.

The data were normalized with respect to a vanadium standard and were
corrected for detector efficiency and outcoming versus incoming wavevector
ratio kr/k; using the program MANTID [45, 46], expressing the data in abso-
lute units. The resulting S (Q, w) datasets were analysed with the HORACE

[47] software package. The data will be presented in the next section.
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4.3.1 Overview of the data

Figures 4.5-4.7 show slices from the data sets with F; = 25 meV to 80 meV.
At this point of the study, the following statements can be made:

e The magnon dispersion has been measured and is well-defined. At low
energy transfer, e.g. Fig. 4.5(b), the spin waves are almost perfectly
Q)?*-dependent, see Fig. 4.4. Around 15 meV the structure of the cubic
zone boundary can be observed. The magnon between 30 and 35 meV
of energy transfer is observed as mostly flat, despite still having a

significant structure in its spectral weight.

e At low energy transfers (below roughly 15 meV) the magnon can be
observed dispersing only from the allowed zone centres of a FCC cube
-e.g (111)and (222), but not (10 1). At higher energy transfers,

this becomes less clear.

e A set of features can be observed with F; = 80 meV at an energy
of 20 meV and at |@| ~ 4 r.lu. and, due to their distinct spherical
symmetry, are unlikely to come from a single crystal. They can be

thus identified as aluminium phonons.

Local magnetic field

As explained in section 4.2.1, the effect of the DMI depends on the direction
of the local magnetic field. For instance, the degeneracy is lifted in W for
H= [1 0 0], where a maximal splitting is observed, but not for H = [010],
where no splitting can be found.

This is experimentally a problem, since we did not apply an external
magnetic field (in order to maximize the coverage in @) As a consequence,
the sample is divided into domains, and thus the observed spectrum is a
superposition of all local spectra: in other words, we do not expect splitting

of the modes but rather broadening of the lineshapes.
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Figure 4.5: Magnon dispersion of LuaVoO7 at 4 K measured with E; = 25
meV. (a) Momentum transfer H versus energy transfer, averaged for -0.8
< K <-0.2and 0 < L < 1.5. An intense elastic line extends up to 3.5 meV,
above which two magnons centred at H = £1 can be identified. Due to
the elastic line, it is not possible to tell whether the magnons are gapless or
gapped. (b) Slice of the data averaged for 0.9 < L < 1.1 and 4 < £ < 6.5
meV. The data for an energy transfer of 4 meV lie on the outside, while the
data for an energy transfer of 6.5 meV lie on the inside. Four ring-shaped
magnons can be seen, centred at the equivalent I'-points (+1 £1 1). (c)
Slice of the data averaged for 0.9 < L < 1.1 and 6.5 < E < 9 meV. (d)
Slice of the data averaged for 0.9 < L < 1.1 and 4 < E < 9 meV. This slice,
which will be used as a reference later, is an average over the whole energy

range of (c) and (d).
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Figure 4.6: Magnon dispersion of LuaV2O7 at 4 K measured with F; = 50
meV. (a) Slice of the data averaged for -5 < K < 5 and 0 < L < 3. At
low energy transfers there are conical dispersive modes which extend all the
way to 15 meV energy transfer. (b) Slice of the data averaged for 1.8 < L <
2.2 and 10 < E < 16 meV. At this energy transfer, the magnetic signal is
still ring-like and centred around (£2 %2 2). (c) Slice of the data averaged
for 1.8 < L < 2.2 and 16 < E < 18 meV. At this energy transfer the shape
of the dispersion resembles straight lines, indicating that this is the typical
energy of the magnon at the zone boundary. (d) Slice of the data averaged

for 0.8 < L <1.2and 10 < F < 18 meV meV.
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Figure 4.7: Magnon dispersion of LusVoO7 at 4 K measured with E; =
80 meV. (a) Slice of the data averaged for -1.5 < K < -0.5 and 0 < L <
4. While the dispersive invensity around 20 meV energy transfer is due to
phonons, the magnetic signal at low C} extends up to approximately 35 meV.
(b) Slice of the data averaged for 0 < L < 3.5 and 18 < E < 24. (c) Slice of
the data averaged for 0 < L < 3.5 and 24 < E < 30 meV. (d) Slice of the
data averaged for 0 < L < 3.5 and 30 < F < 36 meV.
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4.3.2 Reduced axis plot

In order to make use of the symmetry of the lattice and the dispersion, we
have developed a new visualization method for this data, which is sketched
here.

In the case of D = 0 the Hamiltonian 4.2 can be diagonalized, as shown

in [118]. Specifically, with the definition

A(Q) = cos (mH) cos (1K) 4 cos (7K ) cos (L) + cos (7 L) cos (tH) (4.4)

the dispersion can simply be expressed as

eos,a(G) = 4J. (4.5)

— —

We define the reduced azis coordinate t(Q) = 2—1/1+ A(Q) (for conve-
nience the Q—dependence of ¢t will be dropped). By definition ¢ is a unitless
scalar between 0 and 2!. The dispersion can be expressed in very simple
terms as a function of ¢: the acoustic mode for instance is proportional to

t. The effect of D will be considered later.

howr (t) = Jt
s (t) = J(4 — t)
fws 4(t) = 4J. (4.6)

)

The rebinning of the experimental data to a reduced axis coordinate is
equivalent to reducing a spherically symmetrical system to |C§| (commonly
done e.g. for powders), with the important distinction that the entire Bril-

louin zone is rebinned to 0 < ¢t < 2.

't is trivial that A(Q) € [-1,3] V @.
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The experimental data as a function of the reduced axis coordinate

As a further precaution in order to enhance the contrast between magnon
modes and the background and avoid contamination from the phonons, it
is possible to neglect the data with \Cj| > Qumit for some empirical value
Qlimit chosen as to result in optimal contrast (4 r.l.u. for E; = 25 and 50

meV, 3 r.lu. for E; = 80 meV).
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Figure 4.8: Reduced plots for all incoming energies. The dispersion as a
function of ¢, described in the Eq. 4.6, is fitted (red lines) to obtain J =
8.1(1) meV. The different sampling of Q-space explains the different weight
given to specific parts of the dispersion: for instance the node at t = 2 and
E ~ 16 meV is very intense when measured with an incoming energy of 50

and 80 meV, but is almost absent with 25 meV.

Figure 4.8 shows the result of the rebinning to the reduced axis coor-
dinate on all datasets. The data follows the expectations from the model,
folding into a set of lines whose fit suggests J = 8.1(1) meV. These fits are
dominated by the doubly-degenerate band at 4.J.

A closer look at the reduced data with 25 meV incoming energy is pre-
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sented in Fig. 4.9, where the energy of the mode is extracted (under the
assumption of the signal’s lineshape being Gaussian) and then fitted to a
line, with a direct FM exchange of J = 7.3(2) meV and a gap of 0.8(2) meV.
This is not a reliable approximation of the actual gap (these values are in-
consistent with the high-energy bound mode due to the much reduced value
of J), but serves mostly to establish an upper bound to the gap assuming

that the dispersion is proportional to QQ in the proximity of I'.

Energy transfer [meV]

Reduced coordinate t

Figure 4.9: Fit of the reduced dataset obtained with E; = 25 meV (logarith-
mic scale). The energy of the mode (red dots) as a function of ¢ is extracted

from the data and fitted to a line (orange).

Despite the extreme simplicity of this analysis, we can already conclude
that a minimal model containing only the FM interaction accounts for the
main features of the scattering. In particular, we can identify no further
spectral modes, meaning that a four-site, four-modes Hamiltonian is suffi-
cient to describe the spectrum (which again suggests that nnn interactions
can be neglected within the goodness of the data). A second remark is that
the spectral intensity in the reduced plots follows straight lines, both con-
firming the shape of the dispersion and its dependence on J — i.e. linear with
respect to ¢, a coordinate which doesn’t depend in any way on the Hamil-
tonian. Finally, this simple analysis suggests an approximative value for J

of 8.1(1) meV.
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We also set an upper limit to the gap at 0.8(2) meV, i.e. one order
of magnitude below the direct exchange. However, this analysis for now is
unable to establish a value for the DMI. The reason is that, as highlighted in
Fig. 4.4, the DMI has very little effect on the acoustic and optical branches
for most values of Cj — only at the zone boundary it has an appreciable effect
— and, as far as the reduced plots, the DMI manifests itself as a widening
of the intrinsic lineshape. A finer analysis is thus required to address the

question of the magnitude of D.

4.4 Modelling of the data

4.4.1 Modelling methods

The energy of the magnon can be derived from Eq. 4.2, and the spectral
weight can be calculated using a paper by H. Ichikawa [114]. Simulations
with J = 8.1 meV (as indicated by the reduced plots) are diplayed in Fig.
4.10. While this approach accounts very well for the signal below 2J, clear
discrepancies are found at higher energy transfers. This is most likely due
to the Holstein-Primakoff approximation, which is a harmonic expansion
on the ground state [134]; while at low energy transfers the magnon can be
considered a perturbation of the ground state, the deviation at higher energy
transfers is a result of these approximations no longer holding. Specifically,
Fig. 4.10(f) seems to lack a phase factor.

In order to simulate the spectrum we therefore use the program suite
McPhase [135, 74]. The inputs for this program are the magnetic sites and
the Hamiltonian, which are used for a Monte Carlo simulation, simulating
the magnetic structure at a given temperature. Then a mean-field spin-wave
theory is employed to obtain the dispersion and the spectral weights. This
approach is expensive in terms of computation and time, but the mean-
field method used to calculate the spectral weight performs equally well at
all energies — as it does not rely on approximations on the ground state.

McPhase has already been used to explain several interesting properties,



4.4. Modelling of the data 110

Simulation

(0 K 0) [rlu]
(0 K 0) [rlu]

(0 K 0) [rlu]
(0 K 0) [rlu]

(0K 0) [r.Lu]

-(H 00) [rlu]

Figure 4.10: Data (left) versus simulations (right) for J = 8.1 and D = 0
based on the Holstein-Primakoff approximation. The averaging ranges and
the color map are as previously explained in Fig. 4.5(d), 4.6(d), and 4.7(d).
The agreement is very good at the lowest energy transfer, but poor at higher

energy transfers, e.g. between (e) and (f).
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such as magnetic phase diagrams and spectra in a number of magnetic sys-
tems [136, 135, 137, 138, 139, 140].

A simulation of the spectrum of LusVoO7 for J = 8.1 and D = 0 meV
is presented in Fig. 4.11. This method is shown to describe adequately the
spectrum at all energy transfers, including the doubly-degenerate bound
mode at 4.J.

While these simulations are useful in making sure that the general prop-
erties of the spin waves are described, they are of little use in determining

D, and a full fitting of the spectrum is required.

4.4.2 Fitting of the reduced plots

Reduced plots are suited to perform fits as the collapse the whole data
into a limited interval, i.e. [0,2]. Due to the computational requirements
of McPhase, a simulation of the whole spectrum is beyond the available
resources. Instead of fitting the whole dataset, a simultaneous fit on a
number of cuts was performed.

The fitting procedure can be summarized as follows:

e Select a number of cuts to be examined. Specifically we will consider
a cut around 2J at ¢ = 2 and two cuts around 4J at ¢ around 0.8 or

1.6.

e All of these cuts are taken from the reduced plots for F; = 50 meV.
The data with E; = 25 meV has almost no intensity at 2.J and does
not cover the doubly-degenerate bound mode, the data with F; = 80
meV has a larger instrumental resolution. The data with E; = 50 meV

is thus best suited.

e As discussed previously, the sample is divided into domains with dif-
ferent orientations for the local magnetic field. It will be assumed that
the domains order according to the easy direction, H = [1 0 0], [0 1 0]
and [0 0 1]. Three spectra will be calculated and averaged.
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Figure 4.11: Data (left) versus McPhase simulations (right) for J = 8.1
and D = 0 meV. The averaging ranges and the color map are as previ-
ously explained in Fig. 4.5(d), 4.6(d), and 4.7(d). In general, there is good

agreement between the data and the simulations.
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e The fitting procedure involves selecting the portion of (Q,w)—space
that contributes to a specific (¢, E') range, simulating the scattering
S(Q, hw) and reducing it to (¢, E) coordinates in order to perform the
fit.

e The background was modelled as being collinear to the energy.

The instrumental resolution was modelled as a Gaussian of width 2.6
meV (at an energy transfer of 30 meV for an incoming energy of 50 meV), a
result derived using Tobyfit [141]. The accuracy in this calculation is crucial
as the DMI manifests itself as a widening of the magnon, and thus may
correlate with the instrumental resolution.

Figure 4.12 shows fits of the reduced plots. We have obtained a very good
agreement between the data and the model for the values of J = 8.22(2)
meV (compare with the value of 8.1(1) meV previously obtained) and D =
1.5(1) meV. The best value for y? is 2.9.

At energy transfers below 4.J no effect of the DMI can be detected even
at the zone boundary (¢t = 2), which we explain in terms of the instrumental
resolution (around 4 meV) dominating over a potential broadening. At
energy transfers around 4.J the effect of the DMI is markedly t-dependent.
It is found, for instance, that the DMI has a particular importance at t =
1.6, leading to a very clear alteration of the lineshape.

Figure 4.13 shows McPhase simulations of the experimental data, once
again displaying a good agreement of the simulations with the data (which
was already established by the simulations with D = 0). Furthermore Fig.
4.14 shows comparisons between two selected cuts, fits thereof and simula-
tions performed with D = 0. The model explains satisfyingly the spectral

distribution and the lineshapes of the magnon.

4.5 Conclusions and outlook

We have performed a high-quality neutron scattering experiment on

Luy V207 and measured its spin-wave dispersion. In order to analyse the
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Figure 4.12: Various cuts of the data in rebinned coordinate (black) com-
pared to fits at the optimum values of J = 8.22(2) and D = 1.5(1) meV
(red). The blue curves are simulations with J = 8.22 and D = 0 meV to vi-
sualize the effect of the DMI on the dispersion. The dotted green line marks
the linear background. (a) At 2J the mode is expected to present substan-
tial splitting at the zone boundary ¢ = 2. However, the width is dominated
by the instrumental energy resolution and no effect can be resolved. (b) A
high-energy average for 0.7 < t < 0.9. In this cut the difference between D
=0and D = 1.5 meV is small. (¢) A cut for 1.5 < ¢ < 1.7. In this instance
the effect of the DMI is substantial.
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Figure 4.13: Data (left) versus McPhase simulations (right) for J = 8.22 and
D = 1.5 meV. The averaging ranges and the color map are as previously

specified in Fig. 4.5(d), 4.6(d), and 4.7(d).
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Figure 4.14: Comparison between the experimental data (black circles), the
fits (red) and simulations without the DMI (blue) as for two cuts. The green
lines mark the constant background. Compare to Fig. 4.5(d) and 4.7(d).

(a) Cut performed on the dataset with F; = 25 meV with 0.9 < K < 1.1,
09 < L <1.1,and 6 < F < 8 meV. The inset shows a reference slice at
this energy transfer and L value, while the yellow rectangle shows the region
of averaging in K. At this energy transfer, there are very little differences
due to the DMI. (b) Cut performed on the dataset with E; = 80 meV
with 1.5 < K < 25,2 < L < 6, and 30 < E < 36 meV. With the
scattering at this energy transfer resembling a cross, this cut goes through
the “upper” arm of the cross, displaying a wide peak of scattering (with a
FWHM exceeding the reciprocal lattice unit). The effects of the DMI, while

perceivable, are very contained.
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data we have developed a rebinning technique that allows to reduce all Cj—
vectors to a scalar value ¢ € [0 2]. In the case of D = 0 the dispersion
becomes a series of straight lines once rebinned.

Due to the complexity of the spectral weight, modelling of the data
was performed with the program McPhase, which provided an outstanding
agreement. In general no further interaction or effect is required in order to
explain the dispersion within the limits of our data.

Furthermore, fits of the reduced data allowed to identify specific regions
where the effect of the DMI is particularly visible. The fits resulted in the
values of J = 8.22(2) and D = 1.5(1) meV.

The ratio between the direct FM interaction and the DMI is 0.18(1).
While not the value of ~1/3 originally obtained to explain the thermal
transport measurements by Onose et al. [118], this ratio is larger than those
obtained in other theoretical approaches [113, 121]. Our result highlights the
presence of a large DMI in LusV2O7 and is a strong, independent argument
in favour of the existence of the thermal Hall effect.

At the end of this study, some outstanding points are still to be investi-

gated.

e Our Hamiltonian includes no next-nearest neighbour interaction nor
single-ion anisotropy (in contrast to other insulating pyrochlores, such
as those giving rise to the spin-ice behaviour), and predicts no gap at
the T" point (although we can estimate an upper limit of 0.8(2) meV by
assuming linearity). In general measurements with a higher accuracy
and energy resolution are required to motivate the presence of these

terms or completely exclude them.

e Due to the absence of an external magnetic field during the measure-
ment the data is described as an average of all possible local magnetic
directions. A high-resolution in-field measurement is required in order
to observe split modes (i.e. at the zone boundary at 2.J, or at 4.J) and

decrease the uncertainty on the value of D.
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e Our study is by construction symmetric with respect to the sign of D,
i.e. we cannot determine the direction of ﬁjk However, measurements
of the thermal magnon Hall effect have been interpreted in terms of
opposite signs of D [123]. Conventional methods used to determine
the sign of D rely usual on structural signatures (e.g. the orientation
of a spiralling magnetic order) [142, 143], but Lua V207 is a collinear
ferromagnet [132]. The question of the direction of the DMI is thus still
open and relevant to the development of magnon topological insulators

[123].

e We are confident that this result will stimulate further discussion and
research in the study of the thermal magnon Hall effect in the hope to

establish a solidified model of this phenomenon.

To further the investigations on this compound, we suggest to perform
in-field measurements of the spectrum in order to avoid modes overlapping.
For instance, a triple-axis measurement at the I'-point around an energy
transfer of 4. should highlight two additional peaks at 4.J & /2D, allowing
a direct measurement of the DMI. Similarly, measurements at the I'-point
close to the elastic line might be attempted to confirm the gaplessness of
the system. We have carried out several attempts in this direction, using for
instance polarized neutron spectroscopy at ILL, but the energy resolution

has proven to be a challenge.



CHAPTER 5
Triplon-to-triplon
interactions in the 2D

dimerized antiferromagnet

SrCusy(BO3)-

5.1 Scientific background

Lattice geometry can induce a wide array of interesting and unexpected
effects even in the simplest symmetries. It is the case for the so-called
Shastry-Sutherland geometry [144, 145], a 2D square structure that poten-
tially exhibits dimerization and frustration due to the next-nearest neigh-
bour (nnn) antiferromagnetic interaction being stronger than the nearest-
neighbour (nn) exchange, as sketched in Fig. 5.1(a).

The frustrated nature of the Shastry-Sutherland lattice means that usu-
ally there is no long-range order [145]. However, several forms of short-range
order, such as dimers, plaquette and stripy order [146, 147] have been pro-
posed. One of the few material realizations of the Shastry-Sutherland model
is the compound SrCuz(BO3)2 (SCBO) [148, 149, 150], whose structure is
sketched in Fig. 5.1(b). Another material that realizes this geometry is the
tetragonal rare-earth-metal ThBy [151]. In these compounds, magnetization
plateaus appear at certain ratios of the full magnetization, as shown in Fig.
5.2 [148, 152, 153]. A full explanation of the reason behind these plateaus
is available in Ref. [154].

119
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Figure 5.1: Structure of SrCu(BO3)2. (a) In the Shastry-Sutherland ge-
ometry, ions form a square lattice and their interactions are dominated by
the diagonal next-nearest neighbour exchange J' (red lines). If J' is an anti-
ferromagnetic interaction, the lattice is geometrically frustrated. (b) SCBO
crystallizes in a topologically equivalent structure with pairs of Cu?* ions

lying perpendicular to their four neighbouring pairs.
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Figure 5.2: Magnetization as a function of external magnetic field in SCBO.
The solid black line and the open circles are obtained using various tech-
niques. The horizontal colored lines mark the positions of the magnetization

plateaux as determined via NMR: they can be found at 1/8, 2/15, 1/6 and
1/4 of the full magnetization [153].
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In SCBO, which cristallizes in the tetragonal I42m symmetry (a = b =
8.995 and ¢ = 6.649 A), the magnetic Cu®* ions (S = 1/2) lie on 2D planes
(the a-b planes) that are topologically equivalent to the Shastry-Sutherland
lattice, with the notable difference in terminology that the dominant in-
teraction is between the couples of ions that lie the closest to each other.
Theoretical studies have suggested a phase diagram as shown in Fig. 5.3
[155], where the ratio between two exchange parameters in the plane (J and
J’) and one out-of-plane parameter (J”) can lead to several ground states.
Further states, such as quadrimerized, have been suggested [156]. The ex-
change parameters of SCBO position it very near to the quantum phase
transition, as shown in Fig. 5.3 so that it is possible to trigger a phase
transition from a dimerized state to a plaquette state: this can be achieved

for instance by using pressure to change the lattice parameters [157].

1

|
l Haldane
0.75 L _
~~~._Antiferromagnetic order
J'/] 05
0.25| o e
imer SPlaquette

0 0.25 0.5 0.75
VAl
Figure 5.3: Proposed phase diagram of the three-dimensional compound of
stacked Shastry-Sutherland planes, such as SCBO. The exchange parameters
J, J' and J” are respectively the intra-dimer, inter-dimer, and inter-plane
couplings. The open circle mark the proposed location of SCBO. Repro-
duced from [155].

I have performed inelastic neutron scattering experiments on SCBO in
order to measure its spectrum and determine the Lorentzian widening of its
lineshape as a function of Q In this chapter I will present the data and my

analysis.
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5.1.1 The Hamiltonian of SCBO

In first approximation, SCBO is described by the Hamiltonian:

H=2 JS - Sp+> TS Sp+> 'S5,

nnn oop

where nn labels intra-dimer exchanges, nnn labels inter-dimer exchanges,
and oop labels the out-of-plane interactions. The small ratio of J"/J <
1/10, and the fact that the interaction is frustrated, mean that out-of-plane
contributions can be neglected.

In its ground state, the spins are expected to form antiparallel singlets
for J'/J < 0.68, a ratio that defines a quantum critical point above which
the ground state is unknown but suspected to be quadrumerized [156]. Sus-
ceptibility measurements for SCBO [158, 159] suggested J'/J = 0.62, right
below the quantum critical point.

In this regime the lowest-lying magnetic excitation is a singlet-to-triplet
excitation. The resulting quasiparticle, called a triplon, is a hard-core boson
(i.e. two such bosons cannot share the same dimer site). The frustrated in-
teraction between dimers drastically reduces the hopping probability [160],
resulting in a flat triplon dispersion despite the strong inter-dimer interac-
tion.

However, the symmetry together with a slight buckling of the Cu?* ionic
planes allow for the Dzyaloshinskii-Moriya interaction (DMI) [10, 11], thus

introducing new terms in the Hamiltonian:

H = Z (JSZ . gk + [jj,k:(gj X ;S_:k)) + Z (J’gj : gk: + ﬁlj,k(gj X gk)),

nn nnn

with two sets of DM vectors. First order perturbation theory allows to re-
duce the number of variables in this Hamiltonian by applying a local rotation

of the spins S to §’. In this new system,
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D

H= Zngj~§’k+z(Jlglj'g’k+l~)j7k(§’j X glk)) +O(J);

nn nnn

where the new DMI vector D}}k has two components: an a-b component D,

and a component along the ¢ axis D :

~ J’
R s 4
Dy =Dy + 55D

D, =D.

Neglecting the higher orders O(D/J) of the Hamiltonian leads to the

matrix form

. J+D 1 f(Q) —iDg(Q) 0
H(Q) = | D@ J o iDyg(@Q) (5.1)
0 —iD)g(Q) J-D1 f(Q)
for some functions f (Q) and g(@), whose solutions are
h(Q)o = J
ho(@)12 = J 4/ D3 1(Q) +2D39(Q). (5.2)

These solutions are symmetrical with respect to J. A simulation of the
spectrum (including the spectral weight) is shown in Fig. 5.4.

We note that, as the dispersion without DMI is perfectly flat and thrice
degenerate (up to higher expansions in J'/.J), any dispersion is dominated
by the DMI. The low dispersion of the triplons is expected from the low
mobility: an ideally localized excitation is expected to have a flat Fourier
transform. The DMI dominating the dispersion is in stark contrast to most

known materials.
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Figure 5.4: Dispersion relations of the three triplon branches derived from

the Hamiltonian 5.1, figure from reference [161].

5.1.2 Exact diagonalization

The Hamiltonian 5.1 however did not explain the experimentally observed
dispersion. This was explained in terms of the first order perturbation the-
ory, which was used in deriving this analytical Hamiltonian, not being ade-
quate — especially due to the closeness of a quantum critical point at J'/J
= 0.68.

Exact diagonalization was performed on a 32-site cluster in order to
compute the lowest-lying excited states of SCBO [161]. The result is shown
in Fig. 5.5 for D, = 0.18 meV and DII = 0.07 meV. Despite the cluster size
and the constraint on J’/J to be 0.62, there is general agreement between
the experimental data and the exact diagonalization.

To conclude, the singlet-to-triplet excitations in SCBO are three modes
centred around an energy transfer of 3 meV, ranging from the most disper-
sive at the bottom to the least dispersive at the top, residing in a bandwidth
of roughly 0.4 meV.

Of further note is the magnitude of the gap. Dispersionless dimers could
be expected to have a flat dispersion with a gap of J. It has however been
shown that for the Shastry-Sutherland geometry, the size of the gap is a
function of J'/J: for J' = 0 then the gap A is equal to J, but as J'/J
increases the gap decreases [164], see Fig. 5.6. In the case of SCBO, fits of
the susceptibility measurements [158, 159] suggested that J = 85 K, J' =
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Figure 5.5: Comparison between experimentally measured data for the dis-
persion of SCBO [162, 163] (diamonds) and the result of exact diagonaliza-

tion (circles) taken from [161]. The solid lines are a guide to the eye.

54 K, J” =8 K and A = 35 K.
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Figure 5.6: Ratio between the gap energy A and the AF interaction J as a
function of J'/J. N indicates the size of the system that was used in the

computation. Figure reproduced from [164].

5.1.3 Temperature dependence of the spectrum

In dimerized materials a non-zero temperature leads to a thermal population
of quasi-particles, characterised by increased repulsion, reduced mobility,
and a reduction of the dispersive bandwidth [165]. As a rule of thumb, in
a system with a gap the excitation is expected to remain visible up to a

temperature comparable to the gap (as is the case to varying degrees in
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both RbCoCls and LusV20r).

However, this is not true in SCBO, as the intensity of the triplon is
strongly suppressed above T'=5 K < A =35 K <« J = 85 K, and turns
into a flat continuum around 15 K. A summary of previous results from
inelastic neutron scattering investigations is presented in Fig. 5.7.

This unusual phenomenon has been explained in terms of a triplon-to-
triplon interaction. The mechanism is as follows: a triplon, be it thermally
excited or created by an incident neutron, polarizes its surrounding singlets
(it lifts the local degeneracy for the two singlets perpendicular to its di-
rection). Previous studies using exact diagonalization suggested that this
locally ordered state can extend for 1.3 lattice units, i.e. ~5 unit cells [157].
Figure 5.8 shows a simplified picture of the triplon-to-triplon polarized shell.
In the lower part of the grid, a thermally-excited triplon polarizes the sin-
glets around itself, creating a polarized shell (light blue circle). In the upper
part of the grid, a new triplon is excited (e.g. by a neutron) several unit
cells away, but their shells overlap resulting in an effective interaction and
a much faster decay channel. One polarized shell covers ~10 dimers: thus
a relatively small number of thermally excited triplons (one in nine) guar-
antees a substantial, if not complete, coverture of the plane. This is the
reason why even with T < A the triplons interact strongly and may not be
long-lived.

In previous neutron scattering measurements, the magnetic signal has
been divided into two components, as shown in Fig. 5.9. Firstly the so-
called sharp (i.e. resolution-limited) component, which is the manifestation
of triplons excited far away from any other triplon. The intensity of the sharp
component is expected to be maximal and dominant at 7" = 0 K, and to
drop quickly as triplons are thermally excited. Secondly the so-called broad
component, which is characterized by a temperature-dependent Lorentzian
convolution induced by the decay time of triplons (which is a function of the
triplon density). The intensity of this component is expected to be zero at

low temperature, to then rise as spectral weight moves away from the sharp
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Figure 5.7: Results from previous INS studies on a SCBO powder sample
performed on FOCUS (PSI) [160]. (a,b) Dispersion of SCBO at 2 and 15 K.
(c) Q—dependence of scattered intensities. Solid dots are integrations cen-
tred on the triplon energy (2.8 < E < 3.2) while empty dots are averaged in
other energy-regions (1.5 < E < 2.2 and 2.8 < F < 4.2). (d) Q—integrated
spectrum. (e) Partial spectral weights. (f) Fitted components of the spec-

trum: the peak intensity in blue, the flat background in red, and their sum

in black.
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Figure 5.8: Illustration of the triplon-to-triplon interaction in SCBO, further
explained in the text. The blue dashed line represent one unit cell. Image

from [157].

to the broad component, and then to diminish at even higher temperatures.

While previous studies only studied this behaviour at a very limited
number of Q—points, the technique of ToF spectroscopy allows us to address
the question of the Q—dependence of the intensity of the two components, as
well as of the Lorentzian width. This will be necessary for future studies in
order to confirm the properties of the decay channels, as well as the spatial

distribution of the magnetized shells of the triplons.

5.2 Experimental work on SCBO

In order to measure the dispersion of SCBO as a function of temperature two
experiments were performed at LET (ISIS, RAL, UK) in Autumn 2011, and
Spring 2013. Eleven high-quality single crystals, with a total mass of 10.3 g,
were coaligned with (HH L) in the horizontal plane. Data were collected for
the incoming energy E; of 7 meV with an instrumental resolution (FWHM)
0f 0.153(7) meV at the elastic line, and datasets were collected for an average
of 20 hours at the temperatures 2.5, 5.5, 7.3, 8.0, 8.5 and 10 K.

The data were corrected for detector efficiency and outcoming versus
incoming wavevector ratio ky/k; using the program MANTID [45, 46]. The
resulting S(Q,w) datasets were analysed with the HORACE [47] software

package. Unless otherwise noted, the results will be presented averaged
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Figure 5.9: Scans and fits at @ = (1.5 0.5 0) from previous INS studies on a
SCBO single crystal performed on the triple-axis spectrometer TASPby M.
Zayed (PSI). (a) Scans at several temperatures. (b) Fit (red) of the magnetic
signal at 8 K. The signal is separated in two components: a resolution-limited
sharp Gaussian (green) and a broad Voigt curve (yellow). The black line is

a fit to a single Lorentzian. (c,d) Effect of the magnetic field on the triplon.
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along the direction L due to the strong two-dimensionality of the system.

The resulting file had 40960 pixels and 501 time-bins.

5.3 Experimental results

Figure 5.10 shows the dispersion at base temperature T'= 2.5 K. As expected
from previous experiments, three dispersive modes are observed, ranging
from the strongly dispersive lowest-lying mode to the almost-flat highest-
lying mode. This confirms previous measurements on this compound. The
excitations are centred around A = 3 meV, which is equivalent to a temper-

ature of 34 K.
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Figure 5.10: Triplon dispersion in SCBO at T = 2.5 K in two distinct
H — K planes shown in a common logarithmic color scale. The data is
averaged with (a) 0.925 < H < 1.075, (b) 0.425 < H < 0.575 r.L.u., and
shows the three singlet-to-triplet excitations around 3 meV energy transfer.
The signal above 4.5 meV is magnetic in nature and explained as two-triplon
excitations. The oblique line of white pixels originates from a gap in the

detector coverage of LET.
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Figure 5.11 shows the evolution in temperature of the magnetic excita-
tion in a specific subset of the data. The triplon excitations are sharp at the
lowest temperature, and as expected are broadened to the point of being
flat at 10 K < A. Moreover, Fig. 5.12 displays cuts data performed around
the excitation at three @—points at all temperatures. These show with more
clarity the trend towards increased broadness and the decreased intensity of

the triplons.

110 400
o S(Q,w)

Energy transfer [meV]
Energy transfer [meV]

-1 -0.5 0 -1 -0.5 0 -1 -0.5 0
Momentum transfer H [r.l.u.]
Figure 5.11: Triplon dispersion in SCBO at all experimental temperatures,
shown on a common logarithmic scale. The averaging conditions are the
same as in Fig. 5.10(a). The magnetic signal at 2.5 and 5.5 K is comparable,
but it decreases in maximum intensity and becomes much wider at higher

temperatures, becoming almost featureless at 10 K.

This data is consistent with the many studies previously conducted on
SCBO. The FWHM of LET at an energy transfer of 3 meV, estimated by
fitting the data at 2.5 K with a set of Gaussian functions, is 0.125(9) meV.
This width is comparable to the maximum splitting between the triplon

branches, which is why the tails of the modes overlap even at the I'-point.
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Figure 5.12: Effect of temperature on the dispersion of SCBO at three Cj—

points.

The data has been averaged over an interval of 0.1 r.l.u. width

(except for the total integration around L) and a small offset in intensity has

been introduced for clarity. (a) and (b) clearly show three peaks, while in (c)

the dispersion is close to being degenerate and the intensity is concentrated

in a single peak, around 3.15 meV: the presence of a peak around 2.85 meV

in the last panel will be shown to be spurious in the next section.
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5.3.1 Alignment of the sample

A number of spurious lines can be seen in the data. For instance in Fig.
5.10(b) two lines can be seen crossing around K = -1, a result in contrast
with previous studies of the material (see Fig. 5.5). This was due to mis-

aligned crystal or of crystallites.
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Figure 5.13: Comparison between (a) data from previos experiments [160]
and (b) the present data. At @ half-integer (i.e. the midpoint of the unit
cell) the mode is expected to be fully degenerate (within resolution) by both
previous experiments and theoretical considerations; however a small peak,
marked with a black arrow, can be seen in our data. This is the result of a

misaligned crystallite in the sample.

Figure 5.13 provides a further clear example of a peak appearing at an
unexpected energy. This introduces a further challenge in the analysis, as

will be explained in the next section.

5.4 Discussion of the data

5.4.1 Fitting procedure

Once the equivalence with previous result in the literature has been estab-
lished, a fitting procedure is applied here. Due to the misaligned crystals
providing spurious triplon lines that cannot be separated from the data,
writing a complete cross section is impossible. As these lines are generally

weaker than the main branches of the excitation and have slightly different
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energies, they could be treated like tails by a fitting procedure. Including
these spurious modes is thus crucial if one wants to separate the physical
broadening of the modes from the crystal misalignments.

The approach we will follow here instead assumes that the signal at 2.5
K is the cross section. This approach has the advantage that the signal
at 2.5 K already including all spurious signals, preventing any unrequired

broadening. The procedure is as follows.

e The procedure progresses analyzing one C_j—point at a time at all tem-
peratures. The width of the Q—binning can be varied, but will be 0.125

r.l.u. for the purpose of this calculation.

e The data at 2.5 K is separated into the background and the triplon
excitations. Being the data at the lowest temperature, it is assumed
that it presents no broadening and that its width is the instrumental
resolution. The data of the triplon excitation is therefore used as a

“cross section” Sox (@, Aw).

e The cross section at higher temperatures is obtained by scaling and
convolving SQK(@, hw). By scaling Sox we obtain the sharp compo-
nent, while by scaling and convolving with a Lorentzian we obtain the

broad component.

e The fit parameters are the background, sharp intensity, broad intensity

and Lorentzian broadening FQ(T).

o As FQ(T) is fitted freely, a map I'(T, @) can be obtained.

A further fitting parameter already introduced in previous studies [157,
160] is the shift in energy dw, an upward shift of the center of mass of the
triplon with increasing temperature. This empirical parameter accounts for
the fact that, as triplons are populated, due to their repulsive nature it
becomes more difficult to excite them, which leads to an effective increase
in the singlet-to-triplet excitation energy. Previous studies provide maximal

values for dw in the order of magnitude of 0.1 meV, or 10 K.
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5.4.2 Presentation of the fits

Two examples of a fit are provided in Fig. 5.14 and 5.15.

E transfer [meV]

25 3 35 4

25 3 35 4

40l (@) T=2K
| ¢ Exp. data
30 — Fit
I —— Sharp
20 — Broad

10 ¢

251 (c) T=73K

Intensity [arb.]

251 (e) T=85K

20 ¢

157+

2.5

E transfer [meV)]

Intensity [arb.]

Figure 5.14: Fits of the data at Q= (0.5-0.5 0) as a function of temperature,

showing the fit as well as the two components - broad and sharp. Already

at 5.5 K the sharp component (which dominates the scattering at 2 K) has

dropped significantly in intensity, disappearing at 8 K.

There is overall good agreement between the data and the models, re-

sulting in x? between' 1.1 and 2.5 as a function of Q By averaging over

1The value of x? is not entirely representative since it also takes into account the data

at 2 K, for which by construction x? is 1.
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Figure 5.15: Fits of the data at Q = (1.0-0.5 0) as a function of temperature,

done as in Fig. 5.14.
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Cj the overall trend for each fitted parameter can be extracted. The overall
intensity, as displayed in Fig. 5.16, decreases as a function of temperature,
while spectral weight is transferred from the sharp component, which dom-
inates at 2 K (by construction) to the broad component, which becomes
dominant and almost exclusive at 8 K. This trend confirms broadly the pre-
vious studies on SCBO and it highlights the change in the decay channel of

triplons due to their thermal activation.

60 F q} _
=
g
— 40 L | ® Fit, sharp |
.‘? (D Fit, broad
a ® Fit, sum
% 20 + @® Averaging |
—
0 e
’ 2

Temperature [K]

Figure 5.16: Integrated intensities of the sharp and broad components of
the fit (red and blue) and their sum (black), averaged over all Q, compared
to intensities calculated by averaging the data (gray). The dotted lines are
guides to the eye. While the overall intensity decreases following a roughly
sigmoidal curve, there is a transfer of intensity from the sharp component

to the broad component, which dominates above 6 K.

Figure 5.17 shows the averaged evolution in temperature of the
Lorentzian broadening I" and of the energy shift dw. As expected from
the argument from thermal activation, the broadening increases meaning
that the lifetime is decreasing, and the energy shift is positive meaning that
new triplons experience an average repulsive force from other triplons.

This consolidates the understanding of the effect of temperature on this
compound, providing a coherent and cohesive picture of the effect that a

thermal population of triplons has on newly excited triplons.
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Figure 5.17: Fitted (a) Lorentzian broadening I' and (b) energy shift dw as a
function of temperature, averaged over all Q The dotted lines are guides to
the eye. Both the broadening and the shift in energy increase continuously

with temperature.

5.4.3 Q—dependence of the decay

While the fitted results already show the trend for I' to increase with temper-
ature, the Q—dependence can be studied in more detail. Figure 5.18 shows
the change of I' over @—Space at each temperature except for 2 K (where,
by construction, no broadening is fitted) and for 10 K (where the analysis
did not converge). Due to the relatively large errorbars (which cannot be
shown in the colormap) the @—dependence is noisy and no pattern emerges.

Fig. 5.19 shows I" at three temperatures along K for H = 0.5. The fitted
parameters are dominated by the the statistical uncertainty. This analysis is
clearly affected by a two-fold problem. Firstly, the broadening is in the same
order of magnitude as the intrinsic instrumental resolution, meaning that
the experimental statistical quality importantly affects I'. Furthermore this
makes it difficult for the fitting algorithm to separate the broad and sharp
components since the are very similar. As a result the fitting procedure

had problems converging, as shown in Fig. 5.18(a), where the holes in the
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K [rlu]
K [rlu]

Figure 5.18: Fitted values of the broadening I' as a function of Q at several
temperatures. The presence of holes in the map are due to fits that didn’t

converge.
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colormap mark the points where the algorithm failed to produce a reliable
value for I'. At 10 K the data also displays very substantial errorbars since
the intensity of the mode has decreased to a point where the artifacts of the
background start to dominate. Our estimate of I is therefore hindered by the
background to signal ratio. It is thus at this point possible to conclude that
the Lorentzian broadening I'" does vary with Cj and that a ToF experiment
with a large detector is an ideal tool to investigate this phenomenon, but
presently a detailed @—map has not been obtained. More will be discussed

in the outlook.
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Figure 5.19: Fitted values of the broadening I' along the main crystallo-
graphic directions at all temperatures. The data has been folded according
to symmetry over the whole Q—space. The gray vertical lines mark the M
point at (0.5 0) and the X point at (0.5 0.5), and the axis runs in a straight
line between these points in steps of 0.125. Shaded areas were added to

increase visibility.

5.5 OQOutlook and conclusions

We have performed an inelastic neutron scattering experiment on SCBO and
measured its singlet-to-triplet excitation, obtaining data on a large section of

Q—space. Furthermore, we have characterised the excitation and confirmed
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several results already reported in literature. We have studied the tempera-
ture dependence of the spectrum in terms of a triplon-to-triplon interaction,
reconstructing correctly the drop in intensity of the sharp component and
the rise and fall of the broad component. This analysis has allowed us to
map the Lorentzian broadening I' as a function of Cj along the main axis of
a square unit cell.

Despite not being able to provide a reliable value for I'; these results
highlight the power of modern ToF instruments such as LET in investigating
detailed aspects of the dynamics of a system. It is conventional wisdom that
determining the energy of an excitation for spectroscopy data is the easiest
task, as that requires being able to detect a peak position. Determining the
intensity (i.e. the spectral weight) with accuracy is a task that demands
more statistics than that. Determining the a finite lifetime of a particle
requires to reliably measure the tails of the mode and not its peak intensity
— and, in our case, to differentiate a mode with the instrumental resolution
from a broadened mode. The errorbars are inversely proportionately to the
square root of the counting time, making it increasingly more difficult to
improve the data.

While the results of this study might not deliver all the information
needed to reconstruct a complete picture of the decay mechanics of triplons
in SCBO and its Q—dependence, we feel that it is a very strong illustration

of the power of an instrument such as LET, and of its present limitation.



CHAPTER 6

Conclusions and outlook

During this thesis I have investigated three magnetic systems of varying di-
mensionality and interacting Hamiltonians using the technique of inelastic
neutron scattering in order to characterise their excitations. Furthermore,
the excitations have been modelled mathematically and an agreement be-
tween theoretical predictions and observed data has been established.

The @—dependence of the lifetime of triplons in SCBO remains an open
question due to the inconclusivity of our results due to the technical difficul-
ties of such an experiment: at an instrument such as LET, which is required
to sample large sections of Q—spaee, the energy resolution at the triplon en-
ergy can be comparable to the splitting between triplon modes, while the
lifetime of the particle can only be measured in the tails of the lineshape.
However, applying a magnetic field splits the triplon modes so that their
tails no longer overlap. I have participated in a series of experiment per-
formed on LET by Diane Lancon, of EPFL, where the in-field @—dependence
of the triplon mode has been measured with success.

Our study of RbCoCl3 has highlighted the importance of the local ex-
change geometries on Ising chains that rely on a staggered field to order:
this is of particular interest in a frustrated hexagonal lattice where the tem-
perature allows to select different configurations of the frustrated planes
— namely creating an ordered phase and two disordered phases. We have
shown how staggered fields change with temperature, and as a consequence
how the spectrum is modified by displaying more or less branches of bound
domain wall excitations, i.e. solitons. With temperature solitons acquire a

finite lifetime and a reduced mobility, two effects that we approximate us-
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ing a phenomenological description but that offer an opportunity for more
theoretical studies in the properties of the thermal Ising chain.

This co-dependence between frustration, staggered fields and magnetic
modes should be expected to be observed in many of the ABX3 compounds
mentioned through this thesis (e.g. CsCoCls), as they all share a comparable
Hamiltonian, but it can be extended to other compounds: the candidates
are in general Ising chains on frustrated lattices (for instance the Kagome
lattice). The first question is whether this compounds as well exhibit two
magnetic phase transitions, and whether the dynamic correlations in these
two magnetic phases are meaningfully distinct.

Ising chains are furthermore relevant because of their QPT (in a per-
pendicular magnetic field strong enough). While the critical magnetic field
in RbCoCls cannot be experimentally achieved with the current technol-
ogy in a neutron scattering facility, it can be expected that frustration will
no longer play a role in that magnetic state (Ho > J > J,,) and so this
temperature-dependence of the spectrum might be expected not to be ob-
served. Still, direct observation of this quantum phase transition, and of the
quantum critical region, are required before reaching any conclusion.

We have measured the spin-wave spectrum of the thermal Hall effect fer-
romagnet LuaVoO7, verified a minimal model of the Hamiltonian and pro-
vided values for its two dominant interactions, J and D. This will stimulate
more discussion on the subject of this whole class of insulating pyrochlores.
While we have proven that a minimal model is sufficient to explain the main
features of the dispersion, we cannot exclude the presence of next-nearest
neighbour exchange, or estimate their magnitude or their effect. Equally,
there are other terms of the Hamiltonian that could be included in a de-
scription of the magnetic system: for instance a recent study [166], using a
combination of DFT and exact diagonalization of Hubbard-like finite clus-

ters, studied the Hamiltonian
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and concluded that |K|/|7| = 0.02, i.e. below the instrumental resolu-
tion used in our experiment. Their estimate for |D|/|.7| was 0.07, less than
a half of the value of 0.18(1).

Many outstanding questions remain in the context of the broader re-
search on the magnon Hall effect. For the pyrochlores, one particularly
important question is the direction of the DMI [167], which we have been
unable to establish via a direct observation of the spectrum due to the sym-
metry of the spin waves with respect to the sign of the DMI. Understanding
this detail is crucial in order to explain some thermal conductivity data, and
to lead to the developement of magnon topological insulators [121], which
rely on the interface between materials of different sign of the DMI.

While other novel equivalent phenomena have been suggested for these
pyrochlores, such as the Nernst effect [168, 169], another relevant problem
is finding other systems where the magnon Hall effect can be observed. As
it relies on the DMI there are restrictions to the possible symmetries and to
magnetic ions with a relevant spin-orbit coupling. A further experimental
constraint is that the magnitude of the magnon contribution to the thermal
conductivity must be measurable when compared to the other contributions:
while a phonon contribution from the lattice can’t be avoided, it is better
to avoid conducting systems, as the electronic contribution to thermal con-
ductivity tends to be dominant over all others.

In terms of dimensionality, the magnon Hall effect should not be ex-
pected to play a significant role in one-dimensional systems (as the one-
dimensionality of the correlation will prevent magnons from experiencing
any perpendicular drift), there have been suggestions for the observation of
the magnon Hall effect in a two-dimensional Kagome lattice [123] or on the
honeycomb lattice [170], potentially opening a new field in low-dimensional

magnetism.
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