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Referees :

Prof A. Green - University College London

Dr E. Blackburn - University of Birmingham

Fall 2016



I, Mattia Mena confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this

has been indicated in the thesis.

Mattia Mena Date



Abstract

Several properties of a system of correlated spins contribute to the macro-

scopic behaviour, and amongst them are those of quantum versus classical

magnetism, frustration or dimensionality of the system, Ising or Heisenberg

interactions, which on their own can lead to a rich and diverse phenomenol-

ogy. This thesis investigates three materials in order to explain the diverse

manifestation of their magnetic excitations and relate it to their physical

properties.

The excited spectrum of an ideal antiferromagnetic Ising chain is either

bow-tie-shaped continua or a series of discrete cosine-like modes, depending

on the presence or absence of a staggered magnetic field. In one physical

realization of this system, the hexagonal halide RbCoCl3, which possesses

three distinct magnetic phases, both a continuum and discrete Ising spins

are observed in the lowest ordered magnetic phase, while only a continuum

is found in the other phases. We propose that this is due to the nearest and

next-nearest interactions perpendicular to the plane, which lead to either

long-range or short-range order. In this compound an unstaggered ordered

Ising chain can be observed down to 0 K, allowing for studies of the thermal

Ising chain and providing a material where the effect of frustration can be

tuned with temperature and affects the dispersion.

In the ferromagnetic insulating pyrochlore Lu2V2O7 magnons display a

novel thermal equivalent of the Hall effect induced by the Dzyaloshinskii-

Moriya interaction (DMI). In an in-depth study of its spectrum, we have

measured the full spectrum of Lu2V2O7 and confirmed that a minimal

Hamiltonian is sufficient to describe it, obtaining the ratio between the fer-

romagnetic interaction and the DMI, which is the parameter controlling the

magnon Hall effect.

SrCu2(BO3)2 is a two-dimensional frustrated square compound where

the spins form antiferromagnetic dimerized singlets whose elementary exci-

tation is an intra-dimeric singlet-to-triplet transition. Temperature causes
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the excited spectrum to decrease in intensity at a temperature much lower

than the gap. The exchange between the polarized shells created around

the dimers has been suggested to provide the main decay channel for the

excited triplets. In this thesis we investigate the ~Q-dependence of this decay

channel.

Only part of the results summarized in this thesis have been published,

in a PRL paper on the magnon dispersion of Lu2V2O7 of which I am first au-

thor. I am currently drafting a paper on RbCoCl3, with an additional paper

authored by N. Hänni on the subject having been already submitted to PRL.

Furthermore, I am collaborating on a joint publication on SrCu2(BO3)2 with

D. Lançon.



Contents

1 Introduction on Magnetism 1

1.1 Classical Magnetism . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Spins in Quantum Physics . . . . . . . . . . . . . . . . . . . . 2

1.3 Solid State Magnetism . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Dimensionality of the system . . . . . . . . . . . . . . 5

1.3.2 Spins: Heisenberg, XY and Ising exchanges . . . . . . 6

1.3.3 Geometrical frustration . . . . . . . . . . . . . . . . . 7

1.3.4 Quantum phase transition . . . . . . . . . . . . . . . . 7

1.4 Compounds studied in the thesis . . . . . . . . . . . . . . . . 8

2 Introduction to Neutron Scattering 11

2.1 Theory and Background . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Theory of Neutron Scattering . . . . . . . . . . . . . . 11

2.1.2 Experimental techniques . . . . . . . . . . . . . . . . . 16

3 The temperature-dependent soliton spectrum of the 1D

chain compound RbCoCl3 24

3.1 Scientific background . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Examples of Ising-like 1D physics . . . . . . . . . . . . . . . . 26

3.2.1 CoNb2O6 . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 BaCo2V2O8 . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 The magnetic properties of RbCoCl3 . . . . . . . . . . . . . . 29

3.3.1 Magnetic susceptibility . . . . . . . . . . . . . . . . . . 30

3.3.2 Diffraction and phase transitions . . . . . . . . . . . . 30

3.4 Experimental work on RbCoCl3 . . . . . . . . . . . . . . . . . 32

3.4.1 One-dimensionality of the spectrum . . . . . . . . . . 35

3.4.2 Overview of the data . . . . . . . . . . . . . . . . . . . 36

3.4.3 Further experiments on RbCoCl3 . . . . . . . . . . . . 38

3.5 Modelling of the system . . . . . . . . . . . . . . . . . . . . . 39

iv



Contents v

3.5.1 Effects of the temperature . . . . . . . . . . . . . . . . 56

3.5.2 Fitting procedure . . . . . . . . . . . . . . . . . . . . . 58

3.6 Analysis according to Matsubara’s Hamiltonian . . . . . . . . 59

3.6.1 Results at 35 K . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Results at 18 K . . . . . . . . . . . . . . . . . . . . . . 61

3.6.3 Results at 4 K . . . . . . . . . . . . . . . . . . . . . . 64

3.6.4 Fits at 8.5, 10.5 and 23 K . . . . . . . . . . . . . . . . 66

3.6.5 Mobility and lifetime as a function of temperature . . 70

3.6.6 Population factors as a function of temperature . . . . 71

3.6.7 Cluster Heat Bath Monte Carlo method . . . . . . . . 72

3.7 Comparison between the CHB method and the fits . . . . . . 78

3.8 Further aspects of the spectrum . . . . . . . . . . . . . . . . . 83

3.8.1 The Villain mode . . . . . . . . . . . . . . . . . . . . . 83

3.8.2 Higher modes of the Zeeman ladder . . . . . . . . . . 84

3.8.3 Analysis according to Goff’s Hamiltonian . . . . . . . 86

3.8.4 Higher energy-transfer data . . . . . . . . . . . . . . . 89

3.9 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . 89

4 The spin-wave spectrum of the magnon Hall pyrochlore

Lu2V2O7 94

4.1 Scientific background . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Introduction to Lu2V2O7 . . . . . . . . . . . . . . . . . . . . 98

4.2.1 The Hamiltonian of Lu2V2O7 . . . . . . . . . . . . . . 99

4.3 Experimental work on Lu2V2O7 . . . . . . . . . . . . . . . . . 101

4.3.1 Overview of the data . . . . . . . . . . . . . . . . . . . 102

4.3.2 Reduced axis plot . . . . . . . . . . . . . . . . . . . . 106

4.4 Modelling of the data . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Modelling methods . . . . . . . . . . . . . . . . . . . . 109

4.4.2 Fitting of the reduced plots . . . . . . . . . . . . . . . 111

4.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . 113



Contents vi

5 Triplon-to-triplon interactions in the 2D dimerized antifer-

romagnet SrCu2(BO3)2 119

5.1 Scientific background . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.1 The Hamiltonian of SCBO . . . . . . . . . . . . . . . 122

5.1.2 Exact diagonalization . . . . . . . . . . . . . . . . . . 124

5.1.3 Temperature dependence of the spectrum . . . . . . . 125

5.2 Experimental work on SCBO . . . . . . . . . . . . . . . . . . 128

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1 Alignment of the sample . . . . . . . . . . . . . . . . . 133

5.4 Discussion of the data . . . . . . . . . . . . . . . . . . . . . . 133

5.4.1 Fitting procedure . . . . . . . . . . . . . . . . . . . . . 133

5.4.2 Presentation of the fits . . . . . . . . . . . . . . . . . . 135

5.4.3 ~Q-dependence of the decay . . . . . . . . . . . . . . . 138

5.5 Outlook and conclusions . . . . . . . . . . . . . . . . . . . . . 140

6 Conclusions and outlook 142

7 Acknowledgements 145



List of Figures

1.1 Example of geometrical frustration . . . . . . . . . . . . . . . 8

1.2 Quantum Phase diagram . . . . . . . . . . . . . . . . . . . . . 9

2.1 Scattering Triangle . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Schematics of the triple-axis instrument IN14 . . . . . . . . . 20

2.3 Schematics of the ToF instrument LET . . . . . . . . . . . . 22

3.1 Excitations in CoNb2O6 . . . . . . . . . . . . . . . . . . . . . 27

3.2 Excitations in BaCo2V2O8 . . . . . . . . . . . . . . . . . . . . 28

3.3 RbCoCl3: crystal structure . . . . . . . . . . . . . . . . . . . 29

3.4 RbCoCl3: magnetic susceptibility . . . . . . . . . . . . . . . . 30

3.5 RbCoCl3: diffraction scans . . . . . . . . . . . . . . . . . . . 31

3.6 RbCoCl3: temperature-dependence of the diffraction . . . . . 33

3.7 RbCoCl3: picture of the sample . . . . . . . . . . . . . . . . . 34

3.8 RbCoCl3: dispersion along K . . . . . . . . . . . . . . . . . . 35

3.9 RbCoCl3: dispersion along K . . . . . . . . . . . . . . . . . . 36

3.10 RbCoCl3: high statistics data . . . . . . . . . . . . . . . . . . 37

3.11 RbCoCl3: low statistics data . . . . . . . . . . . . . . . . . . 38

3.12 RbCoCl3: high statistics cuts . . . . . . . . . . . . . . . . . . 39

3.13 RbCoCl3: low statistics cuts . . . . . . . . . . . . . . . . . . . 40

3.14 RbCoCl3: cuts at 4 and 8.5 K . . . . . . . . . . . . . . . . . . 40

3.15 The des Cloizeaux-Gaudin spectrum . . . . . . . . . . . . . . 44

3.16 RbCoCl3: the Ishimura-Shiba spectrum . . . . . . . . . . . . 48

3.17 RbCoCl3: Shiba, Matsubara and Goff spectra . . . . . . . . . 54

3.18 RbCoCl3: slice of the fit at 35 K . . . . . . . . . . . . . . . . 61

3.19 RbCoCl3: cuts of the fit at 35 K . . . . . . . . . . . . . . . . 62

3.20 RbCoCl3: slice of the fit at 18 K . . . . . . . . . . . . . . . . 63

3.21 RbCoCl3: cuts of the fit at 18 K . . . . . . . . . . . . . . . . 64

3.22 RbCoCl3: slice of the fit at 4 K . . . . . . . . . . . . . . . . . 65

vii



List of Figures viii

3.23 RbCoCl3: cuts of the fit at 4 K . . . . . . . . . . . . . . . . . 66

3.24 RbCoCl3: fit at 8.5 K . . . . . . . . . . . . . . . . . . . . . . 67

3.25 RbCoCl3: fit at 10.5 K . . . . . . . . . . . . . . . . . . . . . . 68

3.26 RbCoCl3: fit at 23 K . . . . . . . . . . . . . . . . . . . . . . . 69

3.27 RbCoCl3: anisotropy, lifetime and population . . . . . . . . . 70

3.28 RbCoCl3: path in the CHB method . . . . . . . . . . . . . . 77

3.29 RbCoCl3: CHB simulations at 4 K . . . . . . . . . . . . . . . 80

3.30 RbCoCl3: CHB simulations at 18 K . . . . . . . . . . . . . . 81

3.31 RbCoCl3: CHB simulations at all temperatures . . . . . . . . 82

3.32 RbCoCl3: the Villain mode . . . . . . . . . . . . . . . . . . . 85

3.33 RbCoCl3: fits of the modes . . . . . . . . . . . . . . . . . . . 86

3.34 RbCoCl3: fits according to Goff’s Hamiltonian . . . . . . . . 88

3.35 RbCoCl3: high energy transfer . . . . . . . . . . . . . . . . . 90

4.1 Lu2V2O7: crystal structure . . . . . . . . . . . . . . . . . . . 95

4.2 Lu2V2O7: magnon Hall effect . . . . . . . . . . . . . . . . . . 96

4.3 Lu2V2O7: magnetic properties . . . . . . . . . . . . . . . . . 98

4.4 Lu2V2O7: dispersion . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Lu2V2O7: data with a 25 meV energy transfer . . . . . . . . 103

4.6 Lu2V2O7: data with a 50 meV energy transfer . . . . . . . . 104

4.7 Lu2V2O7: data with a 80 meV energy transfer . . . . . . . . 105

4.8 Lu2V2O7: reduced plot of the data . . . . . . . . . . . . . . . 107

4.9 Lu2V2O7: fit of a reduced data set . . . . . . . . . . . . . . . 108

4.10 Lu2V2O7: Holstein-Primakoff simulations . . . . . . . . . . . 110

4.11 Lu2V2O7: McPhase simulations . . . . . . . . . . . . . . . . . 112

4.12 Lu2V2O7: fits of the DMI . . . . . . . . . . . . . . . . . . . . 114

4.13 Lu2V2O7: McPhase simulations . . . . . . . . . . . . . . . . . 115

4.14 Lu2V2O7: cuts vs fits . . . . . . . . . . . . . . . . . . . . . . 116

5.1 SrCu2(BO3)2: Shastry-Sutherland geometry . . . . . . . . . . 120

5.2 SrCu2(BO3)2: magnetization plateaux . . . . . . . . . . . . . 120

5.3 SrCu2(BO3)2: quantum phase diagram . . . . . . . . . . . . . 121



List of Figures ix

5.4 SrCu2(BO3)2: analytical dispersion . . . . . . . . . . . . . . . 124

5.5 SrCu2(BO3)2: exact diagonalization . . . . . . . . . . . . . . 125

5.6 SrCu2(BO3)2: ∆ as a function of J ′/J . . . . . . . . . . . . . 125

5.7 SrCu2(BO3)2: inelastic scattering . . . . . . . . . . . . . . . . 127

5.8 SrCu2(BO3)2: illustration of triplon-to-tripln interactions . . 128

5.9 SrCu2(BO3)2: inelastic scattering . . . . . . . . . . . . . . . . 129

5.10 SrCu2(BO3)2: low-temperature data . . . . . . . . . . . . . . 130

5.11 SrCu2(BO3)2: effect of temperature on the dispersion . . . . 131

5.12 SrCu2(BO3)2: effect of temperature on cuts . . . . . . . . . . 132

5.13 SrCu2(BO3)2: spurious lines . . . . . . . . . . . . . . . . . . . 133

5.14 SrCu2(BO3)2: example of fit . . . . . . . . . . . . . . . . . . . 135

5.15 SrCu2(BO3)2: example of fit . . . . . . . . . . . . . . . . . . . 136

5.16 SrCu2(BO3)2: intensity as a function of T . . . . . . . . . . . 137

5.17 SrCu2(BO3)2: width and energy shift as a function of T . . . 138

5.18 SrCu2(BO3)2: Γ as a function of ~Q . . . . . . . . . . . . . . . 139

5.19 SrCu2(BO3)2: Γ along all crystallographical main directions . 140



List of Tables

3.1 Values of the exchange parameters of the ABX3 family . . . . 57

3.2 Values of the exchange parameters in the present work . . . . 60

3.3 Population factors as a function of T . . . . . . . . . . . . . . 71

3.4 Population factors in literature . . . . . . . . . . . . . . . . . 72

3.5 Population factors in the CHB algorithm . . . . . . . . . . . 79

3.6 Fits of the higher modes of the Zeeman ladder . . . . . . . . 87

3.7 Fitted values using a different Hamiltonian . . . . . . . . . . 87

x



Chapter 1

Introduction on Magnetism

1.1 Classical Magnetism

Electromagnetism is one of the four fundamental forces of the universe,

along with the nuclear strong, nuclear weak and gravitational interaction.

It couples electrical and magnetic charges. Amongst many excellent books

on the topic, noteworthy texts are J. Jackson’s Classical Electrodynamics [1]

or R. Feynman’s Lectures on Physics [2].

Classical electromagnetism, one of the most important historical

branches of physics, culminated with Maxwell’s equations, which express

relations between the electrical field ~E and the magnetic field ~B (shown

here in SI units) [3, 4]:

∇ · ~E =
ρ

ε0
,

∇ · ~B = 0,

∇× ~E = −∂
~B

∂t
,

∇× ~B = µ0( ~J + ε0
∂ ~E

∂t
),

where ρ is the spatial density of electrical charges, ε0 is the permittivity of

free space, µ0 is the permeability of free space and ~J is an electrical current

(i.e. a drift through space of electrical charges).

Interestingly, in his original 1865 paper, Maxwell formulated a set of 20

equations, since he didn’t use vectors and included additional laws such as

1



1.2. Spins in Quantum Physics 2

Ohm’s J = σE (curiously, Maxwell himself in 1879 edited Henry Cavendish’s

unpublished notes into a book and found that Cavendish had discovered

Ohm’s law 50 years earlier than Ohm had [5]). The first person to write

Maxwell’s equations as we know them today is, thus, not Maxwell but Oliver

Heaviside in 1892 [6].

These fields are used to calculate the Lorentz force, i.e. the force expe-

rienced by a charged object via its electromagnetic interaction:

~F = q( ~E + ~v × ~B)

where q is the charge and ~v is the velocity of the particle. While this law

was written in this form to Lorentz in 1893, the contribution of the magnetic

field was first derived by Heaviside in 1889 [7].

A magnetic object in an external magnetic field experiences a potential

energy U = −~µ · ~B where µ is the magnetic moment. This interaction will

appear throughout this work as the Zeeman coupling.

Understanding the nature of the magnetic moment in microscopic terms

turned out to be difficult for the classical theory of electromagnetism. A

dipolar electrical term is written as ~p = q~l, where ~l is the vector separating

the two monopoles. However a similar formulation of ~µ in terms of two

spatially separated monopoles is impossible since no magnetic monopole

can exist due to Maxwell’s second law and hence ~l cannot be non-zero.

This is not a problem for magnetic fields that are generated by currents:

an electrical charge that rotates around a loop has an angular momentum ~L

and creates a circular current ~J , and its magnetic moment is ~µ = γ~L, where

γ is the gyromagnetic ratio.

1.2 Spins in Quantum Physics

When it became apparent that electrons possess an intrinsic magnetic mo-

ment that cannot be explained in terms of currents, a new fundamental
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quantum number was introduced relating to the spin angular momentum

operator. The expectation of the square of the total spin angular mo-

mentum 〈Ŝ · Ŝ〉 = ~S(S + 1), where S is the total spin quantum number

(for electrons, S = 1/2). This is related to the spin magnetic moment ~µS

via |~µS | = 2µB
√
S(S + 1), where µB = e~/2me is the Bohr magneton.

Being a quantum number, the spin operator obeys commutation relations

[Ŝj , Ŝk] = i~ εjklŜl, where εjkl is the Civita-Levi symbol and ~ the reduced

Planck constant. A further magnetic quantum number, the projection mS ,

is allowed to have values between −S and S in steps of 1, meaning that for

an electron it can only take the values of −1/2 and 1/2 (spin up and spin

down).

Atoms then have a total spin quantum number, which is the sum of the

individual spin quantum numbers. In filling an orbital shell (of azimuthal

quantum number l), each sub-orbital level (of magnetic quantum number

m ∈ [-l, l]) can host at most two electrons of opposite spins, and Hund’s

rule predicts that in order to minimize energy electrons will avoid being in

the same sublevel if there is an empty sublevel, and will have the same spin

direction if they are in half-filled sublevels. This means that the total spin

will be zero on a filled shell and will be maximal on a half-filled shell: For

instance a half-filled p shell (l = 2) will have 5 unpaired electrons, and a

total spin of 5/2. As a consequence, not all elements and compounds present

strong magnetic properties: especially if elements bond ionically and lose or

gain electrons to form an empty or filled shell, which is magnetically inert.

1.3 Solid State Magnetism

The scientific questions in this thesis are going to be centred on aspects of

quantum (S = 1/2) magnetism in solid state theory, for which it is important

to define a certain number of properties.

In the context of solid state physics, explaining the macroscopic mag-

netic properties of a material is often achieved by understanding it as an

array of interacting spins. The interactions originate not from the direct
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electromagnetic exchange between electrons, but rather is ultimately moti-

vated by Pauli’s exclusion principle: the wave functions of single electrons

in a solid-state system can present substantial overlap – which is impor-

tant when considering pairs of neighbouring electrons and their quantum

numbers. Depending on the specific wave function of the pair (which is an-

tisymmetric with respect to the exchange of particles since it is a system of

fermions) and on material-specific parameters, the ground state will require

the electrons to be parallel - or antiparallel - and the first excited state will

determine the energy required to flip a spin (i.e. to allow two spins to have

antiparallel, or parallel, spins without all of their quantum numbers being

otherwise the same). This is called an exchange energy.

A simple bilinear formulation of an interactive spin Hamiltonian is:

H =
∑

j,k

~S†jJj,k
~Sk +

∑

j

~Hj · ~Sj

where j, k are indexes of all the magnetic sites of the system, and Jj,k is the

exchange matrix, whose special cases are going to be discussed later, and the

second term is the Zeeman energy. Additional exchanges can be introduced,

such as a quadratic S2
j , to go beyond this linear model, but corrections of

this sort are not going to be discussed here.

This general expression couples each spin j in the system with every

other spin k, but often the Hamiltonian is simplified to contain only the most

dominant interactions: in the most usual case, only the nearest-neighbour

(nn) coupling is preserved (i.e. Sj,k = 0 if |k − j| > 1). Further terms, such

as the next-nearest neighbour (nnn) and so on, can be included.

Many magnetic systems feature ordered states (i.e. long-range ground

states of the Hamiltonian) that minimize the energy. These ordered states

can exist only below a certain critical temperature TC , above which the

system becomes disordered (i.e. a phase transition). Examples of famous

ordered magnetic states include the ferromagnetic and antiferromagnetic

configurations, i.e. all spins lying parallel or antiparallel respectively to their
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neighbours. A phase transition is usually described with an order parameter,

a physical property that is zero above the phase transition and non-zero

below it. Good order parameters for a ferromagnet are the magnetization

or the intensity of a magnetic Bragg reflection, i.e. a Bragg reflection that

is due to the periodic order of the magnetic lattice (see the next chapter for

more information on Bragg peaks).

Furthermore, many magnetic systems possess distinctive magnetic quan-

tized excitations, such as spin waves or solitons. These excitations are gener-

ally observed only below TC . While phonons are naturally gapless Goldstone

modes (i.e. there is at least one phonon branch whose excitation energy goes

to zero for ~Q, its wave vector, going to zero), magnetic excitations are di-

vided between gapless and gapped (i.e. no excited state, at any propagation

vector, has an energy lower than the gap energy ∆).

1.3.1 Dimensionality of the system

While what was discussed in the previous section applies best to three-

dimensional systems, changing the geometrical properties of the lattice can

change the behaviour of a magnetic system drastically.

When the magnetic terms are aligned along chains so that the only

non-negligeable interaction is between sites in the same chain (e.g. the

nearest-neighbour distance between sites in the chain is much smaller than

any other distance between sites), the system will be dominated by the in-

chain exchanges, leading to a one-dimensional (1D) material. Similarly,

when ions have non-negligeable interactions with other ions on a specific

plane, but negligeable interactions to ions on a parallel plane, the system

is called two-dimensional (2D). Only network of exchanges where ions have

non-negligeable interactions along all crystallographic directions leads to a

three-dimensional (3D) exchange. Intermediate stages also exist, such as

ladder systems (i.e. systems of coupled chains, which are between 1D and

2D).

A number of physical properties can change depending on the symmetry
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and the dimensionality. For instance, a 3D system with ferromagnetic Ising

interactions (explained in the next section) possesses a long-range ordered

(LRO) phase (at temperatures below TC) while an ideal 1D systems doesn’t

even at 0 K, and can at most display short-range order (SRO). This will be

discussed in a later chapter.

1.3.2 Spins: Heisenberg, XY and Ising exchanges

The spins of free electrons have three components, Sx,y,z, of which only one

(conventionally along the magnetization axis z) can be observed. This is

not necessarily true of the spins in solid state physics, where the “free” spin

is not necessarily a quantum number.

The exchange matrix Jj,k, as introduced earlier, couples these different

components. Depending on the nature of the interaction and on the orbital

electronic physics, several simplified typologies of interactions between two

spins in a quantum magnetic system can be found: as extremal cases, in

Ising-like systems only one spin component couples (conventionally, z) [8],

in the XY systems two components couple (conventionally x and y), and in

Heisenberg systems all components are coupled [9]. This usually is visualized

by interpreting Ising spins as lying along a quantization axis, xy spins as

lying on a quantization plane, and Heisenberg spins as being unconstrained.

All of the interactions listed so far have the common feature that (within

one coordinate transformation) the matrix Jj,k is diagonal, and the differ-

ence between these typologies of interaction becomes related to the num-

ber of non-zero eigenvalues (one in Ising systems, two in XY , three in

Heisenberg) and ideal XY and Heisenberg also require that all the eigen-

values be the same. A notable example of an off-diagonal interaction is the

Dzyaloshinsky-Moryia interaction [10, 11], ~Dj,k ·(Ŝj×Ŝk), which is equivalent

to a traceless matrix with no real, non-zero eigenvalue.

The origin of Ising-like behaviour Ising-like interactions require spins

to point along one axis, which can happen due to large anisotropy [12]. One
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notable ion that is characterised by Ising-like physics is Dy3+ [13], such as

for instance in DyBa2Cu3O7−δ, whose magnetic behaviour is that of Ising

spins arranged on a square 2D lattice [14], or in DySb [15, 16].

In Co2+, another Ising-like ion, the ground state for electrons is 4F, which

splits under an octahedral ligand field so that the ground state becomes the

4T1g state. However the angular orbital momentum is not quenched and

thus spin-orbit couplings lead to additional splittings into Kramers doublets,

hence the effective spin is 1/2. The Jahn-Teller distortion can then act on

the Kramers doublets and, depending on the kind (i.e. whether it stretches

or compresses) can drive the spin towards an Ising-like or an XY behaviour.

This ion, therefore, is very well suited to build non-Heisenberg spin systems.

1.3.3 Geometrical frustration

No matter the dimensionality, the geometry can provide a network of com-

peting interactions so that the pair-wise interactions cannot be all simulta-

neously minimised: this can influence the order and even suppress TC to zero

Kelvin, resulting in no specific, ordered ground state [17, 18, 19, 20, 21, 22].

A typical example is that of antiferromagnetically interacting spins on a

triangular lattice, as sketched in Fig. 1.1: no configuration of three spins

on the three vertexes of the triangle can simultaneously minimize all pair-

interactions. Although antiferromagnetic triangular, hexagonal, or Kagomé

lattices are prime candidates, frustration can also be exhibited by more com-

plex structures, such as spinels [18, 23] or in pyrochlores [24], where it can

lead to the spin ice behaviour [25].

1.3.4 Quantum phase transition

A quantum phase transition (QPT) is a transition that is driven by a control

parameter other than temperature, and as such can happen even in the limit

of 0 K [26, 27, 28, 29, 30, 31], see Fig. 1.2 for two examples. Possible tuning

parameters are, for instance, pressure or the chemical potential. In the limit

of T = 0 K, the transition from a phase to another cannot be due to thermal
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Figure 1.1: Example of a simple frustrated geometry: three

antiferromagnetically-interacting Ising spins on a triangular lattice. If any

two ions align up and down, the third is equally likely to align up or down.

fluctuations: it must thus be due to quantum fluctuations, which originate

from Heisenberg’s uncertainty principle.

One specific example of a phase transition is the application of a per-

pendicular magnetic field in Ising-like systems. As discussed in the previous

section, Ising-like systems order with their spins all pointing along one phys-

ical direction (by definition z): however at a critical value of the magnetic

field HC spins will minimize their energy by pointing along the magnetic

field and not along z, creating a forced collinear ferromagnet. Such a phase

transition would happen continuously, which means that if the excitation

were gapped at H = 0, increasing the field would diminish the gap energy

until “closing the gap” at H = HC .

1.4 Compounds studied in the thesis

In this thesis, the three compounds offer three unique combinations of as-

pects of dimensionality and interaction, from 1D to 3D, and from Ising to

Heisenberg, with various degrees of frustration, which highlights how the

properties of a system depend on such fundamental factors.

The compound RbCoCl3 (see Chapter 3), is a material dominated by

one-dimensional Ising-like chains. Perpendicular to the chains, the spins lie

on a hexagonal grid and have ferromagnetic interactions, leading to frustra-



1.4. Compounds studied in the thesis 9

(a) (b)

Figure 1.2: (a) Simplified example of a QPT: both temperature T and the

control parameter p can induce a phase transition from an ordered state to a

disordered state. Figure reproduced from [32]. (b) Phase diagram of LiHoF4,

experimentally determined by Bitko et al by measuring the magnetic sus-

ceptibility [26]. This material is an Ising ferromagnet which becomes a

paramagnet when a magnetic field is applied perpendicular to the Ising di-

rection. The thermal paramagnet and the quantum paramagnet phases are

connected continuously through the quantum critical region, where thermal

and quantum fluctuations are “equally important” to determine the prop-

erties of the sample. The phase transition deviates from mean-field theory

(an effect visible between 40 kOe and HC) due to the nuclear hyperfine

interaction. Figure reproduced from [33].
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tion. Since this compound is Ising-like, it is supposed to display a QPT at

a certain magnetic field HC .

The compound Lu2V2O2 (see Chapter 4) crystallizes in a pyrochlore

lattice. While for Ising-like exchanges this compound can exhibit frustra-

tion due to its structure being comprised of vertex-sharing tetrahedra, spins

in Lu2V2O7 obey a Heisenberg Hamiltonian and order into a collinear fer-

romagnet despite the presente of the antisymmetric Dzyaloshinskii-Moriya

interaction. This system exhibits the magnon Hall effect, which will be

described later.

In the final compound SrCu2(BO3)2 (see Chapter 5) the magnetic ions

align in square planes that are characterised by strong in-plane and weak out-

of-plane interactions, leading to marked two-dimensionality of the magnetic

system. Moreover the spins form antiferromagnetic couples (i.e. dimers) and

their (Heisenberg) interactions with the spins in other dimers is frustrated.

In this system, the dispersion is not dominated by the direct exchange but

by the Dzyaloshinskii-Moriya interaction.

In order to investigate the magnetic properties of these compounds we

have employed the techinque of neutron scattering, which will be described

in the next chapter.



Chapter 2

Introduction to Neutron

Scattering

2.1 Theory and Background

2.1.1 Theory of Neutron Scattering

Fundamentals of Neutron Scattering

Neutron scattering is a versatile non-invasive investigation technique that

measures density correlations. It is closely related to the complementary

technique of X-ray scattering. There are several good graduate-level books

developing its theoretical background, such as Introduction to the Theory

of Thermal Neutron Scattering by Gordon Leslie Squires [34] or Theory of

Neutron Scattering from Condensed Matter by Stephen W. Lovesey [35],

as well as good lecture notes on the subject. I will proceed with a brief

introduction on the theoretical fundamentals.

In general, a flux of neutrons is directed at a sample and the number of

scattered neutrons per second and per flux unit - i.e. the double derivative

of the total neutron density σ - is measured as a function of the scattered

neutron energy dE~k′
and solid angle element dΩ:

d2σ

dΩdE~k′
∝ number of scattered neutrons per second

dΩdE~k′
. (2.1)

where ~k′ is the wave vector of the outcoming neutron.

This cross section requires all informations about the system and the

11
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interaction between the system and the neutrons, which can be calculated

using Fermi’s Golden Rule – expressing the probability pi→f of the system

to transition from the initial state i to the final state f through the effect

of the perturbating (interacting) Hamiltonian V as:

pi→f =
2π

~
| 〈f |V |i〉 |2ρf (2.2)

where |i, f〉 are eigenfunctions of some Hamiltonian H (which doesn’t com-

mute with the perturbation V ) and ρf is the density of states function

evaluated for the final state. In this case, we assume that neutrons trigger a

transition in the sample from an initial state λ of probability pλ to a state λ′

via the interaction potential V (r); the neutrons are scattered from a state

(E~k,
~k) to a state (E~k′

, ~k′). The conservation of energy is included via the

delta function δ(Eλ−Eλ′+E~k−E~k′
), which allows the energy of the sample

to be increased/decreased only by the neutron energy loss/gain.

d2σ

dΩdE~k′
=
k′

k

( m

2π~2

)2∑

λ

pλ
∑

λ′

| 〈~k′λ′|V |~kλ〉 |2 δ(Eλ−Eλ′+E~k−E~k′
). (2.3)

This is usually written as

d2σ

dΩdE~k′
=
k′

k

σtot
4π

NS( ~Q, ω) (2.4)

where S( ~Q, ω) is called the scattering law, ~Q = ~k− ~k′ is the scattering vector,

see Fig. 2.1, N is the number of atoms in the sample and σtot is the total

scattering, a material-dependent intensity factor.

In the case of nuclear non-magnetic scattering, S( ~Q, ω) obeys the follow-

ing relations to the intermediate function I( ~Q, t):
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~k

~k′

~Q

Figure 2.1: Scattering triangle. Neutrons have an initial momentum ~k and

a final momentum ~k′ (black arrows) after scattering on the sample (green

sphere). The momentum transfer is ~Q = ~k − ~k′ (red arrow).

I( ~Q, t) =
1

N
||b̃(− ~Q, 0)b̃( ~Q, t)|| (2.5)

S( ~Q, ω) =
1

2π~

∫
I( ~Q, t)e−iωtdt,

where b̃ is the the Fourier transform of the collection of atomic neutron

scattering lengths b̃( ~Q, t) =
∑

j bje
−i ~Q·~Rj(t), j being an indexing of the atoms

in the system. Here ||...|| denotes the expectation value. The scattering

radius bj is the same parameter that describes Compton scattering.

We can therefore say that neutron scattering probes the Fourier trans-

form (both in space and in time) of the correlation function between all

components of a material.

Furthermore it can be separated between elastic and inelastic scattering

depending on whether energy is exchanged between the sample and the

incident neutron. In the case of an ordered lattice, elastic scattering reduces

to the expression:

(
d2σ

dΩdE~k′

)

el

∝ |F ( ~Q)|2
∑

~τ

δ( ~Q− ~τ) δ(ω) (2.6)

where ~τ are all reciprocal lattice vectors and F ( ~Q) =
∑

n bnWn( ~Q) e−i
~Q·~dn ,
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with n counting all atoms contained in a unit cell, is called the structure fac-

tor. Here Wn( ~Q) = exp(−αTQ2/2) is the Debye-Waller factor, which takes

into account the small deviations of ions from their lattice site due to the

temperature T (α is a material-dependent constant in this approximation).

This formula can be shown to be related to Bragg scattering: elastic

scattering from a crystal will only be observed when ~Q = ~τ , i.e. when the

momentum transfer matches a reciprocal lattice vector. Since ~Q = ~k − ~k′

and |~k| = |~k′| (elastic condition), then Q := | ~Q| = 2|~k| sin θ = 4π/λ sin θ =

|~τ | = 2π/d, i.e. λ = 2d sin θ, the condition of the first Bragg reflection.

Therefore elastic neutron scattering, i.e. neutron diffraction, is commonly

used to determine the structure of crystalline materials.

Inelastic scattering, on the other hand, does not preserve the energy of

the incident neutron. Due to the conservation of energy and momentum,

this requires a quasi-particle to have been excited in the material, carrying

a momentum and an energy that can be deduced from the change in speed

and direction of the neutron.

Magnetic Neutron Scattering

Neutrons have a magnetic moment and are able to couple to spin density

distributions – both elastically and inelastically. This enables a direct probe

of magnetic structures and excitations.

The introduction of the spin formalism allows to write a scattering law

analogous to Equation 2.4:

(
d2σ

dΩdE~k′

)

mag

=
N

2π~
k′

k
(γr0)2

∑

αβdd′

(δαβ − κακβ)
(1

2
gdFd( ~Q)

)(1

2
gd′Fd′( ~Q)

)

e−Wd( ~Q)−Wd′ (
~Q)Sαβdd′(

~Q, ω) (2.7)

where d is an index that runs over all magnetic atoms in the unit cell, α and

β are x, y and z, γ is the gyromagnetic ratio and r0 the classical electron

radius; κ = ~Q/| ~Q| is the direction of ~Q, Wd( ~Q) is the Debye-Waller factor,
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Fd( ~Q) is the magnetic structure factor, i.e. the time-independent Fourier

transform of the magnetization distributions of each atom in the unit cell.

The magnetic scattering law Sαβdd′(
~Q, ω) is a new measure of the correlation of

the system that differs from Eq. 2.5 by considering operators of the magnetic

density instead of structural densities.

In analogy to nuclear scattering, magnetic scattering probes the correla-

tion in magnetization density in reciprocal space but, in contrast to nuclear

scattering, the term (δαβ − κακβ) selects the transverse component of the

magnetization. To show this, it is useful to look at the limit case that all

correlation is along z – i.e. Sαβdd′ = 0 for α, β other than z: if ~Q is along z

as well there will be no magnetic scattering, while if ~Q is along x or y the

observed signal will be maximal. This term is called the polarization factor,

and neutron scattering is unable to probe magnetic moments parallel to the

transferred momentum ~Q.

It has also to be noted that in nuclear scattering neutrons interact with

nuclei, which can be considered to be point-like objects with respect to

the wavelength of neutrons; the contribution of the probed object to the

form factor is the Fourier transform of a delta function – i.e. a constant.

In magnetic scattering neutrons interact with magnetic distributions that

are not point-like; if they are assumed to be similar to Gaussian functions

centred on the atoms then their Fourier transform also has the shape of

a Gaussian centred at ~Q = 0. This has the effect that magnetic neutron

scattering will suffer a significant decrease of intensity as | ~Q| increases.

Instrumental resolution

While the technical part of a neutron scattering experiment has not been

discussed yet, one important side of it is the instrumental resolution, which

affects the signal as a convolution of the scattering law and the instrumental

resolution function R( ~Q, ω), which in most cases is an ellipsoidal pseudo-

Voigt function:
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S( ~Q, ω)exp = S( ~Q, ω)⊗R( ~Q, ω) (2.8)

where ⊗ is a convolution.

This effectively means that, while the mathematical expressions con-

tain delta functions, an experimental result will always have a certain,

instrument-dependent intrinsic width.

Important instrumental factors that affect the resolution are, for in-

stance, the size of the detector and of the sample, the divergence of the

neutron beam (which is produced by focusing), or the distance between the

neutron source, the sample and the detector. Most of these properties also

affect the neutron flux – for instance, focusing the neutrons on the sample

will increase the flux but introduce an uncertainty on the incoming wave-

vector, worsening the resolution. This relation between the resolution and

the flux leads to a tradeoff between the accuracy of the data and the time

required to acquire them.

2.1.2 Experimental techniques

The purpose of this section is to give a short summary of the instruments

used in neutron scattering. A brief sketch of the triple-axis and ToF instru-

ments employed during this thesis will be included.

Producing and guiding neutrons

The first way to produce a beam of neutrons is to use the excess neutrons

from a stable uranium fission core. This generally produces a bright and

continuous flux of neutrons. A notable such source is at the Institut Laue-

Langevin (ILL) in Grenoble, France.

The second way requires directing a beam of protons (sped up in an

accelerator) towards a metallic target (e.g. tungsten). In the subsequent

spallation process, some atoms of the target have a chance of absorbing an
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incoming proton and then releasing a series of light particles (e.g. alpha

particles and neutrons). Some of the experiments in this thesis have been

performed at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, a

continuous spallation source, and others at the ISIS facility in Didcot, United

Kingdom, which uses a pulsed spallation source.

Once the neutrons leave the fission or spallation core, their kinetic energy

is excessive for a neutron experiment. They are therefore moderated and

thermalized, usually by passing through water (which is a powerful scatterer

due to the presence of hydrogen, and thus a good moderator). For reference,

a neutron which thermalises in room-temperature water will have a kinetic

energy of roughly 30 meV. Standard terminology separates neutrons into

cold (below 5 meV), thermal (between 5 and 100 meV), epithermal (between

100 meV and 1 eV) and above.

Neutrons exit the moderator and propagate to the measurement instru-

ment. Lacking an electrical moment, neutrons cannot be deviated or accel-

erated by electrical fields, which is a challenge when trying to manipulate

their path. Being waves, they are subject to the phenomenon of total reflec-

tion, which allows to create supermirrors that reflect the beam: this can be

used to bend its path over long distances, or provide some degree of focusing

to maximize the flux on the sample.

Selecting the incoming energy and detecting the outcoming neu-

trons

All but a handful of techniques (such as Laue or ToF diffraction) require

neutrons with a precise energy or wavelength (i.e. a monochromatic beam)

to reach the sample position.

In general this is achieved by discarding all neutrons of other incoming

energies, which can be achieved by:

• employing a monochromator, i.e. a single crystal in the beam that di-

verts neutrons with a specific wavelength according to Bragg’s law:

controlling the angle at which the beam is incident on the monochro-
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mator allows us to change the energy of the neutrons that are deflected

out of the beam (i.e. deflected towards the sample).

• employing a chopper system, i.e. a set of rotating parts that allow

neutrons to pass through only at a certain time (e.g. a rotating disc

with a window in it). By absorbing all the neutrons that do not pass

at the right time through all the openings, only neutrons with the

desired speed reach the sample position.

After the sample position, neutron detectors are installed to count the

signal in a specific region of the outcoming solid angle. Detectors are based

generally on the absorption of neutrons and measure the electrical impulses

that follow the relaxation of the excited nuclei. Historically the most relevant

absorber in detectors is 3
2He.

As neutron spectroscopy investigates the energy transfer, it is necessary

to measure the kinetic energy of the outcoming neutrons. Again, there

are fundamentally two ways (although other possibilities, such as spin-echo

techniques, are available and will not be discussed here).

• An analyser crystal is placed between the sample and the detector:

relying again on Bragg diffraction and working like a monochromator,

the analyser deflects into the detector only the neutrons with the en-

ergy and wavelength that satisfy the Bragg condition. Rotating the

analyser allows to scan over a range of outcoming energies.

• If the time at which the neutron hits the sample is known (which is

typically the case with pulsed sources or with chopper systems) then

measuring the time at which the neutron hits the detector allows to

calculate the speed of the outcoming neutron, and thus its kinetic

energy. This technique, called time-of-flight (ToF), measures over a

continuous range of outcoming energies for each pulse.
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Triple-axis spectroscopy

A common instrumental setup for INS is the class of triple-axis spectrome-

ters (TAS), which relies on a monochromator and an analyser to determine

the energy transfer. Refer to Fig. 2.2 for an example.

While their magnitude is controlled by the energy, the wave vectors ~k

and ~k′ are controlled via the instrument geometry: ~k points along the axis

between the monochromator and the sample, and ~k′ along the axis that

unites the sample and the analyser. These are controlled by physically

moving the parts of the instrument.

In order to match ~Q to a desired reciprocal lattice vector the sample

can be rotated. Commonly the sample is attached to a vertical sample

stick, which allows a horizontal rotation of 360; however there are ways of

achieving any rotation in the solid angle if one uses, for instance, a Euler

cradle.

The advantage of this technique is the potential control over many ex-

perimental parameters; the instruments tend to be modular, allowing the

setup to be changed to best suit the experiment – such as in the case of

polarized analysis. These experiments, however, generally allow only one

single combination of E and ~Q to be probed at one time, so that measuring

the intensity of the scattering over a large volume of ~Q-space will require a

proportional number of scans.

During my PhD I have had the chance to take part in experiments per-

formed at the TAS instruments IN20 and IN22 (ILL), EIGER and TASP

(SINQ).

ToF spectroscopy

In ToF instruments, the time of flight of the neutron is used to calculate their

velocity and hence their energy. This technique relies on a pulsed monochro-

matic incoming neutron beam and time-sensitive detectors. While the same

geometric argument is valid for ~Q, the speed of the outgoing neutron deter-

mines the energy transfer to the sample and, as the intensity of neutrons
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Figure 2.2: Schematic view of a typical triple-axis instrument (IN14 at ILL).

A flux of neutrons (red) travels inside a neutron guide (light gray). At the

monochromator, part of the beam is directed towards the sample (orange)

via Bragg diffraction. The sample table (deep blue) is in general a modular

space where the required equipment can be deployed (e.g. cryostat, magnet,

pressure cell). After the scattering event, the outcoming energy is selected

by the analyser (light green), and the neutrons that have undergone Bragg

diffraction are counted in the detector (yellow). A1 to A6 are the angles

that can be controlled to select the correct incoming and outcoming energy,

as well as the projection of ~Q on the reciprocal space of the sample. Further

components, such as the monitor, the incoming slits, the outgoing slits, a 3He

polarization filter (not shown) allow further control over the instrumental

conditions. Image reproduced from Ref. [36].
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can be recorded as a function of time, one single detector measures the in-

tensity as a function of transfer energies for the same value of ~k′/|~k′|. There

is therefore no need for an analyser based on Bragg diffraction. See Fig. 2.3

for an example.

ToF spectrometry has seen substantial development in the last decades

in the direction of pixelated wide-angle detectors in order to maximize the

measured volume of ~Q-space. This is made advantageous by the fact that

no analyser is required between the sample and the detector, simplifying the

design, and these detectors can today have a total angular coverage of ∼180

degrees horizontally and ∼60 degrees vertically. As the signal is a function

of two physical coordinates and one time component, such a detector maps

a three-dimensional curved submanifold in ( ~Q, ω)-space.

A clear advantage of this technique is the huge area that can be si-

multaneously measured and the possibility to theoretically map the entire

( ~Q, ω)-space within the kinematic limits.

During this thesis experiments have been performed at the ToF spec-

trometers MERLIN, OSIRIS and LET (ISIS).

Data treatment and visualization

On instruments such as Merlin or LET, the data is collected by single detec-

tor units, which work like pixels. The dataset originally thus has two space

coordinates (the pixel ID, which tells the horizontal and vertical position)

and one time coordinate (i.e. the time elapsed between the pulse of the

source and the time of impact of the neutron in the detector). This infor-

mation is converted to energy and momentum transfer and is normalized

for detector efficiency, integrated neutron flux and sometimes mass of the

sample.

The pixels lie on a three-dimensional submanifold of ( ~Q,ω). A technique

that compensates for the lack of data in the rest of ( ~Q,ω)-space is the so-

called Horace scan, in which the sample itself is rotated in order to provide

a third space coordinate.
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Figure 2.3: Schematic view of the time-of-flight spectrometer LET (ISIS)

from the top (top) and from the side (bottom). A flux of neutrons (red)

travels inside a focusing neutron guide (light gray) from the pulsed moder-

ated source (yellow) to the sample (orange). A series of choppers (black)

allow only the neutrons with the correct incoming energy to reach the sam-

ple (note: several ToF instruments have a much simpler chopper system).

After the sample, the neutrons travel through an evacuated tank (light blue)

and are collected in the detectors (red), a series of 4 m tall 3He tubes ar-

ranged on a half-cylinder around the sample. The time of absorption of the

neutron is measured and allows determining of the energy transfer. Image

reproduced from Ref. [36].
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In order to be displayed, the data is usually binned: all pixels are sorted

into bins according to an arbitrary grid and then averaged within the bin,

so that the density of pixels in different bins, which is not constant, does not

increase the overall intensity in the bin. Furthermore, the data is presented

in cuts, which are one-dimensional, and slices, which are two-dimensional.

The visual data is therefore projected, binned, and averaged within the bin.

The reduction from full four-dimensional data to a two-dimensional slice

or a one-dimensional cut is to be done carefully and potentially introduces

problems that must be taken into account: for instance, in one-dimensional

systems, the dispersion does not vary with respect to two ~Q directions but

the its intensity does (e.g. the magnetic form factor decreases the intensity

of the as a function of | ~Q|2). Therefore it is e.g. possible to measure a certain

part of the spectrum in a part of ~Q-space where it has a significant structure

factor, and another part of the spectrum in a volume where the structure

facture is much lower: this creates a modulation of intensity that is equally

explained by the scattering function and by the instrumental measurement.

This will be the case for instance in RbCoCl3, in the next chapter, where the

signal in the L−E slices is strong for L between -1.5 and -0.5 r.l.u. and much

weaker outside of that. Slices of 3D systems can be even more complex, as

they will “flatten” one spatial dimension, creating a picture that explicitly

depends only on two coordinates (say, H and K) but where each pixel has

a different L and E coordinate: this will be the case in Lu2V2O7, where the

spectrum should have a certain symmetry (say, spherical at some energies, or

cubic at other energies) but the averaging deforms what should be perfect

rings or squares, making them appear more ovoidal or rounded. All of

these possible issues can be taken into account in the calculation if the full

four-dimensional spectrum is simulated, and remain of importance only in

understanding the visual representation of the data.



Chapter 3

The temperature-dependent

soliton spectrum of the 1D

chain compound RbCoCl3

3.1 Scientific background

The interest in low-dimensional physics, especially concerning the magnetic

properties, is the rich typology of phenomena and excitations that derive

from a deceivingly simple – and often exactly solvable – Hamiltonian. A

notable example of these, of particular relevance to the thesis, is the Ising

system.

The recent technological developments in spectroscopy, particularly

in neutron scattering, offer a chance and give a reason to revisit one-

dimensional (1D) quantum magnetic systems and investigate in much

greater depth their properties.

Amongst the most ideal 1D quantum magnetic systems are the realiza-

tions of the Ising-like Hamiltonian, of which the ABX3 (A = Cs, Rb; B =

Co, Cu; C = Cl, Br) compounds are notable examples. As this family has

never before been investigated with a modern high-resolution instrument,

we have performed a comprehensive series of experiments on RbCoCl3, in-

cluding neutron diffraction [37] and neutron spectroscopy.

As it will be discussed, RbCoCl3 has two magnetic ordering phase tran-

sitions. This allows an experiment to tune and access distinct regimes of

the thermal Ising chain – at the lowest temperature the sample displays a

24
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perfectly ordered ferrimagnetic honeycomb pattern; between temperatures

it is described as a partially disordered antiferromagnetic state; and above

the phase transition the chains are isolated from other chains due to thermal

fluctuations.

An additional reason of interest in the 1D systems is the presence of

quantum phase transitions. A system such as RbCoCl3 is a prime candi-

date to observe this phenomenon and part of our motivation in studying

this compound was the hope that the gap could be closed; however it will

be discussed how the magnetic field required exceeds the current technical

capabilities.

The structure of this chapter is as follows: I will start by describing

the cases of CoNb2O6 [38] and BaCo2V2O8 [39], prototypical examples of

1D Ising-like physics and quantum phase transitions which have been the

subject of numerous recent experiments.

I will then proceed to describe the experimental details of our inelastic

neutron scattering experiment on RbCoCl3 and to describe the data.

I will then summarize the relevant literature, with particular attention

to the theory. I will argue for a unique interplay between the long-range 3D

order and the 1D excitations of the system. Having established the terms of

the Hamiltonian, I will then show the fits. I shall claim an excellent agree-

ment between the data and the simulations to a set of exchange parameters.

The last section will be dedicated to a discussion of the long-range 3D

order, including Monte Carlo simulations to interpret the fitted relative in-

tensity parameters.

This work is part of a collaboration between N. Hänni (University of

Bern, Switzerland), who has investigated the structural phase transitions

[40, 37], Dr. E. Hirtenlechner (ETH Zürich, Switzerland), who has investi-

gated the effects of temperature in greater detail [41], and myself. I was the

main investigator in the experiment at LET, and I took part in the mag-

netic susceptibility and elastic neutron scattering measurements performed

by N. Hänni. I performed the analysis, writing and improving the formulas
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for the cross section and the Hamiltonian, and subsequently implemented a

Monte-Carlo algorithm to relate structural and dynamic properties of this

compound. A number of papers on this compound are in preparation.

3.2 Examples of Ising-like 1D physics

3.2.1 CoNb2O6

CoNb2O6 is an insulating quasi-1D ferromagnet where the magnetic Co2+

ions form zigzag chains of spins whose interaction is close to the Ising model

[38, 42, 43]. This compound orders ferromagnetically at TN = 2.95 K and,

due to its Ising-like nature, its excitations are couples of moving domain

walls. The weak intra-chain interactions, which lead to 3D order, induce a

uniform staggered field on all sites.

When applying a field transverse to the direction of the spins, e.g. along

~b, it is possible to drive the system through a quantum phase transition at

BC = 5.5 T, to a transverse ordered state whose elementary excitations are

spin-flip quasiparticles [38].

A picture of the zero-field excitations of CoNb2O6 is reproduced in Fig.

3.1. Above the critical temperature the spectrum is comprised of a broad

two-domain continuum and a kinetic bound mode, while below the critical

temperature the continuum splits into confined bound states. These bound

states can be understood in terms of a Zeeman ladder induced by the weak

intra-chain interactions.

Its excitations under a quasi-critical field obey a description that can be

linked with the E8 Lie symmetry. This behaviour may be found in other, if

not all, Ising chains, but is so far only found in this compound.

3.2.2 BaCo2V2O8

The magnetism in the tetragonal BaCo2V2O8 is characterised by screw

chains of Co2+ ions along the c axis, with the magnetic ordering emerg-

ing at TN ≈ 5.5 K. A fit of the spectrum, shown in Fig. 3.2, reveals that
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Figure 3.1: Zero-field excitations in the Ising-like 1D ferromagnet CoNb2O6,

figure courtesy of [38]. Above the ordering temperature TN = 2.95 K the

spectrum consists of a two-kink (spin-flip) continuum and a kinetic bound

state (panels A, C), while below TN the two-kink continuum splits into

confined bound states (panels B, D). This behaviour was discussed in terms

of a “kink confinement” model.



3.2. Examples of Ising-like 1D physics 28

the main interaction J is 5.6 meV and the Ising-like anisotropy ε is 0.46.

The excitations of this system display discrete bound modes within a

bow-tie-like area, see Fig. 3.2. The energies of the bound modes can be

explained using the zeros of the Airy function.

The magnitude of ε places this compound almost exactly half-way be-

tween prototypical Ising and prototypical Heisenberg models. In a domain-

wall system, we can define transverse (longitudinal) modes as characterised

by an odd (even) number of spins being flipped. The intensity of longi-

tudinal modes typically scales with ε2 [44], so that they can be observed

only for large ε. Owing to its ε =0.46, the longitudinal modes are however

measured in BaCo2V2O6, and can be distinguished experimentally by their

dependence on the polarization factor.

Figure 3.2: Magnetic excitations in BaCo2V2O8, figure courtesy of [39].

Longitudinal and transverse modes form discrete bound modes in a bow-tie

shaped area (between the gray curves).
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3.3 The magnetic properties of RbCoCl3

RbCoCl3 is a hexagonal perovskite that crystallises in the P63/mmc space

group (a = b = 7.0003 and c = 5.9989 Å). In this crystal structure, which is

sketched in Fig. 3.3, the Co2+ ions are contained into Cl− antiprisms and

form straight chains along the c axis. The distance between Co2+ ions is 3

Å along the c axis and 7 Å along ~a or ~b, creating a strongly one-dimensional

environment.

Figure 3.3: Structure of RbCoCl3 and its interactions. (a)View of the a-

c plane. The Co2+ ions (blue) are embedded into Cl− antiprisms (light

green) and their spins interact most strongly with spins along the c direction

(with exchanges J1, J2) than with spins located along a or b: this results

in the formation of spin chains along the c axis. The two yellow ovoids

contain two solitons, at which ends are domain walls: the domain walls

can be distinguished as they are comprised of two parallel spins, instead of

being antiparallel. (b) View of the a-b hexagonal plane perpendicular to the

chains, and of the two“in-plane” interactions Jnn and Jnnn.

As preliminary work to the INS part, it is useful and necessary to dis-

cuss briefly the magnetic properties of RbCoCl3 as revealed by magnetic

susceptibility and neutron diffraction experiments.
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3.3.1 Magnetic susceptibility

The molar magnetic susceptibility of RbCoCl3 was measured and the results

are displayed in Fig. 3.4. The behaviour is consistent with the models for

Ising chains, with a more structured response along the c axis, a kink at 12

K (the temperature, as discussed later, of a phase transition), and a broad

maximum around 70 K, suggesting a coupling in the order of 70 K [40].

Figure 3.4: Molar dc magnetic susceptibility of both powder and crystalline

RbCoCl3 [40].

3.3.2 Diffraction and phase transitions

A series of neutron scattering experiments were performed, notably on

HRPT, TRICS and EIGER (SINQ, PSI, Switzerland). A comprehensive

summary of these results and their analysis can be found in [37, 40].

Neutron powder diffraction down to 1.5 K confirmed the P63/mmc sym-

metry, preserving thus both the linearity of the chains and the hexagonality

of the planes.

Furthermore, diffraction reveals two low-temperature magnetic phases,

at TN2 = 12 K and TN1 = 28 K. Exemplary scans along the (H H 1)

direction, performed at the triple-axis neutron spectrometer EIGER (SINQ,

PSI, Switzerland), are shown in Fig. 3.5 at three temperatures: below TN2,
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between TN2 and TN1, and above TN1.

Figure 3.5: (a) Neutron diffraction scans performed at EIGER at T = 1.5 K,

18 K and 35 K. The peak at (2/3 2/3 1) is purely magnetic, vanishing above

TN1. The peak at (1 1 1) is present above TN1 despite being structurally

forbidden, due to imperfections in the crystal. (b) Fits of the scan at 18

K. Each peak is the sum of two components: a sharp Gaussian peak (red,

green) and a broad Lorentzian peak (magenta, cyan). Below 0.45 and above

1.2 the tails of the (1/3 1/3 1) and (4/3 4/3 1) Bragg peaks can be measured

and have been included in the fit. An additional peak can be resolved at

(1/2 1/2 1).

The intensities of the purely magnetic (2/3 2/3 1) and (1 1 1) peaks

are plotted in Fig. 3.6. It can be seen how the (1 1 1) reflection disappears

at 12 K (aside from a residual peak that is due to an imperfection of the

sample), while the (2/3 2/3 1) undergoes two power-law-like drops at both

phase transitions.

Each magnetic reflection is modelled as the sum of two components:

a resolution-limited Gaussian peak of constant width, and a broader

Lorentzian peak whose width varies with temperature, which is diffused
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scattering due to short-range order. The integrated intensity of the two

components changes in temperature, with all intensity in the Gaussian peak

at the lowest temperature, and a transfer of the intensity to the Lorentzian

component in the proximity of the phase transition.

Below TN2 both peaks are resolution-limited, signifying a perfect 3D

honeycomb order throughout the sample. Between TN2 and TN1 the signifi-

cant diffuse scattering is due to partial disorder and lack of long-range order

(which later will be identified as a partially disordered antiferromagnetic

state). Above TN1 the ordered moment vanishes quickly but not completely

due to the permanence of short-range order, which is expected to be observed

up to 70 K (as confirmed by the magnetic susceptibility).

The diffraction on RbCoCl3 has outlined as well the presence of the (1/2

1/2 1) magnetic reflection below TN2
1, which has been interpreted in terms

of a second ~k-vector. A full discussion on the magnetic ordered structure

of this compound can be found in [40]. Due to the weakness of this peak,

however, in the present work we consider it as the expression of an impurity

phase.

3.4 Experimental work on RbCoCl3

I measured and studied the spectrum of RbCoCl3 as a function of temper-

ature in order to establish its properties in the three phases.

An initial INS experiment was performed on the ToF spectrometer LET

(ISIS, UK) in autumn 2011. Three single crystals, see Fig. 3.7, were grown

using the Bridgman technique in a vertical moving furnace with a temper-

ature gradient [40] and were coaligned with (HHL) in the horizontal scat-

tering plane. The sample was sealed in a Helium can due to its sensitivity

to air.

For the experiment, the sample was inserted in a conventional Orange

cryostat (1.5 to 300 K) and orientated with ~ki parallel to (00L). Data were

1It has been confirmed not to be spurious, e.g. a so-called λ/2 (1 1 2) peak, and to be

magnetic in nature.
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Figure 3.6: Integrated intensities of (a) the (2/3 2/3 1) peak and (b) the (1 1

1) peak as a function of temperature. Each peak is modelled as a resolution-

limited Gaussian peak (i.e. Bragg scattering) and a broader Lorentzian

peak (i.e. diffuse scattering), signifying a shift from perfect order to short-

range correlation with temperature. The black vertical dotted lines mark

the transition temperatures. Note that the intensity of the (1 1 1) peak does

not vanish above TN1, as the (2/3 2/3 1) peak does, due to an imperfection

of the crystal.
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Figure 3.7: Photo of the coaligned RbCoCl3 sample used in the LET ex-

periment. The three single crystals (black) were secured to an aluminium

mount, which was sealed inside a can.

collected at 4 K < TN2, TN2 < 18 K < TN1 and TN1 < 35 K, i.e. in the

two ordered phases and just above the Néel temperature, with Ei = 25

meV (chopper frequency: 200 Hz, calculated resolution at the elastic line:

0.8 meV) and measuring times typically around 18 hours per temperature.

Additional, measurements with lower counting statistics scans at 8.5, 10.5

and 23 K were performed using Ei = 20 meV (chopper frequency: 200 Hz,

calculated resolution at the elastic line: 0.6 meV), a configuration that offers

a higher neutron flux but samples a decreased section of ( ~Q, ω)-space.

The data were normalized with respect to the proton integrated current

which the ISIS target received and were corrected for detector efficiency

and outcoming versus incoming wavevector ratio kf/ki using the program

MANTID [45, 46]. The resulting S( ~Q, ω) datasets were analysed with the

HORACE [47] software package.

At the time of the experiment the pixelated detector of LET counted

40960 detector units (of typical size a square inch), of which 33397 were
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retained in the final dataset. The time of flight was transformed into 242

energy bins, producing roughly 8 million individual pixels.

The first question to be addressed regards the one-dimensionality of the

measured spectrum.

3.4.1 One-dimensionality of the spectrum

Figure 3.8 shows slices of the data at 4 K as a function of K and L, while

Fig. 3.9 shows the energy of the four main modes and their fits. It is shown

that the H and K dependence of the dispersion of the modes (over several

periods) is smaller than 0.3 meV, which is the instrumental resolution at

that energy transfer.

It is hence concluded that the system can be satisfyingly described as 1D

within the goodness of the data. Therefore for the rest of the discussion all

the data is projected to the L−E plane and averaged in order to maximize

the statistics.

Figure 3.8: Two slices of the data, averaged for all values of H and for (a)

-1.05 < L < -0.95 and (b) -0.55 < L < -0.45.
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Figure 3.9: Fits of the energies of the modes from Fig. 3.8. All four modes,

both for (a) -1.05 < L < -0.95 and (b) -0.55 < L < -0.45, are fitted to

cosinusoidal curves whose fitted widths are smaller than the instrumental

resolution.

3.4.2 Overview of the data

The data collected during the experiment is displayed in Fig. 3.10 for Ei =

25 meV and in Fig. 3.11 for Ei = 20 meV2. Cuts around L = -1 and L =

-0.5 are presented in Fig. 3.12 for 4, 18 and 35 K, and in Fig. 3.13 for 8.5,

10.5 and 23 K.

A number of preliminary observations are summarized below:

• At 4 K and L = -1 the first feature is a peaked continuum with a

maximum at its lowest edge (about 11 meV). A sharp mode at about

12.5 meV is also observed. The presence of two modes is an indica-

tion of the presence of two inequivalent magnetic sites, each with a

characteristic spectrum, which will be discussed later.

• Still below TN2, there are at least 3 modes between 11 and 13 meV at

2The data collected with Ei = 20 meV was multiplied with a normalization factor for

its background to match the background with 25 meV, in order to compensate for the

different flux and scaling. This is due to the normalization being in terms of the proton

integrated flux and not the neutron monitor.
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Figure 3.10: Slices of the experimental data at (a) 4, (b) 18 and (c) 35 K.

The data is averaged with respect to H and K, and is displayed with a

common logarithmic scale.

L = -1 at 8.5 and 10.5 K. Figure 3.14 compares a cut at 4 and 8.5 K

to display the appearance of one such peak: the number of dispersive

modes, and their relative intensity, changes with temperature.

• The temperature shifts the intensity to a central broad peak, as for

instance at 18 K. At 35 K the peak’s intensity decreases but its tails

become more prominent.

The soliton is thus characterised as a function of temperature:

• Above TN1 a continuum is observed, most prominently between L =

-1.5 and -0.5, with its intensity dominated by a cosine-like dispersive

mode at its lowest edge. A similar continuum would be observed be-

tween -0.5 and 0.5 (due to its periodicity), but is not seen due to the

overall decrease in intensity in this sector. This spectrum is, in first

approach, bow-tie shaped and consistent with the idea of an Ishimura-

Shiba solution for an isolated Ising chain, as will be discussed.
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Figure 3.11: Slices of the experimental data at (a) 8.5, (b) 10.5 and (c) 23

K. The data is averaged with respect to H and K, and is displayed with a

common logarithmic scale.

• Between TN2 and TN1 a similar picture is measured, although the

central peak is sharper and the tails are less pronounced.

• Below TN1 we observe a series of sharp lines. The lowers-lying in

energy (between 11 and 13.8 meV) is not a single mode but a very

sharp continuum, while the modes at higher energies (respectively be-

tween 12.5 and 14.25 meV, 15 and 16.5 meV, 17 and 18 meV) are

resolution-sharp. At 8.5 K and 10.5 K more dispersive lines can be

seen at intermediate energies.

3.4.3 Further experiments on RbCoCl3

While I will be discussing mostly the data obtained in the 2011 LET exper-

iment, there have been a number of other INS measurements.

Part of them were performed at triple-axis instruments, namely IN20

(ILL, France) and EIGER (SINQ, PSI, Switzerland), performing scans a
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Figure 3.12: Cuts of the experimental data at 4 (red), 18 (blue) and 35 K

(black). The data is averaged for (a) -1.05 < L < -0.95 and (b) -0.55 < L <

-0.45, i.e. the point of maximum and minimum extent of the dispersion.

much smaller number of ~Q-points but at more temperatures. The analysis

of this data has been performed Dr. E. Hirtenlechner, and these results can

be found in her thesis [41].

Another experiment on LET was however performed in spring 2015. The

goal of this experiment was to apply a magnetic field to observe its effect on

the soliton dispersion, but it also offered some other insight. These results

will be discussed later, and only briefly.

3.5 Modelling of the system

The problem of the low-energy effective spin Hamiltonian of the family of

compounds ABX3 has attracted attention for being one of the closest realiza-

tions of several ideal theoretical paradigms. However, the spin Hamiltonian

is still the subject of some controversy. A short historical perspective follows

here.
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Figure 3.13: Cuts of the LET experimental data at 8.5 (red), 10.5 (blue)

and 23 K (black). The data is averaged for (a) -1.05 < L < -0.95 and (b)

-0.55 < L < -0.45.

Figure 3.14: Cuts of the LET experimental data at 4 (red) and 8.5 K (blue).

The data is averaged for -1.05 < L < -0.95 and displays the appearance of

a mode at 11.9 meV, as well as a decrease in the intensity of the mode at

12.5 meV.
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The solution of the Ising model The one-dimensional Ising model,

named after Ernst Ising [8, 77, 20], is one of the simplest and most cele-

brated models for spin systems. It was the basis for the understanding of

several thermodynamic magnetic systems, as well as being the starting point

for several, more complex systems it is worth mentioning Lars Onsager’s

analytical solution of the 2D lattice [78].

In its original formulation, it studies the 1D ferromagnetic Hamiltonian:

HIsing = −2J

N−1∑

j=1

Ŝzj Ŝ
z
j+1 −

N∑

j=1

hjŜ
z
j , (3.1)

where J is a (positive) exchange interaction and hj is a (local) magnetic field

acting on the spins (in meV)3. The energy is trivially minimized by parallel

spins.

The problem of the behaviour with respect to temperature of this system

was first studied with statistical mechanics. As a reminder, given a spin

configuration {Sz} = (Szj )∀j we can write the partition function4 as

Z =
∑

{Sz}

e−βHIsing({Sz}), (3.2)

where β = 1/kBT , with kB the Boltzmann constant. The probability of a

single configuration obeys the Boltzmann statistics:

p({Sz}) =
e−βHIsing({Sz})

Z . (3.3)

The expectation of any observable f of the spin configuration (e.g. the

magnetization) can be calculated as a weighted average:

3Notations vary in literature. In this convention, flipping the j-th spin has an energy

cost of hj .
4Temperature dependences of several functions, such as Z = Z(T ), are omitted
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〈f〉 =
∑

{Sz}

f({Sz}) p({Sz}) (3.4)

and, without derivation, the energy of the system is

〈E〉 = − 1

Z
∂Z
∂β

= −∂ ln(Z)

∂β
(3.5)

It is a well-known fact that the magnetization of the 1D Ising chain (in

a homogeneous field) is

m(T ) =
1

βN

∂ ln(Z)

∂h
= ... =

=
sinh(βh)√

cosh2(βh)− 2e−4βJsinh(4βJ)
. (3.6)

There are no magnetic phase transitions in the absence of a magnetic

field, as m(T ) ∝ sinh(βh) = 0∀T if h = 0. This is interpreted in terms

of the maximization of entropy prevailing over the minimization of energy.

This is not true in higher dimensions due to the increase in the coordination

number, which already in 2D is enough to induce a phase transition [78].

This is a strong argument for the relevance of the interactions in the

plane in RbCoCl3, without which the system could not order.

The Ising problem and the Bethe solution. A more general expres-

sions for a spin Hamiltonian is the xxz model, which can also be identified

with a generalized anisotropic Heisenberg model5:

5As a remark about conventions, the convention used through this work is such that

Sz = ±1/2 and the energy required to excite a spin from the ordered AF ground state,

i.e. creating two domain walls, is 2J .
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Hxxz = 2
∑

j

(
JzzS

z
jS

z
j+1 + Jxy(S

x
j S

x
j+1 + Syj S

y
j+1)

)

=: 2J
∑

j

(
SzjS

z
j+1 + ε(Sxj S

x
j+1 + Syj S

y
j+1)

)
. (3.7)

This expression has several special cases, notably the isotropic Heisen-

berg Hamiltonian for Jxy = Jzz or ε = 1 [9], the Ising Hamiltonian for

Jxy = 0 or ε = 0 [8], and the xy model Jzz = 0. The case ε � 1 is called

Ising-like, or quasi-Ising.

The properties of the anisotropic Heisenberg model have been studied

extensively since the 1930’s [48, 49, 50]. Famously, the Bethe Ansatz [51, 52,

53] permits the determination of the spectrum both in the case ε = 1, i.e. the

Heisenberg case [54], and in the case ε < 1 [55]. These solutions are called

respectively the des Cloizeaux-Pearson (dC-P) and des Cloizeaus-Gaudin

(dC-G) spectra.

The excitation can be characterized as singlet-to-triplet and therefore has

three branches, corresponding to the quantum number of the quasi-particle:

~ω−1, ~ω0 and ~ω1, which in neutron scattering can be interpreted as flips,

or lack thereof, of the spin of the neutron. To express the dispersion one

needs to define the intermediate variable φ0, which for ε =: 1/cosh(Φ) < 1

satisfies:

|L| = 1

2
− 2

π

∞∑

n=−∞

(
atan

(
exp(

φ0π

2Φ
+
nπ2

Φ
)
)
− atan

(
exp(

nπ2

Φ
)
))
. (3.8)

This relation maps bijectively φ0 ∈ [−π,π] into L ∈ [0,1]. Then:

~ω0(L) =
Jπ

2Φ

∞∑

n=−∞

(
sinh(Φ)

cosh(πφ02Φ + nπ2

Φ )
− sinh(Φ)

cosh( π
2

2Φ + nπ2

Φ )

)
, (3.9)

~ω±1(L) =
Jsinh(Φ)

2

∞∑

n=−∞

e−inφ0 + (−1)n

cosh(nΦ)
. (3.10)

Figure 3.15 shows the dispersions for three values of ε: ~ω0 are gapless

spin waves, while ~ω±1 are gapped.
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There are several compounds, e.g. in CuCl·2N(C5D5) [56], that realize

these predictions.
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Figure 3.15: dC-G dispersion of the 1D XXZ model calculated for three

values of ε according to Eqs. (3.8-3.9). Dotted curves are ~ω0 and solid

curves are ~ω±1. For ε = 1, all modes are degenerate.

M. Mekata (1976) and the magnetic order of the planes. An AF

hexagonal lattice is a prototypical candidate for frustration, yet several

diffraction experiments had found evidence of planar order in the isostruc-

tural compounds CsCoCl3, CsCoBr3 and RbCoCl3, namely magnetic reflec-

tions at (1/3 1/3 1) and (1 1 1) [57, 58, 59, 60]. M. Mekata [61] rigorously

showed that an hexagonal lattice with an AF nn interaction (Jnn) and a

weaker FM nnn interaction (Jnnn) in the absence of an external magnetic

field can have up to three local energy minima. By labelling < σ1,2,3 > the

average relative magnetization6 of the chains of the three inequivalent sites

of the extended unit cell7 of the hexagonal lattice, the non-trivial solutions

are:

• < σ1 >=< σ2 >= − < σ3 >, the ordered honeycomb lattice. This

6The total magnetization of an AF chain is clearly zero. Consistently with the nomen-

clature used by M. Mekata, the relative magnetization is calculated as
∑

j(−1)jSz
j and is

non-zero when the chain is ordered.
7In the extended unit cell, the lattice vectors (which are

√
3 times longer) connect a

magnetic site with its next-nearest neighbour. The c axis remains the same.
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phase is ferrimagnetic.

• < σ1 >= 0 and < σ2 >= − < σ3 >, the partially disordered (PD)

phase. The average magnetization of a plane is zero. < σ1 > = 0 mean

that the chain is disordered, which does not preclude short-range order.

• < σ1 >=< σ2 > and < σ1 >6=< σ3 >, a solution that is sometimes

called the 3-site ferrimagnetic phase. There is no constraint on < σ3 >.

It was shown that these solutions exhibit magnetic reflections of different

magnitude at (1/3 1/3 1); it was moreover suggested that the appreciable

change in intensity measured in the experiments was due to a transition

between the ferrimagnetic state (T < TN2) and the PD state (TN2 < T <

TN1). The Néel temperature was approximated as

TN1 =
6S2

kB
(2Jnnn − Jnn) (3.11)

although no equivalent expression was derived for TN2. In this first anal-

ysis the Néel temperature does not depend on the dominant in-chain AF

exchange J .

N. Ishimura and H. Shiba (1980) and the domain-wall solution.

As experimental evidence was being presented that several 1D compounds

did not display spin waves or spinons, it was argued by N. Ishimura and H.

Shiba [44] that the Bethe Ansatz did not capture the behaviour of the system

in the Ising-like regime. It was then proposed that ε acts as a perturbation

of the pure Ising limit, whose ground state consists of spins pointing along

z. Unlike in the gapless dC-G spectrum, the excitations of an Ising system

are couples of domain walls (i.e. solitons), which require an energy transfer

around 2J to be created.

Furthermore, using S± = Sx ± iSy one can rewrite Eq. (3.7) as.
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HIS = 2J
∑

j

(
SzjS

z
j+1 +

ε

2
(S+
j S
−
j+1 + S−j S

+
j+1)

)
=

=: Hzz +H±. (3.12)

While Hzz fixes the ground state (i.e. Ising chains) and its excited states

(i.e. couples of domain walls), H± allows the domain walls to move inde-

pendently one from the other along the chain.

In order to analytically find the excitations of this system, we start

with the doubly-degenerate Néel ground states of the unperturbed chain,

|Néel,f〉 = |... ↑↓↑↓ ...〉 and |Néel,l〉 = |... ↓↑↓↑ ...〉, but due to symme-

try we can consider just one Néel state. The base elements of the excited

Hilbert space are:

| ~Q, 1〉 =

√
2

N

∑

j

ei
~Q·~RjS+

j |Néel,l〉 ,

| ~Q, 3〉 =

√
2

N

∑

j

ei
~Q·~RjS+

j S
−
j+1S

+
j+2 |Néel,l〉 ,

| ~Q, ν〉 =

√
2

N

∑

j

ei
~Q·~RjS+

j . . . S
+
j+ν−1 |Néel,l〉 ,

where N is the number of spins in the chain and ν represents the distance

between the domain walls. In this base we can now express the Hamiltonian

HIS in matrix form:

〈 ~Q, ν|HIS| ~Q, ν ′〉 =





2J for ν = ν ′

V for ν = ν ′ − 2

V ∗ for ν = ν ′ + 2

0 otherwise

(3.13)

with V = εJ (1 + e−2iπL). Figure 3.16(a) shows the solutions of the di-
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agonalization of this matrix: for N → ∞ they form a continuum of ex-

citations between the extremal modes ~ω1(L) = 2J(1 − 2ε cos (πL)) and

~ω2(L) = 2J(1 + 2ε cos (πL)).

The next question to be addressed is the spectral weight of the modes,

which are dominated by the transverse response Sxx. Using Green theory,

we can express it in the first order of ε as:

Sxx(L, ω) ' − 1

4π
Im

((
1− ε cos (πL)

)2 G(1, 1)− ...

(
1− ε cos (πL)

)( V
2J
G(1, 2) +

V ∗

2J
G(2, 1)

)
+O(ε2)

)

(3.14)

with the Green’s function G(ν, ν ′) defined as:

G(ν, ν ′) = 〈 ~Q, ν| (~ω −HIS + iδ)−1 | ~Q, ν ′〉 (3.15)

where δ is small enough. A simulation of Sxx is presented in Fig. 3.16(b-c).

The equivalence between Sxx(L, ω) and Syy(L, ω) is trivial due to the

symmetry of the Hamiltonian. N. Ishimura and H. Shiba also computed the

other terms, such as Szz(L, ω), concluding that their spectral weight is two

orders of magnitude weaker than Sxx(L, ω). This term will be neglected in

this work.

H. Shiba (1980) and the Zeeman ladder. The Ishimura-Shiba (IS)

solution holds only for ordered chains that do not interact with their sur-

rounding. N. Shiba [62] added a molecular field to Eq. (3.12):

HS = HIS −
∑

j

hjS
z
j (3.16)



3.5. Modelling of the system 48

0 0.5 1

0

0.5

1

1.5

2

2.5

h̄
ω
/
J
[u
n
it
le
ss
]

(a)

0 0.5 1

L [r.l.u.]

 

 

(b)

0 500 1000

0 0.5 1

0

0.5

1

1.5

2

2.5

h̄
ω
/
J
[u
n
it
le
ss
]

 

 

(c)

10 100 1000
S( ~Q,ω) S( ~Q,ω)

Figure 3.16: Simulations of the Ishimura-Shiba Hamiltonian. (a) The com-

plete spectrum of the Hamiltonian (3.13) for an arbitrary value of ε = 0.2.

The soliton excitations form a bow-tie-shaped continuum around 2J . (b)

Simulation of the neutron scattering intensity in the (0 0 L) plane calcu-

lated using Eq. (3.14). The red curve represents the maximum intensity as

a function of L. (c) The same as (b) in logarithmic colour scale.
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where the staggered field hj is the sum of the interactions in the plane; under

the assumption that only nearest-neighbour interactions are relevant, this is

hj = Jnn
∑

k∈7
Szk,j (3.17)

where (k, j) are the six spins on the j-th plane that neighbour the j-th spin

of the chain. This expression can be generalized to the next-nearest neigh-

bours, or to any number of neighbours, by introducing a series of interaction

parameters (Jnnn and so on).

It was noted that this Hamiltonian is formally equivalent to that of

the 1D tight-binding model for electrons in a uniform electric field. The

excitations of the latter system are quantized and referred to as Stark lad-

der ; by analogy the quantized soliton spectrum was called a Zeeman ladder.

Previous magnon Raman spectra [63, 64] were interpreted in terms of a Zee-

man ladder, the nn interaction explaining the staggered field. At the phase

transition at TN2 the weight associated to each staggered field changed: at

lower temperatures the Raman scattering was dominated by hj = 6Jnn in

accordance with Mekata’s prediction for the honeycomb lattice, while at

intermediate temperatures the Zeeman ladder induced by 2Jnn and 4Jnn

gained intensity because of the thermal disorder. In analogy to Eq. (3.13),

this Hamiltonian can be expressed as:
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〈 ~Q, ν|HS| ~Q, ν ′〉 =





2J(1 + ε2) + h for ν = ν ′ = 1

2J(1 + 3
2ε

2) + νh for ν = ν ′ > 1

V for ν = ν ′ − 2

V ∗ for ν = ν ′ + 2

V2 for ν = ν ′ − 4

V ∗2 for ν = ν ′ + 4

0 otherwise

(3.18)

with V2 = − ε2

2 J (1+e−4iπL). The quadratic terms in ε are included in order

to offer a better qualitative agreement with the experimental data.

It was moreover noted that Eq. (3.11), having been derived in a purely

two-dimensional context, was insufficient to relate the phase transition tem-

peratures and the magnitude of the exchange interactions. Using Scalapino-

Imry-Pincus theory [65], the following set of conditions could be obtained:

2kBTN2 e
−J/kBTN2 = −6Jnnn,

2kBTN1 e
−J/kBTN1 = 3Jnn − 6Jnnn. (3.19)

Applied to CsCoCl3, this means J = 6.46 meV, Jnn ∼ 0.36 meV and

Jnnn ∼ 0.01Jnn.

F. Matsubara (1991) and further Raman scattering. While H.

Shiba had provided a good model to motivate the ladder of excitations and

W. Lehmann et al. [66] further compared calculations and experimental

results (mostly Raman spectroscopy), F. Matsubara et al. [67] noticed that

some outstanding discrepancies remained unaddressed: firstly, different val-

ues of ε had been proposed for each branch of the Zeeman ladder (a result

necessary for the fitting but unphysical), and that the experimental weights

associated with different staggered fields didn’t behave as theoretically pre-

dicted.
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In order to solve these important issues, a FM nnn interaction J2 along

the chains was introduced (the nn AF interaction, previously J , is from here

onwards noted as J1). The Hamiltonian is then written as

HM =
∑

j

2J1

(
SzjS

z
j+1 + ε(Sxj S

x
j+1 + Syj S

y
j+1)

)
+

∑

j

2J2

(
SzjS

z
j+2 + ε(Sxj S

x
j+2 + Syj S

y
j+2)

)
+

∑

j

hicj S
z
j , (3.20)

and its matrix form is

〈 ~Q, ν|HM| ~Q, ν ′〉 =





2J1(1 + ε2) + 2J2

(
1− ε cos (2πL)

)
+ h for ν = ν ′ = 1

2J1(1 + 3
2ε

2) + 4J2 + νh for ν = ν ′

V for ν = ν ′ − 2

V ∗ for ν = ν ′ + 2

V2 for ν = ν ′ − 4

V ∗2 for ν = ν ′ + 4

0 otherwise.

(3.21)

Consistently, the Hamiltonian (3.18) is a special case of (3.21) for J2 = 0.

The authors claimed to have “excellently explained” the magnon Raman

scattering in CsCoCl3, CsCoBr3 and RbCoCl3 in terms of Ising chains with

an AF nn interaction and a FM nnn interaction, |J1/J2| ' 0.135, and

staggered fields induced by the in-plane nn interaction. They remarked

that the weights associated with the staggered fields could be understood

by considering the presence of ferrimagnetic domains in the planes: the

typical domain size required to explain their ratios was typically 10 unit

cells in the ordered phase and 5 unit cells in the intermediate phase.
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J. Goff (1995) and the exchange mixing. Regarding the result

|J2/J1| ' 0.1 by F. Matsubara et al. as being unphysically large, J. Goff et

al. [68] described the splitting of the lowest Kramers doublet as asymmet-

ric. In other terms, the energy difference between |↑↑↓〉 and |↑↑↑〉, noted

as J − ∆, is different from the energy difference between |↑↑↓〉 and |↓↑↓〉,
which is J + ∆. As a consequence, while exciting a soliton of length 1 spin

costs 2J , exciting a soliton of length 3 or more costs 2J + 2∆. The best

approximation for ∆, self-consistently calculated starting from the known

crystal-field parameters, was 0.09J . Equation (3.13) is therefore modified

as:

〈 ~Q, ν|HG| ~Q, ν ′〉 =





2J + h for ν = ν ′ = 1

2J + 2∆ + νh for ν = ν ′

V for ν = ν ′ − 2

V ∗ for ν = ν ′ + 2

0 otherwise.

(3.22)

No second-order terms in ε were introduced. A neutron inelastic experi-

ment at MARI (ISIS, UK) was interpreted as in agreement with this model,

and the authors suggested that there was no evidence for a large in-chain

nnn interaction.

H. Shiba (2003) and the crystal-field excited states. Disagreements

between the approaches and conclusions of F. Matsubara and J. Goff were

apparent enough for H. Shiba et al. [69] to publish a theoretical study

mentioning as a motivation, in their introduction, that “the relation between

the two proposals as well as the question of which one is appropriate has

not been clarified yet”.

This study developed a theory of the crystal field states, analogous to

that done by J. Goff, but to a different degree of approximation. Relations

could be established between the (unknown) coefficients of the wave function
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of the electrons around the Co2+ ions and the parameters J1, J2, ε1 and ε2

– the last one being the anisotropy of the nnn interaction. With some

educated guesses it was then suggested that:

• the sign of J2 is opposite to the sign of J1, i.e the in-chain nnn inter-

action is FM if the nn interaction is AF;

• ε1 and ε2 have distinct values;

• ε1 is likely to be small (Ising-like);

• ε2 is likely to be close to unity.

No information about the in-plane interactions Jnn and Jnnn could be

derived using his method.

Comparison between experimental magnetization curves of CsCoCl3 and

theoretical predictions based on this theory give an overall good agreement

for J1 ∼ 6.5 meV, ε1 = 0.16, −J2/J1 ∼ 0.07 and ε2 ∼ 0.7. This study

concluded noting that the presented approach is in agreement with F. Mat-

subara’s phenomenological model, and is not in contradiction with J. Goff’s

proposal – pointing out that the mean-field approach used in the latter is

the reason why the Hamiltonians are different.

Todoroki (2004) and the phase transitions of the plane. The exact

nature of the two phase transitions, as well as the role of the 3-site ferrimag-

netic phase described by M. Mekata, was not perfectly clear. Using a Monte

Carlo algorithm, Todoroki et al. [70] argued that the 3-site ferrimagnetic

phase is never realized. They also calculated the density of domain walls

along the chains on each sublattice of the extended unit cell, revealing a

sharp increase in one site at roughly T = J/5kB, a temperature compatible

with TN2. They concluded that the transition from the ferrimagnetic phase

to the PD phase is physically explained by a discontinuous increase in do-

main wall density in one site, which becomes disordered. Since the number

of domain walls is small compared to the number of spins in the sample,
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Figure 3.17: Simulations of Sxx( ~Q, ω) for three Hamiltonians. The staggered

field results in the appearance of a Zeeman ladder. The white dotted curves

mark the boundaries of the IS continuum, see Fig. 3.16, outlining the ves-

tigial bow-tie shape of the Zeeman ladders. The intensity is in logarithmic

scale. (a) Sxx( ~Q, ω) calculated after H. Shiba’s Hamiltonian, Eq. (3.18), for

arbitrary values ε = 0.2 and h = J/10. (b) Sxx( ~Q, ω) calculated after F.

Matsubara’s Hamiltonian, Eq. (3.21), for arbitrary values ε = 0.2, h = J/10

and J ′ = J/6. (c) Sxx( ~Q, ω) calculated after J. Goff’s Hamiltonian, Eq.

(3.22), for arbitrary values ε = 0.2, h = J/10 and ∆ = J/10.
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this also explains why this 1st order phase transition has a minimal latent

heat.

Summary The low-energy spin Hamiltonian of the compounds of the fam-

ily ABX3 (importantly CsCoCl3, CsCoBr3 and RbCoCl3), and its excita-

tions, have been studied in several iterations. A summary of its proposed

key properties is given here.

• The 1D chains are dominated by AF nn Ising-like interactions, whose

lowest-lying excitations are couples of moving domain walls, i.e. soli-

tons, and form a continuum in the case of the isolated chain (N.

Ishimura and H. Shiba).

• The crystal field induces corrections to the in-chain interactions, either

an asymmetric splitting of the Kramers doublet (J. Goff) or a FM nnn

interaction (F. Matsubara, H. Shiba).

• The in-plane neighbours are necessary to explain the emergence of

the honeycomb order, and have been linked to two phase transitions

at temperatures much lower than the main exchange interaction J .

In particular, there is a strong indication that AF nn and FM nnn

exchanges in the plane are necessary to induce the ferrimagnetic state

at the lowest temperatures (M. Mekata).

• The in-plane interactions induce a staggered field that splits the con-

tinuous spectrum into a Zeeman ladder (H. Shiba). Each staggered

field is associated with a population factor, which depends on the or-

der of the plane.

Literature values for the various exchange parameters are given in Table

(3.1). While they vary depending on the compound and on the specific

modelling, there seems to be an agreement on J ∼ 6 meV, ε between 0.1

and 0.2, and Jnn between one and two orders of magnitude below J . The

study on TlCoCl3 by A. Oosawa et al. [71] is the only experimental work,
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to the best of our knowledge, to have interpreted the scattering exclusively

as a IS continuum, while all other major works have modelled it in terms of

a Zeeman ladder. Conversely H. Shiba was the only author to attempt at

evaluating the nnn interaction Jnnn.

Spectral weight While the Hamiltonians are sufficient to calculate the

energies, the spectral weight presented in Eqs. (3.14-3.15) has to be com-

pleted for the scope of a neutron scattering experiment by adding the polar-

ization factor and the magnetic form factor, which for radially symmetrical

ions has the general formula:

F ( ~Q)2 = Ae−a|
~Q|2 +Be−b|

~Q|2 + Ce−c|
~Q|2 +D. (3.23)

The parameters for Co2+ are known: A = 0.4332, a = 14.355 Å2, B =

0.5857, b = 4.608 Å2, C = 0.0382, c = 0.134 Å2, D = 0.0179 [74].

Additionally, in order to compensate the approximations used in obtain-

ing 3.14, we introduced an empirical correction factor:

CF (L) = 1 + f1 cos (πL/2) + f2 sin (πL/2) + f3 cos (πL) + f4 sin (πL).

(3.24)

This is just a Fourier Ansatz containing only L/2 and L as frequen-

cies with coefficients fι to be fitted experimentally. It must be noted

that while this expressions only contains L, it should be understood as

CF
(
H(L),K(L), L

)
. By construction CF (L) is difficult to associate to physi-

cal properties of the system, but merely serves to compensate to all the other

approximations done during the derivations of the spectral weight.

3.5.1 Effects of the temperature

The effect of temperature is threefold. Firstly, the population factors as-

sociated with each staggered field depend on temperature. At the lowest
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Compound Author J [meV] ε Other exchanges [meV]

CsCoBr3

Lehmann [66] 7.81 ∼0.2 Jnn = 0.15

Nagler [72] 6.70 0.14 Jnn = 0.40

Matsubara [67] 6.14 0.17
J ′ =0.61

Jnn = 0.16

CsCoCl3

Shiba [62] 6.46 0.13
Jnn = 0.39

Jnnn = 0.004

Lehmann [66] 6.05 ∼0.1 Jnn = 0.076

Nagler [72] 6.19 0.12 Jnn = 0.12

Matsubara [67] 5.48 0.15
J ′ = 0.52

Jnn = 0.062

Goff [68] 6.37 0.15
∆ = 0.7

Jnn = 0.051

RbCoCl3

Lockwood [73] ∼6.0 ∼0.1 Jnn ' 0.18

Matsubara [67] 6.19 0.15
J ′ = 0.84

Jnn = 0.12

TlCoCl3 Oosawa [71] 6.4 0.14

Table 3.1: Values for the exchange parameters of ABX3 quasi-Ising chain

compounds as described in literature, ordered chronologically. These values

have been found using various methods, such as Raman spectroscopy (e.g.

F. Matsubara et. al.) or inelastic neutron scattering (e.g. J. Goff et. al.).

Results are displayed to the second meaningful place if available, with no

errors.
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temperature we expect a honeycomb lattice with 1/3 of the spins experienc-

ing a staggered field of -6Jnn and 2/3 of the spins experiencing none (their

neighbours being inevitably three ups and three downs). At intermediate

temperatures we expect the disorder in the plane to populate all possible

fields. At the highest temperature we expect the staggered fields to aver-

age to zero due to the high population of solitons, and thus every chain to

scatter similarly to an isolated chain.

The temperature also affects the order by introducing domain walls along

the chains [70]. The density of domain walls grows continuously and leads

to a reduction of the lifetime and of the mobility of the solitons.

Several studies focus on the dynamic structure factor of the thermal

quasi-Ising chain. A result of particular interest to us [75] is that an increase

in temperaturature leads to a narrower band, i.e. a decreased value for ε1

(with no shift in J1). This can be understood in terms of a decrease in

mobility, as ε1(S+
j S
−
j+1 + S−j S

+
j+1) is the propagative term of the soliton.

A simplified model for the soliton lifetime is to assume an exponen-

tial decay, and Fourier transform of e−Γω, which is
√

2/π (Γ2/(Γ2 + ω2) +

Γ2/(Γ2 − ω2)), two Lorentzians. Hence, via the convolution with the Gaus-

sian instrumental resolution, the lineshape of the soliton is expected to be

a Voigt function with a fixed instrumental resolution σ and a temperature-

dependent dampening Γ(T ) linked to the lifetime of the soliton.

The previously cited theoretical analysis [75] also highlights that this

widening is in truth asymmetric. However we will use a conventional Voigt

function as a simplified model for the lifetime of the particle.

3.5.2 Fitting procedure

The fitting was performed using functionalities of the MATLAB packages

Horace [47] and Spec1d [76]. While the fit algorithm is conventional, the

following points are brought to the attention of the keen reader:

• The four-dimensional data was simulated in its completeness (which

makes a difference e.g. for the | ~Q|2-dependent magnetic form factor,



3.6. Analysis according to Matsubara’s Hamiltonian 59

or the polarization factor). The simulation was then averaged to a L

vs E slice, which was compared to the experimental data.

• The high-statistics data (i.e. 4, 18 and 35 K) were multifitted (i.e.

fitted simultaneously) while the low-statistics data were not fitted.

The result is therefore the best fit to the high-statistics data.

• In the absence of a reference run, the background was fitted to a

collinear term a0 + a1E.

• The in-plane nnn FM interaction, of magnitude Jnnn, is expected to be

at least one order of magnitude below the in-plane nn AF interaction

Jnn. Given a Jnn in units of some tenth of a meV, i.e. comparable

with the instrumental resolution, Jnnn is too small to be observed.

• There are therefore four modes that should be observed experimen-

tally, belonging to the staggered fields hic = 0, 2Jnn, 4Jnn and 6Jnn.

The intensities of each single modes are expressed by a scale factor Wn

– as a convention, the staggered field hic = nJnn relates to Wn
8. We

will however more often present this as a population factor, i.e. In =

Wn/(W0 +W2 +W4 +W6), expressed as a percentage.

3.6 Analysis according to Matsubara’s Hamilto-

nian

A multifit was performed to a χ2 = 1.96. The exchange parameters are

presented in Table 3.2, where they are compared to F. Matsubara’s results

for CsCoBr3, CsCoCl3 and RbCoCl3 for reference.

The values are found to be generally consistent with those found across

the whole ACoX3 family. A close comparison between the results for

RbCoCl3 highlights lower estimates for J1, ε1 and J2, and a good agreement

8Conventions vary in literature. Particularly, Shiba [62] and Matsubara [67] use W̃C for

I0, W̃B2 for I2, W̃B1 for I4 and W̃A for I6. This study prefers a more systematic naming

scheme.
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Present work RbCoCl3 [67] CsCoCl3 [67] CsCoBr3 [67]

J1 5.889(1) 6.19 5.48 6.14

ε1 0.126(1) 0.15 0.15 0.17

J2 0.518(1) 0.84 0.52 0.61

ε2 0.605(1) 0.15 0.15 0.17

Jnn 0.129(1) 0.12 0.06 0.16

Table 3.2: Comparison of the fitted parameters between the present work

(first column) and F. Matsubara’s analysis of several ACoX3 compounds

[67]. The errors on these results are not available. All exchange parameters

J are in meV, and isotropies ε are unitless. For the values of ε1, only the

result at 4 K is presented for this work. F. Matsubara’s work assumed ε2 =

ε1.

for Jnn. It must be noted that the comparison is not completely accurate as

in F. Matsubara’s work it was assumed that ε1 = ε2. However, as predicted

by H. Shiba [69], we find ε2 to be much closer to 1.

The instrumental resolution at the transfer energy of the soliton is

0.324(8) meV. The empirical correction factors, as explained in Eq. 3.24,

are f1,2,3,4 = 0.25(1), 0.52(1), 0.12(3) and -0.12(2).

In the following section, the fits will be presented and will be followed by

an in-depth analysis of the changes with temperature of specific aspects, such

as anisotropy, Lorentzian width, and distribution of the staggered fields. The

problems of the higher branches of the Zeeman ladder will then be discussed.

3.6.1 Results at 35 K

A comparison between the experimental data and the associated fit result

at 35 K is shown in Fig. 3.18. Cuts at the zone boundary and zone centre

are shown in Fig. 3.19.

At this temperature we find ε1 = 0.0955(4) and Γ = 0.93(2) meV, which

is much bigger than the instrumental resolution. Finally, 71(3) % of the
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Figure 3.18: Slice of (a) the experimental results at 35 K and (b) fit thereof.

In the fit, the grey lines mark the extent of the continuum and the red curves

mark the bound mode that separates from the continuum L = -0.5.

scattering is associated to the non-staggered chain, hic = 0, and 28(4) %

with hic = 2Jnn, with almost no contribution from more coordinated con-

figurations. This is compatible with a scenario where thermal fluctuations

prevent higher staggered fields from forming.

3.6.2 Results at 18 K

A comparison between the experimental data and the associated fit result

at 18 K is shown in Fig. 3.20. Cuts at the zone boundary and zone centre

are shown in Fig. 3.21.

As expected, ε1 has increased to 0.112(1) and Γ has decreased to 0.25(1)

meV, comparable with the instrumental resolution and roughly one quarter

of its value at 35 K. The scattering is distributed as 38(1) % to hic = 0,

34(1) % to hic = 2Jnn, 26(1) % to hic = 4Jnn and a negligible contribution

from hic = 6Jnn.
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Figure 3.19: Comparison between cuts of the data (black) and the fit (red).

The dotted blue-to-green curves show the contribution of single staggered

fields hic, which are integer multiples of Jnn. The fit is dominated by the

continuum-like spectrum of the isolated Ising chain, although there is a

meaningful contribution from hic = 2Jnn.
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Figure 3.20: Slice of (a) the experimental results at 18 K and (b) fit thereof.

In the fit, the grey curves mark the extent of the continuum and the red

curves mark the bound mode that separates from the continuum around L

= -0.5.
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Figure 3.21: Comparison between cuts of the data (black) and the fit (red).

The dotted blue-to-green curves show the contribution of single staggered

fields hic, which are integer multiples of Jnn.

3.6.3 Results at 4 K

A comparison between the experimental data and the associated fit result

at 4 K is shown in Fig. 3.22. Cuts at the zone boundary and zone centre

are shown in Fig. 3.23.

At the lowest temperature, ε1 has reached its maximum value of 0.125(1)

and Γ = 0.102(8) meV is negligible next to the instrumental resolution. The

scattering is distributed as 66(2) % to hic = 0, 3(1) % to hic = 2Jnn, no

contribution from hic = 4Jnn and 30(1) % from hic = 6Jnn, i.e. distributed

according to a honeycomb geometry.

Considerations about the higher modes of the Zeeman ladder, i.e. the

two faint modes visible between 15 and 19 meV, will be discussed in section

3.8.2.
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Figure 3.22: Slice of (a) the experimental results at 4 K and (b) fit thereof.

In the fit, the grey curves mark the extent of the continuum and the red

curves mark the bound mode that separates from the continuum around L

= -0.5.
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Figure 3.23: Comparison between cuts of the data (black) and the fit (red).

The dotted blue-to-green curves show the contribution of single staggered

fields hic, which are integer multiples of Jnn.

3.6.4 Fits at 8.5, 10.5 and 23 K

Subsequent fits were performed on the low-statics data using the results

of the high-statistics data to ensure consistency. These fits are shown and

explained in Figs. 3.24-3.26.

The decrease in incoming energy Ei from 25 to 20 meV severely affects

the dynamic range that is sampled by neutrons; as a consequence the edge

of the detector is much closer to the region of interest – this can be clearly

appreciated in the much higher background at L = -1. Combined with the

lower statistics, this results in a fit of lower precision.

The specific fitted parameters will be listed in the following sections when

reviewing the evolution of single aspects with temperature.
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Figure 3.24: (a) Experimental data at 8.5 K. (b) Slice of the fit of the exper-

imental data. The fit clearly displays four separate modes, corresponding to

hic from 0 to 6Jnn. (c) Cut of the data at L = -1.0, showing the fit and the

single components. Refer to Fig. (3.23) for the legend. (d) Cut of the data

at L = -0.5.
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Figure 3.25: (a) Experimental data at 10.5 K. (b) Slice of the fit of the ex-

perimental data. The fit clearly displays four separate modes, corresponding

to hic from 0 to 6Jnn. (c) Cut of the data at L = -1.0, showing the fit and

the single components. Refer to Fig. (3.23) for the legend. (d) Cut of the

data at L = -0.5.
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Figure 3.26: (a) Experimental data at 23 K. (b) Slice of the fit of the exper-

imental data. The fit clearly displays four separate modes, corresponding to

hic from 0 to 6Jnn. (c) Cut of the data at L = -1.0, showing the fit and the

single components. Refer to Fig. (3.23) for the legend. (d) Cut of the data

at L = -0.5.
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3.6.5 Mobility and lifetime as a function of temperature

Figure 3.27(a-b) show the anisotropy ε1 and the Lorentzian width Γ as a

function of temperature. As expected from the phenomenological argument

from decreasing lifetime and mobility, ε1 is a decreasing function of temper-

ature while Γ is increasing.

Figure 3.27: (a) Ising-like parameter ε1 as a function of temperature. The

decrease in ε1 marks a decrease in the mobility of the solitons. Red (blue)

points are taken from high-statistics (low-statistics) datasets. Dotted con-

stant lines are drawn in each phase as a guide to the eye. (b) Lorentzian

linewidth Γ as a function of temperature. The increase in Γ marks a decrease

in lifetime. The azure exponential is a guide to the eye. The anomalous data

point at 8.5 K is most likely the result of the imperfection of the fits of the

low-statistics datasets. (c) Weights associated to each staggered field versus

temperature, normalized so that their average is 1. The black data points

are the integrated intensity of the raw data, also roughly scaled to unity.
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T [K] I0 I2 I4 I6

4 66(2) 3(1) 0(1) 30(1)

8.5 50(9) 16(3) 14(3) 18(3)

10.5 41(8) 25(5) 24(4) 9(2)

18 38(1) 34(1) 26(1) 0(1)

23 29(7) 48(9) 23(4) 0(1)

35 71(3) 28(4) 0(2) 0(1)

Table 3.3: Summary of the behaviour of the percentage of chains in a certain

configuration. In is the percentage of scattering on a chain that experiences

a staggered field hic = nJnn. The sum of the intensities does not reach 100%

due to the errorbars.

3.6.6 Population factors as a function of temperature

Figure 3.27(c) shows the distribution of staggered fields as a function of

temperature.

Aside from the integrated scattered intensity, which can be thought of

as being roughly constant, Table 3.3 summarizes the percentages associated

to each staggered field as a function of temperature.

Previous studies on RbCoCl3, while generally agreeing on the popula-

tion factors of the honeycomb lattice, considered diversified approaches to

the thermal frustrated hexagonal lattice. A list of results in literature is

presented in Table 3.4. For instance, for their only scan between TN2 and

TN1, at 17 K, J. Goff [68] assumed a perfectly random PDAF with coeffi-

cients of 5/12, 3/12, 3/12 and 1/12 (i.e. 42 %, 25 %, 25 % and 12 %) for hic

from 0 to 6Jnn, a distribution which is remarkably close to the populations

factors found at 10.5 K – still below TN2, but where the meaningful diffuse

scattering suggests detectable amounts disorder.

The complexity of the temperature evolution of the population factors

observed in this study is not fully grasped in the previous studies on these
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T [K] Author I0 I2 I4 I6

2 Lehmann [66] 41 18 7 37

2 Goff [68] 67 0 0 33

2.3 Matsubara [67] 31 19 13 37

12 Lehmann [66] 14 43 29 10

13.7 Matsubara [67] 18 40 29 13

17 Goff [68] 42 25 25 12

T > TN1 Goff [68] 100 0 0 0

Table 3.4: Overview of the population factors of the chains in literature.

Note that the results by Lehmann and Goff refer to CsCoCl3, while the

results by Matsubara are for RbCoCl3.

compounds, between which the results vary significantly. Qualitatively un-

derstanding the population factors requires a full thermodynamic modelling

of the order in RbCoCl3, which will be obtain via a Monte Carlo algorithm,

as explained in the next section.

3.6.7 Cluster Heat Bath Monte Carlo method

Monte Carlo algorithms [79, 80] are a common numerical method to find

simple solutions to complicated problems. The Metropolis-Hastings algo-

rithm is a Markov chain9 Monte Carlo method [82, 83, 84, 85, 86] that is

commonly used in solid state physics [87]. In systems where only spin-flips

are allowed, as is the case in Ising systems, it can be summarized as follows:

• Randomly create an initial set of spins.

• Randomly pick one spin. Calculate the energy difference dE between

9A Markov chain is a stochastic process (i.e. a collection of random variables that

evolve in time) that satisfies the Markov property of being memoryless (i.e. a state can

influence the probabilities that create the next state in the process, but does not influence

any subsequent probability) [81].
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the system before and after flipping the spin.

• If dE is negative, i.e. the total energy would decrease, always flip the

spin. If dE is positive, i.e. the total energy would increase, there is a

probability e−β dE that the spin is flipped. Flips are thus more likely

when going against small energy gaps dE, or when the temperature is

higher (and β smaller). This prevents the system from stopping in a

local minima, and introduces thermal fluctuations and disorder.

• Randomly pick a new spin and repeat until convergence/equilibrium.

• Once equilibrium has been reached, compute and average the relevant

observables (e.g. magnetization, energy) over a number of subsequent

iterations.

The Metropolis-Hastings algorithm, while a good generalist method, is

less suited for a system such as RbCoCl3 since it focuses on a single spin

at a time: as the system orders locally, the number of spins likely to flip

decreases, slowing the process progressively.

In order to prevent the critical slowing down of the process, a number

of cluster Monte Carlo algorithms have been developed. They rely not on

flipping a single unit, but rather on clustering units and operating on them

globally.

The Cluster Heat Bath (CHB) algorithm has been developed specifically

for quasi-one dimensional Ising compounds [88, 89, 90]. In its essence, the

CHB method does not focus on a single spin but instead rearranges simul-

taneously entire chains according to the Boltzmann distribution, Eq. 3.3.

At any step of the algorithm, one entire chain of the sample is considered.

Its configuration is determined using the probability functions that the j-

th spin is pointing upwards or downwards, p(Szj =↑) and p(Szj =↓). The

staggered field is hj .

This algorithm will be first sketched for a single chain to simplify the

notation. For the first spin in the chain:
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p(Sz1 =↑) =
e−βh1

Z1
,

p(Sz1 =↓) =
e+βh1

Z1
, (3.25)

where Z1 is a normalization factor to ensure that the total probability is

1 – i.e.Z1 = exp(−βh1) + exp(+βh1), the partition function for a one-spin

system. A positive (negative) value for h1, i.e. most neighbouring spins

pointing upwards (downwards), favours the probability that the spin points

downwards (upwards), enforcing the AF order in the chain. Note that this

criterion is for now equivalent to the Metropolis-Hastings approach.

Then, for any further spin along the chain, the probabilities are treated

as conditional: the question is the probability of the spin j being up or down

given the probabilities for the site j-1 and given the staggered field. This

can be expressed symbolically as:

p(Szj =↑) =

(
p(Szj−1 =↑) p(Szj =↑ |Szj−1 =↑) + ...

p(Szj−1 =↓) p(Szj =↑ |Szj−1 =↓)
)
p(Szj =↑ |hj), (3.26)

where the conditioned probabilities can be easily calculated and the proba-

bilities of the j-1-th spin are known iteratively:

p(Szj =↑) =

(
p(Szj−1 =↑) e−2βJ + ...

p(Szj−1 =↓) e+2βJ

)
e−βhj

Zj
,

p(Szj =↓) =

(
p(Szj−1 =↑) e2βJ + ...

p(Szj−1 =↓) e−2βJ

)
e+βhj

Zj
. (3.27)
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Simplifying the notation, in general it is written that:

p(Szj ) =
1

Zj
∑

Sz
j−1=↑,↓

p(Szj−1) e−2βJSz
j−1S

z
j−βhjSz

j . (3.28)

The probabillity of a specific sequence {Sz} can be then, according to

[88, 89, 90], be computed as:

p({Sz}) =
∏

j

p(Szj )

Zj
= ...

= (
∏

j

1

Zj
) exp

(
− 2βJ

N−1∑

j=1

SzjS
z
j+1 − β

N∑

j=1

hjS
z
j

)
= ...

=
eβHIsing({Sz}))

Z . (3.29)

This proves that the probabilities behave according to Boltzmann statis-

tics: the clusters (i.e. chains) are generated in thermal equilibrium with the

heat bath of their surroundings.

The algorithm works as follows:

• Randomly create an initial set of spins of a certain size.

• Randomly pick one chain of spins. Compute the staggered field hj and

the probabilities p(Szj ) for each spin of the chain.

• Rearrange the chain according to p(Szj ): if p(Szj =↑) > c, where c ∈
[0,1] is a random number, then Szj =↑.

• Pick a new spin and repeat until convergence/equilibrium.

• Once equilibrium has been reached, compute and average the relevant

observables over a number of subsequent iterations.

This method has been proven to reproduce closely the magnetic phase

transitions of CsCoBr3 and CsCoCl3 [90]. Its applications are, however, very

general, and CHB simulations have been performed e.g. to demonstrate a
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glass phase transition in a 2D random Ising model or to show the ferromag-

netic transition in SrTiO3.

The application in RbCoCl3 is straightforward. The two interactions in

the plane can be included to compute hj , while including a next-nearest

neighbour interaction along the chain (associated to an exchange parameter

J2) requires a slight extension of Eq. 3.28:

p(Sz1) =
1

Z1
e−βhjS

z
1 ,

p(Sz2) =
1

Z2

∑

Sz
1

p(Sz1) e−2βJ1Sz
1S

z
2−βhjSz

2 ,

p(Szj ) =
1

Zj
∑

Sz
j−2

∑

Sz
j−1

p(Szj−2)p(Szj−1) e−2βJ1Sz
j−1S

z
j−2βJ2Sz

j−2S
z
j−βhjSz

j . (3.30)

I will here further propose one expansion of this method in the following

section.

Extension of the CHB method to the order in the plane

This method can be generalized to order the planes faster by increasing the

size of clusters – considering sequences of chains instead of single chains.

The planar CHB (pCHB) method used for this study can be formulated

as follows:

• Randomly create an initial set of spins of a certain size.

• Randomly select a path γ = {(xk, yk)}k∈I , I being an index set. The

coordinates (xk, yk) reference a specific chain of spins, i.e. a set (Szj,k).

The following list of conditions has been used through this study:

– γ defines a connected path between an initial spin (x1, y1) and a

final spin (xn, yn).

– The path doesn’t loop on itself.

– The path can be of any length.

– Periodic boundary conditions are imposed.
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An exemplary sketch of a path is sketched in Fig. 3.28.

• For each spin in γ the probability p(Szj,k) is calculated iteratively and

conditionally. Importantly enough, the probabilities of p(Szj,k+1) do

not influence p(Szj,k) in the same way that p(Szk,j) doesn’t depend on

p(Szj+1,k). This allows for a faster exit from local minima.

• Rearrange the spins in γ according to p(Szj,k).

• Repeat from 2 until convergence/equilibrium.

• Once equilibrium has been reached, compute and average the relevant

observables over a number of subsequent iterations.

Figure 3.28: Sketch of a possible situation in the planar CHB method. A

single plane of a set of random spins are generated (black and white), and

a path γ (yellow) is chosen. The spins are to be rearranged as to being in

thermal equilibrium with their heat bath.

Similarly to the conventional CHB method, the rearranged spins satisfy

Boltzmann statistics by construction. Simultaneously flipping large amount
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of spins allows to propagate changes in the spin structure faster than the

Metropolis-Hastings method – hence improving performance.

3.7 Comparison between the CHB method and

the fits

CHB simulations were performed on a 120x120x5000 spin lattice, running

over 8000 cycles. During even-numbered cycles a random10 number of con-

ventional CHB operations took place (i.e. chains were flipped individually),

while the odd-numbered cycles consisted in a single pCHB loop (reorder-

ing, however, a random number of chains). Additionally the temperature

of the system was lowered during the 8000 cycles (similarly to simulated

annealing).

The fitted interaction constants J1,2,nn were used for this simulation. In

the absence of a better approximation it was furthermore assumed that Jnnn

= Jnn/10.

Table 3.5 shows comparisons between fit results and CHB calculations.

It has to be noted that the CHB calculations were not set to stabilize the

temperature, but rather to obtain the best fit to the experimental population

factors (i.e. the temperature of the simulations is not necessarily 4 and 18

K).

The spin configurations are then visualized allowing a direct comparison.

For the visualization in Fig. (3.29-3.30), what is shown is not a single plane

but a 2D collapsed schematic view: a single chain {Szj } is used to compute

the sum
∑

j(−1)jSzj , which is ±1 for fully ordered chains, and between these

extremes for partially disordered chains.

Furthermore the spin structure can be Fourier-transformed along the (H

H 1) to simulate the Bragg scattering from the magnetic lattice, as in Fig.

3.5. A full simulation of the diffraction data is not within the scope of the

present study, and thus no other terms and corrections (e.g. the magnetic

10Less than 120.
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T [K] Ifit
0 ICHB

0 Ifit
2 ICHB

2 Ifit
4 ICHB

4 Ifit
6 ICHB

6

4 66(2) 61 3(1) 6 0(1) 5 30(1) 28

8.5 50(9) 51 16(3) 17 14(3) 14 18(3) 18

10.5 41(8) 40 25(5) 29 24(4) 19 9(2) 9

18 38(1) 35 34(1) 32 26(1) 18 0(1) 5

23 29(7) 35 48(9) 32 23(4) 18 0(1) 5

Table 3.5: Comparison between population factors (in percentage of the

total scattering) as obtained in the fits and in the CHB algorithm for 4 and

18 K, as explained in the text. The CHB calculations for 18 K do not add

up to 100% due to weight being allocated to negative staggered fields (which

were neglected during the fits).

form factor) are included except for a convolution with a Gaussian profile

to simulate the instrumental resolution.

The spin configuration obtained for 4 K displays large domains of

honeycomb-ordered spins, in agreement with the known structure. The

interfaces between domains have simple shapes (resembling straight lines)

to minimize the geometrical frustration. Most of the chains are fully or-

dered. The Fourier transform of this spin structure is dominated by a peak

at (2/3 2/3 1), with a peak at (1 1 1) roughly one order of magnitude less

intense. This is in excellent agreement with the behaviour described in the

introduction to this chapter.

The spin configuration for 18 K lacks the large domains that charac-

terise the 4 K structure, but does retain meaningful local honeycomb order.

Moreover the number of domain walls inside the chains has increased to a

very relevant amount. At this temperature the AF nn in-plane interaction

is still relevant, creating a situation where spins in the plane prefer to be an-

tiparallel, but the FM nnn in-plane interaction that stabilises the long-range

hexagonal order is no longer relevant compared to thermal disorder.

Fig. 3.31 shows the simulated Bragg diffractions from the spin structures
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Figure 3.29: (a) Schematic view of a section of the Monte Carlo simulation

of RbCoCl3 for 4 K as discussed in the text. Black and white hexagons are

ordered chains of opposite orientations, while grey hexagons are disordered

chains. There are wide domains of honeycomb-ordered spins with mostly-

straight “well-behaved” domain walls. This phase is ordered. (b) Simulation

of the Bragg diffraction from the spin structure for 4 K. Peaks can be found

at (2/3 2/3 1) and (1 1 1) with an order of magnitude of difference in their

intensity, in satisfactory agreement with the experimental data, see Fig. 3.5.
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Figure 3.30: (a) Schematic view of a section of the Monte Carlo simulation

of RbCoCl3 for 18 K. There are no long-range domains to be found, but the

structure displays considerable local ordering. We propose this structure as

a more physical generalization of the simplistic PDAF structure as explained

in literature. (b) Simulation of the Bragg diffraction from the spin structure

at 18 K. A peak can be found at (2/3 2/3 1) while there is none at (1 1 1);

additionally the tails of the peaks are much broader – a result compatible

with the rise of the diffuse scattering, see Figs. (3.5-3.6).
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Figure 3.31: Simulation of the Bragg diffraction from the calculated spin

structures at all experimental temperatures except 35 K along the (H H 1)

direction. The magnetic structure peaks are sharp at the lowest tempera-

tures and become broader and less intense as the temperature increases.

at all temperatures. In good agreement with the experimental diffraction

data presented in the beginning of the chapter, the magnetic peaks are

sharper at lower temperatures and broader at higher temperatures, and

their intensity decreases with temperature. Simultaneously, the scattered

intensity at ~Q-points outside of the peaks increases, which is an indication

of the diffuse scattering emerging around the peaks. At this stage the re-

sulting scattered patterns still show many computational artifacts (e.g. not

many peaks are close to be Gaussians, or Lorentzians), but this is due to

the insufficient size along x and y of the simulated spin array, which is a

computational constrain. However, even at this stage the calculation con-

firms some important experimental observations on RbCoCl3: namely, the

transition from a more ordered to a more disordered spin structure is asso-

ciated to the weakening of sharp Bragg peaks and the emergence of diffuse

scattering around them.

It has to be reiterated that this is calculated entirely from the popu-

lation factors (themselves a result of the fitting of the spectrum) and the

spin Hamiltonian, without any information about the experimental Bragg
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diffraction being required or considered.

The agreement between fitted and simulated population factors is satis-

fying but not perfect: for instance with the CHB predicting 5 % occupation

for I6 for 18 K when the fit does not allocate any weight to that component.

There are however a number of physical considerations that haven’t been

included in the Monte Carlo calculation, such as imperfections in the lattice

which can lead to pinning.

Finally, the CHB simulation did not give any comparably accurate re-

sult for 35 K. We interpret this as an indication that the population factors

above TN1 are not deduced from a static structure – which does not exhibit

any sort of detectable order – but rather from dynamic considerations, i.e.

the staggered field on a chain is no longer the sum of the interactions with

the neighbouring chains but also the time average: since at that tempera-

ture there are abundant thermally-excited solitons (which flip spins when

propagating) the time-average drives the staggered fields towards zero.

3.8 Further aspects of the spectrum

3.8.1 The Villain mode

While the gapped excitations between 10 and 20 meV are the result of

scattering on an ordered chain, it is possible to scatter on a domain wall as

well. This excitation is, thus, intrinsically gapped, and is called a Villain

mode [49].

The Villain mode is theoretically predicted to be centred on L = ±1,

being otherwise H- and K-independent, and its intensity scales with the

Bose-Einstein factor n(~ω, T ).

Usually ToF instruments have intense elastic lines, owing to the elastic

and incoherent scattering on components such as the cryostat11, which is

a problem to detect a gapless mode. However, by modelling the signal at

11A conventional way to reduce these contributions would be via the use of a radial

collimator; however LET is not provided with one at this point in time.
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temperature T – S( ~Q, ~ω)T – as the sum of a temperature-independent part

A( ~Q) and a temperature-dependent part B( ~Q, T ), it is true that

S( ~Q, ~ω)T2 − S( ~Q, ~ω)T1 = V ( ~Q, T2)− V ( ~Q, T1)

and by assuming that B( ~Q, T1) = n(~ω, T )V ( ~Q) – i.e. the Villain spectrum

does not evolve with temperature but is rather weighted by a conventional

statistical distribution – then the Villain mode is found as

V ( ~Q, ω) =
1

n(~ω, T2)− n(~ω, T1)

(
S( ~Q, ~ω)T2 − S( ~Q, ~ω)T1

)
.

Figure 3.32 shows the Villain mode for all high-statistics datasets. It

follows the known expectations for such a mode. While a more in-depth look

into its properties is not required in this present study, we note here that

the mere presence of the Villain mode reinforces the position of RbCoCl3 as

an almost-ideal quasi-1D Ising-like chain.

3.8.2 Higher modes of the Zeeman ladder

At 4 K the presence of additional modes at a higher energy transfer is partic-

ularly apparent12, see Fig. 3.22. These modes are particularly problematic

as they are not explained by our fits: in Fig. 3.23(a) the presence of two

Zeeman ladder higher modes, at about 15 meV and 17 meV, is highlighted –

yet the fitted Hamiltonian only predicts one Zeeman ladder mode, at about

16 meV.

The difficulty lies firstly in the low statistical weight of these higher

modes: the fitting procedure is sensitive exclusively to the continuum spec-

trum and to the first mode of the hic = 6Jnn chain.

A way to circumvent this problem is to fit the modes to the energy of the

modes (which can be accurately obtained by fitting 1D cuts with Gaussian

12At higher temperatures the Lorentzian broadening of the modes makes it impossible

to distinguish them from the background.
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Figure 3.32: Villain mode at three temperatures. In general the mode can

be characterised as being gapless and depending only on L, and is the result

of scattering on domain walls.

functions). This approach neglects the intensity of the mode and cannot

address issues such as the lineshape, but it is a useful exercise. Its results

are displayed in Fig. 3.33.

The reader might be interested in some clarifications on the fitting pro-

cedure:

• During the fits either three or four curves will be considered. The first

is not a mode but is rather the maximum of the continuum, while the

other three are the first three modes of the Zeeman ladder belonging

to hic = 6Jnn chain.

• All exchange parameters can be fitted, although the first mode is as-

sumed to have hic = 0. Figure 3.33(a) shows an unconstrained fit,

while (b) shows a fit where J1 was constrained to be equal to the

previously fitted one.

A picture of the fits is presented in Fig. 3.33. Table 3.6 summarizes the
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results.
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Figure 3.33: Fits of the modes. The energy of the maximum of the intensity

of the continuum and the energies of the three visible steps of the Zeeman

ladder (black data points) were fitted from the data (semitransparent col-

ormap) and fitted to the model (red). (a) Fits with free parameters. (b) Fit

with the constraint on J1 to be as fitted previously.

It must be noted that even the fits that neglect the intensity fail to fully

reproduce the higher excited states of the Zeeman ladder, seen between 15

and 18 meV in Fig. 3.33. However, this calculation is sufficient to get an

approximate value for their average energy.

While it must be concluded that the Hamiltonian is missing terms nec-

essary to describe the higher modes of the Zeeman ladder, it provides a

satisfying explanation for the first, and most intense, mode.

3.8.3 Analysis according to Goff’s Hamiltonian

All of the preceding results were obtained using F. Matsubara’s model. A

similar analysis can be carried through using J. Goff’s Hamiltonian.
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J1 [meV] ε1 J2 [meV] ε2 6Jnn

Reference 5.889(1) 0.126(1) 0.518(1) 0.605(1) 0.77(1)

“Free” 6.00(8) 0.12(1) 0.48(5) 0.6(1) 0.63(4)

“Constrained” 5.889 0.135(9) 0.59(3) 0.45(7) 0.60(4)

Table 3.6: Comparison between the fitted parameters of the Hamiltonian as

fitted previously (“reference”), freely fitted to the modes (“free”), or fitted

with a fixed J1 (“constrained”).

Present work CsCoCl3 [68]

J [meV] 6.79(1) 6.37

ε 0.17(1) 0.145

∆ [meV] 0.92(1) 0.70

Jnn [meV] 0.088(1) 0.05

Table 3.7: Comparison of the fitted parameters between the present work

(first column) and J. Goff’s analysis. The errors on these results are not

available. For the values of ε, only the result at 4 K is presented.

A multifit was performed to a χ2 = 2.21. The exchange parameters are

presented in Table 3.7, where they are compared to J. Goff’s results for

CsCoCl3 for reference.

The values are found to be close to the results in literature, although

with an unusually high value for ε. The fits are displayed in Fig. 3.34.

While the agreement at higher temperatures is sufficient, this model fails

to reproduce the dispersion at low temperature, specifically concerning the

sharpness of the continuum, see panel 3.34(b), and the spacing between the

modes, 3.34(c).

We propose, as one of the results of this study, that F. Matsubara’s

Hamiltonian, which has been used in all the previous part of the study, is

the best suited to describe this class of compounds.
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Figure 3.34: Results of the fitting procedure according to J. Goff’s proposed

Hamiltonian. All averaging intervals are the same as before, see Fig. 3.18-

3.19. (a,d,g) Simulation of the fitted model at 4, 18 and 35 K. (b,c,e,f,h,i)

Cuts at each temperature for L = -1.0 and -0.5 r.l.u.
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3.8.4 Higher energy-transfer data

As mentioned in Section 3.4.3, an experiment on RbCoCl3 was performed

at LET in 2015. For this experiment we employed two of the three single

crystals used in 2011.

While the focus was applying a magnetic field, improvements on the in-

strumental data collection procedure meant that multirep (see introduction)

could be employed. This allowed to simultaneously measure at different in-

coming energies – specifically at Ei = 88 meV, offering an insight in the

high-energy-transfer data of the spectrum of RbCoCl3.

Figure 3.35 shows the data measured with Ei = 88 meV. A sharp mode

appears at 40 meV: while to the best of our knowledge there is little literature

on this topic, we suggest that it is a crystal field excitation, due to its extreme

flatness13 and their ~Q-dependence: phonon intensities tend to increase with

~Q, while magnetic or crystal field excitations tend to decrease in intensity

(owing to the form factor of the orbital shells).

3.9 Conclusions and outlook

As the conclusion of this study we can summarise the results as follows.

• We have measured the soliton dispersion in RbCoCl3 and explained

it in terms of a simple, fundamental model (following Matsubara and

Shiba’s proposals).

• We have assessed that the dominant exchange parameter J1 is 5.889(1)

within the model. That is much bigger than those found in similar

other chain compounds such as CoNb2O6 and BaCo2V2O8, and the

critical magnetic field required to trigger a quantum phase transition

in RbCoCl3 is beyond modern neutron scattering capability.

13Crystal fields excitations can be thought as almost perfectly localized in space. Their

~Q-dependence is in first approximation negligible as the Fourier transform of a delta

function is a constant.
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Figure 3.35: (a) Slice of the data collected at Ei = 88 meV, T = 4 K, and

no magnetic field. The data was normalized to the proton current, meaning

an overall scaling of the intensities compared to the previously shown data.

Dominant features are the bright elastic line, the first modes of the soliton

spectrum between 10 and 20 meV, and a further mode at ∼ 40 meV. The

data at L < 3 r.l.u. also shows heavy background contamination due to the

cryostat and the magnet. (b) Cut of the data for -1.15 < L < -0.85. The

various branches of the soliton cannot be distinguished, and a resolution-

sharp mode appears ∼ 40 meV. It has to be noted that the shape of the

background up to 50 meV could be due to the elastic line, while the increase

of signal above 70 meV is due to the next pulse of the beam.
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• We have shown that the one-dimensionality of the system is outstand-

ing, with an Ising-like coefficient ε1 of 0.15 (compared e.g. with 0.46

in BaCo2V2O8). This solidifies the position of the ACoX3 compounds

as being amongst the closest realizations of spin chains in the Ising

limit.

• We have explained the spectrum in terms of dispersions associated

to staggered fields. A vanishing staggered field is associated to an

Ishimura-Shiba-like continuum (which can display a bound mode, sim-

ilarly to CoNb2O6), while non-vanishing staggered fields are associated

with a series of bound modes called a Zeeman ladder. The simultane-

ous presence of a IS continuum and of a Zeeman ladder is due to the

honeycomb geometry.

• We have traced the evolution of the spectrum as a function of temper-

ature in all the magnetic regimes of the phase diagram of RbCoCl3,

in excellent agreement with several models for the structure. We have

furthermore modelled the effects of temperature in terms of mobility

and lifetime of the excitations, obtaining a self-consistent picture.

• We have furthermore explained the population factors associated to

each staggered field not just qualitatively, but with a special Monte

Carlo algorithm which we have developed for this purpose (pCHB)

from an already specialized pre-existent algorithm (CHB). The agree-

ment between our simulation and the fitted population factors is ex-

tremely encouraging.

We have no doubt that this understanding of the system is an important

step forward in both the ACoX3 compounds, but also Ising-like physics in

general.

This study leaves some questions unanswered, and highlights several new

aspects to be further investigated.

• The question of the quantum phase transition of RbCoCl3, and its
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excitations, are still open due to the magnitude of the gap, around 11

meV. We have to stress that, in order to answer these question in an

INS experiment, significant technological advances have to be made.

• What is the full evolution versus temperature of the Ising-like

anisotropy ε1(T ), of the Lorentzian width Γ(T ), and of the popula-

tion factors? With at most three temperatures in any phase, our data

are not sensitive enough to accurately explain the effects of thermal

disorder, although it is more than sufficient to establish a trend. Part

of this can be found in E. Hirtenlechner’s thesis [41].

• Can the effect of temperature be modelled in more realistic terms?

While the argument from mobility and lifetime is accurate within the

goodness of the data, theoretical studies have presented more nuanced

models. For instance, some authors [75] have presented results that are

compatible with a decrease in ε1, but have also introduced an asym-

metric and more complicated linewidth, while our data were analysed

on the assumption of a simple Lorentzian widening.

• What is the value of Jnnn? A ferromagnetic next-nearest neighbour

interaction is necessary in order to lift the frustration and enforce the

honeycomb order, but its value is less than the instrumental resolution.

Further studies are needed to shed light on this issue.

• How can the higher modes of the Zeeman ladder be explained? While

the most intense modes of the fits at all temperatures are satisfyingly

explained, the modes that can be measured between 15.5 and 18 meV

are as of now not modelled correctly. We hope that this study will

motivate interest from the theoretical community on this particular

issue.

A new set of experiments would be needed to address these questions.

On one hand measurements of the full ~Q-dependence of the diffuse scattering

(for instance on an instrument like WISH, at ISIS) would allow to test the
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CHB model as a function of temperature and obtain a good understanding

of the evolution of the local staggered field. Alternatively, depending on the

crystallographic location where they stop, muons might be used to determine

the number, value and prevalence of staggered fields in the compound at any

given temperature.



Chapter 4

The spin-wave spectrum of

the magnon Hall pyrochlore

Lu2V2O7

4.1 Scientific background

In the cubic pyrochlore lattice, ions can form vertex-sharing tetrahedra: in

such configuration each ions has six equidistant neighbours, or three in each

tetrahedra (see Fig. 4.1). Due to its unique geometry, this structure allows

for high frustration depending on the nature of the magnetic interactions and

the spin symmetry. A variety of interesting phenomena have been reported

when the magnetic sites are decorated with “classical” spins (large S) [91].

The most famous example is the spin-ice behaviour, first reported in

Ho2Ti2O7, which emerges from Ising spins and leads to the description of

magnetic monopoles [25, 92, 93, 94, 95, 96, 97, 98, 99]. Amongst other

noteworthy properties are the spin-liquid ground state [24, 100, 101], spin-

glass behaviour [102], order-by-disorder transitions [103, 104, 105], giant

or colossal magnetoresistance [106, 107], superconductivity [108] and more

subtle effects such as the spin-driven Jahn-Teller distortion [109].

The class of RE2V2O7 (Re = Lu, Yb, Tm), which will be described in

more detail later, are insulating Heisenberg ferromagnets (FM) [110] that ex-

hibit several remarkable properties, such as large negative magnetoresistance

[111, 112, 113] and orbital ordering [114, 115, 116, 117]. These compounds

received wide attention with the discovery of the thermal magnon Hall effect

94
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(a) (b)

Figure 4.1: View of the magnetic sites in the unit cell of Lu2V2O7. There are

16 V4+ (dark blue) ions per unit cell (black lines) forming four tetrahedra

(yellow faces). Each ion lies in the vertex of two tetrahedra. (a) View from

the side. (b) View along the [1 1 1] direction. In this projection, a single

plane of magnetic ions has the structure of a Kagome lattice (red lines).

[118, 119, 120, 121, 122, 123].

There are several generalizations of the Hall effect. A multitude of par-

ticles, or quasi-particles, and potentials can be involved in a Hall effect

equivalent. Notably a thermal Hall effect involves the application of a tem-

perature gradient to induce a heat current – and the carriers can be, for

example, both electrons or phonons [124, 125, 126, 127]. In conductors this

effect is also called the Righi-Leduc effect [128]. In general this is also re-

lated to several thermoelectric effects that couple a temperture gradient to

a voltage, such as the Seeback, Peltier and Thompson effects.

In the thermal magnon Hall effect, a temperature gradient is applied on

the material (typically thin-film like). Since the RE2V2O7 compounds are

insulating (i.e. electrons are not a convenient carrier due to low mobility),

it is quasi-particles such as phonons and magnons that carry the thermal

current across the temperature gradient, and it is found that an external

magnetic field will cause a transverse thermal response (i.e. one “side”

gets warmer than the other). Furthermore once the phonon contribution
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to the thermal conductivity has been subtracted, the dependence on the

magnetic field of the thermal magnon conductivity shows a remarkable if

not unexpected behaviour, shown in Fig. 4.2 [118].

Figure 4.2: The thermal magnon Hall conductivity κxy as a function of

temperature and magnetic field, figure from reference [118]. The solid lines

are fits to the model propose by Onose et al.

Magnons are electrically neutral and thus unaffected by the Lorentz

force, which stimulated theoretical research in order to determine how a

magnetic field can modify their path. The conventional explanation for this

phenomenon relies on the Dzyaloshinsky-Moriya interaction (DMI) [10, 11],

which is present due to the centre of the V-V bonds not being a point of

inversion symmetry. For reasons that will be discussed later, the DMI en-

ters the magnon dispersion via its projection to the external magnetic field

[118], and thus the magnetic field – by changing the energy of the magnon –

effectively forces all magnons to turn in one sense (an “upwards” magnetic

field will force the magnons to travel clockwise or anticlockwise depending

on the direction of the DMI). Heat will be released on the side the magnons

travel through, creating an imbalance with the side that few magnons reach.

To summarize the analogy between the conventional Hall effect and the

thermal magnon Hall effect, the temperature takes the place of the electric
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potential (used to move the particles from one side to the other) and the DMI

substitutes the magnetic field as a vector potential (inducing a statistical

drift perpendicular to the current direction).

While this explanation is broadly agreed upon, there have been several

competing theoretically formulations. The transverse thermal magnon con-

ductivity can be shown to depend on the ratio between the DMI parameter

D and the FM exchange parameter J . However proposed ratios for D/J

have been diverse for Lu2V2O7. The original study suggested an unusually

high value 1/3 [118], while a study based on a DFT calculation proposed

1/20 [113]. A more recent fit of the data suggested 1/200, although this

calculation assumed a 2D Kagome geometry and not a 3D pyrochlore struc-

ture [121]. Without direct measurements of the DMI, the suggested values

for D/J span two orders of magnitude.

Another recently discussed property of Lu2V2O7, and in general of ma-

terials that display the thermal Hall effect, is a topological magnon insulator

behaviour: in analogy to conventional topological insulators, edge magnons

have non-trivial topological properties that are determined by the bulk

[129, 121, 122, 130]. While a discussion of this effect is beyond the scope of

this thesis, it potentially allows for the realization of magnon wave guides at

the interface between magnon Hall insulators whose Dzyaloshinsky-Moriya

constants differ in sign [123].

The disagreement around the value of D/J gives us a prime reason to

investigate this compound in an inelastic neutron scattering experiment in

order to directly measure the magnon dispersion and determine the spin

Hamiltonian. In this chapter I present the results of one experiment on this

compound that I performed, and my subsequent analysis, which required a

full simulation of the inelastic cross section and a rebinning procedure we

devised to maximize the signal to noise ratio.
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4.2 Introduction to Lu2V2O7

All of the rare-earth compounds RE2V2O7 (Re = Lu, Yb, Tm) are cubic

pyrochlores that crystallise in the Fd3̄m space group (a = b = c = 9.9366 Å

for Lu2V2O7) [131, 132, 133]. In this structure, both the rare earth and the

vanadium sites build a network of vertex-sharing tetrahedra, as sketched in

Fig. 4.1.

Magnetically, all of these compounds are described as Mott-insulating

ferromagnets with a Curie temperature TC ∼ 70 K. In Lu2V2O7 the V4+

ions are the only to carry an unpaired electron, resulting in a system of spin

1/2 sites (small S). A summary of its magnetic properties is presented in

Fig. 4.3.

Figure 4.3: Summary of the magnetic properties of Lu2V2O7, taken from

[118]. (a) Magnetization as a function of temperature, showing a FM phase

transition around 70 K. (b) Magnetization as a function of external mag-

netic field, showing the required fields to fully saturate the sample in any

direction. This quasi-isotropic behaviour is typical of soft magnets. (c)

Electrical resistivity, showing a typical insulating behaviour. (d) Parallel

thermal conductivity as a function of temperature.
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4.2.1 The Hamiltonian of Lu2V2O7

During the studies of the magnon Hall effect, several Hamiltonians have

been considered. In the original paper on this topic, Onose et al. considered

a minimal Hamiltonian containing only a FM nearest-neighbour direct ex-

change, of magnitude J , a Dzyaloshinskii-Moriya term ~Djk, and a Zeeman

term:

H = −J
∑

j,k

~Sj · ~Sk −
∑

j,k

~Dj,k ·
(
~Sj ∧ ~Sk

)
− gµB ~H ·

(∑

j

~Sj
)
. (4.1)

Constraints for ~Dj,k can be obtained by applying the symmetry rules

of Moriya [11]. Namely, labelling the four spins in a tetrahedra from 1 to

4, the vector ~D1,2 connecting the site 1 and 2 is parallel to the direction

vector that spatially connects the site 3 and the site 4. In other words, the

DMI vector between two sites on a side in a tetrahedron is parallel to the

opposed side. By symmetry the DMI magnitude is a constant D, and the

sign is constrained to two global choices (i.e. one can flip all the directions

of the DMI, which is also equivalent to inverting the sign of D): however

(as will be explained later) our inelastic neutron scattering experiment is

unable to distinguish them. For simplicity we have chosen D > 0. It can be

simply verified that ~Dj,k = − ~Dk,j , as required by Moriya’s rules.

Hamiltonian 4.1 can be simplified using the Holstein-Primakoff transfor-

mation [134], i.e. expressing it in terms of a basis of bosons:

H( ~Q) = gµBH + 2SJ · (3− Λ( ~Q)), (4.2)

where

Λ( ~Q) =

( 0 M1,2 cos(K−L) M1,3 cos(H+K) M1,4 cos(L−H)
M2,1 cos(K−L) 0 M2,3 cos(H+K) M2,4 cos(H−K)
M3,1 cos(H+K) M3,2 cos(H+Z) 0 M3,4 cos(K+L)
M4,1 cos(L−H) M4,2 cos(H−K) M4,3 cos(K+L) 0

)
(4.3)
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with Mj,k = 1 − i ~Dj,k · n̂/J , and n̂ = ~H/| ~H|. This means that the

direction of the magnetic field modifies the dispersion via a projection on

~Dj,k.

The dispersion is sketched in Fig. 4.4. In general there are four modes,

which for D = 0 can be described as a gapless acoustic mode between 0 and

2J , an optical mode between 2J and 4J , and a doubly-degenerate flat mode

at 4J . The introduction of the DMI term splits the modes even further,

with particularly visible effects at the zone center Γ, at some points of the

zone boundary (e.g. W) and at an energy of 4J .
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Figure 4.4: Magnon dispersion of Lu2V2O7 following Eq. 4.1 for D zero and

non-zero. Γ, X, W and K are conventional notations for the reciprocal space

of a face-centred cubic symmetry. (a) Dispersion of the simple ferromagnetic

pyrochlore. There are four modes (owing to the fact that there are four spins

per tetrahedron), resulting in an acoustic mode between 0 and 2J , an optical

mode between 2J and 4J , and a doubly-degenerate flat mode at 4J . (b)

Dispersion in the case of D/J = 1/3, for ~H parallel to (1 0 0), in blue, or

(0 1 0), in red. The DMI lifts the degeneracy in a way that depends on the

direction of the external magnetic field.

While this is the theoretical treatment used by Onose et al. in their

original study of the magnon Hall effect, this Hamiltonian lacks any single-

ion anisotropy. Such terms are however very relevant in several pyrochlores,

leading e.g. to the Ising-like spins that are necessary for spin-ice behaviour.

Xiang et al. [113] performed a calculation based on density-functional
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theory plus on-site repulsion (DFT+U) and obtained an Hamiltonian with

an additional anisotropy term A
∑

(~Sj · ~z′j)2, with the vector ~z′j pointing

along the local threefold symmetry axis (i.e. pointing to the “centre” of the

tetrahedra). This calculation found J = 7.09, D = 0.048 and A = -3.64

meV, with a ratio |D/J | ≈ 0.048, one order of magnitude below the original

result.

In the same publication however the author renormalized the single-ion

anisotropy term, merging it into the DMI term with a renormalized coupling

Deff which depends on the spin configuration but can be as large as 1 meV.

If the second-order terms in the renormalized Hamiltonian are small enough,

it might be impossible to identify the terms via a measure of the spectrum.

Our study, while not sensitive to “bare” couplings, is crucial in order to find

deviations from the spectrum predicted by Hamiltonian 4.1.

4.3 Experimental work on Lu2V2O7

In order to determine the values of D and J , as well as the overall accu-

racy of the Hamiltonian, we have performed an inelastic neutron scattering

experiment on Merlin (ISIS, RAL, UK) in Autumn 2011.

Two high-quality single crystals, with a total mass of 3.6 g, were co-

aligned with (HHL) in the horizontal plane and cooled to base temperature,

4 K, without a magnetic field. Data were collected for incoming energies (Ei)

of 25, 50 and 80 meV with an instrumental resolution (FWHM) of 3.0, 5.3

and 7.2 meV, respectively, at the elastic line. Typical measurement times

were approximatively 16 hours.

The data were normalized with respect to a vanadium standard and were

corrected for detector efficiency and outcoming versus incoming wavevector

ratio kf/ki using the program MANTID [45, 46], expressing the data in abso-

lute units. The resulting S( ~Q, ω) datasets were analysed with the HORACE

[47] software package. The data will be presented in the next section.
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4.3.1 Overview of the data

Figures 4.5-4.7 show slices from the data sets with Ei = 25 meV to 80 meV.

At this point of the study, the following statements can be made:

• The magnon dispersion has been measured and is well-defined. At low

energy transfer, e.g. Fig. 4.5(b), the spin waves are almost perfectly

Q2-dependent, see Fig. 4.4. Around 15 meV the structure of the cubic

zone boundary can be observed. The magnon between 30 and 35 meV

of energy transfer is observed as mostly flat, despite still having a

significant structure in its spectral weight.

• At low energy transfers (below roughly 15 meV) the magnon can be

observed dispersing only from the allowed zone centres of a FCC cube

- e.g. (1 1 1) and (2 2 2), but not (1 0 1). At higher energy transfers,

this becomes less clear.

• A set of features can be observed with Ei = 80 meV at an energy

of 20 meV and at | ~Q| ≈ 4 r.l.u. and, due to their distinct spherical

symmetry, are unlikely to come from a single crystal. They can be

thus identified as aluminium phonons.

Local magnetic field

As explained in section 4.2.1, the effect of the DMI depends on the direction

of the local magnetic field. For instance, the degeneracy is lifted in W for

~H = [1 0 0], where a maximal splitting is observed, but not for ~H = [0 1 0],

where no splitting can be found.

This is experimentally a problem, since we did not apply an external

magnetic field (in order to maximize the coverage in ~Q). As a consequence,

the sample is divided into domains, and thus the observed spectrum is a

superposition of all local spectra: in other words, we do not expect splitting

of the modes but rather broadening of the lineshapes.
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Figure 4.5: Magnon dispersion of Lu2V2O7 at 4 K measured with Ei = 25

meV. (a) Momentum transfer H versus energy transfer, averaged for -0.8

< K < -0.2 and 0 < L < 1.5. An intense elastic line extends up to 3.5 meV,

above which two magnons centred at H = ±1 can be identified. Due to

the elastic line, it is not possible to tell whether the magnons are gapless or

gapped. (b) Slice of the data averaged for 0.9 < L < 1.1 and 4 < E < 6.5

meV. The data for an energy transfer of 4 meV lie on the outside, while the

data for an energy transfer of 6.5 meV lie on the inside. Four ring-shaped

magnons can be seen, centred at the equivalent Γ-points (±1 ±1 1). (c)

Slice of the data averaged for 0.9 < L < 1.1 and 6.5 < E < 9 meV. (d)

Slice of the data averaged for 0.9 < L < 1.1 and 4 < E < 9 meV. This slice,

which will be used as a reference later, is an average over the whole energy

range of (c) and (d).
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Figure 4.6: Magnon dispersion of Lu2V2O7 at 4 K measured with Ei = 50

meV. (a) Slice of the data averaged for -5 < K < 5 and 0 < L < 3. At

low energy transfers there are conical dispersive modes which extend all the

way to 15 meV energy transfer. (b) Slice of the data averaged for 1.8 < L <

2.2 and 10 < E < 16 meV. At this energy transfer, the magnetic signal is

still ring-like and centred around (±2 ±2 2). (c) Slice of the data averaged

for 1.8 < L < 2.2 and 16 < E < 18 meV. At this energy transfer the shape

of the dispersion resembles straight lines, indicating that this is the typical

energy of the magnon at the zone boundary. (d) Slice of the data averaged

for 0.8 < L < 1.2 and 10 < E < 18 meV meV.
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Figure 4.7: Magnon dispersion of Lu2V2O7 at 4 K measured with Ei =

80 meV. (a) Slice of the data averaged for -1.5 < K < -0.5 and 0 < L <

4. While the dispersive invensity around 20 meV energy transfer is due to

phonons, the magnetic signal at low ~Q extends up to approximately 35 meV.

(b) Slice of the data averaged for 0 < L < 3.5 and 18 < E < 24. (c) Slice of

the data averaged for 0 < L < 3.5 and 24 < E < 30 meV. (d) Slice of the

data averaged for 0 < L < 3.5 and 30 < E < 36 meV.
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4.3.2 Reduced axis plot

In order to make use of the symmetry of the lattice and the dispersion, we

have developed a new visualization method for this data, which is sketched

here.

In the case of D = 0 the Hamiltonian 4.2 can be diagonalized, as shown

in [118]. Specifically, with the definition

A( ~Q) = cos (πH) cos (πK) + cos (πK) cos (πL) + cos (πL) cos (πH) (4.4)

the dispersion can simply be expressed as

~ω1,2( ~Q) = J

(
2±

√
1 +A( ~Q)

)

~ω3,4( ~Q) = 4J. (4.5)

We define the reduced axis coordinate t( ~Q) = 2−
√

1 +A( ~Q) (for conve-

nience the ~Q-dependence of t will be dropped). By definition t is a unitless

scalar between 0 and 21. The dispersion can be expressed in very simple

terms as a function of t: the acoustic mode for instance is proportional to

t. The effect of D will be considered later.

~ω1(t) = Jt

~ω2(t) = J(4− t)

~ω3,4(t) = 4J. (4.6)

The rebinning of the experimental data to a reduced axis coordinate is

equivalent to reducing a spherically symmetrical system to | ~Q| (commonly

done e.g. for powders), with the important distinction that the entire Bril-

louin zone is rebinned to 0 < t < 2.

1It is trivial that A( ~Q) ∈ [-1,3] ∀ ~Q.
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The experimental data as a function of the reduced axis coordinate

As a further precaution in order to enhance the contrast between magnon

modes and the background and avoid contamination from the phonons, it

is possible to neglect the data with | ~Q| > Qlimit for some empirical value

Qlimit chosen as to result in optimal contrast (4 r.l.u. for Ei = 25 and 50

meV, 3 r.l.u. for Ei = 80 meV).
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Figure 4.8: Reduced plots for all incoming energies. The dispersion as a

function of t, described in the Eq. 4.6, is fitted (red lines) to obtain J =

8.1(1) meV. The different sampling of ~Q-space explains the different weight

given to specific parts of the dispersion: for instance the node at t = 2 and

E ' 16 meV is very intense when measured with an incoming energy of 50

and 80 meV, but is almost absent with 25 meV.

Figure 4.8 shows the result of the rebinning to the reduced axis coor-

dinate on all datasets. The data follows the expectations from the model,

folding into a set of lines whose fit suggests J = 8.1(1) meV. These fits are

dominated by the doubly-degenerate band at 4J .

A closer look at the reduced data with 25 meV incoming energy is pre-
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sented in Fig. 4.9, where the energy of the mode is extracted (under the

assumption of the signal’s lineshape being Gaussian) and then fitted to a

line, with a direct FM exchange of J = 7.3(2) meV and a gap of 0.8(2) meV.

This is not a reliable approximation of the actual gap (these values are in-

consistent with the high-energy bound mode due to the much reduced value

of J), but serves mostly to establish an upper bound to the gap assuming

that the dispersion is proportional to ~Q2 in the proximity of Γ.
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Figure 4.9: Fit of the reduced dataset obtained with Ei = 25 meV (logarith-

mic scale). The energy of the mode (red dots) as a function of t is extracted

from the data and fitted to a line (orange).

Despite the extreme simplicity of this analysis, we can already conclude

that a minimal model containing only the FM interaction accounts for the

main features of the scattering. In particular, we can identify no further

spectral modes, meaning that a four-site, four-modes Hamiltonian is suffi-

cient to describe the spectrum (which again suggests that nnn interactions

can be neglected within the goodness of the data). A second remark is that

the spectral intensity in the reduced plots follows straight lines, both con-

firming the shape of the dispersion and its dependence on J – i.e. linear with

respect to t, a coordinate which doesn’t depend in any way on the Hamil-

tonian. Finally, this simple analysis suggests an approximative value for J

of 8.1(1) meV.
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We also set an upper limit to the gap at 0.8(2) meV, i.e. one order

of magnitude below the direct exchange. However, this analysis for now is

unable to establish a value for the DMI. The reason is that, as highlighted in

Fig. 4.4, the DMI has very little effect on the acoustic and optical branches

for most values of ~Q – only at the zone boundary it has an appreciable effect

– and, as far as the reduced plots, the DMI manifests itself as a widening

of the intrinsic lineshape. A finer analysis is thus required to address the

question of the magnitude of D.

4.4 Modelling of the data

4.4.1 Modelling methods

The energy of the magnon can be derived from Eq. 4.2, and the spectral

weight can be calculated using a paper by H. Ichikawa [114]. Simulations

with J = 8.1 meV (as indicated by the reduced plots) are diplayed in Fig.

4.10. While this approach accounts very well for the signal below 2J , clear

discrepancies are found at higher energy transfers. This is most likely due

to the Holstein-Primakoff approximation, which is a harmonic expansion

on the ground state [134]; while at low energy transfers the magnon can be

considered a perturbation of the ground state, the deviation at higher energy

transfers is a result of these approximations no longer holding. Specifically,

Fig. 4.10(f) seems to lack a phase factor.

In order to simulate the spectrum we therefore use the program suite

McPhase [135, 74]. The inputs for this program are the magnetic sites and

the Hamiltonian, which are used for a Monte Carlo simulation, simulating

the magnetic structure at a given temperature. Then a mean-field spin-wave

theory is employed to obtain the dispersion and the spectral weights. This

approach is expensive in terms of computation and time, but the mean-

field method used to calculate the spectral weight performs equally well at

all energies – as it does not rely on approximations on the ground state.

McPhase has already been used to explain several interesting properties,



4.4. Modelling of the data 110

Figure 4.10: Data (left) versus simulations (right) for J = 8.1 and D = 0

based on the Holstein-Primakoff approximation. The averaging ranges and

the color map are as previously explained in Fig. 4.5(d), 4.6(d), and 4.7(d).

The agreement is very good at the lowest energy transfer, but poor at higher

energy transfers, e.g. between (e) and (f).
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such as magnetic phase diagrams and spectra in a number of magnetic sys-

tems [136, 135, 137, 138, 139, 140].

A simulation of the spectrum of Lu2V2O7 for J = 8.1 and D = 0 meV

is presented in Fig. 4.11. This method is shown to describe adequately the

spectrum at all energy transfers, including the doubly-degenerate bound

mode at 4J .

While these simulations are useful in making sure that the general prop-

erties of the spin waves are described, they are of little use in determining

D, and a full fitting of the spectrum is required.

4.4.2 Fitting of the reduced plots

Reduced plots are suited to perform fits as the collapse the whole data

into a limited interval, i.e. [0,2]. Due to the computational requirements

of McPhase, a simulation of the whole spectrum is beyond the available

resources. Instead of fitting the whole dataset, a simultaneous fit on a

number of cuts was performed.

The fitting procedure can be summarized as follows:

• Select a number of cuts to be examined. Specifically we will consider

a cut around 2J at t = 2 and two cuts around 4J at t around 0.8 or

1.6.

• All of these cuts are taken from the reduced plots for Ei = 50 meV.

The data with Ei = 25 meV has almost no intensity at 2J and does

not cover the doubly-degenerate bound mode, the data with Ei = 80

meV has a larger instrumental resolution. The data with Ei = 50 meV

is thus best suited.

• As discussed previously, the sample is divided into domains with dif-

ferent orientations for the local magnetic field. It will be assumed that

the domains order according to the easy direction, ~H = [1 0 0], [0 1 0]

and [0 0 1]. Three spectra will be calculated and averaged.
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Figure 4.11: Data (left) versus McPhase simulations (right) for J = 8.1

and D = 0 meV. The averaging ranges and the color map are as previ-

ously explained in Fig. 4.5(d), 4.6(d), and 4.7(d). In general, there is good

agreement between the data and the simulations.
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• The fitting procedure involves selecting the portion of ( ~Q, ω)-space

that contributes to a specific (t, E) range, simulating the scattering

S( ~Q, ~ω) and reducing it to (t, E) coordinates in order to perform the

fit.

• The background was modelled as being collinear to the energy.

The instrumental resolution was modelled as a Gaussian of width 2.6

meV (at an energy transfer of 30 meV for an incoming energy of 50 meV), a

result derived using Tobyfit [141]. The accuracy in this calculation is crucial

as the DMI manifests itself as a widening of the magnon, and thus may

correlate with the instrumental resolution.

Figure 4.12 shows fits of the reduced plots. We have obtained a very good

agreement between the data and the model for the values of J = 8.22(2)

meV (compare with the value of 8.1(1) meV previously obtained) and D =

1.5(1) meV. The best value for χ2 is 2.9.

At energy transfers below 4J no effect of the DMI can be detected even

at the zone boundary (t = 2), which we explain in terms of the instrumental

resolution (around 4 meV) dominating over a potential broadening. At

energy transfers around 4J the effect of the DMI is markedly t-dependent.

It is found, for instance, that the DMI has a particular importance at t =

1.6, leading to a very clear alteration of the lineshape.

Figure 4.13 shows McPhase simulations of the experimental data, once

again displaying a good agreement of the simulations with the data (which

was already established by the simulations with D = 0). Furthermore Fig.

4.14 shows comparisons between two selected cuts, fits thereof and simula-

tions performed with D = 0. The model explains satisfyingly the spectral

distribution and the lineshapes of the magnon.

4.5 Conclusions and outlook

We have performed a high-quality neutron scattering experiment on

Lu2V2O7 and measured its spin-wave dispersion. In order to analyse the



4.5. Conclusions and outlook 114

(a) t = 2.0

12 13 14 15 16 17 18 19 20

0

5

10

(b) t = 0.8

28 30 32 34 36 38 40

0

2

4

6

8

In
te
n
si
ty

[a
b
s.
]

(c) t = 1.6

28 30 32 34 36 38 40

Energy transfer [meV]

0

2

4

6

8

Figure 4.12: Various cuts of the data in rebinned coordinate (black) com-

pared to fits at the optimum values of J = 8.22(2) and D = 1.5(1) meV

(red). The blue curves are simulations with J = 8.22 and D = 0 meV to vi-

sualize the effect of the DMI on the dispersion. The dotted green line marks

the linear background. (a) At 2J the mode is expected to present substan-

tial splitting at the zone boundary t = 2. However, the width is dominated

by the instrumental energy resolution and no effect can be resolved. (b) A

high-energy average for 0.7 < t < 0.9. In this cut the difference between D

= 0 and D = 1.5 meV is small. (c) A cut for 1.5 < t < 1.7. In this instance

the effect of the DMI is substantial.
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Figure 4.13: Data (left) versus McPhase simulations (right) for J = 8.22 and

D = 1.5 meV. The averaging ranges and the color map are as previously

specified in Fig. 4.5(d), 4.6(d), and 4.7(d).
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Figure 4.14: Comparison between the experimental data (black circles), the

fits (red) and simulations without the DMI (blue) as for two cuts. The green

lines mark the constant background. Compare to Fig. 4.5(d) and 4.7(d).

(a) Cut performed on the dataset with Ei = 25 meV with 0.9 < K < 1.1,

0.9 < L < 1.1, and 6 < E < 8 meV. The inset shows a reference slice at

this energy transfer and L value, while the yellow rectangle shows the region

of averaging in K. At this energy transfer, there are very little differences

due to the DMI. (b) Cut performed on the dataset with Ei = 80 meV

with 1.5 < K < 2.5, 2 < L < 6, and 30 < E < 36 meV. With the

scattering at this energy transfer resembling a cross, this cut goes through

the “upper” arm of the cross, displaying a wide peak of scattering (with a

FWHM exceeding the reciprocal lattice unit). The effects of the DMI, while

perceivable, are very contained.



4.5. Conclusions and outlook 117

data we have developed a rebinning technique that allows to reduce all ~Q-

vectors to a scalar value t ∈ [0 2]. In the case of D = 0 the dispersion

becomes a series of straight lines once rebinned.

Due to the complexity of the spectral weight, modelling of the data

was performed with the program McPhase, which provided an outstanding

agreement. In general no further interaction or effect is required in order to

explain the dispersion within the limits of our data.

Furthermore, fits of the reduced data allowed to identify specific regions

where the effect of the DMI is particularly visible. The fits resulted in the

values of J = 8.22(2) and D = 1.5(1) meV.

The ratio between the direct FM interaction and the DMI is 0.18(1).

While not the value of ∼1/3 originally obtained to explain the thermal

transport measurements by Onose et al. [118], this ratio is larger than those

obtained in other theoretical approaches [113, 121]. Our result highlights the

presence of a large DMI in Lu2V2O7 and is a strong, independent argument

in favour of the existence of the thermal Hall effect.

At the end of this study, some outstanding points are still to be investi-

gated.

• Our Hamiltonian includes no next-nearest neighbour interaction nor

single-ion anisotropy (in contrast to other insulating pyrochlores, such

as those giving rise to the spin-ice behaviour), and predicts no gap at

the Γ point (although we can estimate an upper limit of 0.8(2) meV by

assuming linearity). In general measurements with a higher accuracy

and energy resolution are required to motivate the presence of these

terms or completely exclude them.

• Due to the absence of an external magnetic field during the measure-

ment the data is described as an average of all possible local magnetic

directions. A high-resolution in-field measurement is required in order

to observe split modes (i.e. at the zone boundary at 2J , or at 4J) and

decrease the uncertainty on the value of D.
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• Our study is by construction symmetric with respect to the sign of D,

i.e. we cannot determine the direction of ~Dj,k. However, measurements

of the thermal magnon Hall effect have been interpreted in terms of

opposite signs of D [123]. Conventional methods used to determine

the sign of D rely usual on structural signatures (e.g. the orientation

of a spiralling magnetic order) [142, 143], but Lu2V2O7 is a collinear

ferromagnet [132]. The question of the direction of the DMI is thus still

open and relevant to the development of magnon topological insulators

[123].

• We are confident that this result will stimulate further discussion and

research in the study of the thermal magnon Hall effect in the hope to

establish a solidified model of this phenomenon.

To further the investigations on this compound, we suggest to perform

in-field measurements of the spectrum in order to avoid modes overlapping.

For instance, a triple-axis measurement at the Γ-point around an energy

transfer of 4J should highlight two additional peaks at 4J ±
√

2D, allowing

a direct measurement of the DMI. Similarly, measurements at the Γ-point

close to the elastic line might be attempted to confirm the gaplessness of

the system. We have carried out several attempts in this direction, using for

instance polarized neutron spectroscopy at ILL, but the energy resolution

has proven to be a challenge.



Chapter 5

Triplon-to-triplon

interactions in the 2D

dimerized antiferromagnet

SrCu2(BO3)2

5.1 Scientific background

Lattice geometry can induce a wide array of interesting and unexpected

effects even in the simplest symmetries. It is the case for the so-called

Shastry-Sutherland geometry [144, 145], a 2D square structure that poten-

tially exhibits dimerization and frustration due to the next-nearest neigh-

bour (nnn) antiferromagnetic interaction being stronger than the nearest-

neighbour (nn) exchange, as sketched in Fig. 5.1(a).

The frustrated nature of the Shastry-Sutherland lattice means that usu-

ally there is no long-range order [145]. However, several forms of short-range

order, such as dimers, plaquette and stripy order [146, 147] have been pro-

posed. One of the few material realizations of the Shastry-Sutherland model

is the compound SrCu2(BO3)2 (SCBO) [148, 149, 150], whose structure is

sketched in Fig. 5.1(b). Another material that realizes this geometry is the

tetragonal rare-earth-metal TbB4 [151]. In these compounds, magnetization

plateaus appear at certain ratios of the full magnetization, as shown in Fig.

5.2 [148, 152, 153]. A full explanation of the reason behind these plateaus

is available in Ref. [154].

119
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Figure 5.1: Structure of SrCu2(BO3)2. (a) In the Shastry-Sutherland ge-

ometry, ions form a square lattice and their interactions are dominated by

the diagonal next-nearest neighbour exchange J ′ (red lines). If J ′ is an anti-

ferromagnetic interaction, the lattice is geometrically frustrated. (b) SCBO

crystallizes in a topologically equivalent structure with pairs of Cu2+ ions

lying perpendicular to their four neighbouring pairs.

Figure 5.2: Magnetization as a function of external magnetic field in SCBO.

The solid black line and the open circles are obtained using various tech-

niques. The horizontal colored lines mark the positions of the magnetization

plateaux as determined via NMR: they can be found at 1/8, 2/15, 1/6 and

1/4 of the full magnetization [153].
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In SCBO, which cristallizes in the tetragonal I 4̄2m symmetry (a = b =

8.995 and c = 6.649 Å), the magnetic Cu2+ ions (S = 1/2) lie on 2D planes

(the a-b planes) that are topologically equivalent to the Shastry-Sutherland

lattice, with the notable difference in terminology that the dominant in-

teraction is between the couples of ions that lie the closest to each other.

Theoretical studies have suggested a phase diagram as shown in Fig. 5.3

[155], where the ratio between two exchange parameters in the plane (J and

J ′) and one out-of-plane parameter (J ′′) can lead to several ground states.

Further states, such as quadrimerized, have been suggested [156]. The ex-

change parameters of SCBO position it very near to the quantum phase

transition, as shown in Fig. 5.3 so that it is possible to trigger a phase

transition from a dimerized state to a plaquette state: this can be achieved

for instance by using pressure to change the lattice parameters [157].
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the bold line in Fig. 3, which separates two disordered
phases. When J ′′ = 0 (Shastry-Sutherland model), the
plaquette phase undergoes the first-order quantum phase
transition at (J ′/J)c = 0.68. Since this critical value ob-
tained by the fifth-order expansion consistent with
result (J ′/J)c = 0.677 obtained by the seventh-order ex-
pansion,21) it is expected that this lower-order expansion
with the first-order inhomogeneous differential method
may give the phase boundary quantitatively well even in
the 3D model. By introducing the interlayer coupling
J ′′, the energy for the plaquette phase seems to decrease
quadratically, while the energy for the dimer phase is not
changed due to its orthogonal-dimer structure. This im-
plies that the phase boundary between the two spin-gap
phases is little affected as long as the interlayer couplings
are small.
In order to completely discuss the interlayer effects,

the antiferromagnetically ordered phase stabilized by
the interlayer coupling must be properly taken into ac-
count. Performing the plaquette expansion for the spin
gap up to the fourth order in λ, we determine the
second-order quantum phase transition point by means
of the biased Padé approximants with the critical expo-
nent ν ∼ 0.6. The introduction of the interlayer cou-
plings induces the antiferromagnetic correlation, while it
suppresses the frustration which stabilizes the plaque-
tte phase. The multi-critical point can be estimated
as (J ′/J, J ′′/J) ∼ (0.67, 0.08), and it is seen that the
plaquette phase induced by the frustration is not stable
against the interlayer coupling.
We next consider the present system as the coupled

two-leg ladders22) (J ′ ∼ 0), as shown in Fig. 4. We
discuss how the dimer and the Haldane phases com-

theis

Fig. 4. The two-leg ladder with diagonal bonds, which may be
considered to be a chain of tetrahedra with shared edges.22)

Fig. 3. The phase diagram for the 3D orthogonal-dimer system.
The bold and solid lines represent the phase boundaries where
the first- and the second-order quantum phase transitions oc-
cur, respectively. The open circles indicate the locations of the
orthogonal-dimer compound SrCu2(BO3)2 obtained by Miya-
hara and Ueda,10) and Knetter et al.11)

Note that the direct product of the dimer-singlet states
formed by the couplings J is always an eigenstate of the
Hamiltonian (1) with the energy E = −3/8NJ , even in
the 3D model,12) where N is the total number of spins.
We then discuss how the interlayer coupling on the 2D
Shastry-Sutherland model (J ′′ = 0) affects the quantum
phase transitions. We recall here the scenario in our
previous paper21) where the first- (second-)order quan-
tum phase transition in 2D was discussed by calculating
the ground state energy (the spin gap) for the plaquette
phase. Following this concept, we compute the quanti-
ties for the plaquette phase by means of the series expan-
sion technique. We choose the arrangement of plaquettes
shown in Fig. 2 as a starting configuration. In this fig-
ure, the shaded squares represent the plaquettes formed
by the exchange coupling J ′. The other bold and solid
lines indicate the exchange couplings between the pla-
quettes, λJ and λJ ′, respectively. We also set the inter-
layer coupling as λJ ′′, which is not shown in this figure,
for simplicity. To discuss the first-order quantum phase
transition to the dimer phase, we perform the plaquette
expansion for the ground state energy up to the fifth or-
der in λ for several values of J ′ and J ′′. We estimate the
ground state energy in the case λ = 1, where the model is
reduced to the original orthogonal-dimer model by means
of the first-order inhomogeneous differential method.36)

Comparing the energies for the dimer and the plaque-
tte phases, we determine the phase boundary shown as

disordered phase, which is exactly formed by the triplet
(S = 1) on each rung. Note that the singlet on each
rung is completely decoupled from the triplet for any
value of J ′′, due to the orthogonal-dimer structure.22-26)

Therefore, this disordered phase is equivalent to the Hal-
dane phase realized in the S = 1 quantum Heisenberg
chain.27-33) Concerning the first-order transition, it is
known that the cusp and jump singularities appear in
the excitations22, 25) and the magnetization curve.26)

In this study, we discuss the phase diagram for the 3D
system by means of the series expansion method.34) We
observe how the frustration affects the quantum phase
transitions. It is also clarified that the spin-gap com-
pound SrCu2(BO3)2 is located in the vicinity of the
phase boundary which separates the dimer and the mag-
netically ordered phases.
In the series expansion approach,34, 35) we start with

isolated clusters of a proper spin-singlet configuration.
For this purpose, we divide the original Hamiltonian into
two parts asH = H0+λH1, whereH0(H1) represents the
unperturbed (perturbed) Hamiltonian and λ is an aux-
iliary parameter. Details of the initial configurations for
various phases are given in the following. By turning on
the couplings among the clusters perturbatively (H1), we
carry out the series expansion in λ for the ground state
energy and the spin gap. Then the critical point for the
first- (second-)order transition is determined by applying
the first-order inhomogeneous differential method (Padé
approximants) to the obtained series.36) In the follow-
ing, starting with the Shastry-Sutherland model and the
two-leg ladder model with diagonal bonds, we deal with
quantum phase transitions for the 3D orthogonal-dimer
model.

Figure 5.3: Proposed phase diagram of the three-dimensional compound of

stacked Shastry-Sutherland planes, such as SCBO. The exchange parameters

J , J ′ and J ′′ are respectively the intra-dimer, inter-dimer, and inter-plane

couplings. The open circle mark the proposed location of SCBO. Repro-

duced from [155].

I have performed inelastic neutron scattering experiments on SCBO in

order to measure its spectrum and determine the Lorentzian widening of its

lineshape as a function of ~Q. In this chapter I will present the data and my

analysis.
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5.1.1 The Hamiltonian of SCBO

In first approximation, SCBO is described by the Hamiltonian:

H =
∑

nn

J ~Sj · ~Sk +
∑

nnn

J ′~Sj · ~Sk +
∑

oop

J ′′~Sj · ~Sk,

where nn labels intra-dimer exchanges, nnn labels inter-dimer exchanges,

and oop labels the out-of-plane interactions. The small ratio of J ′′/J <

1/10, and the fact that the interaction is frustrated, mean that out-of-plane

contributions can be neglected.

In its ground state, the spins are expected to form antiparallel singlets

for J ′/J < 0.68, a ratio that defines a quantum critical point above which

the ground state is unknown but suspected to be quadrumerized [156]. Sus-

ceptibility measurements for SCBO [158, 159] suggested J ′/J = 0.62, right

below the quantum critical point.

In this regime the lowest-lying magnetic excitation is a singlet-to-triplet

excitation. The resulting quasiparticle, called a triplon, is a hard-core boson

(i.e. two such bosons cannot share the same dimer site). The frustrated in-

teraction between dimers drastically reduces the hopping probability [160],

resulting in a flat triplon dispersion despite the strong inter-dimer interac-

tion.

However, the symmetry together with a slight buckling of the Cu2+ ionic

planes allow for the Dzyaloshinskii-Moriya interaction (DMI) [10, 11], thus

introducing new terms in the Hamiltonian:

H =
∑

nn

(
J ~Sj · ~Sk + ~Dj,k(~Sj × ~Sk)

)
+
∑

nnn

(
J ′~Sj · ~Sk + ~D′j,k(~Sj × ~Sk)

)
,

with two sets of DM vectors. First order perturbation theory allows to re-

duce the number of variables in this Hamiltonian by applying a local rotation

of the spins ~S to ~S′. In this new system,
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H =
∑

nn

J ~S′j · ~S′k +
∑

nnn

(
J ′ ~S′j · ~S′k + D̃j,k(~S′j × ~S′k)

)
+O(

D

J
);

where the new DMI vector D̃j,k has two components: an a-b component D‖

and a component along the c axis D⊥:

D̃‖ = D′‖ +
J ′

2J
D‖

D̃⊥ = D′⊥.

Neglecting the higher orders O(D/J) of the Hamiltonian leads to the

matrix form

H( ~Q) =

(
J+D̃⊥f( ~Q) −iD̃‖g( ~Q) 0

iD̃‖g( ~Q) J iD̃‖g( ~Q)

0 −iD̃‖g( ~Q) J−D̃⊥f( ~Q)

)
(5.1)

for some functions f( ~Q) and g( ~Q), whose solutions are

~ω( ~Q)0 = J

~ω( ~Q)1,2 = J ±
√
D̃2
⊥f( ~Q) + 2D̃2

‖g( ~Q). (5.2)

These solutions are symmetrical with respect to J . A simulation of the

spectrum (including the spectral weight) is shown in Fig. 5.4.

We note that, as the dispersion without DMI is perfectly flat and thrice

degenerate (up to higher expansions in J ′/J), any dispersion is dominated

by the DMI. The low dispersion of the triplons is expected from the low

mobility: an ideally localized excitation is expected to have a flat Fourier

transform. The DMI dominating the dispersion is in stark contrast to most

known materials.
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Figure 5.4: Dispersion relations of the three triplon branches derived from

the Hamiltonian 5.1, figure from reference [161].

5.1.2 Exact diagonalization

The Hamiltonian 5.1 however did not explain the experimentally observed

dispersion. This was explained in terms of the first order perturbation the-

ory, which was used in deriving this analytical Hamiltonian, not being ade-

quate – especially due to the closeness of a quantum critical point at J ′/J

= 0.68.

Exact diagonalization was performed on a 32-site cluster in order to

compute the lowest-lying excited states of SCBO [161]. The result is shown

in Fig. 5.5 for D̃⊥ = 0.18 meV and D̃‖ = 0.07 meV. Despite the cluster size

and the constraint on J ′/J to be 0.62, there is general agreement between

the experimental data and the exact diagonalization.

To conclude, the singlet-to-triplet excitations in SCBO are three modes

centred around an energy transfer of 3 meV, ranging from the most disper-

sive at the bottom to the least dispersive at the top, residing in a bandwidth

of roughly 0.4 meV.

Of further note is the magnitude of the gap. Dispersionless dimers could

be expected to have a flat dispersion with a gap of J . It has however been

shown that for the Shastry-Sutherland geometry, the size of the gap is a

function of J ′/J : for J ′ = 0 then the gap ∆ is equal to J , but as J ′/J

increases the gap decreases [164], see Fig. 5.6. In the case of SCBO, fits of

the susceptibility measurements [158, 159] suggested that J = 85 K, J ′ =
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Figure 5.5: Comparison between experimentally measured data for the dis-

persion of SCBO [162, 163] (diamonds) and the result of exact diagonaliza-

tion (circles) taken from [161]. The solid lines are a guide to the eye.

54 K, J ′′ = 8 K and ∆ = 35 K.

2 Shin Miyahara and Kazuo Ueda

§2. Ground state and first excited state

2.1 Two-dimensional orthogonal dimer model

As shown in our previous analysis3) the magnetic prop-
erties of SrCu2(BO3)2 are described rather well by the
two-dimensional Hamiltonian:

H = J
∑

n.n.

si · sj + J
′ ∑

n.n.n.

si · sj . (2.1)

The system is shown in Fig. 2 (a). The model can be
considered as a coupled dimer model. The dimers, where
two spins are coupled with the nearest-neighbor coupling
J , are connected by the next-nearest-neighbor bond J ′.
An elementary unit for the interaction between a pair of
the dimer bonds is shown in Fig. 2 (b). It is convenient
to use the dimer bases defined for each nearest-neighbor
bond:

|s〉 = 1√
2
(| ↑↓〉 − | ↓↑〉), (2.2)

|t1〉 = | ↑↑〉, (2.3)

|t0〉 =
1√
2
(| ↑↓〉+ | ↓↑〉), (2.4)

|t−1〉 = | ↓↓〉. (2.5)

(b)

J
J’

a
b

(a)

3 42

1

Fig. 2. (a)The model for SrCu2(BO3)2 : Two-dimensional or-
thogonal dimer model. (b)A configuration of two dimers which
are orthogonal.

The direct product of the singlets on dimers defined

by

|Ψ〉 =
∏

a

|s〉a (2.6)

is an exact eigenstate of the Hamiltonian (2.1).2, 3) Here
the index a denotes each dimer bonds and runs over all
dimer bonds. For coupling constants J ′/J < 0.69 this
eigenstate is the ground state.3, 12, 13) This model shows
a quantum phase transition at J ′/J = 0.69 from the
dimer singlet state to the Néel ordered state which is
gapless.4) Note that in the limit of J

′
/J → ∞, the

present model reduces to the square lattice Heisenberg
model, whose coupling constant is J

′
.

The singlet dimer ground state has a spin-gap, which
can be estimated by the perturbation theory. The spin-
gap up to the fourth-order is given by

∆

J
= 1− (

J
′

J
)2 − 1

2
(
J

′

J
)3 − 1

8
(
J

′

J
)4, (2.7)

and the result up to the fifteenth-order is given in Ref. 12.
The spin-gap for finite systems is shown in Fig. 3, where
the number of the spins is 16, 20, and 24 with periodic
boundary conditions. The finite size effects for J ′/J <∼
0.66 are small. The results of eq. (2.7) and the numerical
results for the finite size systems agree well for J ′/J <
0.5.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

∆/
J

J’/J

N=16
N=20
N=24

Fig. 3. Spin-gap for finite lattices: Ns = 16, 20, and 24 from the
dimer singlet ground state. The solid line is the perturbation
result up to the fourth order.

The perturbation theory predicts a novel character for
the triplet excitation. The triplet excitation is com-
pletely localized up to the fifth-order, which leads to
crystallization of the triplet excitations at certain mag-
netizations. At magnetizations where the crystallization
occurs, the magnetization plateaus appear.3, 5–7) This
feature of the triplet excitations can be understood from
the matrix elements for one triplet excitation.

J
′
(s1 + s2) · s3|t1〉a|s〉b =

J
′

2
|t1〉a|t0〉b −

J
′

2
|t0〉a|t1〉b ,

(2.8)

Figure 5.6: Ratio between the gap energy ∆ and the AF interaction J as a

function of J ′/J . N indicates the size of the system that was used in the

computation. Figure reproduced from [164].

5.1.3 Temperature dependence of the spectrum

In dimerized materials a non-zero temperature leads to a thermal population

of quasi-particles, characterised by increased repulsion, reduced mobility,

and a reduction of the dispersive bandwidth [165]. As a rule of thumb, in

a system with a gap the excitation is expected to remain visible up to a

temperature comparable to the gap (as is the case to varying degrees in
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both RbCoCl3 and Lu2V2O7).

However, this is not true in SCBO, as the intensity of the triplon is

strongly suppressed above T = 5 K � ∆ = 35 K � J = 85 K, and turns

into a flat continuum around 15 K. A summary of previous results from

inelastic neutron scattering investigations is presented in Fig. 5.7.

This unusual phenomenon has been explained in terms of a triplon-to-

triplon interaction. The mechanism is as follows: a triplon, be it thermally

excited or created by an incident neutron, polarizes its surrounding singlets

(it lifts the local degeneracy for the two singlets perpendicular to its di-

rection). Previous studies using exact diagonalization suggested that this

locally ordered state can extend for 1.3 lattice units, i.e. ∼5 unit cells [157].

Figure 5.8 shows a simplified picture of the triplon-to-triplon polarized shell.

In the lower part of the grid, a thermally-excited triplon polarizes the sin-

glets around itself, creating a polarized shell (light blue circle). In the upper

part of the grid, a new triplon is excited (e.g. by a neutron) several unit

cells away, but their shells overlap resulting in an effective interaction and

a much faster decay channel. One polarized shell covers ∼10 dimers: thus

a relatively small number of thermally excited triplons (one in nine) guar-

antees a substantial, if not complete, coverture of the plane. This is the

reason why even with T < ∆ the triplons interact strongly and may not be

long-lived.

In previous neutron scattering measurements, the magnetic signal has

been divided into two components, as shown in Fig. 5.9. Firstly the so-

called sharp (i.e. resolution-limited) component, which is the manifestation

of triplons excited far away from any other triplon. The intensity of the sharp

component is expected to be maximal and dominant at T = 0 K, and to

drop quickly as triplons are thermally excited. Secondly the so-called broad

component, which is characterized by a temperature-dependent Lorentzian

convolution induced by the decay time of triplons (which is a function of the

triplon density). The intensity of this component is expected to be zero at

low temperature, to then rise as spectral weight moves away from the sharp
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Figure 5.7: Results from previous INS studies on a SCBO powder sample

performed on FOCUS (PSI) [160]. (a,b) Dispersion of SCBO at 2 and 15 K.

(c) ~Q-dependence of scattered intensities. Solid dots are integrations cen-

tred on the triplon energy (2.8 < E < 3.2) while empty dots are averaged in

other energy-regions (1.5 < E < 2.2 and 2.8 < E < 4.2). (d) ~Q-integrated

spectrum. (e) Partial spectral weights. (f) Fitted components of the spec-

trum: the peak intensity in blue, the flat background in red, and their sum

in black.
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Figure 5.8: Illustration of the triplon-to-triplon interaction in SCBO, further

explained in the text. The blue dashed line represent one unit cell. Image

from [157].

to the broad component, and then to diminish at even higher temperatures.

While previous studies only studied this behaviour at a very limited

number of ~Q-points, the technique of ToF spectroscopy allows us to address

the question of the ~Q-dependence of the intensity of the two components, as

well as of the Lorentzian width. This will be necessary for future studies in

order to confirm the properties of the decay channels, as well as the spatial

distribution of the magnetized shells of the triplons.

5.2 Experimental work on SCBO

In order to measure the dispersion of SCBO as a function of temperature two

experiments were performed at LET (ISIS, RAL, UK) in Autumn 2011, and

Spring 2013. Eleven high-quality single crystals, with a total mass of 10.3 g,

were coaligned with (HHL) in the horizontal plane. Data were collected for

the incoming energy Ei of 7 meV with an instrumental resolution (FWHM)

of 0.153(7) meV at the elastic line, and datasets were collected for an average

of 20 hours at the temperatures 2.5, 5.5, 7.3, 8.0, 8.5 and 10 K.

The data were corrected for detector efficiency and outcoming versus

incoming wavevector ratio kf/ki using the program MANTID [45, 46]. The

resulting S( ~Q, ω) datasets were analysed with the HORACE [47] software

package. Unless otherwise noted, the results will be presented averaged
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Figure 5.9: Scans and fits at ~Q = (1.5 0.5 0) from previous INS studies on a

SCBO single crystal performed on the triple-axis spectrometer TASPby M.

Zayed (PSI). (a) Scans at several temperatures. (b) Fit (red) of the magnetic

signal at 8 K. The signal is separated in two components: a resolution-limited

sharp Gaussian (green) and a broad Voigt curve (yellow). The black line is

a fit to a single Lorentzian. (c,d) Effect of the magnetic field on the triplon.
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along the direction L due to the strong two-dimensionality of the system.

The resulting file had 40960 pixels and 501 time-bins.

5.3 Experimental results

Figure 5.10 shows the dispersion at base temperature T = 2.5 K. As expected

from previous experiments, three dispersive modes are observed, ranging

from the strongly dispersive lowest-lying mode to the almost-flat highest-

lying mode. This confirms previous measurements on this compound. The

excitations are centred around ∆ ≈ 3 meV, which is equivalent to a temper-

ature of 34 K.

Figure 5.10: Triplon dispersion in SCBO at T = 2.5 K in two distinct

H − K planes shown in a common logarithmic color scale. The data is

averaged with (a) 0.925 < H < 1.075, (b) 0.425 < H < 0.575 r.l.u., and

shows the three singlet-to-triplet excitations around 3 meV energy transfer.

The signal above 4.5 meV is magnetic in nature and explained as two-triplon

excitations. The oblique line of white pixels originates from a gap in the

detector coverage of LET.
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Figure 5.11 shows the evolution in temperature of the magnetic excita-

tion in a specific subset of the data. The triplon excitations are sharp at the

lowest temperature, and as expected are broadened to the point of being

flat at 10 K < ∆. Moreover, Fig. 5.12 displays cuts data performed around

the excitation at three ~Q-points at all temperatures. These show with more

clarity the trend towards increased broadness and the decreased intensity of

the triplons.

Figure 5.11: Triplon dispersion in SCBO at all experimental temperatures,

shown on a common logarithmic scale. The averaging conditions are the

same as in Fig. 5.10(a). The magnetic signal at 2.5 and 5.5 K is comparable,

but it decreases in maximum intensity and becomes much wider at higher

temperatures, becoming almost featureless at 10 K.

This data is consistent with the many studies previously conducted on

SCBO. The FWHM of LET at an energy transfer of 3 meV, estimated by

fitting the data at 2.5 K with a set of Gaussian functions, is 0.125(9) meV.

This width is comparable to the maximum splitting between the triplon

branches, which is why the tails of the modes overlap even at the Γ-point.
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Figure 5.12: Effect of temperature on the dispersion of SCBO at three ~Q-

points. The data has been averaged over an interval of 0.1 r.l.u. width

(except for the total integration around L) and a small offset in intensity has

been introduced for clarity. (a) and (b) clearly show three peaks, while in (c)

the dispersion is close to being degenerate and the intensity is concentrated

in a single peak, around 3.15 meV: the presence of a peak around 2.85 meV

in the last panel will be shown to be spurious in the next section.
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5.3.1 Alignment of the sample

A number of spurious lines can be seen in the data. For instance in Fig.

5.10(b) two lines can be seen crossing around K = -1, a result in contrast

with previous studies of the material (see Fig. 5.5). This was due to mis-

aligned crystal or of crystallites.

Figure 5.13: Comparison between (a) data from previos experiments [160]

and (b) the present data. At ~Q half-integer (i.e. the midpoint of the unit

cell) the mode is expected to be fully degenerate (within resolution) by both

previous experiments and theoretical considerations; however a small peak,

marked with a black arrow, can be seen in our data. This is the result of a

misaligned crystallite in the sample.

Figure 5.13 provides a further clear example of a peak appearing at an

unexpected energy. This introduces a further challenge in the analysis, as

will be explained in the next section.

5.4 Discussion of the data

5.4.1 Fitting procedure

Once the equivalence with previous result in the literature has been estab-

lished, a fitting procedure is applied here. Due to the misaligned crystals

providing spurious triplon lines that cannot be separated from the data,

writing a complete cross section is impossible. As these lines are generally

weaker than the main branches of the excitation and have slightly different
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energies, they could be treated like tails by a fitting procedure. Including

these spurious modes is thus crucial if one wants to separate the physical

broadening of the modes from the crystal misalignments.

The approach we will follow here instead assumes that the signal at 2.5

K is the cross section. This approach has the advantage that the signal

at 2.5 K already including all spurious signals, preventing any unrequired

broadening. The procedure is as follows.

• The procedure progresses analyzing one ~Q-point at a time at all tem-

peratures. The width of the ~Q-binning can be varied, but will be 0.125

r.l.u. for the purpose of this calculation.

• The data at 2.5 K is separated into the background and the triplon

excitations. Being the data at the lowest temperature, it is assumed

that it presents no broadening and that its width is the instrumental

resolution. The data of the triplon excitation is therefore used as a

“cross section” S2K( ~Q, ~ω).

• The cross section at higher temperatures is obtained by scaling and

convolving S2K( ~Q, ~ω). By scaling S2K we obtain the sharp compo-

nent, while by scaling and convolving with a Lorentzian we obtain the

broad component.

• The fit parameters are the background, sharp intensity, broad intensity

and Lorentzian broadening Γ ~Q(T ).

• As Γ ~Q(T ) is fitted freely, a map Γ(T, ~Q) can be obtained.

A further fitting parameter already introduced in previous studies [157,

160] is the shift in energy δω, an upward shift of the center of mass of the

triplon with increasing temperature. This empirical parameter accounts for

the fact that, as triplons are populated, due to their repulsive nature it

becomes more difficult to excite them, which leads to an effective increase

in the singlet-to-triplet excitation energy. Previous studies provide maximal

values for δω in the order of magnitude of 0.1 meV, or 10 K.
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5.4.2 Presentation of the fits

Two examples of a fit are provided in Fig. 5.14 and 5.15.

Figure 5.14: Fits of the data at ~Q = (0.5 -0.5 0) as a function of temperature,

showing the fit as well as the two components - broad and sharp. Already

at 5.5 K the sharp component (which dominates the scattering at 2 K) has

dropped significantly in intensity, disappearing at 8 K.

There is overall good agreement between the data and the models, re-

sulting in χ2 between1 1.1 and 2.5 as a function of ~Q. By averaging over

1The value of χ2 is not entirely representative since it also takes into account the data

at 2 K, for which by construction χ2 is 1.
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Figure 5.15: Fits of the data at ~Q = (1.0 -0.5 0) as a function of temperature,

done as in Fig. 5.14.
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~Q the overall trend for each fitted parameter can be extracted. The overall

intensity, as displayed in Fig. 5.16, decreases as a function of temperature,

while spectral weight is transferred from the sharp component, which dom-

inates at 2 K (by construction) to the broad component, which becomes

dominant and almost exclusive at 8 K. This trend confirms broadly the pre-

vious studies on SCBO and it highlights the change in the decay channel of

triplons due to their thermal activation.

Figure 5.16: Integrated intensities of the sharp and broad components of

the fit (red and blue) and their sum (black), averaged over all ~Q, compared

to intensities calculated by averaging the data (gray). The dotted lines are

guides to the eye. While the overall intensity decreases following a roughly

sigmoidal curve, there is a transfer of intensity from the sharp component

to the broad component, which dominates above 6 K.

Figure 5.17 shows the averaged evolution in temperature of the

Lorentzian broadening Γ and of the energy shift δω. As expected from

the argument from thermal activation, the broadening increases meaning

that the lifetime is decreasing, and the energy shift is positive meaning that

new triplons experience an average repulsive force from other triplons.

This consolidates the understanding of the effect of temperature on this

compound, providing a coherent and cohesive picture of the effect that a

thermal population of triplons has on newly excited triplons.
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Figure 5.17: Fitted (a) Lorentzian broadening Γ and (b) energy shift dω as a

function of temperature, averaged over all ~Q. The dotted lines are guides to

the eye. Both the broadening and the shift in energy increase continuously

with temperature.

5.4.3 ~Q-dependence of the decay

While the fitted results already show the trend for Γ to increase with temper-

ature, the ~Q-dependence can be studied in more detail. Figure 5.18 shows

the change of Γ over ~Q-space at each temperature except for 2 K (where,

by construction, no broadening is fitted) and for 10 K (where the analysis

did not converge). Due to the relatively large errorbars (which cannot be

shown in the colormap) the ~Q-dependence is noisy and no pattern emerges.

Fig. 5.19 shows Γ at three temperatures along K for H = 0.5. The fitted

parameters are dominated by the the statistical uncertainty. This analysis is

clearly affected by a two-fold problem. Firstly, the broadening is in the same

order of magnitude as the intrinsic instrumental resolution, meaning that

the experimental statistical quality importantly affects Γ. Furthermore this

makes it difficult for the fitting algorithm to separate the broad and sharp

components since the are very similar. As a result the fitting procedure

had problems converging, as shown in Fig. 5.18(a), where the holes in the
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Figure 5.18: Fitted values of the broadening Γ as a function of ~Q at several

temperatures. The presence of holes in the map are due to fits that didn’t

converge.
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colormap mark the points where the algorithm failed to produce a reliable

value for Γ. At 10 K the data also displays very substantial errorbars since

the intensity of the mode has decreased to a point where the artifacts of the

background start to dominate. Our estimate of Γ is therefore hindered by the

background to signal ratio. It is thus at this point possible to conclude that

the Lorentzian broadening Γ does vary with ~Q and that a ToF experiment

with a large detector is an ideal tool to investigate this phenomenon, but

presently a detailed ~Q-map has not been obtained. More will be discussed

in the outlook.

Figure 5.19: Fitted values of the broadening Γ along the main crystallo-

graphic directions at all temperatures. The data has been folded according

to symmetry over the whole ~Q-space. The gray vertical lines mark the M

point at (0.5 0) and the X point at (0.5 0.5), and the axis runs in a straight

line between these points in steps of 0.125. Shaded areas were added to

increase visibility.

5.5 Outlook and conclusions

We have performed an inelastic neutron scattering experiment on SCBO and

measured its singlet-to-triplet excitation, obtaining data on a large section of

~Q-space. Furthermore, we have characterised the excitation and confirmed
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several results already reported in literature. We have studied the tempera-

ture dependence of the spectrum in terms of a triplon-to-triplon interaction,

reconstructing correctly the drop in intensity of the sharp component and

the rise and fall of the broad component. This analysis has allowed us to

map the Lorentzian broadening Γ as a function of ~Q along the main axis of

a square unit cell.

Despite not being able to provide a reliable value for Γ, these results

highlight the power of modern ToF instruments such as LET in investigating

detailed aspects of the dynamics of a system. It is conventional wisdom that

determining the energy of an excitation for spectroscopy data is the easiest

task, as that requires being able to detect a peak position. Determining the

intensity (i.e. the spectral weight) with accuracy is a task that demands

more statistics than that. Determining the a finite lifetime of a particle

requires to reliably measure the tails of the mode and not its peak intensity

– and, in our case, to differentiate a mode with the instrumental resolution

from a broadened mode. The errorbars are inversely proportionately to the

square root of the counting time, making it increasingly more difficult to

improve the data.

While the results of this study might not deliver all the information

needed to reconstruct a complete picture of the decay mechanics of triplons

in SCBO and its ~Q-dependence, we feel that it is a very strong illustration

of the power of an instrument such as LET, and of its present limitation.
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Conclusions and outlook

During this thesis I have investigated three magnetic systems of varying di-

mensionality and interacting Hamiltonians using the technique of inelastic

neutron scattering in order to characterise their excitations. Furthermore,

the excitations have been modelled mathematically and an agreement be-

tween theoretical predictions and observed data has been established.

The ~Q-dependence of the lifetime of triplons in SCBO remains an open

question due to the inconclusivity of our results due to the technical difficul-

ties of such an experiment: at an instrument such as LET, which is required

to sample large sections of ~Q-space, the energy resolution at the triplon en-

ergy can be comparable to the splitting between triplon modes, while the

lifetime of the particle can only be measured in the tails of the lineshape.

However, applying a magnetic field splits the triplon modes so that their

tails no longer overlap. I have participated in a series of experiment per-

formed on LET by Diane Lançon, of EPFL, where the in-field ~Q-dependence

of the triplon mode has been measured with success.

Our study of RbCoCl3 has highlighted the importance of the local ex-

change geometries on Ising chains that rely on a staggered field to order:

this is of particular interest in a frustrated hexagonal lattice where the tem-

perature allows to select different configurations of the frustrated planes

– namely creating an ordered phase and two disordered phases. We have

shown how staggered fields change with temperature, and as a consequence

how the spectrum is modified by displaying more or less branches of bound

domain wall excitations, i.e. solitons. With temperature solitons acquire a

finite lifetime and a reduced mobility, two effects that we approximate us-
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ing a phenomenological description but that offer an opportunity for more

theoretical studies in the properties of the thermal Ising chain.

This co-dependence between frustration, staggered fields and magnetic

modes should be expected to be observed in many of the ABX3 compounds

mentioned through this thesis (e.g. CsCoCl3), as they all share a comparable

Hamiltonian, but it can be extended to other compounds: the candidates

are in general Ising chains on frustrated lattices (for instance the Kagome

lattice). The first question is whether this compounds as well exhibit two

magnetic phase transitions, and whether the dynamic correlations in these

two magnetic phases are meaningfully distinct.

Ising chains are furthermore relevant because of their QPT (in a per-

pendicular magnetic field strong enough). While the critical magnetic field

in RbCoCl3 cannot be experimentally achieved with the current technol-

ogy in a neutron scattering facility, it can be expected that frustration will

no longer play a role in that magnetic state (HC > J > Jnn) and so this

temperature-dependence of the spectrum might be expected not to be ob-

served. Still, direct observation of this quantum phase transition, and of the

quantum critical region, are required before reaching any conclusion.

We have measured the spin-wave spectrum of the thermal Hall effect fer-

romagnet Lu2V2O7, verified a minimal model of the Hamiltonian and pro-

vided values for its two dominant interactions, J and D. This will stimulate

more discussion on the subject of this whole class of insulating pyrochlores.

While we have proven that a minimal model is sufficient to explain the main

features of the dispersion, we cannot exclude the presence of next-nearest

neighbour exchange, or estimate their magnitude or their effect. Equally,

there are other terms of the Hamiltonian that could be included in a de-

scription of the magnetic system: for instance a recent study [166], using a

combination of DFT and exact diagonalization of Hubbard-like finite clus-

ters, studied the Hamiltonian

Hspin = J ( ~Sj · ~Sk) +Djk · ( ~Sj × ~Sk) + ~Sj
T · K̂jk · ~Sk (6.1)
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and concluded that |K̂|/|J | = 0.02, i.e. below the instrumental resolu-

tion used in our experiment. Their estimate for | ~D|/|J | was 0.07, less than

a half of the value of 0.18(1).

Many outstanding questions remain in the context of the broader re-

search on the magnon Hall effect. For the pyrochlores, one particularly

important question is the direction of the DMI [167], which we have been

unable to establish via a direct observation of the spectrum due to the sym-

metry of the spin waves with respect to the sign of the DMI. Understanding

this detail is crucial in order to explain some thermal conductivity data, and

to lead to the developement of magnon topological insulators [121], which

rely on the interface between materials of different sign of the DMI.

While other novel equivalent phenomena have been suggested for these

pyrochlores, such as the Nernst effect [168, 169], another relevant problem

is finding other systems where the magnon Hall effect can be observed. As

it relies on the DMI there are restrictions to the possible symmetries and to

magnetic ions with a relevant spin-orbit coupling. A further experimental

constraint is that the magnitude of the magnon contribution to the thermal

conductivity must be measurable when compared to the other contributions:

while a phonon contribution from the lattice can’t be avoided, it is better

to avoid conducting systems, as the electronic contribution to thermal con-

ductivity tends to be dominant over all others.

In terms of dimensionality, the magnon Hall effect should not be ex-

pected to play a significant role in one-dimensional systems (as the one-

dimensionality of the correlation will prevent magnons from experiencing

any perpendicular drift), there have been suggestions for the observation of

the magnon Hall effect in a two-dimensional Kagome lattice [123] or on the

honeycomb lattice [170], potentially opening a new field in low-dimensional

magnetism.
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[87] A. Baumgärtner et al.The Monte Carlo method in condensed matter

physics Vol. 71 (Springer Science & Business Media, 2012).

[88] F. Matsubara, A. Sato, O. Koseki, and T. Shirakura, Phys. Rev. Lett.

78, 3237 (1997), 9704114.

[89] O. Koseki and F. Matsubara, J. Phys. Soc. Japan 66, 322 (1997).

[90] O. Koseki and F. Matsubara, J. Phys. Soc. Japan 69, 1202 (2000).

[91] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys.

82, 53 (2010).

[92] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and K. W.

Godfrey, Phys. Rev. Lett. 79, 2554 (1997).

[93] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S.

Shastry, Nature 399, 333 (1999).

[94] B. C. den Hertog and M. J. P. Gingras, Phys. Rev. Lett. 84, 3430

(2000).

[95] S. T. Bramwell et al., Phys. Rev. Lett. 87, 47205 (2001).

[96] T. Fennell et al., Phys. Rev. B 70, 134408 (2004).

[97] C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42 (2008).

[98] T. Yavors’kii, T. Fennell, M. J. P. Gingras, and S. T. Bramwell, Phys.

Rev. Lett. 101, 37204 (2008).

[99] T. Fennell et al., Science 326, 415 (2009).

[100] B. Canals and C. Lacroix, Phys. Rev. Lett. 80, 2933 (1998).

[101] I. Mirebeau et al., Nature 420, 54 (2002).



References 153

[102] B. D. Gaulin, J. N. Reimers, T. E. Mason, J. E. Greedan, and Z. Tun,

Phys. Rev. Lett. 69, 3244 (1992).

[103] O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett.

88, 67203 (2002).

[104] S. T. Bramwell, M. J. P. Gingras, and J. N. Reimers, J. Appl. Phys

75, 5523 (1994).

[105] J. D. M. Champion et al., Phys. Rev. B 68, 20401 (2003).

[106] Y. Shimakawa, Y. Kubo, and T. Manako, Nature 379, 53 (1996).

[107] M. A. Subramanian et al., Science 273, 81 (1996).

[108] H. Sakai et al., J. Phys. Condens. Matter 13, L785 (2001).

[109] Y. Yamashita and K. Ueda, Phys. Rev. Lett. 85, 4960 (2000).

[110] A. A. Biswas, Y. Jana, J. Alam, and P. Das, AIP Conf. Proc. 963,

963 (2013).

[111] H. D. Zhou et al., Phys. Rev. B 77, 020411 (2008).

[112] K.-Y. Choi et al., Phys. Rev. B 82, 054430 (2010).

[113] H. J. Xiang et al., Phys. Rev. B 83, 174402 (2011).

[114] H. Ichikawa et al., J. Phys. Soc. Japan 74, 1020 (2005).

[115] T. Kiyama et al., Phys. Rev. B 73, 1 (2006).

[116] S. Miyahara, A. Murakami, and N. Furukawa, Journal of Molecular

Structure 838, 223 (2007), Proceedings of the Symposium on the

Jahn-Teller Effect.

[117] T. Shiraoka et al., AIP Conf. Proc. 850, 1231 (2006).

[118] Y. Onose et al., Science 329, 297 (2010).

[119] R. Matsumoto and S. Murakami, Phys. Rev. Lett. 106, 197202 (2011).



References 154

[120] T. Ideue et al., Phys. Rev. B 85, 134411 (2012).

[121] A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 90, 024412 (2014).

[122] A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 89, 134409 (2014).

[123] A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 91, 174409 (2015).

[124] E. H. Putley and G. Landwehr, J. Electrochem. Soc. 109, 42C (1962).

[125] T. Amundsen, Philos. Mag. 20, 687 (1969).

[126] R. Fletcher and A. J. Friedman, Phys. Rev. B 8, 5381 (1973).

[127] C. Strohm, G. L. J. A. Rikken, and P. Wyder, Phys. Rev. Lett. 95,

155901 (2005).

[128] J. N. Lalena and D. A. Cleary, Principles of Inorganic Materials

Design (Wiley, 2010).

[129] L. Zhang, J. Ren, J.-S. Wang, and B. Li, Phys. Rev. B 87, 144101

(2013).

[130] M. Mochizuki et al., Nat. Mater. 13, 241 (2014).

[131] T. Shin-ike, G. Adachi, and J. Shiokawa, Mat . Res . Bull . 12, 1149

(1977).

[132] L. Soderholm and J. E. Greedan, Mater. Res. Bull. 17, 707 (1982).

[133] L. Soderholm, C. V. Stager, and J. E. Greedan, J. Solid State Chem.

43, 175 (1982).

[134] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

[135] M. Rotter, J. Magn. Magn. Mat. Suppl., E481 (2004).

[136] M. Rotter, M. Doerr, M. Loewenhaupt, and P. Svoboda, J. Appl.

Phys. 91, 8885 (2002).

[137] A. Severing et al., Phys. Rev. B 83, 155112 (2011).



References 155

[138] M. Charilaou, D. Sheptyakov, J. F. Löffler, and A. U. Gehring, Phys.
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