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ABSTRACT 

Background- Coronary Heart Disease (CHD) is one of the leading causes of death and 

disability worldwide. Revascularisation of the coronary arteries using Percutaneous Coronary 

Intervention (PCI) has become the treatment of choice for most of the patients with CHD. 

Despite significant advances in angioplasty technique and introduction of anti-proliferative 

medications in drug eluting stents, myocardial injury during PCI is still significant. In this thesis 

we hypothesised whether Remote Ischaemic Preconditioning (RIPC) can reduce PCI-related 

myocardial injury.  

 

Methods- Eighty-eight patients awaiting elective complex PCI were randomly assigned in a 

1:1 ratio to receive either the RIPC (intermittent arm ischaemia and reperfusion through four 

cycles of 5-minutes inflation and 5-minutes deflation of a blood-pressure cuff placed on the 

upper arm) or control (un-inflated cuff placed on upper-arm for 40 minutes) prior to PCI. The 

primary endpoint was reduction of the incidence and extent of PCI-related myocardial injury, 

assessed by serum cardiac biomarkers, 24 hours post PCI. 

 

Results- The Troponin T level at 24 hours post PCI was 48 ng/l in the control group vs 32.5 

ng/l in the RIPC group, P = 0.39.   There was no significant reduction in the total area under the 

curve (AUC) in the RIPC group, P= 0.43. Regarding the incidence of PCI-related myocardial injury, 

significant elevation of Troponin level post PCI (> 5 x baseline), was observed in 46.9% of 

patients in the control group and in 26.7 % of patients in the RIPC group, p =0.12.   

 

Conclusion- In the ERIC-PCI study, RIPC did not demonstrate a statistically significant 

attenuation of serum Troponin release post PCI.  The results however showed a positive trend 

towards efficacy of RIPC in reducing PCI-related myocardial injury. 
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Cardiovascular disease (CVD) is set to remain the leading cause of death worldwide with the 

death toll rising to 23 million annually by 2030. The World Health Organisation (WHO) has 

reported that an estimated 17 million people die of CVD each year Of these deaths, 80% due to 

coronary heart disease (CHD).(1) 

In 2013 there were 1.9 million deaths from cardiovascular disease in EU, which was equivalent 

to 37.5 % of all deaths — considerably higher than the second most prevalent cause of death, 

cancer; 26.0 %.(1) 

In the United States, cardiovascular disease including CHD and stroke, accounts for more than 

one-third of deaths with an estimated 900,000 heart attacks and 800,000 strokes occurring each 

year. A similar pattern is seen in the rest of the world, from Asia to Africa and to Europe.(2) 

Revascularisation of the coronary arteries using percutaneous coronary intervention (PCI) has 

become the treatment of choice for most patients with CHD, with a rapidly growing prevalence 

over the last few years. In Europe, 1.5 million people had PCI in 2010; over 87,000 of these 

procedures were conducted in the UK. In the United States, approximately 1.5 million patients 

undergo PCI every year.(2)    

Increased life expectancy and subsequent changes in patients’ demographics have resulted in 

the increased prevalence and complexity of coronary artery disease in the elderly patients.  

PCI however only improves symptoms and has no positive impact on the prognosis. In fact, 

injury of the myocardium secondary to various insults caused by PCI is a recognised complication 

(PCI-related myocardial injury or type 4 a MI).(3) Despite innovations in the field of interventional 

cardiology, introduction of novel medications, and advances in operator skills, myocardial injury 

during PCI is still significant. Depending on local practice and the diagnostic criteria used, 5 to 

30% of the 1.5 million patients who undergo planned PCI every year (75,000 to 450,000), have 

evidence of PCI-related myocardial injury. (4-8) PCI-related myocardial necrosis or injury, even 

http://ec.europa.eu/eurostat/statistics-explained/index.php/Cancer_statistics
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with no immediate clinical presentation, is accompanied by the release of structural proteins 

and intracellular molecules into the cardiac interstitium and blood-stream.  Therefore, this form 

of PCI-related myocardial injury, which is often clinically silent, can be detected as an increase in 

serum cardiac enzymes above the 99th centile upper reference limit. Release of Troponin and 

CK-MB has a poor impact on prognosis of patients with CHD.(9-12) The amount of enzymes 

released at the time of PCI, correlates with subsequent infarct size and prognosis. (13) 

A post-procedural increase in cardiac troponin (cTn) concentration of ≥5 fold baseline levels is an 

independent predictor of composite of death, myocardial infarction, and revascularisation at 1 

year [HR, 2.39; 95% CI, 1.09 to 5.26].(13) Thus, the pathogenesis of PCI induced myocardial injury 

and how to prevent this damage has been the subject of extensive research. 

Myocardial injury sustained during PCI is the result of distal and peri-stent microcirculatory 

obstruction, distal coronary artery embolisation, side-branch occlusion, coronary dissection, 

occlusion of collaterals and epicardial or microvascular spasm. Although not entirely agreed by 

all scientists, cardiomyocyte damage with troponin release may also be associated with a form 

of ischaemia/reperfusion injury during stent deployment and sudden supply of blood to the 

ischaemic tissue (14, 15)  

Some major risk factors which increase susceptibility to procedural related myocardial injury 

during PCI include age, diabetes, multi-vessel coronary artery disease (CAD), diffuse CAD, 

systemic atherosclerosis, pre-existing renal impairment, bleeding tendency and the presence of 

anaemia. 

The concept of myocardial injury during or following angioplasty has drawn the attention of 

scientists over the last few years with much research taking place worldwide to understand the 

pathophysiology behind this form of injury (termed peri-procedural myocardial injury or PMI), 

and to find the potential approach to cardioprotection. Since PMI is associated with worse 
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clinical outcomes after PCI, reducing the incidence and magnitude of PMI during planned PCI 

procedures may reduce major adverse events.  

Therapeutic options available for reducing PMI have been mainly limited to improvements in 

antiplatelet, antithrombotic and statin therapy as well advances in PCI technology and distal 

protection devices. In the TRITON-TIMI 38 Trial comprising 13608 patients undergoing PCI, 

Prasugrel reduced the risk of PMI by 24% in comparison with clopidogrel. (16) 

Despite above advances in medications, devices and operators skills, peri-PCI injury or infarction 

is still common. Reducing myocardial injury during PCI will significantly improve the outcome 

and will reduce the MACE. Interventions that reduce this injury have been the subject of 

research in recent years. 

Thus, there is a potential role for adjunctive methods such as preconditioning, which may 

provide cardioprotection during PCI and render the heart resistant against ischaemia and 

reperfusion injury and complications of PCI.  Although due to reperfusion injury concept, the 

focus has been most on reducing injury during PPCI, there has also been interest in utilising RIPC 

to attenuate peri-procedural MI in patients undergoing non-emergent elective PCI.  

There are a number of ways in which preconditioning can be induced. Details of different types 

of preconditioning are mentioned in next pages of this thesis but in summary: A) ‘Local 

preconditioning’ occurs when the preconditioning stimulus is applied to the same organ or 

tissue that will subsequently sustain the ischaemic injury. B) ‘Remote ischaemic preconditioning’ 

which refers to a stimulus applied to a distant organ or tissue, and then protects against index 

ischaemia. C) ‘Postconditioning’ occurs when there is staged reperfusion, for example, in the 

setting of balloon angioplasty. Its variant D) ‘per-conditioning’ occurs when the conditioning 

stimulus is applied during ischaemia. 
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Remote Ischaemic Preconditioning (RIPC) is a major breakthrough in clinical applicability of 

preconditioning method due to being safe, easy to perform and cost free. Although RIPC is one 

of the most powerful and reproducible phenomena in cardioprotection with promising 

experimental data, it has not been readily translated into the routine clinical practice because of 

methodological obstacles. The outcome of the clinical findings also has been conflicting with 

inconsistent results. Therefore, at present there is no preconditioning-based therapy that is 

routinely used in clinical practice. Nonetheless, despite the consensus that, in experimental 

models, ischaemic conditioning has a profound infarct sparing effect, ‘the outcome of 

attempting to translate this most potent and basic cardioprotective response to the clinical 

environment has been described as frustrating and disappointing.  

Myocardial injury related to PCI is reportedly higher in procedures which are so called ‘complex’, 

with higher possibility of PCI-related myocardial injury compared with simple single vessel type A 

lesions.  Following Hoole’s trial in 2009 (15), which showed significant cardioprotective efficacy of 

RIPC in elective PCI, a similar proof of concept study was performed by The Hatter Institute in 

2011 which failed to confirm similar positive findings. (Babu et al .Unpublished study) Therefore 

we at the Hatter Institute hypothesised that RIPC might reduce peri-PCI myocardial injury in 

complex PCI. Complex PCI is generally applied to the procedures with challenging anatomy i.e.  

SYNTAX score  ≥ 23, severely calcified coronary arteries requiring rotational atherectomy, 

chronically occluded arteries (CTO), or stenosis in saphenous vein grafts (SVG) which might 

require laser assisted PCI. Therefore in the randomised-controlled ERIC-PCI trial, we 

hypothesised that the safe and low-cost therapeutic intervention of RIPC which refers to a 

powerful endogenous protective phenomenon by applying brief episodes of non-lethal 



 
 

16 

ischaemia and reperfusion to the upper limb will reduce the peri-complex PCI complications as 

evidenced by less Troponin release in the blood and less LGE in the CMR.   

As preconditioning is a systemic response, and preconditioning applied to one organ confers 

protection against a sustained lethal episode of ischaemia and reperfusion in another organ, we 

hypothesised that RIPC is a potential strategy for preventing CI-AKI in our trial. 
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PCI-related Myocardial Injury 

PCI has become the revascularisation method of choice for most of the patients with CHD. 

Despite recent transformations in the safety of this procedure through new medicine and device 

innovations, complications during PCI are still common and significant. This leads to a worse 

outcome even after a successful revascularisation. In some of these cases, complications can be 

clinically evident, but evidence of myocardial injury can also be detected after routine 

uneventful PCI procedures.  

After PCI, a reduced coronary flow velocity reserve (CFVR) is often observed. (17) This is 

associated with an increase in cardiac enzymes. During PCI, levels of Creatine Kinase (CK) or CK-

MB isoenzyme can increase in 3–30% of patients. (18-23) Levels of high sensitive cardiac Troponin 

(I or T) are elevated to even greater levels, often in 30–40% of elective cases.(4-6) Procedure- 

related cardiac enzyme release is associated with subsequent cardiovascular events which make 

the outcome of a visually successful intervention unfavourable. Several studies have confirmed 

the relation between higher cardiac enzyme release post PCI and worse prognosis.(9, 13, 24-27) 

Surprisingly, controversy still exists about the clinical significance of procedural events during 

PCI.(8, 28) 

There are uncertainties about the pathogenesis and mechanism of small cardiac enzyme 

elevations following PCI. Microembolisation of plaque debris in the distal vasculature, 

inflammation causing microvascular obstruction, oedema, slow flow or no-flow and side-branch 

occlusion have been proposed as the most likely mechanisms of cardiac troponin release.(3, 15, 20, 

29) Major vessel occlusion, coronary dissection and thrombus formation, result in more 

significant troponin release. 
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Microembolisation might not be clinically apparent in the catheterisation lab. It may be entirely 

asymptomatic and occur even during or after angiographically uneventful procedures and be 

visualised by cardiac MRI. (20, 23, 29, 30) 

An intra-coronary Doppler flow-wire study has been used by Bahrmann et al. to evaluate the 

incidence of coronary microembolisation during coronary interventions.(17) This method was 

previously established to detect emboli in cerebrovascular flow. Investigations by Bahrmann and 

his colleagues showed that the number of microembolic high-intensity signals (HITS) during PCI 

correlated with cTnI release. (17) The highest frequency of high-intensity signals is seen during 

stent deployment, although the background signal is increased throughout PCI. The number of 

HITS after stent deployment is significantly higher than just balloon angioplasty. This can be 

explained by the different mechanism of balloon dilatation and stent insertion. Balloon 

angioplasty enlarges the lumen by local dissection, whereas stenting works through plaque 

compression.(31) 

New devices, which provide distal protection during transcatheter treatment of saphenous vein 

graft stenosis (SVG), have supported the concept of coronary microembolisation. (32, 33) 

Thrombotic (platelet) and non-thrombotic materials ranging in size from 100–550 mm including 

cholesterol crystals, fibrin and lipid rich macrophages were detected in aorto-coronary SVGs as 

well as in native coronary arteries.(34, 35) The dominant role of platelets in this phenomenon is 

supported by the evidence of marked decrease in CK-MB elevation, achieved with 

administration of potent antiplatelet agents such as glycoprotein IIb/IIIa inhibitors. (30, 36) 

The distal embolic debris contribute to the development of no-reflow and myocardial injury. 

Cardiac Magnetic Resonance (CMR) scan with late gadolinium enhancement has demonstrated 

that procedural cTnI release is mostly due to myocardial necrosis resulting from distal 

embolisation of particular materials during balloon inflation and stenting.(37) It was also shown 
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by Selvanayagam et al. that new hyperenhancement post-PCI can be located in the basal or mid-

ventricular myocardium, adjacent to the inserted stent.(37) This finding might suggest a side-

branch flow impairment/occlusion. Although the magnetic resonance imaging studies suggest 

the myocardial injury sustained during PCI is the result of more distal and peri-stent 

microcirculatory obstruction and/or side-branch occlusion, cardiomyocyte damage and troponin 

release also may be associated with a form of ischaemia/reperfusion injury during stent 

deployment.(14, 15) 

The concept of coronary no-flow will be discussed in details later in this chapter. 

There are a few studies that have confirmed the pathogenesis of CK-MB elevation based on the 

interventional procedures performed. Mehran et al. explained the direct relationship between 

atherosclerotic plaque burden and cardiac enzyme release with the aid of intra vascular 

ultrasound (IVUS) prior to the procedure (38) Greater lesion and reference segment plaque 

burden, severe calcium, and positive remodelling were all associated with CK-MB elevation. 

Lesion-associated coronary artery calcium increases with extent and severity of atherosclerosis 

and correlates with volume of the atherosclerotic plaque.(39) 

Several other parameters, including more aggressive intervention, balloon size, stent length and 

acute gain in vessel diameter, have also been shown to be related to PCI-associated cTnI  

release.(20, 23, 24, 37, 38, 40, 41) Drug-eluting stent (DES) implantation is associated with a higher 

incidence of procedural-related elevation of cTnI compared with bare metal stent (BMS) 

implantation.(11, 42) Bifurcation lesions or diffuse lesions are not necessarily positive predictors of 

peri-procedural injury.  
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Universal Definition of PCI-related Myocardial/Injury Infarction (Type 4a MI)  

In 2007 the ESC/ACC/AHA/WHO proposed a definition for PCI-related injury. (43) This definition 

has been updated since its introduction with the third version released in 2012.(3) According to 

the latest guidelines from the European Society of Cardiology/American College of 

Cardiology/American Heart Association/World Health Federation (ESC/ACC/AHA/WHO), (3) in 

patients undergoing PCI with prior normal (<99th percentile URL baseline cardiac troponin (cTn) 

concentrations, elevations of cTn >5 x 99th percentile upper reference limit (URL) occurring 

within 48 hours of the procedure—plus either (i) evidence of prolonged ischaemia (>20 min) as 

demonstrated by prolonged chest pain, or (ii) ischaemic ST changes or new pathological Q 

waves, or (iii) angiographic evidence of a flow limiting complication, such as of loss of patency of 

a side branch, persistent slow-flow or no-reflow, embolisation, or (iv) imaging evidence of new 

loss of viable myocardium or new regional wall motion abnormality—should be defined as PCI-

related MI (type 4a). 

The threshold of cTn values >5 x 99th percentile URL was arbitrarily chosen, and was based on 

clinical judgment and societal implications of the label of procedural-related MI. When a cTn 

value is < 5 x 99th percentile URL after PCI with a normal value before the PCI—or when the cTn 

value is >5 x 99th percentile URL in the absence of ischaemic, angiographic or imaging findings—

the term ‘PCI-related myocardial injury’ should be used rather than ‘myocardial infarction’. 

Other diagnostic criteria for PCI-related MI include an elevation of creatine kinase-MB (CK-MB) 

fraction >3x the upper limit of normal (ULN), which is supported by studies correlating CK-MB 

increase post-PCI with subsequent risk for ischaemic events.  (38, 44-46) 
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Cardiac Biomarkers and Diagnosing Peri-PCI Myocardial I-njury 

Peri PCI myocardial injury or necrosis results from complications of mechanical revascularisation 

of the coronary arteries, including distal embolisation, side branch occlusion, coronary 

dissection, slow flow, no-reflow or even perhaps reperfusion injury.  Despite current 

anticoagulant and antiplatelet adjunctive therapy and aspiration or protection devices, 

embolisation of intracoronary thrombus or atherosclerotic debris may not be preventable.  Such 

events induce inflammation of the myocardium and possible subsequent necrosis. PMI can be 

clinically evident or silent, angiographically visible or invisible. The laboratory diagnosis of 

myocardial necrosis depends on elevation of sensitive and specific serum cardiac biomarkers 

such as cardiac Troponin (cTn) or the MB fraction of creatine kinase (CK-MB).  

The cTn complex consists of three subunits: Troponin T, I and C.  Cardiac troponin I and T are 

regulatory proteins of contractile apparatus of myocardial cells that control the calcium 

mediated interaction between actin and myosin. Cardiac troponin T (cTnT) binds tropomyosin 

and facilitates contraction; cardiac troponin I (cTnI) binds actin and inhibits actin myosin 

interactions; and troponin C (TnC) binds calcium ions. TnC is not used clinically because both 

cardiac and smooth muscle share a common isoform.(47)  

The elevations of these biomarkers in the blood reflect injury leading to necrosis of myocardial 

cells and can be detected by measurement of cardiac biomarkers before the procedure, 

repeated 3–6 hours later and, optionally, further re-measured 12-24 hours later. Current 

commercial assays endeavour to use a population defined upper limit of normality at the 99th 

percentile as recommended by the guidelines. This is the level at which 99 out of 100 people in a 

healthy population will have a negative result (one in 100 will have a false positive result). (47) In 

a meta-analysis of 15581 patients from 20 studies over a 19-year period reported the incidence 
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of troponin release post-PCI in elective PCI to be 33.0% and increased mortality was significantly 

associated with troponin elevation after PCI. (48) The underlying mechanism of Troponin release 

however is not entirely clear. Various explanations have been suggested for the release of 

structural proteins from the myocardium, including normal turnover of myocardial cells, 

apoptosis, cellular release of troponin degradation products, increased cellular wall 

permeability, formation and release of membranous blebs, and myocyte necrosis. (49)  

The recent development of high sensitivity Troponin (hsTn) assays in 2011, has improved 

sensitivity for the detection of myocardial necrosis compared with conventional assays. In the 

evaluation of patients with suspected MI, use of hsTn assays provides superior diagnostic 

accuracy with very high sensitivity and negative predictive value compared with conventional 

assays.  The increased sensitivity however results in measuring values of hsTn in the majority of 

normal subjects.  Therefore, following debates about the significance of elevation of Troponin 

and  epidemiological/psychosocial consequences of being diagnosed  with MI,  in 2012, the 

Study Group on Biomarkers in Cardiology of ESC redefined the Peri-PCI MI and increased the 

arbitrarily chosen threshold for Troponin release from x 3 times URL to x 5 times URL. 

Recognising the need for  a universal definition for  peri-PCI MI or Type 4a MI,  it was defined as 

elevations of cTn x 5 99th percentile URL occurring within 48 hour of the procedure— plus either 

(i) evidence of prolonged ischaemia (20 min) as demonstrated by prolonged chest pain, or (ii) 

ischaemic ST changes or new pathological Q waves, or (iii) angiographic evidence of a flow 

limiting complication, such as loss of patency of a side branch, persistent slow-flow or no-reflow, 

embolisation, or (iv) imaging evidence of new loss of viable myocardium or new regional wall 

motion abnormality.  

The threshold of cTn values > 99th percentile URL was arbitrarily chosen based on clinical 

judgement and societal implications of the label of peri-procedural MI. When a cTn value is < 5 x 



 
 

23 

99th percentile URL after PCI and the cTn value was normal before the PCI—or when the cTn 

value is > 5 x 99th percentile URL in the absence of ischaemic, angiographic or imaging findings—

the term ‘myocardial injury’ should be used. (3) 

There are a number of cardiac Troponin I assays on the market with wide variability between the 

manufacturers in commercial characteristics even in fairly new sensitive Troponin assays i.e. 

Roche versus Abbott, etc. Although the variable assays correlate to some extent, the numeric 

values can be quite different. The current available assays are not standardised yet and 

substantial differences exist across methods. This variability prevents comparison between 

different Troponin results, not only between Troponin T and I, but between Troponin I levels in 

the published clinical trials. (Table 1.2) In the near future, the above shortcomings could be 

avoided in the standardised trials with only one manufacturer for Troponin T assays. 

Although Troponin is the gold-standard biomarker of heart muscle necrosis due to high 

sensitivity and specificity and its elevation following PCI does have significant prognostic 

implications, Creatine phosphokinase MB isoenzyme (CK-MB) elevation is also widely accepted 

as a biomarker with prognostic significance when raised post-PCI. Ten years ago CK-MB was 

regarded as the best biomarker for detection of myocardial injury. Its replacement by Troponin 

was due to high sensitivity of Troponin and allowance for immediate diagnosis of MI in ACS 

setting even with minor injuries. Elevation of CK-MB above the normal levels occurs in about 

30% of patients undergoing elective PCI. (21) Among many authorities, measuring CK-MB is still 

considered a more clinically relevant biomarker for diagnosing type 4a MI. It is agreed that CK-

MB, elevations > 3-8 x URL, does have prognostic implications, specifically if accompanied by 

appearance of Q wave on ECG.(21,50)  

Therefore when designing the ERIC- PCI trial and writing the study protocol, assessment of CK-

MB levels post PCI was included in the protocol. 
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Coronary No-Reflow Phenomenon 

The no-reflow phenomenon was initially described by Krug et al in 1966 (51) and detailed further 

by Kloner in 1974 as an inadequate myocardial perfusion of a given coronary territory despite 

opening of the artery, without angiographic evidence of mechanical obstruction. (52) 

 In 1986, Bates et al. described the angiographic correlation of no reflow after observing slow 

contrast flow in the infarct related artery. (53) The no-flow/slow-reflow phenomenon manifests 

as an acute reduction in coronary blood flow in the absence of epicardial vessel obstruction, 

flow limiting dissection, conduit vessel spasm, or apparent in-situ thrombosis. Interventional (or 

angiographic) no-reflow, which is actually a myocardial tissue hypoperfusion, can be visualised 

angiographically in the catheterisation lab in 3.0-4.8% of all PCIs but is most common after acute 

MI and can reach up to 11.5 %.(54) No-reflow is more common in PCI to the vein graft (up to 

15%), (55, 56) and rotational atherectomy (up to 16%). (57, 58) It manifests with low grade 

thrombolysis in myocardial infarction (TIMI) flow and is typically associated with chest pain and 

ECG changes. (57, 59-62 )  In these settings, the incidence of no-reflow is between 10% and 

20%.(55,56) No reflow occurs less commonly after coronary intervention for an acute coronary 

syndrome (ACS) without ST segment elevation or stable angina.(55) Distal embolisation is the 

main contributing factor to coronary no-flow phenomenon.(63) During PCI to vein graft, distal 

embolisation is universal and occurs regardless of lesion type.(64) 

In rotablation and PCI to vein graft, plaque gruel can be embolised distally even without ACS and 

an associated thrombus. The introduction of distal protection devices that filter 

atherothrombotic debris has provided corroborative evidence that distal microembolisation of 

plaque and other debris plays a role in microcirculatory ischaemia, particularly in the setting of 

interventions to vein grafts. (64) Trials of rotational atherectomy versus angioplasty have 
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demonstrated increased incidence of PCI-related MI which translates into increased long-term 

mortality (19) and this is likely explained by embolisation. (32) Whether in the setting of an acute 

vessel thrombosis or not, distal microembolisation appears to contribute to microvascular 

ischaemia and injury that result in no-reflow. The pathologic sequel of no-reflow is inadequate 

healing within the ischaemic area, which may inhibit the future development of collaterals. 

More importantly, following restoration of epicardial blood flow, myocardial reperfusion per se, 

may cause injury beyond the previous myocardial ischaemic insult. (63, 65-71)  
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Cardiac MRI Detects PCI-related Myocardial Injury/Infarction 

Markedly elevated levels of troponin after PCI are markers of myocardial injury, which can  

be significant in regards to prognosis.(25,75) Debates however still exist about the implications of a 

small troponin rise after PCI. (3) Despite the high sensitivity of cardiac isoenzymes, the diagnosis 

of myocardial infarction or myocardial injury can still be difficult in patients who had PCI. The 

extent and degree of myocardial injury after an ischaemic event are strong predictors of patient 

outcome. Therefore prompt and accurate diagnosis of myocardial injury will have great impact 

on patients’ prognosis.  

PCI related myocardial injuries can be assessed by other various methods. From angiographic 

scores such as TIMI flow grade and imaging techniques such as myocardial contrast 

echocardiography (MCE), single-photon emission computed tomography (SPECT) or cardiac MRI 

(CMR).  

Myocardial perfusion imaging most commonly performed by 99mTc-sestamibi SPECT, is a well 

stablished technique in assessment of myocardial ischaemia and significant coronary artery 

disease. It however has logistical and technical limitations.  CMR is the gold standard test to 

measure infarct size as it provides superior resolution and detects sub-endocardial infarction as well as 

microvascular obstruction (MVO). First-pass perfusion CMR provides quantitative evaluation of 

myocardial blood flow.(72)  

Post-PCI, TIMI myocardial perfusion grade correlates with CMR measures of MVO and infarct 

size.(73) In a recent meta-analysis which assessed 2745 patients of 21 studies, the incidence of 

MVO detected by CMR was 66%.(74) 



 
 

27 

 Due to superiority of CMR in detecting sub-endocardial infarction and less logistical limitations, 

CMR was chosen as the imaging modality of choice for investigation of peri-PCI MI in the ERIC-

PCI trial. 

CMR can provide invaluable information in uncertain situations where inappropriate diagnosis of 

MI post PCI can have multiple clinical, social and financial implications. The underlying rationale 

is that regional myocardial hypoperfusion and ischaemia lead to a cascade of events, including 

myocardial dysfunction, cell death and healing by fibrosis. 

Although troponin elevation after PCI is common, uncertainties remain about the mechanisms of 

its release and its relationship to the volume of myocardial tissue loss.(37)  CMR can identify the 

significance of troponin rise post PCI.  CMR allows non-invasive serial assessment of myocardial 

function and viability with high resolution. Following intravenous injection of gadolinium 

contrast agents, gadolinium rapidly distributes into the extracellular space.  Contrast-enhanced 

gadolinium images allow assessment of the transmural extent of irreversible injury and identify 

sub-endocardial myocardial infarction. (72, 80, 81) Furthermore, it permits quantification of even 

small areas of myocardial necrosis, both due to native coronary disease or after PCI and surgical 

revascularisation.(37, 78, 79) Both acute and chronic infarctions hyperenhance late gadolinium 

pictures.(80) Hyperenhancement occurs in both reperfused (81-84) and non-reperfused acute 

infarcts.(84)   

Early studies investigating the role of CMR in identifying myocardial injury during PCI (not 

primary PCI) were done by Selvanayagam et al. in 2005 (37) and Ricciardi et al (85) in 2001 which 

demonstrated that delayed-enhanced cardiac MRI is able to detect even small myocardial 

infarcts (micro infarction) in patients who have had elective PCI and CMR, findings which 

correlated with troponin T and CK-MB elevation. (Figure 1.1) 
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CMR has emerged as the imaging choice to assess the cardioprotective efficacy of novel 

therapeutic interventions in primary PCI (PPCI)-treated ST elevation MI (STEMI) patients. (86) It 

measures accurate infarct size (87, 88) as well as measuring the myocardial salvage index (MSI).(86, 

89) MSI is a sensitive measure of cardioprotective efficacy, representing the proportion of the 

myocardium at risk of infarction rescued by a therapeutic intervention - this requires that the 

myocardium or ‘area-at-risk’ (AAR) be quantified.(86) AAR measurement is an important factor in 

CMR aided intervention studies.  Measurement of the area at risk and infarct size determines 

myocardial salvage as an indicator of therapeutic benefit in perfusion-injury. The current gold-

standard CMR sequence for assessing the myocardial oedema of area at risk (AAR) following an 

acute coronary event is to use T2-weighted CMR imaging 2-7 days following PPCI to delineate 

the extent of myocardial oedema.(86, 90-92)  

Magnetic resonance imaging sequences characterise tissues based on specific nuclear magnetic 

properties including T1 and T2. T2-weighted images generally show fluids as having high or 

bright signal intensity, whereas solid tissue like myocardium has intermediate signal intensity. 

An increase in free water content of tissue increases the signal intensity on T2-weighted images. 

(93) Therefore in acute myocardial injury where myocardial oedema occurs , the area at risk 

appears slightly brighter.(94) 

As proven in a few studies, interventions that reduce myocardial injury, significantly improve 

prognosis.(95) RIPC is a novel method, which could reduce injury, occurred during coronary 

interventions. RIPC could potentially decrease the infarct size, microvascular obstruction and 

oedema induced during PCI. Therefore CMR scan can provide a comprehensive assessment of 

the infarct size with robust late gadolinium technique. (80) Specifically, in STEMI treated with 

PPCI, CMR has emerged as the imaging modality of choice to assess the cardioprotective efficacy 

of novel RIPC. (96) In a recent large trial by White et al. in STEMI patients treated by PPCI, RIPC 
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that was initiated prior to PPCI, reduced myocardial infarct size, increased myocardial salvage, 

and reduced myocardial oedema. (86) 

 AAR measurement is an important factor in CMR aided intervention studies.  Measurement of 

the area at risk and infarct size determines myocardial salvage as an indicator of therapeutic 

benefit in reperfusion-injury. The current gold standard CMR sequence for assessing the 

myocardial oedema of AAR following an acute coronary event is to use T2-weighted CMR 

imaging 2-7 days following PPCI to delineate the extent of myocardial oedema.(86, 90-92)  

CMR sequences characterise tissues based on specific nuclear magnetic properties including T1 

and T2. T2-weighted images generally show fluids as having high or bright signal intensity, 

whereas solid tissue like myocardium has intermediate signal intensity. An increase in free water 

content of tissue increases the signal intensity on T2-weighted images. (93) Therefore in acute 

myocardial injury where myocardial oedema occurs, the area at risk appears slightly brighter.(94) 

Figure 1.1- Two basal short-axis images (left) in a patient before left anterior descending coronary artery (LAD) PCI 

showing no LGE. Contrast-enhanced images in the same image plane after PCI (right) reveal new anterolateral wall 

hyperenhancement (long arrows) adjacent to LAD stent (block arrow). Middle panel shows post-PCI angiogram with 

position of 3 stents highlighted and good flow in LAD and second diagonal branch (likely affected territory; black 

arrowhead). Courtesy: Selvanayagam et al. Circulation 2005.
(37)
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Complex PCI 

Myocardial injury related to PCI is reportedly higher in procedures, which are so called 

‘complex’.  Complex angioplasty is generally applied to procedures with challenging anatomy 

when SYNTAX score is ≥ 23, the coronary artery is severely calcified or chronically occluded 

(CTO) requiring rotational atherectomy, or when the saphenous vein graft (SVG) is severely 

stenosed and might require laser assisted PCI. The possibility of PCI-related myocardial injury is 

higher in complex lesions compared with simple single vessel type A lesions. Reducing 

myocardial injury during PCI is significantly beneficial to patients. Interventions that reduce this 

injury have been the subject of various researches in recent years. 

 

What is the SYNTAX Score? 

The Syntax score is an angiographic tool grading the complexity of coronary artery disease. The 

SYNTAX (SYNergy between PCI with TAXUS™ and Cardiac Surgery) study was organised as an all-

comer study for patients with significant lesions in the left main stem and/or the three epicardial 

coronary arteries.(97) The SYNTAX score was specifically developed for this study to prospectively 

characterise the coronary vasculature with respect to the number of lesions and their functional 

impact, location, and complexity. Higher SYNTAX scores, indicative of more complex disease 

were hypothesised to represent a greater therapeutic challenge with potentially worse 

prognosis. All previous classifications are considered in this classification. A computer program 

consisting of sequential and interactive self-guided questions calculates the SYNTAX score. The 

algorithm consists of twelve main questions. 



 
 

31 

An important characteristic of the SYNTAX score is that it is lesion based. For each lesion a 

separate score is calculated (Table 1.1). The total SYNTAX score is derived from the summation 

of these individual scorings. After the completion of the algorithm, a report is automatically 

generated by the software, summarising all the adverse characteristics and the individual scoring 

of each lesion as well as the total SYNTAX score. The most important characteristic of the 

SYNTAX score to be emphasised is that it is focusing on anatomy of coronary vasculature and not 

on the treatment plan.  
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Table 1.1- Twelve essential questions for calculating the syntax score. SYNTAX website 

1- Dominance 

2- Number of lesions 

3- Segments involved per lesion 

Lesion characteristics 

4- Total occlusion 

i-Number of segments involved 

ii- Age of the total occlusion (>3 months) 

iii-Blunt stump 

iv-Bridging collaterals 

v- First segment beyond the occlusion visible by antegrade or retrograde filling 

vi-Side branch involvement 

5- Trifurcation 

       i-Number of segments diseased 

6- Bifurcation 

i-Type 

ii-Angulation between the distal main vessel and the side branch <70 

7-Aorto-ostial lesion 

8-Severe tortuosity 

9-Length>20 mm 

10-Heavy calcification 

11-Thrombus 

12-Diffuse disease/Small vessel 

i-Number of segments with diffuse disease/small vessel 
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PCI to Saphenous Vein Graft  

Saphenous vein graft (SVG) interventions for older degenerated grafts remain technically 

challenging, with a high risk for procedural-related events despite advances in therapy; including 

introduction of mechanical embolic protection devices and administration of potent 

antiplatelets.  

SVGs are often diffusely diseased and contain a significant amount of a friable atherosclerotic 

material. These atherosclerotic materials increase the risk of distal embolisation, which is the 

cause of no-reflow phenomenon. No-reflow occurs in up to 15% of cases of PCI to SVG.(55) While 

distal embolisation is virtually universal in SVG intervention, only 15-20% of patients develop 

MACE (Major Adverse Cardiac Events) in the absence of embolic protection.  (62, 98) This means 

embolisation is clinically silent with small emboli. Van Gaal and his colleagues have proven that 

during angioplasty of vein graft, distal embolisation occurs regardless of the complexity of lesion 

and procedure.(99) Therefore distal protection devices are recommended for PCI to vein graft 

procedures. However, it has been noted that not all SVG lesions are amenable to distal 

protection device (DPD), and in 33%–57% of vein graft PCIs, lesion location or the lack of a 

landing zone may not permit use of protection devices.(99) 

Laser ablation catheter is another promising application for handling highly thrombotic materials 

in these lesions. This technique is associated with rapid removal of thrombus, debulking of the 

underlying plaque, and reduction in the risk of distal embolisation.(100) Emboli protection 

devices, laser application and administration of GP IIb/III are all proven to be beneficial but 

adverse events still occur. Novel approaches such as RIPC may play a big protective role here. 
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Rotational Atherectomy 

Treatment of heavily calcified coronary arteries is still a challenge in interventional cardiology. 

Balloon passage, balloon inflation and stent deployment in heavily calcified lesions, which are 

often fibrotic and undilatable, could be impossible. Attempts to tackle these resistant lesions 

with high-pressure balloon inflations greatly increase the risk of dissection and complications. 

Incomplete stent expansion and stent apposition in the setting of extensive calcification 

increases the risk of sub-acute stent thrombosis (101) and in-stent restenosis, (102) therefore, it is 

essential to use the best technique for a desirable result. A number of devices and techniques 

have been designed to overcome the difficulties posed by calcium. 

High frequency rotational atherectomy is one of the niche devices developed based on the 

ablation of atherosclerotic plaques. Rotational atherectomy that was introduced in late 1980s is 

a common invasive method for modifying the calcified lesions prior to the angioplasty and stent 

implantation. First few experiments were performed on animal models. Fourrier and his 

colleagues performed the first case of rotablation in human coronary arteries in 1988.(103) 

Physical principal of RA is the selective and differential cutting of the inelastic material while 

maintaining the integrity of the elastic tissue. Rotablation crushes the calcified plaque by high-

speed (140 000–180 000 revolution per minute) diamond-coated burr but preserves the normal 

elastic tissues of the walls; hence it is safe on normal tissue. Burr size should not exceed a 

burr/artery diameter ratio of 0.8. Aggressive rotational atherectomy (defined as burr size >2.25 

mm or burr/artery diameter ratio >0.8) has been shown to increase procedural-related 

myocardial injuries and should be avoided. This is based on the results of the following trials: 

COBRA study (104)  to Determine Rotablator and Transluminal Angioplasty Strategy (STRATAS) (105) 

and Coronary Angioplasty and Rotablator Atherectomy Trial (CARAT). (61) 
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In theory, the mechanical debulking of atherosclerotic plaques with the use of rotational or 

direct coronary atherectomy devices prior to stent placement would be beneficial in three 

ways: (1) the risk of in-stent restenosis would be lowered by decreasing the underlying plaque 

burden(106) , (2) the risk of in-stent restenosis  would also be lowered because of an increase in 

the acute procedural minimal luminal diameter (MLD), and (3) there would be a decrease in the 

risk of abrupt closure because of the preservation of the original arterial size and decreased 

barotrauma to the vessel . 

The majority of the microparticle debris generated from rotational atherectomy are between 5-

10 µm in diameter, which often do not significantly impact coronary blood flow and are 

eventually cleared by the reticuloendothelium system.(107) However, these particles may have a 

detrimental effect on the myocardial microcirculation. 

Rotablation is not free from complications. Side branch occlusion, downstream embolisation, 

dissection, MVO and spasm could affect the prognosis significantly. Slow flow/no-flow is one of 

the most serious complications of rotational atherectomy.  

Coronary slow flow/no-reflow is defined as a decrease or cessation of blood flow in the absence 

of an apparent occlusive dissection or spasm and is believed to occur as a result of distal 

microparticle embolisation.  Rotational atherectomy increases the risk of no-flow especially in 

heavily calcified lesions.(57, 58, 108) Procedural technique and operator’s skill is very important and 

plays and important role in preventing this complication.(108) 

Platelet activation caused by rotational atherectomy, is dependent on rota burr speed.(109) 

Hence, it is advised not to increase the speed to more than 150,000 rpm. Strict avoidance of 

significant drops in rpm is recommended. Also it is advised to start with smaller burr size and to 

engage with the lesion for short a period of time only.(65) The vessel should be continuously 

flushed with normal saline containing GTN, verapamil and heparin.(110)  
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Chronic Total Occlusion  

Chronic Total Occlusion (CTO) is defined as a 100% coronary artery occlusion; with TIMI flow 

grade equal to 0 and duration of more than 3 months. CTO recanalisation represents one of the 

most challenging and technically demanding aspects of percutaneous treatment of coronary 

artery disease. 

Chronic total occlusion of coronary arteries is frequently (18–30%) encountered on diagnostic 

coronary angiograms. A recent study showed that advancing age increases the likelihood to 

detect a CTO on diagnostic coronary angiography. (111, 112)  

Technical advances in the design of angioplasty equipment particularly of specialised wires and 

also enhanced operators’ skills have increased recanalisation rates of CTOs, but the success rate 

is still lower in comparison with conventional PCI of non-occluded arteries. (113, 114) This, in most 

cases is due to an inability to pass the guide-wire through the area of tight stenosis, or due to 

risk of coronary perforations and in-hospital adverse events. Traditional fears of such procedure 

complications, makes operators less willing to approach these lesions and opt for medical 

management or surgery. But in fact in experienced hands, CTO recanalisation is feasible and 

relatively safe, even in patients with high-complexity lesions and clinical characteristics denoting 

higher risk, for whom more benefits would be expected from such a procedure. Long-term 

outcomes of CTO PCI have been improved because the widespread introduction of stent 

utilisation, which is associated with reduced rates of restenosis and re-occlusion when compared 

with balloon-only angioplasty.  

PCI-related myocardial injury/infarction is among the most common complications of CTO PCI. 

However, in most cases cardiac biomarker elevation are mostly asymptomatic. The MI rates in a 

study performed recently by Patel et al. (115) ranged widely from 0% to 19.4%, likely reflecting 
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significant variability in the frequency of systematic cardiac biomarker measurement after PCI. 

This finding was consistent with previously published data from the National Cardiovascular Data 

Registry, in which a median of only 7% of patients had cardiac biomarker measurements after 

PCI. (116) 

Despite the high plaque load of organised thrombotic material in CTOs, the incidence of cardiac 

biomarker elevation after recanalisation of CTOs is similar to that after stenting of single non-

occlusive lesions. (117) 

Coronary perforation is among the most feared complications of CTO PCI, due to the risk of  

tamponade. CTO PCI carries increased risk of perforation due to routine use of stiff and polymer-

coated guidewires and frequent uncertainty about the vessel course. The incidence of coronary 

perforation in non-CTO PCI is approximately 0.19% and occurs more commonly in heavily 

calcified tortuous vessels using hydrophilic wires and atheroablative devices.(115) 
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Prophylactic Measures to Reduce PCI-related Myocardial Injury 

No-reflow is usually treated with vasodilators, such as calcium channel blockers (verapamil, 

diltiazem, or nicardipine), adenosine or nitroprusside, which have their effect on the 

microcirculation. Many catheterisation laboratories routinely use a cocktail of nitroglycerin, 

verapamil, and heparin in the flush solution that has been shown to reduce the incidence of 

spasm and slow flow.(110, 117) 

These pharmacological agents as well as glycoprotein IIb/IIIa (GP IIb/IIIa) inhibitors modify no-

reflow and slow-flow complications but adverse outcomes still persist. GP IIb/IIIa inhibitors have 

been associated with a 50% reduction in cardiac enzymes elevation during the procedure, as 

well as a reduction in burr induced platelet aggregation during rotational atherectomy.(118, 119) 

This beneficial effect of the GP IIb/IIIa inhibitors signifies the importance of the activation of 

platelets and their interaction with atheromatous debris in causing slow flow and other adverse 

procedural events during rotablation.(120) Unfortunately administration of GPIIb/IIIa is not free 

from adverse side effects. Specifically in angulated heavily calcified lesions where the risk of 

perforation and bleeding could increase. (120) 

 

 

A) Embolic Protection Devices  

Increased rates of PCI-related complications resulting from distal embolisation of atherosclerotic 

debris from SVGs (55) resulted in the advent of distal microcirculatory protective systems. Distal 

protection devices are divided into two main categories: (i) those that occlude the distal artery 

with a balloon on a catheter and aspirate atherosclerotic debris and thrombus with a small 
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catheter just proximal to the balloon, and (ii) those that have a distal umbrella-like device to trap 

embolised debris.  

More recently a proximal balloon occlusion device has been introduced using a similar concept 

to the distal balloon catheter, with aspiration of debris through the device before the protective 

balloon deflation. (64) SVGs histologically have comparatively more foam and inflammatory cells 

and less calcification than native coronary lesions, with resulting plaques being more friable and 

likely to embolise. Coronary intervention techniques utilising the distal mechanical filter system 

have recently been shown to have beneficial results when intervening on SVGs as compared to 

using standard angioplasty techniques. In the first large randomised trial of a distal embolic 

protection device used in this group of lesions, there were less major adverse cardiac events at 

30 days and less no-reflow phenomenon.(98) A recent review of the devices and the use of these 

in numerous subsequent clinical trials in SVG interventions concluded that use of embolic 

protection devices resulted in 40–50% reduction in embolisation, and significant decrease in 

procedural-related major adverse cardiac events. Distal protection however, does not entirely 

eliminate no-reflow.(121)  

 

B) Pharmacotherapy 

Antiplatelet Therapy and Anti-Coagulation 

Inhibition of platelet activation is fundamental in the management of PCI-related myocardial 

injury. Recognising that coactivation of platelets and the blood coagulation cascade contributes 

to the pathophysiology of arterial thrombosis, monotherapy with either an antiplatelet agent or 
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an anticoagulant may be insufficient for maximising the prevention and treatment of platelet-

rich arterial thrombosis which can induce myocardial injury.(122) 

Combination of aspirin and clopidogrel (a thienopyridine) is the gold standard treatment in 

Acute Coronary Syndrome (ACS) and PCI with stent insertion. (123-127)  

Current guidelines recommend 4 weeks treatment with clopidogrel in case of BMS insertion and 

12 months treatment with clopidogrel when DES is inserted. Most stent thromboses occur early 

(<30 days) or very late (>1 year). (128-130) Compared with BMS,   fewer thromboses are observed 

during the first year of DES implantation, but more thromboses beyond one year after PCI. (130, 

131) Stopping treatment with a thienopyridine ADP-receptor antagonist causes a >10-fold 

increase risk of stent thrombosis.(132) 

Anticoagulation with heparin is essential during angioplasty. It avoids thromboembolic 

complications as well thrombotic complications of the intervention.(132) 

Aggressive antiplatelet therapy with aspirin and clopidogrel reduces both short- and long-term 

adverse cardiovascular events per se or PCI related ones.(123, 133, 134) There remains, however, an 

unacceptable high rate of residual recurrent ischaemic events among such patients.(123, 124)  

Clopidogrel, a thienopyridine derivate of the second generation, is an adenosine diphosphate 

(ADP) receptor antagonist. It selectively inhibits the binding of ADP to its platelet receptor 

(P2Y12) and the subsequent G protein linked mobilisation of intracellular calcium and activation 

of the GP IIb/IIIa complex.(135) 

Variations in the therapeutic response to standard doses of clopidogrel are now well 

recognised.(136,137) Platelet inhibition varies between patients in a normal bell-shaped 

distribution (138-140) with up to 30% of patients treated with clopidogrel not having an adequate 

antiplatelet response.(141-143) This variability was also found to be true with Ticlopidine.(143) 
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Studies suggest that Clopidogrel resistance might be due to individual variability in platelet 

responses to adenosine diphosphate.(144) 

The novel platelet P2Y12 receptor antagonists, prasugrel and ticagrelor both have demonstrated 

superior and more consistent levels of P2Y12-mediated platelet inhibition when compared with 

clopidogrel, with a commensurate 20% relative reduction in these ischaemic events but at the 

cost of increased bleeding events.(145-147) 

 

Glycoprotein IIb/IIIa Inhibitors  

As per recommendation by the NICE guideline, GP IIb/IIIa inhibitor can be considered as an 

adjunct to PCI for all patients with diabetes undergoing elective PCI, and for those patients 

undergoing complex procedures. 

Abciximab is a monoclonal antibody that targets the GP IIb/IIIa receptor on the surface of 

platelets. Tirofiban is a non-peptidal antagonist of the GP IIb/IIIa receptor and is one of the 

small-molecule GP IIb/IIIa inhibitors. It prevents fibrinogen from binding to the GP IIb/IIIa 

receptor, thus blocking platelet aggregation. 

 

Adenosine 

Various pharmacological vasodilators have been associated with an improvement in PCI 

outcome. (60, 147, 148) Adenosine appears to play an essential counter-regulatory compound role in 

the maintenance of microcirculatory flow, due to its numerous pharmacological actions. 

Adenosine could decrease mechanical obstruction of capillary channels caused by neutrophil 
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adherence and neutrophil-mediated cellular damage. The potent arteriolar vasodilator 

properties of adenosine would oppose the effects of vasoconstrictor substances present in 

vascular bed, such as endothelin, leukotrienes.(149) 

The ability of adenosine to reduce inflammation by inhibiting multiple cell types involved in 

cellular immunity may also contribute to tissue protection.(149)  

Sdringola et al. (150) examined the efficacy of adenosine boluses (24 μg each) to reverse slow/no-

reflow. Reversal of slow/no-reflow was observed in 91% of patients who received high doses of 

adenosine (≥ 5 boluses) and only in 33% of those who received low doses (< 5 boluses). 

Moreover, the final TIMI flow was significantly better in the high dose group. Other authors 

suggested that combined therapy with adenosine and nitroprusside (30) or nicorandil (31) might 

provide better improvement in coronary flow compared to intracoronary adenosine alone in 

case of impaired flow during coronary interventions. 

 

Intra-Coronary Verapamil 

The role of this vasodilating agent in prevention of MVO and improvement of the coronary flow 

has been studied in a few randomised controlled trials.  It is confirmed that  intracoronary and 

intragraft administration of verapamil can improve the flow in more than 80% of patients whose 

PCI procedure was complicated with no-reflow, including degenerative vein graft intervention. 

(54) (151, 152) Apart from vasodilation, verapamil may inhibit platelet aggregation and thrombus 

formation in the microvasculature.(153) 
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Intra-Coronary Nitroprusside 

The third most commonly administered vasodilating drug is intracoronary nitroprusside. 

Nitroprusside alone improves flow in 75% of no-reflow patients.(154) In general, intracoronary 

verapamil, diltiazem, or nitroprusside can be used initially for the treatment of no-reflow. 

However, in comparison to adenosine, verapamil and nitroprusside have failed to reduce 

adverse outcomes occurring in the setting of no-reflow. (155)  There is no consensus when it 

comes to exact dosing of vasodilators for the treatment of no-flow.  

 

Nicorandil  

Nicorandil dilates coronary microcirculation, induces ischaemic preconditioning,(156) is 

antiarrhythmic, improves LV function and reduces reperfusion injury via the adenosine 

triphosphate (ATP)-sensitive K +channel.(157, 158) Nicorandil is a K+
ATP channel opener: Nicorandil 

activates K+
ATP channel, causing K+ efflux.  This action, hyperpolarises the cell that inactivates 

voltage-gated calcium channels and reduces free intracellular Ca2+. Studies in animals have 

demonstrated that Nicorandil encourages myocardial recovery, reduces infarct size, and possibly 

decreases neutrophil activation to exert a cardioprotective effect. (159) Both oral and intravenous 

administration of nicorandil may reduce the incidence of microvascular dysfunction after 

elective and PPCI by dilating coronary resistance vessels.(160-163) In a study published in 2013, in 

patients undergoing PCI for stable angina, Troponin elevation more than fivefold the normal 

range was significantly larger in the control group than in the Nicorandil group.(164) Single oral 

dose of Nicorandil prior to elective PCI could also reduce PCI-related myocardial injury.(165)  
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Intra-Coronary Nitrate 

Intra-coronary nitrate is indicated during percutaneous transluminal coronary angioplasty (PTCA) 

to facilitate prolongation of balloon inflation and to prevent or relieve coronary spasm. Intra 

coronary nitrate is frequently used during coronary interventions to improve the coronary flow 

in low flow or no-reflow condition. (162, 166-168) The primary effect of nitroglycerin on the coronary 

artery system is dilating the epicardial coronary arteries.  

Nitrate influences the oxygen supply to the ischaemic myocardium by causing redistribution of 

blood flow along collateral channels and from epicardial to endocardial regions by selective 

dilatation of large epicardial vessels. It reduces the requirement of the myocardium for oxygen 

by increasing venous capacitance, causing a pooling of blood in peripheral veins, thereby 

reducing ventricular volume and heart wall distension.(169) 

 

 

 

 

 

 

 

 

 

 

 



 
 

45 

Interventions and Strategies to Protect Myocardium  

The concept of increasing the tolerance of myocardium against the deleterious effects of 

myocardial infarction was initiated and investigated in a laboratory setting in 1970 by Maroko et 

al. (170) It was proposed that beta blockers, glucose-insulin-potassium, or hyaluronidase at the 

time of coronary occlusion could reduce the size of the resulting infarction in the canine 

experiment. None of these proposed interventions seemed to be effective though. Yellon and 

his colleagues believed that perhaps the models for evaluating infarct size were sub-optimal at 

the time. (171)  

The idea however, initiated further search for probable interventions that could protect the 

myocardium in clinical setting. A few years later, Jennings and Reimer demonstrated that 

reperfusion was the crucial therapeutic strategy to protect the ischaemic myocardium, and soon 

after, thrombolytic therapies became a routine to reduce the infarction size.(172) During 

ischaemia, anaerobic metabolism develops and results in decrease of ATP production. There is 

insufficient available energy to maintain cell membrane pump activity, antioxidant defences, pH 

and calcium homeostasis, and mitochondrial integrity. These and other consequences of 

ischaemia inevitably lead to cell death, unless blood flow is restored.  

Reperfusion can paradoxically be harmful though, as it can exacerbate the necrotic component 

of cell death as evidenced by an extension in infarct size, following a fixed period of ischaemia. 

(173, 174) Reperfusion with oxygenated blood is essential for any tissue salvage, but the sudden 

rush of oxygen produces reactive oxygen species and oxidative stress. This reperfusion method 

was indeed reducing the infarct size, but was not ideal i.e. myocardial salvage was not fully 

achieved; hence a novel approach (conditioning) to rescue the myocardium was sought after.  
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Conditioning the Heart  

It was in 1986 when Murry et al. discovered that the heart has got an intrinsic and powerful 

mechanism to protect itself from harmful injuries. This mechanism was named 

“preconditioning”.(175) This phenomenon whereby transient and brief periods of ischaemia 

confer protection against a subsequent prolonged and injurious period of ischaemia, is now 

recognised as “the strongest form of in vivo protection against myocardial ischaemic injury other 

than early reperfusion”.(176) 

Inducing brief non-lethal episodes of ischaemia and reperfusion to the heart, either prior to, 

during, or immediately after an episode of sustained lethal myocardial ischaemia reduces 

myocardial injury by involving wide range of cells and pathways. It is possible that such a 

protective mechanism occurs naturally in humans. Pre-infarct angina may resemble 

preconditioning effect. In analysis of the TIMI 4 study, patients who had previous angina or 

angina that occurred immediately prior to myocardial infarction had lower rate of in-hospital 

death, severe congestive heart failure (CHF) or shock.(177) 

Several methods for conditioning of the myocardium have been introduced. These innate 

cardioprotective mechanisms are not just limited to direct ischaemia of the heart i.e. it is not 

necessary to condition the heart directly. 

If the conditioning stimulus is performed prior to ischaemic insult, it is called pre-conditioning. 

Ischaemic per- or post-conditioning means the ischaemia is applied during or following the 

ischaemia. Local preconditioning occurs when the conditioning stimulus is applied to the same 

organ or tissue that will subsequently face the ischaemic insult i.e. myocardium prior to 

ischaemia. This method is called Remote Ischaemic Preconditioning (RIPC), when stimulus is 
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applied to a distant organ or tissue, which then protects against index ischaemia. It can also act 

through pharmacological manipulation. 

However, ischaemic preconditioning has not been translated into the clinical setting, not only 

because it is impossible to predict clinical acute coronary syndromes, but also, even in the 

setting of predictable ischaemic/reperfusion injury such as PCI, there are practical difficulties in 

delivering the preconditioning stimulus to the myocardium.(178) How the heart remembers that it 

has been preconditioned is another mystery that has resisted laboratory investigations. 

Clinical application of ischaemic preconditioning was first reported in 1993 by Yellon et al, who 

studied patients undergoing coronary artery bypass grafting.(179) After putting the patients on 

cardiopulmonary bypass, the aorta was cross-clamped twice for 3 minutes with an interval of 2 

minute. Distal bypass anastomosis with a technique of intermittent cross-clamping was then 

performed under electrically induced ventricular fibrillation. It was shown that the myocardial 

ATP level after the procedure was twice as high as that of the control group. 

In the next few paragraphs, ischaemic preconditioning will be explained in details. 
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Preconditioning with Ischaemia (classic form) 

Murry, Jennings and Reimer in 1986 discovered an intrinsic mechanism of cardioprotection and 

named it “Ischaemic Preconditioning”. (176) In their experiment, brief intermittent ischaemia and 

reperfusion induced protection against a subsequent sustained ischaemic episode. To achieve 

this conclusion, they performed two sets of experiments. In the first set,  

one group of dogs (n = 7) was preconditioned with four 5 minutes of circumflex occlusions, each 

followed by 5 minute of reperfusion, and then 40 minutes of sustained occlusion was 

performed. The control group (n = 5) received a single 40-minute circumflex artery occlusion. In 

the second study, an identical preconditioning protocol was followed, and animals (n = 9) then 

received a sustained 3-hour occlusion following preconditioning. Control animals (n = 7) received 

a single 3-hour occlusion without prior preconditioning. Animals were allowed 4 days of 

reperfusion thereafter. Histologic infarct size then was measured and was related to the major 

baseline predictors of infarct size, including the anatomic area at risk and collateral blood 

flow.(176)  

In the 40-minute study, the histological post mortem infarct size was paradoxically limited to 

25% of that seen in the control group (p < 0.001) following ischaemic preconditioning i.e. those 

that were preconditioned suffered only one-quarter as much necrosis as that incurred in non-

preconditioned hearts. In the 3 hour study, there was no difference in infarct size between the 

pre-conditioned and control groups. 

  

 

 

 



 
 

49 

Early vs. Late Preconditioning 

Remote Ischaemic Preconditioning has a biphasic pattern of myocardial protection. The 

cardioprotection described by Murry et al. expired after a few hours and is known as “classic” or 

“early” ischaemic preconditioning.(180) This initial protection was transient and acted within a 

few minutes to 2-3 hours after the preconditioning stimulus. Later on, it was discovered that a 

delayed form of the protection recovers after 24 hours of the preconditioning stimulus, and has 

been referred to as the second window of protection (SWOP).(181-183) SWOP occurs after 24 

hours and lasts up to 72 hours after a preconditioning stimulus.(184) Both classical and SWOP 

preconditioning share some similarities.(181) In both cases the preconditioning ischaemia 

provokes the release of a number of trigger substances that interact with cell surface receptors, 

thereby initiating a signalling cascade of events. It seems that the protective effect within the 

second window is at least as powerful as that of classic ischaemic conditioning.(184)  

 

Figure 1.2- Reimer and Jennings. Circulation 71:1069. 1985 The post mortem technique used by Murry et al. for 

calculating area at risk, infarct size and regional blood flow. The LV was sliced into 4 and then to 8 slices. 
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Duration and Intensity of Preconditioning 

As seen above, not all combinations and durations of ischaemia and reperfusion will trigger the 

preconditioning phenomenon and protect ischaemic myocardium. A critical threshold appears to 

be present. One to two minute duration is not enough and effective for preconditioning. (185) 

Apart from the number of the preconditioning cycles and the duration of the ischaemia, the 

duration of the intermittent reperfusion determines the protection achieved by ischaemic 

preconditioning. The most interesting part of this preconditioning process is Memory. The 

myocardium ‘remembers’ that it has been preconditioned, even if the ischaemic stimulus has 

occurred up to several hours before the actual ischaemia. The exact nature and location of this 

memory is one of the great unsolved mysteries of ischaemic preconditioning.(186) 
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Remote Ischaemic Preconditioning  

Ischaemic preconditioning and ischaemic postconditioning require the intervention to be applied 

directly to the heart which may not be clinically practical.  Hence, remote ischaemic conditioning 

which provides a more easily applicable method of myocardial protection has attracted the 

attention of investigators for more than 20 years. 

In RIPC, applying one or more brief cycles of alternating ischaemia and reperfusion to an organ 

or tissue away from the heart protects the myocardium against the detrimental effects of a 

lethal episode of ischaemic reperfusion injury. The idea of protecting the heart by causing brief 

ischaemia on a different vascular setting away from the actual territory was first developed by 

Karen Przyklenk and colleagues in 1993 in an experimental setting. (187) They demonstrated that 

repeated episodes of occlusion–reperfusion (4 times for 5 minutes followed by 5 minutes of 

reperfusion) of the circumflex coronary artery prior to one-hour occlusion of the left anterior 

descending coronary artery, reduced the infarct size in the left anterior descending territory of 

dogs (6±2% versus 16±5% of the area at risk, P<0.05). This was actually, remote intracardiac 

conditioning.(188) 

This discovery that the conditioning stimulus could be applied to an organ or tissue away from 

the heart was a major breakthrough in applicability of preconditioning and has facilitated the 

translation of cardioprotective strategy into the clinical practice. The concept of preconditioning 

has since been expanded to a more clinically amenable strategy with the introduction of remote 

ischaemic preconditioning (RIPC), in which the preconditioning episodes are applied to an organ 

or tissue remote from the heart.  

Przyklenk’s findings were extended further and was noted that myocardial protection could also 

be achieved by intermittent interruption of the blood flow in a non- cardiac tissue. Studies 
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confirmed that brief ischaemia applied to the kidney,(189) intestine GHO, (190) or skeletal 

muscle(191)  could also protect the heart against a subsequent myocardial infarction. Evidence 

from various results shows that in animals, transient ischaemia of a wide range of tissues 

induces a systemic effect with multiorgan protection (including the brain) against subsequent 

extended ischaemia-reperfusion injury.(192-199) 

Birnbaum and colleagues(200) were first to show that remote ischaemic preconditioning by 

transient lower limb ischaemia prior to acute coronary syndrome (ACS) could reduce myocardial 

infarct size by 65%  in animals. The invasive stimulus consisted of a partial reduction in femoral 

artery flow applied in conjunction with electrical stimulation of the leg muscle. This 

phenomenon was named ‘IPC at a distance.’ 

Subsequently, a far less invasive and simpler procedure for inducing transient upper limb 

ischaemia as a remote ischaemic preconditioning stimulus was done with human 

participants.(201) In 2002, Kharbanda and MacAllister pioneered the use of non-invasive blood 

pressure (BP) cuff in human volunteers. In their RIPC protocol, the alternating ischameia and 

reperfusion comprised the inflation and deflation of a BP cuff placed on the upper arm to apply 

three 5 min cycles of alternating ischaemia and reperfusion to skeletal muscle of the 

forearm.(202) Four cycles of 5 min of ischaemia followed by 5 min of reperfusion of the arm 

protected against endothelial dysfunction induced by subsequent long-lasting ischaemia in the 

other arm. In a second part of the study, a similar preconditioning stimulus to the hind limb 

protected against myocardial infarction in pigs undergoing 40 minutes occlusion of the left 

anterior descending coronary artery.(202) The cardioprotective end points conferred by RIC 

include infarct size reduction, improvement of ATP recovery post-ischaemia, (201) anti- 

arrhythmia, (203) and improvement of ventricular contractile function.(201)  
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The timing of the RIC stimulus can accommodate most clinical settings of acute ischaemic/ 

reperfusion injury. This stimulus can be applied to either upper limb or lower limb either prior to 

ischaemia/reperfusion (remote ischaemic pre-conditioning, RIPC) or even at the time of 

myocardial reperfusion (remote ischaemic post-conditioning). Limb occlusion by tourniquet or 

blood pressure (BP) cuff is especially relevant for clinical application because it is a safer non-

invasive and inexpensive procedure. 

Kharbanda and colleagues (202) have shown that the RIPC protocol is capable of reducing 

myocardial injury as measured by troponin-I release in a porcine model of coronary artery 

bypass graft surgery. RIPC induced by brief periods of limb ischaemia using a blood pressure cuff 

or tourniquet, reduced myocardial infarction by 50% in a porcine model and protected against 

ischaemia/reperfusion injury when performed in the recipient animal in experimental cardiac 

transplantation.(202, 204) In a pre-clinical experimental model of cardiac bypass surgery, 

Kharbanda and his team showed reduced myocardial injury and improved lung function after a 

clinically relevant period of cross-clamping and cardiopulmonary bypass. (202) 
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Beneficial Clinical Effect of RIPC in CABG and PCI Setting 

Demonstrating that transient ischaemia—of intra-abdominal organs—could protect the heart 

against myocardial infarction was essential for development of the idea of remote 

preconditioning. Simplicity and cost effectiveness of RIPC, have facilitated a rapid translation to 

clinical trials. 

Revascularisation by the means of Coronary Artery Bypass Graft surgery (CABG) is one of the 

most established methods in management of severe ischaemic heart disease. Despite advances 

in surgical technique, which enable more protection of myocardium during surgery, the average 

mortality remains around 1.6 % in the UK.  Despite cardioplegic arrest, the incidence of 

perioperative myocardial infarction remains high at 9.8%. One of the major causes of myocardial 

injury during cardiac surgery is acute ischaemia-reperfusion as a consequence of aorta cross 

clamping. The clinical need to reduce this injury and induce better protection, especially in those 

with high-risk status (i.e. advanced age, diabetes mellitus, and prolonged cross-clamp time), has 

encouraged scientists and clinicians to undertake projects which increase myocardial tolerance 

to sustained ischemia, in particular preconditioning.  

The first study of remote preconditioning by transient limb ischaemia showed no effect on CK 

release in adults undergoing coronary bypass surgery. (205) These results however, cannot be 

considered definitive as the preconditioning stimulus consisted of only two cycles of 3 minute of 

ischaemia and 2 minute of reperfusion of the arm, and there were only four patients in both the 

control and preconditioning groups. 

The first successful clinical application of RIPC was reported in 2006 in 37 children undergoing 

corrective cardiac surgery for congenital heart disease.(206) The release of Troponin I was lower in 

the preconditioned group. The postoperative inotrope score and airway resistance in this group 
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were lower than they were in the control group. This study was followed by a few other trials in 

cardiac surgery including CABG and valve operation, which are summarised in Table 1.3. As 

shown, the outcome of these trials is not consistent.  

Regarding the PCI setting, it is well recognised that myocardial injury is an adverse event of PCI. 

Numerous researchers have investigated the efficacy of RIPC in PCI, in acute or elective setting. 

RIPC could potentially confer different forms of cardioprotection including reducing infarct size, 

lethal arrhythmias, and cardiac dysfunction following ischaemic injury. Although a few RIPC trials 

have shown favourable effects on myocardial ischemia/reperfusion injury in PCI, the results have 

been inconsistent so far. (Tables 1.2) 

Probable reasons of these conflicting outcomes are discussed in details in Chapters 5 and 6. 
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Table 1.2- RIPC clinical trials to date in PCI setting 
 
Year  Author  Clinical setting  Intervention  Outcome 
 
 
2017  Yilmaztepe

(207)
 Elective PCI  Upper arm Lower Trop I in RIPC group 

       1 x 5 min 
    
2017  Ladejobi

(208)
 PPCI   Upper arm Reduced serum BNP and HF 

       4 x 5 min 
 
 
2014  Zografos 

(209)
 Ad hoc PCI  Upper limb Lower Trop I in RIPC group 

       1 x 5 min    
 
 
2014  Sloth 

(210)
  PPCI   Upper limb Lower MACCE in RIPC group 

 4 x 5 min  
 
 
2014  Liu 

(211) 
 Elective PCI  Upper limb Lower Trop I,  CK, CK-MB in RIPC  

       3 x 5 min  group 
 
 
2014  Manchurov 

(212)
     PPCI   Upper limb Improved endothelial 

       4 X 5 min  function 
 
 
2013  Davies 

(213)
 Elective PCI  Arm 3 × 5 min MACCE-free survival  

(CRISP Stent f/u)                                                            both short- and long-term f/u 
 

 
2013  Ahmed 

(214)
 Elective PCI  Arm 3 x 5 min Lower Trop-T in RIPC group   

       
 
 
2013  Prasad 

(215)
 Elective PCI  Arm 3 x 3 min No difference in Trop T release 

         in sham and RIPC groups 
 
 
2012  Ghaemian 

(216)
 Elective PCI  Lower limb Lower Troponin T  

2 x 5 min in RIPC group 
 

 
2012  Luo 

(217) 
 Elective PCI  Arm 3 x5 min Lower Troponin I  in RIPC  

         group 
 
2011  Munk 

(218)
 PPCI   Arm 4 x 5 min Non significant improvement in LV 

         Systolic function in RIPC group 
 
2010  Botker 

(96)
 PPCI   Arm 4 x 5 min Increased myocardial salvage  

        index in RIPC group  
 
2010  Rentoukas 

(219)
 PPCI   Arm 3 x4 min Full ST segment resolution in RIPC 

       plus morphine plus morphine group  
 
 
2009  Hoole 

(15)
  Elective PCI  Arm 3 x 5 min Lower Troponin I in RIPC  

         group 
 
2006  Iliodromitis 

(220)
 Elective PCI  Both arms Increased Top-I, CK-MB and CRP 

       3 x 5 min  in RIPC group 
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Table 1.3- RIPC trials to date in adult cardiac surgery 

 
Year Author   Clinical Setting  Intervention  Outcome 
 
 
2015 Min 

(221)
   CABG   Upper limb  Improved Post-op  

 (RISPO sub-study)     4 x 5 min   24 hr PaO2/FIO2  
   
 
 
2015       Hausenloy

  (222)
  On-pump CABG  Upper limb  Noimprovement                                    

 (ERICCA)   +/- valve   4 x 5 min   in clinical outcome   
 
 
2015  Meybohm

 (223)
  CABG   Upper limb  No improvement in  

 (RIPHeart)     4 x 5 min   clinical outcome 
 
 
 
2014 Healy

 (224)
   All Cardiac Surgery  RIPC   No significant effect on  

The RIPC trialists        endpoint 
 

 
 
2014 Kottenberg 

(225)
  CABG in Sulphonyl-urea Upper limb  Reduced Troponin in  

    treated diabetics  3 x 5 min   non-diabetic group 
 
        
2014 Yang 

(226)
   CABG, Valve Surg  Limb Ischaemia  Reduced Troponin  

 (Metanalysis)  Congenital Dis     in RIPC group 
 
 
            
2012 D’Ascenzo 

(227)
  CABG   RIPC   Reduced Troponin  

 (Metanalysis)         in RIPC group 
 
 
 
2012 Hong

 (228)
   Off-pump CABG  Lower limb  Reduced Troponin  

       4 X 5 min   in RIPC group 
 
 
2012 Lucchinetti 

(229)
  On-pump CABG  Lower limb  No reduction in Trop 

       4 x 5 min   in RIPC group 
        
 
2011 Karuppasamy 

(230) 
 CABG, no valve  Upper limb   No significant difference  

3 x 5 min   in Trop, BNP, CKMB level 
 

 
2010 Hong 

(231)
   Off-pump CABG  Upper limb  No statistical difference  

4 x 5 min in Troponin release 
        
 
 
2010 Wagner 

(232)
  CABG ±AVR  Upper limb  Late phase-RIPC can  

       3 x 5 min         reduce injury 
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Table 2- RIPC trials to date in adult cardiac surgery (Continued) 
 
Year Author   Clinical Setting  Intervention  Outcome 
 
             
  
 
2010 Ali 

(233)
   CABG   Upper limb  Significant reduce in  

       3 x 5 min   CKMB in RIPC group 
 
 
2010 Thielmann 

(234)
  CABG   Upper arm  Significant reduce   

       3 x 5 min   in Trop in RIPC group 
 
 
2010 Rahman 

(235)
  CABG   Upper arm  No decrease in   

       3 x 5 min   Troponin release  
       
        
2009 Venugopal 

(236)
  CABG   Upper limb  Reduced Troponin 

       3 x 5 min   release in RIPC 
 
        
2007 Hausenloy 

(237)
  CABG   Upper limb  Reduced Troponin 

       3 x 5 min   in RIPC group 
 
 
2000 Gunaydin

 (205)
  CABG   Upper limb  Myocardium protected 

 
        2 x3 min 
 
1997 Jenkins   CABG   2 additional X 3 min Myocardium protected 
       myocardial ischaemia 
 
 
 
 
 

 

 

 

 

 

 



 
 

59 

Mechanism of RIPC 

Numerous extensive investigations have taken place over the last 20 years on RIPC, but its 

mechanism still remains unclear. Several hypotheses however have been proposed. 

Experimental studies suggest a neuro-hormonal pathway linking the remotely preconditioned 

organ to the heart where myocardial pro-survival signalling pathways are activated. (238, 239)  

Some of the underlying mechanisms of conventional myocardial preconditioning and 

postconditioning are believed to also play a role in RIPC setting. (238, 240-243)  

From the site of the remote stimulus, through humoral and neuronal pathways, remote 

ischaemic preconditioning activates several protective mechanisms in the target organ similar to 

those activated by local preconditioning. (244) They include the reperfusion-injury salvage kinase 

and survivor activating factor enhancement signalling pathways. (245)  

Furthermore, RIPC modifies the systemic inflammatory response, (246, 247) prevents endothelial 

dysfunction and platelet activation (248) following ischaemia-reperfusion injury. Classic Ischaemic 

Preconditioning, Remote Ischaemic Preconditioning and Post Conditioning, share common 

signalling pathways, including the release of cardioprotective autocoids such as adenosine (249) 

and nitric oxide (250) and bradykinin which are responsible in triggering cardioprotection effect on 

endothelial function,(60, 251, 252) activation of the reperfusion injury salvage kinase (RISK) pathway, 

the inhibition of the mitochondrial permeability transition pore opening ,(253, 254) mediators 

(protein kinase C activation, and end effectors),(197) activation of prosurvival kinases [PI3K-Akt, 

Erk1/2]. (255-258) 

 

Hausenloy & Yellon(238) have simplified the RIPC mechanism as three inter-related events below 

(1)The application of brief episodes of ischaemia and reperfusion to the remote organ or tissue, 
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releases endogenous autocoids or factors which can protect the heart from subsequent injury. 

(259, 260)  

 (2) The cardioprotective message/signal, which is conveyed from the remote organ or tissue to 

the myocardium. Two hypotheses are playing a role here: The cardioprotective signal either 

comprises a blood-borne factor that is carried from the remote organ or tissue to the heart 

and/or that it is the activation of a neural pathway which mediates the cardioprotective effect.  

(240) 

(3) The events occurring in the myocardium in response to the above relayed message, which 

confer the cardioprotective effect.  

 

Neuro-Humoral Pathway  

The role of potential factors conveying messages between remote organs and the heart has 

been investigated extensively over the last few years. It is believed that two major relay 

mechanisms exist:  

1) Humoral factor which releases in the distal organs and then travels to the heart;  

2) Neural pathway between the remote organ and the myocardium. 

RIPC induced by brief episodes of ischaemia and reperfusion applied to the limb requires the 

neural or the humoral pathways to limit myocardial infarct size. 

Various endogenous autocoids are released in the remote organs. They either travel in the blood 

to the heart and effect directly or activate efferent neural pathways within the remote organ to 

confer protection. 
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The actual interplay between the neuronal system and humoral factor remain unknown. (261) 

Further study is required to elucidate the interplay between these two mechanistic pathways 

underlying cardioprotection. 

 

Humoral Factor in RIPC 

The hypothesis that a blood borne humoral factor is playing an important role in conveying 

preconditioning signal from the remote organ to the heart and in mediating systemic spread of 

cardio-protection, was supported by an observation that showed protection could be 

transferred by injection of serum from a preconditioned rabbit to a rabbit which has not been 

preconditioned before undergoing induced myocardial infarction.(262) 

Dickson et al demonstrated that blood taken from a preconditioned rabbit and transfused to a 

non-treated rabbit, reduced the infarct size by 69%. The presence of humoral factor in RIPC was 

later on strongly confirmed in a robust study performed by Konstantinov et al.  and Kristiansen 

et al.(204, 263) RIPC using brief episodes of ischaemia reperfusion in a recipient pig was able to limit 

infarct size of the denervated donor heart. 

More importantly, a period of reperfusion of the remote conditioned organ was required to  

achieve cardioprotection, suggesting that protective stimulus required wash-out of a protective 

blood-borne humoral factor generated in the conditioned site into the circulation.  (190, 264) 

The nature of the circulating substance is unknown and might vary with species or stimulus, but 

it could function through opioid, endocannabinoid, or angiotensin-1 receptors and other 

 G-protein-coupled receptors. Patel et al. have shown that non-specific opioid receptor 

antagonist naloxone, abolishes the cardioprotective effect of RIPC in rats.(265) 
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The humoral hypothesis proposes that activation of receptors of adenosine(186, 190, 261)  

bradykinin (197) opioids (265, 267) (263) erythropoietin (268, 269) CB 2 endocannabinoid (270) angiotensin-I 

(194) and prostaglandin (266) receptors and the associated signalling pathways are implicated in 

mediating the protective effect of RIPC. However, whether they constitute the endogenous 

substances that are generated in the remote conditioned organ or tissue and being transported 

to the injured organ target through blood circulation remains unknown.(267) 

The actual identity of circulating humoral factors remains unknown. But following numerous  

studies, we now know that the cardioprotective humoral factors, generated in response to  RIPC 

of limb are likely to be hydrophobic and between 3.5-8 Da in size.(268-270)  

 

Role of Neural Mechanism in RIPC 

Several experimental studies have implicated a neuronal pathway mediating the connection 

between the remote conditioned organ or tissue to the protected organ and tissue.(238)  

Neurogenic mechanisms have been explored using autonomic ganglionic blockade. In a rat 

myocardial infarction model, hexamethonium (a ganglion blocker) abolished RIPC induced 

cardioprotection which was achieved by mesenteric artery occlusion. It had no effect on 

myocardial ischaemic preconditioning. Cardioprotection was absent when mesenteric artery 

occlusion was sustained throughout the study, indicating that reperfusion in the small intestine 

was essential to activate the neurogenic pathway. gho (190) 

According to Lim & Hausenloy (272), the current understanding of the neuronal pathway involves 

the release of endogenous autocoids, including neuropeptides such as Calcitonin Gene Related 

Peptide (CGRP) (276, 277)adenosine DING (189, 196, 276, 274) and bradykinin(195), from the remotely 
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conditioned organ or tissue which then activates local afferent nerves, which then stimulate 

efferent nerves that terminate at the remote organ and tissue to mediate protection.(186, 195) 

The role of adenosine in RIPC was first investigated in the Yellon Lab in 1998 on rabbits.  (189) 

Cardioprotection was abolished in rabbits treated with adensoine antagonist 8-

sulphophenyltheophylline (8-SPT).  

Bradykinin and CGRP are other endogenous substances implicated in neural pathway. The role 

of bradykinin in RIPC was shown in rats by Schoemaker et al.(195) They showed that bradykinin 

blocker HOE140, abolished the cardioprotective effect, and injection of bradykinin into 

mesenteric artery was protective. This effect was blocked by hexamethonium, suggesting that 

bradykinin acts through neural afferent stimulation.  

Recent research has emphasised the necessity of intact neural pathways to the organ or tissue 

receiving the preconditioning trigger.  (279) 

 

Systemic Inflammatory Response in RIPC 

In addition to release of neurogenic and circulating factors, the stimulus of transient limb 

ischaemia has other biological effects that might be relevant to its effectiveness.  A third 

hypothesis proposes that transient ischaemia and reperfusion of an organ or tissue provokes a 

systemic protective response involving modulation of immune cells either at post-translational 

level or through transcriptional regulation.(280) In a study done by Kharbanda group on healthy 

volunteers, the stimulus suppressed expression of pro-inflammatory genes in circulating 

leucocytes within 15 minutes, and still further at 24 hours. (280) The activated gene transcription 

was anti‐inflammatory and anti‐apoptotic. 
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Myocardial Mechanisms of Cardioprotection in RIPC 

Once the cardioprotective signal reaches the myocardium from the remote organ, intracellular 

signal transduction mechanisms that are similar to those that participate in ischaemic 

preconditioning and postconditioning, get recruited within the cardiomyocytes. Hausenloy and 

Yellon (238)  These include the ligand binding to G‐protein cell surface coupled receptors, which 

then activate intracellular kinases such as PKC‐є and other signalling components such as 

reactive oxygen species (ROS), Nitric Oxide (NO) and the mitochondrial KATP channel which act 

the same way as described in classic preconditioning. (191) Preconditioning has a beneficial 

platelet inhibitory and antithrombotic effect, which might stabilise vulnerable plaques, (282) 

improve endothelial function, and reduce inflammation.(40) 

 

KATP-Dependent Mechanism 

Intermittent peripheral tissue ischaemia during coronary ischaemia reduces myocardial 

infarction through a KATP-dependent mechanism; first demonstration of remote ischaemic 

preconditioning.  

KATP is a clinical trigger in the cardioprotective phenomenon. Schmidt et al. (178) tested the 

hypothesis that short periods of limb ischaemia administered at the same time of established 

myocardial ischaemia, would reduce MI, and the term “remote per-conditioning” (Per-C) was 

proposed to emphasise that the stimulus is administered during coronary ischaemia. The role of 

the ATP-dependent (KATP) channel in this form of myocardial protection was also tested in this 

study.(178) Opening of KATP channels, particularly the mitochondrial subtype, has been shown to 

be a pre-requisite for the induction of protection against ischaemic reperfusion injury by IPC, 

(283)RIPC, (189)and Postconditioning. (254) 
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Role of Nitric Oxide in RIPC 

Nitric oxide plays a critical role as a mediator of cardioprotection in the setting of both classical 

and delayed IPC.(171, 284) Tokuno et al. (192) have implicated inducible nitric oxide synthase (iNOS) 

activation as a trigger for delayed RIPC of the heart, using cerebral ischaemia as the 

preconditioning stimulus. They demonstrated that the bilateral occlusion of the internal carotid 

arteries to induce permanent cerebral ischaemia could reduce myocardial infarct size in murine 

hearts 24 hours later. 

 

 

Role of Protein Kinase C  

It is well established that Proteine Kinase C (PKC) plays a critical role as a mediator of the 

preconditioning signal in the setting of IPC with the PKC-1 isoform being the major 

cardioprotective isoform.(171) A few experimental studies have demonstrated the non-specific 

PKC blocker, chelerythrine, can abolish that cardioprotection.  (197, 264) Bradykinin, which is also a 

well-known mediator, acts via activating PKC. It is now understood that PKC plays and important 

role in ROS production.  

 

 

Role of Reactive Oxygen Species  

Oxidative stress appears to play a dual role in the setting of acute myocardial ischaemia-

reperfusion injury. During ischaemia, anaerobic metabolism predominates and ATP production 

decreases. This ischaemia inevitably leads to cell death, unless blood flow is restored. Though 
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reperfusion with oxygenated blood is essential for any tissue salvage, the sudden influx of 

oxygen leads to the formation of reactive oxygen species. However, its beneficial signalling role 

is believed to mediate the cardioprotective effects elicited by both ischaemic preconditioning 

and postconditioning.(171) 

A study by Weinbrenner et al.(285) suggests a possible beneficial signalling role for reactive 

oxygen species (ROS) in the setting of RIPC. They discovered that a free radical scavenger was 

able to abolish the protection elicited by RIPC. Whether the free radicals are generated in the 

preconditioned organ or tissue or in the myocardium is currently unclear and requires further 

examination. 

 

 

Mitochondrial Permeability Transition Pore  

Mitochondrial Permeability Transition Pore (mPTP), another probable regulator of 

preconditioning, is a large-conductance mega channel that is closed under physiological 

conditions.(286) A key event in cell death is mitochondrial permeability transition, a phenomenon 

that occurs when the mPTP becomes permeable to molecules of 1500 kDa or smaller. This leads 

to a rapid influx of small molecules, mitochondrial swelling, and subsequent cell death. (286, 287) 

Its detrimental role in the first few minutes of myocardial reperfusion is a mediator of lethal 

reperfusion injury. Veighey (257, 288) It mediates cell death by uncoupling oxidative 

phosphorylation leading to ATP depletion and by inducing mitochondrial swelling.(286) Preventing 

its opening at the time of myocardial reperfusion, exerts powerful cardioprotection, a 

mechanism which is believed to underpin the endogenous cardioprotective phenomena of IPC 

and post-conditioning.  
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The mitochondria are a major site of cellular energy and ATP production. Their role in 

preconditioning was supported by the observation that glyburide-a K-ATP channel blocker-

blunts the conditioning effect.(289) During ischaemia–reperfusion there is high concentrations of 

Ca2+, ROS, inorganic phosphate, nitric oxide and a reduction of the inner membrane potential, 

and all these conditions favour opening of the pore.(236) Regulation of KATP and mPTP provides 

protection from ischaemia or generate intermediates such as free radicals that play important 

role in myocardial protection.(290) The mPTP is the most important end-effector of cardiac 

conditioning. It has not been explored yet how the various cellular components within the 

myocardium contribute to the conditioning phenomenon. Endothelium has essential role in the 

regulation of vascular tone as well as thrombosis, platelet and leukocyte function; hence it may 

have a significant role. Extracellular receptors offer considerable opportunity for inter and 

intracellular interaction, and the study of these may offer new insights into mechanisms 

underlying conditioning the heart. 
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Delayed RIPC 

Delayed RIPC is one of the novel concepts of remote ischaemic conditioning. Similar to classic 

conditioning, delayed RIPC has also got 2 phases: Early RIPC results in acute protection through 

post-translational protein modification and delayed RIPC providing second phase of prolonged 

protection against ischaemic injury. An elegant temporal characteristic study by Moses et al. (291) 

has demonstrated that the therapeutic time window of delayed RIPC is similar to conventional 

IPC, i.e., from 24 hrs and lasting for up to 72 hrs. 
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Ischaemic Postconditioning  

Ischaemic preconditioning (IPOC) has to be applied before the onset of ischaemia. This 

requirement has restricted the clinical application of preconditioning to elective procedures 

when the ischaemic episode can be anticipated. Interestingly if a similar intervention applies at 

the time of perfusion, heart can still be protected from ischaemic reperfusion injury. This is 

called ischaemic postconditioning. In this setting the protection against ischaemia/reperfusion 

takes place after the harmful injury is induced. Brief episodes of ischaemia immediately 

following reperfusion after a prolonged ischaemic insult proved to be beneficial in animal 

models (266, 292-294) as well as in humans. (295) IPOC may protect the myocardium via multiple 

mechanisms, such as the reperfusion injury salvage kinase pathway, the survivor activating 

factor enhancement pathway and the activation of protein kinase G. These pathways may all 

eventually result in prevention of opening of the mitochondrial permeability transition pore. The 

term ischaemic postconditioning was first used in 1996 by Na and co-workers (296) who 

demonstrated in cats that applying intermittent reperfusion by method of premature ventricular 

contractions could reduce reperfusion-induced ventricular fibrillation following myocardial 

ischaemia. In 2005, Staat et al. showed that repeated episodes of ischaemia/reperfusion, by 

inflating the angioplasty balloon four times for 1 min following direct stenting of the occluded 

culprit coronary artery was associated with reduction of CK release, an indicator of infarct size, 

by 36%.(297) 

In one large study, one hundred and eighteen patients with STEMI underwent PPCI with or 

without postconditioning by four 30-seconds cycles of ischaemia–reperfusion immediately 

before PPCI. Postconditioning was associated with a decrease of 18% (P=0.037) in infarct size, 

measured by CMR at 3 months.(298) Another recently published trial did not confirm this effect 
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though.(299) Furthermore, a large-scale trial of 700 patients admitted with STEMI randomised to 

either standard PPCI or PPCI followed by postconditioning, failed to show any effect on 

myocardial reperfusion and clinical endpoints.(300) When the concept of postconditioning was 

first described, the mechanism of protection was initially attributed to reduction of oxidative 

stress, decreasing intracellular calcium overload, improving endothelial function and reducing 

inflammation.(292) Since then, mechanisms underlying the cardioprotective effects of IPOC have 

been the subject of intense investigation, including mPTP opening during the first minutes of 

reperfusion, which is hypothesised by Yellon & Hausenloy in 2007.(67) This crucial inhibitory 

event is mediated by activation of survival signalling pathways (reperfusion injury salvage 

kinases, RISKs), which in turn are triggered by the activation of specific cell-surface receptors.(301) 

Similar to preconditioning, the postconditioning stimulus also appears to activate G protein-

coupled receptors (GPCRs) by endogenous ligands, such as adenosine, opioids, and bradykinin, 

providing the initial trigger for recruitment of survival signalling pathways. The adenosine 

receptor was the first GPCR to be linked with IPOC. Thus, the reduction in myocardial infarct size 

elicited by IPOC was abolished in the presence of 8-p- (sulphophenyl) theophylline, a non-

specific adenosine receptor blocker.(302)   

A number of different signalling pathways have been reported to mediate the protective effects 

of postconditioning, most notably the RISK pathway. The RISK pathway describes a group of 

survival protein kinases (ERK1/2 and PI3K/ Akt), which when activated at the time of reperfusion 

confer powerful cardioprotection. Pharmacological agents, including growth factors, GPCR 

agonists, cytokines, natriuretic peptide, adipocytokines and statins, administered at the 

immediate onset of reperfusion activate either ERK1/2 or PI3K/Akt and accordingly reduce 

myocardial infarct size (pharmacological postconditioning) in animal models of acute MI. (301) 
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Preconditioning in other Organs than Heart 

As discussed above, RIPC was originally designed as a therapeutic strategy for protecting the 

myocardium against the ischaemic reperfusion injury. Later on however, a number of 

experimental and clinical studies demonstrated that RIPC may protect kidneys,(199, 293, 304) 

lungs,(203, 235, 305) liver,(306-308) ovaries, (309)  intestine,(309, 310) stomach(271) and pancreas.(312) The 

cerebral protective roles of limb RIPC in the animal models of transient focal cerebral ischaemia 

or whole cerebral ischaemia is now confirmed.(313)  
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Factors that Blunt the Protective Effect of Preconditioning  

The effect of age and other cardiovascular risk factors on pre and postconditioning is of clinical 

significance because a large proportion of patients with coronary artery disease who might 

benefit from conditioning are elderly or have metabolic conditions that may attenuate the 

protective effect. (314) The aged heart is accompanied by an impaired ability to translate both 

endogenous stress signals and pharmacological activators into biochemical steps necessary for 

induction of the cardioprotective response. (315)  

These factors are explained in details in the last 2 chapters of this thesis and listed in the table 

1.4. 

 Table 1.4  

Factors that are believed to attenuate preconditioning and postconditioning effect 

Age (316-321) 

Diabetes (322, 323) 

Glibenclamide(324) 

Smoking (325) 

Hyperlipidaemia (326, 327) 

Hypertension (327) 

Obesity (328) 

Antedecedent angina(177) 

Direct preconditioning effect from coronary balloon inflation (292)  

GTN (185) 

Nicorandil (314)  

Statins (329) 
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PCI related Contrast-Induced Kidney Injury  

Contrast-induced acute kidney injury (CI-AKI) or contrast-induced nephropathy (CIN), which is an 

impairment of renal function resulting from administration of contrast media in the absence of 

an alternative etiology, (330, 331) is a prevalent but under-diagnosed complication of diagnostic 

coronary angiography and PCI.  CI-AKI is defined as either an absolute increase in serum 

creatinine (Cr) concentration of 44.2 µmol/L (or 0.5 mg/dl) or a 25% relative increase of Cr from 

baseline. (332, 333) 

CI-AKI typically manifests within 3 days of contrast media administration, peaks within 3 to 5 

days, and resolves within 10 to 21 days. (334) Although often a transient injury, it can be 

associated with increased in-hospital morbidity and mortality.  

The importance of this complication is being increasingly recognised. Several recent North 

American and European epidemiological studies have shown that the incidence of acute kidney 

injury (AKI) is increasing at an alarming rate. (335)  CI-AKI has been reported to be the third most 

common cause of hospital-acquired renal failure.  (336,337) The incidence of acute renal 

insufficiency after PCI ranges from 2.0% in those patients with normal baseline renal function to 

as high as 20–30% in those patients with a baseline creatinine greater than 176 µmol/L (or 2.0 

mg/dl) prior to PCI.  (338, 330, 331)  Nash et al (336) reported that 11% of hospital-acquired renal 

insufficiency cases are due to contrast media, with coronary angiograms and PCI being the 

leading cause. The incidence of AKI requiring dialysis following PCI, however, is fortunately rare, 

and is less than 1%. (339) 

 

Pre-existing chronic kidney disease (CKD) is the most important risk factor for developing CI-AKI 

post-PCI.  Diabetes mellitus has been identified as another important risk factor. In patients with 
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diabetes mellitus and CKD, the incidence of CI-AKI increases an additional two-fold, and can 

reach as much as 33%. (340,341)   There is no definitive evidence that CI-AKI correlates with the 

duration of diabetes or suboptimal glycaemic control, but tight glycaemic control should be 

achieved before contrast media exposure. (342,343)  

The incidence of CI-AKI is also significantly higher in patients with several other comorbidities, 

including congestive heart failure, hypotension, hypertension, pre-procedure shock, recent 

myocardial infarction (MI), old age and female gender. (344, 345) 

 The apparently increased prevalence of CI-AKI in elderly patients is likely to be multifactorial in 

origin and may be attributable to the presence of large or small vessel renal arteriosclerosis, 

underestimation of background CKD in this group, impaired cardiovascular performance (and 

hence renal oxygen delivery) and reduced regenerative capacity of the renal parenchyma in the 

face of acute injury. (338, 342) 

The incidence of CI-AKI may also be increased by concomitant use of nephrotoxic agents such as 

non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors, which are 

used in more than 60% of cardiac patients. (346) 

The risk of CI-AKI increases if the PCI is undertaken in the context of reduced effective circulatory 

volume. This may be due to hypovolemia (including overdiuresis), liver failure or cardiac failure. 

Sepsis, hypercalcaemia and rhabdomylolysis are further risk factors for developing CI-AKI. (343) 

The risk of CI-AKI is significantly higher among patients with acute MI undergoing PCI than 

among stable CHD patients undergoing elective PCI. (347) The most likely contributing factors for 

CI-AKI in this context are impaired systemic perfusion caused by left ventricular dysfunction, the 

need for the administration of large volumes of contrast medium, and the lack of sufficient time 

to perform renal prophylactic therapies prior to contrast medium exposure. 
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In these high-risk patients, the incidence of CI-AKI has been estimated to range from 20-50% 

depending on the intervention and criteria used to diagnose AKI. (340-348,349) Even a mildly 

increased serum creatinine post-PCI is a predictor of worse clinical outcome.  A serum creatinine 

level of only 115 µmol/L (or 1.3 mg/dL), which in most patients indicates a reduction in renal 

function of about 50%, is associated with a two-fold increase in total mortality and a 10% 

reduction in cumulative survival over three years. (350)  Despite technical advances in PCI, there is 

increasing recognition that CI-AKI can have serious short term and long-term consequences such 

as in-hospital death, long term mortality, progression of chronic kidney disease and increased 

health care expenditure. (332,350) 

 

Pathophysiology of CI-AKI 

The pathophysiology of CI-AKI is still ill-defined and poorly understood. Implicated mechanisms 

include changes in the renal circulation leading to ischaemic damage to the renal medulla and 

the production of oxygen free radicals inducing tubular epithelial damage. (330,331) 

Haemodynamic instability with reduced effective arterial volume during the procedure, 

microemboli to the kidney and concomitant drug toxicity are other important factors that may 

be responsible for CI-AKI following PCI. (352) 

Experimental findings indicate that contrast media administration rapidly induces a renal 

vasoconstrictive response. This has been ascribed to a number of different mediators, such as 

the renin-angiotensin system, changes in the intracellular calcium concentration of smooth 

muscle cells, adenosine and endothelin. (352,353) 
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Contrast Osmolarity 

Contrast nephrotoxicity and the risk of developing CI-AKI are related to the osmolarity of the 

contrast media. This reflects the total particle concentration of the solution (the number of 

molecules dissolved in a specific volume). (354)  It is widely accepted that contrasts with a high 

osmolarity are associated with the greatest risk of developing CI-AKI. As a consequence, the 

osmolarity of available contrast media has been gradually decreasing to physiological levels over 

the last 40 years. In the 1950s, only high-osmolar contrast media (e.g., diatrizoate) with 

osmolality five to eight times  of plasma was available. In the 1990s, isosmolar contrast media 

(e.g., iodixanol) were developed and are now widely in use. (355) 

 

Emerging biomarkers for early detection of AKI 

The substantial lag time between renal injury and the consequent rise in serum Cr has 

disadvantages. Interventions to mitigate or reverse renal injury may be substantially delayed, 

while prognostic staging, and the planning of care, is dependent on serum Cr measurements 

extending to several days, which do present logistical difficulties. The emergence of novel 

biomarkers offers an opportunity to diagnose AKI at an earlier stage, which can differentiate 

between structural and functional AKI, and predict the outcome of established AKI. (356)  The 

most promising renal biomarkers include plasma and urine neutrophil gelatinase-associated 

lipocalin (NGAL), kidney injury molecule 1 (KIM-1), Clusterin, Cystatin C, and interleukin 18 (IL-

18). (357-359)  In a recent meta-analysis, it was confirmed that NGAL is a valuable renal biomarker 

in all settings of AKI investigated. (360) The role for biomarkers in the early detection and staging 

of CI-AKI is the subject of ongoing clinical research.   
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Currently, the diagnosis of CI-AKI is dependent on determining changes in serum Creatinine 

level. However, in CI-AKI, serum Cr values do not rise immediately after the contrast insult. 

Although there are clearly limitations in the effectiveness of using serum Cr for the rapid 

detection of contrast mediated renal injury, rises in serum Cr in hospitalised patients have been 

strongly associated with outcomes, including length of stay, mortality and healthcare 

expenditure.  There is, however, growing interest in the use of more novel biomarkers that 

might provide a more rapid diagnosis of CI-AKI, particularly if their use might influence pre-

emptive measures or subsequent monitoring. 

 

Neutrophil Gelatinase-Associated Lipocalin (NGAL) 

There is an urgent need for early predictive biomarkers of both acute kidney injury (AKI, 

previously referred to as acute renal failure) and chronic kidney disease (CKD). In both situations, 

early intervention can significantly improve the prognosis. However, currently available 

biomarkers such as serum creatinine concentrations lack enough accuracy and details, and their 

delayed response delays potentially effective therapies in a timely manner. Prompt diagnosis 

and management of AKI can minimise the adverse effects post PCI. The development of novel 

biomarkers such as (NGAL) is promising and may enable more rapid detection of CI-AKI. NGAL is 

an emerging biomarker of acute kidney injury, with equivalent increases of both urinary and 

plasma NGAL within 6 h of renal the insult- a time course that, should it be reciprocated in 

angiographic patients- may offer earlier opportunities for mitigating renal injury and for 

assessing prognosis. (372) Several investigators have examined the role of NGAL as a predictive 

biomarker of nephrotoxicity following contrast administration.  (373) 
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Preventing CI-AKI post-PCI 

It is important that patients undergoing PCI have an appropriate risk assessment for PCI-AKI. 

Precautionary measures before, during, and after the use of contrast media that reduce the 

incidence of CI-AKI, such as discontinuation of nephrotoxic medications, and the use of 

appropriate volumes and types of contrast media, should be considered in all patients with renal 

insufficiency or with other risk factors for CI-AKI. Low osmolar non-ionic contrast is the contrast 

of choice for all patients at high-risk for post-PCI renal insufficiency. 

Pre-PCI hydration remains the most effective approach to preventing CI-AKI. Risk assessment 

and the institution of preventive therapy such as preventing dehydration is essential. 

One of the mechanisms hypothesised to be responsible for CI-AKI development is the 

development of oxidative stress with the intra-renal accumulation of reactive oxygen species. 

Alkalinisation of tubular fluid has been shown to diminish the production of free oxygen radicals. 

(361)  This has led to the investigation of sodium bicarbonate as a CI-AKI prophylactic therapy. 

Despite the fact that pre-treatment with sodium bicarbonate is more protective than sodium 

chloride in animal models of acute ischaemic renal failure, (362) the results of studies in man have 

been conflicting.(363-365)  

 

To evaluate the available controversial data and to assess the effectiveness of Normal Saline 

versus Sodium Bicarbonate infusion a few meta-analyses have been performed. Meier et al (366) 

performed a meta-analysis of 17 randomised controlled trials including 2,633 patients. This 

suggested a significant benefit with the use of NaHCO3-based hydration for prophylaxis of CI-AKI. 

However, some other trials have failed to find any benefit in hydration with Sodium Bicarbonate. 

(367-370) 
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The antioxidant N-acetylcysteine (NAC) has been suggested as a therapy to attenuate the risk of 

developing CI-AKI by scavenging oxygen free radicals generated as a result of renal tubular toxic 

damage. However, there has been ongoing debate over whether NAC is effective in preventing 

CI-AKI. The current literature suggests that its role as an adjunct to saline hydration in patients 

with mild to moderate renal insufficiency is limited. In the largest randomized study thus far 

assessing the efficacy of NAC for preventing CI-AKI, intravenous NAC (500 mg) did not provide 

renal protection in patients with impaired renal function compared with placebo. (371)   There 

may be a role for this agent where complete hydration is not possible (e.g. emergency coronary 

angiography or symptomatic congestive heart failure), or in patients with more severe renal 

dysfunction (serum Cr >2.5 mg/dl),(70) however this requires further investigation. 

 Based on multiple studies, it is a common practice in most of UK hospitals to continue ACE-Is in 

patients with mild to moderate renal insufficiency who are undergoing PCI.
 

 

 

Protective role of RIPC in CI-AKI 

Current preventative interventions are largely centred on the avoidance of dehydration, and 

pre-treatment with N-acetyl cysteine and/or sodium bicarbonate, withdrawal of nephrotoxic 

agents and minimisation of contrast load but none of the above measurements can be entirely 

protective. The efficacy is limited in high risk patients and CI-AKI remains significant post PCI. 

Therefore there is a potential role for novel therapies that can improve the outcome and 

prevent CI-AKI in patients undergoing PCI. In this respect, the safe and low-cost therapeutic 

intervention of remote ischaemic preconditioning is a potential strategy for preventing CI-AKI. 

Proof-of-concept clinical studies have shown that RIPC using transient ischaemia and reperfusion 
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of the lower limb can preserve kidney function in patients undergoing elective endovascular, (374) 

open surgical repair of an abdominal aortic aneurysm, (375) and coronary artery bypass graft 

surgery. (234) It has recently been demonstrated in a proof-of-concept clinical study that RIPC 

could reduce the incidence of CI-AKI in PCI patients. (376)   Large randomised controlled trials are 

now required to confirm the efficacy of RIPC in CI-AKI and investigate whether clinical outcomes 

can be improved. 

 

Therefore, in the ERIC- PCI study, we hypothesised that the safe and low-cost therapeutic 

intervention of RIPC which refers to a powerful endogenous protective phenomenon whereby 

brief episodes of non-lethal ischaemia and reperfusion to one organ confers protection against a 

sustained lethal episode of ischaemia and reperfusion in another organ,  is a potential strategy 

for preventing CI-AKI.  
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CHAPTER 2 

 

AIMS and OBJECTIVES 
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Despite significant advances in revascularisation techniques, PCI-related myocardial injury is still 

common, and leads to worse prognosis even after an angiographically successful procedure. PCI-

related myocardial injury results from procedural complications of PCI, such as distal 

embolisation, side branch occlusion, coronary dissection, and disruption of collateral flow. 

Although not entirely agreed by all scientists, reperfusion injury might also play a role in 

pathogenesis of PCI-related myocardial injury. 

Patients undergoing PCI for complex lesions are at increased risk of procedural-related injury 

and require better cardioprotection. During complex coronary intervention, a higher amount of 

contrast media might be used which increases the risk of contrast-induced acute kidney injury 

(CI-AKI).  

The role of RIPC in decreasing the amount of PCI-related myocardial and renal damage is the 

focus of this thesis.  

We therefore evaluated the cardio-protective effect of RIPC in the setting of complex PCI. 

 

Overall Hypothesis  

RIPC using transient limb ischaemia and reperfusion will reduce procedural-related myocardial 

injury in patients undergoing complex PCI. 

 

Primary Objective 

To investigate in patients undergoing complex PCI whether RIPC using transient limb ischaemia 

and reperfusion will reduce the incidence and extent of PCI-related myocardial injury as 

assessed by serum cardiac biomarkers.  
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Secondary Objectives 

1. To investigate in patients undergoing complex PCI whether RIPC using transient limb 

ischaemia and reperfusion will result in less chest pain and fewer ECG changes of myocardial 

ischaemia during the PCI procedure. 

2. To investigate in patients undergoing complex PCI whether RIPC using transient limb 

ischaemia and reperfusion will reduce PCI-related myocardial injury as evidenced by a 

reduction in the incidence and extent of myocardial oedema and necrosis on cardiac MRI.  

3. To investigate in patients undergoing complex PCI whether RIPC using transient limb 

ischaemia and reperfusion will reduce the incidence and severity of contrast-induced acute 

kidney injury (CI-AKI) 

4. To investigate in patients undergoing complex PCI whether RIPC using transient limb 

ischaemia and reperfusion will reduce the rates of coronary revascularisation, re-infarction, 

and cardiovascular death at 30 days.  
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CHAPTER 3  

 

METHODS 
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Overview of the ERIC-PCI Study  

The ERIC-PCI trial was conducted in three cardiac centres (The Essex Cardiothoracic Centre, The 

Heart Hospital and St Thomas’ Hospital) as a single-blinded randomised-controlled trial. The 

primary objective of this study was to investigate the efficacy of RIPC using transient limb 

ischaemia and reperfusion, in reducing the incidence and extent of PCI-related myocardial injury 

in patients undergoing complex PCI. This potential effect was mainly assessed by measurement 

of two serum cardiac biomarkers; Troponin and CK-MB at time intervals zero (prior to RIPC or 

control intervention), 6, 12 and 24 hours post PCI. Patients awaiting elective complex PCI were 

randomly assigned in a 1:1 ratio to receive either the RIPC (intermittent arm ischaemia and 

reperfusion through four cycles of 5-minutes inflation and 5-minutes deflation of a blood-

pressure cuff placed on the upper arm) or control protocols. In  the  control treatment arm, a 

standard un-inflated blood pressure cuff was placed on the upper arm for 40 minutes.  
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ERIC-PCI trial overall patient pathway 

Essex, Heart, St Thomas’ Hospitals 

 

Great Ormond Street Hospital 

 

 

Cardiology wards at Heart, 

Basildon and St Thomas’  

 

 

 

Greart Ormond Street Hospital 

 

 

 Patients undergoing elective complex PCI 
screened for suitability 

 

  Verbal information/consent over the phone 

 

 

 

 
Elective admission for PCI + Formal consent  

 

 

 

 

 

       1:1 Randomisation 

 

 

 

 

Complex PCI: SYNTAX>23, Rotablation, CTO,  

vein graft, laser 

 

 

 

 

 

Post-PCI Blood test: Troponin, CK-MB, 

Creatinine at 6 hr, 12 hr, 24 hr  

 

 

 

               Post PCI CMR in 3-7 days  

 

 30 day post PCI MACE- Phone review 

 

Formal Consent. Pre- PCI CMR performed 

 

 

 

 

RIPC: 4 X 5 min BP cuff inflation 

 

 

 

 

 Control: Un-inflated BP cuff 

 

 

 

 

Pre-PCI Blood test: Trop, CK-MB, Creatinine 

 

 

 

                               Analysis 
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Ethical, Research and Development (R&D) Approval 

The investigator ensured that this study was conducted in full conformity with the current 

revision of the Declaration of Helsinki, the principles of Good Clinical Practice and the Research 

Governance Framework. The protocol of this study was written in accordance with the 

International Conference on Harmonisation- Good clinical practice (ICH-GCP) guidance. The 

protocol contains multiple sub-studies for assessment of ischaemic preconditioning in different 

settings. The sub-study 5 of this protocol (the ERIC-PCI study) focuses on the effect of remote 

ischaemic preconditioning in complex PCI. The study was approved by the joint University 

College London (UCL)/ University College London Hospitals (UCLH) committees for the ethics of 

human research (REC 05/Q0502/102). The application form was submitted to the National 

Research Ethics Services (NRES) Committee London – Bentham, where the study protocol, 

patient information sheet (PIS), consent form and information letter to the general practitioners 

were approved. Following the favourable response of the NRES committee-London Bentham’, 

separate applications were made to the departments of research and development (R&D) at the 

University College London and Basildon Hospitals, which were our two original recruitment 

centres. In order to increase patient recruitment, the third centre - Guy’s and St Thomas’ 

Hospitals NHS Trust- was invited to participate in this trial.  

After initial approval, a request for a major amendment was made to the NRES committee as we 

also wished to assess the effect of RIPC on contrast- induced acute kidney injury (CI-AKI).  The 

necessary major amendments to the protocol were made and submitted alongside updated 

versions of the patient information sheet, consent form and GP letter for a second favourable 

opinion of this study. Following approval of the new protocol and acceptance by the R&D 

departments, the logistics were carefully arranged and recruitment started in multiple centres. 
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The NRES Committee London – Bentham was also informed of any necessary minor 

amendments. 

 

Patient Selection 

Inclusion Criteria 

1. Age > 18 years  

2. SYNTAX score ≥ 23*  

3. Patient undergoing complex PCI defined as:  

PCI to vein graft(s) 

Rotational atherectomy assisted PCI 

Laser assisted PCI 

Chronic Total Occlusion (CTO) PCI 

*Syntax score is an angiographic grading tool and is calculated from the following 

angiographic variables: 1) Dominance 2) Number of lesions 3) Segments involved per lesion 

4) Total occlusion 5) Trifurcation 6) Bifurcation 7) Aorto-ostial lesion 8) Severe tortuosity 9) 

length > 20 mm 10) Heavy calcification 11) Thrombus 12) Diffuse disease/ small vessels. 

Exclusion Criteria:  

1. Inability to consent 

2. Pregnancy 

3. Participation in another trial 

4. Peripheral vascular disease/contraindication to balloon cuff inflation 

5. Recent Acute Coronary Syndrome (ACS) with raised Troponin 
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6. Peripheral vascular disease affecting the upper limbs 

7. Standard contraindications to cardiac MRI scanning (Pacemaker or Implantable 

Cardioverter Defibrillator (ICD); Metal implants; significant renal impairment (e GFR 

<30); Claustrophobia) 

8. Patients taking either glibenclamide* or nicorandil* were asked to withhold these 

medications for 48 hours 

 

*Nicorandil and glibenclamide can mimic ischaemic preconditioning. As per Yellon’s laboratory 

report, nicorandil can mimic the protection of ischaemic preconditioning. (156) As well as dilating 

epicardial coronary arteries, nicorandil is involved in opening adenosine triphosphate-dependent 

potassium (KATP) channels in ischaemic cardiomyocytes. (377) As the protection induced by 

preconditioning can be abolished by glibenclamide, patients were asked to stop taking this 

medication prior to the planned PCI date.(378)  

 

Recruitment Procedure 

Elective patients undergoing complex PCI were recruited in a consecutive manner. In order to 

identify eligible patients, elective PCI lists at the three centres were screened by the researcher 

for suitability. Eligible patients at The Heart and St Thomas’ hospitals were invited to participate 

in this trial via telephone. Following an initial explanation, verbal agreement to take part in this 

study was initially obtained over the phone. If participants agreed to undergo cardiac MRI scan, 

they were met first at the CMR department at Great Ormond Street Hospital for Children where 

the patient information sheet (PIS) was provided and formal written consent for the ERIC-PCI 
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trial was obtained. Following the pre-PCI Cardiac MRI, the second visit took place on the elective 

PCI day when randomisation and the study protocol were administered prior to PCI.  

At The Essex Cardiothoracic Centre, eligible patients were approached in the PCI pre-assessment 

clinic and were provided with a patient information sheet. Formal written consent was obtained 

either at the CMR centre or on the cardiac ward on the day of admission for elective PCI. 

Following randomisation, patients received either the ‘RIPC’ protocol by means of intermittent 

blood pressure cuff inflation and deflation on the upper arm or the ‘control’ protocol. In patients 

randomised to the control treatment arm, a standard un-inflated blood pressure cuff was placed 

on the upper arm for 40 minutes.  The operating interventionalist and the cardiac 

catheterisation laboratory staff were blinded to the treatment allocation. Post-PCI blood 

samples were collected 6 hours, 12 hours and 24 hours later. In patients who had a successful 

angioplasty and had CMR before PCI, post-PCI CMR was performed within the first 7 days after 

the procedure. 

 

Consent Procedure 

Eligible patients from The Heart and St Thomas’ hospitals were invited to participate in this trial 

by telephone. At The Essex Cardiothoracic Centre, eligible patients were directly approached in 

the PCI pre-assessment clinic. Following verbal consent over the phone, patients who agreed to 

undergo CMR scan -and did not have any contraindications -were asked to attend an 

appointment at Great Ormond Street Hospital for a pre-PCI MRI scan. Transport was arranged by 

The Hatter Cardiovascular Institute, UCL. Upon arrival, informed consent was obtained following 

extensive discussion of the risks and benefits of the trial as well as going through the patient 
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information sheet (PIS). On the procedure day, the recruitment process was explained in detail 

again and the PIS form was provided to patients who had not previously received it. Patients had 

sufficient time to read the patient information sheet and ask questions. Formal written consent 

was obtained using the latest appropriate version of the consent form. The original consent form 

was filed in the research folder. A copy of the consent form was given to the participants, and 

one copy was filed in the medical notes. The subjects could withdraw consent at any time 

throughout the course of the study. The rights and welfare of the subjects was protected by 

emphasising to them that the quality of their medical care would not have been adversely 

affected if they declined to participate in this recruitment. 

 

Randomisation and Treatment Allocation 

On the PCI procedure day, formal informed consent was obtained on the cardiac ward if not 

already done so and patients were randomly assigned to the  Remote Ischaemic Preconditioning 

or the control groups. For this purpose, a computer-generated randomisation sequence was 

used. Randomisation cards were sequentially numbered and kept in the  sealed envelopes 

(SNOSE). The sealed envelopes were opened in presence of the patients. Study group 

randomisation, treatment allocation and delivery of RIPC were all performed by the unblinded 

researcher (lead investigator). The PCI operator, catheter laboratory staff and cardiac unit staff 

were all blinded to the treatment allocation. 
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Study Protocol  

All patients received the RIPC or control intervention within 3 hours of the planned PCI. 

According to the protocol, if the PCI was delayed for more than three hours, the intervention 

would be repeated prior to PCI.  In the RIPC treatment group, a standard BP cuff was placed on 

the upper arm (right arm whenever possible) and inflated  to 200mmHg and left inflated for 5 

minutes at this pressure. The cuff was then completely deflated and left for 5 minutes at 0 

mmHg. This cycle was repeated 4 times, so that the total duration of the intervention was 40 

minutes. In patients randomised to the control treatment arm, a standard un-inflated BP cuff 

was placed on the upper arm for 40 minutes. The delivery of the RIPC or control interventions 

neither delayed  nor overlapped the planned PCI procedure.  

 

 

Percutaneous Coronary Intervention  

The decision on the choice of arterial access, revascularisation method, lesion(s) to be treated, 

the choice of wires/balloon/stents and medication use during PCI, were all based on the clinical 

judgment of the operating consultant interventionalist, and was not influenced by the research 

protocol. All patients received loading dose of dual antiplatelets (aspirin and clopidogrel) if they 

were not already on long term treatment. Intra coronary heparin was injected to all patients at a 

dose of 50-100 IU/Kg . As per decision of the operating interventionalist, intra coronary nitrate, 

adenosine or  verapamil was administered as required. Detailed interventional events and 

parameters were recorded during the procedure. This  included chest pain,ECG changes or any 

complications. 
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Primary Endpoint-Serum Cardiac Biomarkers 

The primary objective of this study was to investigate the efficacy of RIPC- using transient limb 

ischaemia and reperfusion- in reducing the incidence and extent of PCI-related myocardial injury 

in patients undergoing complex PCI. During PCI, passage of wire and balloon inflation, in another 

terms, instrumentation of the heart, inevitably results in myocardial injury with or without 

necrosis, whether or not accompanied by ST segment –T wave changes in ECG.  Embolisation of 

intracoronary thrombus or atherosclerotic particulate debris induce inflammation of the 

myocardium surrounding islets of myocardial necrosis. (7) The occurrence of procedure-related 

cell necrosis can be detected by measurement of cardiac biomarkers Troponin and CK-MB, 

before and immediately after the procedure, and again at 6 to 12 and 18 to 24 hours later. 

Cardiac troponin is the component of contractile structure of myocardial cells and is expressed 

almost exclusively in the heart with high specificity and sensitivity. Currently, Troponin is the 

only biomarker recommended by European and American guidelines for diagnosis of myocardial 

injury. Elevations of biomarkers above the 99th percentile upper reference limit (URL), assuming 

a normal baseline troponin value, are indicative of post-procedural myocardial injury. The 

development of more sensitive Troponin assays and precise imaging techniques has allowed 

detection of ever smaller amounts of myocardial necrosis/infarction. But this can have major 

psychological and legal implications. Therefore following Second Global MI Task Force, leading to 

the Universal Definition of Myocardial Infarction Consensus Document in 2007, which arbitrarily 

suggested to designate increases more than three times the 99th percentile URL, as PCI-related 

myocardial infarction, the 3rd universal definition for MI was published in 2012. According to this 

definition,  PCI-related or Type 4a myocardial injury is defined ( still arbitrarily though)  as 

elevations of cTn more than 5 times the 99th percentile upper reference limit (URL) occurring 
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within 48 hours of the procedure in addition to a) evidence of prolonged ischaemia (more than 

20 min) as demonstrated by prolonged chest pain, or b) ischaemic ST changes or new 

pathological Q waves, or c) angiographic evidence of a flow limiting complication, such as  loss of 

patency of a side branch, persistent slow- flow or no-reflow, embolisation or d) imaging 

evidence of new loss of viable myocardium or new regional wall motion abnormality. (3)  

 

In the ERIC-PCI trial, due to logistic issues, assessing the cardiac enzymes 48 hours post PCI was 

not possible therefore elevation of Troponin and CK-MB levels occurring within 24 hours of the 

procedure was considered the primary endpoint. Levels above the baseline (zero-hour) and not 

the 99th percentile URL, were considered elevated.  Blood samples were collected  for 

hsTroponin T, CK and CK-MB levels at zero hours (prior to the randomisation protocol) and at 6, 

12 and 24 hours post PCI. This was in addition to evidence of prolonged chest pain (more than 

20 minutes), or ischaemic ST changes or new pathological Q waves, angiographic evidence of a 

flow limiting complication, imaging evidence of new loss of viable myocardium or new regional 

wall motion abnormality. 

Detection of cardiac Troponin was based on an electrochemiluminescence immunoassay using a 

Tris (bipyridyl)-ruthenium (II) complex as a label. (379) Since the introduction of Troponin into 

clinical practice, several generations of commercial cardiac Troponin assays have been validated 

in analytical and clinical trials. In 2011, highly sensitive Troponin T (ROCHE) was introduced 

which is the 5th generation of the Troponin tests. This new more sensitive version of the assay -

with a unit of measurement of nanogram per litre (ng/l) - has replaced the previous assays with 

unit of measurement of microgram per litre (µg/l) in most cardiac centres in the UK. 

Development of newer high-sensitivity assays seems to have improved the value of cardiac 

troponin as both a diagnostic and a risk indicator. 
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At The Heart Hospital, high sensitive Troponin level was measured in µg/l with the 99th 

percentile upper reference limit of 0.014. In the other two recruiting centres (St Thomas’ 

Hospital and The Essex Cardiothroacic Centre), the new hsTnT level was measured in ng/l with 

the 99th percentile upper reference limit of 13 and 14 ng/l respectively. This new high sensitive 

Elecsys Troponin T assay, met the sensitivity criteria required by ESC/ACC, in achieving less than 

10% coefficient of variation (CV) at the 99 percentile upper reference limit of the refernce 

population .  

As explained above, the unit of measurement at St Thomas’ Hospital and The Essex 

Cardiothoracic Centre was nanogram per litre whereas at The Heart Hospital, Troponin was 

measured in microgram per litre. For the purpose of analysis and unifying the units of 

measurements, Troponin results at the Heart Hospital were multiplied by 1000 in order to 

convert them to nanograms per litre. This conversion equalised the unit of measurement 

between the three recruiting centres. 

CK-MB mass assay in all of the three recruitment centres was measured using Elecsys 2010 CK-

MB STAT assay (Roche Diagnostics). Upper refer ence limit and measurement units however 

were different at the laboratories of St Thomas’ Hospital, The Heart Hospital and The Essex 

Cardiothoracic Centre. The measurement unit of CK-MB at St Thomas’ Hospital was in 

microgram per litre (µg/l). The reference range was different for men and women: 0.1-4.94 µg/l 

for males and 0.1- 2.88 µg/l for females. At The Heart Hospital the unit of measurement was 

µg/l, the reference range was 0-2.9 for both male and female. At The Essex Cardiothoracic 

Centre, the measurement unit was international unit/litre (IU/l) with a range of 0-25 for both 

male and female. 
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CK at St Thomas’ Hospital was measured in IU/l and reference range was 0-229 in males and 0-

159 in females. At The Heart Hospital, the unit of measurement for CK was IU/l with reference 

range of 26-140 for male and 38-104 for female. Basildon centre used IU with reference range of 

40-320 for male and 25-200 for female. Pre-PCI (zero hour) blood samples were collected  prior 

to applying the BP cuff inflation, as CK results could have been affected due to probable muscle 

injury post BP cuff inflation. 

 

Secondary endpoint- Myocardial oedema and Necrosis 

In the ERIC-PCI trial we investigated whether RIPC in patients undergoing complex PCI will 

reduce PCI-related myocardial injury as evidenced by a reduction in the incidence and extent of 

myocardial oedema and necrosis in cardiac MRI.  We hypothesised that Troponin elevation post 

PCI would represent myocardial injury evidenced by late gadolinium enhancement and 

myocardial oedema. We hypothesised that presence of LGE in the myocardium correlates with 

the Troponin release and the myocardial oedema detected by T2 mapping/STIR, represents 

acute myocardial injury during PCI. We used the CMR technique to determine whether our 

cardio-protective interventions reduced myocardial infarct size and myocardial oedema in the 

clinical settings of complex PCI. 
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CMR Protocol 

All CMR scans were performed on a 1.5-T Siemens scanner 1-7 days before and up to 7 days 

after PCI.  The protocol consisted of: 

1. Scout imaging.  

2. Axial, coronal and sagittal views.  

3. Steady-state free precession cine images were acquired in 2 long-axis and short-axis views 

from base to apex. The acquisition of short-axis views began 1 cm below the level of the mitral 

valve insertion plane and continued in 1-cm increments through the left ventricle. 

4. A full stack of matched short-axis slices, 10 mm apart, was acquired for T2 maps to cover the 

left ventricle from base to apex. 

5. A gadolinium-based contrast agent (Dotarem, Guerbet, France) was then administered 

intravenously at a dose of 0.1 mmol/kg body weight at 3 mls/second.  

6. Early gadolinium enhancement images were taken immediately after contrast injection to 

exclude the presence of LV thrombus.  Then contrast-enhanced images were acquired after a 

10-minute delay with the use of an inversion-recovery segmented gradient echo sequence 

(FLASH). Contrast-enhanced images were acquired in identical long- and short-axis planes to 

the cine images.  

6. A full stack of matched short-axis slices, 10 mm apart, was acquired for LGE to cover the left 

ventricle from base to apex.  

Within 2-7 days after successful PCI, the second CMR was performed to assess for new late 

gadolinium enhancement and oedema. All patients were scanned by the researcher, apart from 

one occasion that due to commitment in another research centre, the CMR was performed by a 

radiographer.  
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Secondary Endpoint- Contrast-Induced Acute Kidney Injury 

 

In the ERIC-PCI trial we investigated whether RIPC in patients undergoing complex PCI would 

lead to a reduction in the incidence and severity of contrast-induced acute kidney injury. 

Currently, the diagnosis of CI-AKI is dependent on determining changes in serum creatinine level. 

The serum creatinine values however do not rise immediately after the contrast insult. The 

emergence of novel biomarkers offers an opportunity to diagnose CI-AKI at an earlier stage, 

which can differentiate between structural and functional AKI, and predict the outcome of 

established AKI.(380)  

The ERIC-PCI trial was designed to assess the effect of RIPC in reducing CI-AKI by measuring 

blood creatinine and NGAL (Neutrophil Gelatinase associated Lipocalin).  The incidence of CI-AKI 

was defined as a post-PCI increase in serum creatinine ≥25% or ≥44 µmol/L from the baseline. 

(381, 382)  

In all three centres, the creatinine was measured using the Roche Jaffe method, with the unit of 

measurement of µg/l. The reference range varied between the three centres. At St Thomas’ 

Hospital, the reference range was 59-104 µg/l for male and 45-84 µg/l for female. At The Essex 

Cardiothoracic Centre, the reference range for creatinine was 46-80 µg/l for both male and 

female. 

NGAL samples were collected in Ethylene diamine tetra acetic Acid (EDTA) bottles before PCI and 

at 6, 12 and 24 hours   post PCI. EDTA blood samples for NGAL were spun and centrifuged; 

plasma was aliquoted, and stored in a -20ºC freezer in the laboratory of the recruiting hospitals. 

According to the protocol, it was decided to courier NGAL blood samples to a core laboratory at 

UCLH for analysis. 
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Secondary endpoint- Chest Pain and ECG changes  

In the ERIC-PCI trial we investigated whether RIPC in patients undergoing complex PCI results in 

less peri-PCI chest pain and fewer procedure related ECG changes suggestive of myocardial 

ischaemia. 

 

Secondary endpoint- MACE at 30 days 

In the ERIC-PCI trial we investigated whether RIPC in patients undergoing complex PCI reduces 

the rates of coronary revascularisation, re-infarction, and cardiovascular death at 30 days. The 

follow-up data were obtained from a clinical interview over telephone by the main researcher. 

 

 

Coronary Angiography Report 

The angiographic findings and PCI procedure details were reported by two operating 

interventionalists - who were blinded to the RIPC treatment allocation- using local standard 

reporting modules. Presenting complaint, past history, arterial access site, PCI details i.e lesion(s) 

treated, balloons/stents used and any possible complications were documented in the report.  

Cardiac clinical physiologists also separately documented details of the procedure. 
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CMR Analysis 

CMR images were analysed by an experienced examiner blinded to the treatment allocation, 

previous revascularisation and recent angiographic findings. The second reporter was the main 

researcher who was not blinded to the treatment allocation, previous revascularisation and 

recent angiographic findings. The report was performed using commercially available software. 

Cine images were used to detect hypokinetic, akinetic or normal wall contractility.  LV function 

was analysed following planimetry of all the short-axis cine images to determine left ventricular 

end-diastolic volume index, left ventricular end-systolic volume index and ejection fraction (EF) 

in %.  Papillary muscles and pericardial fat were excluded from calculations.  

Presence or extent of myocardial fibrosis (compared with pre-PCI CMR) was assessed by looking 

for areas of LGE on each of the short-axis and long axis views.  MI size equals the total area of 

LGE expressed as a percentage of the total area of LV myocardium. In the ERIC-PCI study, an 

expert consultant identified the late gadolinium enhancement visually without use of automated 

quantification techniques. 

T2-mapping CMR was used to measure the extent of myocardial oedema, as this sequence has 

been reported to be less susceptible to the imaging artefacts associated with traditional black-

blood T2-weighted CMR sequences.(82, 331) MI size equalled the total area LGE expressed as a 

percentage of the total area of LV myocardium. Combination of late gadolinium enhancement 

and T2-weighted images were used as a clinically reliable method to differentiate acute from 

chronic MI. Although late gadolinium enhancement is a powerful marker of non-viability and 

detects infarction at any disease stage, transmural high T2 signal accurately identifies the area of 

the acute event. 

.  
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Reporting of Adverse Events 

A Serious Adverse Event is any adverse event/experience occurring at any study that results in 

any of the following outcomes: death, life-threatening (subject at immediate risk of death), in-

patient hospitalisation or prolongation of existing hospitalisation, persistent or significant 

disability or incapacity, OR important medical events that may not result in death, life-

threatening or hospitalisation but may be considered a serious adverse event/experience when-

based upon appropriate medical judgment- they may jeopardise the subject and may require 

medical or surgical intervention to prevent one of the outcomes listed in this definition. 

According to the study protocol, any possible serious adverse events or reactions would need to 

be reported to the principal investigator and the R&D and ethics committee. 

 

 

Confidentiality in Data Handling and Record Keeping 

Identifiable details which were collected from subjects in this study included: name, date of 

birth, hospital number, address and telephone number. The information was used to enable 

contact with participants. The study protocol, documentation, data and all other information 

generated were held in strict confidence.  Confidential data was stored in a password-secured 

computer database. The Investigator was the custodian of the data. CD copies of CMR were 

anonymised and identified by case numbers. MRI scans were analysed at the CMR centre at The 

Heart Hospital. Coronary intervention procedures were reported immediately post procedure at 

each centre.  
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Statistical Analysis 

Data analysis was performed using the IBM SPSS statistics software package, version 21. In order 

to check the normal distribution between the two groups, histograms with normal plots were 

used. The differences between the groups for continuous  variables were analysed by Analysis Of 

Variance (ANOVA). Chi- square test was used for categorical variables. The area under the curve  

(AUC) analysis was performed using the trapezoid rule and the significance interpreted using P 

value and the 95% confidence interval. 

 

Sample Size Determination 

a) Proposed sample size for PCI-related myocardial injury  

As per the protocol of this study, PCI-related myocardial injury was planned to be detected and 

quantified by the measurement of hsTrop-T and use of cardiac MRI. The initial sample size 

calculation was performed based on the incidence of myocardial injury.  In the Hoole et al study 

(15) , it was demonstrated that the median levels of serum Trop I at 24 hours post-PCI was 

reduced from 0.16 to 0.06 ng/ml (a 62.5% reduction) in patients treated with RIPC. In a pilot 

study of 42 unselected patients (stable, unstable and NSTEMI) undertaken at St Thomas’ 

Hospital, the 24 hour- hsTropT level was 1.86 ± 2.24 µg/L. In order to achieve a 62.5% reduction 

in hsTropT in patients undergoing PCI with 80% power and 0.05% significance level, 59 patients 

required per group

According to the RIPC study by Hoole et al (15), the proportion of patients with detectable levels 

of serum Trop I at 24 hours post-PCI was reduced from 71% in control to 52% with RIPC. To 
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achieve a similar reduction in our study with 80% power and 0.05% significance level, 102 

patients per group were required. Therefore based on the above data, we aimed to recruit 100 

patients per group. 

b) Proposed Sample Size for contrast induced –acute kidney injury 

CI-AKI in this study was planned to be detected and quantified by the measurement of serum 

creatinine and NGAL. The sample size calculation was performed based on the incidence of CI-

AKI or the extent of CI-AKI. 

In terms of the extent of CI-AKI, a recent study demonstrated that RIPC can reduce the area-

under-curve serum creatinine in patients undergoing elective surgery for repair of an abdominal 

aortic aneurysm. (375) In this study, it was reported that RIPC reduced the 7 day AUC serum 

creatinine from 1034±718 to 696±188 µmol/L (33% relative reduction). In order to achieve 

similar reduction in serum creatinine, in patients undergoing PCI in our study, with 80% power 

and 0.05% significance level, 71 patients were required per group. 

In terms of incidence of CI-AKI, a recent study had shown that atorvastatin treatment prior to 

PCI reduced the incidence of contrast induced nephropathy (CIN) from 13.2 to 5%.   (382) 

Therefore, to investigate whether RIPC had a similar effect on the incidence of AKI post-PCI, a 

total sample size of 302 patients (152 in each group) were required to provide 80% power to 

detect the difference with an alpha level of 0.05. However, in patients who were eligible to 

receive CIN prophylaxis (i.e. those with eGFR<60 mm/min/kg) the incidence of CIN post-PCI was 

increased and had been estimated at 20%. Therefore, to reduce the incidence of CI-AKI in this 

patient group by 50%, we required 108 patients per group with 80% power and 0.05% 

significance level. Thus, based on the above data we aimed to recruit 108 patients per group. 
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CHAPTER 4  

 

RESULTS 
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Overview 

Between April 2011 and August 2013, a total of 357 consecutive patients awaiting elective PCI at 

3 cardiac centres (St Thomas’ Hospital, The Heart Hospital and Basildon Cardiothoracic Centre) 

were screened for suitability for enrolment in the ERIC-PCI randomised-controlled trial. Patients 

with severely calcified coronary arteries requiring rotational atherectomy, with chronic  

occlusion of coronary arteries (CTO), with  SYNTAX score between 23 and 35, or with stenosis of 

bypass vein grafts were considered eligible. Most of the eligible patients belonged to St Thomas’ 

Hospital. Suitable patients were shared equally amongst multiple research studies running 

simultaneously at this centre. Out of 357 screened patients, 92 patients were approached for 

participation in the ERIC-PCI study. A total of 88 patients were successfully recruited in the 

study, 43 patients were allocated in the control group and 45 in the RIPC group.  

The flow chart below shows the process of  screening and recruitment. 

 

 

 

 

 

 

 

 



 
 

106 

ERIC-PCI Study Flow Chart 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Angiograms Screened for Eligibility 

(n=357) 

   

Total Patients Recruited (n=88) 

Control Group (n= 43)   RIPC Group (n= 45) 

Excluded (n=4) 
    Unable to consent (n=1) 
    Enrolled in another trial (n=1)             
    Refused to participate (n=2) 

No PCI (n=8) 
 w consen 
           1 refused blood 
test 

Analysis (n=69) 

Withdrew consent (n=1) 
            
           1 refused blood test 

Refused blood test (n=1) 
 
           1 withdrew consent 
           1 refused blood test 

Suitable Patients Approached for 

Enrolment (n= 92) 

  357 

No PCI (n=9) 
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Patients’ Profile and Baseline Characteristics 

Patients’ profile and baseline characteristics were well balanced and evenly distributed  in both 

control and RIPC groups. No statistically significant differences were noted between the two 

groups with respect to the majority of the baseline parameters such as age and gender. Patients 

had ongoing stable  symptoms despite anti-anginal medications. Patients’  characteristics are 

explained in details below and summarised in table 4-1.  

The difference in the medical background was not significant between the two groups  in terms 

of smoking, hypertension, diabeters, dyslipidaemia, renal function, previous PCI, CABG or 

cerebrovascular disease. 

There was a difference in the left ventricular systolic function between the two groups. 14% of 

patients in the control group and 37 % of patients in the RIPC group had good LV systolic 

function. In 11.6 % of patients in the control group and  4.4% of patients in the RIPC group, the 

LV function was poor. The LV function was unknown in 69.8% of  patients in the control group 

and 48.9% of  patients in the  RIPC group. (P =0.03)  

All patients were stable and none of them had suffered from angina or raised Troponin level 

prior to the elective PCI. 

 

 

 

 

 



 
 

108 

Table 4.1- Baseline Characteristics of Patients 

Demographics 

 

Control RIPC P value 

Age (years) 66.3±12.1 67.6±12.5 0.37 

 

Male 

Female 

40 (93.0%) 

3 (7%) 

37 (82.2%) 

8 (17.8%) 

0.12 

BMI(Kg/m2 ) 29.9 ± 6.9 28.9±5.5 0.54 

Smoking History 21 (51.2%) 20 (48.8%) 0.60 

Hypertension 35 (81.4 %) 38 (84.4%) 0.78 

Dyslipidaemia 43 (100%) 42 (93.3%) 0.24 

Diabetes 13 (30.2%) 14 (31.1%) 1.0 

LV function  

   Good 

   Fair 

   Poor 

   Unknown 

 

6 (14%) 

2 (4.7%) 

5 (11.6%) 

30 (69.8%) 

 

17 (37.8%) 

4 (8.9 %) 

2 (4.4 %) 

22 (48.9%) 

0.03 

Baseline creatinine 

(µmol/l) 

89.36± 19.0 84.76± 26.5 0.49 

Prior PCI 12 (27.9%) 10 (22.2%) 0.62 

Prior CABG 14 (32.6%) 13 (28.9%) 0.80 

Prior CVA 3 (7%) 2 (4.4%) 0.67 
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Pre-PCI Medications Profile 

Medications commonly prescribed in cardiovascular disease, have an influence on RIPC, either 

by mimicking the protective effect of RIPC and potentiating the preconditioning effect or by 

abolishing the effect of RIPC. Anti-platelets, Beta-blockers, Statins, Nitrates, Nicorandil and ACE 

inhibitors may precondition the myocardium.  (314) Antidiabetic medications such as 

glibenclamide can disrupt cardioprotection through the inhibition of ATP-dependent potassium 

channels, therefore blocking cardioprotection. (323, 324) (Table 4.2) 

In the ERIC-PCI trial, there was no significant difference between the two groups in terms of 

medicines taken.  We advised patients to withhold nicorandil and glibenclamide 48 hours prior 

to elective PCI. Anti-platelets, Beta-blockers, Statins, Nitrates and ACE inhibitors were continued.  
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Table 4.2-Pre-PCI Medications Profile 

Demographics Control RIPC P value 

Aspirin 42 (97.7%) 38 (88.4%) 0.10 

Clopidogrel 18 (41.9%) 16 (37.2%) 0.80 

Prasugrel 0 (0%) 1(2.3%) 1.00 

Warfarin 3 (7%) 6 (14%) 0.48 

Statin 40 (93%) 37(86%) 0.48 

Beta-blocker 30 (69.8%) 32 (74.4%) 0.81 

Oral Nitrate 18 (41.9%) 17 (40.5%) 1.00 

Nicorandil 6 (14%) 9(20.9%) 0.57 

Ranolazine 2 (4.7%) 1 (2.3%) 1.00 

ACEI/ARB 33 (76.7%) 33 (76.7%) 1.00 

Metformin 9 (20.9%) 8 (18.6%) 1.00 

Insulin 2 (4.7%) 1 (2.3%) 1.00 
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Anti-platelets 

Inhibition of platelet activation with Aspirin is fundamental in coronary interventions as it is 

associated with decreased incidence and significance of acute coronary thrombosis.  (383) 

Combination of aspirin and P2Y12 receptor inhibitors, called ‘dual anti-platelet’ therapy, is the 

gold standard management after placement of coronary stents.  (123-127) Observational registries 

have confirmed that Clopidogrel decreases PCI related ischaemic events. (384, 385) Therefore, 

patients are required to be on dual antiplatelet therapy; Aspirin combined with Clopidogrel, 

Prasugrel or Ticagrelor at the time and after PCI. 

In the ERIC-PCI trial, 42 patients in the control group (97.7%) and 38 patients in the RIPC group 

(88.4%) were on long-term treatment with Aspirin.  The two control and RIPC groups were not 

statistically different in this characteristic, P = 0.10.  

Eighteen patients in the control group (41.9%) and 16 patients in the RIPC group (37.2%) were 

on long-term treatment with Clopidogrel prior to PCI, P = 0.80. Only one patient in the RIPC 

group was on treatment with prasugrel and no patient was treated with ticagrelor. Patients, who 

were not on the maintenance dose of anti-platelets, received a loading dose of Aspirin 300 mg 

and/ or Clopidogrel 600 mg on the ward prior to PCI. 

 

Statins 

Administration of Statins prior to PCI is effective in reducing myocardial damage during coronary 

interventions.  (386,387) Statins are effective through different mechanisms other than lipid 

lowering. The anti-inflammatory role of statins is more prominent and may influence PCI related 

events, reduce PCI-related myocardial injury and improve outcomes.  (386)  
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In the ERIC-PCI trial, 40 patients in the control group (93%) and 37 patients in the RIPC group 

(86%) were on treatment with statin. The two control and RIPC groups were not statistically 

different in this characteristic, P = 0.48. 

 

Beta -blockers 

Benefit from beta- blockers in reduction of myocardial necrosis has been suggested in both 

experimental and clinical studies.  The potential of beta-Blockers to limit myocardial necrosis 

was initially proposed in 1972 by Sommers et al. (388) followed by  Reimer et al. in  1973. (389) 

After a few years of conflicting results and debate about the efficacy of β-Blockers, the effective 

role of intra-coronary beta-blockers in protecting the heart from ischaemia/reperfusion injury is 

now confirmed and accepted.(390-394) Regarding the benefit of long-term treatment with oral 

beta-blockers, the results can be conflicting. (91) 

In the ERIC-PCI trial, 30 patients in the control group (69.8%) and 32 patients in the RIPC group 

(74.4%) were on long-term treatment with beta-blockers. The two control and RIPC groups were 

not statistically different in this characteristic, P = 0.81. 

 

Nitrates 

Nitrates are known to have preconditioning effect. Gori (393) Nitrates can protect myocardium 

from ischaemia and reperfusion through a mechanism similar to preconditioning.  In the ERIC-

PCI study, 18 patients in the control group (41.9%) and 17 patients in the RIPC group (40.5%) 

were on long-term treatment with oral nitrate. The two control and RIPC groups were not 

statistically different in this characteristic, P = 1.0. 
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Nicorandil 

As per Yellon’s laboratory finding, Nicorandil can mimic the protection of ischaemic 

preconditioning.  (156) This effect is similar to the effect of other potassium channel openers that 

by mimicking preconditioning can protect the myocardium for ischaemic/reperfusion injury or 

distal embolisation. Nicorandil dilates coronary microcirculation, induces ischaemic 

preconditioning, is antiarrhythmic and reduces reperfusion injury via the adenosine triphosphate 

(ATP)-sensitive K +channel.(157, 158) In a large randomised-controlled trial in STEMI patients, 

intravenous Nicorandil resulted in significant improvement in TIMI flow, ST segment resolution 

and final infarct size as measured by CK post PCI.(394)  

Therefore, we advised the ERIC-PCI trial patients to withhold Nicorandil at least 48 hours prior to 

the day of PCI procedure.  

 

Glibenclamide 

Sulphonylurea antidiabetic drugs such as Glibenclamide can disrupt cardioprotection through 

the inhibition of ATP-dependent potassium channels; therefore, cardioprotection can be blocked 

and abolished.  (323, 324) According to the ERIC-PCI protocol, patients should have ideally stopped 

glibenclamide 24-48 hours prior to PCI.  None of the patients was on long-term treatment with 

glibenclamide though.According to the laboratory findings, Glimepiride is able to potentiate and 

facilitate the ischaemic preconditioning effect.(395) Diabetic hearts are resistant to the IPC effect 

but Glimepiride has been shown to overcome this resistance. 

In the ERIC-PCI study, no patient was on long-term treatment with Glimepiride. 
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Metformin 

Metformin is known to confer cardioprotection in both diabetic and non-diabetic hearts. The 

cardioprotective mechanism of Metformin is through inhibition of mitochondrial permeability 

transition pore opening.(396) 

In the ERIC-PCI trial, 9 patients in the control group (20.9%) and 8 patients in the RIPC group 

(18.6%) were on long-term treatment with Metformin. The two control and RIPC groups were 

not statistically different in this characteristic, P = 1.0. 

 

Angiotensin-Converting Enzyme Inhibitors (ACE-Inhibitors) 

Yellon’s laboratory in 1997 showed that ACE-Inhibitors in combination with a subthreshold 

preconditioning stimulus, potentiated the ischaemic preconditiong effect through Bradykinin B2 

receptor.(397) Pre-treatment with ACEIs however did not show significant reduction in infarct 

size. 

In the ERIC-PCI trial, 33 patients in the control group (76.7%) and 33 patients in the RIPC group 

(76.7%) were on long term treatment with ACE-Is. The two control and RIPC groups were not 

statistically different in this characteristic, P= 1.0. 
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Coronary Intervention Variables 

There were no major differences between the PCI procedures of the two treatment groups 

(Table 4.3) 

Table 4.3- Peri-PCI variables 

Variable Control RIPC P value 

Target vessel 

    RCA 

    LAD 

    Vein graft 

    LMS 

    Cx 

    Multi-vessel 

    Diagonal  

 

39.5% 

23.3% 

14% 

11.6% 

7% 

2.3% 

2.3% 

 

33.3% 

31.1% 

13.3% 

4.4% 

11.1% 

4.4% 

2.4 % 

 

 

 

 

0.67 

Intervention 

     Rotablation PCI 

     CTO PCI  

     Attempted CTO PCI 

     PCI to Vein graft 

     Laser PCI 

     PCI in SYNTAX >23 

     Abandoned PCI 

 

34.9% 

20.9% 

11.6% 

9.3% 

4.7% 

11.6% 

7% 

 

35.6% 

17.8% 

17.8% 

6.7% 

2.2% 

14.5% 

4.7% 

 

 

 

 

0.92 

ACC/AHA Lesion Type 

         A 

         B 

         C 

 

40 % 

39.4% 

20.6% 

 

41.5% 

40.9% 

17.6% 

 

 

0.48 
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Rentrop Grade 

         0 

         1 

         2 

         3 

 

50 % 

17.6% 

26.5 % 

5.9% 

 

42.9 % 

29.9% 

24.3 % 

2.9% 

 

 

0.59 

TIMI grade score pre-PCI 

 

1.3 ±1.9 1.7 ±1.1 0.18 

TIMI grade score post-PCI 

 

2.8 ±0.7 2.7 ±0.7 0.79 

Wires (n) 

 

2 ±0.7 1.9 ±0.8 0.67 

 

Stents (n) 

 

2.0 ±1.0 1.9 ±1.3 0.66 

 

Pre-dilation time (seconds) 

 

49.7±35.9 38.5±26.6 0.17 

Post-dilation time (seconds) 

 

18.2±21.4 19.7±25.2 1.0 

 

Procedure time (min) 

 

54.2±27.1 56.1±34.1 0.98 

Screen time (min) 

 

19.1 ± 13.7 19.2±15.3 0.98 

Radiation dose cGycm 2 

 

6516.8± 4410 8951±3381 0.50 

Burr Duration (seconds) 

 

71.3 ±18.8 74.8 ±13.1 0.6 

 

Burr Size (mm) 

 

1.5 ±0.16 1.6 ±0.21 0.51 
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Table 4.4- Peri-PCI Immediate Complications 

Complication Control RIC P value 

Dissection 

 

1 (2.8%) 1 (2.8%) 1.0 

Jailed Side Branch 

 

2 (5.6%) and  3 (8.3%) 1.0 

Distal Embolisation 

 

1 (2.8) 0 (0%)  

Brief Chest Pain 

 

2(4.7%) 3 (6.7%) 0.76 

Prolonged Chest pain 

 (> 20 minutes) 

0(0%) 0(0%) 1.0 

ECG changes 

    ST elevation>1 mm 

    ST Depression 

    VT/VF 

 

1 (2.3%) 

0 (0%) 

2 (4.7%0 

 

2 (4.4%) 

1 (2.2%) 

1 (2.2%) 

 

 

0.80 

 

Treated Vessels and PCI Intervention 

The most commonly treated vessel in the ERIC-PCI trial was the right coronary artery (36.4%), 

followed by the left anterior descending artery (27.3%), saphenous vein grafts (13.6%) and the 

circumflex artery (9.1%). The two control and RIPC groups were not statistically different in this 

characteristic, P =0.67. 
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Rotational atherectomy assisted PCI was the most frequent procedure performed in the ERIC-PCI 

trial (35.2%). Fifteen patients in the control group (34.9%) and 16 patients in the RIPC group 

(35.6%) were treated with rotational atherectomy. Laser assisted PCI was the least frequent 

interventional procedure performed in the ERIC-PCI trial. In total three patients had laser 

assisted PCI; two in the control group and one in the RIPC group. The two control and RIPC 

groups were not statistically different in this characteristic, P =0.92. 

Stent Type 

Drug eluting stents (DES) coated with an anti-proliferative drug (usually paclitaxel, everolimus, 

sirolimus, zotalolimus) inhibit the neointimal proliferation after PCI by sustained local delivery of 

anti-proliferative drugs which results in less in-stent restenosis. (398)  The efficacy of DES in 

prevention of re-stenosis is superior to bare metal stents (BMS) without coatings. (399) In the 

ERIC-PCI trial, four patients in the control group (9.3%) and seven patients in the RIPC group 

(15.6%) were treated with bare metal stents. Thirty-one patients in the control group (72.1%) 

and twenty-one patients in the RIPC group (60%) had drug eluting stents. The two control and 

RIPC groups were not statistically different in this characteristic, P = 0.51. 

 

Stent Parameters (Diameter and Length) 

Stent parameters predict adverse events following PCI. The length of the implanted stent 

correlates with the level of cardiac Troponin release. (400) Therefore, limiting the stent length by 

spot-stenting lesions rather than covering the entire vessel between lesions may reduce 

subsequent embolisation and side branch occlusion, which in turn reduces PCI related 

myocardial injury.  
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In the ERIC-PCI trial, the average stent length was 49.4 ± 24.9 mm in the control group and 42.6 

± 24.4 mm in the RIPC group. The two groups were not statistically different in this 

characteristic, P=0.36. The average stent diameter was 3.3±0.3 mm in the control group and 

3.3±0.5 mm in the RIPC group. The two groups were not statistically different in this 

characteristic, P= 0.89. 

 

Intra-Coronary Nitrate  

Intra-coronary nitrate is commonly used in the angiography laboratories for better estimation of 

the stent size and for management of coronary spasm. Nitrates which are also commonly used 

for angina treatment are well known for their preconditioning effect. Gori (393) In a human study 

by Gori et al. it was demonstrated that GTN protects the endothelium against post-ischaemic 

endothelial dysfunction in a mechanism that is mediated by oxygen free radical release and 

opening of mitochondrial permeability transition pores. (393) (See chapter 1 for further details) 

In the ERIC-PCI trial, 59 patients (72.8%) received intra-coronary nitrate during PCI in the form of 

either Isosorbide di Nitrate or GTN. Of these, 28 patients were in the control group and 31 

patients were in the RIPC group. There was no statistically significant difference between these 

two groups (68.3% vs 77.5%, P = 0.45) 
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Intracoronary Adenosine 

Adenosine has long been known to be a coronary vasodilator, and an effective agent in 

preventing no-reflow and ischaemia/reperfusion injury. (401) The cardioprotective role of 

intravenous and intra coronary Adenosine has been confirmed in a few animal and human 

studies. (402-404) Combined therapy with Adenosine and Nitroprusside or Nicorandil might provide 

better improvement in coronary flow compared to intracoronary adenosine alone in case of 

impaired flow during coronary interventions (405) Preconditioning using intracoronary 

administration of adenosine has been shown to decrease myocardial damage caused by elective 

PCI. (406) 

In the ERIC-PCI trial, intracoronary Adenosine was administered in one patient only who was 

randomised to the RIPC group. 

  

Balloon Inflation Post Stent Deployment 

Suboptimal deployment of stent can routinely be optimised by post-dilation. Incidence of 

incomplete stent deployment ranges from 20% to 30% of cases and adjunctive balloon dilation is 

necessary to improve the minimum stent area and the uniform volumetric stent expansion. 

Incomplete apposition and under expansion may contribute to thrombosis and restenosis. 

PCI can induce coronary spasm. If intra-lesional spasm persists despite administration of 

intracoronary nitrate, a prolonged low-pressure inflation using a balloon matched to the 

reference segment is usually successful in alleviation of coronary spasm. 



 
 

121 

In the ERIC-PCI trial, in total 52 patients received balloon inflation post stent deployment (post-

dilation). Of these, 25 were in the control group and 27 were in the RIPC group. There was no 

statistically significant difference between these two groups in this regard. (65.8% vs 71.1%, P = 

0.80) 

 

Glycoprotein IIb/IIIa 

Further inhibition of platelet activity, after treatment with aspirin and clopidogrel can be 

achievable by using glycoprotein (GP) IIb/IIIa receptor antagonists, which are very effective 

especially in interventional treatment of acute coronary syndromes.  (407) In TOPSTAR trial, 

additional temporary peri- and post-procedural administration of the GP IIb/IIIa receptor 

antagonist tirofiban led to a reduced incidence of post-interventional troponin release in 

elective, non-acute PCI in patients pre-treated with aspirin and clopidogrel.(407) 

In the ERIC-PCI trial, Glycoprotein IIb/IIIa was administered in one patient in the control group 

who underwent laser assisted PCI to SVG, complicated with distal vessel embolisation. 

 

Contrast Media 

It is widely accepted that use of contrast media during coronary investigations and interventions 

is associated with nephropathy/acute kidney injury (CI-AKI).Experimental findings indicate that 

contrast media administration rapidly induces a renal vasoconstrictive response. This has been 

ascribed to a number of different mediators, such as the renin-angiotensin system, changes in 

the intracellular calcium concentration of smooth muscle cells, adenosine and endothelin. (352,353) 
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In the ERIC-PCI trial, the average amount of contrast media used in the control group was 

229.8±93.9 mls and 196.7±102.4 mls in the RIPC group. The two control and RIPC groups were 

not statistically different in this characteristic, P = 0.23. 

 

PCI- related immediate complications 

Dissection of the coronary artery occurred in 2 cases, 1 CTO case and 1 attempted CTO, one in 

the control group and one in the RIC group,  p value=1.0 

Jailed Side Branch occurred in 2 of the control group (5.6%) and 3 of the RIC group (8.3%), p 

value= 1 

Distal embolisation developed in one patient in control group undergoing laser PCI. Patient 

received REOPRO. 
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Primary End Point – Assessment of Troponin Level Post PCI 

In the ERIC-PCI trial, high sensitive Troponin was measured at times zero (before the planned 

intervention), 6, 12 and 24 hours post PCI.  

As seen in the histogram below, the total 24-hour Troponin results had a skewed distribution 

hence non-parametric tests were used for analysis. 
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No Significant Reduction in Troponin Release Post PCI 

The median Troponin level at different time intervals as well as the distribution of Troponin 

across the two groups was assessed using the non-parametric Mann Whitney- U test. As seen in 

stem- leaf graphs below the Troponin release was lower in the RIPC group. This attenuation 

however was not statistically significant. 

Each time set is analysed separately and shown as below: 

Six-hour Troponin results compared between the two groups  
 
 

Outliers are 

marked with a circle and the case number. Extremes are marked with a star and the case 

number. There was no statistically significant difference between the two control and RIPC 

groups, (P = 0.44). The significance level is 0.05. 
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Twelve-hour Troponin results compared between the two groups  

 

 
 

Outliers are marked with a circle and the case number. Extremes are marked with a star and the 

case number. 

There was no statistically significant difference between the two control and RIPC groups, 

 (P = 0.31). The significance level is 0.05. 
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Twenty-four hr Troponin results compared between the two groups  

 

 
 
Outliers are marked with a circle and the case number. Extremes are marked with a star and the 

case number. 

There was no statistically significant difference between the two control and RIPC groups, 

(P = 0.39).  The significance level is 0.05. 
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Graph 4.1 Troponin Level Over 24 Hours after PCI 

 

 

 
For the P values please refer to the text on page 129 
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Graph 4.2 Area under the Curve (AUC) of 24-hour Troponin 
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The median high sensitive Troponin T level 24 hours post PCI, was 48 ng/l in the control group vs 

32.5 ng/l in the RIPC group.  This reduction in Troponin release -24 hours post PCI- was not 

statistically significant, P = 0.39.   

Therefore, in the ERIC-PCI trial, RIPC failed to demonstrate a statistically significant attenuation 

of serum Troponin release. ‘ 

Troponin levels at 6 and 12 hours post PCI also had a similar pattern; although the enzyme 

release was less in the RIPC group, this attenuation was not statistically significant, P= 0.44 and 

0.31 respectively for 6 and 12 hour results. 

Furthermore, there was no significant reduction in the total area under the curve (AUC) in the 

RIPC group, P= 0.43. (Graph 4-2) 

 

 

Primary Endpoint-Incidence of PCI-related myocardial injury  

In the ERIC-PCI trial, there was no statistically significant reduction in the incidence of troponin 

release in the preconditioned group. 

PCI-related myocardial injury is defined as elevations of cTn >5 x 99th percentile upper reference 

limit (URL) occurring within 48 hours of the procedure in addition to: a) evidence of prolonged 

ischaemia (more than 20 min) as demonstrated by prolonged chest pain, or b) ischaemic ST 

changes or new pathological Q waves, or c) angiographic evidence of a flow limiting 

complication, such as a loss of patency of a side branch, persistent slow- flow or no-reflow, 

embolisation or d) imaging evidence of new loss of viable myocardium or new regional wall 

motion abnormality. (3)  
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In the ERIC-PCI trial, measurement of Troponin level at 48 hours was not possible due to the 

logistic issues; therefore Troponin level were measured not later than 24 hours post PCI. 

Elevation of Troponin was calculated based on the baseline (zero-hour) Troponin and not the 

99th percentile URL. 

Significant elevation of Troponin level post PCI (> 5 x baseline) was observed in 26.1% of the 

whole recruited patients. This number is not dissimilar from the published literature that about 

one-third of all elective PCI procedures are associated with significant myocardial injury. In the 

control group, 46.9% and in the RIPC group, 26.7 % had significant rise of Troponin bevel. This 

observed attenuation in the PCI related Troponin release, was not statistically significant, p 

=0.12.   

Of these patients with significant elevation of Troponin level 24 hours post PCI, in one patient in 

the control group and in two patients in the RIPC group the side branch was lost during PCI 

(associated with ischaemic ST changes in ECG). One patient in the control group developed 

ventricular fibrillation (VF).  Of these patients with significant elevation of Troponin level, no one 

suffered from chest pain more than 20 minutes.   

The criteria below is required for diagnosis of type 4a MI: 1) elevations of cTn >5 x 99th 

percentile upper reference limit (URL) occurring within 48 hours of the procedure in addition to: 

2) evidence of prolonged ischaemia (more than 20 min) as demonstrated by prolonged chest 

pain, or 3) ischaemic ST changes or new pathological Q waves, or 4)  angiographic evidence of a 

flow limiting complication, such as a loss of patency of a side branch, persistent slow- flow or no-

reflow, embolisation or 5) imaging evidence of new loss of viable myocardium or new regional 

wall motion abnormality. Therefore in our trial, Type 4a MI was only observed in 3 patients, one 

in control and two in the RIC group. 



 
 

131 

Based on the Second Global MI Task Force, leading to the Universal Definition of Myocardial 

Infarction Consensus Document in 2007, which suggested to designate increases more than 

three times the 99th percentile URL as PCI-related MI, elevation of Troponin level was observed 

in 69.3% of the whole recruited patients in the ERIC-PCI study; 72.1% in the control group and 

66.7% in the RIC group. No statistical difference was observed, P = 0.31 
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Graph 4.3 Incidence of MI based on 2nd definition of peri-PCI MI  

 

P= 0.31 

Graph 4.4 Incidence of MI based on 3rd definition of peri-PCI MI 

 

P = 0.12 
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Primary End Point – Assessment of CK-MB Level Post PCI 

Total analysis of CK-MB results of the whole recruited patients was not possible as different 

assays with different units of measurement were used by the laboratories of St Thomas’ 

Hospital, The Heart Hospital and The Essex Cardiothoracic Centre.  

CK-MB assay at St Thomas’ Hospital measured the CK-MB mass, using the unit of measurement 

of microgram per litre (µg/l). The reference range was different in men and women: 0.1-4.94 

µg/l for males and 0.1- 2.88 µg/l for females.  

The Heart Hospital also measured the CK-MB mass with the unit of measurement of µg/l. The 

reference range however did not differ between male and female; 0-2.9 µg/l used for both 

gender.  

At The Essex Cardiothoracic Centre, the assay measured the activity of CK-MB using 

international unit/litre (IU/l) as the unit of measurement with a reference range of 0-25 for both 

male and female. 

The mass and activity cannot be converted into each other. Hence, considering the above 

variations in the mass assay used at the three recruiting centres, analysis of CK-MB release was 

not possible.  

However, as most of the ERIC-PCI trial patients were recruited at St Thomas’ Hospital, CK-MB 

analysis at this centre has been performed as below. 
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CK-MB analysis- St Thomas’ Hospital  

As seen in the histogram below, similar to the Troponin results, 24-hour CK-MB levels had a 

skewed distribution- - therefore non-parametric tests were used for analysis. 

 
 

 

CK-MB assay at St Thomas’ Hospital measured the CK-MB mass, using the unit of measurement 

of microgram per litre (µg/l). The reference range was different in men and women: 0.1-4.94 

µg/l in males and 0.1- 2.88 µg/l in females. 
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As seen in the graph below, at 6, 12 and 24 hours post PCI, the CK-BM level was lower in the 

RIPC group compared with the control group. This attenuation was not statistically significant. P 

values, 0.61, 0.67, and P 0.47 for 6, 12 and 24 hour differences respectively.  

 

Graph 4.5 CK-MB Level Over 24 hrs Post PCI- St Thomas’ Hospital 
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Graph 4.6 Troponin level 24 hr post PCI-Rotablation Group 
 
 

 
 
 
P =0.8 
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Graph 4.7 CK-MB Level 24 hr post-PCI-Rotablation Group –STH  

 

 
  
 
P = 0.1 
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Graph 4.8 Troponin level 24 hr post PCI-CTO group 
 

 
 
P = 1.0 
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Graph 4.9 Troponin level 24 hr post PCI- Syntax>23 
 

 

 

 
 
P =0.2 
 

 

There was no type A lesions in this group. 
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Graph 4.10 Troponin Level 24hr post PCI -Vein graft/ Laser  
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Graph 4.11 CK-MB Level 24hr post PCI – Vein graft and Laser  
 

 
 
P= 0.5 
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Table 4.6 Troponin Level* & Procedure Time* in Each Group 

 
Group Procedure Time 

(min) 
Troponin Level 
ng/Lit 

CTO 
 

55. 1 54.5 

Rotablation 
 

50.5 43 

Syntax >23 
 

33.6 27 

PCI to VG and Laser 
 

44.1 26 

 
 
*Median Troponin level and mean procedure time. 
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Secondary Endpoint- Ischaemic ECG Changes   

In the ERIC-PCI trial, seven patients developed ST segment changes and arrhythmia during PCI. 

Ventricular tachycardia (VT) and ventricular fibrillation (VF) occurred in two patients in the 

control group and in one patient in the RIPC group. ST elevation during PCI procedure was 

observed in one patient in the control group and in two patients in the RIPC group. ST segment 

depression developed in one patient in the RIPC group. There was no statistically significant 

difference between these two groups in these characteristics, P = 0.8. 
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Secondary Endpoint- Reduced peri-PCI injury in CMR  

For identification of possible PCI-induced myocardial oedema and new late gadolinium 

enhancement (LGE), two CMR scans were planned for each patient- if there were no 

contraindications to CMR. First scan, prior to the elective PCI and the second scan, within 7 days 

post PCI. Nineteen patients, who had no contraindications, underwent pre-PCI cardiac scan at 

Great Ormond Street Hospital. Of these, 17 underwent the second CMR 2-7 days post PCI. The 

main researcher scanned all patients, apart from one occasion when due to commitment at 

another hospital, the CMR was performed by a radiographer.  

In March 2012, following an interim assessment of the cardiac MRI images by expert specialist, it 

was decided to abandon CMR investigations. No new infarction or myocardial oedema was 

noted in the images of the seventeen patients who had CMR post PCI, even when Troponin level 

24 hours post PCI was elevated 5 times higher than baseline. Hence, CMR investigation was not 

continued any further as it was deemed futile. 

Among the group of patients who underwent CMR pre and post PCI, the median Troponin level 

was 25ng/Lit. Among patients who underwent CMR, pre and post PCI, in 2 patients only the 

Troponin level was significantly elevated without any evidence of oedema or fibrosis on CMR.  
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Table 4.7- CMR analysis 

Demographics Control RIPC P value 

Troponin Level (ng/L) 48 11.5 0.09 

LVEDV(mls) 153±26.2 160.8±54.8 0.36 

LVESV(mls) 63.3±31.2 79.2±65.3 0.28 

SV (mls) 89.7±14.4 84.4±15.2 0.44 

Ejection Fraction (%) 55.1±16.9 64.85±17.0 0.53 

Myocardial oedema Nil Nil  

New LGE Nil Nil  

New RWMA Nil Nil  
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Secondary Endpoint- Reduction of CI-AKI  
 
CI-AKI is defined as either an absolute increase in serum creatinine (Cr) concentration of 44.2 

µmol/l (or 0.5 mg/dl) or a 25% relative increase of serum creatinine from baseline.  (332, 331) In the 

ERIC-PCI trial, creatinine levels were checked at times zero (pre-PCI) and 6, 12, 24 hours post PCI. 

In the control group, the mean of creatinine level pre-PCI was 89.6 (µmol/l). Twenty-four hours 

later, this value increased to 92.8 (µmol/l). In the RIPC group, the mean creatinine level was 85.7 

(µmol/l) at time zero (pre-PCI) and 86.2(µmol/L) 24 hours post PCI, therefore by definition there 

was no evidence of CI-AKI in each group. Patients did not receive any n-acetylcysteine or sodium 

bicarbonate prior to PCI. Ramipril was discontinued only in Basildon centre.  

As discussed in Chapter 1, one of the most promising renal biomarkers includes NGAL. In a 

recent meta-analysis by Haase et al, it was confirmed that NGAL is a valuable renal biomarker in 

all settings of AKI investigated.  (362)  

In the ERIC-PCI trial, NGAL samples were collected in Ethylene Diamine Tetra Acetic Acid (EDTA) 

bottles before PCI and at 6, 12 and 24 hours post PCI. The samples were spun, centrifuged, 

plasma aliquoted and stored in -20 degree centigrade in the laboratories of the recruiting 

centres.  The final analysis of NGAL samples in the core laboratory at UCLH could not take place 

since 48-hr creatinine levels were lacking. Creatinine level 48 hours post an insult to kidneys, is a 

prerequisite of NGAL analysis. Due to logistic issues, patients could not remain inpatient for 48 

hours post PCI.  
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Graph 4.12  Creatinine Level 24 Hours post PCI 
 

 

 

P = 0.26 

 

 

 

 

 

 

92.8 

86.25 

70

75

80

85

90

95

100

24hr Creatinine

2
4

H
r 

C
re

at
in

ie
 le

vl
 (

µ
m

m
o

l/
L)

 

Control

RIPC



 
 

149 

Graph 4.13 Creatinine Levels over 24 Hours Post PCI  
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Graph 4.14 Creatinine total Area under the Curve (AUC) 

 

P = 0.3 
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Secondary Endpoint- 30 day MACE 

The follow-up data were obtained from a clinical interview over telephone by the main 

researcher who was not blinded to the group allocations. Within 30 days post complex PCI, none 

of the patients had experienced major cardiovascular event, revascularisation, re-admission to 

hospital or death from cardiovascular causes. No participants were lost to follow up. 

 

 Adverse Outcome 

Inflation of a blood pressure cuff up to 200 mg Hg for 5 minutes to induce transient limb 

ischaemia is harmless and simple, not associated with any major adverse events.  During the 

course of the ERIC-PCI study however, an adverse event occurred which was reported to the 

relevant R&D and ethics departments. The incident was documented in the medical notes and 

case report form (CRF). In this regard, discolouration of the right upper arm happened following 

inflation of the blood pressure cuff up to 200 mmHg for 5 minutes x 4 times (Figure 5.1). This 

adverse effect, following the use of blood pressure cuff on the upper or lower arm to induce 

remote ischaemic preconditioning, has not been reported before.  No other vascular or 

neurological components were associated with this event.  The discolouration resolved in less 

than 24 hours without any vascular or neurological sequels.  
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Figure 5.1- Discolouration of the right upper limb following inflation of the BP cuff up to 200 mmHg  
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CHAPTER 5 

DISCUSSION 
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Coronary heart disease is one of the leading causes of death and disability worldwide, resulting 

in an estimated 7.3 million deaths per year. (1) Revascularisation of coronary arteries with PCI has 

become the treatment of choice for most of the patients with CHD, with a rapidly growing 

prevalence over the last few years. Despite advances in PCI technique and introduction of anti-

proliferative medications in drug eluting stents, PCI in patients with stable coronary heart 

disease has failed to show any clear improvement in the prognosis of heart disease over and 

above that already achieved by medical therapy. (408,409) This may at least, in part, be explained 

by the myocardial damage caused by PCI; peri-procedural myocardial injury or type 4a MI(3) as 

evidenced by troponin and CK-MB rise in 10-30% of cases.(9, 20, 410) 

PCI-related myocardial injury, even with no immediate clinical presentation has a poor impact on 

prognosis of patients with coronary heart disease.(9-12, 24, 411) Clinical outcomes after PCI with very 

high procedural CK-MB levels (>5 x or >8 x the upper limit of normal) have prognostic 

implications similar to those of spontaneous acute MI. (46, 412, 413)  

In the PPCI setting, reperfusion injury and in the elective PCI setting, microembolisation of the 

plaque debris in the distal vasculature, inflammation causing microvascular obstruction, 

myocardial oedema, slow/no-flow, coronary dissection and side-branch occlusion have been 

proposed as the most likely mechanisms of myocardial injury.(15, 20, 29, 32)  Given the strong 

correlation between PCI-related myocardial injury and clinical outcomes, a significant amount of 

research has been performed to try to understand the pathophysiology behind this injury and to 

find potential ways of protecting the heart in the PCI setting whether achieved by drugs, devices, 

or technique. To date, no pharmacological therapies have been successfully developed to 

entirely protect the myocardium from ischaemic injury. 

Some of these strategies seek to stimulate the intrinsic mechanism of cell protection based on 

the concept of ischaemic preconditioning. RIPC, which refers to transient episodes of remote 
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organ (limb in most studies) ischaemia prior to cardiac ischaemia, is a phenomenon which could 

potentially offer cardioprotection and significantly improve practice. The RIPC concept has been 

evolved from an experiment which showed brief and repeated episodes of ischaemia applied in 

circumflex artery, followed by 1 hour sustained occlusion in the left anterior descending artery, 

resulted in significant reduction in infarct size in the preconditioned group compared to the 

control group   which underwent one hour sustained occlusion of the LAD without 

preconditioning. (187)  Since then, this model has been widely studied and reproduced. A large 

number of RIPC studies have shown promising results in the experimental laboratory settings 

and our understanding of the basic science has improved significantly but many challenges have 

been encountered in translating the message implicit in the experimental models of ischemic 

preconditioning to a clinical application.   

In clinical practice, the exact benefit of RIPC in protecting the human myocardium in elective PCI 

and CABG settings has been elusive with inconsistent results so far.  Laboratory findings have 

appeared promising but translating cardioprotection from the laboratories to the bedside has 

proved challenging and little practical success has been realised. (414) Clinical findings in PCI and 

CABG have also failed to show consistent cardioprotective outcomes. 

In elective PCI settings, some proof of concept studies, have shown significant reduction in 

Troponin release and infarction size has been evident whilst some others have failed to prove 

benefits. (Table 5.1) In the first detailed coronary hemodynamic study of this model of 

controlled coronary occlusion in man, Deutsch et al. showed that two 90-second balloon 

occlusions separated by a 5-minute period of reperfusion, resulted in statistically significant 

reductions in objectively assessed angina score, ST-segment–elevation, left ventricle filling 

pressure increase, regional coronary blood flow, and lactate release from the coronary 

circulation.  
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Similar conflicting results have been observed in some clinical trials in the cardiac surgery 

setting. Whilst a few studies showed RIPC is effective in reducing procedural-related myocardial 

injury and improving cardiovascular outcomes, (226, 416, 234) the results of two recent adequately 

powered large randomised controlled trials, ERICCA (The Effect of Remote Ischemic 

Preconditioning on Clinical Outcomes in Patients Undergoing Coronary Artery Bypass Surgery)  

(222) and RIPHeart ( The Remote Ischaemic Preconditioning for Heart Surgery ) (223) were 

disappointing without showing benefit from RIPC in reducing CABG related myocardial and 

kidney injuries, MACE or perioperative myocardial injury, in 1612 and 1385 patients respectively.  

Disappointments observed in clinical trials are usually due to small sample sizes and potential 

confounding variables such as age, cross-clamp time, co-morbidities and co-medications.  

ERICCA and RIPHeart however were not small studies. Therefore, the most reasonable way to 

explain the disappointing results of ERICCA (222) and RIPHeart (223) trials, apart from the fact that 

RIPC is less effective in aged and diabetic hearts, is probably the use of propofol and volatile 

anaesthetics as the primary anaesthetic agents in these large well-powered trials. Propofol and 

volatile anaesthetics are known to reduce/inhibit the cardioprotective effect of RIPC. (417)  In the 

ERICCA trial, anaesthesia was                                          not standardised although almost 90% of 

patients received propofol. In the RIPHeart trial, anaesthesia was standardised and performed 

with intravenous propofol in all cases. Also cardiopulmonary bypass itself as well as hypothermia 

and cardioplegia can be cardioprotective per se. (418) 

 

With regard to PCI, Iliodromitis et al. performed one of the first studies that assessed the role of 

RIPC in this setting in 2006.(220) The results of this randomised controlled trial that used three 5-

minute cycles of inflation and deflation of blood pressure cuff showed that circulating CRP levels 

increased within 48 hours after PCI and RIPC could not prevent this. Furthermore, RIPC was 
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associated with a worse increase in cardiac enzymes and troponin I release, even after 

uncomplicated single-vessel angioplasty.(220) Interestingly there seemed to be an enhanced 

inflammatory response after RIPC in the absence of statin treatment, which conferred a benefit 

in this respect. 

Following this discouraging outcome, Hoole et al. (15) in 2009 investigated the effect of RIPC in 

202 patients undergoing elective simple PCI. The CRISP study used a protocol of RIPC with three 

5-min cycles of inflation and deflation of a blood pressure cuff. Patients who received this 

protocol experienced less chest pain during the angioplasty, less ST segment deviation and 

alower 24-hour troponin I release. The median cTnI at 24 hours after PCI was lower in the RIPC 

group compared with the control group (0.06 versus 0.16 ng/ml; P= 0.040). After RIPC, cTnI was 

< 0.04 ng/ml in 44 patients (42%) compared with 24 patients in the control group (24%); P= 0.01. 

In 2013, the CRISP Stent investigators published 6-year outcome of recruited patients, showing 

both long-term MACE benefits, (215) an outcome that may be considered mysterious considering 

the fact that remote conditioning stimulus should not last for such a  long period of time.  

It was in 2010 when Botker et al. demonstrated the potential for pre-hospital use of RIPC in the 

setting of acute MI (4 cycles of 5-minute upper limb cuff inflation and deflation, delivered in the 

ambulance). (96)  In a trial of 333 patients, an improvement in myocardial salvage index (%) at 20 

days after PPCI was demonstrated in the group randomised to receive preconditioning. (96) Same 

investigators (210) published a 3.8-year outcome of recruited patients which showed RIPC before 

PPCI seemed to have improved long-term clinical outcomes in patients with STEMI, an outcome 

which again appears a mysterious effect of RIPC. 

Following the findings by Hoole et al. and Botker et al, Prasad et al. in 2013 published the results 

of a trial that sought to determine the efficacy of RIPC in elective PCI setting.(215) Ninety-five 
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patients with both stable and unstable angina were enrolled into this study. The protocol used in 

this trial was three 3-min cycles of inflation and deflation of blood pressure cuff, immediately 

preceding PCI to minimise the delay between angiography and PCI. There was no difference in 

the primary endpoint of the frequency of PCI related myocardial injury which occurred in 22 

(47%) and 19 (40%) patients in the RIPC and control groups, respectively, P =0.42. There was 

significant increase in CRP post-PCI in both groups (P < 0.001). 

The discrepancy between the results of the study performed by Hoole et al.(15) and the one 

performed by Prasad et al.(215) is perhaps due to recruitment of patients with unstable angina in 

Prasad’s study whereas in CRISP study stable patients undergoing simple PCI were involved. 

Furthermore, the intervention protocol also was different between the two studies. Three 5-min 

ischaemia/reperfusion in the CRISP study versus three 3-minutes in Prasad’s study- an ischaemic 

period that may not have been adequate to condition. This however could be a subject of 

debate as some studies have reported cardioprotective effects with only one cycle of RIPC. 

(207,209) In addition, in the study by Prasad et al. the preconditioning intervention was 

administered immediately before PCI. Although no optimal time has yet been established 

between the preconditioning and the angioplasty, the stimulus might have been applied too 

soon. 

 

Table 5.1 summarises all RIPC trials since 2006 in PCI setting. 
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Table 5.1 RIPC clinical trials in PCI setting 

 
Year N Author  Clinical setting  Intervention  Outcome 
 
 
2017  Yilmaztepe

(207)
 Elective PCI  Upper arm Lower Trop I in RIPC group 

       1 x 5 min 
    
2017  Ladejobi

(208)
 PPCI   Upper arm Reduced serum BNP and HF 

       4 x 5 min 
 
 
2014  Zografos 

(209)
 Ad hoc PCI  Upper limb Lower Trop I in RIPC group 

       1 x 5 min    
 
 
2014  Sloth 

(210)
  PPCI   Upper limb Lower MACCE in RIPC group 

 4 x 5 min  
 
 
2014  Liu 

(211) 
 Elective PCI  Upper limb Lower Trop I,  CK, CK-MB in RIPC  

       3 x 5 min  group 
 
 
2014  Manchurov 

(212)
     PPCI   Upper limb Improved endothelial 

       4 X 5 min  function 
 
 
2013  Davies 

(213)
 Elective PCI  Arm 3 × 5 min MACCE-free survival  

(CRISP Stent f/u)                                                            both short- and long-term f/u 
 

 
2013  Ahmed 

(214)
 Elective PCI  Arm 3 x 5 min Lower Trop-T in RIPC group   

       
 
2013  Prasad 

(215)
 Elective PCI  Arm 3 x 3 min No difference in Trop T release 

        in sham and RIPC groups 
 
 
2012  Ghaemian 

(216)
 Elective PCI  Lower limb Lower Troponin T  

2 x 5 min in RIPC group 
 

 
2012  Luo 

(217) 
 Elective PCI  Arm 3 x5 min Lower Troponin I  in RIPC  

         group 
 
2011  Munk 

(218)
 PPCI   Arm 4 x 5 min Non significant improvement in LV 

         Systolic function in RIPC group 
 
2010  Botker 

(96)
 PPCI   Arm 4 x 5 min Increased myocardial salvage  

        index in RIPC group  
 
2010  Rentoukas 

(219)
 PPCI   Arm 3 x4 min Full ST segment resolution in RIPC 

       plus morphine plus morphine group  
 
 
2009  Hoole 

(15)
  Elective PCI  Arm 3 x 5 min Lower Troponin I in RIPC  

         group 
 
2006  Iliodromitis 

(220)
 Elective PCI  Both arms Increased Top-I, CK-MB and CRP 

       3 x 5 min  in RIPC group 
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The ERIC-PCI trial was the first study that assessed the efficacy of RIPC in the setting of 

complex coronary anatomy and difficult PCI, defined as severely calcified or occluded vessels 

requiring laser and rotablation , and SYNTAX score between 23 and 35 . Myocardial injury and 

subsequent troponin release related to coronary intervention is reportedly higher in this so-

called ‘complex’ procedures.  

In this multicentre randomised controlled trial running from April 2011 until August 2013, RIPC 

constituting of 4 cycles of 5-minute ischaemia/reperfusion on upper arm, appeared to have a 

neutral protective effect on myocardial injury associated with complex PCI. The primary 

outcome measure in the ERIC-PCI trial was the incidence and extent of PCI –related myocardial 

injury as assessed by serum cardiac biomarkers at times 6, 12 and 24 hours post PCI. The 

reference interval of hs Troponin was 0-14 ng/l.  

The median 24-hour Troponin T level was 48 ng/l in the control group and 32.5 ng/l in the RIC 

group. Although the Troponin release at 24 hours post PCI appears to be attenuated in the 

preconditioned group,  this difference  was not statistically significant, P =0.39.  

Likewise, the incidence of PCI-related myocardial injury 24 hours post-PCI was not significantly 

reduced. Significant rise of the Troponin level 24 hours post PCI was observed in 46.9% of 

patients in the control group and in 26.7 % of patients in the RIPC group. This difference was not 

statistically significant, P= 0.12.  

According to the previous definition of MI in 2007, significant Troponin release (3 times higher 

than baseline) was observed in 58.1% of the control group and 42.3% of the RIC group, P value 

0.3 
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Although the ERIC-PCI trial RIPC did not demonstrate significant reduction in Troponin release in 

patients undergoing complex PCI, in general, the results appear to favour the hypothesis and 

there is a trend towards efficacy of RIPC in reducing Troponin release peri-PCI. 

The ERIC-PCI was an underpowered study. This fact is probably the main reason for the lack of 

statistically significant findings but similar to some other neutral or negative trials, a few 

obstacles and confounding factors potentially influenced the efficacy of RIPC. The most 

important issue facing clinical preconditioning studies is that the experimental studies are 

mostly done in young and healthy animals. Lack of advanced age, comorbidities such as 

dyslipidaemia, hypertension and medications (mainly P2Y12 inhibitors, statins, antidiabetics, 

beta-blockers, angiotensin converting enzyme inhibitors, angiotensin receptor 1-antagonists, 

etc.) may confound the translation of cardioprotection from experimental animal studies to 

clinical practice and interfere with the protective effect of remote ischaemic conditioning. (422, 

423) 

Experimental studies using human atrial muscle from patients undergoing CABG, from aged and 

diabetic patients and patients with heart failure have confirmed the role of comorbidities on the 

conditioning threshold and have demonstrated resistance to various conditioning strategies.  (317, 

419,420) It is known that the power of cardioprotection is lost or limited in these conditions 

probably due to reduction of cardioprotection signalling proteins which results in an increase of 

the threshold to achieve cardioprotection.  (324, 327, 421) 

Understanding the influence of confounders is essential towards translation of laboratory 

achievements to clinical practice and towards understanding the obstacles that have negative 

influence on efficacy of RIPC in elective revascularisation settings (elective PCI and CABG) as well 

as current trial, the ERIC-PCI. Development of rational therapeutic approaches to protect the 



 
 

162 

ischaemic heart requires preclinical studies that examine cardioprotection specifically in relation 

to cardiovascular risk factors and their medications.  (422) 

Confounding variables are explained in details below. 

  

Confounding Variables- Sample Size 

Firstly and more importantly, our study was underpowered for the primary end point of 20% 

absolute reduction in the incidence of PCI-related myocardial injury, with 80% power and 

significance of 0.05. When calculating power, it was estimated that 100 patients in each group 

were required to reach the 80% power for this study. Due to the high efficacy of cardiovascular 

medications- mainly statins- complex coronary lesions are not as prevalent as previous years. 

Patients with significant multi-vessel coronary artery disease and SYNTAX score > than 35 will 

benefit from CABG more than PCI. Hence, patients with complex coronary artery disease and 

SYNTAX score > 35 were offered cardiac surgery. More importantly, complex PCI requires special 

skills, technique and devices, which were mainly available at one recruiting centre, St Thomas’ 

Hospital, London. Therefore, due to the above limitations and logistic issues, recruiting 100 

patients in each arm (200 in total) within 2 years was not feasible. In total, 88 patients were 

recruited into the ERIC-PCI study. Significance might have been demonstrated if the sample size 

were bigger. 
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Confounders- RIPC stimulus 

The optimal RIPC stimulus remains unclear but a threshold stimulus must be reached in order to 

achieve protection.  In most of the clinical studies the beneficial effect has been obtained by 3 or 

5 cycles  of 5-minute blood pressure cuff inflation/deflation on the upper limb, initiated either at 

the time of reperfusion  or 1-3 hours prior to PCI. (Table 5.1) There is an argument that in 

ischaemic preconditioning (and, possibly, remote preconditioning), prolongation of the time 

interval between the brief ischaemic stimulus and the onset of sustained ischaemia to a period 

of more than 4 hrs results in a loss in cardioprotective efficacy, while a further extension to 12 to 

24 hrs initiates a second and distinct, delayed or late phase of protection that persists for 

around 3 to 4 days. 

A recent clinical study has suggested that one cycle of 5-minute blood pressure cuff 

inflation/deflation could also induce protection during elective PCI. (209)  

The first window of protection lasts for 2 to 3 hours and the onset appears to be instant, as the 

RIPC initiated immediately prior to revascularisation also has reduced infarct size in STEMI 

patients. (420, 425 )  

In the ERIC-PCI trial, 4 cycles of 5-min BP cuff inflation and deflation were applied which should 

be an ideal stimulus. It was ensured that the preconditioning stimulus was applied in no longer 

than 3 hours prior to PCI. 
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Confounding Variables- Demographics and Risk Factors 

Coronary heart disease in humans is associated with cardiovascular risk factors and 

comorbidities, including hypertension, metabolic disease such as dyslipidaemia, diabetes, insulin 

resistance, and obesity. In addition aging is another major risk factor for development of 

ischaemic heart disease. Following original observation of loss of preconditioning effect in 

hyperlipidaemic rodents in 1995, (327) it has been well established that risk factors for coronary 

heart disease interfere with cardioprotection. They induce fundamental alterations in cellular 

signalling cascades that affect the development of ischaemia/reperfusion injury per se and 

responses to cardioprotective interventions.  (422) 

Patients’ demographics were evenly distributed in the ERIC-PCI trial.  

 

 

Age and gender 

Age is an important confounding factor in translation of the cardioprotection induced by RIPC to 

clinical practice. It is well known that myocardium can become resistant to ischaemic 

preconditioning and also postconditioning with age,  (315, 320,426) notably through reduced 

expression of important signalling proteins.(321) In a study by den Munckhof et al. with the 

endpoint of endothelial function rather than myocardial infarct size, increased age was 

associated with loss of protection by ischaemic preconditioning against endothelial dysfunction 

after ischaemia/reperfusion in the brachial artery. (427) Most of the successful laboratory studies 

were performed in young adult rats and mice (aged 3–4 months) which are equivalent to the 

human age of 7–10 years. (314, 321)   
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The patients’ demographics have changed over the last few years with more patients older than 

75 years at the time of elective revascularisation, with more co-morbidities. As well as age, the 

female gender also affects cardioprotection conferred by preconditioning.  Experimental and 

clinical studies (428,429)  confirm that female hearts have an increased resistance to 

ischaemia/reperfusion injury, associated with an altered distribution of PKC and extracellular 

signal-regulated kinase (ERK) isoforms compared with male hearts. (430) 

Most of the successful laboratory studies have been performed in young and healthy animals, 

whereas the average age of coronary heart disease is between 50 to 60 years.  

 In the ERIC-PCI study, the mean age of all recruited patients was 66.9 years with no significant 

difference between the two groups.  

 

Dyslipidaemia 

Although some conflicting results have been reported so far, most of the preclinical and clinical 

studies have shown that hyperlipidaemia per se and not necessarily atherosclerosis, leads to a 

significant aggravation of myocardial ischaemia/reperfusion injury and attenuates the 

cardioprotective effect of preconditioning. (426) Expansion of infarct size in a hyperlipidaemic pig 

model was shown by Osipov et al. (431) The loss of the infarct size limiting effect of ischaemic 

preconditioning (432, 433)  and late ischaemic preconditioning ) have been shown in different 

models of diet-induced hyperlipidaemia in rats. 

The mechanism by which hyperlipidaemia may influence the severity of myocardial 

ischaemia/reperfusion injury and reduces cardioprotection is not fully understood but is well 

accepted that hyperlipidaemia can induce changes in cardioprotective signalling pathways. 

Statins can activate the mitochondrial K-ATP channel; thereby triggering ischaemic 
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preconditioning.  (329) Besides plaque stabilisation, statins can improve endothelial function and 

have been shown to have anti-inflammatory characteristics and reduce thrombogenic response. 

(327,410) Thus, dyslipidaemia could be another confounding factor in our study. In terms of 

prevalence of dyslipidaemia, the two groups were well balanced.  Statins are effective through 

different mechanisms other than lipid lowering. 

 

Diabetes 

Diabetes mellitus is a major risk factor for CHD with an increasing incidence and a negative 

prognosis in patients who undergo PCI.  (434) Diabetic heart is more susceptible to acute 

myocardial ischaemia/reperfusion injury and seems to behave differently to the phenomena of 

conditioning. (314,414) Much debate surrounds the benefit of ischaemic conditioning in diabetic 

patients. (435) It is thought that diabetes may limit the activation of prosurvival cellular 

mechanisms against ischaemia and may interfere with the cardioprotective mechanisms, 

attenuating the effectiveness of these therapeutic strategies. Although a diabetic myocardium 

can be protected by ischaemic preconditioning the threshold required to achieve this protection 

is higher than normal non-diabetic hearts.(324) The majority of studies show that the presence of 

diabetes mellitus may affect the mechanisms for cell protection against ischaemia, reducing the 

protective effect attributed to ischaemic conditioning. (435) A variety of different mechanisms 

have been suggested to contribute to the impaired response of the diabetic heart to 

preconditioning. These include impaired activation of known intracellular prosurvival signalling 

pathways, such as the Akt and ERK1/2 components of the RISK pathway. (301) 

An important limitation concerning the applicability of the results of experimental animal studies 

to humans is the frequent presence of diabetes in humans.  



 
 

167 

In the ERIC-PCI trial, on average, one third of patients in each group were diabetic. More than 

80% of patients in each group were hypertensive. 

 

Diseased and Heterogeneous Coronary Arteries 

Experimental studies on myocardial ischaemia/reperfusion injury and ischaemic preconditioning 

are usually performed in healthy young animals with virgin coronary circulation. In real clinical 

situation, atherosclerosis develops progressively over time. Atherosclerotic plaque rupture in 

the coronary artery with superimposed intraluminal thrombotic occlusion of the arterial lumen 

is the culprit in acute MI setting. In an acute event, plaque rupture superimposes on the 

underlying atherosclerosis, further complicated by intraluminal platelet aggregation and 

coagulation. In contrast, experimental studies usually rely on abrupt closure and reopening of a 

young and heathy epicardial coronary artery with external devices. Therefore, the status of both 

the epicardial coronary arteries and the coronary microcirculation is vastly different between 

clinical reality and most experimental models. (420) These differences should be considered as 

confounders in translation of cardioprotective strategies. (420)  In fact, in most but not all of the 

more clinically relevant conditions, a diseased coronary circulation tends to attenuate the 

efficacy of cardioprotection. 

 

Confounding Variables- Concomitant Medical Therapy 

Medications commonly taken by patients with cardiovascular disease are major confounders 

and have an influence on novel cardioprotective strategies such as RIPC, either by mimicking the 
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protection of RIPC or by abolishing the effect of RIPC. Anti-platelets, ACE inhibitors, beta-

blockers, Nicorandil, Nitrates, statins, beta-blockers and diabetes medications are protective and 

may inadvertently precondition the myocardium. (314) and have each been demonstrated to 

reduce infarct size in the laboratory settings, by recruiting preconditioning pathways. (436)      

                                                                                                                                                                                                                                                                                                                                                                                                                                                              

Anti-platelets- P2Y12 inhibitors 

P2Y12 platelet antagonists which are now standard of care for the treatment of coronary heart 

disease, have intrinsic cardioprotective properties, similar to preconditioning,  independent of 

their effects on platelet aggregation. Nevertheless, the anti-ischaemic role of P2Y12 inhibitors is 

mainly due to their anti-platelet activity. (145) P2Y12 inhibitors have demonstrated significant 

improvements in cardiovascular mortality and are the main adjunctive treatment with PCI. 

P2Y12 inhibitors-induced protection depends on similar signalling components as conditioning. 

Pre- PCI clopidogrel is known to decrease procedural related ischaemic events in observational 

registries.  (384) Ticagrelor also inhibits adenosine re-uptake via the equilibrative nucleoside 

transporter, increasing adenosine and potentially triggering conditioning via this route. (437) 

Although administration of Aspirin is also mandatory in coronary heart disease, there is no 

evidence to suggest that aspirin is cardioprotective.  (438)  

Unless already on long term treatment, all patients in the ERIC-PCI trial received loading dose of 

clopidogrel on the day of elective PCI. 

It is therefore likely that the effect of RIPC could have been attenuated by the use of above 

medications. 
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Antidiabetics   

Antidiabetics may impact on the cardioprotective efficacy of conditioning strategies by 

modulating the underlying intracellular signalling pathways within the heart in two major ways. 

The antidiabetic therapy may either interfere with the cardioprotective signalling pathway, 

thereby blocking the "conditioning" strategy, or it may mimic the "conditioning" strategy, 

thereby inducing cardioprotection. (426) Through these effects, there is the potential for 

antidiabetic therapies to impact on long-term cardiac outcomes in diabetic patients. 

Sulphonylurea such as glibenclamide, which is used less commonly nowadays, can disrupt 

cardioprotection through the inhibition of ATP-dependent potassium channels, therefore 

blocking cardioprotection.  (225, 323, 324) Glimepiride is able to potentiate and facilitate the 

ischaemic preconditioning effect.(395) Diabetic hearts are resistant to the myocardial infarct 

limiting effect of IPC.(395) Initial findings suggested that this abnormal response of the diabetic 

heart to IPC might be due to impaired phosphatidylinositol 30-kinase (PI3K)-Akt signalling.(324) 

Yellon’s laboratory in 2012 showed that treatment with Glimepiride can overcome this 

resistance, but the mechanism for this is not clear. (395) Metformin is also known to confer 

cardioprotection in both diabetic and non-diabetic hearts. The cardioprotection mechanism of 

Metformin is thought to be through inhibition of mitochondrial permeability transition pore 

opening. (396) 

In the ERIC- PCI study, Metformin was taken by 19.3% of patients, 20.9% in the control group 

and (18.6%) in the RIPC group. 

 

 

 



 
 

170 

Statins 

Administration of statins prior to PCI appears to be effective in reducing myocardial damage 

during coronary interventions. (386) In the experimental settings, statins act as conditioning 

mimetics.  The anti-inflammatory action of statins may influence PCI related events and may 

reduce PCI-related myocardial injury. (439) Although very little is known on the possible interactions 

of statins with cardioprotection by conditioning strategies, it is now agreed that statins activate the 

mitochondrial K-ATP channel thereby they could trigger ischaemic preconditioning. (329)  

Statins increase nitric oxide synthase (NOS) activity and nitric oxide production. (436) They also 

activate the phosphatidylinositol 3-kinase (PI3K)-Akt-endothelial NOS signal transduction 

pathway. (436)  These enzymes and kinases are critical parts of conditioning’s signal transduction 

pathway. Of note, Rosuvastatin given orally before elective PCI showed significant improvement 

in microcirculatory perfusion as assessed by contrast echocardiography. (440) 

In the ERIC-PCI study, 93% of patients in the control group and 86% of RIPC group were on 

maintenance dose of statins. 

 

 

Beta-Blockers  

Beta blockers reduce myocardial oxygen consumption and may have direct cardioprotective 

effects on the cardiomyocytes. The clinical guidelines recommend beta-blockers as 

cardioprotective agents in acute coronary syndrome. Beta-blockers have been employed to 

protect the heart from ischaemia/reperfusion injury in STEMI. The effects of intravenous beta-

blockers on myocardial salvage have been investigated in various animal models of acute 
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ischaemia and reperfusion. The effect of ischaemic preconditioning was abolished in isolated rat 

hearts after long-term oral treatment with propranolol or nipradilol.  (391,392)  

Zhou et al. in 2013 (441) conducted a meta-analysis of 15 randomised-controlled trials in adult 

cardiac surgery that used RIPC. The authors found that cardioprotection induced by RIPC was 

less effective and attenuated when beta- blockers were used.  In the PPCI setting, a  randomised 

controlled trial by Ibanez et al, (390) in 270 patients with anterior Killip class II or less ST-segment-

elevation myocardial infarction undergoing PPCI, showed that early intravenous metoprolol 

before reperfusion reduced infarct size and increased left ventricular ejection fraction during the 

first 24 hours after STEMI. 

   

 

ACEIs/ARBs 

ACE inhibitors and angiotensin II receptor antagonists when administered before ischaemia 

and/or reperfusion reduce irreversible myocardial injury, reduce infarct size and interfere with 

RIPC. (442) ACE inhibitors lower the threshold to achieve endogenous cardioprotection, especially 

in hearts with comorbidities. (443)
 

ACEIs and ARB are not routinely administered prior to elective or primary PCI. 

Confounding Variables- Nitrate 

As well as treating angina, nitrates are known to have a preconditioning effect.  (279, 393)   

and are also licensed for use in cardiac surgery and PCI for their vasodilatory effect. (444) Nitrates 

can induce myocardium protection from ischaemia and reperfusion through a mechanism, 

which is similar to preconditioning. The issue is that the long term use of nitrates may result in 
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tolerance and loss of clinical efficacy. This tolerance can aggravate ischaemic/reperfusion injury 

and decrease preconditioning effect of RIPC. (426) 

In a human study by Gori et al. (2010) it was reported that the endothelial preconditioning effect 

of a single dose of nitroglycerin is lost upon a prolonged exposure to nitrate. (393) In clinical 

practice, the findings have been conflicting. The acute administration of nitrates did not appears 

to interfere with RIPC in patients undergoing coronary artery bypass graft surgery  (445) but in a 

recent post-hoc analysis of a RIPC trial on cardiovascular surgery, it was shown that the 

cardioprotective effect of RIPC was abolished  when intravenous glyceryl trinitrate (GTN) was 

administered intra-operatively,  GTN therapy alone actually reduced the extent of perioperative 

myocardial injury by 39%, suggesting that in itself intraoperative GTN may be cardioprotective. 

(446) 

Nitric oxide released by GTN is also known to have several beneficial effects on the 

cardiovascular system, including protecting the heart against acute ischaemia-reperfusion injury 

or as a mediator of endogenous cardioprotective strategies such as ischaemic conditioning.(447) 

Intra-coronary nitrate administered during PCI for alleviation the coronary arteries spasm and 

accurate estimation of the stent size, was received by 72% of the ERIC-PCI patients without any 

significant difference between the two groups. Also 40.5% of the patients in the control group 

and 41.9% of the RIC group were on longterm maintenance treatment with oral nitrate which 

have had an influence on the outcome of the trial. 

 

Confounding Variables- Balloon Inflation within the Stent 

In PCI practice, post-dilation is often performed after stent deployment to improve stent 

expansion. Occasionally repeated episodes of post- dilation with low-pressure balloon are 
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required for an optimum result. This is a similar technique used in the postconditioning strategy 

i.e. conditioning treatment is delivered by periods of balloon inflation and deflation. In the first 

studies reporting the clinical application of postconditioning in patients with acute MI, it was 

reported that following stent deployment in the infarct-related coronary artery, interrupting 

myocardial reperfusion with 4 cycles of one-minute low-pressure inflations and deflations of the 

coronary angioplasty balloon, myocardial reperfusion was improved. Myocardial infarct size was 

reduced acutely and at 6 months, the left ventricular function improved at 1 year.(295, 297, 448) 

Although postconditioning is mainly used in acute myocardial infarction for prevention of 

ischaemic/reperfusion injury, there is also a possibility that this intervention might have an 

influence on PCI-related myocardial injury. 

Although controversial, preconditioning effect has also been observed during coronary 

occlusions induced by balloon inflation and predilation. (449) Some studies have reported that 60 

to 120 seconds  of occlusion of the coronary artery during the first inflation has been effective in 

reducing the ST segment level during the second inflation. In 2000, in a well organised trial, 

preconditioning was observed following 180 seconds of balloon inflation. (185) 

Although in the ERIC-PCI trial the median pre-dilation and post dilation time is less than 60 

seconds, the effect of balloon inflation cannot be entirely ruled out as the optimal duration of 

inflation to achieve protection is controversial. 

In the ERIC-PCI trial, post stent dilatation occurred in 65.8 % of patients in the control group and 

in 71.1% of patients in the RIPC group. There was no significant difference between the two 

groups in this regard, P=0.8. 
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Confounding Variable- Coronary Collaterals 

Coronary Collaterals are present at birth; with wide variation between individuals in their 

functional capacity. They may develop further in response to obstruction of epicardial coronary 

arteries to protect jeopardised myocardium to restore blood flow to ischaemic territories. In the 

course of acute obstruction, a flow of 20% to 25% is sufficient to provide blood supply at rest. 

However it is generally not sufficient to meet myocardial demands during exercises. The number 

of collaterals and the extent of their coverage are associated with improved survival in patients 

with coronary heart disease. In CTO cases with total occlusion, the presence of collaterals 

supplies blood to the myocardium.  This population therefore, can have a low ischaemic burden 

and the possibility to demonstrate a clear benefit as a result of an anti-infarct intervention is 

limited. Rentrop is a grading score, designed for assessment of the collateral filling and scores 

from zero (No collateral filling visible) to grade 3 (complete filling of the epicardial segment of 

the artery via collateral channels).  

Grades of collateral filling Description 

0 None 

1 
Filling of side branches of the artery via collateral channels without 
visualisation of the epicardial segment 

2 Partial filling of the epicardial segment via collateral channels 

3 
Complete filling of the epicardial segment of the artery via collateral 
channels 

 

In the ERIC-PCI study, nearly half of the patients did not have any collaterals and only a minority 

had grade 3 collateral filling. The differences were not statistically significant. 
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CHAPTER 6 

 

CONCLUSION and FUTURE DIRECTION 
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The general consensus amongst almost all clinicians and scientists is that the heart has a 

remarkable ability to adapt to ischaemic injuries, (422) and RIPC of the heart is an adaptive 

response which has profound cardioprotective effect and enhances the ability of the heart to 

resist the ischaemic attack. The hallmark of ischaemic conditioning in the laboratory setting, is a 

reduction of myocardial infarction size,  but the outcome of translating this potent 

cardioprotective effect to the clinical practice in revascularisation settings has been challenging 

and has been described as conflicting, frustrating and disappointing.(434) 

Despite extensive laboratory research over the last three decades aiming to achieve 

cardioprotection via RIPC, and confirmation of proof-of-concept in multiple trials, RIPC remains 

an experimental technique with limited consistent effect and no clinical application as yet.  The 

inability to fully, consistently, and effectively translate experimentally established reductions in 

myocardial injury to the bedside is the challenge.  

In elective PCI setting, the outcome of the RIPC trials has been variable in terms of reducing the 

release of cardiac biomarkers, infarct size and MACE. (15, 9, 209, 211, 214, 217, 416)  

In PPCI setting, the highest risk setting in clinical cardiology, interestingly all trials have reported 

protection by RIPC, as reflected by reduced release of biomarkers or imaging (96,208, 210,212, 219, 450) 

but currently no guidelines recommend the routine use of this easy and cost free 

cardioprotective method in clinical practice. Because RIPC appears to be effective and has no 

known deleterious effect, some interventionalists are already including remote conditioning in 

their protocol for patients treated with PPCI. The outcome of the adequately powered large trial 

(ERIC-PPCI) from the Hatter Institute is awaited to confirm whether RIPC will be applicable in 

clinical practice. The ERIC-PCI trial had a neutral outcome with a possible trend towards positive 

efficacy of RIPC in reducing Troponin release peri-PCI. The factors contributing to the lack of 
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desirable achievement in the ERIC-PCI trial are not different from the general pitfalls and 

obstacles facing other clinical trials in preconditioning, most importantly the small sample size 

which is the main confounding factor, logistical issues, cardiovascular risk factors and 

concomitant medication use described in chapter 5.  

To achieve consistent cardioprotective results and to ascertain whether RIPC actually improves 

clinical outcomes in elective PCI, large well-designed and robust randomised controlled trials are 

required with special attention to the confounding factors. In fact, enhancing our understanding 

of confounders is a key stepping stone towards clinical translation.  (451) The potential role of 

confounding factors needs to be confirmed by designing trials which are designed to recruit 

these factors. Conversely, the impact of qualitative factors should be minimised to investigate 

the level of difficulty intrinsic to treating the lesions. Therefore, the development of rational 

therapeutic approaches to protect the ischaemic heart requires preclinical studies that examine 

cardioprotection specifically in relation to cardiovascular risk factors and their medications. 

  

As well as recruiting a large number of patients and including confounding factors, trials should 

also include high-risk patients, who might benefit most from the protection induced by remote 

ischaemic preconditioning.  

It is very important that the ‘right’ patients are enrolled in the appropriately designed trials and 

also the ‘right’ models are chosen in the experimental laboratories to facilitate clinical 

translation.(452) In the experimental laboratories, contrary to the clinical trials where the patient 

populations are not young, the standard models are young and healthy animals, which do not 

reflect the fact that cardiovascular disease typically presents in the middle aged and elderly 

population, therefore do not include the real risk factors and comorbidities such as diabetes. (422, 
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435) There is evidence that the cardioprotective effect of preconditioning can diminish with age 

and diabetes. Furthermore, nitrates, statins, beta-blockers, anti-platelets, ACEs/ARBs, opioids 

that are common treatments in patients with cardiovascular disease are cardioprotective per se 

and mimic the benefits of conditioning. Glibenclamide has an opposite effect and prevents 

conditioning. Based on the data from a trial by Thielmann et al. (453) it seems reasonable that 

future trials should avoid the inclusion of diabetics taking sulphonylureas, but it seems 

unrealistic to suggest age limitation on recruitment despite preclinical evidence for age-related 

attenuation of organ protection. (452) 

In the PPCI setting, patients with small risk regions, extensive collateral perfusion and/or 

spontaneous reperfusion before PCI which might occur even after passing the guidewire only, 

will develop small infarcts with subsequent less Troponin release irrespective of treatment.  (452) 

In patients with prolonged ischaemic times, if reperfusion is initiated at about 8 to 12 hours after 

the onset of symptoms and collateral flow is negligible, evolution of the infarct may be 

complete, and in the absence of salvageable myocardium, conditioning will again be of negligible 

benefit. (452)  These kinds of patients gain minimal benefit from ischaemic conditioning, therefore 

when designing conditioning trials, specific attention to the role of confounding factors, will 

enable the trials to provide more robust results with better translation to clinical practice. 

In the CABG settings, we need trials that explicitly avoid propofol anaesthesia and concomitant 

valve surgery and also observe all other established confounders, such as sulfonylureas  and 

possibly nitrates. (442, 455)  

Regarding the logistics of the preconditioning trials, in most recently published studies, the 

details and timing of the RIPC algorithm, ischaemic duration, number of balloons inflation and 

deflation post stent deployment and the method of assessing the infarction size have been 
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variable. (Table 5, Chapter 5) This variability could indeed be one of the main reasons for the 

conflicting results; therefore specific attention to the protocols of preconditioning trials is 

required, aiming to reduce the conflicting outcomes.  

 

Although the ERIC-PCI sample size did not have a robust statistical power to observe confident 

differences between the treated and the control groups, and included multiple confounding 

factors that failed to establish the cardioprotection induced by RIPC, the possibility of reaching 

the ceiling of protection should also be strongly considered. Perhaps the best cardioprotection 

was already provided when instrumenting the heart, leaving no extra room for additional 

protective methods. Novel antiplatelet agents, thrombus aspiration, and technical 

improvements such as soft and flexible wires and catheters, balloons and stents with advanced 

technology and more importantly the operators’ skills, already provided the best 

cardioprotection and reduced the amount of myocardium at risk during elective PCI, even 

complex PCI.  

This hypothesis is evidenced by the level of 24 hr Troponin (median of 38 ng/Lit) in all recruited 

patients which is fairly low and non-significant.  Of note, only 2 patients in our trial fulfilled the 

criteria for Type 4a MI diagnosis. The CMR did not show any myocardial oedema or late 

gadolinium enhancement, even in those two patients who had significant Troponin release.  

ERIC-PCI confirms that patients with minimal injuries obtain minimal benefit from ischaemic 

conditioning. The smaller the injury, the less likely an additional treatment can be effective. 

Furthermore, an ongoing controversy exists surrounding the clinical relevance of biomarker-

defined peri-procedural myocardial injury. Although it is likely that the ceiling of 

cardioprotection has been reached in our clinical practice, it must also be highlighted that the 
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guidelines define peri-PCI MI as elevation of Troponin more than 5 times x 99th percentile URL, 

48 hour post PCI, plus either (i) evidence of prolonged ischaemia (>20 min) as demonstrated by 

prolonged chest pain, or (ii) ischaemic ST changes or new pathological Q waves, or (iii) 

angiographic evidence of a flow limiting complication, such as of loss of patency of a side branch, 

persistent slow-flow or no-reflow, embolisation, or (iv) imaging evidence of new loss of viable 

myocardium or new regional wall motion abnormality . This definition is arbitrary chosen and 

probably with a low threshold. Perhaps a higher level of Troponin post PCI should be defined as 

the threshold for consideration of PCI-related myocardial injury. 

The other debatable hypothesis is that medications routinely prescribed for cardiovascular 

diseases may show undesirable effects on endogenous cardioprotective cellular signalling 

mechanisms, by possessing a hidden cardiotoxicity that may manifest latently in the ischaemic 

heart as increased sensitivity to ischaemic challenge or a decreased capability to adapt to an 

ischaemic challenge, i.e., attenuated cardioprotection achieved by conditioning.(451, 454)    

 

In summary, although the outcomes of the clinical trials in the context of cardiac surgery and 

elective PCI have been conflicting and translating cardioprotection from the laboratory to the 

bedside has been challenging, we remain optimistic given the large infarct-sparing effect of RIPC 

in animal studies and in PPCI setting, (451, 454)   and look forward to the result of the large 

randomised controlled trial CONDI2/ERIC-PPCI trial. CONDI investigators in 2016 showed that 

RPIC as adjunctive to PPCI attenuated the detrimental effect of healthcare system delay on 

myocardial salvage in patients with STEMI, suggesting that the cardioprotective effect of RIPC 

increases with the duration of ischaemia. (456) 
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We need trials that are standardised in terms of choosing appropriate patients, design and RIPC 

protocol, i.e. duration of index ischaemia and location of ischaemic stimulus in upper or lower 

limb, etc. Trials should reflect a real world situation and take into account as many confounding 

factor as possible.  

In fact there is a critical need to take into account the presence of cardiovascular risk factors and 

concomitant medications that mimic preconditioning when designing clinical studies. This will 

hopefully maximise the success rate of developing rational approaches to effective 

cardioprotective therapies for the majority of patients with multiple risk factors. 
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Study Limitations 

The major limitation of the ERIC-PCI study was the small sample size. The results might have 

been different with a statistically significant difference between the two groups, if the study was 

well powered.  

The study design and logistics have probably resulted in inevitable biases. Screening of the 

eligible patients, recruitment, treatment allocation and randomisation, RIPC intervention, CMR 

scanning, data collection and outcome analysis were all performed by the main researcher. The 

SYNTAX scores were calculated entirely by the main researcher’s subjective decision. The 

operating interventionalist was blinded to the treatment allocation but it is likely that the 

cardiac catheterisation laboratory staff were not all blinded.  

Data collection was also not complete due to the logistical difficulties. More importantly 48-hr 

Troponin concentrations were not tested. CMR scan was abandoned too early following an 

interim assessment. Haemodynamics, i.e. blood pressure and heart rate was not measured 

during PCI and retrograde analysis was also not possible. 

Although RIPC was applied at an appropriate time before the elective PCI and it was ensured 

that PCI took place within 1-3 hours of preconditioning to avoid fading of the first protection 

window, the exact blood pressure cuff to balloon time was not recorded.  

Pre infarction angina is associated with cardioprotection and probably represents a clinical 

correlate of ischaemic preconditioning. Although the patients were advised to avoid exercise on 

the day before elective PCI, the exact presence or absence of antedecent angina cannot be 

confirmed.  
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