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Abstract: Previous studies of the efficiency of Chinese electricity industry have been limited in 
providing insights regarding policy implications of inherent trade-offs of economic and 
environmental outcomes. This study proposes a modified data envelopment analysis method 
combined with materials balance principle to estimate ecological and cost efficiency in the 
Chinese electricity industry. The economic cost and ecological impact of energy input 
reallocation strategies for improving efficiency are identified. The possible impacts of pollution 
taxes upon the levels of sulfur dioxide (SO2) emissions are assessed. Estimation results show that 
(i) both energy input costs and SO2 could be reduced through increasing technical efficiency. (ii) 
It is possible to adjust energy input mix to attain ecological efficient, and correspondingly, SO2 
would reduce by 15%. (iii) The Chinese electricity industry would reduce its unit cost by 9% if 
optimal ecological efficiency is attained and reduce its unit pollution by 13% if optimal cost 
efficiency is attained, implying that there are positive ecological synergy effects associated with 
energy cost savings and positive economic synergy effects associated with SO2 pollution 
reductions. (iv) Estimated shadow costs of SO2 reduction are very high, suggesting that, in the 
short term, the Chinese electricity industry should pursue cost efficient point instead of 
ecological efficient point, since alternative abatement activities are less costly and some of the 
abatement cost could be further offset by energy input cost savings. (v) There would be no 
significant difference between the impacts of pollution discharge fees and pollution taxes on SO2 
emissions levels because of the relatively low pollution tax rate. 

Keywords: Data envelopment analysis (DEA); Emission reduction; Energy efficiency; 
Environmental economics; Material balance; Sulfur dioxide (SO2) 

 

Introduction 

The emissions of SO2 derived from fossil fuel consumption are the major contribution to regional 
atmospheric contamination in China. This is more obvious in China’s thermal power industry 
since it consumes approximate 45% of the total primary energy supply and contributes 
approximate 35% of SO2 emissions in China in 2014. Theoretically sound measurements of 
ecological and economic efficiency with appropriate measuring of pollution are critical for 
providing better information to assist policy making and industrial strategy decisions that result 
in better trade-offs on ecological and economic outcomes of not only the thermal power industry 
itself but the economic system as a whole (Wang and Wei, 2014; Liu et al., 2015; Halkos et al., 
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2016). 

There have been numbers of non-parametric and parametric model based studies that address 
the economic and/or ecological efficiency evaluation for China’s electricity industry. For instance, 
Lam and Shiu (2004) measured the total factor productivity (TFP) of China's thermal power 
generation without taking pollutions into accountant, and pointed out that technological change 
is the major driving force for TFP growth. Ma and Zhao (2015) estimated the operational 
efficiency of China’s thermal power plants and their estimation showed that a large proportion 
of efficiency improvement is due to a number of technological mandates, and the unbundling 
reform also significantly improves the efficiency. Furthermore, with the consideration of effects 
of pollutant emissions (e.g., NOx and SO2), Yang and Pollitt (2010) estimated the environmental 
efficiency of China’s coal-fired power plants. They showed that the average inefficiency is 
between 12-20%, and the power plants wasted more input resources than their counterparts in 
US and Europe. Wei et al. (2013) estimated the environmental efficiency of China’s power 
enterprises with the consideration of CO2 emissions and identified that the average inefficiency 
is between 6.1-18.9%. Similar studies on efficiency measurement of China’s electricity industry 
can be found in Lam and Shiu (2001), Yang and Pollitt (2009), Song et al. (2015), Du et al. (2016), 
and Wang et al. (2016a, 2017b). 

The contributions of above studies are somewhat limited, since they mainly focused on 
improving technical and/or ecological efficiency through increasing economic outputs and/or 
reducing pollutions but paid less attention on improving allocative efficiency through adjusting 
inputs, especially pollution related energy inputs, and usually ignored to identify the economic 
cost (or benefit) and environmental impact of these strategies for improving efficiency. Therefore, 
they are likely to provide limited economic meanings and policy implications on the trade-offs of 
economic and environmental outputs, and they usually cannot estimate the economic and 
environmental consequences of these trade-offs in China’s electricity industry. Few studies (e.g., 
Shi and Grafton, 2010; Shi, 2010) had decomposed efficiency measures into both technical 
efficiency and allocative efficiency; but they just focus on the coal mining industry in China. Wang 
et al. (2017a) examined the contribution of allocative efficiency in environmental efficiency in 
China’s thermal power industry. However, only the allocation between polluting and non-
polluting inputs were examined; the allocation among different polluting inputs were not 
discussed. 

Most of the existing studies had incorporated pollutions as byproducts of electricity generation 
into efficiency evaluation in various ways, such as (i) free disposable inputs (Hailu and Veeman, 
2001; Picazo-Tadeo et al., 2005; Va zquez-Rowe et al., 2011; Masternak-Janus and Rybaczewska-
Błaz ejowska, 2017), (ii) weak disposable outputs (Fa re et al., 1989; Molinos-Senante et al., 2014; 
Wang et al., 2016b), (iii) multiplicative inverse or additive inverse outputs (Sahoo et al., 2011; 
Seiford and Zhu, 2002), (iv) by-production traded outputs (Murty et al., 2012), and (v) 
natural/managerial disposability outputs (Sueyoshi and Goto 2012). However, these methods all 
have their specific limitations; see, e.g., Chen and Delmas (2012), Kuosmanen (2005) and Dakpo 
et al. (2016) for a discussion. One of these limitations is that the laws of thermodynamics are 
likely to be violated (Førsund, 2009; Hampf and Rødseth, 2015) and thus the above methods may 
result in inaccurate ecological efficiency measurement, especially when physical productivity is 
of concern and material/energy flows through industrial systems need to be quantified. It is 
actually very important when incorporating the energy related pollutions into efficiency 
measurement of thermal power industry (Welch and Barnum, 2009; Hampf, 2014), since the 
impacts of industrial activities (e.g., electricity generation) on the environment, the utilization of 
planet's supply of natural resources (e.g., fossil fuels), and the problems of pollution disposal (e.g., 
SO2) all need to be considered. 
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In this study, we propose several modified joint ecological and economic efficiency evaluation 
models and associated efficiency measurements which are based on the materials balance 
principle (MBP) and in the form of non-radial DEA (Coelli et al., 2007; Welch and Barnum, 2009; 
Hampf and Rødseth, 2015) for efficiency measurement of China’s thermal power industry so as 
to identify both the economic and ecological trade-offs inherent in electricity generation and to 
further assess the impact of pollutant discharge fees and potential pollution taxes upon the levels 
of SO2 emissions in this industry. 

The primary contribution of this study is that it provides better understandings on allocation 
efficiency of energy inputs in electricity generation, considering both SO2 emissions and 
economic costs, which helps policy makers and managers to identify appropriate economic and 
ecological trade-offs, or in other words, provides them with information on how to balance 
economic costs and ecological benefits of SO2 emissions reduction in thermal power industry. 
Furthermore, this study provides an assessment of possible impact of the pollution taxation, 
which was recently released at the end of 2016 and is going to be enforced at the beginning of 
2018, on the levels of SO2 emissions and the costs of their reductions. 

 

Materials balance in economic analysis: a brief literature review 

The economic system where the production and consumption activities happen is embedded in 
the ecological system, and both of these systems are characterized by the flows of materials and 
energy which just can be converted from one form into another but the total amount remaining 
constant. This is known as the first law of thermodynamics or conservation laws of mass/energy, 
which states that materials and energy flows from and into environment are balanced (Lauwers, 
2009). There have been quite a few literatures on integrating MBP or conservation laws of 
mass/energy into economics analysis which were built on the original works of Ayres and Kneese 
(1969), Kneese et al. (1970) and Noll and Trijonis (1971). They emphasized the importance of 
viewing environmental pollutions and their abatements as materials balance problems for the 
economic system. However, further economic modeling of the materials balance was rare and 
Pethig (2003) once pointed out that the MBP has been ignored since Ayres and Kneese (1969). 
Pethig (2003) argued that the neglect of MBP may cause biased economic analysis and result in 
flawed policy implication. In addition, Krysiak and Krysiak (2003) showed that most of the 
commonly applied economic modeling functions violate MBP which is caused by the 
inconsistency of different independent substitution processes introduced in the modeling. 
Explicitly and appropriately including the physical constraints in economic modeling helps to 
avoid the violation of MBP but will increase the complexity of the modeling process, which may 
be one reason that researchers were reluctant in including this principle (Fa re et al., 2013). 
Therefore, Krysiak and Krysiak (2003) proposed a method for integrating MBP into static 
microeconomic modeling “with a minimum of changes” to the conventional modeling through 
using “effective prices” which consist of the price of a good corrected for the prices of its 
physically complementary goods. Pethig (2006) additionally proposed that the traditional 
production function with pollutions treated as inputs can be “reconstructed as a subsystem of a 
comprehensive production-cum-abatement technology” which is consistent with the MBP. Ebert 
and Welsch (2007) argued that Pethig (2006)’s technology is rather complicated and they 
proposed a different and simple approach with the MBP taking into account that the pollution 
can be treated as an input or a joint output, or can be described by a well-behaved emission 
function. They also proved that these three representations are equivalent. 

Since the MBP based modeling helps to connect economic and environmental analysis, it has 
been recently directly used in ecological economic modeling. For instance, Vatn (1998) showed 
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the advantages of a material flow perspective in environmental economic analysis and based on 
which he provided a measure of trade-off between the precision of an environmental regulation 
and its implementation costs. Bringezu et al. (2003) developed indicators based on economy-
wide material flow analysis to evaluate and monitor the metabolic performance of economies. 
S c asny  ey al. (2003) derived indicators on the basis of accounts and balances of material flows 
and applied them for examining the decoupling of economic growth from environmental 
pressure in Czech. Pe rez-Rinco n (2006) provided a material flow analysis of the relations 
between trade, economy and the environment in Colombia for identifying its unequal monetary 
and ecological exchanges. Through employing MBP and endogenous growth method, Akao and 
Managi (2007), provided a feasibility and optimality condition for sustainable growth that 
balance the economy and environmental quality. 

As pointed out by Hoang and Rao (2010), The MBP adjusted environmental efficiency measures 
may suffer two limitations. The first one is the ambiguity in treating non-material inputs and the 
different types if energy inputs, while the second one is the lack of widely accepted weights for 
the integration of various types of material/energy inputs. The introducing of cumulative exergy 
content helps to overcome this problem (Ayres, 1998) since the concept of exergy is a good 
physical common unit of various material/energy inputs, and it can be used to capture the real 
economics significance of the second law of thermodynamics that exergy is not conserved. Based 
on the cumulative exergy, Hoang and Rao (2010) developed new technical efficiency and exergy 
allocative efficiency measures and applied them in agricultural production in OECD countries. 
Recently, Kuosmanen and Kuosmanen (2013) argued that static MBP ignores an important 
feature of material cycle: pollutions may cause delayed effects and persistent harm to 
environment. Therefore, they proposed a dynamic method of MBP to estimate both the flows 
and the stocks of materials (nitrogen) in environment, and applied this method in agricultural 
production in Finland and other European countries (Kuosmanen, 2014) so as to provide 
insights for policy advices from a dynamic perspective. 

 

Materials balance conditions and ecological efficiency measurement 

Introduced and further developed in Ayres and Kneese (1969), Coelli et al. (2007) and Rødseth 
(2016, 2017), the MBP method is considered more tightly linked to economic modelling for 
efficiency and productivity than most of other DEA models in dealing with undesirable outputs, 
especially when physical laws and costs of both economic production and pollutant discharge 
are of concern in measurement. To place the MBP adjusted production efficiency and 
productivity method in an applied ecological economics context has the advantage of bridging 
the gap between the conventional economics efficiency analysis and ecological efficiency 
analysis, and consequently, making the economic and ecological outcomes equally explicit in 
analysis. 

The MBP states that the total amount of mass (e.g., sulfur) in the polluting inputs (e.g., coal) 
should equal the mass in desirable outputs (e.g., calcium sulfate as building material) plus the 
mass in the residuals that cause pollution (e.g., SO2 emissions). The MBP is defined as: 

αe – βy = b + a    (1) 

in which e, y and b represent the vectors of inputs, desirable outputs and emitted pollutions; a is 
a vector of abatements of pollutions; α and β are the vectors of unit mass in the inputs (emission 
factors) and the vectors of unit mass in the desirable outputs (recuperation factors). Note that, 
the component of α related to the non-polluting input is zero; the component of β is zero for the 
desirable output containing non-polluting mass. We assume a = 0 if there is no abatement on 
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pollutions or b represents the produced pollutions instead of the emitted pollutions; otherwise 
we set a > 0. 

Suppose there is a sample of n firms having desirable outputs, non-polluting (non-energy) inputs, 
polluting (energy) inputs, and produced (not discharged) undesirable outputs (pollutions) 
denoted by (yrj, xij, eij, bij), where i=1,…,m1 (for x), i=m1+1,…,m (for e and b), r=1,…,s, and j=1,…,n. 
In this study, we propose three DEA based MBP methods for efficiency measurement in which θT, 
𝜃𝑖

𝐸   and 𝜃𝑖
𝐶   are variable for adjusting energy inputs and associated pollution outputs, 

𝑑𝑟𝑗
(∙)𝑦

, 𝑑𝑖𝑗
(∙)𝑥

, 𝑑𝑖𝑗
(∙)𝑒

  and 𝑑𝑖𝑗
(∙)𝑏

  are slack variables implementing weak G-disposability for the MBP 

(see Supplementary for details of three DEA models). 

Next, we come to the definitions of efficiency measurements. First, ecological efficiency (EE) is 
measured as the ratio of minimal pollutions over observed pollutions, which takes the value 
between 0 and 1, with the value 1 denoting full ecological efficiency. 

Ecological efficiency (EE) = 
∑ 𝛼𝑖𝑗(𝜃𝑖

𝐸𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1 −𝑑𝑖𝑗

𝐸𝑒)

∑ 𝛼𝑖𝑗𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1

, 𝑗 = 1, … , 𝑛    (2) 

EE =1 indicates that, using current technology, there is no possibility to produce current amount 
of desirable output with a lower pollution. EE can be decomposed into two components as 
ecological technical efficiency (ETE) and ecological allocative efficiency (EAE): 

Ecological technical efficiency (ETE) = 
∑ 𝛼𝑖𝑗(𝜃𝑇𝑒𝑖𝑗

𝑚
𝑖=𝑚1+1 −𝑑𝑖𝑗

𝑇𝑒)

∑ 𝛼𝑖𝑗𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1

, 𝑗 = 1, … , 𝑛    (3) 

Ecological allocative efficiency (EAE) = 
∑ 𝛼𝑖𝑗(𝜃𝑖

𝐸𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1 −𝑑𝑖𝑗

𝐸𝑒)

∑ 𝛼𝑖𝑗(𝜃𝑇𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1 −𝑑𝑖𝑗

𝑇𝑒)
, 𝑗 = 1, … , 𝑛    (4) 

ETE measures the distance a firm to be projected onto production frontier, while EAE measures 
the correctness on energy input mix of a firm. ETE and EAE both take value between 0 and 1, and 
value 1 indicates full efficiency. There exists a relationship among the above three ecological 
efficiency measurements: EE = ETE × EAE. 

Second, if we take the information on energy input prices (pij) into consideration and replace the 
emission factors in equations (2) to (4) with the price levels, and follow a similar procedure, we 
could get the measurements of cost efficiency (CE) and its decompositions of cost allocative 
efficiency (CAE) and cost technical efficiency (CTE): 

Cost efficiency (CE) = 
∑ 𝑝𝑖𝑗(𝜃𝑖

𝐶𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1 −𝑑𝑖𝑗

𝐶𝑒)

∑ 𝑝𝑖𝑗𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1

, 𝑗 = 1, … , 𝑛    (5) 

Cost technical efficiency (CTE) = 
∑ 𝑝𝑖𝑗(𝜃𝑇𝑒𝑖𝑗

𝑚
𝑖=𝑚1+1 −𝑑𝑖𝑗

𝑇𝑒)

∑ 𝑝𝑖𝑗𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1

, 𝑗 = 1, … , 𝑛    (6) 

Cost allocative efficiency (CAE) = 
∑ 𝑝𝑖𝑗(𝜃𝑖

𝐶𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1 −𝑑𝑖𝑗

𝐶𝑒)

∑ 𝑝𝑖𝑗(𝜃𝑇𝑒𝑖𝑗
𝑚
𝑖=𝑚1+1 −𝑑𝑖𝑗

𝑇𝑒)
, 𝑗 = 1, … , 𝑛    (7) 

Similarly, these three measures are related as CE = CTE × CAE. 

The measurement of ecological efficiency helps a firm j to identify the energy related pollution 
minimizing point where the corresponding pollution is 𝛼𝑖𝑗(𝜃𝑖

𝐸𝑒𝑖𝑗 − 𝑑𝑖𝑗
𝐸𝑒) , while the 

measurement of cost efficiency helps this firm to identify the energy input cost minimizing point 
where the corresponding cost is 𝑝𝑖𝑗(𝜃𝑖

𝐶𝑒𝑖𝑗 − 𝑑𝑖𝑗
𝐶𝑒) . In addition, we could also identify two 

additional values: the cost corresponding to the pollution minimizing point, 𝑝𝑖𝑗(𝜃𝑖
𝐸𝑒𝑖𝑗 − 𝑑𝑖𝑗

𝐸𝑒), 

and the pollution corresponding to the cost minimizing point, 𝛼𝑖𝑗(𝜃𝑖
𝐶𝑒𝑖𝑗 − 𝑑𝑖𝑗

𝐶𝑒). Then, for the ith 
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pollution of the jth firm, the cost associated with shifting from the cost minimizing point to the 
pollution minimizing point can be identified through the concept of shadow cost (SC) of pollution 
reduction: 𝑝𝑖𝑗(𝜃𝑖

𝐸𝑒𝑖𝑗 − 𝑑𝑖𝑗
𝐸𝑒) − 𝑝𝑖𝑗(𝜃𝑖

𝐶𝑒𝑖𝑗 − 𝑑𝑖𝑗
𝐶𝑒) . In addition, the pollution associated with 

shifting from the pollution minimizing point to the cost minimizing point can be identified by 
using shadow pollution (SP) of cost reduction: 𝛼𝑖𝑗(𝜃𝑖

𝐶𝑒𝑖𝑗 − 𝑑𝑖𝑗
𝐶𝑒) −  𝛼𝑖𝑗(𝜃𝑖

𝐸𝑒𝑖𝑗 − 𝑑𝑖𝑗
𝐸𝑒). 

In the above definition and discussion, only the prices of energy inputs are included, if the prices 
of pollutions, e.g., pollution discharge fees or pollution taxes, are available, then these prices can 
be used to identify a new optimal point of cost minimizing. In this case, both the economic cost 
of energy input and the social cost of energy related pollution, which is (partially) represented 
by pollution fee or tax, are taken into account, and thus we could name this new optimal point as 
“total” cost minimizing point and the corresponding efficiency measurement as total cost 
efficiency (TCE). Similarly, we have TCE = total cost technical efficiency (TCTE) × total cost 
allocative efficiency (TCAE). Suppose the rate of pollution fee or tax is denoted by uij, we could 
obtain the new “total” price 𝑝𝑖𝑗

𝑇 , which is composed of unit price of energy input and pollution 

fee rate (i.e., unit price of pollution) as 𝑝𝑖𝑗
𝑇 = 𝑝𝑖𝑗 + 𝛼𝑖𝑗𝑢𝑖𝑗 . Then, the corresponding total cost 

minimizing point switches from 𝑝𝑖𝑗(𝜃𝑖
𝐶𝑒𝑖𝑗 − 𝑑𝑖𝑗

𝐶𝑒)  to 𝑝𝑖𝑗
𝑇 (𝜃𝑖

𝐶𝑒𝑖𝑗 − 𝑑𝑖𝑗
𝐶𝑒) = (𝑝𝑖𝑗 + 𝛼𝑖𝑗𝑢𝑖𝑗) ·

(𝜃𝑖
𝐶𝑒𝑖𝑗 − 𝑑𝑖𝑗

𝐶𝑒) = 𝑝𝑖𝑗(𝜃𝑖
𝐶𝑒𝑖𝑗 − 𝑑𝑖𝑗

𝐶𝑒) + 𝑢𝑖𝑗(𝜃𝑖
𝐶𝑏𝑖𝑗0

− 𝑑𝑖𝑗
𝐶𝑏) , which indicates that the price of energy 

input is adjusted by a multiplier of emission factor of pollution and price of pollution. This 
framework could be applied to assess the impact of pollution discharge fees or pollution taxes 
upon the status of ecological efficiency of firms and the levels of pollution in industries. 

 

Dataset for efficiency measurement 

The panel dataset we used contains 93 China’s provincial thermal power industry sectors 
operating in the period of 2011 (23 sectors), 2012 (22 sectors), 2013 (24 sectors) and 2014 (24 
sectors). We model the technology set of thermal electricity generation and associated SO2 
emissions with three energy inputs: the consumption of coal, natural gas, and oil1 ; two non-
energy inputs: the installed capacity and employed staff; one economic output: electricity 
generation; and one pollution output: SO2 emissions from the combustion of coal, oil and natural 
gas. In addition, the SO2 emission factors and prices of coal, natural gas, and oil are included in 
our evaluation. The data on energy consumption are collected from the energy balance table (the 
subsector of “thermal power” within the “input and output of transformation” sector) in China’s 
energy statistical yearbooks; the information on installed capacity and electricity generation are 
collected from China’s electricity statistical yearbooks; the employee data are collected from 
China’s industrial statistical yearbooks; and the data on SO2 emissions are collected from China’s 
environmental statistical yearbooks. The emission factors are estimated according to China’s 
Material Balance Standard for Fuel Combustion Related Air pollutants and adjusted according to 
the observed emissions of different regional sectors, while the information on all energy prices 
are obtained from reports of China’s National Development and Reform Commission and 
WindData. Supplementary table 1 to 3 respectively report the summary statistics of input and 
output data, provincial specific SO2 emission factors, and current SO2 discharge fee rate and 
planned SO2 pollution tax rate. 

 

Ecological and cost efficiency of China’s thermal power industry 

The evaluation results on EE and CE are summarized in Table 12 . For China’s thermal power 
industry during 2011-2014, the mean EE score is 0.8635 indicating that the average thermal 
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power industry sector should be able to generate its current electricity with an energy input mix 
that contains 13.65% less sulfur. The mean ETE and EAE scores are 0.9111 and 0.9498, 
respectively, which suggest that the average sector should have the ability to generate its current 
electricity with 8.89% fewer energy input through technical efficiency improvement and with 
5.02% fewer energy input through adjusting its current sub-optimal energy mix. The mean TCE 
score is 0.8453 indicating that the average sector could reduce its energy input cost by 15.47% 
while maintaining its current electricity generation. The total cost inefficiency is due to both the 
technical inefficiency and allocative inefficiency. The mean TCAE of 0.9300 suggests that the 
average sector is using an energy input mix that is 7.00% away from the cost minimizing energy 
input mix3. Note that the differences between the means of CE and TCE, and their decomposed 
counterparts, are very small. That is because the current SO2 pollutant discharge fee rates are 
quite low compared with the energy prices, which makes the total prices of energy inputs quite 
close to their market price. Thus, we just focus on TCE in the following sections. 

[Insert Table 1 here] 

 

The above (in)efficiency measurements are all presented in percentage forms and we consider 
that the total values on energy savings and SO2 reductions would also be noteworthy. Table 2 
reports the possible value changes on energy inputs and SO2 emissions associated with efficiency 
changes which are all annually average values. Given that the evaluated provincial thermal power 
industry sectors are representative of the population (provincial regions having two typical 
types of thermal power industry, i.e., coal- and natural gas-fired power plants that above state 
designated scale, are included), we could make the following estimations4. Table 2 shows that 
China’s thermal power industry sector would reduce 103 million t of coal (6.6%), 909 thousand 
t of oil (36.2%), and 1754 million m3 of natural gas (8.5%) annually but keep its electricity 
generation unchanged if it was technical efficient. Correspondingly, the SO2 emissions from this 
sector would reduce 421,133 t which accounts for 7.8% of its annual total SO2 emissions. 

[Insert Table 2 here] 

 

Similarly, this industry sector would reduce 239 million tonnes of coal and 79,000 tonnes of oil, 
while increase 18,102 million m3 of natural gas annually to generate the same electricity if it was 
ecological efficient. This is an interesting and powerful implication that China’s thermal power 
industry is possible to reduce its SO2 emissions by 15.2% (818,339 t) annually through adjusting 
its energy input mix, i.e., reducing coal and oil input by 15.3% and 3.1%, respectively, and, as a 
compensation, increasing natural gas input by 87.9%. In fact, this implication is in line with 
China’s energy development strategies of 12th and 13th Five-Year-Plan periods that the 
proportion of coal consumption in total primary energy consumption should reduce to 58% by 
2020, while the proportion of natural gas consumption should increase to 10% by 2020, 
respectively. And more specifically, China’s development strategy for electricity industry plans to 
increase its capacity of gas-fired power generation from 60 million kw (2015) to 110 million kw 
(2020) indicating a significant 83.3% increase. Our estimation actually provides another support 
for this ambitious growth target. 

In addition, it can be seen that there would be annually 180 million tonnes (11.5%), 1,009 
thousand tonnes (40.1%), and 8,604 million m3 (41.8%) reduction potentials on coal, oil, and 
natural gas, respectively, if the cost inefficiency in this industry was eliminated. Then, the 
corresponding SO2 emissions would decrease by 13.2% (709,859 t). This result indicates that to 
approach the energy input cost minimizing point through adjusting the current energy input mix 
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to the optimal mix would help China’s thermal power industry to reduce all three types of its 
energy inputs and the associated SO2 emissions substantially. 

Note in the tenth and the last rows of Table 2, there would be additional 397,207 or 288,727 
tonnes (8.0% or 5.8%) SO2 emissions reductions if this industry sector keeps moving along the 
technical efficiency frontier until reaching the sulfur pollution minimizing point or the energy 
cost minimizing point. The technical efficiency sectors can generate electricity on different 
points on the technical efficiency frontier, while the ecological efficient or cost efficient sectors 
must be on a specific point with minimum pollution or a specific point with minimal cost. The 
distance between the technical efficient point and the ecological efficient point or cost efficient 
point leads to the above additional SO2 emissions reduction potentials. 

One more interesting result is that improving TE would both reduce SO2 emissions and reduce 
energy costs, but improving EAE (and thus reducing SO2) may result in increased energy cost in 
some cases. For instance, as shown in the sixth to the eighth rows of Table 2, an 87.9% increase 
on natural gas is suggested so as to (partially) compensate for the 15.3% reduction on coal, which 
is likely to result in an increase in energy cost, since the relative price of natural gas (approximate 
90 Yuan/million kJ) is much higher than coal (approximate 26 Yuan/million kJ) in China in 2014. 
Therefore, improving EE may lead some thermal power sectors moving away from the energy 
cost minimizing point, i.e., there might be costs associated with generating electricity on the 
pollution minimizing point for some sectors, and thus there would be economic and ecological 
trade-offs inherent in electricity generation. We will further discuss this issue. 

 

Ecological and economic trade-offs in China’s thermal power industry 

We estimate the changes on the four year’s average energy input cost per unit electricity 
generation and SO2 emissions per unity electricity generation for each regional thermal power 
industry sector which are shown in Tables 3 and 4, respectively. The last rows in these tables 
provide the mean values of China. It can be seen that the average sector would reduce per unit 
electricity generation cost by 9.1% if it operated on the technical efficiency frontier, and would 
reduce this cost by 14.3% if it was cost efficient. Similarly, one can see that the average sector 
would reduce per unit electricity generation pollution by 10.0% if it was technical efficient, and 
would reduce this pollution by 14.6% if it operated on the ecological efficient point. These 
percentage reductions are very important since they suggest that if the thermal power industry 
were able to utilize the current available generation technology efficiently, then both its 
electricity generation cost and pollution would reduce by approximate 9-10% which is indeed a 
substantial amount. Under such circumstance, there will be no need for implementing extra and 
expensive pollution reduction technologies, such as end-of-pipe SO2 scrubber, in the short term, 
and in addition, in the middle and long term, some of the extra expense on pollution reduction 
could be offset by the electricity generation cost savings. 

[Insert Tables 3 and 4 here] 

 

As shown in Tables 3 and 4, it is interesting that the average sector would also reduce per unit 
electricity generation cost by 9.3% if it was ecological efficient, and would reduce this cost by 
0.3% if it continued to move along the technical efficiency frontier until reaching the pollution 
minimizing point. Furthermore, the average sector also would reduce per unit electricity 
generation pollution by 12.9% if attained cost efficient, and would reduce this pollution by 3.2% 
if it continued to move along the technical efficiency frontier until reaching the cost minimizing 
point. These percentage reductions are extremely important which imply that, on average, this 
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industry could, on the one hand, decrease electricity generation cost by attaining the ecological 
efficient point, and on the other hand, decrease electricity generation pollution by approaching 
the cost efficient point. In other words, for this industry as a whole, there is no extra cost on 
pollution reduction through ecological efficiency improvement, and there is no extra pollution 
on cost reduction through cost efficiency increase. These positive ecological (or economic) 
synergy effects associated with energy input cost savings (or SO2 pollution reductions) identified 
in this study provide another support to China’s current efforts on energy conservation and 
emissions reduction in industry, especially its thermal power industry sector. 

Next, we provide an analysis of the ecological and economic trade-offs focusing on individual 
thermal power industry sectors at the provincial level instead of at the national average level, 
since what is true in general for the industry is usually not true for its specific regional sectors. 
Furthermore, such analysis is worthwhile for determining what adjustments on energy input mix 
would be necessary for those inefficient regional sectors to improve their efficiency to the levels 
of their benchmark regional sectors. 

It can be found in Tables 3 and 4 that, firstly, the thermal power industry sectors in three regions 
are technical efficient (code 1, 7 & 10), in which sectors code 1 and 7 are ecological efficient but 
do not have the highest generation cost per unit electricity; while sector code 10 is cost efficient 
but does not have the highest SO2 emissions per unit electricity. This result implies that 
performing best on one object (e.g., having the highest ecological efficiency score or cost 
efficiency score), does not necessarily mean that this thermal power industry sector would 
performing worst on other objects (such as having the highest unit cost of energy input or unit 
sulfur mass bounded in energy input). 

Secondly, note that the thermal power industry sectors in four regions are technical efficient 
(code 4, 17, 18 & 19), however, they are neither ecological efficient nor cost efficient. Taking 
regional sector code 18 as an example, if it attained full ecological efficiency it would reduce its 
SO2 emissions per unit electricity by 8.4% as shown in Table 4, and, simultaneously, it would 
reduce its generation cost per unit electricity by 9.0% as shown in Table 3. On the other hand, 
this regional sector would reduce its generation cost per unit electricity by 25.2% if it attained 
full cost efficiency as shown in Table 3, but in the meantime, it would increase its SO2 emissions 
per unit electricity by 0.8% as shown in Table 4. This result indicates that there would be a 
positive synergy effect on cost efficiency improvement for regional sector code 18 when it 
approaching ecological efficient point; while there would be no such positive synergy effect in 
the opposite way. Thus, this regional sector is suggested to primarily focus on improving its 
ecological efficiency. For the remaining three regional sectors (code 4, 17 & 19), they are 
suggested to either improving ecological efficiency or improving cost efficiency, since each of 
these two ways would have positive synergy effect on the other one. In other words, these 
technical efficient sectors could improve both cost and ecological efficiency simultaneously by 
moving towards either cost or pollution minimizing points along the technical efficiency frontier. 

Thirdly, in fact, most of the technical inefficient regional thermal power industry sectors (16 of 
the 25 sectors) could improve both cost and ecological efficiency through moving towards the 
pollution minimizing points, and most of the technical inefficient regional thermal power 
industry sectors (18 of the 25 sectors) could improve both ecological and cost efficiency through 
moving towards the cost minimizing points. 

Fourthly, note that, since each regional thermal power industry sector has its own energy input 
prices and SO2 emissions factors, the cost or pollution minimizing points, which are the points of 
tangency between technical efficiency frontier and iso-cost line or iso-pollution line, are unique 
for a specific regional sector. This means that each sector would have specific ecological and 
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economic trade-offs. This can be seen from the variety of percentages presented in the last two 
columns in Tables 3 and 4. There is an interesting implication that it is possible to identify 
specific regional thermal power industry sectors (code 19, 21 & 22) that each has overlapped 
cost efficient and ecological efficient points, i.e., these sectors could simultaneously attain full 
cost efficiency and full ecological efficiency. 

Fifthly, Table 3 shows that regional thermal power industry sector code 25 has the lowest 
generation cost per unit electricity of 0.256 Yuan/kWh. However, it is neither ecological efficient 
nor cost efficient. On the one hand, to achieve ecological efficient point, it must reduce its SO2 
emissions per unit electricity by 22.2% and would reduce its generation cost per unit electricity 
by 23.9%. On the other hand, to attain cost efficient, it must reduce its generation cost per unit 
electricity by 25.2% and would reduce its SO2 emissions per unit electricity by 21.5%. Table 4 
shows that regional thermal power industry sector code 1 has the smallest SO2 emissions per 
unit electricity of 0.346 g/kWh, and it is both technical efficient and ecological efficient. However, 
it is not cost efficient. To reach cost efficient point, it would reduce its generation cost per unit 
electricity by 19.8% but must increase its SO2 emissions per unit electricity by 71.9%. 

Finally, we come to the estimations of shadow cost (SC) and shadow pollution (SP). Table 5 gives 
the SC of SO2 emissions reduction and the SP of energy input cost reduction. The 3rd column 
shows total SC of each regional sector for moving from its cost minimizing point to pollution 
minimizing point; the 4th and 5th columns show the SC per unit electricity and its proportion in 
unit electricity generation cost. In addition, the 6th to 8th columns respectively shows the SP, SP 
per unit electricity and its proportion in unit electricity generation emission. It can be found that 
regional sector code 1 has both the highest proportion of unit SC in unit electricity generation 
cost (22.2%) and the largest proportion of unit SP in unit electricity generation emission (71.9%). 
The last column shows the unit SC per kg SO2 emissions reduction of each regional sector and 
the average sector. Note that, regional sector code 12 has the highest unit SC for SO2 emissions 
reduction (2.72 Yuan/g), while regional sector code 21 shows the lowest one (0.03 Yuan/g). The 
average shadow cost of SO2 emissions reduction in China’s thermal power industry is 571 
Yuan/kg. This cost is much higher than the current abatement cost of SO2 in representative coal-
fired power plant in China, which is approximate 3.8-4.4 Yuan/kg without taking into account 
the benefit from flue gas desulfurization gypsum production and subsidy on electrovalence. This 
result provides one important implication that, in general, China’s thermal power industry is 
suggested to adjust the energy input mix so as to approach the cost minimizing point instead of 
attempting to move further to the pollution minimizing point, since the alternative SO2 
abatement activities, such as flue gas desulfurization are much less costly, and in addition, some 
of the abatement cost could be further offset by energy input cost savings, gypsum productions, 
electrovalence subsidies, and pollutant discharge fee savings. However, we should also notice 
that there are several regional thermal power industry sectors have relative low unit SC of SO2 
emissions reduction, such as regional sectors code 7, 20 and 21 whose unit SCs are between 32-
36 Yuan/kg. Moving further towards the pollution minimizing point to a certain extent is still 
acceptable for these sectors, since the end-of-pipe SO2 abatement expense, especially the labor 
cost, in specific regional sector (e.g., code 7) is likely much higher than China’s average level. 

[Insert Table 5 here] 

 

Environmental impacts of potential pollution taxes on China’s thermal power industry 

On December 25th, 2016, a new environmental protection taxation law was passed and issued by 
China’s supreme legislative institution which will be enforced since January 1st, 2018. Then, the 
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mechanism of pollutant discharge fee that has been implemented for more than 30 years in China 
will be fully replaced by an environmental taxation. As reported in Supplementary table 3, the 
lower bounds of the SO2 pollution tax rate in different regions are various, ranging in 1.26-10.00 
Yuan/kg; while the upper bound are identical of 12.63 Yuan/kg. 

We assess the impact of these two pollution taxes scenarios on electricity generation cost and 
SO2 emissions, and the results for the average sector are presented in Table 6. The 2nd and 3rd 
rows show the observed generation cost (the electrovalence subsidies on desulfurization are 
included) and SO2 emissions per unit electricity under the current SO2 discharge fee mechanism; 
the 4th and 5th rows show the above two values if the average sector would generate at the cost 
efficient point; and the 6th row shows the unit shadow cost of the average sector. The 7th and 
11th rows report the estimated generation costs per unit electricity if the SO2 discharge fee is 
replaced by the SO2 pollution tax with lower bound rate or upper bound rate, which indicate that 
the unit cost at the cost efficient point would increase from 0.330 to 0.331 and 0.349 Yuan/kWh. 
Correspondingly, SO2 emissions per unit electricity at the cost efficient point would change. The 
percentages in the 8th and 12th rows indicate that, compared with the current SO2 discharge fee 
mechanism, the unit cost would slightly increase by 0.49% and 5.70% within the lower and 
upper bound of SO2 pollution tax scenarios, respectively; while the percentages in the 9th and 
13th rows indicate that, at the same time, the unit SO2 emissions would slightly decrease by 
0.0003% and 0.0155% within the lower and upper bound of SO2 pollution tax scenarios, 
respectively. Furthermore, the shadow cost per unit SO2 would change from 0.571 to 0.569 and 
0.564 Yuan/g within the SO2 pollution tax scenarios, as shown in the 10th and last rows. 

[Insert Table 6 here] 

 

Most of the changes identified are tiny indicating that there will be no significant difference 
between the impacts of pollution discharge fees and pollution taxes on pollution levels for the 
thermal power industry. This result is not surprising since, compared with the energy input 
prices, even the upper bound of SO2 pollution tax rate are very low which is not likely to 
significantly influence the energy mix adjustment and pollution abatement strategies. However, 
we must recognize that the planned pollution taxation mechanism (national legislation) has 
higher priority than the current pollution discharge fee mechanism (regional legislation) and 
thus the former will be enforced more strictly than the latter, which guarantees the SO2 
abatement performance of the pollution taxes. 

 

Conclusion 

This study estimates the ecological and cost efficiency of thermal power industry in China and 
identifies economic and ecological trade-offs inherent in electricity generation. The impacts of 
pollutant discharge fees and potential pollution taxes upon the levels of SO2 emissions are 
assessed. Our findings provide policy makers and managers with information on how to balance 
the economic costs and ecological benefits of SO2 emissions reduction. One could utilize the 
information as reference for setting appropriate level of pollution tax (on worse polluting energy 
inputs such as high-sulfur coal) or pollution reduction subsidy (on less polluting energy inputs 
like natural gas) so as to stimulate this industry to adjust its energy input mix for cost-effectively 
reducing pollutions. Further analysis may additionally take into account other major air 
pollutions, which may provide us the possibility for identifying the ecological synergy effects of 
multi-pollution control strategies. 
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Tables 
 
Table 1 Ecological and cost efficiency results 

Efficiency measurement Mean St. Dev. Minimum Maximum 

Ecological efficiency (EE) 0.8635  0.1366  0.5043  1.0000  
Ecological technical efficiency (ETE) 0.9111  0.1205  0.5633  1.0000  
Ecological allocative efficiency (EAE) 0.9498  0.0931  0.5043  1.0000  
Cost efficiency (CE) 0.8452  0.1403  0.5073  1.0000  
Cost technical efficiency (CTE) 0.9027  0.1291  0.5090  1.0000  
Cost allocative efficiency (CAE) 0.9400  0.1018  0.5555  1.0000  
Total cost efficiency (TCE) 0.8453  0.1403  0.5075  1.0000  
Total cost technical efficiency (TCTE) 0.9108  0.1207  0.5630  1.0000  
Total cost allocative efficiency (TCAE) 0.9300  0.1001  0.5555  1.0000  

Note: St. Dev. = standard deviation. 
 
Table 2 Changes on energy input and SO2 emissions associated with efficiency changes 

Energy and SO2 Unit Value change Percentage change 

Coal, observation to TE Million tonne -103.47 -6.6% 
Oil, observation to TE Thousand tonne -908.99 -36.2% 
Natural gas, observation to TE Million m3 -1754.02 -8.5% 
SO2, observation to TE Tonne -421132.61 -7.8% 
Coal, observation to EE Million tonne -239.26 -15.3% 
Oil, observation to EE Thousand tonne -78.98 -3.1% 
Natural gas, observation to EE Million m3 18102.26 87.9% 
SO2, observation to EE Tonne -818339.14 -15.2% 
SO2, TE to EE Tonne -397206.53 -8.0% 
Coal, observation to TCE Million tonne -179.68 -11.5% 
Oil, observation to TCE Thousand tonne -1008.95 -40.1% 
Natural gas, observation to TCE Million m3 -8603.77 -41.8% 
SO2, observation to TCE Tonne -709859.13 -13.2% 
SO2, TE to TCE Tonne -288726.52 -5.8% 

Note: SO2 = sulfur dioxide; m3 = cubic meters. 
  



17 

 

 
Table 3 Ecological and economic trade-offs with respect to changes in cost 

Regional 
sector code 

Region 

Generation cost 
per unit 
electricity5 
(Yuan/kWh) 

Percentage changes in generation cost per unit electricity (%) 

Observation 
to TE 

Observation 
to EE 

Observation 
to TCE 

TE to EE TE to TCE TCE to EE EE to TCE 

1 Beijing 0.320 0.0 0.0 -19.8 0.0 -19.9 25.7 -19.9 
2 Tianjin 0.329 -12.5 -3.5 -12.7 9.9 -0.2 10.1 -9.5 
3 Hebei 0.342 -0.5 3.4 -2.0 3.9 -1.6 5.5 -5.3 
4 Inner Mongolia 0.249 0.0 -36.1 -36.9 -36.0 -36.8 2.5 -2.4 
5 Jilin 0.324 -41.1 -42.9 -43.1 -3.5 -3.9 0.5 -0.5 
6 Heilongjiang 0.325 -33.8 -34.3 -34.4 -0.8 -0.8 0.1 -0.1 
7 Shanghai 0.376 0.0 0.0 -0.1 0.0 -0.1 0.1 -0.1 
8 Jiangsu 0.356 -3.1 -3.3 -3.3 -0.2 -0.3 0.1 -0.1 
9 Zhejiang 0.378 -3.8 -2.0 -6.8 1.8 -3.2 5.1 -4.9 
10 Anhui 0.346 0.0 3.9 0.0 3.9 0.0 3.9 -3.8 
11 Fujian 0.355 -6.2 -2.6 -11.1 3.8 -5.2 9.5 -8.7 
12 Jiangxi 0.381 -5.2 -5.4 -11.1 -0.1 -6.1 6.2 -5.9 
13 Shandong 0.358 -7.6 -7.9 -9.9 -0.3 -2.4 2.2 -2.1 
14 Henan 0.346 -14.6 -8.6 -16.1 7.0 -1.8 9.0 -8.2 
15 Hubei 0.375 -13.4 -12.8 -14.2 0.6 -0.9 1.5 -1.5 
16 Guangdong 0.412 -5.4 11.6 -14.6 17.6 -9.6 29.1 -24.3 
17 Guangxi 0.374 0.0 -1.4 -1.4 -1.4 -1.4 0.1 -0.1 
18 Hainan 0.391 0.0 -9.0 -25.2 -9.0 -25.2 20.7 -17.6 
19 Chongqing 0.355 0.0 -4.0 -4.0 -4.0 -4.0 0.0 0.0 
20 Sichuan 0.366 -13.2 -15.7 -15.7 -2.7 -2.7 0.0 0.0 
21 Guizhou 0.306 -15.5 -16.8 -16.8 -1.6 -1.6 0.0 0.0 
22 Shaanxi 0.316 -4.0 -9.3 -9.3 -5.5 -5.5 0.0 0.0 
23 Qinghai 0.284 -33.7 -32.6 -33.8 2.5 -0.3 2.8 -2.7 
24 Ningxia 0.230 -4.6 -6.8 -6.9 -2.4 -2.5 0.0 0.0 
25 Xinjiang 0.205 -21.7 -23.9 -25.2 -3.9 -6.3 2.7 -2.6 
- Mean 0.336 -9.1 -9.3 -14.3 -0.3 -5.8 5.9 -5.6 

Note: kWh = kilowatt-hours. 
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Table 4 Ecological and economic trade-offs with respect to changes in pollution 

Regional 
sector code 

Region 

SO2 emissions 
per unit 
electricity 
(g/kWh) 

Percentage changes in SO2 emissions per unit electricity (%) 

Observation 
to TE 

Observation 
to EE 

Observation 
to TCE 

TE to EE TE to TCE TCE to EE EE to TCE 

1 Beijing 0.346 0.0 0.0 71.9 0.0 71.9 -41.8 71.9 
2 Tianjin 1.008 -8.1 -12.1 -8.2 -4.4 -0.1 -4.3 4.5 
3 Hebei 1.270 -0.5 -6.8 -2.9 -6.3 -2.4 -4.0 4.1 
4 Inner Mongolia 2.027 0.0 -42.9 -40.5 -42.9 -40.5 -4.0 4.2 
5 Jilin 2.084 -39.9 -41.8 -41.8 -3.2 -3.1 -0.1 0.1 
6 Heilongjiang 2.226 -30.8 -30.8 -30.7 -0.1 0.1 -0.1 0.1 
7 Shanghai 0.628 0.0 0.0 1.8 0.0 1.8 -1.8 1.8 
8 Jiangsu 0.988 -2.7 -3.1 -3.0 -0.4 -0.3 0.0 0.0 
9 Zhejiang 0.985 -3.2 -3.7 0.2 -0.5 3.6 -3.9 4.1 
10 Anhui 0.604 0.0 -7.3 0.0 -7.3 0.0 -7.3 7.9 
11 Fujian 0.597 -6.1 -8.6 -0.4 -2.6 6.0 -8.2 8.9 
12 Jiangxi 1.664 -3.9 -10.8 -10.0 -7.3 -6.4 -1.0 1.0 
13 Shandong 1.971 -6.6 -9.9 -8.7 -3.5 -2.3 -1.3 1.3 
14 Henan 1.440 -15.9 -18.4 -15.9 -3.0 -0.1 -3.0 3.1 
15 Hubei 2.153 -11.3 -11.6 -11.1 -0.3 0.2 -0.5 0.5 
16 Guangdong 0.825 -4.5 -8.8 2.2 -4.6 6.9 -10.8 12.1 
17 Guangxi 1.666 0.0 -2.8 -2.8 -2.8 -2.8 0.0 0.0 
18 Hainan 0.747 0.0 -8.4 0.8 -8.4 0.8 -9.1 10.1 
19 Chongqing 5.339 0.0 -3.1 -3.1 -3.1 -3.1 0.0 0.0 
20 Sichuan 3.979 -12.0 -15.0 -15.0 -3.4 -3.4 -0.1 0.1 
21 Guizhou 4.632 -12.9 -14.1 -14.1 -1.4 -1.4 0.0 0.0 
22 Shaanxi 2.473 -3.6 -9.6 -9.6 -6.3 -6.3 0.0 0.0 
23 Qinghai 2.126 -25.9 -26.5 -25.9 -0.8 0.1 -0.9 0.9 
24 Ningxia 1.593 -4.5 -7.6 -7.5 -3.3 -3.2 -0.1 0.1 
25 Xinjiang 1.838 -18.5 -22.2 -21.5 -4.5 -3.7 -0.9 0.9 
- Mean 1.808 -10.0 -14.6 -12.9 -5.1 -3.2 -2.0 2.1 

Note: SO2 = sulfur dioxide; g/kWh = grams per kilowatt-hour. 
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Table 5 Shadow cost and shadow pollution estimation results 

Regional 
sector 
code 

Region 
SC 
(Million 
Yuan) 

SC per unit 
electricity 
(Yuan/kWh) 

SC per unit electricity / 
cost per unit electricity 
(%) 

SP 
(Thousand 
tonne) 

SP per unit 
electricity 
(g/kWh) 

SP per unit electricity 
/ SO2 per unit 
electricity (%) 

SC per unit 
SO2 (Yuan/g) 

1 Beijing 2656.89  0.089  27.8 7.43  0.249  71.9 0.357  
2 Tianjin 1547.31  0.025  7.7 2.41  0.039  3.9 0.643  
3 Hebei 4578.60  0.020  6.0 11.01  0.049  3.9 0.416  
4 Inner Mongolia 1286.18  0.004  1.8 14.12  0.048  2.4 0.091  
5 Jilin 69.14  0.001  0.4 0.06  0.001  0.1 1.077  
6 Heilongjiang 11.82  0.000  0.0 0.15  0.002  0.1 0.078  
7 Shanghai 34.44  0.000  0.1 1.01  0.011  1.8 0.034  
8 Jiangsu 65.92  0.000  0.0 0.17  0.000  0.0 0.390  
9 Zhejiang 3977.82  0.017  4.5 8.99  0.039  3.9 0.443  
10 Anhui 2338.50  0.012  3.5 8.52  0.044  7.3 0.274  
11 Fujian 4095.96  0.033  9.4 5.95  0.049  8.1 0.689  
12 Jiangxi 1354.76  0.020  5.2 1.00  0.015  0.9 1.352  
13 Shandong 2613.26  0.008  2.2 7.44  0.023  1.1 0.351  
14 Henan 8089.61  0.032  9.1 9.23  0.036  2.5 0.877  
15 Hubei 287.43  0.003  0.9 0.87  0.010  0.5 0.329  
16 Guangdong 26801.60  0.090  21.9 27.00  0.091  11.0 0.993  
17 Guangxi 10.32  0.000  0.0 0.03  0.000  0.0 0.358  
18 Hainan 1193.89  0.064  16.3 1.29  0.069  9.2 0.923  
19 Chongqing 0.00  0.000  0.0 0.00  0.000  0.0 - 
20 Sichuan 3.78  0.000  0.0 0.10  0.002  0.0 0.036  
21 Guizhou 1.43  0.000  0.0 0.04  0.000  0.0 0.032  
22 Shaanxi 0.00  0.000  0.0 0.00  0.000  0.0 - 
23 Qinghai 94.24  0.008  2.8 0.16  0.014  0.6 0.588  
24 Ningxia 9.25  0.000  0.0 0.09  0.001  0.1 0.107  
25 Xinjiang 798.29  0.007  3.5 1.41  0.013  0.7 0.568  
- Mean 2476.82  0.017  5.2 4.34  0.032  1.8 0.571  

Note: SO2 = sulfur dioxide; g/kWh = grams per kilowatt-hour. 
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Table 6 Impacts of SO2 pollution taxes on cost and emission levels 

Scenario Variable Unit Mean value 

Current SO2 discharge fee 

Observed unit cost Yuan/kWh 0.420 

Observed unit SO2 emissions g/kWh 1.808 

Unit cost at cost efficient point Yuan/kWh 0.330 

Unit SO2 emissions at cost efficient point g/kWh 1.568 

Shadow cost per unit SO2 Yuan/g 0.571 

Planned SO2 pollution tax (lower 
bound) 

Estimated unit cost at cost efficient point Yuan/kWh 0.331 

Changes on unit cost at cost efficient point % 0.491 

Changes on unit SO2 emissions at cost efficient point % -0.0003 

Shadow cost per unit SO2 Yuan/g 0.569 

Planned SO2 pollution tax (upper 
bound) 

Estimated unit cost at cost efficient point Yuan/kWh 0.349 

Changes on unit cost at cost efficient point % 5.703 

Changes on unit SO2 emissions at cost efficient point % -0.016 

Shadow cost per unit SO2 Yuan/g 0.564 

Note: SO2 = sulfur dioxide; g/kWh = grams per kilowatt-hour. 
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Supplementary material 

 

Weak G-disposability based summing-up formulation of MBP 

The MBP states that the total amount of mass in the polluting inputs should equal the mass in desirable outputs 
plus the mass in the residuals that cause pollution. Based on the concept of weak G-disposability, a summing-
up formulation of the MBP can be derived. This approach implies that the increase in pollutions (Δb) should 
equal the sum of the increase in polluting mass in inputs (αΔe), the decrease in polluting mass bound in 
desirable outputs (βΔy), and the decrease in abatements of pollutions (Δa). The summing-up formulation of 
weak G-disposability is defined as Δb = αΔe + βΔy + Δa, which is equivalent to Equation (1) in the paper, 
because the increase in pollution is due to the increase in polluting input consumption and/or the reduction 
in desirable output production, as well as the decrease in pollution abatements. 

 

DEA based models for ecological and economic efficiency measurement 

In this study, we propose three DEA based MBP methods for efficiency measurement. Suppose there is a sample 
of n firms having desirable outputs, non-polluting (i.e., non-energy) inputs, polluting (energy) inputs, and 
produced (not discharged) undesirable outputs (i.e., pollutions) denoted by (yrj, xij, eij, bij), where i=1,…,m1 (for 
x), i=m1+1,…,m (for e and b), r=1,…,s, and j=1,…,n. 

We first propose the following minimization programming (S1) for efficiency measurement with MBP for the 
currently under estimating firm j0: 

min 𝜃𝑇  

s. t.  𝑦𝑟𝑗0
= ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 − 𝑑𝑟𝑗

𝑇𝑦
, 𝑟 = 1, … , 𝑠  

        𝑥𝑖𝑗0
= ∑ 𝜆𝑗𝑥𝑖𝑗

𝑛
𝑗=1 + 𝑑𝑖𝑗

𝑇𝑥 , 𝑖 = 1, … , 𝑚1  

        𝜃𝑇𝑒𝑖𝑗0
= ∑ 𝜆𝑗𝑒𝑖𝑗

𝑛
𝑗=1 + 𝑑𝑖𝑗

𝑇𝑒 , 𝑖 = 𝑚1 + 1, … , 𝑚    (S1) 

        𝜃𝑇𝑏𝑖𝑗0
= ∑ 𝜆𝑗𝑏𝑖𝑗

𝑛
𝑗=1 + 𝑑𝑖𝑗

𝑇𝑏, 𝑖 = 𝑚1 + 1, … , 𝑚  

        𝛼𝑖𝑗𝑑𝑖𝑗
𝑇𝑒 = 𝑑𝑖𝑗

𝑇𝑏, 𝑖 = 𝑚1 + 1, … , 𝑚, 𝑗 = 1, … , 𝑛  

In programming (S1), θT is a variable for proportionally adjusting all energy inputs and the associated pollution 

outputs; λj are intensity variables representing convex combination; 𝑑𝑟𝑗
𝑇𝑦

, 𝑑𝑖𝑗
𝑇𝑥, 𝑑𝑖𝑗

𝑇𝑒  and 𝑑𝑖𝑗
𝑇𝑏  are slack 

variables implementing the weak G-disposability for the MBP; 𝛼𝑖𝑗  are emission factors indicating unit 

polluting mass bound in energy inputs. The last constraint associated with the third and fourth ones in 
programming (S1) guarantee the MBP. The objective of programming (S1) is to proportionally shirking all 
observed energy inputs ei for the currently under estimating firm j0 until they are projected onto the frontier 
of the technology set. 

Then, we consider that given the amounts of desirable outputs yr to be produced, what combination of energy 
inputs ei would result in the lowest possible amounts of pollutions bi? The following minimization 
programming (S2) approaches this question through achieving the minimal amounts of polluting mass bound 
in all energy inputs, i.e., ∑ 𝛼𝑖𝑗0

𝜃𝑖
𝐸𝑒𝑖𝑗0

𝑚
𝑖=𝑚1+1 , given desirable outputs yr and non-energy inputs xi unchanged, 

for the currently under estimating firm j0: 

min ∑ 𝛼𝑖𝑗0
𝜃𝑖

𝐸𝑒𝑖𝑗0

𝑚
𝑖=𝑚1+1   

s. t.  𝑦𝑟𝑗0
= ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 − 𝑑𝑟𝑗

𝐸𝑦
, 𝑟 = 1, … , 𝑠  

        𝑥𝑖𝑗0
= ∑ 𝜆𝑗𝑥𝑖𝑗

𝑛
𝑗=1 + 𝑑𝑖𝑗

𝐸𝑥 , 𝑖 = 1, … , 𝑚1  

        𝜃𝑖
𝐸𝑒𝑖𝑗0

= ∑ 𝜆𝑗𝑒𝑖𝑗
𝑛
𝑗=1 + 𝑑𝑖𝑗

𝐸𝑒 , 𝑖 = 𝑚1 + 1, … , 𝑚    (S2) 

        𝜃𝑖
𝐸𝑏𝑖𝑗0

= ∑ 𝜆𝑗𝑏𝑖𝑗
𝑛
𝑗=1 + 𝑑𝑖𝑗

𝐸𝑏, 𝑖 = 𝑚1 + 1, … , 𝑚  
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        𝛼𝑖𝑗𝑑𝑖𝑗
𝐸𝑒 = 𝑑𝑖𝑗

𝐸𝑏, 𝑖 = 𝑚1 + 1, … , 𝑚, 𝑗 = 1, … , 𝑛  

In programming (S2), 𝜃𝑖
𝐸   is variables for proportionally adjusting each type of energy input ei and its 

associated pollution outputs bi, but the adjustments can be non-proportional for different types of energy 
inputs so as the resources allocative efficiency, i.e., the measure of trade-offs among different types of energy 
used by a firm, can be included in efficiency measurement. Similarly, λj are intensity variables; 𝛼𝑖𝑗  are 

emission factors, 𝑑𝑟𝑗
𝐸𝑦

, 𝑑𝑖𝑗
𝐸𝑥 , 𝑑𝑖𝑗

𝐸𝑒 and 𝑑𝑖𝑗
𝐸𝑏 are slack variables implementing the weak G-disposability for the 

MBP. The last constraint in programming (S2) guarantees the MBP. 

Thirdly, if the price information on the energy inputs (pij) is accessible, we could obtain the minimal amount 
of cost on energy inputs through the following minimization programming (S3): 

min ∑ 𝑝𝑖𝑗0
𝜃𝑖

𝐶𝑒𝑖𝑗0

𝑚
𝑖=𝑚1+1   

s. t.  𝑦𝑟𝑗0
= ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 − 𝑑𝑟𝑗

𝐶𝑦
, 𝑟 = 1, … , 𝑠  

        𝑥𝑖𝑗0
= ∑ 𝜆𝑗𝑥𝑖𝑗

𝑛
𝑗=1 + 𝑑𝑖𝑗

𝐶𝑥 , 𝑖 = 1, … , 𝑚1  

        𝜃𝑖
𝐶𝑒𝑖𝑗0

= ∑ 𝜆𝑗𝑒𝑖𝑗
𝑛
𝑗=1 + 𝑑𝑖𝑗

𝐶𝑒 , 𝑖 = 𝑚1 + 1, … , 𝑚    (S3) 

        𝜃𝑖
𝐶𝑏𝑖𝑗0

= ∑ 𝜆𝑗𝑏𝑖𝑗
𝑛
𝑗=1 + 𝑑𝑖𝑗

𝐶𝑏, 𝑖 = 𝑚1 + 1, … , 𝑚  

        𝛼𝑖𝑗𝑑𝑖𝑗
𝐶𝑒 = 𝑑𝑖𝑗

𝐶𝑏, 𝑖 = 𝑚1 + 1, … , 𝑚, 𝑗 = 1, … , 𝑛  

In programming (S3), similar to programming (S2), 𝜃𝑖
𝐶   are variables for non-proportionally adjusting 

different types of energy inputs ei for achieving the minimal cost of energy inputs, i.e., ∑ 𝑝𝑖𝑗0
𝜃𝑖

𝐶𝑒𝑖𝑗0

𝑚
𝑖=𝑚1+1 , given 

desirable outputs yr and non-energy inputs xi fixed, for the currently under estimating firm j0. This procedure 
makes the measurement of cost allocative efficiency possible. In programming (S3) λj are intensity variables; 

𝛼𝑖𝑗 are emission factors; 𝑑𝑟𝑗
𝐶𝑦

, 𝑑𝑖𝑗
𝐶𝑥, 𝑑𝑖𝑗

𝐶𝑒 and 𝑑𝑖𝑗
𝐶𝑏 are slack variables implementing the weak G-disposability; 

and the last constraint guarantees the MBP. 
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Supplementary tables 

 

Supplementary table 1 Summary statics of inputs and outputs 

Year 
Variable Coal Oil Natural gas Capacity Staff Electricity 

SO2 from 
coal 

SO2 from 
oil 

SO2 from 
natural gas 

Unit 
Million 
tonne 

Thousand 
tonne 

Million m3 Million kW 
Thousand 
person 

Billion kWh Tonne Tonne Tonne 

2011 Mean 63.34 120.67 835.43 26.28 26.33 131.55 213,960.76  1,289.20  463.84  
 St. Dev. 51.73 162.69 1,169.35 20.10 16.23 104.45 171,714.12  1,492.34  587.68  
 Maximum 191.86 508.60 3,819.00 64.92 61.60 355.19 599,191.03  5,166.60  1,953.63  
 Minimum 5.57 0.30 2.00 2.30 4.00 9.18 9,010.88  2.75  5.15  
2012 Mean 63.33 117.45 895.91 28.19 25.14 131.59 223,243.73  1,329.49  519.69  
 St. Dev. 54.86 161.15 1,242.08 21.70 16.44 106.76 183,056.70  1,617.17  700.91  
 Maximum 202.62 533.70 4,395.00 70.80 54.91 366.97 687,063.36  5,349.95  2,665.36  
 Minimum 6.03 0.30 5.00 2.30 3.05 11.47 8,879.68  2.88  9.75  
2013 Mean 63.51 95.74 873.96 29.42 24.36 146.05 244,907.83  1,225.77  569.11  
 St. Dev. 50.57 137.90 1,282.19 22.24 15.09 113.54 189,185.59  1,550.05  780.79  
 Maximum 184.40 412.20 4,224.00 75.53 52.80 406.87 753,017.46  5,231.83  2,808.64  
 Minimum 6.33 0.30 9.00 2.35 2.94 13.44 11,483.69  2.43  4.12  
2014 Mean 62.64 95.90 923.23 31.62 23.10 146.81 170,590.64  835.79  402.25  
 St. Dev. 51.00 140.91 1,394.07 22.87 13.51 114.14 147,199.54  1,017.63  564.62  
 Maximum 193.67 453.20 4,088.00 77.27 48.07 406.25 524,452.04  3,269.25  1,734.53  
 Minimum 5.04 0.60 5.00 2.42 3.16 12.99 6,369.73  3.80  4.45  
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Supplementary table 2 SO2 emission factors 
 

Emission factor of coal 
(g/kg) 

Emission factor of oil 
(g/kg) 

Emission factor of natural gas 
(g/m3) 

Beijing 1.44 6.31 0.35 

Tianjin 2.18 9.56 0.53 

Hebei 2.95 12.93 0.71 

Inner Mongolia 3.06 13.38 0.73 

Jilin 3.30 14.46 0.79 

Heilongjiang 4.16 18.23 1.00 

Shanghai 1.60 6.98 0.38 

Jiangsu 2.38 10.40 0.57 

Zhejiang 2.57 11.25 0.62 

Anhui 1.46 6.39 0.34 

Fujian 1.43 6.27 0.34 

Jiangxi 3.89 17.05 0.94 

Shandong 4.35 19.02 1.05 

Henan 3.09 13.51 0.74 

Hubei 4.99 21.85 1.20 

Guangdong 2.09 9.14 0.50 

Guangxi 4.11 17.98 1.02 

Hainan 1.90 8.30 0.46 

Chongqing 11.97 52.39 2.88 

Sichuan 8.55 37.43 2.06 

Guizhou 9.92 43.41 2.19 

Shaanxi 5.28 23.12 1.27 

Qinghai 3.92 17.14 0.94 

Ningxia 2.81 12.30 0.72 

Xinjiang 3.57 15.61 0.86 

 
 

Supplementary table 3 SO2 pollution discharge fee rate or pollution tax rate (Yuan/kg) 

Current SO2 discharge 
fee rate, implemented 
until 2015 

Planned SO2 pollution tax rate (lower bound), 
will start from 2018 

Planned SO2 pollution tax rate 
(upper bound), will start from 
2018 

1.26 (Beijing), 0.63 (All 
other regions) 

10.00 (Beijing), 6.30 (Tianjin), 2.40 (Hebei), 
4.00 (Shanghai), 3.00 (Shandong), 1.26 (All 
other regions) 

12.63 (All regions) 
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Endnotes 

1 Oil consumption in China’s thermal power plant are usually used for ignition and combustion-support. Note 
that the evaluation unit in this study is provincial thermal power industry sector which includes both coal-
fired and natural gas-fired power generators, and the related evaluation is not inner energy-type (different 
types of coal or different types of natural gas) substitution but the substitution between coal and natural gas. 

2 All the estimations on efficiency scores and decrease (or increase) potentials of energy inputs and pollutant 
emissions are based on the observed data and current (2011-2014) technological frontier (technology) of 
thermal power electricity generation; in other words, our estimation is known as an ex post and static analysis. 
Thus, all derived policy implications are from the perspective of short-term economic and ecological analysis 
relying on current technology. 

3 Because of the data limitation, we use the aggregated data but not the capacity-specific data on inputs and 
outputs for estimation. Then, the technical efficiency measures may have mixed effects of operating efficiency 
that could be possibly improved (e.g., the efficiency difference between two 300-mW generators) and innate 
efficiency difference that is hard to improve (e.g., the efficiency difference between one 300-mW generator and 
one 1,000-mW generator). Therefore, one should be very careful when using these efficiency scores (EE, CE, 
TCE and their decompositions) which can only be interpreted for average sector and from the macro-economic 
analysis perspective. Thanks to the reviewer for this issue. 

4 Note that the technologies for coal-fired and natural gas-fired power generation are different and they are 
not technically perfect substitutable, and this imperfect substitution also exists within different coal-fired 
power generation technologies. The estimation in this study mainly focuses on the macro-economic and 
environmental trade-off analysis at the regional level for the entire thermal power industrial sector. Thus, the 
estimation results and derived policy advices should be only used at the regional industry level rather than 
the firm level. 

5 The generation costs refer in particular to energy input costs for electricity generation with the subsidy on 
desulfurization for thermal power sector taking into account. 

                                                   


