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Abstract— The simultaneous estimation of parameters and
states in continuous-time linear MISO systems is considered in
this paper. The estimates of system’s parameters and states are
provided simultaneously by a single estimator, where Volterra
operators are suitably applied to the I/O measurements. This
makes the estimator independent on the initial conditions
thanks to the design of suitably shaped kernel functions
equipped with non-asymptotic properties. As a result, in the
noise-free scenario, instantaneous convergence can be obtained.
No high-gain injection nor periodic resetting is necessary.
Numerical examples are reported showing the effectiveness of
the proposed estimator.

I. INTRODUCTION

The identification of the parameters and states of dynamic
systems is one of the fundamental problems in control
engineering. The problem was first formulated as a nonlinear
state observation problem by augmenting the parameters
into the state vector and designing an observer for the
nonlinear dynamics [1]. Among others, [2] simplifies the
problem by using the extended Kalman filter and propos-
ing a computationally economical joint parameter and state
estimator. In [3], [4], parameter-state estimation is realized
based on adaptive methods which are reviewed in details
in [5]. Nevertheless, most of the classical methods can only
provide asymptotic convergence guarantees, while there exist
several applications that require finite-time convergence of
the estimates.

In the context of finite-time estimation, the sliding-mode
methodology is one of the preferred choice for the ease of
implementation (see [3], [6] and [7]). However, since the
finite-time convergence is attained by high-gain injection,
it is very sensitive to measurement noise. Two alternative
deadbeat estimation methodologies not requiring high-gain
injection, can be found in [8], [9] where integral algebra is
used, to reconstruct initial conditions (as presented in [10],
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[11]) or eliminate the effect of the initial conditions [9], [12],
[13].

Their effectiveness in numerous applications has been
shown in [9], [14], [15] and [16]. On the other hand,
due to the internal instability issue, periodic resettings are
typically needed in these method as in [17] and [16], whose
significance has been stated through a simulation comparison
in [18]. To overcome this drawback, a kernel-based deadbeat
estimation methodology has been proposed recently in [13]
and [19] exploiting Volterra operators that allow to avoid
the periodic resetting and high-gain injection showing huge
potential in many applications (e.g. [20], [21], [22]).

However, most of the finite-time works in the literature
address the parameters estimation and the state observation
separately, such as [23]. In order to achieve the simultaneous
estimation and reduce the complexity, in this work we
propose a single estimator for linear MISO systems, jointly
providing the estimates of parameters and state variables
in arbitrarily short time under persistency of excitation.
By suitably shaping the kernel function of the Volterra
operator, the terms depending on the initial conditions are
suppressed thus guaranteeing the finite-time convergence of
the estimates with an internally stable realization and without
involving high gain injection.

II. PROBLEM STATEMENT

Consider a MISO system in the input-output form:

Su→y :



y(n)(t) =
n−1∑
i=0

aiy
(i)(t)+

M−1∑
k=0

mk−1∑
j=0

bk,ju
(j)
k (t),

∀ t ∈ R≥0;

y(i)(0) = y
(i)
0 , i ∈ {0, . . . , n− 1};

u
(j)
k (0) = u

(j)
k,0, j ∈ {0, . . . ,mk − 1}

(1)
with n ∈ Z>0, mk ∈ Z>0, mk ≤ n, ∀k ∈ {0, . . . ,M − 1}.
The values of the constant parameters ai ∈ R, bk,j ∈ R with
i ∈ {0, . . . , n−1}, j ∈ {0, . . . ,mk−1}, k ∈ {0, . . . ,M−1}
are unknown. The only known elements are the input and
output signals, i.e. uk(t) and y(t), while their derivatives as
well as the initial conditions u(j)

k,0(0) and y(j)(0) are assumed
to be unavailable.

Consider the state-space realization of system (1) in the
observer canonical form :

Su→z→y :

{
z(1)(t) = Az(t) +Bu(t),

y(t) = c>z(t), ∀t ∈ R≥0

(2)



where z(t) , [z0(t) z1(t) . . . zr(t) . . . zn−1(t)]> ∈ Rn
is the state vector and the input vector is defined as
u(t) , [u0(t), u1(t), . . . , uM−1(t)]. A ∈ Rn×n, B ∈ Rn×M
and c ∈ Rn take on the following forms:

A =



an−1 1 0 · · · 0

an−2 0 1
. . .

...
...

...
. . . . . . 0

a1 0 . . . 0 1

a0 0 · · · 0 0


, c =


1

0
...

0

 ,

B = [b0, b1, . . . , bM−1],

bk = [0, . . . , 0, bk,mk−1, . . . , bk,0 ]>, ∀k ∈ {0, . . . ,M − 1}.
The state variables of the realization (2) can be expressed in
terms of the input-output derivatives as

zr(t)=y(r)(t)−
r−1∑
j=0

an−r+jy
(j)(t)−

M−1∑
k=0

r−1+mk−n∑
j=0

bk,n−r+ju
(j)
k (t).

(3)

where the convention
∑k
j=0{·} = 0, for k < 0 has been

used. The goal of this paper is to simultaneously provide
deadbeat estimates of the state vector z(t) and of the
unknown parameters ai and bk,j based on the I/O measure-
ments y(t) and u(t). Thanks to the proposed approach, the
unknown initial conditions zr(0), r ∈ {0, . . . , n− 1} do not
affect the estimation transient.

III. FINITE-TIME PARAMETER-STATE JOINT ESTIMATION
For readers’ convenience and to make the paper suffi-

ciently self-contained, some key facts instrumental to the
proposed framework are recalled in Appendix A. Moreover,
the interested reader is referred to [13] and [19] for a deeper
insight on the algebra of Volterra integral operators.

Consider an n-th order Bivariate Feedthrough Non-
asymptotic Kernel (BF-NK proposed in [19]) function
Kh(t, τ) (setting N ≥ n) in the shape of

Kh(t, τ) = e−ωh(t−τ)
(
1− e−ω̄t

)N
, (4)

tuned by user-defined positive parameters ωh ∈ R>0 and
ω̄ ∈ R>0. Indeed, this kernel function is characterized by
two outstanding features:
• It is non-asymptotic up to the N -th order

i.e.K(i)(t, 0) = 0,∀i ∈ {1 . . . n − 1}, which removes
the dependence on the initial conditions (see [13]);

• The Volterra operators induced by this kernel can be
implemented as an LTV system, processing the available
I/O signals and producing the transformed signals as
output.

Therefore, the image function of the output’s derivatives
in the operational domain can be expressed as[
VKhy

(i)
]
(t) ,

∫ t

0

Kh(t, τ)y(i)(τ)dτ

=

i−1∑
j=0

(−1)i−j−1y(j)(t)Kh
(i−j−1)(t, t)

+(−1)i
[
VKh(i) y

]
(t), i ∈ {1, . . . , n− 1}.

(5)

Similarly, the input derivatives transform into:[
VKhu

(i)
k

]
(t) =

i−1∑
j=0

(−1)i−j−1u
(j)
k (t)Kh

(i−j−1)(t, t)

+(−1)i
[
VKh(i) uk

]
(t), i ∈ {1, . . . ,mk − 1}.

(6)
Consider the i = 1 case. Then (5) becomes

[V
K

(1)
h

y](t) = y(t)Kh(t, t)− [VKhy
(1)](t), (7)

and replacing the generic y with y(n−1), it holds that

[V
K

(1)
h

y(n−1)](t) = y(n−1)(t)Kh(t, t)− [VKhy
(n)], (8)

which is equivalent to the following expression according to
the I/O model (1) and thanks to the linearity

[V
K

(1)
h

y(n−1)](t) = y(n−1)(t)K(t, t)−
n−1∑
i=0

ai[VKhy
(i)](t)

−
M−1∑
k=0

mk−1∑
i=0

bk,i[VKhu
(i)
k ](t).

(9)
Substituting (5) and (6) into (9), we obtain

(−1)n−1[V
K

(n)
h

y](t)+

n−2∑
j=0

(−1)n−2−jy(j)(t)K
(n−j−1)
h (t, t)

= y(n−1)(t)Kh(t, t)−
n−1∑
i=0

ai

(
(−1)i[V

K
(i)
h

y](t)

+

i−1∑
j=0

(−1)i−j−1y(j)(t)K
(i−j−1)
h (t, t)

)
−
M−1∑
k=0

mk−1∑
i=0

bk,i

(
(−1)i[V

K
(i)
h

uk](t)

+

i−1∑
j=0

(−1)i−j−1u
(j)
k (t)K

(i−j−1)
h (t, t)

)
.

(10)
After some cumbersome algebra, (10) can be written as

(−1)n−1[V
K

(n)
h

y](t) +

n−1∑
i=0

ai(−1)i[V
K

(i)
h

y](t)

+

M−1∑
k=0

mk−1∑
i=0

bk,i(−1)i[V
K

(i)
h

uk](t)

=

n−1∑
r=0

(−1)n−r−1K
(n−r−1)
h (t, t)

(
y(r)(t)

−
r−1∑
j=0

an−r−jy
(j)(t)−

M−1∑
k=0

r−1+m−n∑
j=0

bk,n−r−ju
(j)(t)

)
,

which, in turn, can be written in the following compact form
by recalling (3):

(−1)n−1[V
K

(n)
h

y](t) = −
n−1∑
i=0

ai(−1)i[V
K

(i)
h

y](t)

−
M−1∑
k=0

mk−1∑
i=0

bk,i(−1)i[V
K

(i)
h

uk](t) +

n−1∑
r=0

γh(t)zr(t) ,

(11)
where γh,r(t) = (−1)n−r−1K

(n−r−1)
h (t, t).

It is worth noting that the right hand side of (11) is linear
with respect to the parameters ai, bk,i and the state variables



zr(t). Therefore, (11) can be written in the form of a linear
constraint

(−1)n−1[V
K

(n)
h

y](t) = νh(t)>θ(t), (12)

where

θ(t) ,
[
a0, . . . , an−1, b0,0, . . . , b0,m0−1,

. . . , bM−1,mM−1−1, z0(t), . . . , zn−1(t)
]
.

νh(t) =

[
−
[
VKhy

]
(t), . . . , (−1)n

[
V
K

(n−1)
h

]
(t),

−
[
VKhu0

]
(t), . . . ,(−1)mM−1

[
V
K

(mM−1−1)

h

uM−1

]
(t),

γh,0(t), . . . , γh,n−1(t)

]>
.

Note that the vector νh(t) is composed of known functions
consisting in the weak derivatives of the kernel Kh(t, τ) and
in the transformed I/O signals. Now we will show that the
transformed signals that participate as the elements of νh(t)
can be obtained as the output of an LTV dynamic system for
any bounded I/O signals y(t) and uk(t). Let us define the
transformed signal vectors

ξh,y ,

[
[VKhy](t), . . . , [V

K
(n)
h

y](t)

]
ξh,uk ,

[
[VKhuk](t), . . . , [V

K
(mk−1)

h

uk](t)

]
,

with k ∈ {0, . . . ,M − 1}. Thanks to the fact that the kernel
Kh(t, τ) verifies the identity

∂

∂t
K

(i)
h (t, τ) = −ωhK(i)

h (t, τ), (13)

the auxiliary vectors can be calculated by the following the
internally stable LTV system ξ

(1)
h,?(t) = Gh,?ξh,?(t) + Eh,?(t) ? (t),

ξh,?(0) = 0,
(14)

where ?(t) represents the variables y(t) and uk(t),
k ∈ {0, . . . ,M − 1} and

Gh,y = diag(−ωh) ∈ R(n+1)×(n+1),

Gh,uk = diag(−ωh) ∈ Rmk×mk ,

Eh,y(t)=


Kh(t, t)

...

K
(n)
h (t, t)

, Eh,uk(t)=


Kh(t, t)

...

K
(mk−1)
h (t, t)

 .
With the purpose of solving (12) for nδ , 2n+

∑M−1
k=0 mk

unknown elements (some of them are not constant), the
augmentation of the linear constraint (12) is necessary. In this
connection, we make use of nδ kernel functions in the form
of (4) with a common ω̄ but different ωh, h ∈ {0, . . . , nδ−1}
to construct nδ constraints in the form of (12). As a result,
the estimation is obtained by solving the following algebraic
linear equation for the unknown vector θ:

κ(t) = Γ(t)θ, (15)

where

κ(t) =

[
(−1)n−1[V

K
(n)
0
y](t), . . . , (−1)n−1[V

K
(n)
nδ−1

y](t)

]>
,

Γ(t)= [ν0(t), ν1(t), . . . , νnδ−1(t)]>.

To guarantee the invertibility of the matrix Γ(t), the
following assumption is needed.

Assumption 1: Given the I/O measurement y(t) and uk(t)
in (1) and the designed kernel (4), there exist some εh ∈ R>0

and tε,h ∈ R>0 such that∫ t

t−tε,h
νh(τ)νh(τ)> ≥ εhI, ∀t > 0, (16)

for all h ∈ {0, . . . , nδ − 1}.
Assumption 1 immediately follows from the definition of
persistency of excitation [24]:

Definition 3.1: (Persistency of excitation) The function
vector q(t) is said to be persistently exciting (PE) if and
only if there exist εq ∈ R>0 and tq ∈ R>0 such that∫ t

t−tq
q(τ)q(τ)>dτ > εqI, ∀t ≥ 0. (17)

We furthermore need the following definition:
Definition 3.2: (Sufficient richness [25]) The signal u(t)

is said to be sufficiently rich of order np in an arbitrary finite
time interval [t1, t2] if there does not exist a non-zero vector
p = [p0, . . . , pnp−1], verifying

np−1∑
i=0

piu
(i)(t) = 0,∀t ∈ (t1, t2). (18)

In the following proposition, we provide some conditions
on the I/O signals to satisfy Assumption 1.

Proposition 3.1: (Implication) The PE condition (16) is
satisfied if the I/O signals verify the following conditions
• The input signals uk(t) are sufficiently rich at least of

order mk, ∀k ∈ {0, . . . ,M − 1}, ∀t > 0;
• The output signal y(t) is sufficiently rich at least of

order n, ∀t > 0;
• The I/O vector ζ(t) , [y(t), u0(t), . . . , uM−1(t)] is PE.
Therefore, under Assumption 1, stacking nδ vectors

νh(t) induced by different kernel functions Kh(t, τ), h ∈
{0, . . . , nδ − 1} ensures that the matrix Γ(t) is invertible
∀t > 0. In turn, the unknown vector θ can be estimated by

θ̂(t) = Γ(t)−1κ(t), ∀t > 0. (19)

As a result, a theoretical instantaneous convergence of the
simultaneous parameter-state estimates can be achieved.

IV. NUMERICAL EXAMPLE

In this section, to show the effectiveness of the proposed
method,we consider an MISO LTI system with the form:
y(2)(t) = a1y

(1)(t) + a0y(t) + b11u
(1)
0 (t) + b20u1(t), (20)

∀t ∈ R≥0, where the initial conditions and the parameters
of the observer canonical form are z(0) = [1, −3]> and
a1 = −1, a0 = −0.3, b11 = 2, b20 = 0.5. The inputs are
u0(t) = 10 sin (10t) and u1(t) = sin (2t)− 0.5, which are
sufficiently rich of order 2 and 3 respectively. As a result,
the output is rich of order 9. We note that the I/O vector
[y(t), u0(t), u1(t)] is PE due to the linear independence
among its components.
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A. Noise-free scenario

Firstly, we investigate the performance of the joint estima-
tor in the noise-free scenario. Theoretically, the present esti-
mator is able to achieve instantaneous convergence immedi-
ately after t 6= 0. However, in the numerical implementation,
distortion may occur due to the discretization, significantly
depending on the sampling time. Therefore, to avoid the large
overshoot caused by inverting a nearly singular matrix in the
initial phase, we set an activation threshold ea to detect the
non-singularity of matrix Γ(t). The inversion of Γ(t) in (19)
is only executed when det(Γ(t)) > ea. Remarkably, the fast
convergence of the estimation is relative to the activation
time.

1) Parameters selection: The following parameters need
to be set by the designer: the activation threshold ea, the
sampling interval Ts, and the kernel parameters ωh, ω̄ in (4).
Figures 1 and 2 provide some insight on how the activation
time and the overshoot σ% , maximal estimate−true value

true value ×
100% are affected by the activation threshold ea and the
sampling interval Ts with different sets of kernels in the
form of (4) with [ω0, . . . , ω5] = [1 2 3 4 5 6] × M, M ∈
{0.5, 1, 5, 10, 15} and ω̄ = 2.5.

As suggested by intuition, Fig. 1 shows that smaller
activation thresholds corresponds to shorter activation times.
On the other hand, by increasing the values of the kernel
parameters, we obtain shorter activation times, even if the
improvement is smaller for larger parameters values. The
sampling interval does not have significant effect on the
activation time. By analyzing Fig. 2, we see that in general,
the overshoot increases with the decrease of the activation
threshold. In this regards, designer should consider the trade
off between the activation time and the overshoot after
activation in order to choose a proper value of ea. However
the overshoot can be remarkably reduced by decreasing the
sampling interval, which is reasonable since the distortion is
caused by discretization. The overshoot does not have a clear
relation with the variation of the kernel parameters, reaching
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Fig. 3. Time behavior of the parameter-state joint estimator in noise-free
scenario.

a minimum for M=5.
2) Simulation results: According to this analysis, in

this simulation example, to design the proposed parameter-
state joint estimator, we use 6 BF-NK functions with
ω̄ = 2.5, [ω0, . . . , ω5] = [1, 2, 3, 4, 5, 6]× 5 and N = 4. The
activation threshold in chosen as ea = 10−30. The simula-
tions are performed setting the sampling time to Ts = 10−3s.

In Fig. 3 the theoretical deadbeat convergence of the
proposed method is shown: the estimates of the parameters
jump to the true values immediately after activation. At the
same time, also the states are accurately reconstructed.

B. Noisy scenario

We examine the estimator performance in a scenario where
the measurement y(t) is corrupted by a uniformly distributed
random additive noise ranging within [−0.2, 0.2] (see Fig. 4).

1) Parameter selection: We analyze the choice of the
parameters in this second case. In order to consider the
robustness of the proposed estimator for different parameters
configurations, Table. I presents the root mean square error
(RMSE) of the parameters and state variables estimates:

RMSE(ς) ,

√∑
nrmse

(e>ς eς)

nrmse
,

where ς represents the parameter vector
pars , [a0, a1, b11, b20]> and the state vector x(t) while eς
denotes the corresponding estimation error. nrmse represents
the number of samples used for RMSE calculation. In order
to analyze only the robustness to the noise of the estimators,
we do not want to consider the overshoot effect in the
calculation of the RMSE, thus in this example we are using
the samples from 0.2s after activation time until the end of
the simulation.

From Table. I, the estimator robustness to the measurement
noise decreases as the kernel parameters increase, which



TABLE I
RMSE WITH DIFFERENT PARAMETERS CHOICE

Ts ea M Ta RMSE (pars) RMSE (x)

10−3

10−7

0.5 3.669 0.0876 0.2944

1 2.027 0.2805 0.3529

2 1.371 2.0521 0.5572

3 1.280 15.5913 1.4915

5 1.381 84.7760 6.0135

10−6

0.5 4.401 0.0237 1.2348

1 2.717 0.1066 0.6553

2 1.825 0.8742 0.2602

3 1.686 4.9175 0.7505

5 2.121 25.6606 3.0920

10−4

10−7

0.5 3.6704 0.0215 0.2813

1 2.0259 0.0860 0.2589

2 1.3796 0.9318 0.3332

3 1.2809 5.3712 0.4761

5 1.3767 44.7607 2.0935

10−6

0.5 4.4004 0.0089 1.2376

1 2.7162 0.0405 0.6518

2 1.8237 0.3483 0.1285

3 1.6863 1.5522 0.2707

5 2.1346 9.13733 1.5941

is reasonable because the derivatives of the kernel will be
amplified by large parameters, thus increasing the sensitivity
of the proposed estimator to the noise. Moreover, larger
value of kernel parameters make the modulated noise signal
too large to be comparative to the nominal signals, thus
giving rise to singularity issues of Γ(t). Therefore, the kernel
parameters with M > 10 will not have enough excitation in
presence of noise. Furthermore, we observe in Table. I that
the increase of the activation threshold enhances the noise
attenuation. However, this is not applicable in the case of
state estimation for small kernel parameters (M ≤ 1), since
smaller values of the parameters reduce the determinant of
Γ(t), and therefore higher activation thresholds make the
estimator to be switched off more often. In this regard,
designer should consider the tradeoff between activation
time, robustness to noise, and persistent excitation, in tuning
M and ea.

2) Simulation results: In this example, we choose M =
0.5, ea = 10−7 and Ts = 10−3s obtaining the results
depicted in Fig. 5. Please note that the spikes in the noisy
estimation are due to numerical reasons: the presence of
noise makes the matrix Γ(t) close to its singularity. This
is likely to happen periodically since the output is sinusoidal
signal and the effect of the noise on its derivatives is
maximum when the output is at its positive and negative
peaks. When Γ(t) becomes so that it is not possible to
be inverted, the estimator is frozen to a constant value. In
digital implementation, we resort to the activation threshold
to detect the rank deficiency of Γ(t) caused by the presence
of noise.
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Fig. 4. Measured output yd(t) in the noise scenario and pure output y(t).

0 1 2 3 4 5 6 7 8 9 10
Time[s]

-2

0

2

4

p
a
ra
m
e
te
rs

â0
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Fig. 5. Time behavior of the parameter-state joint estimator in noisy
scenario.

A more comprehensive robustness analysis against mea-
surement disturbance will be presented in future works.

V. CONCLUDING REMARKS

In this paper, a simultaneous parameter-state estimator for
MISO linear systems has been developed relying on the
kernel-based deadbeat estimation methodology. By making
use of suitable Volterra integral operators, the proposed es-
timator (theoretically) provides exact estimates in the noise-
free scenario of both the unknown system parameters and the
internal states in finite-time based only on the I/O signals.
Remarkably, the transient is instantaneous and independent
on the unknown initial conditions. Preliminary simulation
experiments are reported showing the effectiveness of the
proposed estimator both in the noise-free and noisy scenario.

Future research efforts will be devoted to the case with
measurement noise aiming at a comprehensive robustness
analysis. Moreover, the extension to some classes of nonlin-
ear systems will be considered as well.
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APPENDIX

A. Non-asymptotic Volterra integral operator algebra

Consider a signal x(t) ∈ R, ∀t ≥ 0 having its i-th
weak derivative denoted by x(i)(t). Moreover, given a bi-
variate kernel function K(·, ·), its i-th order weak derivative
with respect to the second argument will be denoted as
K(i)(t, τ), i ∈ Z≥0.

The Volterra transformations act on the Hilbert
space L2

loc(R≥0) of locally square-integrable functions
with domain R≥0 and range R (i.e., x(·) ∈
L2
loc(R≥0) ⇔ (x(·) : R≥0 → R) ∧ (

∫
B
|x(t)|2dt <∞,

∀ compactB ⊂ R≥0). Given a function x ∈ L2
loc(R≥0),

its image through the Volterra (linear, integral) operator
VK induced by a Hilbert-Schmidt HS Kernel Function
K(·, ·) : R× R→ R is usually denoted by [VKx](·), and is
defined by the inner product:

[VKx] (t) ,
∫ t

0

K(t, τ)x(τ)dτ, t ∈ R≥0 .

Moreover, the transformed signal [VKx](t), for t ≥ 0, can
be obtained as the output of a dynamic system described by
the following scalar integro-differential equation:{

ξ(1)(t) = K(t, t)x(t) +

∫ t

0

(
∂

∂t
K(t, τ)

)
x(τ)dτ

[VKx] (t) = ξ(t)
(21)

where ξ(0) =
∫ 0

0
K(0, τ)x(τ) = 0 dτ and ξ(1)(0) = 0.

It is worth noting that the system (21) is internally stable
as long as the kernel function and its weak derivatives w.r.t.
the second argument are bounded.

Lemma 1.1: [13] For a given i ≥ 0, consider a signal
x(·) ∈ L2(R≥0) that admits a i-th weak derivative in R≥0

and a kernel function K(·, ·) ∈ HS , admitting the i-th
derivative (in the conventional sense) with respect to the
second argument. Then, it holds that:[
VKx

(i)
]
(t) =

i−1∑
j=0

(−1)i−j−1x(j)(t)K(i−j−1)(t, t)

+

i−1∑
j=0

(−1)i−jx(j)(0)K(i−j−1)(t, 0) + (−1)i
[
VK(i) x

]
(t)

(22)

that is, the function
[
VKx

(i)
]

(·) is non-anticipative
with respect to the lower-order derivatives x(·),
x(1)(·), . . . , x(i−1)(·). �

The properties of the Volterra operator depend signif-
icantly on the shape of the kernel function. The non-
asymptotic kernel functions defined in the following lines
play a significant role in deadbeat estimation[19], [13].

Definition 1.1: [13] If a kernel K(·, ·) ∈ HS which is at
least (i−1)-th order differentiable with respect to the second
argument, verifies the condition

K(j)(t, 0) = 0, ∀j ∈ {0, 1, . . . , i− 1} (23)

then, it is called an i-th order non-asymptotic kernel.


