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Abstract

Background: The genetic basis of animal domestication remains poorly understood, and systems with substantial
phenotypic differences between wild and domestic populations are useful for elucidating the genetic basis of adaptation to
new environments as well as the genetic basis of rapid phenotypic change. Here, we sequenced the whole genome of 78
individual ducks, from two wild and seven domesticated populations, with an average sequencing depth of 6.42X per
individual. Results: Our population and demographic analyses indicate a complex history of domestication, with early
selection for separate meat and egg lineages. Genomic comparison of wild to domesticated populations suggests that genes
that affect brain and neuronal development have undergone strong positive selection during domestication. Our FST

analysis also indicates that the duck white plumage is the result of selection at the melanogenesis-associated transcription
factor locus. Conclusions: Our results advance the understanding of animal domestication and selection for complex
phenotypic traits.
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Background

Animal domestication was one of the major contributory factors
to the agricultural revolution during the Neolithic period, which
resulted in a shift in human lifestyle from hunting to farming
[1]. Compared with their wild progenitors, domesticated animals
showed notable changes in behavior, morphology, physiology,
and reproduction [2]. Detecting domestication-mediated selec-
tive signatures is important for understanding the genetic ba-
sis of both adaptation to new environments and rapid pheno-
type change [3, 4]. In recent years, to characterize signatures of
domestication, whole-genome resequencing studies have been
performed on a wide range of agricultural animals, including pig
[5], sheep [6], rabbit [7], and chicken [8, 9].

Mallards (Anas platyrhynchos) are the world’s most widely dis-
tributed and agriculturally important waterfowl species and are
of particular economic importance in Asia [10]. Southeast Asia,
particularly southern China, is the major center of duck domes-
tication, with records indicating duck farming in the region dat-
ing at least 2,000 years [11, 12], particularly in wet environments
[13] associated with rice crops [14]. In the absence of archaeolog-
ical evidence, the exact timing of domestication and the time of
meat and egg type ducks split remains unknown, with the first
written records of domestic ducks in central China shortly after
500 BC [15].

It is clear that the domesticated duck originated from mal-
lards [16], and domestic ducks can be classified as those pro-
duced primarily for meat (similar to chicken broilers) or eggs
(similar to chicken layer lines). Together with the timing of duck
domestication, the relative separation of duck meat and egg
lines is also unknown. It is unclear whether ducks were domes-
ticated once and subsequently selected for divergent meat and
egg production traits or whether meat and egg populations were
derived independently in two domestication events from wild
mallards.

Moreover, domesticated mallards show many important
behavioral [17] and morphological [18–20] differences from
their wild ancestors, particularly related to plumage and neu-
roanatomy. However, the genetic basis of these phenotypic dif-
ferences is still poorly understood.

Data Description

In order to determine the timing of duck domestication in China,
as well as identify the genomic regions under selection dur-
ing domestication, we performed whole-genome resequencing
from 78 individuals belonging to seven duck breeds (three for
meat breeds, three for egg breeds, and one dual-purpose breed)
and two geographically distinct wild populations. Using the
large number of single nucleotide polymorphisms (SNPs) as well
as small insertions and deletions (INDELs), we tested for popula-
tion structure between domesticated and wild populations and
we assessed the genome for signatures of selection associated
with domestication. We tested alternative demographic scenar-
ios with the pairwise sequential Markovian coalescent method
combined with the diffusion approximation method.

Analyses

Genetic variation

We individually sequenced 22 wild and 56 domestic ducks from
two wild populations and seven domestic breeds (three meat
breeds, three egg breeds, and one dual-purpose breed) from
across China (Fig.1A) to an average of 6.42X coverage per indi-
vidual (613.37 Gb of high-quality paired-end sequence data) af-
ter filtering and quality control, resulting in 535 billion mappable
reads across 78 ducks (Supplemental Table S1).

Across samples, we identified 39.2 million variants, consist-
ing of 36.1 million SNPs (average per sample = 4.5 m SNPs; range
= 2.34 – 9.52 M SNPs) and 3.1 million INDELs (average per sample
= 0.4 million INDELs; range = 0.21 – 0.89 million INDELs) (Fig.1B,
Supplemental Figs. S1 and S2, Supplemental Table S2). Single
base-pair INDELs were the most common, accounting for 38.63%
of all detected INDELs (Supplemental Table S3). Our dataset cov-
ers 96.2% of the duck dbSNP database deposited in the Genome
Variation Map (GVM) [21]. In general, domesticated populations
showed lower number of SNPs (t test, P = 3.13 × 10−12) and nu-
cleotide diversity (t test, P = 2.20 × 10−16) compared to wild mal-
lards (Fig.1B). Moreover, homozygosity in domesticated ducks
was significantly higher than ratios in wild mallards (t test, P =
1.35 × 10−10) consistent with the larger panmictic wild popula-
tion or with the higher artificial selection and inbreeding within
domesticated stocks.

Population structure and domestication

Phylogenetic relationships, based on a neighbor-joining of pair-
wise genetic distances of whole-genome SNPs (Fig.2A) and prin-
cipal component analysis (PCA; Fig.2B), revealed strong cluster-
ing into three distinct genetic groups. In general, we observed
separate clusters corresponding to wild ducks (MDN and MDZ),
ducks domesticated for meat production (PK, CV, and ML), and
ducks domesticated for egg production (JD, SM, and SX). The
dual-purpose domesticate (GY) clustered with ducks domesti-
cated for egg production (Fig.2B and C).

We further performed population structure analysis using
FRAPPE [22], which estimates individual ancestry and admixture
proportions assuming K ancestral populations (Fig. 2C). With K =
2, a clear division was found between wild-type ducks (MDN and
MDZ) and domesticated ducks (PK, CV, ML, JD, SM, SX, and GY).
With K = 3, a clear division was found between meat type ducks
(PK, CV, and ML) and egg type ducks mixed with dual-purpose
type ducks (JD, SM, SX, and GY).

Next, we explored the demographic history of our sam-
ples to differentiate whether domestication of meat- and egg-
producing ducks was the result of one or multiple events. First,
we estimated changes in effective population size (Ne) in our
three genetic clusters in a pairwise sequentially Markovian co-
alescent (PSMC) framework [23]. The meat type ducks (PK, CV,
and ML) showed concordant demographic trajectories with egg
and mixture dual-purpose type populations (JD, SM, SX, and GY),
with one apparent expansion around the Penultimate Glaciation
Period (0.30-0.13 million years ago) [4, 24] and Last Glacial Period
(110–12 thousand years ago) [25, 26], followed by a subsequent
contraction (Fig. 2D). Next, we tested multiple demographic sce-
narios related to domestication using a diffusion approxima-
tion method for the allele frequency spectrum (∂a∂i) (Supple-
mental Figs. S3 and S4). Among the four isolation models tested
(models 1 – 4), the model of a single domestication with subse-
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Figure 1: Experimental design and variants statistics. A)null Sampling sites in this study. A total of 78 ducks from two wild populations (mallard Ningxia [MDN] n =
8; mallard Zhejiang [MDZ] n = 14), three meat breeds (Pekin [PK] n = 8; Cherry Valley [CV] n = 8; maple leaf [ML] n = 8), three egg breeds (Jin Ding [JD] n = 8; Shan Ma
[SM] n = 8; Shao Xing [SX] n = 8), and one dual-purpose breed (Gao You [GY] n = 8) were selected. B) Genomic variation of nine populations. Mean number of SNPs
and heterozygous and homozygous SNP ratio in the nine populations are shown at the bottom. Nucleotide diversity ratios of the nine populations are shown at the

middle. The nucleotide diversity ratios in wild mallards are dramatically higher than ratios in domesticated ducks. Number of insertions and deletions in the nine
populations are shown at the top. The number of deletions was higher than the number of insertions in all nine populations.

quent divergence of the domesticated breeds (model 2) was both
consistent with our population structure results (Fig.2) and had
the lowest Akaike information criteria (AIC) value, indicating a
better overall fit to the data (log-likelihood = –33 388.43; AIC =
66 788) (Supplemental Fig. S3).

Demographic parameters estimated from the single domes-
tication model (model 2) indicated that domestication occurred
2,228 years ago, with 95% confidence interval (CI) ± 441 years
ago, followed by a rapid subsequent divergence of the meat
breed from the egg/dual-purpose breeds roughly 100 years after
the initial domestication event (Table1). Our results suggest that
following an initial bottleneck associated with domestication,
with an estimated Ne of 320 (95% CI ± 3) individuals for the an-
cestral domesticated population, the population has expanded
to the current Ne of 5,597 (95% CI ± 1,195) and 12,988 (95% CI
± 2,877) in the meat type and egg/dual purpose breeds, respec-
tively. Ne estimates for domesticated breeds are lower than the
Ne of 88,842 (95% CI ±18,065) in wild mallards, consistent with
the large panmictic wild population.

Gene flow estimates were relatively high, with 1 and 4 mi-
grants per generation from the meat and egg/dual-purpose
breeds, respectively, into the wild population. Our results sug-
gest duck domestication was a recent single domestication
event followed by rapid subsequent selection for separate meat
and egg/dual-purpose breeds.

Selection for plumage color

Derived traits in domesticated animals tend to evolve in a pre-
dictable order, with color variation appearing in the earliest
stages of domestication, followed by coat or plumage and struc-
tural (skeletal and soft tissue) variation, and finally behavioral
differences [27, 28]. One of the simplest and most visible de-
rived traits of ducks is white plumage color. In order to detect
the signature of selection associated with white feathers, we
searched the duck genome for regions with high FST between the

populations of white-feather (PK, CV, and ML) and non-white-
feather (MDN, MDZ, JD, SX, and GY) birds based on sliding 10-
kbwindows. We identified a region of high differentiation be-
tween white-plumage and non-white-plumage ducks overlap-
ping the melanogenesis associated transcription factor (MITF;
FST = 0.69) (Fig. 3A). In the intronic region of MITF, we identi-
fied 13 homozygous SNPs and 2 homozygous INDELs present in
all white-plumage breeds (n = 24) and absent in all non-white-
plumage breeds (n = 54) (Fig.3B). These mutations were com-
pletely associated with the white-plumage phenotype, suggest-
ing a causative mutation at the MITF locus. Moreover, to validate
the reliability of variants detected in MITF gene, we amplified
the first three SNPs (SNP817793, SNP817818, and SNP818004) and
all INDELs by diagnostic polymerase chain reaction (PCR) com-
bined with Sanger sequencing in the 78 white- and non-white-
plumage ducks. The results show that the three SNPs and IN-
DEL817958 completely match our NGS analysis (Supplemental
Fig. S5). For INDEL818495, we were unable to design a suitable
PCR primer to amplify this region.

Selection for other domestication traits

In order to detect the signature of selection for other traits asso-
ciated with duck domestication, we scanned the duck genome
for regions with a high coefficient of nucleotide differentiation
(FST) among the populations of wild (MDN and MDZ) and do-
mesticated (PK, CV, ML, JD, SM, SX, and GY) ducks based on 10-
kbsliding windows, as well as global FST between each popula-
tion (Supplemental Table S4). Owing to the complex and partly
unresolved demographic history of these populations, it is dif-
ficult to define a strict threshold that distinguishes true sweeps
from regions of homozygosity caused by drift. We therefore also
calculated the pairwise diversity ratio (θπ (wild/domesticated)).
We identified 292 genes in the top 5% of both FST and θπ

scores, putatively under positive selection during domestication
(Fig. 4A, Supplemental Table S5).
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Figure 2: Population genetic structure and demographic history of nine duck populations. A) Neighbor-joining phylogenetic tree of nine duck populations. The scale
bar is proportional to genetic differentiation (p distance). B) PCA plot of duck populations. Eigenvector 1 and 2 explained 38.8% and 32.5% of the observed variance,
respectively. C) Population genetic structure of 78 ducks. The length of each colored segment represents the proportion of the individual genome inferred from ancestral
populations (K = 2–3). The population names and production type are at the bottom. DP type means dual-purpose type. D) Demographic history of duck populations.

Examples of PSMC estimate changes in the effective population size over time, representing variation in inferred Ne dynamics. The lines represent inferred population
sizes and the gray shaded areas indicate the Pleistocene period, with Last Glacial Period (LGP) shown in darker gray, and Last Glacial Maximum (LGM) shown in light
blue areas.

Table 1: Maximum likelihood population demographic parameters

Parameter ML estimate 95% CI

Ne of ancestral population after size change 663,439 644,726–682,152
Ne of the wild population 88,842 70-778–106-907
Ne of the ancestral domesticated population 320 316–323
Ne of the meat breed 5,597 4,402–6,792
Ne of the egg/dual-purpose 12,988 10,111–15,865
Time of size change in the ancestral
population

249,944 227,912–267,518

Time of domestication 2,228 1,787–2,669
Time of breed divergence 2,126 1,686–2,567
Migration wild ← meat 1.12 1.00–1.24
Migration wild ← egg/dp 3.92 3.11–4.73

Best fit parameter estimates for the model of a single domestication event followed by divergence of the domesticated breeds, including changes in population size.
The 95% confidence intervals were obtained from 100 bootstrap datasets. Time estimates are given in years and migration are in units of number of migrants per
generation.

All 292 genes located in the top 5% FST regions were used
for the gene ontology GO (The framework for the model of biol-
ogy, which provides the most comprehensive rescoure currently
available for computable knowledge regarding the functions of
genes and gene products) analysis, resulting in a total of 57 GO
enrichment terms (Supplementary Table S6). Because domesti-
cated ducks are known to differ from wild ducks in body size,

body fat percentage, behavior, egg productivity, growth speed,
and flight capability, we focused our analysis on GO annota-
tions of neural-related processes, lipid metabolism and energy
metabolism, reproduction, and skeletal muscle contraction for
our 292 putative positive selection genes. In this reduced data
set, the neuro-synapse-axon and lipid-energy metabolism path-
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ways were overrepresented (Supplemental Table S7) in our list of
genes under selection.

From the highlighted GO terms, 25 neuro-synapse-axon
genes were identified as being under positive selection, with six
(ADGRB3, EFNA5, GRIN3A, GRIK2, SYNGAP1, and HOMER1) in the
top 1% of FST and θπ (Supplemental Table S8). In particular, GRIK2
(glutamate receptor, ionotropic kainate 2) and GRIN3A (gluta-
mate receptor, subunit 3A) both showed high FST and θπ value
compared to neighboring regions, suggesting functional impor-
tance (Fig. 3B, Supplemental Tables S5, S8).

Beyond the neuronal-synapse-axon genes, 115 genes were
identified in the four lipid- and energy-related pathways with
high FST and θπ values, particularly related to fatty acid
metabolism. Among these genes, 37 were found with both pa-
rameters yielding top 1% ranked values (Supplemental Table S8)
such as phosphatidylinositol 3-kinase catalytic subunit type 3
(PIK3C3) and patatin-like phospholipase domain containing 8
(PNPLA8).

To infer whether selection extends beyond allelic variation
and also affects gene expression, we compared individual gene
expression in the brain, liver, and breast muscle between seven
wild mallards and seven domesticated ducks in natural states
with RNA-sequencing (RNA-seq) (Supplemental Table S9). We
detected three genes (PDC, MLPH, and NID2) in the brain, two

genes (MAPK12 and BST1) in the liver, and no genes in breast
muscle with significantly different expression between wild and
domesticated ducks. Of the five differentially expressed genes,
PDC was the only gene that also showed evidence of a selective
sweep at the genomic level (Supplemental Table S5, Fig.3C and
D). The results suggest that the PDC gene is of substantial func-
tional importance in phenotypic differentiation among wild and
domestic ducks.

Discussion

Domesticated animals have contributed greatly to human soci-
ety and human population growth by providing a stable source
of animal protein, fat, and accessory products such as leather
and feathers (including down). To illuminate the genetic trajec-
tories of duck domestication, we performed whole-genome se-
quencing of 78 ducks including seven domesticate breeds and
two wild populations. This is the first study to characterize the
genetic architecture, phylogenetic relationships, and domesti-
cation history of domesticated ducks and wild mallards.

Using this powerful dataset and a suite of cutting-edge pop-
ulation genomic and functional genetic analyses, we observed
higher mean variant numbers and nucleotide diversity for the
wild mallard populations compared to the domestics, consistent
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tical gray lines represent the top 5% value of Z(FST) (2.216) and log2 (θπ wild/θπ domestic) (2.375), respectively. B) The log2 (θπ ) ratios and FST values around the GRIK2

locus and allele frequencies of nine SNPs within the GRIK2 gene across nine duck populations. The black and red lines represent log2 (θπ wild/θπ domestic) ratios and
FST values, respectively. The gray bar shows the region under strong selection in GRIK2 gene. The nine red rectangular frames correspond to the locus on gene of nine
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log2 (θπ ) ratios and FST values around the PDC locus. The PDC gene region is shown in gray. Allele frequencies of seven SNPs within the PDC gene across nine duck
populations. The SNPs are named according to their scaffold position. D) The PDC gene expression level differs between domesticated and wild ducks. PDC mRNA
expression levels in brain of wild (MDN, n = 3; MDZ, n = 4) and domesticated (PK, n = 1; CV, n = 1; ML, n = 1; JD, n = 1; SM, n = 1; SX, n = 1; GY, n = 1) ducks. ∗∗∗∗P

value from t test (P < 0.0001).

with both a greater panmictic mallard population as well as re-
cent sweeps associated with domestication.

Population structure and domestication

We observed a large expansion of the duck population at the
interglacial period, which could be the result of beneficial cli-
matic changes including rising temperatures and sea levels. In
contrast, the glacial maximum coincided with a reduction in
population size, consistent with harsher conditions and limited
access to arctic breeding grounds [4, 29–31]. The demographic
pattern we observe in wild ducks is similar to that observed in
wild boars [5], wild yaks [32], and wild horses [33]. However, it is
worth noting that although PSMC is a powerful method to infer
changes in Ne over time, it is also sensitive to deviations from a
neutral model. The effects of genetic drift and/or selection could
lead to time-dependent estimates of mutation rate and could
bias our estimates of population expansion [26].

We observed three genetic clusters, with wild mallard, meat
breeds, and egg/dual purpose breeds each representing unique
groups. These results suggest either a single domestication
event followed by subsequent breed-specific selection or two
separate domestication events. In order to distinguish alterna-
tive models of domestication, we modeled population demo-
graphics and found strong support for a single domestication
event roughly 2,200 years ago, with the rapid subsequent selec-
tion for separate meat and egg/dual-purpose breeds roughly 100
generations later. Difficulty in differentiating between very re-
cent divergence and high migration rates in the frequency spec-
trum prevented convergence between independent runs when
trying to fit other migration parameters to our model. We note
that the evolutionary history of wild mallards and domesticated
duck breeds is likely to be more complex than the simple de-
mographic scenarios modeled here, and further studies may be
needed to fully capture the evolutionary dynamics of duck do-
mestication. Given the recent origin of wild ducks, as well as
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the high levels of diversity we observe in the wild and domestic
duck genomes, it is not possible to differentiate recent admix-
ture from incomplete lineage sorting with our current data. This
issue has important conservation implications and represents
an interesting area for future study. Nevertheless, the time es-
timates obtained with our model are compatible with previous
written records from 500 BC [15].

Selection for white plumage

Plumage color is an important domestication trait, and we
compared breeds with white plumage to those with colored
plumage. We identified high levels of divergence in the in-
tronic region of the MITF gene, an important developmental lo-
cus with a complex regulation implicated in pigmentation and
melanocyte development in several vertebrate species [34–36],
including Japanese quail [37], dog [38], and duck [39, 40].

Selection for other domestication traits

In order to identify those genomic regions that have been the
target of selection during domestication, we used estimates of
diversity between wild and domestic samples, retaining those
292 genes in the top 5% of both FST and θπ values for further anal-
ysis. These genes were overrepresented for both neural develop-
mental and lipid metabolism, suggesting that these functionali-
ties were under strong selection during domestication. Two loci,
GRIK2 and GRIN3A, showed particularly strong signs of selective
sweeps presumably associated with domestication. GRIK2 en-
codes a subunit of a glutamate receptor that has a role in synap-
tic plasticity and is important for learning and memory. GRIN3A
encodes a subunit of the N-methyl-D-aspartate receptors, which
are expressed abundantly in the human cerebral cortex [41] and
are involved in the development of synaptic elements.

We also identified five genes with significantly different ex-
pression in the brain and liver of domesticated ducks compared
to their wild ancestor. One of these, PDC also showed evidence of
selective sweeps at the genomic level. PDC encodes phosducin,
a photoreceptor-specific protein that is highly expressed in the
retina and the pineal gland [42], as well as the brain [43].

Our results suggest that PDC, GRIK2, and GRIN3A may have
played a crucial role in duck domestication by altering func-
tional regulation of the developing brain and nervous system.
This finding is consistent with theories that behavioral traits are
the most critical in the initial steps of animal domestication, al-
lowing animals to tolerate humans and captivity [44, 45]. Indeed,
compared to wild mallards, domestic ducks are more docile, less
vigilant, and show important differences in brain morphology
[17, 18]. Interestingly, differences between wild and domesti-
cated animals in brain and nervous system functions due to di-
rectional selection were also observed in domestication studies
of rabbits [7], dogs [46], and chickens [8]. In particular, GRIK2 was
also found to play a crucial role during rabbit domestication [7].

In addition to brain- and nervous system-related genes, we
also identified several genes that play an important function in
lipid and energy metabolism. For example, PIK3C3 plays an im-
portant role in ATP binding but also regulates brain development
and axons of cortical neurons [47–51]. PNPLA8 is involved in fa-
cilitating lipid storage in adipocyte tissue energy mobilization
and maintains mitochondrial integrity [52, 53], as well as plays a
role in lipid metabolism associated with neurodegenerative dis-
eases [54–56]. PRKAR2B is associated with body weight regula-
tion, hyperphagia, and other energy metabolism [57, 58].

Taken together, our results show that duck domestication
was a relatively recent and complex process, and the genetic
basis of domestication traits show many striking overlaps with
other vertebrate domestication events. The whole-genome re-
sequencing data and SNP and INDEL variant datasets are valu-
able resources for researchers studying evolution, domestica-
tion, and trait discovery and for breeders of Anas platyrhynchos.
Furthermore, the data represent a foundation for development
of new, ultrahigh-density variant screening arrays for duck pop-
ulation level trait analysis and genomic selection.

Methods
Sample selection

A total of 78 ducks were chosen for sequencing, seven popula-
tions of domesticated ducks and two populations of mallards
from different geographic regions. The domesticated ducks in-
clude three meat type populations, i.e., Pekin duck (PK; n = 8),
Cherry Valley duck (CV; n = 8), and maple leaf duck (ML; n =
8); three egg type populations, i.e., Jin Ding duck (JD; n = 8), Shao
Xing duck (SX; n = 8), and Shan Ma duck (SM; n = 8); one egg and
meat dual-purpose type (DP type) population, i.e., Gao You duck
(GY; n = 8); and two wild populations come from two provinces
in China separated by nearly 2,000 km, i.e., mallard from Ningxia
Province (MDN; n = 8) and mallardform Zhejiang Province (MDZ;
n = 14). The classification of production types follow the descrip-
tion of Animal Genetic Resources in China Poultry [59]. PK, CV,
and ML ducks originated from Beijing; JD and SM ducks orig-
inated from Fujian Province; and SX and GY ducks originated
from Jiangsu Province. Whole blood samples were collected from
brachial veins of ducks by standard venipuncture.

In addition, 14 male ducks (MDNM, n = 3; MDZM, n = 4; PKM,
n = 1; CVM, n = 1; MLM, n = 1; JDM, n = 1; SMM, n = 1; SXM, n =
1; GYM, n = 1) were chosen for RNA-seq.

Sequencing and mapping statistic of individual ducks in
genome and transcriptome analyses are detailed in the Supple-
mentary files (Supplemental Tables S1, S7).

Sequencing and library preparation

Genomic DNA was extracted using the standard phe-
nol/chloroform extraction method. For each sample, two
paired-end libraries (500 bp) were constructed according to
the manufacturer’s protocols (Illumina) and sequenced on the
Illumina Hiseq 2500 sequencing platform. We sequenced each
sample at 5X depth in order to reduce the false-negative rate of
variants due to our strict filter criteria. We randomly selected
one individual for 10X coverage, except for the MDN population,
where we sequenced seven individuals at 5X coverage and
random one at 20X coverage and the MDZ population, where
we sequenced all individuals at 10X coverage. We generated
628.37 Gb of paired-end reads of 100 bp (or 150 bp; MDZ) length
(Supplemental Table S1).

The mRNA from brain, liver, and breast muscle of 14 ducks
were extracted using the standard trizol extraction methods. For
each sample, two paired-end libraries (500 bp) were constructed
according to the manufacturer’s instruction (Illumina). All sam-
ples were sequenced using Illumina Hiseq 4000 sequencing plat-
form with the coverage of 6X. We generated 278.62 Gb of paired-
end reads of 150 bp length (Supplemental Table S9).
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Read alignment and variant calling

To avoid low-quality reads, mainly the result of base-calling du-
plicates and adapter contamination, we filtered out sequences
according to the default parameters of NGS QC Toolkit (v2.3.3)
[60]. Those paired reads that passed Illumina’s quality control
filter were aligned using BWA-MEM (v0.7.12) to version 1.0 of the
Anas platyrhynchos genome (BGI duck 1.0) [10]. Duplicate reads
were removed from individual sample alignments using Picard
tools MarkDuplicates, and reads were merged using MergeSam-
Files [61].

The Genome Analysis Toolkit v3.5 (GATK, RRID:SCR 001876),
RealignerTargetCreator, and IndelRealigner protocol were used
for global realignment of reads around INDELs before variant
calling [62, 63]. SNPs and small INDELs (1–50 bp) were called us-
ing the GATK UnifiedGenotyper set for diploids with the param-
eter of a minimum quality score of 20 for both mapped reads
and bases to call variants, similar to previous studies [64–68].
We filtered variants both per population and per individual us-
ing GATK according to the stringent filtering criteria. For SNPs
of population filter: a) QUAL >30.0; b) QD >5.0; c) FS <60.0; d)
MQ >40.0; e) MQRankSum >-12.5; and f) ReadPosRankSum >-
8.0.Additionally, if there were more than 3 SNPs clustered in a
10-bpwindow, all three SNPs were considered as false positives
and removed [69].

We used the following population criteria to identify INDELs:
QUAL >30.0, QD >5.0, FS <200.0, ReadPosRankSum >-20.0. Of in-
dividual filters, we also removed all INDELs and SNPs where the
depth of derived variants was less than half the depth of the se-
quence. All SNPs and INDELs were assigned to specific genomic
regions and genes using SnpEff v4.0 (SnpEff, RRID:SCR 005191)
[70] based on the Ensembl duck annotations. After filtering,
36,107,949 SNPs and 3,082,731 INDELs were identified (Supple-
mental Table S2).

SNP validation

In order to evaluate the reliability of our data, we compared
our SNPs to the duck dbSNP database deposited in the GVM at
the Big Data Center at the Beijing Institute of Genomics, Chi-
nese Academy of Science [71]. A total of 7,908,722 SNPs were
validated in the duck dbSNP database, which covered 96.2% of
the database (Supplemental Table S2). For the 28,199,227 SNPs
not confirmed by dbSNPs, 390 randomly selected nucleotide
sites were further validated using diagnostic PCR combined with
Sanger sequence method described in previous researchM [8, 72,
73]. The result showed 100% accuracy, indicating the high relia-
bility of the called SNP variation identified in this study.

Population structure

We removed all SNPs with a minor allele frequency < = 0.1 and
kept only SNPs that occurred in more than 90% of individuals.
Vcf files were converted to hapmap format with custom perl
scripts and to PLINK format file by GLU v1.0b3 [74] and PLINK
v1.90 (PLINK, RRID:SCR 001757) [75, 76], when appropriate. We
used GCTA (v1.25) [77] for PCA, first by generating the genetic
relationship matrix from which the first 20 eigenvectors were
extracted.

To estimate individual admixture assuming different num-
bers of clusters, the population structure was investigated us-
ing FRAPPE v1.1 [22] base on all high-quality SNPs information,
with a maximum likelihood method. We increased the coances-
try clusters spanning from 2 to 4 (Supplemental Fig. S6), because

there are four duck types (wild, meat, egg, and dual-purpose)
across the nine duck populations, with 10,000 iterations per run.

A distance matrix was generated by calculating the pairwise
allele sharing distance for each pair of all high-quality SNPs.
Multiple alignment of the sequences was performed with MUS-
CLE v3.8 (MUSCLE, RRID:SCR 011812) [78]. A neighbor-joining
maximum likelihood phylogenetic tree was constructed with
the DNAML program in the PHYLIP package v3.69 (PHYLIP, RRID:
SCR 006244) [79] and MEGA7 [80, 81]. All implementation was
performed according to the recommended manipulations of
SNPhylo [82].

Demographic history reconstruction

The demographic history of both wild and domesticated ducks
was inferred using a hidden Markov model approach as imple-
mented in pairwise sequentially Markovian coalescence based
on SNP distributions [23]. In order to determine which PSMC
(v0.6.5) settings were most appropriate for each population, we
reset the number of free atomic time intervals (-p option), upper
limit of time to most recent common ancestor (-t option), and
initial value of r = θ/ρ (-r option) according to previous research
[26] and online suggestions by Li and Durbin [83]. Based on es-
timates from the chicken genome, an average mutation rate (μ)
of 1.191 × 10-9 per base per generation and a generation time (g)
of 1 year were used for analysis [84].

Three-population demographic inference was performed us-
ing a diffusion-based approach as implemented in the pro-
gram ∂a∂i (v1.7) [85]. To minimize potential effects of selection
that could interfere with demographic inference, these analyses
were performed using the subset of noncoding regions across
the whole genome and spanning 750,939,264 bp in length. Non-
coding SNPs were then thinned to 1% to alleviate potential link-
age between the markers. The final dataset consisted of 95,181
SNPs with an average distance of 7,112 bp (± 18,810 bp) between
neighboring SNPs. To account for missing data, the folded al-
lele frequency spectrum for the three populations (wild, meat,
and egg/dual-purpose breeds) was projected down in ∂a∂i to the
projection that maximized the number of segregating SNPs, re-
sulting in 92,966 SNPs.

We tested four scenarios to reconstruct the demographic
history of the domesticated breeds of mallards: simultaneous
domestication of the meat and egg and dual-purpose breeds
(model 1); a single domestication event followed by divergence
of the meat and egg and dual-purpose breeds (model 2); two
independent domestication events, with the meat type breed
being domesticated first (model 3); and two independent do-
mestication events, with the egg and dual-purpose breeds being
domesticated first (model 4). Using the “backbone” of the best
model, we then used a step-wise strategy to add parameters re-
lated with variation in population sizes and population growth,
keeping a new parameter only if the AIC and log likelihood im-
proved considerably over the previous model with fewer param-
eters. In cases where additional parameters resulted in negligi-
bly improved AIC and likelihood, we retained the simpler, less
parameterized model. Gene flow was modeled as continuous
migration events after population divergence. Each model was
run at least 10 times from independent starting values to en-
sure convergence to the same parameter estimates. We rejected
models where we failed to obtain convergence across the repli-
cate runs. Scaled parameters for the best-supported model were
transformed into real values using the same average mutation
rate (μ) and (g) as described above for the PSMC analysis. Param-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/4/giy027/4965113 by U

niversity C
ollege London user on 23 January 2019

https://scicrunch.org/resolver/RRID:SCR_001876
https://scicrunch.org/resolver/RRID:SCR_005191
https://scicrunch.org/resolver/RRID:SCR_001757
https://scicrunch.org/resolver/RRID:SCR_011812
https://scicrunch.org/resolver/RRID:SCR_006244


Zhang et al. 9

eter uncertainty was obtained using the Godambe information
matrix [86] from 100 nonparametric bootstraps.

Selective-sweep analysis

In order to define candidate regions that have undergone direc-
tional selection during duck domestication, we calculated the
coefficient of nucleotide differentiation (FST) between mallards
and domesticated ducks described by Weir and Cockerham [87].
We calculated the average FST in 10-kbwindows with a 5-kbshift
for all seven domesticated duck populations combined and two
mallard populations combined. Only scaffolds longer than 10 kb,
2,368 of 78,488 scaffolds, were chosen for the analysis. We trans-
formed observed FST values to Z transformation (Z(FST)) with μ =
0.1154 and σ = 0.0678 according to previously described methods
[88].

To estimate levels of nucleotide diversity (π ) across all sam-
pled populations, we used the VCFtools software (v0.1.13) [89]
to calculate θπ (wild/domesticated) [90], computing the average
difference per locus over each pair of accessions. As the mea-
surement of FST, averaged π ratio (θπ (wild/domesticated)) was
calculated for each scaffold in 10–kbsliding windows.

Functional classification of GO categories was performed in
Database for Annotation, Visualization and Integrated Discovery
(DAVID, v6.8) [91]. Statistical significance was accessed by using a
modified Fisher exact test and Benjamini correction for multiple
testing.

RNA-seq and data processing

To infer whether novel allelic variants located in the top 5% FST

regions of genome comparison between wild mallards and do-
mesticated ducks could also affect gene expression, we com-
pared gene expression in brain, liver, and breast muscle between
wild mallards and domesticated ducks. To make our result more
universal, seven male mallards and seven male domesticated
ducks were choose for RNA-seq. All samples were individually
sequenced using the Illumina Highseq 4000 sequencing plat-
form.

For each sample, adapters and primers of paired-end reads
were removed using the NGSQC Tool kit (v2.3.3) [60]. For each
paired-end read pair, if one of two reads had an average base
quality less than 20 (PHRED quality score), then both reads were
removed. If one end of a paired-end read had a percentage of
high-quality base less than 70%, the two paired reads were also
removed. After that, high-quality reads were mapped to the ref-
erence genome using STAR (v.2.5.3a) [92]. The featureCounts func-
tion of the Rsubread (v.1.5.2) [93, 94] was used to output the
counts of reads aligning to each gene. We detected the differen-
tial expression genes with edgeR (v3.6) [95–98] using a padj <0.05
threshold.

Availability of supporting data

The 78 ducks used in whole-genome resequencing analysis and
the 14 ducks used in RNA–seq analysis are accessible at the Na-
tional Center for Biotechnology Information (NCBI) under Bio-
Project accession numbers PRJNA419832 and PRJNA419583, re-
spectively. The unassembled sequencing reads of 78 ducks and
RNA-seq reads of 14 ducks have been deposited in NCBI Se-
quence Read Archive under accession numbers SRP125660 and
SRP125529, respectively. All VCF files of SNPs and INDELs and
other supporting data, such as scripts, alignments for phyloge-

netic trees, and sweep regions, are available via the GigaScience
database GigaDB [99].

Additional file

Supplemental Figure S1: Distribution of variants in functional
regions. SNPs distribution were showed on the left, and INDELs
were showed on right. Most variants were synonymous muta-
tions both in SNPs and in INDELs at genome wide across all pop-
ulations.

Supplemental Figure S2: INDELs statistics of 9 population
ducks. The largest INDEL detected in this study was 50 bp, and
the majority of INDELs were less than 10 bp. Single base-pair IN-
DEL was the predominant form and accounted for 38.63% of all
detected INDELs. Both count and percentage were mean value
of 9 population ducks.

Supplemental Figure S3: Comparison of four demographic
models for the domestication of meat and egg/dual purpose
breeds of mallards using ∂a∂i. The top panel shows the distri-
bution of the log-likelihood for each one of the tested models
and the middle panel the distribution of the Akaike information
criterion (AIC) with outliers excluded. Model 1: simultaneous do-
mestication of the meat and egg and dual purpose breeds; Model
2: a single domestication event followed by divergence of the
meat and egg and dual purpose breeds; Model 3: two independent
domestication events, with the meat type breed being domesti-
cated first; Model 4: two independent domestication events, with
the egg and dual purpose breed being domesticated first.

Supplemental Figure S4: Demographic history of meat and
egg/dual purpose breed domestication using the best fit model
inferred by ∂a∂i. (A) Model of single domestication event with
changes in population sizes and migration. Time units are in
years before present and migration are in units of number of mi-
grants per generation. (B) Site frequency spectrum for the three
populations of domesticated and wild mallards. The frequency
spectrum is shown for the data (first row) and for the best fit
model (second row). The last two rows show the normalized dif-
ference (i.e., residuals) between model and data for each bin in
the spectrum.

Supplemental Figure S5: White plumage related variants of
MITF validation by Sanger sequence in 78 ducks. Three SNPs
and one INDEL of MITF was amplified by diagnostic PCR and se-
quenced by Sanger method, resulted completely matched with
the analysis result of NGS. White plumage ducks contains PK,
CV, and ML; non-white plumage ducks contains MDN, MDZ, JD,
SM, SX, and GY.

Supplemental Figure S6: Population genetic structure of 78
ducks. The length of each colored segment represents the pro-
portion of the individual genome inferred from ancestral pop-
ulations (K = 2–4). The population names and production type
are at the bottom. DP type means dual-purpose type. With K =
2, a clear division was found between wild type ducks (MDN and
MDZ) and domesticated ducks (PK, CV, ML, JD, SM, SX, and GY).
With K = 3, a clear division was found between meat type ducks
(PK, CV, and ML) and egg type ducks mixed with dual-purpose
type ducks (JD, SM, SX, and GY). With K=4, a clear division was
found between egg type ducks (JD, SM, and SX) and dual-purpose
type ducks (GY).

Supplemental Table S1: Summary of genome sequencing and
mapping statistic.

Supplemental Table S2: Summary of SNPs and INDELs.
Supplemental Table S3: INDELs statistics of 9 population

ducks.
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Supplemental Table S4: global Fst between each population.
Supplemental Table S5: gene name in top 5% sweep regions.
Supplemental Table S6: Total GO terms of genes located in

top 5% FST and θπ regions.
Supplemental Table S7: Summary of results from enrichment

analysis of neuronal and lipid related in regions of top 5% FST
and θπ .

Supplemental Table S8: gene name in top 1% sweep regions.
Supplemental Table S9: summary of transcriptome sequenc-

ing and mapping statistic.
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