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Morpho-z: improving photometric redshifts with galaxy morphology
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ABSTRACT
We conduct a comprehensive study of the effects of incorporating galaxy morphology infor-
mation in photometric redshift estimation. Using machine learning methods, we assess the
changes in the scatter and outlier fraction of photometric redshifts when galaxy size, elliptic-
ity, Sérsic index, and surface brightness are included in training on galaxy samples from the
SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological
parameters to full ugriz photometry, only mild improvements are obtained, while the gains
are substantial in cases where fewer passbands are available. For instance, the combination
of grz photometry and morphological parameters almost fully recovers the metrics of 5-band
photometric redshifts. We demonstrate that with morphology it is possible to determine useful
redshift distribution N(z) of galaxy samples without any colour information. We also find that
the inclusion of quasar redshifts and associated object sizes in training improves the quality
of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator.
We further show that morphological information can mitigate biases and scatter due to bad
photometry. As an application, we derive both point estimates and posterior distributions of
redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz
bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier
fraction of 5.2 per cent. We further include a deep extension trained on morphology and single
i-band CS82 photometry.

Key words: methods: statistical – catalogues – galaxies: distances and redshifts – galaxies:
structure.

1 IN T RO D U C T I O N

Redshifts of galaxies provide distance information for many cos-
mological analyses, and are especially needed to study large-scale
structure. While the most accurate way to estimate redshifts is
through spectroscopy, it is unfortunately a very expensive and time-
consuming process. Thus, in order to produce redshifts for ideally all
objects in large galaxy samples, high-quality photometric redshifts
(photo-z’s) are much sought after, for example in weak lensing stud-
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ies where there is need for accurate and unbiased knowledge of the
redshift distribution N(z) for ensemble samples. Photo-z’s are typ-
ically estimated using broad-band magnitudes, obtained using two
main approaches. The first approach uses spectral template fitting,
e.g. codes like LE PHARE (Arnouts et al. 1999), BPZ (Benitez 2000),
HYPERZ (Bolzonella, Miralles & Pello’ 2000), ZEBRA (Feldmann
et al. 2006), EAZY (Brammer, Dokkum & Coppi 2008), GAZELLE

(Kotulla & Fritze 2009), and DELIGHT (Leistedt & Hogg 2017). The
second approach uses empirical/machine learning techniques, e.g.
artificial neural networks (Firth, Lahav & Somerville 2003; Col-
lister & Lahav 2004; Sadeh, Abdalla & Lahav 2016), multilay-
ered perceptron (Vanzella et al. 2004; Brescia et al. 2014), support
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vector machines (Wadadekar 2005), Gaussian process regres-
sion (Way & Srivastava 2006), boosted decision trees (Gerdes
et al. 2010), random forests (Carrasco Kind & Brunner 2013; Rau
et al. 2015), genetic algorithms (Hogan, Fairbairn & Seeburn 2015)
and sparse Gaussian framework (Almosallam et al. 2016).

With the availability of such a wide range of photo-z codes
and methods, comparisons of various implementations have been
performed (Hildebrandt et al. 2010; Abdalla et al. 2011; Sanchez
et al. 2014). No obvious best photo-z code was named since each
code displays different strengths depending on the metrics used.
The focus of recent photo-z analyses has turned to improving er-
ror estimation (Oyaizu et al. 2008; Hoyle et al. 2015; Wittman,
Bhaskar & Tobin 2016), the use of new statistical techniques (Lima
et al. 2008; Zitlau et al. 2016), improving existing algorithms
(Cavuoti et al. 2015; Sadeh et al. 2016), and the addition of ex-
tra input information to get more precise and accurate photo-z’s.
With regards to the inclusion of extra information, a recent example
in template methods includes using surface brightness as a prior in
spectral energy distribution templates (Kurtz et al. 2007; Stabenau,
Connolly & Jain 2008), motivated by the knowledge of surface
brightness dimming (1 + z)4. In empirical methods this application
is more straightforward, since algorithms are constructed such that
it is not difficult to add extra input parameters. For example, Col-
lister & Lahav (2004) and Wadadekar (2005) demonstrated that by
including the 50 and 90 per cent Petrosian flux radii (RP50, RP90),
the photometric redshift root-mean-square errors improve by 3 and
15 per cent respectively for the SDSS main galaxy sample. Tagli-
aferri et al. (2003) used Petrosian fluxes and radii in their work
on galaxies from the SDSS early data release and calculated ro-
bust errors decreasing as much as 24 per cent. Meanwhile, Vince &
Csabai (2007) included the concentration of galaxy light profiles in
their study and reported that the root-mean-square error of photo-z’s
on SDSS galaxies improved by 3 per cent. Wray & Gunn (2008)
included surface brightness and the Sérsic index, and found im-
provements in variance when compared to other template fitting
methods applied to the SDSS main galaxy sample previously.

A particularly thorough investigation was performed by Way
et al. (2009), who studied how galaxy morphology information
affects photometric redshift quality. Using the Gaussian process
regression method, they included several galaxy morphological pa-
rameters alongside with photometry for training, like RP50, RP90,
concentration index (C, the ratio between the two Petrosian flux
radii), fracDeV (the weight of the de Vaucouleurs component in
the best composite model), and the Stokes Q parameter (a mea-
surement of ellipticity). They showed that the addition of these pa-
rameters does not systematically improve the photometric redshift
estimation. Later, Way (2011) separated galaxy samples into ellip-
ticals and spirals with the help of Galaxy Zoo (Lintott et al. 2011),
and showed that photometric redshifts estimated using adaptive
moments and texture for the SDSS luminous red galaxies yield a
root-mean-square error as low as 0.012.

Singal et al. (2011) formed principal components of a series of
eight derived morphological shape parameters (including smooth-
ness, asymmetry, and Gini coefficient) and used these in combina-
tion with photometry to improve photometric redshift estimations.
However, they found that outliers were not significantly decreased,
and the shape parameters may have contributed noise instead.
Jones & Singal (2017) repeated the study with their support vector
machine code SPIDERZ, and obtained results in agreement with the
earlier work.

It is natural to expect that different surveys and redshift
ranges will benefit to different degrees from galaxy morphology

information, however due to different results reported by differ-
ent groups, a comprehensive study on this subject is warranted.
Many current and upcoming surveys such as the Hyper-Suprime
Cam1 (HSC), Kilo-Degree Survey2 (KiDS), Dark Energy Survey3

(DES), Large Synoptic Survey Telescope4 (LSST), Wide Field In-
frared Survey Telescope5 and Euclid6 (Laureijs et al. 2011) could
have their photo-z estimation methods benefit from the high fidelity
galaxy morphological parameters that would come for free.

Therefore, this work is aimed at studying the extent to which
different morphological parameters improve photometric redshifts,
what kind of objects or photometric conditions benefit most from it,
and the implications and applications of this knowledge to current
and future surveys. This study is different from previous studies in
that it is conducted in a more comprehensive manner: using data sets
with high-quality morphology, varying the number of filters, using
photometry of different qualities, testing individual morphological
parameters and considering the inclusion of quasar spectra. This
paper will address the following questions:

(i) Which morphological parameters improve photo-z’s the most
in a general galaxy sample?

(ii) What are the impacts of morphology on photo-z’s in

(a) a sample with low-quality photometry?
(b) a survey with fewer than five broad-band filters?
(c) a sample contaminated by quasars?

(iii) What are the impacts of galaxy morphology on the accuracy
of individual redshift probability densities (pdf henceforth) and the
redshift distribution N(z) of galaxies?

This paper is structured as follows. In Section 2 we will introduce
the algorithms used in this study, followed by Section 3 which
explains the various data sets and training samples used. Section 4
discusses the morphological parameters and metrics used. Answers
and discussions for question (i) are presented in Section 5, followed
by the discussion of question (ii) in Section 6, and question (iii)
addressed in Section 7. The key results obtained are applied to
the CS82 survey in Section 8, in which a photo-z catalogue is
produced and made available to the public. The paper is concluded
in Section 9. In this paper we define the testing set as the set of
data where the metrics of performance are evaluated; the validation
set is used as part of the training process to prevent overtraining;
while the target set is the set of data where no redshift information
is available and where photo-z’s are estimated.

2 A L G O R I T H M S

In this work we employ machine learning techniques to estimate
photo-z’s. These machine learning algorithms find a deterministic
relationship between the input variables (e.g. ugriz broad-band mag-
nitudes) and the spectroscopic redshifts in a training set (where we
assume that the spectroscopic redshift is the true redshift), and this
information is then used to produce photo-z’s for a target sample
for which no spectroscopic redshift information is available.

In the following paragraphs we briefly summarize the two algo-
rithms: ANNZ and ANNZ2 used in this work.

1 http://www.naoj.org/Projects/HSC/
2 http://kids.strw.leidenuniv.nl/
3 http://www.darkenergysurvey.org/
4 http://www.lsst.org/
5 https://wfirst.gsfc.nasa.gov/
6 http://sci.esa.int/euclid
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2.1 ANNZ

ANNZ7 is an artificial neural network (ANN) redshift estimation
library introduced by Collister & Lahav (2004). An ANN is made
up of interconnected nodes arranged in several layers. In a typical
setup, the input nodes are the broad-band magnitudes, which are
then processed in the inner layers, and the single output node is
the photo-z. Each connection between nodes carries a weight, and
each node carries a value which is calculated via the summation
of weights and activation functions (usually sigmoids, making the
process highly non-linear) of nodes connected to it from the previous
layer. The network will constantly adjust the weights such that a
cost function (here the difference between the spectroscopic and
photometric redshift) is minimized. The training objects are divided
into a training and validation set to prevent overfitting. Readers can
refer to Collister & Lahav (2004) for more details.

ANNZ is only used in Section 6.3 to obtain photo-z point estimates
for the Stripe-82 sample. This is done to ensure a fair comparison
with the photo-z produced by Reis et al. (2012), since both codes
are very similar to one another. For each training in this study, four
committees of networks (i.e. four training rounds each with a differ-
ent random number) are used, using an architecture of N:2N:2N:1
(N inputs, two hidden layers with 2N nodes each, and one output).
This is the default setting for ANNZ, we have tested that increasing
the number of hidden layers and nodes do not have significant effect
on the performance of training.

2.2 ANNZ 2

Despite similar names, ANNZ28 (Sadeh et al. 2016) is independent
of ANNZ, and they differ in programming language and function-
ality. ANNZ2 uses the Toolkit for Multivariate Data Analysis with
ROOT,9 which is a powerful package that incorporates several ma-
chine learning algorithms including ANN, boosted decision trees
and k-nearest neighbours (KNN). ANNZ2 can run multiple machine
learning algorithms for a single training and outputs photo-z’s based
on a weighted average of their performances.

Other than the usual regression method to obtain point esti-
mates for photo-z’s, ANNZ2 is also able to produce redshift posterior
probability distributions P(z), conduct classification and support
reweighting between samples. Photo-z’s in the form of pdfs have
been shown to produce superior results compared to point esti-
mates in weak lensing and clustering measurements (Mandelbaum
et al. 2008; Myers, White & Ball 2009; Benjamin et al. 2013;
Sanchez et al. 2014; Kuijken et al. 2015; Jouvel et al. 2017). These
pdfs are produced by propagating the intrinsic uncertainty on the in-
put parameters and the uncertainty in the machine learning method
to the expected photo-z solution.

ANNZ2 also differs from ANNZ in its presentation of photo-z un-
certainties. ANNZ derives uncertainties through error propagation of
photometric errors from the inputs and network variance of the
neural network, while ANNZ2 derives uncertainties using the KNN
method: first it estimates the photo-z bias between each object and
a fixed number of nearest neighbours in parameter space, it then
takes the 68th percentile width of the distribution of the bias. This
asserts that objects with similar photometric properties should have
similar uncertainties, and this error presentation has been shown to
perform better than the former (Sadeh et al. 2016).

7 http://www.homepages.ucl.ac.uk/ucapola/annz.html
8 https://github.com/IftachSadeh/ANNZ
9 http://tmva.sourceforge.net/

ANNZ2 produces four point estimates for each run, only two of
which are used in this work. The first is the peak photo-z zpeak,
which is the position of the highest peak10 of the pdf generated. As
the values of pdfs are produced in bins of 0.01 in redshift, and the
appearance of noisy pdfs for high-redshift objects, zpeak may not be
the most accurate photo-z point estimate to use, but it is used to
determine the ODDS value of an object (see Section 4.3). The other
is the pdf average photo-z (denoted zphot throughout this paper),
which is the mean photo-z calculated over the pdf. The pdf average
photo-z will act as the best point estimate photo-z output for ANNZ2
throughout this paper.

ANNZ2 has been widely used in recent work (Sanchez et al. 2014;
Bonnett 2015; Jouvel et al. 2017); it was selected as the primary
algorithm in this study due to its high customizability and its ability
to produce pdfs. ANNZ2 is used in Sections 5 through 8 to obtain zphot

and pdfs for each galaxy, and N(z) of the distributions. In this study,
a set of five ANNs with different random seeds are used during
each training. Only ANNs are used for consistency, it also allows
fair comparison between trainings with different numbers of inputs.
The ANN settings and architecture used for ANNZ2 are similar to
those used in ANNZ.

2.3 Reweighting algorithm

Spectroscopic galaxy samples are usually constructed by cross-
matching photometry from large photometric surveys with redshifts
obtained from multiple different spectroscopic surveys. Due to the
different target selections of each spectroscopic survey, the com-
bined spectroscopic training sample will contain objects which are
unevenly distributed in colour–magnitude space, e.g. contain pref-
erentially bright and red galaxies. This means that the distribution
of training parameters (e.g. magnitude, colour, size etc.) in the
training, validation, and testing samples will turn out to be quite
different from that of the target sample, in which the photo-z’s are
to be estimated. Therefore, reweighting of the spectroscopic sam-
ple to become representative of the training parameters of the target
sample is needed, not only to ensure that the metrics evaluated on
the testing set is representative of the target set, but also to ensure
that none of the spectroscopic sources are over-represented in the
training (see Section 3.2 for more details).

In this study we adopt the reweighting method as introduced by
Lima et al. (2008), which is done by comparing the density of ob-
jects in a selected parameter space of the spectroscopic and target
samples, and setting a weight value to each object in the spectro-
scopic sample so that during the training process, the cost function
used to estimate the photo-z will be balanced by upweighting objects
that are less represented in the training sample compared to the tar-
get sample, and downweighting objects otherwise. Since the testing
set (where performance metrics are evaluated) is also drawn from
the spectroscopic sample, the weights have to be taken into account
when estimating the metrics to reflect the photo-z performance of
the target sample (see Sanchez et al. 2014, for more details).

ANNZ2 allows weights to be incorporated during the training pro-
cess, however the in-built reweighting code in ANNZ2 is not used in
this project. We use an external reweighting algorithm similar to
one used in Sanchez et al. (2014) to calculate the individual weights
of the objects. This algorithm first uses a k-dimensional tree to bin

10 Due to the possibility of multiple peaks in a photo-z pdf, the word ‘peak’
from this point onwards refers to the highest peak in the pdf distribution,
unless stated otherwise.
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the objects in the parameter space assigned. It then proceeds to
calculate the number of nearest neighbours of each object in the
sample. The weights are then derived by calculating the ratio of the
densities between the training and the target sample. The weights
obtained are used in ANNZ2 to calculate the photo-z’s.

In this study we reweight the objects in only the i-band and g−i
colour, or i-band and radius rexp when colour is not available. We
do not use more than two parameters as the reweighting algorithm
would overfit and create biases. It was also found that the other input
parameters are well reweighted by just using these two parameters
alone, see Section 4.1 for more details. Since we intend to evaluate
the impact of morphology on photo-z’s not on the spectroscopic
sample but instead on a sample representative of current and future
surveys, objects in all spectroscopic samples used in this paper are
weighted with respect to the CS82 target sample, the only exception
being Section 6.3, since the metrics calculated for the Stripe-82
extended objects sample are used in direct comparison with results
from Reis et al. (2012).

3 DATA

Multiband photometric, high-resolution imaging and spectroscopic
galaxy data are needed in order to study how galaxy morphology
affects the quality of photometric redshifts. Sections 3.1 and 3.2
describe the sources of photometric (broad-band magnitudes and
galaxy morphology) and spectroscopic (redshift) data for this study,
while Section 3.3 describes all the training samples used in this
paper.

3.1 Photometry

3.1.1 SDSS Stripe-82 Survey

The SDSS Stripe-82 Survey (Annis et al. 2014) is a co-addition of
the SDSS Stripe-82 imaging data (Jiang et al. 2014), obtained by
repeated scanning along the stripe at the equator between −50◦ ≤
RA ≤ 60◦ and − 1.25◦ ≤ Dec. ≤1.25◦, reaching about 2 magnitudes
fainter than standard SDSS observations (i ∼ 24.1). We chose to
work with objects in the Stripe-82 region due to the availability of
photometric data from SDSS, galaxy morphology from CS82 (see
Section 3.1.2) and the abundance of spectroscopic redshifts in this
region. These wide-angle deep imaging data have been used exten-
sively in many projects, e.g. photo-z computation (Reis et al. 2012),
quasar classification (Peters et al. 2015), massive galaxy evolution
(Bundy et al. 2015) and deeper co-adds (Fliri & Trujillo 2016). The
co-added photometric data in this region can be obtained from the
SDSS CasJobs,11 setting run=106,206. Runs other than these
are either photometric data prior to co-addition, or were data not
observed under photometric conditions. The number of galaxies and
quasars and the selection cuts used are discussed in Section 3.3.

3.1.2 CFHT Stripe-82 Survey (CS82) morphology catalogue

The CS82 Survey is a joint Canada–France–Brazil project. Using
the MegaCam at the Canada–France–Hawaii Telescope (CFHT), it
surveyed approximately 170 deg2 of the equatorial Stripe-82 area. It
is a relatively deep survey that maps down to magnitude 24.1 in the
i band (which is the only band in this survey), and has a mean see-
ing of 0.6 arcsec. Data from this survey have been used for several

11 http://skyserver.sdss.org/CasJobs/

weak lensing analyses (Comparat et al. 2013; Shan et al. 2014; Hand
et al. 2015; Liu et al. 2015; Battaglia et al. 2016; Li et al. 2016; Leau-
thaud et al. 2017; Niemiec et al. 2017; Shan et al. 2017; Pereira et al.
in preparation; Vitorelli et al. in preparation). A galaxy morphology
catalogue has been produced from CS82 data (Charbonnier et al.
2017; Moraes et al. in preparation) using SEXTRACTOR12 and PSFEX13

to fit a series of single-component profiles (de Vaucouleurs, ex-
ponential and Sérsic). The galaxy morphological parameters taken
from this catalogue are discussed in Section 4.1.

3.2 Spectroscopy

As empirical photo-z methods require the use of training samples
containing true redshifts, all photometric and morphological sam-
ples mentioned previously will have to be cross-matched with spec-
troscopic data as outlined below to form the data samples needed
in this study. Spectroscopic redshifts from five surveys have been
used in this study, and the distribution of these objects in colour–
magnitude space is illustrated in Fig. 1.

3.2.1 SDSS and BOSS spectroscopy

Spectroscopy obtained from SDSS is taken using either the SDSS
or Baryon Oscillation Spectroscopic Survey (BOSS) spectrographs.
The SDSS spectrograph was used in the SDSS Legacy Survey
(York et al. 2000) which obtained spectroscopic redshifts for about
930 000 galaxies as faint as Petrosian magnitudes r ∼ 17.77 and
about 120 000 quasars up to PSF magnitudes of i ∼ 19.1. BOSS
(Dawson et al. 2013) on the other hand measured redshifts of galax-
ies to i ∼ 19.9, and of quasars to g ∼ 22.0, and obtained spectro-
scopic redshifts for over 1.5 million galaxies up to z ∼ 0.7, and over
160 000 quasars with 2.2 < z < 3.0.

Our SDSS and BOSS spectroscopic sample selection is simple
as we use all available high-quality SDSS spectroscopic redshifts
within the Stripe-82 region. To ensure that only good quality red-
shifts are used, we select all redshifts from SDSS and BOSS that
have zWarning=0. This selection provides 75 229 galaxy and
5380 quasar redshifts from SDSS, while BOSS provides good qual-
ity redshifts for 18 546 galaxies and 552 quasars. These redshifts are
cross-matched to their photometric counterparts in Stripe-82 from
the PhotoPrimary table for ugriz magnitudes and morphology.

3.2.2 DEEP2 redshift survey

The DEEP2 redshift survey (Newman et al. 2013) used the Keck
telescope to study the properties of massive galaxies and large-
scale structure. This is an untargeted survey which reaches a depth
of r ∼ 24.1 and covers an overlap area of 0.5 deg2 with the Stripe-82
region. This survey uses the colours B − R and R − I to remove
objects with zspec < 0.7, providing a sample of objects with zspec ∼ 1.
Objects from the DEEP2 DR4 redshift catalogue14 with ZQUAL-
ITY ≥ 3 were obtained and cross-matched with SDSS Stripe-82
photometry to yield 11 858 redshifts for this study.

12 https://www.astromatic.net/software/sextractor
13 https://www.astromatic.net/software/psfex
14 http://deep.ps.uci.edu/DR4/zcatalog.html
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Figure 1. Apparent g−i versus i magnitude for objects from the CS82 training sample (red), and part of the CS82 target sample with matched SDSS photometry
(blue) used in this study. The contours reflect the density of the objects. The six panels on the left highlight the training objects according to their spectroscopic
sources (SDSS, BOSS, DEEP2, WiggleZ, and VVDS), while the bottom right plot highlights the lensing subsample.

3.2.3 WiggleZ Dark Energy Survey

The WiggleZ DES (Drinkwater et al. 2010) used the Anglo-
Australian Telescope to study emission-line galaxies. Its aim was
to measure the precise scale of the baryon acoustic oscillation im-
printed on the spatial distribution. This survey is flux-limited in the
Galaxy Evolution Explorer (GALEX) ultraviolet band NUV < 22.8
and also detected optically at 20.0 < r < 22.5, and it has a 45.3 deg2

survey area overlapped with the Stripe-82 region. Galaxy redshifts
from the WiggleZ DR1 data base15 with quality flag qop > 3 are
used, providing 7648 redshifts for this study.

3.2.4 VIMOS VLT Deep Survey

VIMOS VLT Deep Survey(VVDS; Fevre et al. 2013) is a deep rep-
resentative galaxy survey, which uses the VIMOS multislit spec-
trograph at the ESO-VLT. The VVDS-Wide (Garilli et al. 2008)
survey has an overlapping area of 3.6 deg2 within the Stripe-82
region, with a limiting magnitude of i ∼ 22.5. It aimed to trace
the large-scale distribution of galaxies up to z ∼ 1 on comov-
ing scales reaching 100 h−1 Mpc. Objects from the VVDS-Wide
(VVDS-F2217+00) sample16 with zflag=3,4 (galaxies) and
zflag=13,14 (quasars) are cross-matched with the Stripe-82
sample, contributing 3949 redshifts for the Stripe-82 training sam-
ple.

3.3 Training samples used

The available spectroscopic data are formed into four samples for
use in this study, the description and purpose of which are discussed
in the paragraphs below. The first three samples are used to answer
the main questions stated in Section 1, while the last training sam-
ple is used to produce photo-z’s for the CS82 catalogue. The four

15 http://wigglez.swin.edu.au/site/data.html
16 http://cesam.lam.fr/vvds/vvds_download.php

training samples used in this study are summarized in Table 1. Here,
we also remind the reader that we define ‘testing set’ as the sample
in which metrics are evaluated on, while ‘target set’ refers to the
final sample in which photo-z’s are evaluated.

The first spectroscopic sample is denoted as the CS82 gen-
eral sample. This sample uses ugriz photometry from SDSS
Stripe-82 Co-add, morphology from the CS82 morphology cat-
alogue, and spectroscopic redshifts from SDSS, BOSS, DEEP2,
WiggleZ, and VVDS. The selection criteria for this sam-
ple are as follows. For SDSS photometry, only objects from
run=106,206 (co-added photometry) and magnitudes within
16.0 < r < 24.5 are used; for CS82 morphology, we require
MASK=0 (not masked), 0≤FLAGS≤3 (flag for good quality
source extraction), MAGERR_AUTO<0.1086 (S/N ratio > 10)
and SPREAD_MODEL_SER>0.008 (Sérsic spread model, a star-
galaxy separator to select only extended objects, justification dis-
cussed in Moraes et al. in preparation); and finally for spectroscopy,
we require that they have spectralclass set asGALAXY in addition
to the quality cuts for each source mentioned in Section 3.2. Small
selection effects may arise since objects with bad galaxy morphol-
ogy data (radius, axial ratio, and other parameters used in this study
are discussed in Section 4.1 below) from both SDSS and CS82 have
to be removed. The selection cuts above produce a sample of 59 498
galaxies. This sample is used in three sections: the first in Section 5
to study the effects of individual or multiple morphological param-
eters on photo-z’s; next in Section 6.1 this sample is used to study
the effects of galaxy morphology on surveys with limited number
of broad-band filters; and lastly in Section 7 this sample is used to
study the effects of galaxy morphology on galaxy pdfs and redshift
distributions.

The second spectroscopic sample is the Stripe-82 low-quality
photometry sample, which is very similar to the previous sample
but uses lower quality photometry than the former. This set uses the
same cuts and sources for spectroscopy and morphology, but cross-
matched with photometry from SDSS Stripe-82 not necessarily
from runs 106 and 206, but still ensuring that these were PRIMARY
objects (see Section 6.2 for more information). In other words, this
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Table 1. Spectroscopic and photometric samples used in this study, listed with their respective sample sizes, sources of photometry, morphology, and
spectroscopy. Listed are also the respective sections in which these samples are featured.

Sample Size Photometry Morphology Spectroscopy Sections

CS82 general sample 59 498 S82 Co-add CS82 SDSS, BOSS, DEEP2, WiggleZ, VVDS 5, 6.1, 7
S82 low-quality sample 57 784 S82 CS82 SDSS, BOSS, DEEP2, WiggleZ, VVDS 6.2
S82 extended objects 97 812 S82 Co-add S82 Co-add SDSS, DEEP2, WiggleZ, VVDS 6.3
CS82 photo-z training set 64 591 S82 Co-add, CS82 CS82 SDSS, BOSS, DEEP2, WiggleZ, VVDS 8

CS82 photo-z target set 5777 379 S82 Co-add, CS82 CS82 – 8
Lensing subset 3536 783 S82 Co-add, CS82 CS82 – 8

sample contains a mixture of high-quality co-added photometry and
low-quality photometry which was taken under non-photometric
conditions. We used this sample to study the impact of galaxy
morphology on photo-z’s from surveys which lack good quality
photometry in Section 6.2. This sample yields 57 784 galaxies, of
which 58 per cent of the objects have low-quality photometry. There
are more objects with invalid/erroneous morphological data in this
sample than the former, thus the removal of these objects resulted
in a slightly smaller sample.

The third spectroscopic sample is the Stripe-82 extended objects
sample. This sample differs from the previous samples in that it
does not use morphology from the CS82 Survey and spectroscopic
redshifts from BOSS, as we intend to use a spectroscopic sample
as close as possible to the sample choice of Reis et al. (2012). Pho-
tometry from SDSS Stripe-82 runs 106 and 206 is cross-matched
with galaxy and quasar redshifts from SDSS, DEEP2, WiggleZ,
and VVDS to form a sample with 104 286 objects. In this sample
we used the SDSS star-galaxy separator type=3 to keep only ex-
tended objects. As the star-galaxy separator is not perfect, we expect
to see a mixture of galaxies and quasars in the sample. This sample
yields 97 812 objects in which only 97 per cent have galaxy spectra.
In Section 6.3 we use this sample to study whether the photo-z of a
group of extended objects improve when quasar redshifts, and their
sizes, are added into the training.

The final spectroscopic sample is the CS82 photo-z training sam-
ple used to produce a photo-z catalogue for the CS82 Survey. The
training sample is similar to the first spectroscopic sample, but
this time with the addition of quasar spectra (motivated by the
results from Section 6.3, where the inclusion of quasar spectra
in training improves the photo-z quality of the catalogue). This
sample is used in Section 8 to produce photo-z point and pdf es-
timates for the CS82 morphology catalogue by training (i) SDSS
ugriz + multiple morphological parameters on objects that have
photometry and (ii) CS82 i-band + multiple morphological pa-
rameters on objects that do not have SDSS photometry. Repre-
sentability is solved by reweighting as described in Section 2.3,
but we also ensure that the target sample has the same photo-
metric and morphological cuts and limits as the training sam-
ple. The photometric sample selection is the same as the CS82
sample (MASK=0, 0≤FLAGS≤3, MAGERR_AUTO<0.1086, and
SPREAD_MODEL_SER>0.008), this results in a training set of
64 591 objects and a target set of 5777 379 objects in which photo-
z’s will be estimated. Approximately 18 per cent of objects in the
target set do not have SDSS ugriz photometry and thus would have
their morphological redshift (morpho-z) derived using CS82 Kron
i-band magnitude and morphology.

For weak lensing analyses, a subset of the target set has been
selected for further evaluation, referred to as the lensing subset. This
subset has extra sample selections as follows: the objects should
have good LensFit shape measurements (WEIGHT>0;Miller et al.

Figure 2. Plot of exponential radius versus Kron i-band magnitude of the
CS82 general sample (red contour), compared to the CS82 photo-z target
sample (blue), its lensing subsample (green), and the full CS82 galaxy
morphology catalogue (grey).

2013) and be classified as galaxies in FitClass17 (FITCLASS =
0). This subset has 3536 783 objects. The size–magnitude diagram
of the training and target sample is shown in Fig. 2.

Objects in all spectroscopic samples are divided equally into three
portions for training, validating and testing, respectively. This size
ratio between training and testing set was chosen in order to keep
the number of training objects as high as possible, much higher
than the training size threshold of about 2000 objects suggested
by Collister & Lahav (2004) and Bonfield et al. (2010). A larger
training size is required in our study for two reasons. First, our
study uses up to 10 input parameters (five more than the studies
mentioned above). Secondly, our study uses reweighting, objects
with high weights are rare to begin with, thus larger training sets
will prevent overtraining on small numbers of high-weighted (faint
and high redshift) objects. We have also tested and verified that the
size ratio between the training and testing sets does little impact on
results, as long as a relatively large training set is used. For instance,
we find that the results using training-testing ratios between 1:1, 1:2,
and 1:3 differ in root-mean-square and 68th percentile error of at
most 0.5 and 1.2 per cent respectively when the same training set is
used.

4 MO R P H O L O G Y A N D M E T R I C S

4.1 Morphological parameters

All morphological parameters used in this study are taken from
the CS82 Survey. We make use of morphological parameters de-
rived from i-band de Vaucouleur, exponential, and Sérsic profile fits.

17 In particular, this limits the sample to i > 20 as brighter galaxies tend to
be too large to be processed efficiently by the LensFit algorithm.
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When reporting radius, axial ratio, and mean surface brightness, we
choose the values derived from the exponential profile fit, because
we find them to be more robust compared to the de Vaucouleurs’
or Sérsic fits, however the difference in training results is negligi-
ble. The morphological parameters used in this study are listed as
follows:

(i) Radius, rexp, or more specifically, the semimajor axis of the
object.

(ii) Axial ratio Q = rA/rB, where rA and rB are the semimajor
and semiminor axes of the object, respectively. This is a form of
measure for ellipticity.

(iii) Circularized radius, rc = rexp
√

Q. This is a form of mea-
sure for galaxy size (or area), which is independent of the object’s
ellipticity. In this study we used two different circularized radii
for comparison, one from SDSS (rc,SDSS) and the other from CS82
(rc,CS82) to study if the quality of morphology affects the photo-z
results.

(iv) Mean surface brightness, μ in units of mag arcsec−2.
(v) Shape probability p, which indicates if the object’s shape is

closer to a disc galaxy (exponential fit) or to an elliptical galaxy (de
Vaucouleurs fit):

p = χ2
deV

χ2
deV + χ2

exp

, (1)

p takes values between 0 and 1; it compares the reduced χ2 values
of both fits.

(vi) Sérsic index n, which controls the slope of the Sérsic profile.
Setting n = 1 reverts to an exponential profile, while n = 4 reverts
to a de Vaucouleurs profile.

In this study we do not use the concentration index due to the
absence of Petrosian fits in the CS82 morphology catalogue, and
not all of the objects from SDSS Stripe-82 have valid Petrosian
data. Therefore, including concentration index in our study would
result in cutting the sample sizes by half, and would also introduce
selection effects. Besides, it has also been shown that no significant
improvements in photo-z’s were found when concentration index
was included in the training (Way et al. 2009; Way 2011; Jones &
Singal 2017).

As mentioned in Section 2.3, the training set is reweighted with
respect to the CS82 photo-z target set using the i-magnitude and
the colour g−i. Fig. 3 shows the distribution of i, g−i and all the
morphological parameters mentioned above, comparing the target
set, the training set and the reweighted distribution of the training
set. From this figure we confirm that the reweighting in just i and
g−i is able to reweight all other morphological parameters to rep-
resent the distribution of the target set. In the final panel we also
see the expected redshift distribution of the target set, which should
peak around zspec ≈ 0.8. We also refer the reader to Fig. B1 in the
appendix, which shows the correlation between these morpholog-
ical parameters and spectroscopic redshift, both in weighted and
unweighted densities.

4.2 Metrics

The three metrics used to quantify the performance and overall
distributions of the photo-z’s are as follows. Note that all metrics
are scaled by 1 + zspec:

(i) root-mean-square error σ RMS,

σRMS =
√∑

wi�z2
i∑

wi

, (2)

where wi is the weight of the object (obtained from
the reweighting algorithm described in Section 2.3), and
�zi = (zphot,i − zspec,i)/(1 + zspec,i), is the difference between the
photometric and spectroscopic redshift, scaled by 1 + zspec. Note
that σ RMS is calculated without outliers removed, and thus measures
the overall scatter of the sample.

(ii) 68th percentile error σ 68, the half width of the weighted dis-
tribution of �zi containing 68 per cent of the objects. This measures
the core width of the photo-z distribution, with reduced sensitivity
to outliers.

(iii) outlier fraction ηout, which is the weighted percentage of
objects for which

|�zi | ≥ 0.15 , (3)

as introduced by Ilbert et al. (2006). This metric identifies the per-
centage of objects with large outliers. The specific threshold value
is chosen to enforce consistency with previous literature.

4.3 ANNZ2 ODDS parameter

In this paper we introduce an ODDS parameter (denoted by �)
for ANNZ2 output, originally known as the ‘Bayesian odds’ in the
template-based photo-z code BPZ (Benitez 2000):

� =
∫ zpeak+δz

zpeak−δz

p
(
z|mj

)
dz. (4)

� ranges between 0 and 1. It measures the probability mass
between the values zpeak ± δz, where δz = k(1 + zpeak). p(z|mj) is the
pdf distribution of the output photo-z, mj refers to the list of inputs
used (broad-band filters and morphology), and z is the redshift. In
this study we set k = 0.067. This is chosen such that not too many
objects end up having � = 1 (Benitez used k = 3 × 0.067 for BPZ).
Having � closer to 1 implies that the zphot obtained is more reliable.
A mean ODDS value �̄ for the sample is also calculated and used
in Section 7.

5 MO R P H O L O G I C A L R E D S H I F T S IN A
G E N E R A L S A M P L E

The first question we would like to address is whether the addition
of morphological quantities to neural network training helps to ob-
tain better redshifts. As discussed in the introduction, past studies
have not provided a clear picture, which may at least partially be
due to the details of the galaxy samples used. We selected a sample
of galaxies which reaches a magnitude as faint as i ∼ 24, close to
representing current large-scale galaxy surveys like KiDS and DES,
although we note that this sample does not cover the range of mag-
nitudes expected from Stage-IV surveys such as LSST. We applied
reweighting on the spectroscopic samples to obtain a representative
training set and train a neural network with several combinations of
morphological parameters added to multiband fluxes. More specif-
ically, we use training sample no. 1 as described in Section 3.3.
We perform several runs with input parameters ugriz + m, where
m is a single (or a set of) morphological parameter(s) from SDSS
and CS82. Results are then compared to training with ugriz inputs
alone. Table 2 shows the metrics σ RMS, σ 68, and ηout of the dif-
ferent photo-z trainings for comparison. We measure the change
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Figure 3. Distribution of i-band magnitude, colour g−i, radius rexp, surface brightness μ, axial ratio Q, Sérsic index n, shape probability p, and spectroscopic
redshift for the target set (blue histogram), compared to the distribution of the training set, both weighted (blue line) and unweighted (red line). Note the
reweighting is only done in terms of i and g−i, but works well for all other parameters considered.

Table 2. Improvement through morphology information in root-mean-
square error (σRMS), 68th percentile error (σ 68), and outlier fraction (ηout)
for the CS82 general sample, with respect to training with only ugriz. The
definition of these morphological parameters can be found in Section 4.1.

Input vars. σRMS � σ 68 � ηout �

(ugriz+) % % (%) %

– 0.0921 0.0625 6.42
rexp 0.0933 −1.3 0.0635 −1.1 6.18 3.8
rc,SDSS 0.0925 −0.5 0.0609 2.5 5.95 7.4
rc,CS82 0.0924 −0.3 0.0611 2.3 6.31 1.7
μ 0.0939 −2.0 0.0616 1.4 6.67 −3.9

Q 0.0940 −2.1 0.0629 −0.6 6.33 1.5
n 0.0928 −0.8 0.0626 −0.2 6.31 1.7
p 0.0946 −2.7 0.0625 0.1 6.39 0.4

rexp, Q 0.0940 −2.1 0.0595 4.7 6.72 −4.6
rexp, Q, μ, n, p 0.0914 0.7 0.0604 3.4 6.15 4.2

in percentage of these metrics with respect to the training without
morphology, calculated over the full sample. Overall, we see no
significant improvement. When adding the whole set of morpho-
logical parameters chosen for this study, we reach about 4 per cent
improvement in σ RMS and 3 per cent improvement in σ 68.

There are several intuitive reasons why adding morphological
quantities should in principle bring improvements. First of all, as
part of our morphological model-fitting, we obtain a mean surface
brightness μ derived from the radius and magnitude of the model
fits. We would expect surface brightness to carry redshift informa-
tion since theoretically it has a log (1 + zspec)4 dependence with
redshift. Size also correlates with redshifts through the angular di-
ameter distance, and as we see from Fig. B1 in the appendix, there is
indeed a correlation between size and spectroscopic redshifts, espe-
cially for brighter galaxies. We test our runs with different versions
of size estimators, including radii from different model choices and
circularized radii from both SDSS (rc,SDSS) and CS82 (rc,CS82). Al-
though the CS82 survey’s average seeing is half that of SDSS, this
does not have significant impact on our results.

We interpret our results as stating that training with five ugriz
bands saturates the available redshift information for a galaxy
population typical of Stage-II and Stage-III optical galaxy sur-
veys, and that morphology does not significantly help to improve
photometric redshift estimation beyond this. In past investiga-
tions, it was clear that most improvements brought by morphol-
ogy were seen for bright SDSS samples only. To confirm this,
we trained and tested on galaxies from the SDSS main galaxy
sample without any reweighting, and found that improvements
as high as 13 per cent can be achieved when trained with ugriz
and the five morphological parameters above. Therefore selec-
tion through cuts in flux, morphological parameters and indirectly
through the selections of spectroscopic samples will have a strong
impact on the outcome. We will indeed show in the next sec-
tion that, as the availability, quality, or reliability of flux infor-
mation degrades, adding morphological quantities brings quan-
titative and qualitative improvements to the redshift estimation
process.

6 IM PAC T O F MO R P H O L O G Y U N D E R
S U B O P T I M A L C O N D I T I O N S

In the previous section, we have seen that galaxy morphology has
only marginal impact on photo-z quality when tested in a general
sample of galaxies with good 5-band ugriz photometry. In this sec-
tion, we explore the possibilities of using morphology to improve
photo-z’s in suboptimal conditions. In Section 6.1 we study the ef-
fects of galaxy morphology in surveys with less than five broad-band
filters by systematically removing magnitude bands as inputs and
comparing these runs with and without morphology. In Section 6.2
we study whether galaxy morphology would bring greater improve-
ment to photo-z’s in surveys where the quality of photometry is low.
Finally, in Section 6.3 we assess if galaxy morphology improves the
photo-z quality in a situation where the separation between point
sources and extended sources is imperfect. Here, we once again
remind the reader that the results in this section are evaluated on the
testing set.
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Figure 4. Comparison of the root-mean-square error (top), 68th-percentile
error (middle), and outlier fraction (bottom) for different photo-z runs. Each
panel compares pure photometry runs (red) with colour + morphology runs
(green) for each combination of bands. The pure ugriz run is also shown as
a horizontal grey dashed line.

6.1 Limited number of filters

It is generally accepted that four or – ideally – five photometric
bands are necessary for measuring photometric redshifts with the
accuracy required by the main scientific goals of modern galaxy
surveys. For instance, weak lensing surveys like DES, LSST, or
KiDS for which coarse line-of-sight resolution is sufficient require
coverage from near-UV to near-IR in at least four to five bands
(Abbott et al. 2005; Ivezic et al. 2008; de Jong et al. 2013). This
has been empirically supported in several analyses of fewer-band
surveys and in extensive studies of photo-z robustness under dif-
ferent observational conditions, thus informing the design of some
of the key experiments of the coming decade. There are, none the
less, design choices or technical issues that might constrain surveys
to work with fewer bands than would be optimal. The Dark En-
ergy Camera Legacy Survey18 (DECaLS; Schlegel et al. 2015) and
the Canada–France Imaging Survey19 (CFIS; Ibata et al. 2017) are
examples with limited filter coverage. Technical issues can also pre-
vent the full exploitation of survey data, such as the limited depth of
SDSS z band due to filter and CCD inefficiencies, or the incomplete
coverage in r and i bands of the Red-sequence Cluster Survey-2
(RCS-2, Gilbank et al. 2011) due to bad seeing.

Within this context, we ask whether the addition of morphology
in few-band scenarios can mitigate the degradation due to the lack
of detailed colour information. We perform several ANNZ2 runs with
different combinations of a smaller number of bands, both with and
without morphology, and compare the overall performances of these
runs. For morphology, we use all five morphological parameters (μ,
rexp, Q, p, and n) together. Fig. 4 shows the performance metrics
with respect to the choice of filters used. All metrics improve with
morphology relative to the photometry-only case, and more so as
the number of broad-band filters decreases. Taking the case where

18 http://legacysurvey.org/decals/
19 http://www.cfht.hawaii.edu/Science/CFIS/

only grz bands are available (similar to the case of DECaLS), we
see about 14 per cent improvement in σ 68 and 18 per cent improve-
ment in outlier fraction when morphology is included in training
and reach a performance in all three metrics that is close to the full
ugriz case without morphology. Furthermore, a training with one
colour (ri) and morphology performs at least as well as training with
three filters and no morphology. In the face of these results, there is
a strong case for using morphology in photo-z estimation in surveys
which have limited multiband photometry, like the Red-sequence
Cluster Lensing Survey (RCSLenS; Hildebrandt et al. 2016), DE-
CaLS and the Beijing-Arizona Sky Survey (BASS; Zou et al. 2017).

We explore in more detail some specific qualitative aspects of
particular relevance. Fig. 5 compares the results with five (ugriz),
three (grz), and one (i) band(s). With grz, we see that the addition
of morphology has a very noticeable impact at higher redshifts.
Possibly due to biases deriving from the shallowness of the z band
in the SDSS survey, as shown by the contours in the figure, the
neural network ‘saturates’ after a certain redshift value, never as-
signing higher values; the addition of morphology redresses this
high-redshift problem. Even more striking is the case with only
one band i. As Fig. 5 shows, a single apparent magnitude pro-
vides no more than a coarse indicator for a galaxy’s redshift. How-
ever, with the addition of morphological parameters, redshifts can
be measured at a level of precision and accuracy that, although
far from the best scenarios, makes them usable for defining broad
redshift bins.

Overall, we see a robust trend where morphology provides com-
plementary information to colours, such that the removal of colour
information can be compensated by adding morphological informa-
tion.

6.2 Low-quality photometry

The quality of photometric redshifts is highly dependent on the
quality of the multiband photometry. Surveys relying on ground-
based observations will inevitably accumulate data in a variety of
conditions, resulting in a spatially-varying fidelity and signal to
noise of the photometry. We will explore for an illustrative case if
galaxy morphology is able to salvage the quality of photo-z’s in
situations of poor photometry.

Stripe-82 is one of the best regions of the sky to conduct this
study due to the multiple repeated scans across this region. Prior
to Fall 2004, all observational runs were taken under photomet-
ric conditions as required for imaging in the SDSS Legacy Survey
(York et al. 2000). Repeated imaging from these 84 runs and a few
later runs with seeing better than 2 arcsec, sky brightness less than
19.5 mag arcsec−2, and extinction less than 0.2 mag were processed
for co-addition (Annis et al. 2014), which is the photometry used
throughout this paper (and by our standards is considered ‘good pho-
tometry’ in this section). This co-added photometry was designated
run=106,206 in the SDSS CAS, and reaches approximately 2
magnitudes fainter than the SDSS single runs, and a median seeing
of 1.1 arcsec (compared to the usual 1.4 arcsec).

In contrast to this good photometry, runs later than Fall 2005 on
Stripe-82 were made as part of the SDSS Supernova Survey (Frie-
man et al. 2008), and observations were done with a higher cadence
and often observed under poor seeing conditions (≥2 arcsec), bright
sky, non-photometric conditions and low atmospheric transparency
(Sako et al. 2008). This ‘bad photometry’, although having photo-
metric errors at least twice as large as those from the co-add runs,
was still used in science analyses after images taken under extremely
poor photometric conditions were removed, and the remaining
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Figure 5. Comparison between spectroscopic and photometric redshift based on the i (left), grz (middle), and ugriz (right) band(s). The top panels show the
training with only the respective magnitude bands, while the second row shows the training when the five morphological parameters (r, Q, μ, n, and p) are
included. The colours depict the weighted density of objects, and the blue lines are the limits for outliers.

detections subjected to a photometric calibration procedure
(Bramich et al. 2008). This resulted in a photometry subset with
larger magnitude errors, especially in the u band.

We constructed a sample with ‘bad photometry’ as follows: in-
stead of matching our spectroscopy and CS82 morphology with the
good photometry from the co-add runs (106 and 206), we matched
them to photometric objects without restricting from which run the
object’s measurements were taken. This way, objects with the same
spectroscopy and morphology data have been matched to two dif-
ferent kinds of photometry, in one case obtained from the co-add
sample, and in the other from runs with lower quality. This allows us
to compare the photo-z performance of the same objects under the
same reweighting scheme, but with different photometric quality.
Differences in magnitude limits and magnitude errors per band are
provided in Table B1.

We conduct the exact same test as we did for the good photom-
etry in Sections 5 and 6.1, adding various different morphological
parameters in training while also varying the number of broad-
band filters used. Table 3 shows the results of this run, which is
a direct comparison with Table 2. We see a higher improvement
rate in photo-z in the bad photometry sample compared to the
good one, especially when all five morphological parameters are
included, yielding a relative improvement in outlier fraction as high
as 14.2 per cent. We also see that even when low-quality morphol-
ogy is used (rc, SDSS) in this case, the improvement brought is still
higher than the former, although not very significant. However, it
is evident that the general metrics in this sample are substantially
worse than in the good photometry case, even with the help of
morphology.

Table 3. Improvement in root-mean-square error (σRMS), 68th percentile
error (σ 68), and outlier fraction (ηout) by morphological parameter and
number of filters for the CS82 sample with low-quality photometry.

Input vars. σRMS � σ 68 � ηout �

(ugriz+) % % (%) %

– 0.1117 0.0892 12.86
rexp 0.1203 −2.2 0.0893 −0.2 14.46 −12.4
rc,SDSS 0.1138 3.3 0.0864 3.2 12.64 1.7
rc,CS82 0.1147 2.6 0.0868 2.7 12.85 0.1
μ 0.1137 3.4 0.0863 3.2 12.03 6.5

Q 0.1163 1.2 0.0877 1.6 13.73 −6.7
n 0.1142 3.0 0.0856 4.0 13.14 −2.1
p 0.1160 1.5 0.0863 3.2 13.27 −3.2

rexp, Q 0.1130 4.0 0.0861 3.5 12.46 3.1
rexp, Q, μ, n, p 0.1093 7.2 0.0827 7.3 11.04 14.2

We also assess the case when fewer filters are used with and with-
out morphology, and the results are summarized in Fig. 6. Here, we
see that when fewer filters are used, the improvement that morphol-
ogy yields is on average larger than when good photometry is used,
especially for the ugriz, grz, and i cases. It is worth noting that
photo-z’s produced with bad photometry with only two bands and
morphology can yield performance metrics as good as five bands
without morphology. We see that the metrics in this case are still far
from the case when good photometry is used (blue circle), except
for the cases when less than three filters were used. These results
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Figure 6. Comparison of the root-mean-square error (top), 68th-percentile
error (middle), and outlier fraction (bottom) for photo-z training with dif-
ferent number of filters. Each panel compares pure photometry runs (red)
with colour + morphology runs (green) for each combination of bands for
the low-quality photometry set, compared to the pure photometry run of the
good quality photometry set (blue). The pure ugriz run for the bad photom-
etry case is also shown as a horizontal grey dashed line. Improvements due
to the addition of morphology are visible across the board.

further strengthen the case that morphology is a valuable addition
to improve the quality of photo-z’s under suboptimal conditions.

6.3 Imperfect star–galaxy separator

Star–galaxy separation remains an ongoing problem when produc-
ing photometric redshift catalogues (Bundy et al. 2015). Current
tools to separate point sources (stars and quasars) from extended ob-
jects (galaxies) include morphometric approaches, machine learn-
ing or using infrared colours (see Soumagnac et al. 2015, for a
comprehensive discussion). However, since point-source separa-
tion algorithms are not perfect, the photometric catalogue produced
will still be contaminated by a small number of stars or quasars, and
the photo-z estimates that go with them can be wrong if the training
sample is not representative of the quasar population.

To study the impact of suboptimal point-source separation, the
SDSS official source classification provides a good case study.
SDSS uses the field type to separate extended objects from point
sources, where type=3 corresponds to galaxies, while type=6
corresponds to stars/quasars. Point-source contamination in a sam-
ple of type=3 objects in the SDSS co-add data set was estimated
to be as high as 10 per cent (Bundy et al. 2015), and the impact
of these objects is seen in the official SDSS Co-add photometric
redshift catalogue (Reis et al. 2012). For the purposes of our tests,
we relax the point-source separation cut from the CS82 catalogue
(SPREAD_MODEL_SER<0.008) and reproduce a similar spec-
troscopic sample to the SDSS co-add one (Reis et al. 2012). We
cross-match spectroscopic redshifts of galaxies and quasars from
the sources listed in Section 3.2 with type=3 objects from Reis’
photo-z catalogue, and we plot the spectroscopic redshift versus
Reis’ photo-z, as shown in the top left panel of Fig. 7. After the
type=3 selection, our catalogue has 3 per cent contamination by
quasars.

The blue dots in the first two columns of Fig. 7 evidently show that
the quasar photo-z’s are severely underestimated, becoming outliers
in our galaxy scientific sample, even when morphological quantities
are included in training in particular. If the ANN does not have high-
redshift quasars for training, it will not be able to produce correct
redshifts for these objects. Therefore, we study the possibility of
mitigating this problem by including quasar redshifts in the training,
and whether size information brings additional improvements.20 We
remind the reader that by ‘size’ we mean the circularized radius of
a PSF-corrected exponential profile fit, which for quasars generally
yields very small values although in some cases it is plausible that
light from the host galaxy is picked up as well.

Using ANNZ, Fig. 7 compares four runs: the first two runs
trained only with galaxies, with and without size as inputs (GAL
and GAL+SIZE); the third and fourth runs include quasar red-
shifts in the training, with and without size (GAL+QSO and
GAL+QSO+SIZE). We see that the improvement with size is only
marginal if only galaxies are used for training. When quasars are
added to the training, we correct the redshifts measured for quasars;
however, this inclusion degrades the quality of all photo-z’s, increas-
ing the σ 68 by approximately 3 per cent. Our new important result is
that the photo-z performance is recovered when we add size to the
inputs. Not only has this improved the quality of the photo-z (espe-
cially quasars with zphot > 1.3), we also find that with an 80 per cent
completeness cut in photo-z error, approximately half of the quasars
can be removed from the sample, and more high-redshift objects
are kept when compared to Reis et al.’s results. We also find the
outlier fraction is reduced from 3 per cent to 2.4 per cent, which is a
relative improvement of 20 per cent. This result is a clear indication
that the inclusion of quasar redshifts may provide a more reliable
photo-z for a catalogue of galaxy-like objects, especially in the case
when an imperfect star/quasar-galaxy separator is used.

While the inclusion of quasar redshifts in training improved the
overall metrics for a sample of extended objects, we were also
interested to know if this has particularly degraded the photo-z
quality of galaxies in the sample. We find that the degradation in
galaxy photo-z’s when quasars are included in training is less than
1 per cent across magnitude and colour, which we deem insignifi-
cant. In fact, we see that the training of GAL+QSO+SIZE performs
better than GAL particularly for redder and larger galaxies. Galaxies
which are large and red should generally have lower redshift there-
fore size information helps to lower the overestimated photo-z’s for
these objects. More surprisingly, we also find that the training of
GAL+QSO+SIZE yields better photo-z’s for the type=3 quasars
compared to training QSO alone. Therefore for machine learning
methods, we highly recommend the inclusion of quasar redshifts
and morphology in training when estimating photo-z’s for galaxy
samples.

Note that in this study the point-source contamination problem
is only tackled partially: we improved the photo-z’s for the quasars,
but not stars. We repeated this study by replacing quasars with stars
(i.e. including star redshifts and size in training), however find that
not only the photo-z’s of stars did not improve, the overall scatter
and outlier fraction rate has degraded as well. This is mainly because
star redshifts are extremely close to 0, which introduced noise in
the neural network instead. A possible extension to solve this is
by using the ANN to conduct a secondary star-galaxy separation

20 In this section we only use SDSS morphology, due to the lack of quantities
like Sérsic index and the shape parameter in SDSS, we decided to use only
one morphological parameter (size) instead of five.
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Figure 7. Plot of spectroscopic versus photometric redshift comparing the photo-z produced by Reis et al. (top left), ANNZ training with only galaxy redshifts
(middle), and ANNZ training with galaxy and quasar redshifts (right). The top row shows training with only ugriz as inputs (red), while the second row shows
training with ugriz and size (green). The joint inclusion of quasar redshifts and size in training improves the photo-z for the quasars in the sample (blue).

process: first output a flag to show the probability of the object
being a star or quasar (similar to the star-galaxy separation method
by Soumagnac et al. 2015), and the separated objects will undergo
a second run to individually have their photo-z’s estimated based on
their type.

7 IM PAC T O F MO R P H O L O G Y O N T H E PD F
A N D T H E N( z)

In Sections 5 and 6 we have seen how morphology improves photo-
z point estimates produced by ANNZ2 using various morphological
parameters in different conditions. However, the full photo-z poste-
rior distribution provides more information and is frequently used
to estimate sample redshift distributions. In this section we study
how galaxy morphology affects the shape of the individual pdfs
and the redshift distribution N(z) of the entire sample. We use the
CS82 general sample for this study. We produced the P(z) for each
galaxy, testing with and without morphology (rexp, μ, Q, p, and n)
for cases of different numbers of passbands similar to Section 6.1,
with settings according to Section 2.2. The P(z) for each object are
summed up to produce the N(z) distribution of the entire sample.

First, we assessed the performance of our newly incorporated
ODDS parameter � in ANNZ2. When training with ugriz, we find
that an 80 per cent completeness cut in � retains 14.1 per cent of
zphot > 0.9 objects, while just 0.2 per cent are kept when using the
same completeness cut in photo-z error. The fraction of outliers is
almost the same in the two cases. Therefore, this shows that with
� cuts we get to keep more objects from the higher redshift regime
than with ANNZ2 photo-z error.

Figure 8. Photometric versus spectroscopic redshift comparing the per-
formance of ANNZ2 and BPZ, with objects with 80 per cent ODDS cut (red
dots and contours) over the entire sample (grey). The contours reflect the
weighted density of the objects.

We also evaluate the performance of ANNZ2 by comparing the
photo-z produced in this sample with the photo-z of the same ob-
jects produced by BPZ from the S82-MGC (Bundy et al. 2015) as
shown in Fig. 8. From the figure, we see that, without any cuts, ANNZ2
is performing better than BPZ in terms of the number of outliers. We
also applied an 80 per cent completeness cut (discarding 20 per cent
of objects with the lowest �) using the respective ODDS values
for ANNZ2 and BPZ (shaded in red), and we find that the photo-z’s
produced by ANNZ2 not only efficiently reduce the number
of outliers, but also keeps more objects with higher redshift
(0.9 < z < 1.5), which BPZ discarded almost completely. The results
of ANNZ2 produce a bias at very low redshift (a visible small gap in
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Figure 9. The N(z) distribution of the CS82 sample, comparing the reweighted distributions of the spectroscopic redshift (pink histogram), i+morphology
(blue), grz+morphology (purple), ugriz (red), and ugriz+morphology (green).

the lower left corner of Fig. 8). This is a result of the reweighting, as
the machine learning algorithm highly down-weighted bright and
low-redshift objects, putting more emphasis on the higher redshift
objects. The galaxies affected by this bias occupy a very small frac-
tion of the survey volume; thus its effect is negligible across the
general metrics. Besides, most objects in this low-redshift region
have good spectroscopic redshifts available to be used, and they
could also be removed by using a magnitude cut of i > 20 for
lensing studies.

We proceed to evaluate the effects of morphology on the P(z) by
studying the mean ODDS value �̄ for each run: comparing the runs
with and without morphology, for the different number of filters as
used in Section 6.1. From a five ugriz bands training with morphol-
ogy, we find that the change in �̄ is almost negligible with morphol-
ogy: �̄ increased from 0.947 to 0.949 when multiple morphological
parameters are included, partly because �̄ is very high to begin with.
The change in �̄ is however more significant when fewer filters are
used, which indicates that morphology is indeed helping the ANN
to improve the confidence in photo-z values. We do see a high corre-
lation between �̄ and the performance metrics (σ RMS, σ 68, and ηout)
across the number of filters used, however we see almost no correla-
tion between the improvement in photo-z and the improvement in �

for individual galaxies when morphology is added, even when fewer
filters are used. Therefore, this suggests that although a high � does
not necessarily dictate the quality of an individual galaxy’s photo-z,
it is sufficiently useful to remove outliers across an entire sample of
galaxies.

Finally, we also evaluate the performance of the N(z) with
morphology. In this study we do not see trends or significant
improvement/degradation in N(z) when morphology is included
in training, however we find that a relatively good N(z) can
be produced with at least two broad-band filters and morphol-
ogy. In Fig. 9, we show the distribution of the weighted spec-
troscopic redshift (pink histogram), and compare the weighted
stacked N(z) for a few selected photo-z runs. Here, we see that
the N(z) produced by ugriz and ugriz+morphology are almost
indistinguishable, and resemble the overall spectroscopic distri-
bution accurately. The N(z) for grz+morphology is quite similar
to ugriz and still represents the true distribution well, while the
N(z) for i+morphology performs relatively well for zphot < 0.5 and
zphot < 1.0.

8 A P P L I C AT I O N : P H OTO - z’ S F O R TH E C S 8 2
M O R P H O L O G Y C ATA L O G U E

We now utilize the results we have obtained thus far to produce a
photo-z catalogue for the CS82 morphology sample. As mentioned
in Section 3.1.2, the CS82 morphology survey only has one i-band
magnitude, and we seek to use multiple morphological parameters,
SDSS ugriz photometry when available, and otherwise the CS82 i-
band magnitude, together with quasar redshifts to produce photo-z’s
for galaxies.

To produce this photo-z catalogue, we use the fourth spectro-
scopic training set and its selection cuts discussed in Section 3.3.
We use the reweighting scheme of Section 2.3 so that our training
set is representative of the target sample. In this section, two redshift
values are being output: the first photo-z is estimated by training
with 10 inputs: the five SDSS ugriz magnitudes and five morpho-
logical parameters (μ, rexp, Q, n, and p). However, 18 per cent of
the objects in the catalogue do not have SDSS ugriz magnitudes,
and these objects make up the majority of the sample at i > 23.8.
Therefore, we estimate a second redshift value called morphologi-
cal redshifts (‘morpho-z’), allowing the remaining 1 million objects
in the catalogue to have redshift estimates despite not having colour
information. The morpho-z will be obtained by training six parame-
ters: the CS82 Kron i-band magnitude,21 μ, rexp, Q, n, and p. Due to
the lack of colour for the morpho-z case, we do the reweighting with
respect to i and rexp instead, and we find it performs comparably to
reweighting in i and g−i, obtaining almost the exact same results
as Fig. 3. In situations where we have multiple redshift values for
each object, we provide a ZBEST column in the catalogue – the
‘best’ redshift for that object, which would be the value of either
the spectroscopic redshift, photometric redshift or morphological
redshift, in that order.

Point estimate and pdf of photo-z’s and morpho-z’s are calculated,
and the redshift distribution N(z) is produced as well. In order to
evaluate the performance of our results, we select a number of
objects from the spectroscopic sample as our testing set, and we

21 We have also included the CS82 PSF i-band magnitude in training, when
trained together with the Kron i-band magnitude it would act as a proxy
for the spread model of the object. However we note that the difference in
results is negligible even when it is not included in training.
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Table 4. Comparison of photo-z performance of Reis et al. (2012), BPZ,
EAZY and our results (ANNZ2) for the testing set of the CS82 morphology
photo-z catalogue (the target sample). Note that these metrics have been
weighted in accordance to the densities of the target sample, and no ODDS
cuts have been applied.

Photo-z methods σRMS σ 68 ηout(%)

Reis (ANN) 0.0966 0.0677 8.26
BPZ 0.1473 0.0911 19.46
EAZY 0.1234 0.0867 11.89

ANNZ2 (ugriz) 0.0915 0.0606 5.97
ANNZ2 (ugriz+morph.) 0.0872 0.0583 5.15
ANNZ2 (i+morph.) 0.1366 0.1065 15.89

calculate the weighted performance metrics for each run without
any ODDS cut, which are summarized in Table 4. Our standard
ugriz photo-z results outperform those by Reis et al. (2012), BPZ

and EAZY which we put primarily down to the reweighting. Adding
morphology to ugriz photometry further improves all metrics for this
sample, while the morpho-z’s perform similarly to BPZ at least in
these global metrics. Note that in order to compare the performance
between our photo-z and morpho-z results, the testing set comprises
objects with colour information.

Fig. 10 shows the photometric versus spectroscopic redshift scat-
ter plots for BPZ and our ANNZ2 runs, with the contours being the
weighted densities with respect to the target sample. First, we see
that with the correct reweighting, ANNZ2 successfully prioritizes to
obtain better photo-z’s for objects between redshift 0.7 < zspec < 1.2,
which we have seen should be the expected peak redshift for the
CS82 photo-z catalogue in Fig. 3. Secondly, we also see that with an
80 per cent ODDS cut, the training with ugriz+morphology outper-
forms the training with ugriz by being able to keep more objects with
higher photo-z’s, and this strengthens our claim that morphology is
a beneficial addition to input for photo-z estimation.

Finally, we evaluate the performance of N(z) for each run in the
testing set. In the first panel of Fig. 11, we find that the weighted
stacked N(z) produced by the ugriz+morphology run for objects
with SDSS ugriz magnitudes resembles closely the weighted spec-
troscopic redshift distribution. The second panel shows an N(z) pro-
duced for objects which do not have ugriz magnitudes (i.e. no colour
information) by stacking the P(z) derived from the i+morphology
run. The stacked N(z) is a fair representation of the redshift distribu-
tion of objects without colour information, reproducing accurately
the number of objects at z � 0.6, and recovering the bulk of the
distribution at z ∼ 1.

We produce a lensing subset of the testing set by applying cuts
discussed in the last paragraph of Section 3.3 (resulting in a magni-
tude range of 20 < i < 24.2). We find very similar performance for
the lensing subsample; see Figs C1 and C2. Note that the left-most
panel of Fig. C1 corresponds exactly to fig. 1 of Leauthaud et al.
(2017) for direct comparison. The morpho-z’s recover the redshift
distribution fairly well below z ∼ 0.5 as well as above z ∼ 1. These
conclusions hold when applying a photo-z cut, e.g. at z > 0.7 or
z > 0.8, which suggests they can be used to define a high-redshift
source galaxy bin for galaxy–galaxy lensing applications, with little
overlap to be expected for lens galaxy samples at z < 0.5.

The photo-z using ugriz+morphology and morpho-z produced for
the CS82 catalogue, together with other photometric and morpho-
logical parameters are made publicly available. The individual pdfs
for each object for the ugriz+morphology and i+morphology will
be distributed in separate files from the rest of the parameters. For
general purposes, we recommend to use ZBEST as the best photo-

metric redshift from this catalogue, an ODDS cut of � > 0.5 is also
recommended to remove outliers, which yields ηout < 5 per cent and
retains 98 per cent of the sample. When using purely the morpho-z
values, an ODDS cut of � > 0.5 yields ηout < 11 per cent and re-
tains 33 per cent of the sample. To estimate the N(z) of the sample,
we recommend the user to stack the individual pdfs of ZPHOT in-
stead of ZMORPH. The description of the headers of table columns
can be found in Appendix A.

9 C O N C L U S I O N S

Starting with the first application of machine learning methods to
redshift estimation, it was investigated in previous results in the
literature whether the addition of morphological information could
improve photometric redshift quality (Firth et al. 2003; Tagliaferri
et al. 2003; Kurtz et al. 2007; Vince & Csabai 2007; Stabenau
et al. 2008; Wray & Gunn 2008; Way et al. 2009; Lintott et al. 2011;
Singal et al. 2011; Jones & Singal 2017). Results varied from con-
siderable improvement to no improvement at all. No consensus
emerged, in part due to the variety of sample selections and algo-
rithms employed in these analyses.

The first goal of our analysis is to clarify this situation. Using well-
defined photometric and spectroscopic samples and a state-of-the-
art machine learning algorithm, we reach the following conclusion:
with high-quality photometry in sufficient numbers of passbands
(in our case five bands), adding morphology improves photometric
redshifts only mildly. However, there is substantial improvement
in several cases with non-optimal photometry information. We in-
vestigate surveys with fewer bands; problematic photometry due
to poor observational conditions; and realistic imperfections of the
point source–extended source separation.

In the case of bad photometry, as demonstrated by the inclusion
of photometry observed under bad weather/poor seeing conditions,
we observed that the inclusion of morphology in training showed a
higher improvement percentage in photo-z quality when compared
to the case of high-quality photometry. In the case of five ugriz
bands, the inclusion of five morphological parameters decreases the
outlier fraction by 14.2 per cent; while the inclusion of morphology
for training with only two bands yield photo-z’s as good as five
bands without morphology.

In the case of imperfect star-galaxy separation, we demonstrate
that the simultaneous addition of size information and quasar spec-
tra to the training stage improves photometric redshift estimation
of both quasars and galaxies, and in particular promotes a strong
reduction of outliers in the (impure) galaxy sample. We stress that
both changes are necessary: adding quasar spectra to the training
degrades galaxy photometric redshifts, and it is the addition of size
that redresses the situation while reducing the outlier percentage.

In the case of fewer bands, we demonstrate significant improve-
ments. With several combinations of four or three bands (ugri,
griz, gri, grz), adding morphology is roughly equivalent to using
five high-quality ugriz bands when considering standard quality
metrics such as root-mean-square error, 68th percentile error, and
outlier fraction. Qualitative improvements – less easily captured by
the standard metrics – are particularly interesting: as an example,
in the case of grz bands, pure photometry information introduces
a ‘cut-off’ at z ∼ 1.2, limiting photo-z’s to be always lower than
this value. Adding morphological information corrects this artificial
high-redshift limit. Since target selection of high-redshift objects for
DESI will employ this data set, we argue that DECaLS is a great
candidate for further exploration of the ideas demonstrated in our
analysis.
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Figure 10. Comparison of photometric versus spectroscopic redshift for the CS82 photo-z testing set, from left to right: BPZ, ANNZ2 ugriz, ugriz+morphology,
and i+morphology. The grey points show all the objects in the testing set, while the coloured points show the 80 per cent ODDS cut. Notably runs trained with
morphology keep more of the higher redshift objects than runs trained without morphology.

Figure 11. The N(z) distribution of the CS82 photo-z testing set for objects with SDSS ugriz magnitudes (left) and those without (right). The reweighted
distributions shown are the spectroscopic redshift (pink histogram), ugriz+morphology (green), and i+morphology (blue).

In the extreme case of using only one photometric band – in our
case, i – together with morphology, we are able to estimate redshifts
that, albeit far from optimal, provide a reasonable estimate of broad
redshift distributions.

Modern photometric redshift analyses work with individual and
stacked probability redshift distributions instead of point estimates.
We derive an ODDS parameter from the ANNZ2 posterior (pdf) out-
put and demonstrate its competitiveness, in particular in retaining
accurately estimated high-redshift objects. For point estimates de-
rived from the pdfs, as well as sample redshift distributions from
stacked pdfs, we confirm the earlier findings: small improvements
in scatter and outlier fractions through morphology when ugriz pho-
tometry is available; substantial gains if the photometry information
is less complete.

We apply the insights gained to produce a new redshift catalogue
for the CS82 Survey. We demonstrate that our machine learning
algorithm trained with morphology and ugriz magnitudes outper-
forms previously employed algorithms, yielding σ 68 = 0.058(1 + z)
and a outlier fraction of about 5 per cent. The overall redshift dis-
tribution of the CS82 galaxies is accurately reproduced. For a deep
subsample that lacks SDSS multiband photometry, we derive red-
shifts from just morphology and the CS82 single-band flux, which
we argue could be of sufficient accuracy to define a high-redshift
source sample for weak lensing studies.

In this study we employed estimated morphological galaxy pa-
rameters as inputs to our machine learning algorithm. This can be

understood as a pre-processing step that achieves massive data com-
pression guided by our physical understanding of how intrinsic and
apparent galaxy properties evolve with redshift. With the advent of
deep learning algorithms, it is possible to train directly on the pix-
elated galaxy images, at the price of requiring even larger training
samples (see Hoyle et al. 2016). It would be interesting in future
to compare the performance of the two approaches on identical
samples.

Photometric redshift estimation will remain a major issue also
for the next generation of galaxy surveys. It may be particularly in-
teresting for the forthcoming ESA Euclid mission to assess the use
of morphological information to determine photo-z. Euclid will de-
liver very high quality morphology measurements from space-based
imaging over large parts of the extragalactic sky. Optical photom-
etry will be provided from the ground, so that both its provenance
and quality will inevitably vary across the sky and across pass-
bands. Morphological information could be a valuable complement
to mitigate against the effects of calibration or quality issues in the
colours. We caution that, at the precision level of Stage-IV surveys,
more work is required to study the potential correlations between
redshift estimates, especially when morphology is included, and
shear estimates used in weak gravitational lensing applications.

The photo-z, morpho-z, and their respective pdfs produced for
the CS82 catalogue are publicly available at ftp://ftp.star.ucl.ac.
uk/johnsyh/cs82/, and the catalogue will be incorporated into the
official CS82 website in the future.
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A P P E N D I X A : C S 8 2 PH OTO - z C ATA L O G U E
H E A D E R S

Table A1 lists down all the headers and their respective descrip-
tions for the CS82 photo-z catalogue. The file cs82_phz.fits
has all information below except for the last one (the P(z)).
The files cs82_pz_phot.fits and cs82_pz_morph.fits
contain the P(z) for each object, based on the training with
ugriz+morphology and i+morphology, respectively. Values that are
not available are left blank in the catalogue.
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Table A1. List of headers and their descriptions for the CS82 photo-z catalogue.

Col. name description

OBJID_CS82 CS82 object ID
RA Right ascension (deg)
DEC Declination (deg)
FLAGS Source extraction quality flag (ranges from 0 to 3, with 0 being the best)
WEIGHT lensFit shape measurement flag. WEIGHT >0 indicates good shape measurement
FITCLASS lensFit star-galaxy classifier: 1 = stars; 0 = galaxies;

−1 = no usable data; −2 = blended objects; −3 = miscellaneous reasons; −4 = χ2 exceeded critical value
MAG_AUTO CS82 Kron i-band magnitude
MAGERR_AUTO CS82 Kron i-band magnitude error. Signal-to-noise ratio is 1.086/MAGERR_AUTO
MAG_EXP CS82 exponential fit i-band magnitude
MAG_PSF CS82 PSF i-band magnitude
REFF_EXP Exponential fit effective radius (arcsec)
ASPECT_EXP Exponential fit axial ratio
MU_MEAN_EXP Exponential fit mean surface brightness
P_EXP Exponential shape probability: ∼1 → disc galaxy; ∼0 → elliptical galaxy
N_SER Sérsic index
SPREAD_MODEL_SER Sérsic spread model, the star-galaxy separator we used for this study. All objects in this catalogue

have SPREAD_MODEL_SER > 0.008, which are considered extended objects (galaxies)
LENS Lensing tag. Objects with LENS = 1 are objects from the lensing subsample (FITCLASS = 0, WEIGHT > 0)
OBJID_SDSS SDSS object ID for objects with matched ugriz broad-band magnitudes (if available)
MAG_DERED_U SDSS dereddened u-band magnitude (if available)
MAG_DERED_G SDSS dereddened g-band magnitude (if available)
MAG_DERED_R SDSS dereddened r-band magnitude (if available)
MAG_DERED_I SDSS dereddened i-band magnitude (if available)
MAG_DERED_Z SDSS dereddened z-band magnitude (if available)
ZSPEC Spectroscopic redshift (if available)
ZPHOT Photometric redshift estimated using inputs ugriz+morphology (if available)
zMORPH Photometric redshift estimated using inputs i+morphology
zBEST Best redshift for this object, in order of priority: ZSPEC, ZPHOT, ZMORPH
ODDS_PHOT ODDS value for ZPHOT
ODDS_MORPH ODDS value for ZMORPH
ODDS_BEST ODDS value for ZBEST (=1 if ZSPEC is used)
SOURCE_SPEC Source of spectroscopy: SDSS, BOSS, DEEP2, WIGGLEZ, or VVDS (if available)
CLASS_SPEC Class of object based on spectral fit: GALAXY or QSO (if available)
z_0 - z_189 P(z) values for ZPHOT/ZMORPH, ranging from z = 0.005 to z = 1.895 in an equal step size of 0.01

A P P E N D I X B: A D D I T I O NA L P L OTS A N D
TA BLES

This section includes extra figures and tables referenced in
Sections 4.1 and 6.2.

Table B1. Comparison between the good and bad pho-
tometry samples. Top: The mean absolute difference in
magnitude for the respective bands. Bottom: Comparison
of the mean magnitude errors for the respective bands for
the good and bad photometry samples. It can be seen that
the difference in u-band magnitude is much higher than
other bands, and the bad photometry sample has mean
magnitude errors 2 to 3 times larger than those of the
good photometry sample.

Filter Mean Mean Mean
absolute error error

difference (good) (bad)

u 0.777 0.447 0.762
g 0.185 0.031 0.135
r 0.139 0.017 0.061
i 0.134 0.015 0.049
z 0.172 0.038 0.128
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Figure B1. Scatter plots of log-radius (log10rexp), surface brightness (μ), axial ratio (Q), Sérsic index (n), and shape probability (p) against spectroscopic
redshift for objects in the CS82 photo-z training set. The contours represent the unweighted (red, left) and weighted (blue, right) density of objects, weighted
with respect to the CS82 photo-z target sample.

A P P E N D I X C : EX T R A P L OTS FO R P H OTO - z
L ENSING SUBSET

This section includes figures related to the lensing subsample of the
CS82 Photo-z catalogue discussed in Section 8.
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Figure C1. Same as Fig. 10, but for the lensing subsample. The first panel on the left corresponds exactly to fig. 1 of Leauthaud et al. (2017) for direct
comparison.

Figure C2. Same as Fig. 11, but for the lensing subsample.
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