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Abstract

Nonsymmetric branching flow through a three-dimensional vessel is con-
sidered at medium-to-high flow rates. The branching is from one mother
vessel to two or more daughter vessels downstream, with laminar steady or
unsteady conditions assumed. The inherent three-dimensional nonsymmetry
is due to the branching shapes themselves, or the differences in the end pres-
sures in the daughter vessels, or the incident velocity profiles in the mother.
Computations based on lattice-Boltzmann methodology are described first. A
subsequent analysis focuses on small three-dimensional disturbances and in-
creased Reynolds numbers. This reduces the three-dimensional problem to a
two-dimensional one at the outer wall in all pressure-driven cases. As well as
having broader implications for feeding into a network of vessels, the findings
enable predictions of how much swirling motion in the cross-plane is gener-
ated in a daughter vessel downstream of a three-dimensional branch junction,
and the significant alterations provoked locally in the shear stresses and pres-
sures at the walls. Non-uniform incident wall-shear and unsteady effects are
examined. A universal asymptotic form is found for the flux change into each
daughter vessel in a three-dimensional branching of arbitrary cross-section
with a thin divider.

1 Introduction

Branch-junction sites are medically important for flow blockage and disease initi-
ation [4, 26, 25, 35, 12, 27, 3]. They significantly influence cardiovascular perfor-
mance in the human torso and cerebrovascular effects in the head. The need to
increase understanding of angiogenesis has prompted much work [15, 22, 29] on
arterial and similar networks and their evolution. For example, a principal cause
of haemorrhagic stroke is cerebral arteriovenous malformations [41, 21, 18, 2, 38],
where one upstream vessel (mother) typically supplies incident blood flow to many
downstream vessels (daughters) instead of just the conventional two downstream
vessels. Additionally, reconnections can occur in which many daughter vessels
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merge further downstream into a few grand-daughter vessels. Our continued re-
search here, which springs from long-term collaborations with clinicians at the
National Hospital for Neurology and Neurosurgery, Queen Square, London, UK is
based on the key role of branch junctions in haemodynamical modelling.

In this paper our interest is in specific applied mathematical questions that
have arisen from consideration of the physiological issues. The questions, which
are difficult and not previously addressed, we believe are fundamental to under-
standing the three-dimensional (3D) flows present and to appreciation of the flow
structure. They centre on trends at increased flow rates. We do not claim direct
application to the physiological flows mentioned, neither are we concerned with
direct numerical solutions alone, which have been and continue to be done well by
other researchers for particular flow rates, divergence angles and so on. Instead,
our central focus is on theoretical/analytical approaches as described above. This
focus is supplemented by the expectation that any significant results or trends that
emerge are likely to apply to almost any cross-sectional shape of vessel.

Internal fluid motions through branch junctions in vessels have traditionally
been studied by means of theory, mostly applied to ideal two-dimensional (2D)
geometries and corresponding planar flows. Some main examples [23, 10, 39, 16] are
on one-to-two branchings or bifurcations from one mother vessel to two daughter
vessels, and on one-to-many branchings from one mother to many daughters [32,
31, 33]. In addition, a comparatively small number of investigations for symmetric
3D bifurcations have been pursued [32, 33, 24, 30, 6, 7, 36]. There, the symmetry
refers not only to the mother vessel shape in cross section, but also to the daughter
shapes and their associated flows being mutual mirror images with respect to
the appropriate symmetry plane. Relatively simple symmetric branching models
have also been used in developing descriptions of network flows through connected
vessels [9], motivated by possible applications to cardiovascular, lung and cranial
fluid dynamics, as well as in a variety of industrial settings.

It is clear then that most previous theoretical studies exclude the extra com-
plexity associated with nonsymmetry in three-dimensional branching flows. The
only exceptions appear to be for low flow rates [37] and for a side-branching [34]
at medium-to-high flow rates. Yet, in reality and in experiments [14, 28, 13], 3D
nonsymmetry is the most common case of all the types of branching encountered.
This is certainly the case throughout the human circulation system, including both
the trunk and the brain. This observed 3D nonsymmetry can be caused by unequal
pressures at the downstream ends of the daughter vessels, by the branching geom-
etry itself, or by the incident velocity profiles in the mother being nonsymmetric.
There are many other important specific influences such as the area ratios [31, 33,
24, 30, 6, 7, 36, 5], divergence angles, wall roughness, wall flexibility, the number
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of daughter vessels and unsteadiness, although it is noted that flow pulsatility is
less significant in the cerebrovasculature beyond the Circle of Willis.

Nonsymmetry in 3D poses severe theoretical difficulties. There is also some
difficulty in 2D nonsymmetry, but it is far less severe [23]. In 3D (unlike in 2D)
it is not known in advance, for instance, what amount of swirl emerges in the
motion within a daughter vessel downstream of any branch junction. Such lack
of prior knowledge tends to rule out the very arguments on mass and momentum
balancing that can be easily exploited analytically in 2D [32, 31, 33, 5]. In fact,
little or no analytical work on the subject of 3D nonsymmetric branching flows
at medium-to-high flow rates has been done as far as we know. The Tadjfar &
Smith study [36] offers some promise based on the use of small-angle theory. Their
theoretical results, for a single mother flow through a tube of circular cross section
dividing into two divergent daughters, are found to agree reasonably closely with
direct simulations for angles of divergence up to 120 degrees. Thus, a surprisingly
wide range of divergence angles seems to be covered by the theory, over a range of
medium flow rates with Reynolds numbers in the low hundreds typically. Charac-
teristic Reynolds numbers of practical/biomedical interest are also in the hundreds
and divergence angles in reality are extremely varied [36]. Yet more guidance from
direct computations could be helpful for insight into other fundamental settings.

The current investigation into fundamental 3D nonsymmetric branching mo-
tions combines computational and analytical contributions along with comparisons
between them. The computational contribution uses a lattice-Boltzmann approach
[19, 40] to simulate an incompressible flow driven by a pressure gradient through a
branching structure and is able to provide some insight into nonsymmetric effects
over a range of flow rates. The analytical contribution is concerned mainly with
small disturbances and medium-to-high Reynolds numbers. This is partly because
such disturbances seem the obvious first ones to address and the above computa-
tions suggest their usefulness could persist over a surprisingly broad range of flow
conditions. In the analytical investigation, the end pressures are assumed to apply
over a relatively short axial length scale comparable with the representative tube
diameter, and they are prescribed whereas in a fuller system they would be related
to the long-scale pressure differences as in previous works [30, 36]. Shape effects
and others can be likewise considered over the same axial length scale. The one-
to-two and one-to-many cases of branching as before are both of major biomedical
interest.

Section 2 describes the branching-flow configuration. The motion is taken to
be laminar, steady or unsteady, but with three-dimensionality and nonsymme-
try throughout, and the contained fluid is taken to be incompressible. Section
3 then presents the numerical methodology and some results, leading on to the
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Figure 1: Schematic diagram of the 3D branching flow configuration from one
mother tube to two daughter tubes, in nondimensional terms. Length scales are
broadly O(1) in x, y, z and the velocities u, v and w are also typically O(1). More
daughter vessels are also considered in the paper.

analysis in section 4. The crucial influence of the incoming velocity profile in the
mother tube is felt through a normalised wall-shear distribution, λ(s), where s is
the distance measured tangentially to the wall in the cross-sectional plane. Steady
pressure-driven flows with two or more daughter tubes are considered first in sec-
tion 4. These pressure-driven flow analyses show how pressure differences can be
sustained within a short length scale in the neighbourhood of a 3D branch junction,
an important aspect for network modelling which has to deal with all length scales
in effect. Section 4 also considers shape-driven flows and corner vortices. Compar-
isons between computation and analysis are given in section 5. The influence of
a non-uniform λ(s) distribution is then discussed in section 6, and unsteady flows
are investigated in section 7. Conclusions, including final comments, are made in
section 8.

2 Branching-flow configuration

The branching configuration is shown schematically in Figure 1 for a one-to-two
case. The length scales of concern include those comparable with the typical tube
cross-sectional distance aD, where the subscript D denotes a dimensional quantity.
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The lengths, velocities, pressure and time to be used here are non-dimensionalised
with respect to aD, uD, ρDu2

D, aD/uD in turn, where uD is a representative velocity
in the incident flow and ρD is the density of the incompressible fluid. In non-
dimensional Cartesian terms, the axial coordinates and velocities in the mother
tube are x, u respectively, while those in the cross-plane are y, v and z, w; the
pressure variation is p and the time is denoted by t. For convenience we shall also
use s and n as corresponding orthogonal non-dimensional coordinates which are
tangential and (inwardly) normal to the outer walls respectively, in the cross-plane.

The Reynolds number Re is aDuD/νD where νD is the kinematic viscosity.
Ahead of the branch junction, where x is negative, the incident cross-sectional
profile of the mother tube is taken to be of a general smooth shape; its contained
forward-flow velocity profile may be a fully developed one but, in any case, it has
a positive normalised wall-shear distribution λ(s), i.e. ∂u/∂n at the wall, which
could depend on the position s around the outer wall.

3 Lattice-Boltzmann computations and results

Lattice-Boltzmann methods are based on kinetic theory and solve a discretised
version of the Boltzmann equation computed on a lattice [1, 11, 40]. It is pos-
sible to show via the so-called Chapman-Enskog asymptotic expansion (in or-
ders of the Knudsen number) that the solution to the standard lattice-Boltzmann
approach represents a weakly-compressible approximation to the incompressible
Navier-Stokes equation with an error comparable to the square of the Mach num-
ber [40]. Since its appearance 30 years ago, the simple formulation of the lattice-
Boltzmann approach with local update rules based on particle interactions, cou-
pled with its remarkable scalability for parallel processing systems, has led it to
becoming a popular alternative numerical scheme for fluid dynamics problems. Its
weakly-compressible nature means that the pressure satisfies an equation of state
and therefore, unlike solving the incompressible Navier-Stokes equation, special
numerical treatments are not required to solve a Poisson-type problem to obtain
the pressure variations across the domain. Lattice-Boltzmann approaches are also
ideally suited to multiphase flow and particle suspensions, the physics of which are
vitally important in many aspects of physiological fluid dynamics [1].

The basic equation solved by our numerical simulation is

∂Fi
∂t

+ ci·∇Fi = −1
τ

(Fi − F eq
i ) , for i = 1, . . . , N , (1)

where ci are a finite set of N velocities, with associated distribution functions
Fi(x, t) that describe the statistical distribution of gas particles. The collision
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Figure 2: Typical branching geometry used in the lattice-Boltzmann simulations.

operator on the right-hand side assumes the Bhatnagar, Gross and Krook approx-
imation holds, where τ is the relaxation time and F eq

i is the local Maxwellian
distribution based on the maximum entropy principle [40]. To compute an in-
ternal fluid flow, a 3D regular lattice must be adopted with an associated finite
set of velocities. For our simulations, the D3Q19 lattice was chosen [40] which
has 19 distribution functions Fi each associated with one of the following ve-
locities: c0 = (0, 0, 0), c1,2 = (±1, 0, 0), c3,4 = (0,±1, 0), c5,6 = (0, 0,±1) and
c7,8,9,10 = (±1,±1, 0), c11,12,13,14 = (±1, 0,±1), c15,16,17,18 = (0,±1,±1). Internal
and external lattice points are then defined on adopting a branching geometry of
interest and, by nondimensionalising the Boltzmann equation based on a charac-
teristic length scale, typical flow speed and advection time, the lattice-Boltzmann
model can be solved by a simple internal streaming process of the form:

Fi (x + ci∆t, t+ ∆t) = Fi(x, t)(1− ω) + ωF
(eq)
i , (2)

where ω = ∆t/τ is the so-called collision frequency. By carefully choosing the
nondimensional ∆t to be the Knudsen number, the distributions i 6= 0 are up-
dated and propagated at each time step along the relevant characteristic to their
nearest neighbour lattice point. The collision frequency ω is related to the effective
kinematic viscosity ν by the relation ν =

(
ω−1 − 1/2

)
/3, and, thus, ω represents
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a tunable parameter that can be used to vary the internal Reynolds number, Re,
of the flow. In our simulations an exact incompressible scheme, initially proposed
by He and Luo [19], is used for computing steady flow fields where the pressure
p(x, t) and macroscopic velocity field u(x, t) can be recovered from the distribution
functions via the relations

p(x, t) =
∑
i

Fi(x, t) and u(x, t) =
∑
i

ciFi(x, t). (3)

Finally, the local Maxwellian distribution needed to close the model is given by

F
(eq)
i (ρ,u) =Wi

[
p+ 3ci·u +

9
2

(ci·u)2 − 3
2
u2

]
, (4)

with the weights for the D3Q19 lattice beingW0 = 1/3,W1−6 = 1/18 andW7−18 =
1/36.

Figure 2 shows the typical branching vessel geometry and computational do-
main used in the lattice-Boltzmann simulations presented here. Boundary con-
ditions such as no-slip are relatively straightforward to implement in the lattice-
Boltzmann approach; indeed, one of the advantages of this methodology is its
ability to model flow in complex irregular geometries. For the typical cylindrical
branching geometries studied here, second-order accuracy for curved boundaries is
needed and therefore the no-slip condition proposed by Guo et al. [17] is used in
our simulations. To generate a nonsymmetric flow field through the branching ge-
ometry, different end pressures pM , pU and pD are maintained on the long viscous
scale where the incoming distributions are determined using a method modified
from that proposed by Inamuro et al.[20] for wall conditions. For a steady flow
field the lattice-Boltzmann iteration of updating and propagating the distribution
functions across the lattice are repeated until an unchanging macroscopic velocity
and density field is attained with constant pressure/density conditions imposed at
the ends. The collision parameter is often tuned during this iterative process to
vary the effective viscosity in order to obtain results across a range of Re numbers.

Some results from the lattice-Boltzmann simulations are presented in Figure
3 with further results appearing later, in section 5, when comparisons with the
predictions of the asymptotic analysis are made. Figure 3 is obtained from a
computation of steady flow through the branching geometry shown in Figure 2
that has 601 equally spaced lattice points across its length and 129 lattice points
across its diameter. From nondimensionalising length scales on the cylinder radius,
a minimum spacing of dx,dy,dz = 1/64 between neighbouring lattice points is
obtained. A thin straight symmetrically bifurcating divider starts halfway along
its length, that is, 301 lattice points from the upstream end. The location of the
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Figure 3: Results from 3D lattice-Boltzmann computations of a pressure-driven
flow with Re = 245 here. Flowfields are shown at nondimensional axial locations
x = 0, 1/8, 1/4 and 1/2. The left plot shows a contour plot of the axial velocity
difference in the two downstream vessels at difference axial locations. The ten level
contours represent equally spaced values from 50% to 95% of the maximum velocity
difference measured in the downstream vessels. The right plot shows scaled vectors
of (v, w) crossflow (the ×1 or ×5 shown is the relative scaling) at each axial cross
section in one of the downstream vessels.
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divider is defined in nondimensionalised Cartesian coordinates as occupying y = 0,
x > 0 and −1 < z < +1 and a nonsymmetric steady flow is generated by fixing∑

i Fi(x, t) = 1 at all upstream lattice nodes and
∑

i Fi(x, t) = 1 − 0.009 and∑
i Fi(x, t) = 1 − 0.010 either side of the divider respectively at all downstream

lattice nodes. A collision frequency ω = 1.89 was chosen and the internal streaming
and collision process given by (2) is repeated until the sum across all internal
nodes of the relative error in the axial velocity between each subsequent iteration
falls below 5 × 10−8 × (total number of nodes). The Reynolds number is then
determined by 3×64× Ū0/(ω−1−0.5), where Ū0 is the maximum absolute velocity
recorded across the upstream end of the cylinder.

The left-hand plots in Figure 3 shows the axial velocity difference |u(x, y, z)−
u(x,−y, z)| between the two daughter vessels at different cross-sections down-
stream of the divider (nondimensionalised on vessel radius). This velocity dif-
ference is shown as it represents the first-order nonsymmetric perturbed flow field
which can be straightforwardly compared to the predictions of the asymptotic anal-
ysis that follows. A significantly large perturbed axial flux appears to be present
in the corner region just downstream of the divider edge x = 0, which is expelled
from the corner over a short distance as the flow moves downstream. The right-
hand plots show the scaled (v, w) crossflow field that is present in the same corner
region, revealing the emergence of a swirling flow initiated in the corner of the
divider which creeps quickly around the outer wall away from the corner further
downstream.

4 Analysis

The analytical focus is on axial lengths of order unity and relatively small distur-
bances with Re assumed to be large, with the wall-shear factor λ(s) supposed to
be of order unity. An effectively inviscid core is expected across the majority of
the tube, along with a viscous (or, more correctly, a viscous-inviscid) layer at every
wall present. Both end-pressure and wall-shape effects are accommodated in this
study. The former effects are found to act mostly at the outer wall of the branching
configuration, whereas the shape effects are of two kinds, namely those due to the
shape of the inner walls or dividers and those due to the outer wall shaping. Each
significantly impacts the behaviour of the wall-layer, since it is especially sensitive,
but there is a core effect also. So the core and the wall layer are examined next.
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4.1 The scales and structure

We take the small characteristic non-dimensional pressure magnitude p as given,
by virtue of the end-pressure constraints in the tubes; the consequent reasoning
establishes the range of appropriate p for large Re. We concentrate on the range

|p| � Re−2/3, (5)

(which corresponds to flow rates satisfying 1� Re� |p|−3/2). The reason for this
is that, in intrinsic coordinates, a wall layer with small n is expected, when Re is
large, in which the typical u is λn plus a small disturbance, u1 say, of magnitude
significantly less than λn. Here, u and λn are equal to the first approximation
because of the incoming wall shear λ (observe that the tangent to the vessel wall
may not coincide exactly with the x direction, but is approximately so at the very
least). The main inertial, pressure-gradient and viscous forces are then represented
in magnitude by nu1, |p|, u1/(Re n2) respectively, since x is of O(1). Hence n must
be of size Re−1/3 typically, while u1 is of size Re1/3 |p| : this is smaller than the λn
term as assumed provided that Re lies within the range specified by (5). Using a
numerical example for illustration: if the non-dimensional pressure variation |p| is
as small as about 0.025 say, then from (5) the range of Re under consideration is
from around 1 to 240, as a first estimate; this is a range which is certainly of some
physical concern as well as of clear modelling interest in terms of flow reversal, for
example.

Moving on to wall-shaping effects, the wall-layer scalings above suggest ex-
amination of outer-wall shape distortions whose typical thickness is of the order
Re−1 |p|, to compare directly against the influences of the end-pressures. That, in
turn, points to consideration of divider thicknesses of a similar size. The dividers,
however, provoke pressures in the core flow that are larger than those in the wall
layer, because of the enhanced inertia in the core. Accordingly, if wall shaping is
present, different sizes of pressure variation should be anticipated in the core and in
the wall layer even when the shape distortions at the outer wall and at the dividers
are comparable. The arguments just used serve to guide the solution expansions
presented below, given that the scaled pressure in the mother tube upstream is P0

and the similarly scaled daughter tube pressures downstream are Pk, k = 1, . . . ,K,
for K daughters altogether with (K − 1) dividers.

The core motion, being a perturbation of the incoming quasi-unidirectional
motion with velocity profile denoted U0(y, z) and wall shear λ(s) in the mother
tube, has the expansion

[u, v, w, p] = [U0(y, z), 0, 0, 0] + · · ·+ εRe−1/3[u′, v′, w′, p′](x, y, z, T ) + . . . , (6)
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where the coordinates x, y, z, T are all of O(1) and the scaled velocity and pressure
perturbations u′, v′, w′, p′ are also of O(1). The first dotted (. . . ) contribution
in (6) denotes the contribution of the symmetric case [6, 7, 30], which is without
divider-thickness or end-pressure effects, whereas the εRe−1/3 contribution shown
in (6) is due to the nonsymmetry now present. The amplitude factor ε is small
and must be determined by careful consideration of the different pressure-scales
described above, as well as the Blasius-like viscous thickness generated on each
divider. Its value is identified later as Re−1/3 by virtue of the typical corner
vortex considered in subsection 4.4. We take the typical pressure p then to be of
O(εRe−2/3) in the wall layer and O(εRe−1/3) in the core. Thus, by incorporating
the corner vortex, the corresponding imposed end pressures are O(Re−1). The time
scale ts, say, is assumed to be large. Hence, the core flow response is quasi-steady,
giving the governing equations for the vector u′ = (u′, v′, w′) as

∇·u′ = 0, (7a)
U0u′x +

(
v′U0 y + w′U0 z, 0, 0

)
= −∇p′, (7b)

from the mass conservation and momentum balances. Here ∇ stands for the gra-
dient operator (∂x, ∂y, ∂z). It follows from (7) that the equation

∇2p′ =
2
(
U0 y p

′
y + U0 z p

′
z

)
U0

(8a)

holds for the pressure perturbation p′, subject to the conditions

p′ → 0 as x→ ±∞, (8b)
∂p′

∂n
= −U2

0

∂2f+
k

∂x2
at y = y+

k , (8c)

∂p′

∂n
= −U2

0

∂2f−k
∂x2

at y = y−k , (8d)

p′ → 0 as n→ 0 at the outer wall. (8e)

These boundary conditions reflect respectively the upstream and downstream end
pressures (the zeros seen upstream and downstream in (8b) echo the earlier discus-
sion on different pressures), the tangential flow conditions on the dividers, and the
necessary matching with the wall layer flow. The fk values represent the scaled
thicknesses of the (K − 1) internal dividers and yk their locations: these are the
main shaping effects within the core. Thus the size of ε allows for the first appear-
ance of shape effects, in (8c) and (8d), but its relative largeness accounts for the
condition (8b). Regarding this condition further, the pressure conditions model
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not only those relevant to simulations as described in sections 3, 4.2 but also in
principle those relevant to large networks. The conditions (8c) and (8d) in detail
stem from the requirement of tangential flow via the momentum balances, while
the wall-layer matching condition (8e) is considered in more detail below. Local
analysis shows that p′ behaves as λ

(
∂2A/∂x2

)
n3/3 as n→ 0, where the function

A(x, s, T ) represents the shaping effects from the core. Defining v1 = εRe−1/3 v′1
and w1 = εRe−1/3w′1 as the leading order velocity components in the n and s
cross-plane directions respectively, in the approach to the outer wall that leaves
v′1 ∼ n, p′ ∼ n3 and w′1 ∼ n2, but with a tangential slip velocity

u′ → A(x, s, T ) as n→ 0, (9)

in the axial direction.
In the viscous wall layer the implied flow solution is expressed in the form

[u, v1, w1, p] = [Re−1/3 λN, 0, 0, 0] + . . .

+ ε[Re−1/3 U,Re−2/3 V1,Re−1/3W1,Re−2/3 P ] + . . . (10)

where n = Re−1/3N . The outer wall is prescribed by n = εRe−1/3 F (x, z, T ),
giving N = εF (x, z, T ). The orders of the velocities and pressure in (10) are
required for conservation of mass and momentum. The time scale specifically has
t = Re1/3 T (so ts is identified with Re1/3) to affect the wall layer dynamics and is
thus relatively slow as supposed in the earlier argument, whereas x, s are again of
order unity. Hence, the unsteady viscous 3D wall-layer equations apply,

Ux + V1N +W1 s = 0, (11a)
UT + λNUx + V1λ+W1λsN = −Px + UNN , (11b)

W1T + λNW1x = −Ps +W1NN , (11c)

with the unknown scaled pressure P (x, s, T ) being independent of N because the
normal momentum balance requires ∂P/∂N to be zero at leading order. The
boundary conditions on the wall-layer system are

U = −λF, V1 = W1 = 0 at N = 0, (11d)
U → A(x, s, T ), W1 → 0 as N →∞, (11e)

(U, V1,W1)→ 0, P → P0(T ) as x→ −∞, (11f)
P → Pk(T ) as x→ +∞ in the kth daughter. (11g)

The scaled mother pressure P0(T ) and the scaled daughter pressures Pk(T ) are
those that were introduced earlier on, although now with explicit allowance for



4 Analysis 13

their possible unsteadiness. The boundary conditions above reflect the no-slip
conditions at the distorted wall in (11d), the match to the core flow in (11e) (this
leads to an algebraic decay in Y ), and the upstream and downstream pressure
conditions. Shaping effects are present in the contributions A, F , due to the core
and the outer wall in turn. To repeat, we have taken the pressure and shape to
have comparable effects in the wall layer at this stage. Further, if ε is O(Re−1/3)
or less then an extra contribution 1

2µN
2 Re−2/3 is needed in the expression for u in

(10) to account for the incident O(1) velocity profile curvature µ; associated with
that an extra term −µRe−1 x + constant is required in the pressure p. Implicit
also throughout all this is the requirement of

periodicity in s, (12)

for all the velocities and pressures.
Several points can be made at this stage. First the shape effects as seen in the

wall layer are clearly two-fold, coming not only from A(x, s, T ), which represents
the influence of the divider shaping in the core, but also from F (x, s, T ) due directly
to the outer wall shape. Again, the slip velocity A acts in the wall layer as a given
negative displacement, in view of the contributions to the axial velocity in (10) and
the condition (11e). Shape effects will be examined in detail in subsection 4.3. The
end-pressure (or pressure-driven) effects are in contrast to the shape effects in the
sense that the former, which are to be considered in subsection 4.2, are confined to
the wall layer to leading order. Such pressure-driven flows have A being zero and
so are not influenced directly by any pressure p′ in the core. Instead the induced
wall pressure in such cases dictates what the core pressure response p′ must be,
allowing for an amplitude factor reduced from that in the general case. The wall-
layer responses also imply the existence of a significant longitudinal vortex in each
corner: see subsection 4.4. Finally here, the argument also extends to unsteady
motions, and likewise allows for non-uniform λ(s) as above, as well as other realistic
effects.

4.2 Pressure-driven flows

The configuration for pressure-driven flows applies for two or more daughters where
the flow is driven merely by pressure differences, so that the shape-effect forcings
from the core and the outer wall are all absent. Thus F and A in (11d) and (11e)
are both zero here and steady flow is assumed for now. The wall-layer flow problem
set out in the previous section then has an unusual solution that V1 is identically
zero, and hence adding the x-derivative of the equation (11b) to the s-derivative
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Figure 4: The scaled wall pressure, P (x,s)
P1

, in the 1st daughter, as given by the
exact solution (14) for the pressure-driven case where K = 2.

of (11c) yields Laplace’s equation

∇̂2P = 0, (13)

for the unknown outer-wall pressure P (x, s), where ∇̂2 denotes the 2D Laplacian
∂2/∂x2 + ∂2/∂s2. The boundary conditions on P are those of the prescribed
pressures far upstream and downstream as written in (11f) and (11g), supplemented
by the requirement (12) at all finite x stations. The reduction of the originally 3D
wall-layer flow problem to the 2D Laplacian problem (13) is notable.

Being driven by spatially constant end-pressures acting up- and downstream
means that the pressure response in between involves eigensolutions in effect. These
can be seen in the following basic case of two daughters, K = 2 with end pressures
in the two daughters such that P2 = −P1. In this case there is an exact solution
given by a conformal mapping of the form

P

P1
= ± Real

(
1 + e−2ξ

)−1/2
, (14)

where ξ = x + is (a complex number with i =
√
−1), and the branching divider

terminates upstream at x = 0 with the junctions of the outer wall and the divider
being symmetrically positioned at s = π/2 and s = 3π/2. The solution exhibits the
irregular response of the pressure near the leading edge of the divider in the present
nonsymmetric setting, a response which is more severe than in the symmetric
setting [20]. There is also the series representation of the form

P

P1
=
{

ex cos s− 1
2 e3x cos 3s+ 3

8 e5x cos 5s+ . . . for x < 0,
1− 1

2 e−2x cos 2s+ 3
8 e−4x cos 4s+ . . . for x > 0,

(15)
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Figure 5: Scaled wall pressure and shear stresses obtained in two pressure-driven
cases with K = 4 and K = 8 respectively. The different solutions curves here
correspond to the fixed s values associated with the centreline on the outer wall of
each daughter vessel.

which shows the eigenforms clearly. Note that these expansions, in which the nth
coefficient is (−1/2)(−3/2) . . . (3/2−n)/(n− 1)! for n > 3, apply for the daughter
with end pressure P1; the pressure in the other daughter is, of course, equal and
opposite. This short-scale wall pressure response is presented in Figure 4.

For K > 2, conformal mapping or series solutions can again be applied (we
have carried out the former) but, in practice, seem better used as a check to a
computation. The second-order computational method adopted involves a line-by-
line relaxation in which, essentially, (13) is represented by five-point differencing
while the boundary conditions required at each divider, at each end station and
to ensure periodicity, are treated by means of local expansions. In fact it is more
convenient to work in terms of the integral of P with respect to x as the un-
known function of x, s. The irregular behaviours near the leading edges of the
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dividers present can then be accommodated accurately through a rotation of the
five-point differencing nearby, since the integral function is finite at each leading
edge. The methodology is also more easily extendable to more complex cases, see
later, as well as maintaining the Cartesian-like description on the wall. The wall
pressure solutions P are shown in Figure 5 for a K = 4 case and for a K = 8
case. For the K = 4 case the imposed end-pressures in the downstream vessels
are (+4, 0, 0,−4), whereas for the K = 8 case the imposed downstream end pres-
sures are (+7,−1,−1,−1,−1,−1,−1,−1). The figures also present some of the
corresponding induced scaled wall-shear distributions obtained analytically from
(11a)-(11c), with λ(s) constant to represent a symmetric incident mother flow,
T -dependence being absent and with P found as just above. For instance, the
integral form [30, 35]

τ1 = Φ
∫ x

−∞
(x− ξ)−2/3 ∂

∂ξ
P (ξ, s) dξ, (16)

with λ1/3Φ = −31/6 (Γ(2/3))2

2π = −0.35047 . . . determines the axial shear stress per-
turbation τ1, and a similar integral yields the cross-plane shear stress τ2, where
τ1 = ∂U/∂N and τ2 = ∂W1/∂N at the wall N = 0 respectively (see also appendix
A).

The main effects present in the wall-layer results are those of different effective
suctions into the daughter tubes as they compete with each other to draw fluid
from the mother tube. In every case, a sufficiently low end-pressure downstream in
a daughter tends to draw fluid into that daughter, causing an increase in the cor-
responding axial shear stress and directions of the neighbouring cross-plane shear
stresses that indicate cross-plane movement of fluid towards the lower-pressure
daughter. The maximal effects in the wall shear stresses occur quite close to the
daughter entrances. Upstream of the entrances the wall shear stress response is
essentially exponential in form, whereas downstream of the entrances the response
involves a comparatively slow algebraic (x−1/3) decay, consistent with (16). The
dominant response sufficiently far upstream is seen to be an axially symmetric
one, by the way. Extremes can also be investigated such as for large values of
K [32], where the wall pressure problem becomes approximately one holding for
x < 0 alone, and for small daughter-widths which lead to a global sink influence
accompanied by a local region close to the entrance of the daughter tube.

The flow configuration so far has the sum of the end pressures being equal to
zero. If the sum is nonzero, then consideration can be given to adding in a further
degree of nonlinearity in the flow response as compensation. Varying gap-widths
may also be incorporated as suggested earlier. More significantly, it is possible to
move on to find the core solution forced by the known wall pressures determined as
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Figure 6: Schematic of the antisymmetric case.

above and hence predict the swirl provoked in the core due to the pressure-driven
configuration. Here the amplitude of the velocity and pressure perturbations is
of typical size εRe−2/3 from (10), rather than the size εRe−1/3 in (6). Thus,
the newly scaled pressure in the core p is obtained from (8a)-(8e), but subject to
generally nonzero downstream end pressures instead of (8b), zero normal pressure
gradient conditions with fk = 0 replacing (8c) and (8d) at the dividers, while (8e)
is replaced by

p→ P (x, s) as n→ 0 at the outer wall. (17)

Given (17), the tangential components in the velocity perturbations grow like 1/n
as the outer wall is approached [30, 35]. The corresponding core solutions can be
derived from an analysis similar to that in the next subsection.

4.3 Shape-driven flows

In this subsection, we study shape effects where the divider thicknesses fk for
k = 1, . . . , (K − 1) are no longer zero. Specifically, we look at a single bifurcation,
from a mother tube of circular cross section to straight but divergent daughter
tubes, as examined previously in Smith and Tadjfar [36] and extend their original
short scale analysis of the core flow to nonsymmetric bifurcations (Appendix A of
[36]). Bifurcation angles here are assumed to lie between the two critical values
identified in [36], Re−1/3 / ln Re and Re−1/2, so that the viscous boundary layer is
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negligible. Smith and Tadjfar originally solve the governing equations of the core
(8) for a symmetric bifurcation with a symmetry condition on the line y = 0 (in
cylindrical coordinates here θ = s = 0, π) upstream of the divider x < 0. This
is, in cylindrical coordinates (x, r, θ), also with the velocity profile far upstream
U0 = ū(r) depending only on the radial coordinate r. Treating the wall shaping as
f(x) = xH(x) where H(x) is the Heaviside function and, for convenience, working
with the integrated pressure perturbation

q =
∫ x

−∞
p̃(x̂, r, θ) dx̂,

where p̃ = p′/α, a solution was determined of the form

q = q̂(r, θ)H(x)∓
∞∑
n=0

cos(2nθ)
∞∑
m=1

Cnm e∓γnmx qnm(r), (18)

where the eigenfunctions qnm(r) and respective eigenvalues γnm satisfy a homoge-
neous ODE in r and describe the upstream and local downstream influence. q̂(r, θ),
on the other hand, is the remnant component of q that persists far downstream in
the daughter vessel with its eigenfunctions determined by an inhomogeneous ODE
plus conditions of finiteness at r = 0 and q̂(1) = 0.

To extend this analysis to non-symmetric divergent bifurcations, the purely
antisymmetric case shown in Figure 6 must be examined. The governing equation
for q, as defined above, is given by

∇2q =
2

ū(r)
dū
dr
∂q

∂r
(19)

in cylindrical coordinates (x, r, θ) where the following boundary conditions are
imposed [36],

q → 0 as x→ −∞, (20)
q → 0 as r → 1−, (21)

qy = −ū2 for x > 0 at y = 0+. (22)
(23)

However, unlike in [36], here we impose upstream of the divider the antisymmetric
condition

q = 0 instead of qy = 0 for x < 0 at y = 0+. (24)



4 Analysis 19

Symmetric γnm Antisymmetric γ̃nm
m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4

n=0 3.83 7.02 10.17 13.32 n=0 5.34 8.54 11.71 14.87
n=1 6.73 9.98 13.18 16.35 n=1 8.06 11.36 14.59 17.79
n=2 9.34 12.70 15.98 19.20 n=2 10.59 14.02 17.33 20.58
n=3 11.82 15.30 18.66 21.94 n=3 13.02 16.57 19.96 23.28

Table 1: symmetric and antisymmetric eigenvalues.

A solution of the form (18) is sought in each downstream daughter vessel. In the
upstream vessel though we assume that the following antisymmetric form holds:

q(x < 0) =
∞∑
n=0

sin [(2n+ 1)θ]
∞∑
m=1

Dnm e+γ̃nmx q̃nm(r). (25)

The antisymmetric eigenfunctions q̃nm and eigenvalues γ̃nm satisfy an ODE similar
to that for the symmetric case, but with 4n2 replaced by (2n+1)2; thus q̃nm solves

d2q̃nm
dr2

+
(

1
r
− 2
ū

dū
dr

)
dq̃nm

dr
+
(
γ̃2
nm −

(2n+ 1)2

r2

)
q̃nm = 0, (26)

with boundary conditions q̃nm(1) = 0 and q̃nm finite at r = 0. The regular be-
haviour near zero can be analysed to show that q̃nm(r) ∼ r2n+1 as r → 0 compared
to the symmetric case where qnm(r) ∼ r2n. To calculate the eigenfunctions, we
normalise so that r−(2n+1)q̃nm → 1 as r → 0. Table 1 compares the first few eigen-
values obtained numerically for both symmetric and antisymmetric eigenfunctions,
for the case where ū(r) = (1 − r2). Importantly, it shows that nonsymmetry in
the branching shape does not lead to larger-scale upstream influence compared to
a perfectly symmetric branching.

Using a combination of symmetric and antisymmetic eigenmodes in the vessels
enables us to construct solutions of the core flow for any nonsymmetric branching
structure of two straight semicircular daughter vessels diverging at different angles
from the axis of the mother tube. In such a case we solve the governing equation
for the integrated pressure (19) with boundary conditions

qy =
{
−ū2 tan(α1)H(x) at y = 0+,
−ū2 tan(α2)H(x) at y = 0−. (27)

where α1 and α2 are the divergent angles of the upper and lower daughter respec-
tively (with symmetric branching implying α2 = −α1), both of which are assumed
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to lie below the second critical value as described in [36]; the usual boundary con-
ditions of q → 0 as x → −∞ and as r → 1− also apply. The general solution in
the upstream mother tube thus includes both symmetric and antisymmetric parts,
and takes the form

qM =
∞∑
n=0

cos(2nθ)
∞∑
m=1

CMnm e+γnmx qnm(r)

+
∞∑
k=0

sin ((2k + 1)θ)
∞∑
m=1

DMkm e+γ̃kmx q̃km(r). (28)

The solution in each daughter, I = 1 or 2, can be expressed as the sum of ex-
ponentially decaying cos(2nθ) eigenmodes and a remnant solution that persists
downstream; thus

qI =

( ∞∑
n=0

cos(2nθ)f In(r)− r sin θū2αI

)
H(x)

−
∞∑
n=0

cos(2nθ)
∞∑
m=1

CInm e−γnmx qnm(r), (29)

where tan(αI) ≈ αI has been assumed. The remnant in this case is the solution
to the following forced equation:

d2f In
dr2

+
(

1
r
− 2
ū

dū
dr

)
df In
dr
−4n2

r2
f In =

 αI
4
π

(
2ūdū

dr − r
(

dū
dr

)2
+ rūd2ū

dr2

)
n = 0,

− 8αI
π(4n2−1)

(
2ūdū

dr − r
(

dū
dr

)2
+ rūd2ū

dr2

)
n 6= 0,

(30)
where note that equation (A11) of [36] has now been corrected. For more com-
plex branching shapes, where the daughter vessels are not straight, other forced
terms need to be added to the series: for example shapes defined by exponential
dependence require exponential terms.

By means of a simple example, take the case of a side branching where α1 =
α > 0, and α2 = 0. In this case, we note that there is no remnant solution in the
second daughter vessel. By expressing

sin((2m+ 1)θ) = ±
∞∑
k=0

βkm cos(2kθ) where βnk =

{
8m+4

π((2m+1)2−4k2)
k > 0,

2
π(2m+1) k = 0,

and using the orthogonality of the qnm functions it is possible, by enforcing q and
qx continuous at x = 0, to determine all the unknown coefficients by first solving
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numerically the following matrix equation for a truncated finite set of DMnm (for
some 0 < n < N and 1 < m < M):

N∑
s=0

M∑
t=1

βns

(
1 +

γ̃st
γnp

)
DMst

∫ 1

0
q̃st(r)qnp(r)

r

ū2
dr =

1
2

∫ 1

0

(
f1
n(r)− rβn0ū

2α
) rqnp(r)

ū2
dr.

(31)
The symmetric contribution can then be determined by eliminating the antisym-
metric sin((2n+ 1)θ) term, leading to

CMnp =
1

4
∫ 1

0 [qnp(r)]2 r
ū2 dr

{∫ 1

0

(
f1
n(r)− rβn0ū

2α
) rqnp(r)

ū2
dr
}
. (32)

The daughter coefficients can be subsequently resolved by substituting the CMnp and
DMnm values back into the continuity conditions for q and qx at x = 0.

Figure 7 shows pressure plots for the side-branching case obtained for vari-
ous choices of N and M on the symmetry plane just either side of the divider
plane at (y, z) = (±0.1, 0.0). Although the pressure peaks for |x| < 0.1 are not
fully resolved, even for small M and N the main features of the upstream and
downstream influence generated by the side branching are broadly well defined.
Furthermore, the trend of the peak values obtained as N and M increase allows
a reasonably good estimate of the actual size of the peaks in the upper and lower
daughters at x = 0 for large N,M . The plot also clearly emphasises how the most
significant upstream influence stems from the symmetric CMnm contributions in the
mother vessel as x → −∞ (as predicted by the eigenvalues obtained) leading to
an adverse pressure gradient upstream on approach to the lower daughter. This
pressure gradient, however, is dramatically reversed to a favourable one just ahead
of entrance to the lower daughter vessel as the antisymmetric DMnm components
come into play over a shorter scale.

4.4 Corner vortices

The lattice-Boltzmann results shown in Figure 3 indicate significant nonsymmetric
flows in the corner region just downstream of the divider edge. The corner vortex
for the pressure-driven flow is forced by the behaviour of the wall layer in equations
(11a) to (16), which includes the jet-like behaviour of U and W1. Given (11a) to
(11g) in the pressure-driven case and λ = 1 here, the wall layer produces the
result U∗ = (iσ)1/3P ∗L(η) via the Fourier transform U∗ =

∫ +∞
−∞ U e−iσx dx, where

the asterisk denotes the transformed variable and L(η) is related [35] to the Airy
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Figure 7: Shape effects - side branching case with α1 > 0 and α2 = 0. Pressure
plots on the symmetry plane just either side of the divider plane for various values
of N and M .

function Ai(η) via

L(η) = Ai(η)
∫ η

0
Ai−2(η2)

∫ η2

∞
Ai(η1) dη1 dη2.

Hence, there is a transformed axial mass-flux effect given by the finite part of
the integral of U∗ over all positive N which yields C1P

∗. Here η = (iσ)1/3N
and the constant C1 = −0.136 . . . approximately; see also appendix A. A second
integration, over θ from 0 to π/2 and with a sign change, predicts the effective
azimuthal flux approaching the corner as, therefore,

−C1

∫ π/2

0
P (x, θ) dθ. (33)

The integral here is nonzero at all positive x values because of the form of the
pressure in (15); the nonzero flux and the associated nonzero swirl velocity W =
W3(N) at θ = 0+ both feed into the corner vortex. The corner vortex is also forced
by the spillover of fluid from the other nearby corner region in a sense, but this is
merely a mirror effect. The value of the integral in (33) at x = 0+ in particular is
found to be 1.6 approximately.
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The corner region is of small square cross-section having (1−r, θ) = Re−1/3(Y, Z)
but x = O(1). The flow solution expands as

[u, v, w] =
[
Re−1/3 Ū1,Re−2/3 V̄1,Re−2/3 W̄1

]
+ . . . ,

and p = Re−1
(
−g1x+ d1 + P̄1(x)

)
+ Re−4/3 P̄2 + . . . , (34)

where g1 and d1 are given constants from the original pipe flow and P̄1(x) is the
value of P on approach to the presently studied corner. Here the unknowns Ū1,
V̄1, W̄1, P̄2 depend on x, Y and Z. The scales in (34) are implied mostly by the
balances between uux and Re−1 uyy, Re−1 uzz in the x-momentum equation, with
y ∼ z, and similar balances in the y- and z-momentum equations, allied with the
nontrivial continuity equation. Extra terms arise from the surrounding or incident
flow properties. The nature of the corner region dictates that ε = Re−1/3 such
that the pressure has the form in (34), owing to the nonlinear balances governing
the corner flow. These are:

∂Ū1

∂x
+
∂V̄1

∂Y
+
∂W̄1

∂Z
= 0, (35)

Ū1
∂Ū1

∂x
+ V̄1

∂Ū1

∂Y
+ W̄1

∂Ū1

∂Z
=
(
∂2

∂Y 2
+

∂2

∂Z2

)
Ū1, (36)

Ū1
∂V̄1

∂x
+ V̄1

∂V̄1

∂Y
+ W̄1

∂V̄1

∂Z
= −∂P̄2

∂Y
+
(
∂2

∂Y 2
+

∂2

∂Z2

)
V̄1, (37)

Ū1
∂W̄1

∂x
+ V̄1

∂W̄1

∂Y
+ W̄1

∂W̄1

∂Z
= −∂P̄2

∂Z
+
(
∂2

∂Y 2
+

∂2

∂Z2

)
W̄1. (38)

That is, we have a nonlinear vortex motion [30, 6, 7, 36, 8] in the corner. Note
that Blyth & Mestel [7] also identified a vortex in the symmetric case where the
influence is mild whereas, in the present nonsymmetric setting, the influence is
pronounced since the axial mass flux in the corner vortex is comparable with that
in the core and the wall layer. The boundary conditions on the vortex include no
slip at the walls Y = 0, Z = 0, matching with the Blasius-like layer on the divider
[30, 6, 7], and crucially the matching condition

W̄1(Y,Z)→W3(Y ) as Z →∞, (39)

to take account of the swirl from the wall layer above, accompanied with a starting
condition at x = 0+. The main point perhaps is that the nonlinear mechanism here
means that flow separation can occur, despite the relatively small responses in the
core and wall layers. Higher imposed end pressures would lead to restructuring
arising first in the corner vortex. Numerical treatment is necessary in general,
possibly as implemented by Bowles et al [8, 9].
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5 Comparing analysis and computations

Steady flow solutions were obtained computationally as described in section 3
through iterating the internal streaming equation (2) with no-slip conditions and
long-range unequal pressure drops imposed, and the viscosity was tuned via the
collision parameter ω to obtain steady flow solutions across a range of Re values.
To validate the short-scale effects predicted by the asymptotic analysis of pressure-
driven flows in section 4.2 we need to separate the short-scale pressure jump (as
shown in Figure 4) from the longer scale nonsymmetric pressure gradients driv-
ing the upstream flow. The schematic of the computational domain in Figure 2
highlights how this is done to enable the mass flux perturbation obtained from the
lattice-Boltzmann simulations to be directly compared to pressure-driven asymp-
totic theory. Once converged steady flow and pressure fields were obtained, the
short-scale pressure jump ±P1 was calculated from the wall pressure difference ∆P
across the symmetry line at the axial position x = 0, where the divider starts, via
the relation |∆P | =

√
2P1, obtained from equation (14) of the wall-layer analysis.

The mass flux perturbation, calculated as the difference between axial mass fluxes
obtained in the downstream vessels with end pressures of opposite sign, and given
in the K = 2 case as

M1 =
1
2

∣∣∣∣ ∫ π/2

−π/2

∫ 1

0
u(x, r, θ) r drdθ −

∫ 3π/2

π/2

∫ 1

0
u(x, r, θ) r drdθ

∣∣∣∣
was determined at various axial locations downstream of the divider start. Figures
8 shows a plot of M1/P1 against ln Re for the K = 2 case adopting the geometry
described in section 3.

For the pressure-driven case, one reasonable validation between the analysis
and LBM computation is to examine the mass flux perturbation in one daughter
vessel of cross section D. Given the expansion (10) and the algebraic decay of
the jet-like U profile in the outer reaches of the wall layer, the analysis produces
the logarithmic predictions of π/(3K) ln Re+O(1) for the axial mass-flux effect
in each daughter; this asymptote is displayed as a dotted line in Figure 8. The
constant term in the asymptote arises from mass-flux contributions from the core
flow, including ∫ 1

0

∫ +π/2

−π/2

1
U2

0 (r)
dU0

dr

∫ ∞
−∞

∂q

∂r
(x̂, r, θ) r dx̂drdθ,

as well as those contributions arising in the corners, obtained from (33), and the
finite-part contribution from the outer-wall layer (see appendix A). The agreement
seen here between the results of simulation and analysis is increasingly affirmative
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Figure 8: Mass-flux comparison between lattice-Boltzmann simulations and
asymptotic analysis for a one-to-two branching. Circles are LBM simulations in
a lattice containing 601 × 129 × 129 points. The straight line is the asymptote
obtained from the pressure-driven analysis.

as Re increases. Similar agreement between computations and analysis was found
in the K = 4 pressure-driven case computed in a similar cylindrical geometry with
four identically shaped downstream vessels of quadrantal cross-section.

6 Non-uniform incident wall shear

When the incident pipe flow itself is non-uniform such that its wall shear varies
with s then 3D nonsymmetry holds again. In general, the incident motion in the
mother tube should be expected to be complex, for example 3D, and/or not fully
developed. This background non-uniformity affects significantly the local pressure-
driven motion. The wall pressure equation is now found from (11a)–(12) to become

∇2
2P −

3
2λ(s)

dλ
ds
∂P

∂s
= 0. (40)
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Figure 9: Scaled wall shear stresses obtained from integrals (41) and (42) in the
case of a non-uniform incident wall shear. In this 1-into-4 branching case, λ(s) =
1 + 0.8 sin(s) and the numerical simulations calculate the wall pressure in the
nondimensional range −3 < x < 3 and 0 < s < 2π. The four lines are s =
0, π/2, π, 3π/2.

This was solved computationally for various λ(s) distributions. The scaled wall
shear stresses then follow from the previous algebraic manipulation giving

Φ−1τ2 = I(Ps) =
∫ x

−∞

Ps(ξ, s)
(x− ξ)2/3

dξ,
∂τ1

∂x
= −∂τ2

∂s
+

1
2λ(s)

dλ
ds
τ2. (41)

Upon integration, this yields the following for the axial shear:

τ1 = − 2
3λ(θ)

dλ
ds

∫ x

−∞
τ2 (ζ, s) dζ + ΦI(Px). (42)

Results are presented in Figure 9 for a non-uniform incident shear of the form
λ(s) = 1 + 0.8 sin(s).

Extremes of interest are for the scaled incident shear λ(s) becoming small or
large locally near some particular s value, say s0. The scalings then act as follows.
If λ is small and positive then an equal scaling of (s − s0) and x retains all the
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Figure 10: Unsteady Flow: periodic fixed-frequency forcing starting from rest in
the form sin(t) for the caseK = 4. (a) Evolution of the scaled axial wall-shear stress
τ1 versus axial location over two periods of oscillation. (b) Corresponding velocity
profiles at x = 0 against Y over two periods of oscillation. (c) Corresponding
velocity profiles at x = 0 against Y but for a higher frequency forcing, sin(4t) over
eight periods of oscillation.

contributions in the governing equation (40) and so the full system applies, the
only change being that the streamwise and spanwise ranges become infinite in
effect. The local problem for pressure thus appears to be a closed one. Over
the main length scale of O(1) values of x, however, the streamwise derivatives in
(40) generally have negligible effect and thus the scaled pressure is simply Π0(x),
the local pressure variation. Globally in that case, the governing equation (40)
also continues to hold but now λ behaves as say λ2(s − s0)2 near s ≈ s0 where
λ2 is a positive constant. For x of order unity the pressure P then responds as
Π0(x) +O((s− s0)2) near s ≈ s0; here Π0(x) is determined by the global problem.
Similar working applies wherever λ is large and positive locally.
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7 Unsteady flows

We consider the pressure-driven setting with the end pressures being dependent on
the scaled time T , again for values of K of 2 or more. The quasi-planar equation
(13) still controls P here when λ(s) is uniform, with V1 being zero and the 3D
momentum effects cancelling each other out. So the pressure solutions of subsection
4.2 continue to apply in a quasi-steady fashion.

The velocity fields in contrast remain truly unsteady through (11a) to (11g)
and that feature affects the scaled wall shears. Here we solve the system (11a) to
(11c) driven by the new given P (x, s, T ) forms. Supposing λ(s) is uniform so that
V1 is identically zero then the axial momentum equation,

∂U

∂T
+ λN

∂U

∂x
= −∂P

∂x
+
∂2U

∂N2
, (43)

has to be solved to determine U and hence τ1, while W1 and hence τ2 can simply
be obtained afterwards from the continuity balance ∂U

∂x + ∂W1
∂s = 0, from (11a) with

V1 = 0.
In cases of fixed-frequency behaviour proportional to e−iΩT , for example, the

Fourier transform in x (x→ σ) can again be applied to give the scaled wall-shear
solution

τ∗1 = −Real

{
(iσ)2/3P ∗

1
Ai(η0)

∫ ∞
η0

Ai(η)dη

}
, (44)

where η0 = −Ω(iσ)2/3/σ is complex and the factors of e−iΩT are assumed. The
same approach of using the transform holds in principle for arbitrary forcing, but in
practice it is more fruitful to apply the methodology of subsection 4.2 to determine
the velocity profiles for instance.

Results for two representative flows are given in Figures 10(a-c) and 11(a,b).
Both cases have all the end pressures being proportional to a function of time; the
pressure profiles are as in Figure 5. In the first, Figure 10(a-c), a fixed-frequency
forcing is started from rest: Figure 10(a) gives the evolution of the wall shear stress
τ1 versus x over 10 equally spaced time intervals; the corresponding velocity profiles
at zero x are in Figure 10(b); Figure 10(c) shows the responses at four times the
frequency of the original. It is observed that where x is of order unity, in the middle
portion of the combined motion through the mother and daughters, a temporally
periodic state is set up relatively quickly, within two time periods effectively except
near the wall at higher frequency. Further downstream, however, a decaying wave
is seen to travel with the flow. In the second case shown in Figure 11(a,b) the
downstream end pressures are instead ramped up and then maintained at uniform
levels: (a) shows τ1 while (b) displays the zero-x velocity profiles. This case yields
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Figure 11: Unsteady Flow: same as in Figure 10 with low frequency but forcing is
fixed once t = π/2 (ramp-up forcing). (a) Evolution of the scaled axial wall-shear
stress τ1 versus axial location for t = 0.2, 0.4, . . . , 2.0. (b) Corresponding velocity
profiles at x = 0 against Y .

an apparently quite rapid approach to the steady state in the middle portion of the
flow but slow evolution further downstream. Analytical properties are obtainable
for small times T and for extreme time-scales such as at high or low frequencies.

8 Conclusions

Four substantial points should be highlighted in conclusion here. Firstly, as far as
we know, this combined numerical (lattice-Boltzmann) and analytical (asymptotic)
study is the first such theoretical work to tackle, in detail, the three-dimensional
nonsymmetric flow through a branching pipe, and to shed light on several novel
features of interest emerging in these flows. The branching involved is from a
single mother vessel to two or more daughter vessels and the incident motion in
the mother pipe has an arbitrary form of velocity profile subject to no slip at
the vessel walls. Secondly, the study has identified a universal prediction for the
difference in mass flux that arises when unequal pressure differences are imposed in
the branching system, at increased Reynolds numbers. The nondimensional mass-
flux difference produced is proportional to the logarithm of the Reynolds number
multiplied by a scaled pressure difference, with the coefficient of proportionality
being given in the main text. This formula agrees fairly well with the direct
numerical trends as the Reynolds number (based on the typical cross-sectional
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length) increases beyond about 100 in the current settings. The above universal
formula is for the pressure-driven case, while a form for the corresponding shape-
driven case is still to be found. The third point here concerns the feature that
the work shows, numerically and analytically, clear core and wall-layer responses
as might be expected but there is a very significant corner vortex as well. This
plays a much more important role in the present nonsymmetric scenario because
of its influence on the mass-flux balance and on the appearance of flow reversal,
than it does in the symmetric case. Finally, most of the investigation has been for
steady motions, but to help potentially in terms of improving the application we
have extended the theory to cover unsteady flows, nonsymmetric incident motion
and the extra effects due to certain basic shapes of daughter vessels.

We re-emphasise that our central concern has been with the theoretical/analytical
issues emerging as fundamental to the understanding of the 3D branching flows.
The generalisation to any cross-sectional shape of vessels exists in terms of the
intricate flow structure and the related logarithmic effects that arise in the mass
flux in each daughter vessel, for example. Increased relevance to physiological flows
may follow in future work.

Additionally we observe that although the asymptotic analysis applied in the
study tends to work quite well in terms of comparisons with the numerical solu-
tions at the above Reynolds numbers for some quantities (such as the wall shear
stress, the overall mass flux and in some sense other bulk properties), not all the
fine structure is necessarily evident at such medium effective flow rates. Nonethe-
less the so-called universal formula may prove to be useful, the qualitative physical
insight may help, and the work may provide a test case for further explorations.
Experimental studies of this quite basic three-dimensional branching with nonsym-
metry would be of considerable interest. The present study also potentially opens
the way to three-dimensional network applications.
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A The wall-layer solution downstream in the pressure-
driven cases

The axial velocity perturbation U in the viscous wall layer must decay as−p∞/N at
large N , far downstream, in view of the flow structure in the main text. The reason
is that the balances of continuity and azimuthal momentum imply Uxx ∼ Pxx/N
at large N , following which a double integration in x (given zero disturbances far
upstream) establishes the decay result far downstream with p∞ being the imposed
pressure value in the daughter vessel downstream. On the other hand, the typical
N -scale expands like x1/3 then. For large x, the corresponding wall-layer response is
therefore found to take on a similarity form in which U ∼ x1/3f(η) with η = N/x1/3

and where the azimuthal velocity component W1 = O(x−4/3) and is proportional
to s, while V1 is identically zero. Thus U is independent of s and the downstream
structure leads to requiring that the function f(η) satisfies

f ′′ +
1
3
η2f ′ +

1
3
ηf = 0, (45)
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subject to f(0) = 0 and f(∞) = 0. The behaviour at infinity, which is necessary
for matching with the core flow, stems automatically from (45) with the latter
indicating 1/η decay at large η.

A contour integral approach yields the following solution to (45) with two
arbitrary constants A, B:

f(η) = A e−η
3/9

∫ ∞
0

e−rη
3

(1 + 9r)−2/3 r−2/3dr+B
∫ 0

−1/9
eqη

3
(1 + 9q)−2/3 |q|−2/3dq.

(46)
Our boundary condition at η = 0 requires A = −B whereas f(∞) = 0 yields
Γ(1/3)B = Π, where f(η) ∼ Πη−1 for η � 1 and Π = ±p∞ is prescribed. Hence

f ′(0) =
Γ(2/3)

31/3Γ(1/3)
Π = (0.35047 . . . ) Π, (47)

determines the axial wall shear-stress factor, in particular. Integration thus yields,
after some manipulation, the result.

∫ η

0
f(η̂)dη̂ ∼ 1

3
B


3Γ(1/3) ln(η)− Γ(1/3)2Γ(2/3) + Γ(1/3)

∫ 1
0

(1−m)−2/3−1
m dm

−3−2/3
∫∞

0 e−q/9 ln(q)q−2/3dq

 ,

(48)
at large η and hence ∫ η

0
f(η̂)dη̂ ∼ Π

(
ln(η) + C2

)
for the axial mass flux far downstream, where C2 = −0.0461087 to six significant
figures. The finite part of this wall-layer contribution is small numerically; the
majority of the flux is transported in the corner region.
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