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Abstract

Coronal cavities have previously been observed to be associated with long-lived quiescent filaments and are
thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal
cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data,
restricting an analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active
region filament seen erupting at the solar limb in the extreme ultraviolet. The cavity erupted and expanded rapidly,
with the change in rise phase contemporaneous with an increase in nonthermal electron energy flux of the
associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing
suddenly as the cavity appeared. Although strongly blueshifted plasma continued to be observed flowing from the
apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy
from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows, which
resulted in the eruption of an under-dense filamentary flux rope.
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1. Introduction

Solar eruptions are the most energetic and spectacular events
that occur in the solar system. However, the processes leading
to their initiation and how they subsequently evolve remain
areas of interest to the solar physics community. The currently
accepted model of a solar eruption (commonly called the
“standard flare model”) was originally proposed by Carmichael
(1964), Sturrock (1966), Hirayama (1974), and Kopp &
Pneuman (1976). This model describes a solar flare as a
brightening driven by magnetic reconnection of coronal loops
during the eruption of a magnetic flux rope that is subsequently
observed in the corona as a coronal mass ejection (CME).
While this model has begun to be supplanted by more
physically realistic, 3D interpretations (e.g., Janvier et al.
2014), the basic configuration remains the same. The origin of
erupting magnetic flux ropes also continues to be a source of
investigation, with a debate as to whether they are pre-existing
magnetic structures or are formed “on-the-fly” during an
eruption (see, e.g., Forbes 2000; Chen 2011; Patsourakos
et al. 2013).

As magnetic structures in the solar corona, flux ropes are
difficult to observe directly. Their involvement in eruptions is
typically inferred by either extrapolating the pre-eruption
photospheric magnetic field or via direct measurement of the
magnetic field of the associated CME in situ following the
eruption. However, the existence of a pre-eruptive flux rope
configuration can also be inferred through the observations of
dark cavities in white light, extreme ultraviolet (EUV) and
X-ray observations when located at or near the solar limb

(cf. Gibson et al. 2006; Habbal et al. 2010; Kucera et al. 2012;
Reeves et al. 2012; Karna et al. 2015). These cavities are
generally associated with quiescent prominences at the limb,
leading to the conclusion that the cavity is a magnetic flux rope
supporting cool filamentary material in the lower apex (cf.
Régnier et al. 2011; Berger et al. 2012; Forland et al. 2013).
Although long-lived, these cavity structures can ultimately
become unstable and erupt, producing CMEs observable in
white light coronagraph data (e.g., Sterling & Moore 2004;
Gibson et al. 2006).
While numerous observations exist of coronal cavities

associated with quiescent filaments, coronal cavities associated
with eruptive events are much rarer (although some observa-
tions have been presented by, e.g., Kleint et al. 2015;
McCauley et al. 2015). Limb observations of eruptive events,
particularly using emission measure analysis techniques, have
revealed magnetic flux ropes with a hot, bright sheath
surrounding a cool, dark cavity that contains a hot, bright core
(cf. Hannah & Kontar 2013; Kumar & Cho 2014; Lee
et al. 2017). These observations have also been used to try
and probe the characteristics of the erupting plasma, allowing
the density and the plane-of-sky velocity of the plasma to be
estimated. Hannah & Kontar (2013) also found that the kinetic
energy of the core and the current sheet continued to grow
during the eruption, indicating that there was a continuous
input of energy. However, spectroscopic observations of
erupting coronal cavities, which provide valuable information
on how the plasma contained within these cavities is moving in
3D, remain frustratingly rare. This is primarily due to the very
small field of view of the available instruments and the long
timescales required to obtain the observations, both of which
require precise advance knowledge of the location of the
eruption.
In this paper, we report on a unique set of spectroscopic

observations of a large eruptive event with an associated
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coronal cavity across a broad temperature range. This is the first
time that such a cavity eruption has been observed spectro-
scopically to be erupting from an active region, with the
observations providing a unique physical insight into this
phenomenon.

2. Observations and Data Analysis

The event studied here erupted from the west limb of the Sun
on 2017September10 and was associated with a Geosta-
tionary Operational Environmental Satellite (GOES) X8.2
class flare, which began at 15:35UT and peaked at 16:06UT.
The eruption came from NOAA active region AR12673 and
was one of a series of major flares produced by the active
region following emergence. The evolution of the active region
and the eruption discussed here were well observed by the
Atmospheric Imaging Assembly (AIA; Lemen et al. 2012)
onboard the Solar Dynamics Observatory (SDO; Pesnell
et al. 2012) spacecraft. However, AR12673 was a highly
energetic active region and as a result was also well observed
by multiple space-based and ground-based instruments as it
evolved and transited the solar limb.

Following a series of major flares, the active region became
the focus of a major flare watch campaign, with regular
observations from the Extreme ultraviolet Imaging Spectro-
meter (EIS; Culhane et al. 2007) onboard the Hinode spacecraft
(Kosugi et al. 2007). The primary observing plan involved a
scanning raster campaign designed to study post-eruption
supra-arcade plasma (Hinode Observing Plan 244). This
campaign, which used EIS study FlareResponse01, rastered
the 2″ slit from right to left across a field of view of
239″×304″, and observed a range of emission lines from
HeII (at log T=4.7) to FeXXIV (at log T=7.2). As the
active region transited the west limb, the campaign was
designed to begin off-limb and raster toward the solar disk,
taking ≈8minutes52 s to complete each raster. As a result, the
erupting cavity described here was only observed by the rasters
that began at 15:42:26UT and 15:51:18UT, respectively, with
both rasters used in this analysis. Before the analysis, the EIS
data in each case were first aligned to the SDO/AIA field of
view to allow a direct comparison between the datasets used.

These narrowband spectroscopic observations from Hinode/
EIS were complemented using the broadband full-Sun
observations from SDO/AIA. This allowed the erupting feature
to be tracked at high cadence using multiple passbands at
multiple temperatures, with the 131, 171, 193, and 211Å
passbands providing the clearest observations of the erupting
cavity feature. The data were processed using the standard
aia_prep.pro routine in SolarSoftWare, with the data also
deconvolved with the relevant point spread functions using the
aia_deconvolve_richardsonlucy.pro routine for the differential
emission measure (DEM) analysis outlined in Section 4.

3. Results

A snapshot of the erupting cavity, as observed by the six
EUV passbands onboard SDO/AIA at T∼15:53:06UT, is
shown in Figure 1. It is clear (particularly from the 94Å,
131Å, 171Å, 193Å, and 211Å passbands in panels (a)–(e),
respectively) that the eruption appears to be a textbook example
of the “standard flare model,” with a thin bright feature
(consistent with a current sheet) connecting the bright flare
loops below to the dim cavity above. Note that these images

have been processed using the Multiscale Gaussian Normal-
ization (MGN) technique of Morgan & Druckmüller (2014) to
highlight the fine structure of the erupting cavity and the
associated current sheet. Although both features were observed
by Hinode/EIS, only the cavity is discussed here, with the
evolution of the current sheet discussed by Warren et al.
(2017). While the cavity is less clear in the 304Å passband
image shown in panel(f), a thin bright curved structure
corresponding to the filamentary plasma is visible at the lower
apex of the teardrop-shaped cavity. The evolution of this
material is clear in the movie attached to Figure 1; as the cavity
forms and rises, bright material can be seen rising with it at the
lower apex of the teardrop. This material then disappears in all
passbands almost simultaneously at ∼15:51:30UT.
The temporal evolution of the cavity was tracked using the

131, 171, 193, and 211Å passbands by fitting an ellipse to the
bright edge of the cavity at each time step in each passband.
Although this is shown in Figure 2(a) solely for the 211Å
passband, the evolution of the cavity was comparable in each
passband studied. In each case, the data were processed using
the MGN technique, with the edge of the cavity then manually
identified and fitted using an ellipse. The temporal evolution of
both the centroid (denoted by the diamonds) and width
(denoted by the cross) of the fitted ellipses are shown in the
right column of Figure 2 for each passband. A similar evolution
was observed in each passband, with the cavity found to exhibit
two distinct rise phases, particularly when considering the
evolution of cavity width. The vertical dashed lines in each of
the panels on the right-hand panel of Figure 2 indicate the point
at which the change in rise phase occurs in each passband. The
data were best fitted using two independent quadratic functions,
with the resulting fit parameters given in the right-hand side of
each panel. These measurements indicate that the cavity
initially rose slowly, then more rapidly, which is an observation
consistent with previous analyses of the initial stages of solar
eruptive events (cf. Régnier et al. 2011; Byrne et al. 2014).
The points at which the rise phase changed in each passband

are also shown in panel(g) of Figure 1, which shows the
evolution of the soft X-ray flux from the GOES spacecraft and
the nonthermal electron energy flux derived from the Fermi
Large-area Telescope (LAT; Atwood et al. 2009). Although the
flare was seen by all of the Fermi/LAT detectors as a result of
its whole Sun field of view, only the NAL04 detector was used
here, as it showed the least saturation at the lower energies. The
Fermi spectra were accumulated over 24s (because NAL04
was not the most sunward facing detector) and were fitted with
a combination of a thermal + thick target function over the
energy range 10–100kev. The nonthermal energy was then
calculated at that cadence. It is clear from both Figure 1(g) and
the right-hand panel of Figure 2 that the increased upward
acceleration of the cavity occurred during the rise phase of the
X-ray flare and as the nonthermal electron energy flux
measured by Fermi approached its peak. This indicates that
the upward acceleration of the cavity was driven by the
erupting flare below (which is consistent with the “standard”
flare model) and suggests that the observed cavity was an
erupting flux rope.
Although the cavity was best observed using the images

from SDO/AIA, it was first observed by Hinode/EIS. Due to
its west-to-east rastering approach, EIS first observed the cavity
between 15:48:00 and 15:49:20UT (i.e., during the raster that
began at 15:42 UT) as it was first developing and again at
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15:53:20–15:54:40UT as it erupted (during the raster that
began at 15:51 UT). The cavity is most clearly seen in the
FeXV emission line shown in Figure 3 for the raster beginning
at 15:42UT and the FeXXIV emission line shown in Figure 4
for the raster beginning at 15:51UT. By comparison, SDO/
AIA first observed the cavity at ≈15:50:00UT (see Figure 2).
Although the emission lines observed by EIS are also observed
by SDO/AIA (cf. O’Dwyer et al. 2010), we believe that the
SDO/AIA observations of the cavity were masked by the
broadband nature of the passbands, with the result that it was
not observed until the drop in intensity was sufficiently strong
across the wavelength range of the given passband.

While no clear filamentary material can be observed in the
FeXV image at 15:42UT shown in panel(b) of Figure 3,
strongly blueshifted emission was observed in the region
enclosed by the blue contours, corresponding to the bright
filament emission observed in HeII shown in Figure 3(c). The
line spectra observed were incredibly complex, with an

example of the blueshifted emission shown in Figure 3(d).
While the FeXV emission line is the dominant emission line in
this portion of the spectrum under normal circumstances, the
anomalous nature of the line spectrum shown in panel(d) may
suggest that this is not the case here. Other nearby lines that
could be contributing include the nearby AlIX emission line at
284.03Å that corresponds to a log T=6.1 and a FeXVII
emission line at 283.9Å that corresponds to a log T=6.9 (cf.
Brown et al. 2008; Landi et al. 2013). However, a comparable
blueshift to that seen in the FeXV emission line was also
observed in the FeXVI emission line, indicating that the
blueshift is indeed due to plasma motion rather than a
contribution from the nearby AlIX and FeXVII emission lines.
As noted above (and seen in the online movie associated

with Figure 1), the filamentary material associated with the
erupting cavity can be observed rising at the lower apex of the
teardrop-shaped cavity in each SDO/AIA passband. It was also
clearly observed in the EIS HeII data as a bright, very strongly

Figure 1. Eruption from 2017 September 10 at 15:53:06UT, as observed by SDO/AIA in the 94 Å (panel a), 131 Å (panel b), 171 Å (panel c), 193 Å (panel d),
211 Å (panel e), and 304 Å (panel f) passbands. Each image has been processed using the MGN technique of Morgan & Druckmüller (2014) to highlight the fine
structure. Panel(g): GOES X-ray flux showing the flare (solid black line) and nonthermal electron energy flux from Fermi (dashed black line). Vertical colored lines
show when the rise phase of the erupting cavity changed in each passband from slow to fast (see Figure 2). Note that the diagonal patterns in panels(b), (d), and (f)
emanating from the site of the flare are diffraction patterns and are unphysical. The associated animation shows the restructuring of the active region prior to the
eruption and formation of the cavity, which then leaves the field of view as the flare emission starts to saturate the detector.

(An animation of this figure is available.)
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blueshifted blob (see Figure 3(c) and the spectrum in panel (e)).
In fact, the spectra in Figure 3(d) show that some of the spectra
were nearly blueshifted out of the spectral window, suggesting
Doppler velocities greater than 200kms−1 (consistent with
the velocity of 214 kms−1 shown by the blue contours in
panels (b) and (c)). As a cross-section of the cavity is observed

here, this indicates that as the cavity expands and erupts, the
plasma contained within it is flowing rapidly toward the
observer and most likely draining down the legs of the flux
rope defined by the cavity. There is also some diffuse FeXXIV
emission around and across the cavity, which is consistent with
hot, low density plasma in the core of the cavity.

Figure 2. Left panel: ellipses fitted to the evolving cavity identified using the 211 Å passband. Right panels: temporal evolution of the height above the limb of the
centroid of the ellipse fitted to the cavity (diamonds) and full length of the minor axis of the ellipse fitted to the cavity (crosses) in each passband studied. The height–
time evolution was best fitted using two separate quadratic functions that are consistent with two distinct rise phases (i.e., a slow then fast rise phase). The point at
which the rise phase changed is indicated by the vertical dashed line and was identified using the variation in ellipse width. Note that the separation of the vertical
dashed line corresponding to the 131 Å passband and the missing acceleration value for the second rise phase are due to data gaps as a result of images affected
because the Automatic Exposure Control was ignored.

Figure 3. Panel (a): SDO/AIA 193 Å image at 15:49:28UT showing the full Hinode/EIS field of view (large solid box) and the field of view used in panels(b) and
(c) (small solid box). Panel(b): FeXV intensity image from Hinode/EIS. Panel(c): same as panel(b), but for the HeII emission line. Blue contours in both panels(b)
and (c) indicate where the plasma is blueshifted by 214kms−1. Note that the cavity is most apparent in the FeXV image (panel b), while the filamentary material is
most apparent in the HeII image (panel (c)). Panels (d) and (e) show sample Doppler-shifted spectra from the FeXV and HeII emission lines, respectively, illustrating
their complex nature. These Doppler-shifted spectra were constructed by converting the spectrum in the pixel defined in the legend from wavelength to velocity space
using a rest wavelength estimated by averaging the spectra in a nearby portion of quiet activity.
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The subsequent EIS raster began at 15:51:18UT, with the
corresponding FeXV image shown in Figure 4(b). At this time,
the cavity was observable in all SDO/AIA passbands,
indicating a significant drop in density and/or temperature
compared to the observations at the time of the earlier EIS
raster shown in Figure 3. Although the intensity of the FeXV
emission line had dropped too much by this time to provide
any usable observations, the FeXXIV emission line (at
Log T=7.1) shows a bright edge around the cavity (shown in
Figure 4(b). However, the corresponding spectra show that the
strong plasma flow had mainly stopped by this time, with the
spectra shown in Figure 4(c) showing a plasma velocity
peaking at 0kms−1, with some slight broadening of the
profile. This indicates that while the significant downward
plasma flow associated with the eruption of the flux rope had
mostly ceased by this time, there continued to be some draining
of hot material from the cavity.

4. DEM Analysis

While Hinode/EIS gives a unique insight into the evolution
and properties of the plasma during the eruption of the cavity,
the very low temporal resolution complicates a complete
analysis. The high temporal and spatial resolution data
provided by SDO/AIA was therefore processed using the
regularized inversion technique of Hannah & Kontar (2013) to
determine the DEM of the plasma within and surrounding the
erupting cavity. This offers a complementary dataset, which
can be used to explore the properties and behavior of the
plasma at much higher cadence. Although the Hannah &
Kontar technique was used to produce a DEM with 20
temperature bins of width Log T=0.1 from Log T=5.7–7.7,
the cavity was best observed using the temperature bins from
Log T=5.9–6.5 and Log T=6.9–7.2 (shown in the left two
columns of Figure 5). The clear observations of the erupting
cavity in the range Log T=5.9–6.5 match the cavity seen in
the FeXV emission line in Figure 3, while the edge of the
cavity observed at Log T=6.9–7.2 is consistent with the hot
diffuse emission around the cavity observed in the FeXXIV
emission line at Log T=7.1.

To investigate the temporal evolution of the filament plasma
and the erupting cavity, a cut was taken along the black dashed
line shown in each panel of the left two columns of Figure 5
and was used to produce stack plots showing the temporal
variation in DEM shown in the right two columns of Figure 5.
These stack plots show the gradual increase in the height of the
filamentary material before it suddenly disappears in all
temperature bins at ∼15:50:00UT. At this point, a cavity
appears in most of the temperature bins before rising out of the
field of view by ∼15:58:00UT (which is consistent with the
cavity evolution shown in the left-hand panel of Figure 2).
These stack plots of DEM also indicate that both the
disappearing filamentary material and the surrounding envel-
ope had a combination of cool and hot components.

5. Discussion and Conclusions

The combination of spectroscopic EIS and broadband SDO/
AIA observations presented here describe the very fast eruption
of a coronal cavity with a mixed temperature outer sheath and
containing a combination of hot and cool plasma that exhibited
very strong blueshifts. This is a unique set of observations, and
as such requires some examination to determine the physical
processes at work.
The temporal evolution of the coronal cavity obtained using

the images from SDO/AIA indicates that the cavity initially
began to rise slowly (with a velocity v∼74–181 kms−1).
However, it then began to rise much more rapidly (at a velocity
of v∼439–513 kms−1), with the Fermi nonthermal electron
energy flux indicating that this was driven by continuous
energy input from the flare below. The strongly blueshifted
plasma observed by Hinode/EIS suggest that the rapid increase
in height of the flux rope driven by the flare forced the plasma
from the apex of the flux rope toward the legs, decreasing the
density at the apex of the flux rope. As the flux rope initially
rose gradually, this drop in plasma density would have been
matched by a rise in the plasma temperature, giving the
observed combination of hot and cool plasma in the core of the
flux rope. However, the subsequent rapid rise of the flux rope
and the drop in its density also forced the expansion of the flux
rope volume, producing the sudden appearance of the cavity in

Figure 4. Panel (a): SDO/AIA 193 Å image at 15:54:16UT using a reversed color table with the full EIS field of view highlighted. Panel(b): full field of view EIS
FeXXIV intensity image from the raster beginning at 15:51UT. Panel(c): a sample FeXXIV profile for the pixel at (1101, −102), as illustrated in panel(b).
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all wavelengths. As the cavity erupted and increased in height,
the drop in pressure would have stopped the flow of plasma
toward the legs of the flux rope, which is consistent with the
lack of any clear Doppler motion in the FeXXV emission line.

While the sudden off-loading of material from an erupting
filament or a flux rope has been previously observed (e.g.,
Jenkins et al. 2017), this is the first time it has been observed
spectroscopically for an eruption associated with an active
region. These observations indicate that the eruption of the
cavity was initially driven by the impulsive phase of the solar
flare, with the increases in nonthermal electron energy

matching the changing rise phase of the cavity. This rapid
injection of a significant amount of energy forced a dramatic
downflow of plasma from the apex of the erupting flux rope
and meant that the erupting flux rope was much less dense and
exhibited a different structure to other flux rope observations
(cf. Hannah & Kontar 2013). These observations are consistent
with the “standard flare model” and highlight the vital insight
provided by spectrometers such as Hinode/EIS.

The authors wish to thank the anonymous referee whose
comments helped to improve the paper. D.M.L. is an Early

Figure 5. Left two columns show the DEM calculated from SDO/AIA EUV observations at ∼15:53:00UT. The right two columns show stack plots of the temporal
variation in DEM along the black dashed lines shown in the left two columns. Although the DEM analysis produced 20 temperature bins of width Log T=0.1 from
Log T=5.7–7.7, the cavity is best seen in the temperature bins given here (i.e., Log T=5.9–6.5 and Log T=6.9–7.2).
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