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Abstract

The ability to quantify the (dis)similarity between detrital age distributions is an essential aspect
of sedimentary provenance studies. This paper reviews three different ways to do this. A first class of
dissimilarity measures is based on parametric hypothesis tests such as the t- or chi-square test. These are
designed to objectively decide whether two samples were derived from a common population. Appealing
though such tests may appear in theory, in practice they offer little value to sedimentary geologists
because their outcome depends on sample size. In contrast, the effect size of said tests is independent
of sample size and can be used as an objective point of comparison between detrital age distributions.
The main limitation of this approach is that it requires binning or averaging, which discards valuable
information. A second class of dissimilarity measures is based on non-parametric hypothesis tests such
as the Kolmogorov-Smirnov test. These do not require pre-treatment of the data and are able to capture
more subtle differences between age distributions. Unfortunately, non-parametric tests do not have well
defined sample effect sizes and so it is not possible to use them as an absolute point of comparison
that is independent of sample size. Nevertheless, non-parametric dissimilarity measures can be used to
quantify the relative differences between samples. A third class of dissimilarity measures aims to account
for the analytical uncertainties of the age determinations. The likeness and cross-correlation coefficients
are ad-hoc dissimilarity measures that are based on Probability Density Plots (PDPs). These apply a
narrow smoothing kernel to precise data, and a wide smoothing kernel to imprecise data. In contrast, the
Sircombe-Hazelton L2-norm uses Kernel Functional Estimates (KFEs), which use exactly the opposite
strategy as PDPs. They apply a wide smoothing kernel to precise data, and a narrow smoothing kernel
to imprecise data. This paper shows that the KFE-based approach produces sensible results, whereas the
likeness and cross-correlation methods do not. The added complexity of the KFE approach is only worth
the effort in studies that combine data acquired on equipment with hugely variable analytical precision.
In most cases, there is no need to account for the analytical uncertainty of detrital age distributions. The
sample effect size, non-parametric statistics, or L2-norm can be used to graphically compare samples by
Multidimensional Scaling (MDS). In contrast with previous claims, there is no need for these measures
to be independent of sample size.
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1 Introduction

Siliciclastic sediments and sedimentary rocks cover an estimated 66% of the land surface (Blatt and Jones,
1975). Sedimentary deposits contain valuable archives of Earth history and host economically important
mineral resources. Constraining the provenance of siliclastic sediments is key to understanding these geo-
logical environments. Sedimentary provenance may be recovered using a variety of chemical, mineralogical
or isotopic properties. Detrital geochronology is one approach that has steadily gained popularity over the
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years. In this approach, a representative number of clasts are dated by radiometric geochronology. Exam-
ples of this are zircon U-Pb dating in sand (Pell et al., 1997; Garzanti et al., 2013) or silt (Nie et al., 2015),
40Ar/39Ar dating of detrital mica (Copeland and Harrison, 1990), fission track dating of apatite (Vermeesch,
2007) and zircon (Hurford et al., 1984), U-Th-He dating of apatite (Stock et al., 2006) and zircon (Rahl
et al., 2003), and cosmogenic 21Ne measurements in quartz clasts (Codilean et al., 2008). The sampling dis-
tributions are then either compared with the geologic map to identify individual point sources of sediment
(Pell et al., 1997) or, more commonly, they can be compared with each other in order to trace the flow of
sediment through an entire sediment routing system (Stevens et al., 2013; Vermeesch and Garzanti, 2015).

In provenance studies that involve a small number of easily distinguishable age distributions, reliable
interpretation may be possible by simple visual inspection. But this is seldom true for the general case in-
volving many samples that are only subtlely different. In this general case, it is useful to have some numerical
value to objectively express the (dis)similarity of two samples. Three kinds of approaches have been used to
do this. A first group of dissimilarity measures is based on parametric statistical hypothesis tests. Section 2
presents a brief primer to these procedures, using the chi-square test as an example (Section 2.1). This
Section will introduce basic concepts such as effect size (Section 2.2) and p-value (Section 2.3). It will show
that the former parameter is the only way to quantify the difference between two distributions in absolute
terms, independent of sample size. In contrast, p-values exhibit a strong dependence on sample size that
limits their usefulness for detrital geochronology.

Although Section 2 touches on some fundamental concepts that are relevant to detrital geochronology,
it is also quite technical. Readers who are more interested in the practical aspects of the subject may
wish to skip to Section 3, which discusses a second group of dissimilarity measures that are based on non-
parametric hypothesis tests such as Kolmogorov-Smirnov and variants thereof such as the Cramér-von-Mises,
Anderson-Darling and Kuiper tests. This approach has intuitive appeal, as it is better able to capture the
richness of real age distributions without the need for any pre-treatment of the data. Finally, Earth Scien-
tists have invented a number of ad-hoc dissimilarity measures that aim to capture and undo the effect of
variable measurement uncertainty (aka ‘heteroscedasticity’). Examples of this are Satkoski et al. (2013)’s
likeness parameter, Saylor et al. (2012)’s cross-correlation coefficient, and Sircombe and Hazelton (2004)’s
L2-distance. We will see that only the latter method is built on statistically sound foundations, whereas the
other two methods yield problematic results in some simple but realistic end-member scenarios.

Section 5 discusses p-value tables, in which multiple samples are compared with each other using sta-
tistical hypothesis tests such as chi-square or Kolmogorov-Smirnov. We will see that such multi-sample
comparisons are problematic due to the aforementioned sample size dependency of p-values, which is am-
plified by the increased occurrence of so-called ‘Type-I’ errors (as defined in Section 2.1). Multidimensional
Scaling (MDS) is presented as an alternative approach to multi-sample comparison that is immune to these
problems. In contrast with earlier claims by Vermeesch (2013), we will show that MDS does not require
dissimilarity measures to be independent of sample size (Section 5).

The different dissimilarity measures discussed in this paper will be illustrated with nine synthetic popu-
lations:

A consists of five uniformly distributed intervals of 10 Ma length each that are evenly spaced between 50
and 140 Ma and are separated by 10 Ma gaps.

B is identical to A but has been offset by 20 Ma. In other words, distribution B misses the first uniform
interval of distribution A and has an additional interval between 150 and 160 Ma.

C is offset by a further 60 Ma with respect to distribution B.

D is the convolution of distribution A with a Normal distribution with zero mean and 2 Ma standard
deviation. This is the sampling distribution that would result from an infinite number of grains collected
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from distribution A and dated with 2 Ma analytical precision.

E − F are the sampling distributions of populations B and C, assuming 2 Ma analytical uncertainties just
like in distribution D.

G− I are the sampling distributions of populations A− C, assuming a 2 % relative age uncertainty.

The curves shown in Figure 1 are Probability Density Functions (PDFs). They represent the relative
probability of any age or date in the population so that:

Prob(t1 ≤ t ≤ t2) =

t2∫
t1

PDF (t)dt (1)

The piecewise uniform populations A − C represent the true age distributions, which are unknown and
unobservable. The actual data that detrital geochronologists work with are not ages but dates that are
affected by some degree of analytical uncertainty. As a result of this uncertainty, the PDF of the dates is
always smoother than the PDF of the true ages (e.g., D and G vs. A; E and H vs. B; and F and I vs. C in
Figure 1). Please note that a PDF is not the same as a PDP (Probability Density Plot), as will be explained
in Section 4.1. This crucial distinction marks the key difference between the present paper and a recent
review by Saylor and Sundell (2016), whose recommendations are in direct conflict with those presented
herein.
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Figure 1: A− C: Probability Density Functions (PDFs) of three synthetic age distributions; D − F : PDFs
of the dates obtained from A− C assuming 2 Ma absolute measurement uncertainties; G− I: PDFs of the
dates obtained from A− C assuming 2 % relative measurement uncertainties.

2 chi-square

Consider the following four sets (‘samples’) of values (‘dates’):
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a = {115, 115, 88, 71, 89, 76, 110, 74, 58, 135, 90, 98, 114, 121, 90, 50, 91, 53, 136, 95}

b = {115, 55, 59, 114, 132, 98, 70, 74, 133, 57, 94, 100, 60, 135, 139, 119, 89, 51, 113}

c = {98, 133, 92, 110, 77, 77, 131, 97, 96, 149, 135, 74, 120, 130, 137, 130, 77, 78, 151, 77, 120}

d = {196, 221, 214, 129, 218, 136, 176, 150, 135, 171, 177, 158, 137, 138, 172, 195, 133, 193, 196, 177}

One way to compare these four samples is to bin them into two categories:

a b c d
≤ 125 Ma 18 15 13 0
> 125 Ma 2 4 8 20

To compare the bin counts in pairs, define the chi-square statistic as follows:

X2
stat =

k∑
i=1

(Oi − Ei)
2

Ei
(2)

where Oi is the number of observed counts and Ei the number of expected counts in the ith bin, and
k represents the number of bins (e.g., 4 in the case of a 2-sample comparison of 2 bins each). The Eis are
calculated from the marginal probabilities of the data table. For example, the expected bin counts for the
comparison of samples a and b:

a b

≤ 125 Ma (18+15)(18+2)
18+15+2+4 = 16.9 (18+15)(15+4)

18+15+2+4 = 16.1

> 125 Ma (2+4)(18+2)
18+15+2+4 = 3.1 (2+4)(15+4)

18+15+2+4 = 2.9

Applying Equation 2 to all sample pairs yields a symmetric matrix of chi-square statistics (Table 1.i).
This matrix indicates that samples a and b are the most similar (χ2

stat = 0.26) while samples a and d are
the most dissimilar (χ2

stat = 29.2). This makes sense when we know that samples a and b were both derived
from distribution D, whereas samples c and d were derived from E and F , respectively. So it appears that
the chi-square statistic has adequately captured the differences between the three underlying populations.
However, increasing the sample sizes from ∼20 to ∼200 changes all the chi-squared values (Table 1.ii). Most
of them have increased, except for the dissimilarity between a and b, which has slightly decreased in value. It
is not immediately clear what the actual X2

stat-value means, or how to interpet the X2
stat-values in a mixture

of small and large samples, as is common in detrital geochronology (Stevens et al., 2013; Vermeesch, 2013).
It is also not clear how ‘significant’ the differences between the various samples are. It would be useful if we
could somehow ‘prove’ that samples a, b, e and f were drawn from the same population, and that the other
samples were drawn from different populations.

2.1 hypothesis testing

We can formalise the two-sample comparison problem as a statistical ‘null hypothesis’ (H◦) by proposing
that:

H◦: ‘two samples (x and y) were drawn from the same population.’

If H◦ is correct, then X2
stat is expected to follow a chi-square distribution with df = (ns − 1)(nc − 1)

degrees of freedom, where ns is the number of samples (i.e. ns = 2 for a two-sample comparison) and nc
is the number of classes/bins (i.e., nc = 2 as well). The probability of observing a X2

stat-value at least as
extreme as the value obtained from Equation 2 under H◦ is called the ‘p-value’. A pre-defined cutoff value
α may be used to evaluate H◦ on a 100(1-α)% confidence level. For example, if α = 0.05 and p < α, then
H◦ is rejected in favour of the ‘alternative hypothesis’:
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(i) a b c d
a 0.00 0.26 2.99 29.2
b 0.26 0.00 0.69 22.4
c 2.99 0.69 0.00 15.4
d 29.2 22.4 15.4 0.00

(ii) e f g h
e 0.00 0.22 18.5 266
f 0.22 0.00 23.6 278
g 18.5 23.6 0.00 172
h 266 278 172 0.00

Table 1: Chi-square statistics for the comparison of (i) samples a, b, c and d, which contain ∼20 dates each;
and (ii) samples e, f , g and h, which contain ∼200 dates each, collected from populations D (samples a, b,
e and f), E (samples c and g) and F (samples d and h).

Ha: ‘two samples (x and y) were drawn from different populations.’

Applying this procedure to our synthetic data yields two tables of p-values:

a b c d
a 1.00 0.61 0.084 6× 10−8

b 0.61 1.00 0.41 2× 10−6

c 0.084 0.41 1.00 9× 10−5

d 6× 10−8 2× 10−6 9× 10−5 1.00

e f g h
e 1.00 0.64 1.7× 10−5 8.0× 10−60

f 0.64 1.00 1.2× 10−6 1.7× 10−62

g 1.7× 10−5 1.2× 10−6 1.00 3.4× 10−39

h 8.0× 10−60 1.7× 10−62 3.4× 10−39 1.00

All the p-values for comparison with sample d are well below the 0.05 cutoff, and so we can confidently
reject the hypothesis that samples a, b and c were drawn from the same population as d. It is important
to note that failure to reject the null hypothesis does not mean that H◦ has been accepted. Consider,
for example, sample c in the first half of the table. Recall that this sample was collected from a different
population (E) than samples a and b (which were sampled from distribution D), and so H◦ is most definitely
false in this case. Nevertheless, the p-values for comparison of a and b with c are 0.084 and 0.41, respectively.
Both of these are above the 0.05 threshold, resulting in a failure to reject the false null hypothesis. In
statistical terms, we have committed a ‘Type-II error’ (a Type-I error occurs when we have accidentally
rejected a true null hypothesis). It is only when sample size is increased from ∼20 to ∼ 200 dates per sample
that the chi-square test gains sufficient ‘power’ to detect the relatively subtle difference between populations
D and E. Thanks to this gain in power, the p-values for comparison of samples e and f (which are derived
from population D) and sample g (which is derived from population E) have dropped to 1.7 × 10−5 and
1.2× 10−6, respectively. This is well below the cutoff value of 0.05 and so we have successfully rejected the
null hypothesis and avoided the Type-II error. The concept of statistical power is very important but has
received little attention in the context of detrital geochronology.

2.2 effect size

Statistical power is defined as 1-β, where β is the probability of committing a Type-II error (the probability
of committing a Type-I error is simply α). If H◦ is false, then β decreases (and power increases) predictably
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with sample size n (Cohen, 1977, 1992). The minimum sample size required to reject a false null hypothesis
with 100(1-α)% confidence at least 100(1-β)% of the time crucially depends on ‘the degree to which the
null hypothesis is false’ (Cohen, 1977). The latter quantity is better known as the ‘effect size’, ε. For the
chi-square test, the effect size is defined as follows (Cohen, 1977, 1992):

ε =

√√√√ k∑
i=1

(pai − p◦i )
2

p◦i
(3)

where p◦i and pai are the true proportions of each bin under the null hypothesis and actual populations,
respectively. For the synthetic data of Figure 1, we can calculate the exact values of ε for comparison of
populations D, E and F :

D E F
D 0.00 0.31 1.15
E 0.31 0.00 0.93
F 1.15 0.93 0.00

Table 2: Chi-square population effect sizes (ε) of populations D–F .

Recall that, if H◦ is true (which is equivalent to saying that ε = 0), then X2
stat is expected to follow a

chi-square distribution with df degrees of freedom. However, if H◦ is false (i.e., ε > 0), then X2
stat will follow

a different distribution, namely the non-central chi-square distribution. This distribution shifts to higher
values as a function of the three parameters: effect size, degrees of freedom and sample size (Appendix A).
Thus, when sample size increases, the probability of rejecting the null hypothesis increases as well (Figure 2).
Equation 3 defines the effect size ε as a population property which, by definition, is an unknown quantity.
However, given two samples of finite size, we can estimate the effect size using Cramér’s V parameter:

V =

√
X2

stat

n
(4)

Computing Cramér’s V for samples a-h yields two new dissimilarity matrices:

a b c d
a 0.00 0.11 0.39 1.21
b 0.12 0.00 0.19 1.09
c 0.38 0.18 0.00 0.86
d 1.21 1.06 0.88 0.00

e f g h
e 0.00 0.03 0.30 1.15
f 0.03 0.00 0.34 1.19
g 0.30 0.34 0.00 0.91
h 1.15 1.18 0.93 0.00

Two observations stand out from these tables. First, the values comparing the small samples (a–d) do
not vary much from those comparing the large samples (e–h). Second, recalling that a, b, e and f were
sampled from population D, samples c and g from E and samples d and h from F , there is an excellent
agreement between the sample effect size V and the population effect sizes ε listed in Table 2. We will refer
to the sample effect size as the chi-square distance in the remainder of this paper (McCune and Grace, 2002).

2.3 The trouble with p-values

The ability to reject a false null hypothesis steadily increases with sample size. Conversely, the sample size
required to consistently reject a false null hypothesis is inversely proportional to the ‘degree of falseness’ of

6



n=20

n=200

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

χ
stat
2

3.84

28%

Figure 2: The non-central chi-square distribution for comparison of two samples collected from populations
D and E using sample sizes of 20 and 200 dates; the vertical line marks the 95% cutoff for the null hypothesis
(H◦) that both samples were derived from the same distribution. Small samples are more likely to yield low
X2

stat-values and fail to reject H◦, incurring a Type-I error. For the 20-grain dataset, this occurs 78% of the
time.

said hypothesis. In other words, no matter how small the difference between distributions may be, there is
always a sample size able to detect this difference. This observation is very important for the application
of statistical hypothesis testing to detrital geochronology. No two geological samples are ever exactly the
same. Even two samples collected from the same river bed, or from the same alluvial fan surface, are
likely to be slightly different for any number of reasons, such as hydraulic sorting (Garzanti et al., 2009),
sample heterogeneity (DeGraaff-Surpless et al., 2003), or sample preparation (Sircombe and Stern, 2002).
The geological record is extremely heterogeneous and no sedimentary mixing process is able to completely
erase this inherent heterogeneity. There is always a point, which may only occur after hundreds or even
thousands of analyses, where this heterogeneity becomes detectable. This simple observation casts doubt on
the scientific value of formalised hypothesis tests (Vermeesch, 2009; Ziliak and McCloskey, 2008). The key
point is that there exists a fundamental difference between a mathematical (‘null’) hypothesis and a scientific
hypothesis. Whereas a mathematical hypothesis is either true or false, scientific hypotheses are always false
(at some decimal place, Tukey, 1991). There are just two situations where statistical hypothesis tests and
p-values do serve a purpose:

1. To prevent statistically unjustified interpretations. Visual comparison of random samples and empirical
distributions can be misleading. The human brain has a tendency to see clusters and patterns where
there are none. It is very difficult to assess the ‘significance’ of random sampling fluctuations by mere
visual inspection. Statistical hypothesis tests can be useful for verifying whether perceived differences
may simply result from this randomness. If the p-value of such a test exceeds 0.05, then any differences
between two samples are most likely due to random sampling fluctuations. Put in a different way, a
p-value exceeding 0.05 means that the sample size is insufficient to detect the true difference between
the two samples of interest. The situation is slightly more complex when more than two samples are
involved, as will be discussed in Section 5.

2. In powered hypothesis tests. If the effect size is known, or is postulated a priori, then one can calculate
the sample size required to detect this effect at least 80% of the time, say. Such powered tests are
commonly used in the medical sciences, where the ‘effect’ may correspond to the gain in life expectancy
of patients, and the ‘sample size’ is the number of patients enrolled in a clinical trial. Unfortunately,
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in detrital geochronology it is rarely possible to quantify the effect size in advance. Hence the concept
of ‘statistical significance’ (p < 0.05) has little scientific value and should probably be abandoned in
this context. This point of view is gradually gaining acceptance in many fields of science (e.g., Gelman
and Stern, 2006; Stang et al., 2010; Head et al., 2015). In fact, some journals have even gone so far as
banning the use of p-values from their pages altogether (Trafimow and Marks, 2015). A case can be
made that the Earth Sciences should follow suit.

In conclusion, when comparing two age distributions, the scientifically relevant question is how different
two samples are, and not how significantly different they are. Only the effect size is able to objectively
quantify the difference between two samples independent of sample size. The widely documented utility of
the effect size (Cohen, 1977, 1992) is in direct contradiction with Saylor and Sundell (2016)’s assessment
that sample size dependence is actually a desirable quality.

3 Non-parametric statistics

The chi-square distance discussed in the previous section is naturally suited to categorical variables (e.g.,
sandstone petrography, Weltje, 2002), and not so much to continuous variables such as geochronological
dates. Although it is certainly possible to plot geochronological data as a histogram and treat the resulting
bin counts as categorical variables, this procedure requires the analyst to make a number of rather arbitrary
design decisions. First of all, (s)he must choose an appropriate number of bins. Second, (s)he must decide
where to place these bins. As a general rule of thumb, one should strive to do this in such as way that the
expected counts for the majority of bins is least 10 items, although acceptable results are obtained even when
the minimum expected number of counts is as low as 1-4 (Fienberg, 1979). Although this binning procedure
yielded good results in Section 2, these would have been (slightly) different had a different set of bins been
selected. The requirement to bin the data also reduces the ability of the chi-square distance to detect all
but the crudest differences between age distributions. For example, in the two-bin example of Section 2, the
chi-square approach hinges on the gradual shift of the three distributions towards older ages. But it would
be unable to detect more subtle changes in shape. Consider distribution B as an example (Figure 1.B).
This distribution consists of five piecewise uniform ‘blocks’. Three of these blocks fall below the 125 Ma
cutoff value used to divide the population into two bins. Now, suppose that these three sub-populations
were merged into one big block, a single bell curve, or any other shape. The chi-square test would be unable
to ‘see’ the difference between those different options.

These problems can be avoided by using non-parametric dissimilarity measures that do not require
binning. The oldest and most widely used of these is the Kolmogorov-Smirnov (KS) statistic (Massey,
1951). Given two samples x = {x1, ..., xn} and y = {y1, ..., ym}, the KS statistic is defined as the maximum
vertical difference between two empirical cumulative distribution functions (ecdf, also known as Cumulative
Age Distributions or CADs in the context of detrital geochronology, Vermeesch, 2007):

KS(x, y) = max
t∈{x,y}

|Fx(t)− Fy(t)| (5)

where Fx(t) and Fy(t) are the proportion of dates in samples x and y that are younger than t. The
KS-statistic spans values between zero (perfect overlap between the two distributions) and one (no overlap
between the two distributions). Thus, the KS-dissimilarity can be thought of as the fractional difference
between two distributions. The KS statistic, like the chi-square statistic, also changes with increasing sample
size. But unlike the chi-square test, the Kolmogorov-Smirnov test does not have a well-defined effect size
(Vermeesch, 2016). It is therefore not possible to make analytical predictions about statistical power, and
there is no KS-equivalent to the non-central chi-square distribution. However, it is possible to assess power
by simulation. Figure 3 shows the KS-distribution for two samples drawn from the same population (H◦)
and for two samples drawn from populations D and F (Ha), respectively, using sample sizes of n = 20 and
n = 200. The increase in sample size results in a narrowing of the KS-distribution, and a shift towards
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smaller values, which is most pronounced for the null hypothesis (Figure 3).
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Figure 3: The expected distribution (based on 1000 simulations) of the Kolmogorov-Smirnov (KS) statistic
comparing one sample collected from population E with another sample from the same population (H◦,
blue distributions), or with a sample from population F (Ha, red distributions), for sample sizes of n = 20
(histograms) and n = 200 dates per sample (continuous curves).

Like the chi-square statistic, the Kolmogorov-Smirnov statistic also forms the basis of a statistical hy-
pothesis test. This proceeds in exactly the same fashion as the chi-square test. Given some data, we calculate
the KS-statistic and the probability (p-value) of observing a value at least as extreme as this statistic under
the null distribution. Again, the p-value depends not only on the true difference between the populations
from which the two samples were drawn, but also on sample size. And again, the power of the KS-test
to resolve even the tiniest difference between two detrital populations monotonically increases with sample
size. In the absence of a sample effect size, the KS-test is not particularly useful for detrital geochronology.
The KS-statistic, however, is very useful for multi-sample comparisons by Multidimensional Scaling (MDS,
Vermeesch, 2013) analysis. Further details of this will be provided in Section 5. The KS-statistic and -test
are relatively insensitive to differences between the tails of distributions (Figure 4). A host of alternative
nonparametric statistics have been proposed to address this issue. Two examples of this are the Kuiper
statistic1 (Kuiper, 1960):

Kuip(x, y) = max
t∈{x,y}

[Fx(t)− Fy(t), 0] + max
t∈{x,y}

[Fy(t)− Fx(t), 0] (6)

and the Cramér-von-Mises statistic (Anderson, 1962):

CvM(x, y) =
nxny
nx + ny

+∞∫
−∞

[Fx(t)− Fy(t)]
2
dF{x,y} (7)

where F{x,y} is the CAD of the pooled samples x and y, and nx and ny are the number of dates contained
in them.

1In addition to begin more sensitive to the tails of distributions, the Kuiper-statistic and -test are also invariant to changes
of scale and origin. This makes this statistic particularly useful for circular data such as compass bearings.

9



0
0.

02
0.

04
0.

06
0.

08

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t [Ma]
0 20 40 60 80 100

t [Ma]

x xy

z

Kuip = 0.6 KS = 0.6

KS = 0.3

Kuip = 0.6

Figure 4: The Kolmogorov-Smirnov (red) and Kuiper (blue) statistics are equally sensitive to the difference
between sample distributions x and y, which are laterally offset with respect to each other. The Kuiper
statistic is more sensitive than the KS-statistic to the difference between sample distributions x and z, which
lies in their tails.

4 Ad-hoc dissimilarity measures

Geochronological dates are associated with analytical uncertainties, which can range from <0.1% (TIMS
U-Pb dating) to >100% (fission tracks). None of the dissimilarity measures proposed thus far explicitly take
into account these uncertainties. In a way, doing so is not necessary for reasons that were already briefly
touched on in Section 1. Any distribution of dates represents the convolution of a true age distribution with
an error distribution. If the latter is identical for all the samples under consideration, then the dissimilarity
measures will only encode differences between the age distributions (plus random sampling fluctuations).
Thus, it is generally not necessary to explicitly account for the analytical uncertainties, even when they are
large and vary between grains. Nevertheless, several ad-hoc approaches have been developed by geologists
to achieve this very goal. This Section will discuss three of these approaches: likeness and cross-correlation
(Section 4.1), and the Sircombe-Hazelton L2 norm (Section 4.2).

4.1 likeness and cross-correlation

In many samples, the analytical uncertainty varies greatly between grains. In statistical terminology, this
is known as ‘heteroscedasticity’. The heteroscedasticity of geochronological data generally has a physical
origin. For example, the chemical concentration of the parent nuclide may vary significantly within a sample,
making some grains easier to date precisely than others (Galbraith and Green, 1990). Whatever the origin
of the heteroscedasticity may be, it seems reasonable to consider the precise dates to be more ‘valuable’
than the imprecise ones. One popular way to visually express this point of view is the ‘Probability Density
Plot’ (PDP), which is not to be confused with the PDF of Equation 1. A PDP is constructed by summing a
number of Gaussian distributions (one for each grain) whose means and standard deviations correspond to
the individual dates and their analytical uncertainties, respectively:
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PDPx(t) =
1

n

n∑
i=1

N (t|µ = xi, σ = si) (8)

where N (t|µ, σ) is the probability of t under a Normal distribution wih mean µ and standard deviation
σ, xi is the ith date and si is its analytical uncertainty. The most precise dates in a sample stand out as
sharp peaks in a PDP, whereas imprecise dates are smoothed out. The idea behind this procedure is to
emphasize the ‘good’ data and reduce the prominence of the ‘bad’ data (Hurford et al., 1984; Brandon,
1996). Satkoski et al. (2013)’s likeness parameter, which is based on an approach used by Amidon et al.
(2005a,b), is calculated by taking two PDPs and computing the area overlap between them2:

L(x, y) = 1− 1

2

∞∫
0

|PDPx(t)− PDPy(t)| dt (9)

Saylor et al. (2012, 2013)’s cross-correlation coefficient is obtained by evaluating the two PDPs at equally
spaced points ti (for 1 ≤ i ≤ nt) and computing Pearson’s correlation coefficient for the scatterplot of
PDPx(ti) against PDPy(ti). This procedure was inspired by similar approaches in image processing (Lewis,
1995; Pan et al., 2009). But whereas digital images are naturally divided into pixels, cross-correlating PDPs
requires discretisation of continuous functions. This first point of criticism will be revisited later in this
Section. Both the likeness and cross-correlation coefficients take on values between 0 and 1. In this respect
they behave similarly to the KS and Kuiper statistics. Unfortunately this is where the similarity ends, for
neither the likeness nor the cross-correlation coefficient stand up to further scrutiny. The main problem
with these approaches is their reliance on PDPs, which are fundamentally flawed as a data visualisation tool
(Galbraith, 1998; Vermeesch, 2012). In spite of their name, PDPs do not qualify as bona fide probability
density estimators. For very precise data, they break down into sequences of spikes. For large samples
of imprecise data, PDPs are curves that fit neither the true age distributions, nor the distributions of the
measured dates (Vermeesch, 2012). These problems undermine the reliability of any derived quantities such
as likeness and cross-correlation, and further mathematical procedures that are based on these dissimilarity
measures (e.g., Sundell and Saylor, 2017). Let us illustrate this with two synthetic yet realistic examples
(Figure 5). The first example compares two samples of 20 dates that were drawn from population A with
a σ = 0.05 Ma Gaussian analytical error (Figure 5). This example emulates the case of a TIMS U-Pb
dataset with better than 1 permil precision. As predicted before and shown in Figure 5, the corresponding
PDPs consist of a succession of sharp spikes that do not overlap between the two samples, resulting in
a likeness value of 0.21% and a cross-correlation of 0.00077. These extremely low values imply that the
two samples were collected from extremely dissimilar populations. This is an absurd conclusion given that
they were, in fact, sampled from exactly the same population. For comparison, the KS and Kuiper distances
between the two samples are 0.15 and 0.25, respectively, which correctly identifies them as being very similar.

As a second example, let us now investigate what happens when the analytical uncertainties are not small
but large. Consider two uniform age distributions J and K that range from 40 to 50 Ma and from 100 to
110 Ma, respectively (Figure 6.i). Suppose that we collect one large sample (n > 100 dates, say) from each of
these populations, with 10 Ma measurement uncertainties at 1σ. The probability distributions of the dates
then range from ∼15 Ma to ∼75 Ma for the first sample and from ∼75 to ∼135 Ma for the second sample.
Thus, there is no overlap between the PDFs of either the ages or the dates (Figure 6.ii). However, when
we construct the PDPs of the two samples, this double-smooths the age distribution by adding a second
convolution with the error distribution. As a result, the PDPs range from ∼0 Ma to ∼90 Ma for the first
sample and from ∼60 Ma to ∼150 for the second one (Figure 6.iii). Thus, there exists a substantial overlap
between the PDPs, which results in non-zero likeness and cross-correlation coefficients. Again, likeness and
(particularly) cross-correlation are producing incorrect results that do not improve by increasing sample size.

2The observant reader might note that Equation 9 does not quite agree with Equation 1 of Satkoski et al. (2013). It does,
however, describe the procedure used in the spreadsheet calculation of the online supplement to that paper.
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Figure 5: Two samples j and k were drawn from population A with 0.05 Ma analytical uncertainties (1σ).
Left: due to the high precision, the Probability Density Plots (PDPs) of the two samples consist of a number
of spikes resulting in an extremely low value of 0.21% for Satkoski et al. (2013)’s likeness parameter. Right:
evaluating the two PDPs at 200 equally spaced points and plotting the corresponding values against each
other yields a cross-correlation coefficient (Saylor et al., 2013) of only 7.7× 10−4. These results demonstrate
that neither likeness nor cross-correlation are viable dissimilarity measures.

The above two examples demonstrate that likeness and cross-correlation of PDPs are built on shaky
foundations and do not qualify as valid dissimilarity measures for detrital geochronology. Replacing PDPs
with Kernel Density Estimates (KDEs, Vermeesch, 2012), as briefly mentioned by Satkoski et al. (2013),
alleviates some of these problems but also introduces two new problems. First, recall that the main advantage
of KDEs over histograms is that they are continuous functions that do not require binning. It is awkward to
then discretise these smooth curves into regular time intervals for cross-correlation. Using KDEs instead of
PDPs also produces another problem, which is how to select the bandwidth. This issue will be discussed in
more detail in the following Section, which introduces our final dissimilarity measure, the Sircombe-Hazelton
L2-norm.

4.2 Sircombe-Hazelton

A Kernel Density Estimate (KDE) is defined as:

KDEx(t) =
1

n

n∑
i=1

K(t|xi, bw) (10)

where K is the ‘kernel’ and bw is the ‘bandwidth’ (Silverman, 1986; Vermeesch, 2012). In this paper we
will assume the kernel to be Gaussian, in which case

KDEx(t) =
1

n

n∑
i=1

N (t|µ = xi, σ = bw) (11)

Note the similarity in form between the definition of a KDE (Equation 11) and that of a PDP (Equation 8).
Herein lies the source of much confusion. For small samples, the bandwidth (bw) is greater than the analytical
precision (si) whereas for large samples the opposite is true. Thus, the PDP does not converge to a KDE at
large sample sizes, contrary to claims by Pullen et al. (2014). Sircombe and Hazelton (2004) define a Kernel
Functional Estimate (KFE) as follows:

KFEx(t) =
1

n

n∑
i=1

N
(
t|µ = xi, σ =

√
c21 − s2i

)
(12)
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Figure 6: (i) Two piecewise uniform populations
J (red) and K (blue); (ii) two samples l (red) and
m (blue), drawn from J and K, respectively, and
affected by 10 Ma analytical uncertainties (1σ);
(iii) the PDPs of the two samples are smoothed
versions of the distributions of the dates shown in
the previous panel; this results in a partial over-
lap of the two curves, causing (iv) Saylor et al.
(2013)’s cross-correlation coefficient to be signif-
icantly greater than zero. This is simply an arti-
fact of the use of PDPs and says nothing about
the data.

where c1 > max(s1, ..., sn). A KFE is a special case of a KDE in which the bandwidth is allowed to vary
between sample points so as to smooth the precise data more than the imprecise data. Recall that a PDP
smooths the precise data less than the imprecise data. Thus, KFEs and PDPs work in opposite ways. KFEs
are useful when comparing two datasets that were acquired under different analytical conditions resulting in
widely differing analytical uncertainties. As an example, let us compare sample m, which was drawn from
population K (Section 4.1), with a second sample (o) drawn from this same population but with a 10 times
smaller analytical uncertainty (1 Ma instead of 10 Ma). Despite being drawn from the same population,
the dates in samples m and o are distributed differently. The sample distribution of m ranges from 80-
130 Ma, whereas that of sample o only ranges from 98-112 Ma (Figure 7). The PDPs of the two samples
look even more different, with ranges of 72-138 Ma and 97-113 Ma, respectively. The KFEs, however, are
identical (Figure 7), which makes them an effective tool to separate geologically meaningful differences from
analytically induced differences between samples. KFEs can be used as the basis of a dissimilarity measure
(Sircombe and Hazelton, 2004):
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SH(x, y) =

√∫ ∞
−∞

[KFEx(t)−KFEy(t)]
2
dt (13)

Note that the actual value of this distance is rather arbitrary as it depends on the choice of c1 in
Equation 12. In this respect, the SH-distance is similar to the chi-square dissimilarity, which depends on
the choice of bin width. But as long as the same value is used for all samples, the relative differences
between the SH-distances do carry meaningful information about the (dis)similarities of geochronological
data. Nevertheless, for datasets that do not exhibit great inter-sample differences in analytical precision, the
additional smoothing required by the SH-method is arguably not justified.
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Figure 7: (i) the Kernel Density Estimate (KDE) of sample m, which was drawn from population K with
σ=10 Ma analytical uncertainties; (ii) the KDE of sample o, which was also drawn from population K, but
with σ=1 Ma analytical uncertainties; (iii) the PDP of sample m, which is double smoothed with respect to
K; (iv) the PDP of sample o, which is smoothed less than that of m due to the smaller analytical uncertainties
of o compared to m; (v) the Kernel Functional Estimate (KFE) of sample m with c21 = 250 in Equation 12;
(vi) the KFE of sample o using the same value of c21, which smooths this precise dataset more than sample
m.

5 Multi-sample comparison

So far we have been mainly concerned with the comparison of pairs of samples. However, most geological
studies require the simultaneous comparison of multiple samples. Such multi-sample studies become in-
creasingly common as the analytical cost of detrital geochronology steadily drops with time (Vermeesch and
Garzanti, 2015). Multi-sample comparison adds a second layer of statistical complexity to the interpretation
of detrital age spectra. A common approach to making this exercise more objective is to tabulate the p-
values of statistical tests such as Kolmogorov-Smirnov and highlight all those values that are less than 0.05,
say. Besides the usual caveats regarding statistical hypothesis tests (Section 2.3), such p-value tables also
increase the occurrence of Type-I errors. To illustrate this point, consider a 9× 9 table of p-values obtained
by comparing 10 samples of 100 ages drawn from population A, using the KS-test. In this synthetic case,
the null hypothesis is true and therefore we would expect the p-values in our table to fall above the α = 0.05
cutoff. For any given pair of samples, there is a 1/20 chance of incurring a Type-I error. But in a 9× 9 table
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2 3 4 5 6 7 8 9 10
1 0.81 0.28 0.47 0.58 0.37 0.70 0.81 0.58 0.70
2 0.47 0.58 0.97 0.58 0.47 0.97 0.91 0.37
3 0.81 0.58 0.02 0.08 0.15 0.05 0.04
4 0.97 0.11 0.37 0.81 0.15 0.11
5 0.47 0.21 0.81 0.58 0.37
6 0.02 0.47 0.70 0.47
7 0.47 0.28 0.37
8 0.81 0.47
9 0.47

Table 3: Table of Kolmogorov-Smirnov p-values comparing 10 random samples of 100 ages from population
A with each other. Three of these values fall below the α = 0.05 cutoff that is typically used for a statistical
hypothesis test. In other words, three Type-I errors have been committed in this multiple comparison
exercise.

of pairwise comparisons, there are 9 × 8/2 = 36 such comparisons. This increases the chance of incurring
a Type-I error to 100(1− [19/20]36) = 84% (Table 3). In other words, the occurrence of ‘significant’ differ-
ences between age distributions in p-value tables does not necessarily mean that the underlying population
are different as well. One way to address this issue is to simply reduce the p-value cutoff from α to α/N ,
where N is the number of pairwise comparisons. This is known as the ‘Bonferroni correction’ (Rice, 1995).
Unfortunately, the Bonferroni correction is overly conservative. It reduces statistical power and increases
the chance of committing a Type-II error (Nakagawa, 2004). It is probably better to abandon p-value tables
altogether.

Simply tabulating the dissimilarities instead of the p-values works better but requires that sample sizes
do not vary much between samples. Furthermore, visual interpretation of such tables becomes progressively
more challenging with increasing number of samples. The number of pairwise comparisons between N
samples is N(N − 1)/2, so that N = 10 samples may be compared in 45 possible ways, whereas N = 100
samples represent no fewer than 4500 pairwise comparisons. It is more productive in such cases to explore
alternative, graphical means of interpreting the data. Multidimensional Scaling (MDS) is one example of
such a method that has proven to be quite useful in this respect (Vermeesch, 2013). MDS takes a table of
pairwise dissimilarities as input, and produces a set of two (or more) dimensional coordinates as output. The
scatterplot of these coordinates represents a ‘map’ in which similar samples plot close together and dissimilar
samples plot far apart. If the dissimilarity measure fulfils the metric requirements (nonnegativity, symmetry
and triangle inequality), then the configuration can be obtained by straightforward matrix algebra (Young
and Householder, 1938). All the dissimilarity measures discussed in this paper fulfil the nonnegativity and
symmetry requirements. The triangle inequality is fulfilled by the chi-square distance (McCune and Grace,
2002) and by the KS-statistic:

KS(x, z) = max
t∈{x,y}

|Fx(t)− Fz(t)|

= max
t∈{x,y}

|Fx(t)− Fy(t) + Fy(t)− Fz(t)|

≤ max
t∈{y,z}

|Fy(t)− Fy(t)|+ max
t∈{y,z}

|Fy(t)− Fz(t)|

= KS(x, y) +KS(y, z)

(14)

for any three samples x, y and z. The Kuiper statistic obeys the triangle inequality for similar reasons,
but the Cramér-von-Mises statistic and variants thereof such as the Anderson-Darling statistic (Anderson
and Darling, 1954) does not. For example, when inspecting the CvM -dissimilarities of samples b, c and d,
it turns out that:

CvM(b, c) + CvM(c, d) = 0.153 + 4.044 = 4.197 < 30.196 = CvM(b, d) (15)
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Thus, the Cramér-von-Mises statistic does not behave as a bona fide distance measure or ‘metric’. How-
ever, Torgerson (1952) showed that it is easy to fix this violation of the triangle inequality by simply adding
a constant (c2, say) to the dissimilarities. For example, for our Cramér-von-Mises example we can define:

δ(x, y) = c2 + CvM(x, y) (16)

Setting c2 = 50, it is easy to see that:

δ(b, c) + δ(c, d) = 50.153 + 54.044 = 104.197 > 80.196 = δ(b, d) (17)

which fulfils the triangle inequality. Equation 16 is the simplest example of a transformation that con-
verts dissimilaries into disparities. Generalising this concept to any monotonically increasing function further
increases the flexibility of MDS (Shepard, 1962; Kruskal and Wish, 1978; Shepard, 1980). In some cases, it
even allows the condition of symmetry to be violated. Examples of this are travel distances by airplane or
ship, which may depend on the wind direction or whether one sails up or down a river; or the level of physical
attraction between two people, which is rarely symmetric. The Shepard (1962) approach is referred to as
nonmetric MDS. The Young and Householder (1938) approach is called classical MDS, although confusingly
this term is sometimes also used for the Torgerson (1952) method, or even for any MDS algorithm, including
nonmetric approaches, that are based on a single dissimilarity matrix (as opposed to 3-way MDS, Carroll
and Chang, 1970; Vermeesch and Garzanti, 2015).

Vermeesch (2013) proposed that, for the application of MDS to detrital geochronology, it is desirable for
the dissimilarities to be independent of sample size. Only the chi-square effect size fulfils this requirement.
Contrary to claims by Vermeesch (2013), the KS-dissimilarity is actually not independent of sample size, as
discussed in Section 3 and shown in Figure 3. Fortunately, Vermeesch (2016) pointed out that Vermeesch
(2013) was not only wrong about the KS-distance being independent of sample size, but also about the
necessity of this independence requirement itself. In fact, such a condition would be incompatible with the
non-negativity requirement for noisy data. This is because the error distribution of any strictly positive
dissimilarity measure is inevitably skewed towards positive values. Consider, for example, the Euclidean
distance between two points that are drawn from Normal distributions with zero mean and a standard de-
viation σ. The expected value for this distribution is σ

√
π/2 (i.e., the mean of a Rayleigh distribution). If

σ is the standard error of the mean, then it is easy to introduce a sample size dependence on the average
Euclidean distance between points. Thus, even the Euclidean distance, which is the archetypal example of
an MDS-worthy dissimilarity measure, does not fulfil the requirement of sample size independence. To see
why this requirement is not necessary, let us consider the simple case of a three point comparison. Suppose
that we have three samples x1, y1 and z1, let d(x1, y1) and d(x1, z1) be the dissimilarities between x1 and
y1 or z1, respectively. Further suppose that d(x1, y1) < d(x1, z1). Next, consider a fourth sample x2 drawn
from the same population as x1. Assume that x2 contains a different number of dates than x1, so that
d(x1, y1) 6= d(x2, y1) and d(x1, z1) 6= d(x2, z1). In that case MDS will still work if d(x2, y1) < d(x2, z1). This
is a much weaker requirement than sample size independence. It is a requirement that is fulfilled by the
Euclidean distance, but also by the KS- and related dissimilarity measures.

As an example, Figure 8 shows the MDS configuration of 14 samples a − h and q − w, whose sampling
distributions are shown in Figure 1. Recall that samples a, b, e and f were drawn from population D,
samples c and g from population E, and samples d and h from population F . Additional samples q and u
were derived from population G, samples r and v from population H, and samples s and w from population
I. Samples a − d and q − s each contain 20 single grain ages, whereas samples e − h and u − w contain
an order of magnitude more dates. Despite the huge range in sample sizes, the MDS map shows a sensible
configuration, correctly grouping all the samples that share the same population, irrespective of sample size.
Nevertheless, it is also important to note that the differences between populations D−F and G−I are small
in comparison with the statistical ‘noise’ in the KS-dissimilarities of the small samples. This is the reason
why 200-grain sample g plots closer to 200-grain sample y (which comes from a different population) than
it does to 20-grain sample c (which comes from the same population as g).
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6 Conclusions

The effect size of parametric tests such as chi-square is the only way to compare the dissimilarity between two
detrital age distributions in absolute terms and independent of sample size. Unfortunately, the chi-square
effect size requires binning data and lacks the resolution to ‘see’ the difference between subtlely different
samples. Dissimilarity measures based on non-parametric statistics such as Kolmogorov-Smirnov or Kuiper
are much better at recognising these differences, but do exhibit a dependence on sample size. This reduces
their usefulness as an absolute point of comparison between samples of greatly different size. Fortunately,
most detrital studies only rely on the relative differences between age distributions. The rank order of, say,
the KS and Kuiper dissimilarities between samples, is independent of sample size and can be visualised by
MDS analysis.

There exists some disagreement within the detrital geochronology community about the best way to deal
with analytical uncertainty. This paper has reiterated the point previously made by Vermeesch (2012) that,
as long as all the samples in a provenance study were analysed using similar laboratory conditions there is
no real need to explicitly account for the analytical uncertainty. Deconvolution of the age distribution and
the distribution of analytical uncertainties is notoriously difficult. But for the vast majority of provenance
studies such deconvolution is not necessary, and it suffices that we directly compare the distribution of the
dates. It is only when a provenance study combines samples analysed under different laboratory conditions
exhibiting widely different precision that extra care must be taken. The Sircombe-Hazelton L2-norm has
been specifically designed for this situation (Section 4.2).

Detrital geochronology, like other areas within the Earth Sciences, is a field of research that increasingly
depends on computing and statistics for data interpretation. It is not always easy to adapt existing statistical
methods to Earth Science applications. The author of the present paper is not immune to these difficulties,
as is evident from the Errata of his paper on Multidimensional Scaling (Vermeesch, 2013, 2014, 2016) which,
fortunately, do not seem to undermine the validity of that method. More serious examples of misused
statistics are unpowered statistical hypothesis tests (Ziliak and McCloskey, 2008; Trafimow and Marks, 2015),
and the misunderstanding that PDPs are the same as KDEs due to their similar appearance (Equations 8
and 10). As difficult as it may be to get existing statistical methods right, inventing new ones is even more
difficult. Likeness and cross-correlation are examples of statistical devices that appear sensible at first but
do not stand up to further scrutiny. When assessing the performance of such ad hoc statistical methods, it
is useful to explore their behaviour under asymptotic conditions. For example, one would expect statistical
estimators of some unknown quantity to converge to the correct solution in the limit of infinite sample size
and infinitessimal analytical uncertainty. This paper has shown that PDPs, likeness and cross-correlation
do not fulfil this requirement. Given the difficulty of inventing new statistical methods, it is possibly best
to avoid doing so altogether, unless this happens in collaboration with a mathematician. One successful
example of this is the aforementioned L2-norm, which is the fruit of a collaboration between a geoscientist
and a statistician (Sircombe and Hazelton, 2004).

Appendix: power analysis and confidence intervals

As the name suggests, the non-central chi-square distribution is shifted towards higher values with respect to
the ordinary (‘central’) chi-square distribution (Section 2.2). It is not described by one but two parameters:
the degrees of freedom, df , and the ‘non-centrality parameter’, λ, which is a function of the effect size (ε)
and sample size (n):

λ = nε2 (18)

The expected value of the non-central chi-square distribution is given by:

X
2

= df + λ (19)
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Figure 8: Kolmogorov-Smirnov-based Multidimensional Scaling (MDS) configuration of samples a − h and
q−w, whose sampling distributions are shown in Figure 1. black lines connect samples drawn from identical
detrital populations. Despite an order of magnitude difference in sample size between samples a − e, q − s
(20 grains each, blue) and d− h, u− w (200 grains each, red), the MDS configuration correctly groups the
samples according to provenance. This illustrates that the sample-size dependence of the KS-dissimilarity
shown in Figure 3 does not pose a major problem for MDS analysis. The x- and y-scale are normalised to
the sum of the squared Euclidean distances within the MDS configuration.

This explains some important trends and patterns in Table 1. For example, X2
stat(a, b) < X2

stat(a, c) <
X2

stat(a, d) because ε(a, b) < ε(a, c) < ε(a, b). And X2
stat(c, d) < X2

stat(g, h) because n(c), n(d) < n(g), n(h).
Using the non-central chi-square distribution, it is possible to calculate the probability β of committing
a Type-II error for any given effect size and sample size. This is done as follows. First, we look up the
cutoff value of the central chi-square distribution for the confidence level and degrees of freedom of interest.
For example, to compare two samples drawn from populations D and E using two histogram bins, we can
choose α = 0.05 and df = (2 − 1)(2 − 1) = 1. The resulting cutoff value for χ2

stat is 3.84. Next, we look
up the percentile corresponding to this value under a non-central distribution with one degree of freedom
and a non-centrality parameter given by Equation 18. For example, when comparing samples and a and
c, λ = 20 × 0.312 = 1.9. The percentile corresponding to X2

stat = 3.84 under a non-central chi-square
distribution with λ = 1.9 is 0.72. In other words, there is a 72% chance of committing a Type-II error
and the false null hypothesis going undetected. A tenfold increase of sample size from 20 to 200 would
result in a tenfold increase of the non-centrality parameter. Under the corresponding non-central chi-square
distribution, the cumulative chance of falling below the cutoff value of 3.84 drops to only 0.8%. So increasing
sample size from 20 to 200 increases the power (defined as 1 − β) of the chi-square test from 0.28 to 0.99.
The increase in statistical power with sample size is a universal fact of hypothesis testing. The population ε
is unknown but can be estimated using Cramér’s V . We can construct a 100(1-α)% confidence interval for ε
by finding the subset of population effect sizes that are more than 100(1-α/2)% likely to yield a chi-square
value greater than (for the upper limit of the confidence interval) or less than (for its lower limit) X2

stat. See
Figure 9 for an example. Increasing sample size tightens the confidence interval for ε but essentially does
not change the value of V .
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