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ABSTRACT 
 

Buckling-restrained braces (BRBs) are energy dissipation devices which have proven to be very effective in 

improving the performance of existing and new building frames. However, their post-elastic stiffness may lead 

to excessive residual deformations in the systems to be protected, and this may cause irreparable damage and 

jeopardize the capability of withstanding multiple shocks. Previous studies demonstrated that buckling-restrained 

braced frames (BRBFs) can be used in conjunction with special moment-resisting frames to form a dual system, 

able to minimize the residual drifts and optimize the performances of the BRBFs. The objective of this present 

paper is to provide recommendations regarding the proportioning in terms of forces, stiffness and ductility of the 

two systems. For this purpose, an extensive parametric analysis under the single degree of freedom 

approximation for the dual system is carried out to shed light on the parameters that control the seismic 

performance and residual capacity of frames equipped with BRBs. A non-dimensional formulation of the 

problem allows investigating wide ranges of configurations, including the case of BRBFs and the case of BRBFs 

forming a dual system with moment-resisting frames. The results of this study provide useful information for the 

preliminary sizing and the optimal choice of the design parameters of structural systems equipped with BRBs. 

 

Keywords: Buckling-Restrained Braces; Dual Systems; Cumulative Ductility; Residual Displacement; Seismic 

Performance 

 

 

1. INTRODUCTION  

 

Buckling-restrained braces (BRBs) are elastoplastic passive energy dissipation devices (e.g. Soong 

and Spencer 2002, Christopoulos and Filiatrault 2006) employed in buckling-restrained braced frames 

(BRBFs) to resist the horizontal seismic-induced forces and dissipate the seismic energy. The use of 

these devices is gaining popularity for both new constructions and rehabilitation of existing buildings. 

In BRBs, a sleeve provides buckling resistance to an unbonded core that resists axial stress. As 

buckling is prevented, the core of the BRB can develop axial yielding in compression in addition to 

that in tension, ensuring an almost symmetric hysteretic behaviour. 

While the large and stable dissipation capacity of BRBs is corroborated by many experimental studies 

(e.g. Black et al. 2002, Merritt el al. 2003), their low post-yield stiffness may result in inter-story drift 

concentration, (Zona et al. 2012), and large residual inter-storey drifts. The latter problem is associated 

with high repair costs and disruption of the building use or occupation (Erochko et al. 2010). Sabelli et 

al. (2003) studied the seismic performance of buckling-restrained braced frames (BRBFs) reporting 

residual drifts on average in the range of 40 to 60% of the maximum drift. Usually, residual drifts 

lower than 0.5% are deemed acceptable for building frames since they would allow building 

reparability, e.g. doors, windows and elevators would still be functional (Iwata et al. 2006, 

McCormick et al. 2008). However, BRBFs designed according to the codes may exhibit residual drifts 

higher than this limit even under the design basis earthquake. In addition, the performance under 
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aftershocks may also be jeopardized by excessive residual drifts due to the main shock. 

This issue, which may impair the cost-effectiveness of BRBFs, could be avoided by using a special 

steel moment-resisting frame (MRF) in parallel with the BRBF to create a dual system configuration 

(Kiggins and Uang 2006, Ariyaratana and Fahnestock 2011, Baiguera et al. 2016). The ASCE/SEI 7-

10 (2010) considers the situation of a dual system that combines a stiff primary seismic force-resisting 

system (e.g. BRBFs) with a special MRFs, as schematically represented in Figure 1. According to 

ASCE/SEI 7-10 (2010), the MRF in dual systems should be capable of resisting at least 25% of the 

prescribed seismic force. Kiggins and Uang 2006 investigated the seismic response of a 3-storey and a 

6-storey BRBFs with and without a parallel MRFs designed to resist the 25% of the design base shear, 

showing that the MRF in parallel allows to reduce the residual drifts by about 50%, while providing 

similar performances in terms of peak inter-story drift demand. The efficiency of dual BRBF-MRF 

systems is also demonstrated in Ariyaratana and Fahnestock (2011) while using as case study a 7-

storey frame. BRBs are also employed to enhance the lateral strength, stiffness as well as the 

dissipation capacity of existing reinforced concrete (RC) buildings (Freddi et al. 2013, Di Sarno and 

Manfredi 2010). RC frames and BRBFs also form a dual system, with the former often contributing to 

more the 25% of the total base shear. 

 

 MRF BRBF 

 
 

Figure 1. Schematic dual system combining a buckling-restrained braced frame (BRBF) and a special moment 

resisting frame (MRF) 

 

The works above evaluated the efficiency of BRBFs used to form dual systems by considering only 

few case studies, without providing general indications regarding the influence of the shear ratio, 

stiffness ratio and target design ductility of the two systems on the seismic performance and their 

optimal values. In this work, an extensive parametric investigation is carried out to shed light on this 

behavioural aspect, and provide useful recommendations for preliminary design. The problem is 

analysed by assuming that both the BRBF and the MRF can be described as single degree of freedom 

(SDOF) systems. This representation, demonstrated suitable for low-rise frames under some regularity 

conditions (e.g. Kim and Seo 2004, Choi and Kim 2006, Ragni et al. 2011, Maley et al. 2010), allows 

to derive a non-dimensional formulation of the problem and highlight the few characteristic 

parameters that control the seismic performance. By changing the values of these parameters, it is 

possible to explore the performance of wide ranges of configurations under a set of ground motion 

records representative of the uncertainty of the seismic input. 

Engineering demand parameters (EDPs) of interest include the peak normalized response, the 

normalized residual displacements, and the cumulative ductility demand in the BRBs. These EDPs are 

evaluated in correspondence of the design condition, where the BRBF and MRF attain simultaneously 

their target ductility capacity. It is noteworthy that some response parameters such as the residual 

displacements may exhibit larger dispersion due to record-to-record variability effects compared to 

others (Ruiz Garcia and Miranda 2006). Thus, the reported parametric study results include not only 

the median (estimated by the geometric mean GM), but also the lognormal standard deviation  of the 

EDPs of interest. In order to provide recommendations useful for the optimal design of the coupled 

system, different design choices are investigated, corresponding to various combinations of the 

ductility demand of the BRBF and MRF, within the respective capacity limit. 
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2. PROBLEM FORMULATION 

 

2.1 Equation of motion 

 

The equation of motion governing the seismic response of a SDOF system representative of a dual 

system, as represented in Figure 2(a) can be expressed as: 

 

     f f b gmu t c u t f f u t           (1) 

 

where m and cf denote respectively the mass and the viscous damping constant of the system, ff the 

resisting force of the frame, fb the resisting force of the BRBF, üg(t) the ground acceleration input. 

 
 u(t) 

m 

 

BRB 

 

 

 

u   [ m ] 

 f
  

 [
 k

N
 ]

 

ufy fcufy 

bcuby uby 

kb 

kf 

 
 

Figure 2. a) SDOF dual system with BRB, b) Constitutive law of the dual systems. 

 

The frame is assumed to have elastoplastic behaviour, with initial stiffness kf, yield displacement ufy 

and ductility capacity fc as reported in Figure 2(b). The BRBF system has a constitutive law described 

by the model of Zona and Dall’Asta (2012). This model is characterized by a number of parameters 

describing the hardening and the hysteretic behaviour. In order to keep the problem as simple as 

possible, most of them are assumed as fixed and the BRBF hysteretic behaviour is controlled only by 

the initial stiffness kb, the yield displacement uby and ductility capacity bc. These parameters are the 

ones which exhibit significant variation from device to device and they are the design parameters 

explicitly reported in catalogues. The two models working in parallel, whose constitutive behaviour is 

illustrated in Figure 2(b), are representative of the dual SDOF system. 

Such a model can describe a wide range of structural configurations, e.g. the case of BRBFs combined 

with MRFs to form a dual system (Kiggins and Uang 2006, Ariyaratana and Fahnestock 2011, 

Baiguera et al. 2016) or retrofit applications involving BRBs inserted into existing RC frames (Freddi 

et al. 2013, Di Sarno and Manfredi 2010). 

The seismic input is characterized by significant uncertainty affecting not only its intensity, but also 

the duration and frequency content. As usual in Performance Based Earthquake Engineering, the 

uncertainty of the seismic input is treated by introducing a seismic intensity measure (IM) (Shome et 

al. 1998, Freddi et al. 2017) whose statistical description is the object of the hazard analysis. The 

ground motion randomness for a fixed intensity level im, usually denoted as record-to-record 

variability, can be described by selecting a set of ground motion realizations characterized by a 

different duration and frequency content and scaling these records to the common im value. The 

system response for a ground motion with an intensity im can be expressed as: 

 

     f f b gmu t c u t f f im u t            (2) 

 

where  g
u t  denotes the ground motion records scaled such that im = 1 for that record. 

The choice of an appropriate IM for the problem should be driven by criteria of efficiency, sufficiency, 



4 

 

 

and hazard computability (Shome et al. 1998, Freddi et al. 2017, Tubaldi et al. 2015, Galasso et al. 

2015). In this paper, the spectral acceleration Sa(0,), at the fundamental circular frequency of the 

system, 0, and for the damping factor  is employed as IM. 

 

2.2 Non-dimensional formulation 

 

Based on Equation 2, the maximum relative displacement of the system, umax, under the fixed ground 

motion with history  gu t , can be expressed as: 

 

 max , , , u , ,u ,f f fy b byu f m c k k im        (3) 

 

The 8 variables appearing in Equation 3 have dimensions: [umax]=L, [m]=M, [cf]=MT-1, [kf]=ML-2, 

[ufy]=L, [kb]=ML-2, [uby]=L, [im]=LT-2 where the 3 physical dimensions are the time T, the mass M, and 

the length L. By applying the Buckingam -theorem (Barenblatt 1987), Equation 3 can be 

conveniently reformulated in terms of dimensionless parameters, denoted as -terms identifying the 

parameters that control the seismic response of the system and also reducing the number of variables. 

The problem involves 3 physical dimensions and 8 dimensional variables, thus, only 8 - 3 = 5  

dimensionless parameters are needed. By selecting the systems mass m, the seismic intensity measure 

im, and the initial frame stiffness kf as repeating variables, the -terms can be derived and after 

manipulation, the following alternative set of -terms can be obtained, which are given below a 

physical interpretation: 

 
2

max 0 max max

0

 ,   ,   ,   ,   
2

f b
f b

fy by f

cu u u f

im u u m f


    


          (4) 

 

where 0
2 = (kb + kf)/m denotes the square of the circular frequency of the SDOF dual system. 

The parameter  denotes the displacement demand umax normalized with respect to the displacement 

value 2

0im  . By considering  0 ,aS    as IM, it can be interpreted to as the displacement 

amplification factor, being the ratio between umax and the pseudo-spectral displacement 

    2

0 0 0, ,d aS S     . The parameters f and b denote the ductility demand respectively of the 

MRF and the BRBF. The parameter , representing the ratio between the strength capacity of the 

bracing system and that of the frame, was already employed in Freddi et al. (2013) for evaluating the 

retrofit effectiveness of BRBFs inserted within a reinforced concrete frame. The strength ratio 

considered in SEI/ASCE 7-10 (2010) to define a dual system is equal to: 

 

1

1

f

b f

V

V V 


 
       (5) 

 

Thus,  should be lower than d = 3 for the system to be considered as dual. 

It is important to observe that while the parameters f, b and  of Equation 4 depend on the response 

of the system through umax, the parameters  and  are independent from the response. 

Other EDPs of interest for the performance assessment can be derived from the non-dimensional 

solution. In particular, the following EDPs are considered: 

 

,

,    
bp cum

b cum

by

u

u
  , 

2

0
,   res
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u

im


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  res
res

u

u
  , max abs

a

im
       (6) 

 

where b,cum denotes the normalized cumulative plasticity (i.e., ductility) demand of the BRBF, res,el 

the ratio between the residual displacement and the peak spectral displacement of the system, res the 
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ratio between the residual and the peak inelastic displacement of the system, and abs the absolute 

acceleration amax normalized by the seismic intensity im. 

The system response in terms of these EDPs depends on the characteristics of the input via the circular 

frequency 0. In fact, seismic inputs with the same intensity im but with different characteristics 

propagate differently and have different effects on systems with different natural frequencies 0. This 

has been demonstrated in Tubaldi et al. (2015) by considering SDOF systems with nonlinear viscous 

dampers but the same reasoning holds for the problem considered in this study. Alternatively, the ratio 

0/g between the bare system frequency and a frequency synthetically representing the ground 

motion frequency content could be considered (Dimitrakopoulos et al. 2009, Karavasilis et al. 2011 

and Málaga-Chuquitaype 2015). 

 

3. PERFORMANCE ASSESSMENT METHODOLOGY 

 

The objective of the proposed study is to evaluate how the coupled system behaves in correspondence 

of the design condition, defined by the target ductility levels of the BRBF and the MRF (Freddi et al. 

2013, Zona et al. 2012), respectively bt and ft, corresponding to the design earthquake input. More 

specifically, assuming a target ductility level bt≤ bc for the BRBF and a target ductility level ft ≤ fc 

for the frame, the design condition corresponds to b =bt and f =ft under the assumed seismic input. 

For example, the BRBF may be designed to attain a ductility demand bt = 10, while the MRF may be 

designed to remain elastic with ft =1. In design practice, this condition is ensured by considering a 

deterministic performance (Dall’Asta et al. 2016), i.e., by considering the mean ductility demand 

obtained for the different earthquake inputs describing the record-to-record variability effects. 

The above design criterion imposes a constraint on the values that can be assumed by the non-

dimensional problem parameters, which makes the methodology different from those followed in 

other researches on similar systems employing non-dimensionalization and considering free 

parameters variations (Tubaldi et al. 2015, Karavasilis et al. 2011, Málaga-Chuquitaype 2015). Given 

the system properties independent from the response ,, ft, bt, , the design condition can be 

found by the following optimization problem: find the value * of the normalized displacement 

demand such as 
f fc

   and 
b bc

  , where the over score denotes the mean across the samples, 

and thus   denotes the mean ductility demand. The following procedure can be applied to ensure the 

attainment of the design condition under the set of records employed to describe the seismic input: 

 

1. Assign arbitrary values to the target mean displacement demand 
*

maxu  and to m, e.g. 
*

max
u  = 1 

m and m = 1ton. The corresponding non-dimensional parameter values are: cf = 2m0, 
*

max
/

fy f
u u  , 

*

max
/

by b
u u  ,  2

0
1 /

f fy by
k m u u   ,  /

b fy by f
k u u k ; 

2. Scale the records to a common value of the intensity measure e.g. im = 1; 

3. Perform nonlinear dynamic analyses for the different records; 

4. Evaluate the mean system displacement response maxu . If maxu  is equal to the target value 

*

maxu , then 
*  , where 

* * 2

max 0 u im  , and go to step 5. Otherwise multiply im by the 

ratio 
*

max max/u u and restart step 2. This procedure corresponds to a linear interpolation 

between the relation maxu  and im. If this procedure does not converge, resort can be made to 

any optimization algorithm; 

5. Evaluate the statistics of res,res,el,abs,and b,cum. 

 

Steps 1-4 ensure that the design condition of the MRF and the BRBFs attaining simultaneously their 

performance target under the design earthquake input is achieved. 
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4. PARAMETRIC STUDY 

 

4.1 System properties 

 

The performance of the systems corresponding to different values of 0, , ft, bt,  is studied in this 

section considering the constraint posed by the attainment of the design condition, which corresponds 

to  =*. The parameter 0 is varied in a range corresponding to a vibration period T0 = 2/0 in the 

range between 0 and 4 sec. The strength ratio  assumes the values in the range between 0 and 100. 

The lower bound  = 0 represents the case of the bare frame, whereas the upper bound represents the 

case of frame with pinned connections where the horizontal stiffness and resistance is provided only 

by the BRBF. The parameter ft assumes values in the range between 1 and 4. The case ft = 1 

corresponds to a design condition where the frame behaves in its elastic range under the design 

earthquake. The case ft = 4 corresponds to a highly ductile behaviour of the frame under the design 

earthquake. The parameter bt assumes values in the range between 5 and 20. Values of 15-20 are 

typical ones for the ductility capacity of a BRB device. In some situations, such as the seismic retrofit 

of RC frames (Freddi et al. 2013), the BRB device is arranged in series with an elastic brace exhibiting 

adequate over-strength. This leads to reduced values of the ductility capacity which may attain the 

lower bound of 5 for a very flexible elastic brace (Ragni et al. 2011). The value of 2% is assumed for 

the damping factor  in this study. 

 

4.2 Seismic input description 

 

A set of 28 ground motions is considered in the parametric study to describe the record-to-record 

variability (Tubaldi et al. 2015). The records have been selected from the PEER strong motion 

database (FEMA P695) on the basis of three fundamental parameters: site class, source distance, and 

magnitude. Ground motions associated with site class B, as defined in Eurocode 8, source-to-site 

distance, R, greater than 10km, and a moment magnitude, Mw, in the range between 6.0 and 7.5 are 

considered. The record number is deemed sufficient to obtain accurate response estimates, given the 

efficiency of the intensity measure employed (Shome et al. 1998).  

 

4.3 Parametric study results 

 

Figure 3 shows the GM of the normalized peak displacement demand  vs the base shear ratio , for 

different values of the target BRBF ductility bt. The different figures refer to different values of T0 

and of the target frame ductility ft. All the curves attain the same value for  = 0 (MRF only), and in 

particular for ft = 1 they attain a value of about 1. This result is expected, since for  = 0 the response 

is not dependent on the BRBF’s ductility capacity, and for ft = 1 the system behaves (on average) 

elastically, so that the inelastic displacement coincides with the elastic one. On the other hand, for  = 

0 and ft = 4, a simple bilinear oscillator is obtained and  can be significantly different than 1. In 

particular, higher values of the normalized peak displacement  are observed for low values of the 

period T0. In the case of dual system ( > 0), for low periods and increasing values of , the 

normalized peak displacement increases, whereas for high periods  remains almost constant and 

slightly less than 1. 

Figure 4 illustrates the variation of the normalized displacement response dispersion. The lowest 

dispersion values are observed for  = 0. For low periods, the dispersion increases for increasing 

values of , of bt, and of ft, and can attain very high values of the order of 1 in the case of pure 

BRBF. For the other, higher periods considered, it is practically constant and equal to about 0.5. These 

trends also reflect the reduction of efficiency of the IM considered in this study, yielding an almost 

null dispersion only in the case of  = 0 and ft = 1, i.e., of the elastic bare frame. It is noteworthy that 

the dispersion is not exactly 0 even for this case, because only the mean ductility demand is equal to 1, 

and thus for some records the system behaves inelastically. 
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Figure 3. Geometric mean of the normalized peak displacement demand  vs the base shear ratio , for different 

values of T0 (0.1, 1 and 4 sec), of ft (1 and 4) and of bt (5, 10, 15 and 20) 

 

 

10-1 100 101 102 
 [ - ] 

0 

T0 = 0.1sec  

 (=0)) = 0.13418  

10-1 100 101 102 
 [ - ] 

0 
 (=0)) = 0.001664  

10-
100 101 102 
 [ - ] 

0 
 (=0)) = 0.0002223  

0.5 

1 
a) c) e) 

10-1 100 101 102 
 [ - ] 

0 
 (=0)) = 0.67169 

10-1 100 101 102 
 [ - ] 

0 
 (=0)) = 0.46868  

10- 100 101 102 
 [ - ] 

0 
 (=0)) = 0.37954  

b) d) f) 

ft = 1  
T0 = 1sec  
ft = 1  

T0 = 4sec  
ft = 1  

T0 = 0.1sec  
ft = 4  

T0 = 1sec  
ft = 4  ft = 4  

T0 = 4sec  

5 
10 

15 
20 




) 
[ 

- 
] 

] 




) 
[ 

- 
] 

] 




) 
[ 

- 
] 

] 




) 
[ 

- 
] 

] 




) 
[ 

- 
] 

] 




) 
[ 

- 
] 

] 

0.5 

1 

0.5 

1 

0.5 

1 

0.5 

1 

0.5 

1 

 
 

Figure 4. Dispersion of the normalized peak displacement demand  vs the base shear ratio , for different 

values of T0 (0.1, 1 and 4 sec), of ft (1 and 4) and of bt (5, 10, 15 and 20) 

 

Figure 5 shows the GM of the normalized residual displacement demand res vs the base shear ratio , 

for different values of the target BRBF ductility bt. The different figures refer to different values of T0 

and of the target frame ductility ft. In general, the period T0 does not influence significantly this 

response parameter. Moreover, when the system behaves linearly ( = 0,ft = 1), the residual 

displacements are zero. Obviously, adding in parallel to a linear system a nonlinear one ( > 0 in 

Figure 5 (a, c, e)) results in an increase of residual displacements. This increase is higher for higher 

values of the target BRBF ductility bt. Thus, high values of  must be avoided to limit residual 

displacements. The limit d = 3 posed by SEI/ASCE 7-10 (2010) on the maximum values of  in dual 

systems provides a good control of the residual displacements, ensuring values of res lower than 0.25. 

On the other hand, if the frame exhibits a nonlinear behaviour with a target ductility ft = 4, then it is 

characterized by high residual drifts of the order of 40% of the peak ones, and adding in parallel the 



8 

 

 

BRBs ( > 0 in Figure 5 (b, d, f)) does not increase them significantly. It is noteworthy that the values 

of res for  = 0 and ft = 4 are similar to the ones observed in Liossatou and Fardis (2015) for an 

elasto-plastic system with a strength reduction factor of 4 under a different set of records than the one 

considered in this study. 
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Figure 5. Geometric mean of the normalized residual displacement demand res vs the base shear ratio , for 

different values of T0 (0.1, 1 and 4 sec), of ft (1 and 4) and of bt (5, 10, 15 and 20) 

 

Figure 6 shows the values of the dispersion of res. These values are very high, particularly for low 

values of the frame ductility capacity and low values of  However, it should be noted that the 

dispersion is similar to the coefficient of variation (c.o.v.) only for low values of . In fact, the values 

assumed by the c.o.v. for res are never higher than 1.5. 
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Figure 6. Dispersion of the normalized residual displacement demand res vs the base shear ratio , for different 

values of T0 (0.1, 1 and 4 sec), of ft (1 and 4) and of bt (5, 10, 15 and 20) 
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The trends of variation of the normalized absolute acceleration abs are not shown due to space 

constraint. The GM values of abs are equal to one for the linear system, and reduce by increasing the 

level on nonlinearity of the system, i.e., by increasing the values of , of bt, and of ft. For very short 

period systems, abs increases as period decreases because the peak absolute acceleration eventually 

approaches the peak ground acceleration as T tends to zero (Karavasilis and Seo 2011). It is 

noteworthy that for values of  increasing beyond 1, the absolute acceleration does not decrease 

significantly. 

Figure 7 shows the GM of the cumulative plastic ductility demand in the BRBF b,cum vs. the base 

shear ratio , for different values of the target BRBF ductility bt. The different figures refer to 

different values of T0 and of the target frame ductility ft. In general, the cumulative ductility demand 

reduces by increasing . This can be explained by observing that the system becomes more nonlinear 

by increasing , and this generally results in fewer cycles at the maximum deformation and less 

ductility accumulation under an earthquake history, as it can be seen in Figure 7 for a specific case and 

earthquake record. The cumulative ductility increases with the target ductility level. This increase is 

different for the different period considered. The obtained trends are quite different from those 

observed in Choi and Kim (2006), showing that the accumulated ductility ratios are nearly constant in 

BRBFs with T0 > 0.1 sec Moreover, there is an almost linear relation between b,cum and bt. Thus, the 

curves b,cum/bt collapse into a single master-curve. These trends suggest that higher  values permit 

to control better the cumulative ductility demand in the BRBs. However, the decrease is higher for low 

 values, whereas for  > d the cumulative ductility does not decrease significantly, similar to the 

normalized accelerations. 

The trends of variation of the dispersion are not shown due to space constraint. In general, the values 

are between 0.4 and 0.6, do not change significantly with the period, with ft, and with bt, and in most 

of the cases they slightly increase for increasing  values. 
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Figure 7. Geometric mean of the BRBF’s normalized cumulative ductility demand b,cum vs the base shear ratio 

, for different values of T0 (0.1, 1 and 4 sec), of ft (1 and 4) and of bt (5, 10, 15 and 20) 

 

5. CONCLUSIONS 

 

This paper presented the results of a study on the seismic performance of dual systems consisting of 

BRBFs coupled with MRFs, designed according to a criterion which aims to control the maximum 

ductility demand on both the resisting systems. A single degree of freedom system assumption and a 

non-dimensional problem formulation allow estimating the response of a wide range of configurations 
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while limiting the number of simulations. This permits to evaluate how the system properties, and in 

particular the values of the ratio  between the base shear of the BRBF and the MRF, affect the 

median demand and the dispersion of the normalized displacements, residual displacements, and 

cumulative BRB ductility. 

Based on the results of the study, the following main conclusions are drawn: i) adding a very ductile 

BRBF in parallel to the MRF may result in excessively high residual displacements, particularly for 

high values of . The limit d = 3 posed by SEI/ASCE 7-10 on the maximum values of  in dual 

systems yields values of the median residual-to-peak displacements of the order of 0.15-0.20, which 

may be excessive in some situations. In fact, for a maximum inter-storey drift ratio of 4%, the 

expected residual drift would be of the order of 0.60%-0.80%, higher than the limit of reparability. ii) 

the dispersion of the residual displacements is very high, and this should be taken into account when 

assessing the probability of repairing a structure after an earthquake. iii) The median cumulative 

ductility demand of the BRBFs has an opposite trend of variation with  compared to the residual 

displacement, i.e., it decreases by increasing . This result has also an impact on the choice of  in the 

design, since excessive accumulation of plastic deformations affect the safety of the BRBs and their 

capability to withstand aftershocks and multiple earthquakes. 
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