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Abstract. The aim of this work is to justify mathematically the deriva-
tion of a viscous free/congested zones two–phase model from the isen-
tropic compressible Navier-Stokes equations with a singular pressure
playing the role of a barrier.

Titre et résumé en Français. Modèle bi-phasique gérant zones libres/zones
congestionnées comme limite singulière d’un système de Navier-Stokes
compressible. Le but de ce papier est de justifier mathématiquement
l’obtention d’un modèle biphasique visqueux gérant zones libres/zones
congestionnées comme limite singulière des équations de Navier-Stokes
compressible barotrope à l’aide d’une pression singulière jouant le rôle
d’une barrière. Ce type de systèmes macroscopiques pour modéliser le
mouvement de foule a été proposé dans de nombreux papiers. Le lecteur
interessé est renvoyé par exemple au papier de review [B. Maury, Actes
des Colloques Caen 2012-Rouen 2011].
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1. Introduction

Macroscopic approaches for modelling the motion of crowd have been recently
proposed in various papers where the swarm is identified through a density
ρ = ρ(t, x), see for instance a review paper by Maury [12]. The density
is transported through a vector field u(t, x) which itself solves an equation
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expressing the variation of velocity for each individual under some factors.
The following system is obtained{

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u) = F (ρ, u),

(1.1)

where F is an appropriate differential operator that has to be defined de-
pending on the applications; for instance, repulsive/attractive terms may be
included to model congestion.

For modelling the traffic jams, some systems that mix free/congested
regions have been also proposed, namely ∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +∇π = 0
0 ≤ ρ ≤ ρ∗, (ρ− ρ∗)π = 0

(1.2)

for given function ρ∗. The interested reader is referred to paper by Berthe-
lin [1] in which the existence of solutions to system (1.2) was proven for
ρ∗ = const. using the convergence of some special solutions, called the sticky
blocks. For various extensions of this work (when ρ∗ depends on the velocity
or on the number of lanes in the portion of the road) we refer to a recent
work of Berthelin and Broizat [2] and the references therein.

Formal justification of system (1.2) from (1.1) with F (ρ, u) being a
gradient of a specific singular pressure term has been given by Degond et al.
in [7] (see also the proposed numerical scheme for ρ∗ = 1). Note that a more
complex model than (1.2) has been also formally derived by these authors for
collective motion (namely with the extra constraint on the velocity |u| = 1).

The main objective of this note is to justify mathematically the viscous
version of (1.2) as a limit of the isentropic compressible Navier-Stokes equa-
tions. This limit will be obtained by introducing a small parameter ε in front
of a singular pressure and by letting ε → 0. The important feature of such
system is that it preserves the constraint 0 ≤ ρε ≤ 1 for any ε > 0 fixed.

2. Singular compressible Navier-Stokes model and the
associated free boundary system

We consider the system of compressible barotropic Navier-Stokes equations ∂tρ
ε + div(ρεuε) = 0

∂t(ρ
εuε) + div(ρεuε ⊗ uε)− 2div(µ(ρε)D(uε))

−∇(λ(ρε)div(uε)) +∇p1(ρε) +∇pε2(ρε) = 0
(2.1)

in a fixed bounded domain Ω.
In the above system p1 is the barotropic pressure

p1(ρε) = a(ρε)α a ≥ 0, α > 1, (2.2)

while pε2 is the singular pressure in the spirit of [5, 8]

pε2(ρε) = ε(ρε)γP (ρε), γ > 1, ε > 0. (2.3)
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The singular pressure P (·) ∈ C1(0, 1) is strictly increasing function, such that

lim
ρε→ρ−∗

P (ρε) = +∞ (2.4)

and ρ∗ = 1 stands for the upper threshold of the density.
We supplement system (2.1) with the following initial conditions

ρε(x)|t=0 = ρε0(x), uε(0)|t=0 = uε0(x) x ∈ Ω, (2.5)

where

0 ≤ ρε0 ≤ 1,

∫
Ω

ρε0 = M (2.6)

and the Dirichlet boundary conditions

uε|∂Ω = 0.

Our concern is to investigate the limit when ε tends to zero and justify that
(ρε, uε, pε2(ρε)) tends (in some sense) to (ρ, u, π) which satisfies the following
free boundary problem ∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u)
−2div(µ(ρ)D(u))−∇(λ(ρ)div(u)) +∇p1(ρ) +∇π = 0

(2.7)

with  0 ≤ ρ ≤ 1,
π ≥ 0,
(1− ρ)π = 0.

(2.8)

Such free boundary system has been derived by Lions and Masmoudi
[11] where they considered pγ(ρ) = aργ with γ tending to +∞. The same
limit has been studied in [9] with viscosities depending on the density when
some surface tension is included. However, such form of pressure does not
guarantee the congestion constraint 0 ≤ ργ ≤ 1 for fixed γ, which is a problem
for numerical investigation, as mentioned in the recent paper by Maury [12].
We will see that the pressure P defined in (2.4) plays a role of a barrier and
implies that the constraint 0 ≤ ρε ≤ 1 is automatically satisfied for any ε > 0.
This, however, asks for a special behavior of P (·) close to 1. An important
example of such barrier used for instance in Self-Organized Hydrodynamics
[6], [7] is of the form

pε(ρε) = ε

(
1

1
ρε − 1

)γ
= ε

(
ρε

1− ρε

)γ
.

3. One-dimensional case

The aim of this section is to prove the global-in-time existence of regular
solutions to system (2.1) when Ω = [0, L] and µ, λ are positive constants.
We will also perform the limit passage leading to the free boundary system
(2.7–2.8). More precisely, we prove the following results
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Theorem 3.1. Let ε, µ, λ be fixed positive constants and let (u0, ρ0) ∈
H1

0 (0, L) × H1(0, L) with 0 < ρ0 < 1. Assume that the singular pressure
satisfies

P (ρ) = (1− ρ)−β (3.1)

with β, γ > 1. Then there exists a regular solution (uε, ρε) to (2.1–2.4) such
that

‖ρε‖L∞(0,T ;H1(0,L)) + ‖ρε‖H1(0,T ;L2(0,L)) ≤ c,

‖uε‖L2(0,T ;H1
0 (0,L)) + ‖uε‖L∞(0,T ;L2(0,L)) ≤ c

uniformly with respect to ε and there exist constants c and C(ε) s.t.

0 < c ≤ ρε ≤ C(ε) < 1. (3.2)

Remark 3.2. The full regularity and uniqueness of this solution for ε fixed
can also be proved, see Theorem 3.4 below. However the proof relies on the
estimates which strongly depend on ε.

Theorem 3.3. Under assumptions of the previous theorem, there exists a sub-
sequence already denoted (ρε, uε, πε) s.t.

ρε → ρ in C([0, T ]× [0, L]),
uε → u in L2(0, T ; C[0, L]),

πε = pε2 ⇀ π inM+((0, T )× (0, L)),
(3.3)

where (u, ρ, π) satisfies (2.7–2.8).

3.1. Proof of Theorem 3.1

As mentioned before, Theorem 3.1 may be obtained as a corollary of a
stronger result formulated below in Theorem 3.4 by use of Lagrangian co-
ordinates.
We drop the index ε when no confusion can arise and we define

x =

∫ x

0

ρ(τ, s)ds, τ = t. (3.4)

Using (3.4) and denoting ν = 2µ+ λ, system (2.1) may be transformed into
the following one{

ρτ + ρ2ux = 0
uτ − ν(ρux)x + (p1(ρ))x + (pε2(ρ))x = 0

(3.5)

with the Dirichlet boundary conditions

u|x=0 = u|x=M = 0

and the initial data

ρ|τ=0 = ρ0, u|τ=0 = u0, in [0,M ], (3.6)

such that

0 < ρ0 < 1. (3.7)

For the above system we will prove the following theorem.
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Theorem 3.4. Assume that (u0, ρ0) ∈ H1
0 (0,M)×H1(0,M) and that (3.7) is

satisfied. Then system (3.5-3.6) possesses a global unique solution (ρ, u) such
that

ρ ∈ L∞(0, T ;H1(0,M)), ρτ ∈ L2((0, T )× (0,M)),
ux ∈ L∞(0, T ;L2(0,M)) ∩ L2(0, T ;H1(0,M)).

(3.8)

Moreover there exist positive constants cρ, Cρ such that

0 < cρ ≤ ρε ≤ Cρ(ε) < 1. (3.9)

The local in time solvability of system (2.1-2.6) with monotone pressure,
is a classical result, see f.i. [14]. Therefore, in order to show global in time
existence it is enough to prove uniform in time estimates. This will be a
purpose of the following paragraphs.

To deduce bounds on the density we first test (3.5)2 by u and then by
ρx
ρ and we sum the obtained expressions. This leads to

sup
τ∈(0,T )

∫ M

0

((log ρ)x)
2

(τ)dx +

∫ T

0

∫ M

0

∣∣∣∣(pε2)′(ρ)
(ρx)2

ρ

∣∣∣∣ dx dτ ≤ c. (3.10)

The lower bound is deduced from the control of the first integral while bound-
edness of the second integral clearly forces the upper bound, recall that β > 1.

It is then natural to expect that u is more regular than it follows from the
basic energy estimate. Regularity (3.8) can be shown in a standard way, by
testing (3.5)2 by −uxx. The proof of uniqueness is then straightforward. �

Note that (3.8) allows to back to Eulerian coordinates, since ∂th(t, x) =
∂τh(τ, x) − u(τ, x)ρ(τ, x)∂xh(τ, x) and ∂xh(t, x) = ρ(τ, x)∂xh(τ, x) which fin-
ishes the proof of Theorem 3.1. �

3.2. Recovering the two-phase system

In this subsection we prove Theorem 3.3. Let us first focus on establishing
the estimates which are uniform with respect to ε. The basic energy equality
for system (2.1) in the Eulerian coordinates reads

d

dt

∫ L

0

(1

2
ρε|uε|2 + ρε

(
e1(ρε) + eε2(ρε)

))
+ ν

∫ L

0

|∂xuε|2 = 0 (3.11)

with e1(ρε) = a
α−1 (ρε)α−1 and eε2(ρε) =

∫ ρε
0

pε2(s)
s2 ds. As in [11], the bound on

ρeε2(ρε) does not provide bound for pε2 uniform with respect to ε. To solve this
problem we perform a Bogovskii-type of estimate. Note that the arguments
to conclude will be different than in [11].

Uniform estimate of the pressure. We test the momentum equation in (2.1)

by φ(t, x) = ψ(t)
(∫ x

0
ρε(t, y)dy − ρε

)
, where ρε = 1

L

∫ L
0
ρε(x, t) dx and ψ(t) ∈

C∞0 ((0, L)), we obtain
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∫ T

0

ψ

∫ L

0

(p1 + pε2) (ρε − ρε) dx dt = −
∫ T

0

ψ′
∫ L

0

ρεuε
(∫ x

0

ρεdy − ρε
)
dx dt

+

∫ T

0

ψρε
∫ L

0

ρε(uε)2dx dt+ ν

∫ T

0

ψ

∫ L

0

ux(ρε − ρε)dx dt

The r.h.s. is controlled thanks to (3.11) and (3.9), thus the l.h.s. is bounded
uniformly with respect to ε. We then split the l.h.s. into two terms

I1 + I2 =

∫
{ρε< ρ0+1

2 }
pε2 (ρε − ρε) dx dt+

∫
{ρε≥ ρ0+1

2 }
pε2 (ρε − ρε) dx dt ≤ c.

The integrant in I1 is far away from singularity, thus it is bounded, whence

the integrant in I2 is larger than 1−ρ0
2 pε2 which implies that pε2 = εp2(ρε) is

bounded in L1((0, T )× (0, L)) uniformly with respect to ε. The same conclu-
sion can be drawn for pε2ρ

ε.

Passage to the limit ε→ 0. Using the Arzelà-Ascoli theorem we prove that

ρε → ρ in C([0, T ]× [0, L]), (3.12)

and (3.9) implies that p1(ρε)→ p1(ρ) strongly in C([0, T ]× [0, L]).
Thanks to the uniform bounds on the pressure, up to a subsequence, we have

pε2(ρε) ⇀ π, ρεpε2(ρε) ⇀ π1 in M+((0, T )× (0, L)), (3.13)

but thanks to (3.12) we may identify the second limit as

ρεpε2(ρε) ⇀ ρπ in M+((0, T )× (0, L)). (3.14)

Concerning the convergence of the velocity, by (3.11) we deduce that

uε ⇀ u in L2(0, T ;H1
0 (0, L)), uε ⇀∗ u in L∞(0, T ;L2(0, L))

up to a subsequence. Therefore ρεuε ⇀ ρu in L4((0, T )× (0, L)). In addition,
(ρεuε)x is uniformly bounded in L2((0, T ) × (0, L)). From the momentum
equation and the L1 bound on the pressure we can assert that (ρεuε)t ∈
L1(0, T ;W−1,1(0, L)). Thus, an application of the generalized Aubin-Lions
lemma [13]) yields

ρεuε → ρu in L2(0, T ; C[0, L]).

Hence, (3.9) and (3.12) imply strong convergence of uε, as stated in (3.3).

In order to conclude it remains to prove that (ρ, π) satisfies constraint (2.8)3.
Due to singularity of the pressure, we cannot use the same argument as in
[11]. Nevertheless, using (3.1) we may write

ερεpε2(ρε) = −ε (ρε)γ

(1− ρε)β−1
+ εpε2(ρε). (3.15)

Letting ε→ 0, we see that the l.h.s. converges to ρπ and the second term on
the r.h.s. converges to π, on account of (3.14) and (3.13) respectively, while
the middle term vanishes due to the uniform bound on pε2. �
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4. Multi-dimensional case

Let us now comment what are main differences in the proof for the multi-
dimensional case, we refer to [?] for more details.

• In general, the global-in-time regular solutions are not known to exist,
thus one needs to work with the weak solutions.
• The constraint 0 ≤ ρε ≤ 1 can be obtained for sufficiently strong sin-

gularity in the pressure (i.e. β > 3), otherwise it holds only for the
limit.
• The strong convergence of density is not an automatic consequence of

the a-priori estimates. For this reason, verification of (3.14) requires
some compactness of the so-called effective pressure.
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