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Abstract 

This thesis presents the results of a study that embraces and tests Entwistle's 

theory of deep and surface approaches in relation to students’ interaction with a 

digital learning environment for mathematics, in real conditions, during tutorial 

sessions. In contrast to most of the work in the field that seeks ways of adapting 

a system to students’ specific learning styles, the aim is to find ways to support 

tutors and researchers to identify students’ prominent approach in order to 

ultimately encourage the adoption of a deep approach to studying while 

discouraging a surface approach. 

To achieve this aim there is an in-depth examination of the relationship between 

the various scales and subscales of the Approaches and Study Skills Inventory 

for Students (ASSIST) and metrics occurring from the interaction in the digital 

learning environment ActiveMath. Furthermore, the potential influence of 

students’ prior knowledge in mathematics in “deep” and “surface” models is 

discussed. The results point to insights for tutors regarding identifying students’ 

deep and surface approaches from their interaction with the digital learning 

environment; suggestions regarding the design of features that encourage a 

deep approach to studying; and methodological recommendations for 

researchers regarding future studies which can help to distinguish further deep 

and surface approaches and to examine them in similar or different educational 

settings. 
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Chapter 1 - Introduction 

Mathematics has a very important role in the curriculum of computer science 

courses. First-year computer science students need to know and use a 

considerable amount of mathematics. Osmon (2009) notes that the struggle 

with mathematics during the first-year of study in computer science courses is a 

widespread problem. His investigation of the mathematics qualifications on 

entry to university computer science courses showed that many students have 

no qualification beyond the GCSE level, despite the need for a better 

mathematical foundation in this type of course. He argues that these students 

typically disliked mathematics at school and tend to have a negative attitude to 

studying it at university when their interest is really in studying their major. 

However, computer science courses do require a higher foundation than that 

provided by GCSE, and so it falls to the universities to deal with the poor level 

of prior knowledge and the negative attitude towards mathematics of these 

students. Furthermore, at the computer science department of the university 

where the author works, there is an ongoing concern with failure rates in the 

mathematics module and a need to look for ways of providing greater support 

for first-year students with their mathematics. 

Educators have given a lot of attention to finding ways to support first-year 

undergraduate students in their mathematics classes, turn their learning of 

mathematics into a positive experience, and improve students’ mathematical 

understanding and performance (Sangwin, 2004; Perkin et al., 2013; Freeman 

et al., 2014). The author’s own professional background lies in teaching in the 

areas of design and implementation of digital learning environments for a 

variety of subjects, and therefore an obvious line of enquiry for the author is 

how interactive learning environments might be used to address the 

aforementioned concerns. 

The role of interactive learning environments in higher education -and in 

mathematical education- has been widely researched. As discussed in section 

2.1.7, some authors have questioned the effectiveness of their use, and others 

have pointed towards moderate effectiveness, whereas others have argued that 

these systems can be effective by assisting towards creating a positive attitude, 

increasing students’ engagement, encouraging the exploration of mathematical 

patterns and relationships, and generally improving performance. Those who 

argue that these systems are effective would nevertheless be clear that there 
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remains much room for improvement. This improvement should start from 

increasing our understanding of how these systems are used, in order 

ultimately to design them better and increase their effectiveness.  

The investigation into the use of interactive learning environments in 

mathematical education has generated research in relation to a wide range of 

theories and methodologies (see Hoyles and Noss, 2003). An area, which has 

been widely researched, is concerned with students’ individual characteristics 

such as prior knowledge and goals, attitudes, beliefs, emotions, preferences, 

“styles” and motivation towards learning and mathematics. As discussed later 

on in sections 2.1.3-2.1.7, studies in this area have investigated whether there 

are connections between students’ individual characteristics and their use of 

mathematical interactive learning environments (henceforth ILEs). This is, in 

essence, an effort to understand better how learners interact with them, and to 

identify ways to support students as well as provide information about their 

interaction to their tutors. 

In order to understand students’ interaction and support them based on their 

individual characteristics, one of the areas which has been involved in this type 

of investigation is the theory of “styles”.  

In the 1990's, there was a gradual increase in studies that examine various 

“style” constructs in relation to the way students use ILEs. The main aim of 

most studies was to eventually propose ILEs which can be adapted to suit 

students' “style”; a term which really depends on the context of the tradition is 

found, but in the majority of theoretical frameworks describes a behaviour that 

is sustained and thus repeated over time. However, in recent years there has 

been a waning in the popularity of applying “styles” in this context, as well as in 

the broader educational context. As discussed in detail in 2.6.1, this is because 

of certain criticisms that arise from such an application: whether the proposed 

measurements capture subtleties and complexities of individual human 

behaviour in real educational settings; whether they measure what they claim to 

measure; and whether their psychometric standards are sound. In addition, the 

wider debate on the wisdom of matching or mismatching style to instruction and 

the lack of solid empirical evidence about the effect on performance, led to the 

need for a different perspective in the context of ILEs and mathematical 

education.  

The current investigation does not seek ways of “pigeonholing” the way 

students learn based on controlled experimental conditions, neither adapting 
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content or interventions according to learning styles to increase students’ 

performance. It rather attempts to explain students’ interaction when using ILEs, 

in real learning conditions, in a way that can potentially help our understanding 

of how their approach to studying can improve. It ultimately aims to examine the 

potential of helping tutors identifying a prominent approach towards studying 

through students’ interactions, and improving  an ILE’s design, so as to 

encourage students’ adoption of a deep approach to studying and/or 

discourage a surface approach, based on the theoretical framework behind 

Entwistle’s ASSIST construct. This choice is reinforced by evidence that 

adoption of a deep approach to studying by first-year undergraduate students 

correlates positively with their performance; whereas a surface approach 

correlates negatively to their performance (Entwistle and Ramsden, 1983; Tait 

and Entwistle, 1996). Also, the ideas of discouraging a surface approach and 

encouraging a deep approach towards studying are very relevant in the context 

of mathematical education. The issue of discouraging rote memorization of 

formulas and rules (as well as tendencies to treat concepts and methods as 

unrelated bits of knowledge) and encouraging a deep understanding of 

mathematics is quite prominent in particular in mathematics education (Crowe 

and Zand, 2000b; Saha et al., 2015). It has been observed that students often 

carry out mathematical procedures without any understanding of the concepts 

involved and they tend to follow a surface rather than a deep approach towards 

studying  (Liston and O'Donoghue, 2009). So, investigating deep and surface 

approaches towards studying has the potential to address the issue of 

discouraging a surface approach while encouraging a deep one in university 

courses which involve mathematics. 

This new perspective requires conducting the investigation for interactions in 

ILEs for mathematics in real learning conditions. In this way, it is possible to 

reveal subtleties and complexities of interactions in ILEs with regards to deep 

and surface approaches, which can only manifest themselves in real 

educational settings. It can ultimately offer recommendations for more 

supportive learning environments inside the class for tutors. Finally, it can be a 

starting point for future studies in this context as it has the potential to reveal 

what sort of methodological  recommendations can be made, and what sort of 

improvements can further take place in terms of designing ILEs and capturing 

data. 

Chapter 2 examines the literature on the effectiveness of systems for 

mathematical education and students’ interactions in using these systems. It 
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also provides a critical examination of the three main traditions of “style” theory: 

the learning, the cognitive and the personality tradition, as it is generally 

considered important to have a full understanding of the theory, before 

proceeding with any choices in terms of theoretical framework (Ali et al., 2014).  

There is also discussion on the existing empirical evidence about the 

relationships between “styles” and students’ performance and interaction when 

practising in tutoring systems; and the influence of individual characteristics, 

which are not included within the concept of “style”, such as prior knowledge. 

Finally, there is an in-depth analysis on how methodological issues and the 

need for a new perspective, when examining individual differences in the 

context of students’ interaction in ILEs in mathematical education, led to the 

involvement of Entwistle’s (1997) deep and surface approaches towards 

studying in the current investigation. 

Chapter 3 sets out the research questions and the methodology of this study. In 

particular, it provides a closer examination of the ASSIST instrument, outlines 

the thinking behind the selection of appropriate and relevant “interaction” 

metrics with regards to the students’ deep and surface approaches towards 

studying. The chapter also describes the study’s design, data collection 

techniques and the procedures followed as well as the strategy for the 

development of multiple regression models for both “deep” and “surface” scales.  

Chapter 4 presents an analysis of the data which involves both the correlational 

and “multiple regression” statistics of the “deep” and “surface” scales and the 

“interaction” metrics; and an individual interpretation for the suggested 

regression models representing the “deep” and “surface” scales.  

Chapter 5 presents a general discussion with comparisons between the “deep” 

and “surface” models; and a detailed discussion on the influence of prior 

knowledge in all “deep” and “surface” models.  

Chapter 6 presents a summary of the principal arguments of the thesis and 

discusses the contribution to knowledge of the thesis. Finally, in Chapter 7, 

there is discussion as to the implications of the work and potential areas for 

future studies. 
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Chapter 2 - Literature 

This chapter first examines the literature in relation to the impact of interactive 

learning environments (ILEs) for mathematics education and their use and 

common interactions observed. The second section looks at the learning, 

cognitive and personality styles as possible choices in terms of expressing 

individual differences. The third section critically reviews mathematical ILEs and  

examines students’ performance and interactions in interactive learning 

environments. The fourth section discusses the relevance of “styles” in the 

context of interactive learning environments. While the intension is not to 

provide an exhaustive coverage of the vast field of “styles” and their use in 

interactive learning environments, relevant aspects to the current investigation 

are discussed in a way that will help shaping the aim and research questions. 

The fifth section examines the influence of non-style factors on the relationship 

between “styles” and students’ interactions. Lastly, the sixth and seven sections 

present how the insights of the literature shaped the research inquiry of the 

current thesis. 

2.1 Students’ interactions in systems for mathematical education 

This section (2.1) examines a number of computer systems currently used to 

support teaching and learning in undergraduate mathematical classes (with 

specific focus on those that are used in algebra as this is central to the 

computer-science undergraduate curriculum); and the existing research on 

students’ interactions when using these systems.  

2.1.1 Introduction – Systems for mathematical education 

Literature in ILEs does not clearly indicate a set of criteria that an interactive 

learning environment should adhere to. Part of the reason is that there is a 

great variety of ILEs, even from the earlier days of their use in classroom, which 

offer a different combination of capabilities and affordances. Another reason is 

that there does not seem to be a common consensus amongst researchers, 

tutors, and practitioners in the field of mathematical education, as they 

concentrate on different learning needs and preferences, individual research 

interests, and educational needs.   

However, the author has identified certain common patterns of criteria across a 

number of reviews dating from the time the data collection took place. These 

criteria have their roots on ILE aspects or characteristics discussed in early 



 19 

reviews, such the one by Crowe and Zand (2000b) (a review that was at the 

time this research started perhaps  the most exhaustive and comprehensive 

review and taxonomy on mathematical ILEs). As indicated later on, these 

criteria with regards to mathematical ILEs still carry weight in more recent 

critiques, and the reason for looking into them is not only to understand what 

different types of ILEs can offer but ultimately to inform the decision of which 

ILE to chose for the current research. 

Furthermore, these criteria mainly stem from pedagogical theories. For example, 

they stem from the idea that a mathematical ILE has the potential to help 

towards re-construction of knowledge, encouraging a constructivist approach by 

providing ways for further investigation and organisation of concepts (Crowe 

and Zand, 2000b; Thomas and Holton, 2003; McDonald, 2016). Another idea is 

that mathematical ILEs have also the potential to provide communication and 

collaboration amongst students, hence encouraging a more social-cultural 

approach (Crowe and Zand, 2000b). As indicated later on, a variety of elements 

in an ILE which support collaboration and communication are also suggested 

across different types of ILEs and in more recent critiques (Borba et al., 2013; 

Joshi, 2017; Artigue, 2013). 

Finally, the purpose of this section is not to provide an exhaustive review of 

related ILEs, but rather a more ‘inclusive’ discussion based on criteria, which 

will help towards clarifying the final choice of ILE for the current research 

enquiry. It is worth mentioning, however, that the following criteria are not a 

panacea and there are practical issues to consider which can lead tutors and 

practitioners to be more pragmatic with regards to their ILE choices. 

2.1.1.1 Criteria 

1) Multimodality with particular emphasis on visualisation 

Multimodality, and particularly visualisation, is a characteristic which is 

consistently discussed or mentioned across reviews and critiques in 

mathematical ILEs.  

According to Borba et al. (2013) multimodality can be defined with regards to a 

mathematical ILE as a combination of  media such as text, hyper links, video, 

images/graphics, diagrams, audio recordings, animations and graph plotters.  

Taleb et al. (2015) also support multimodality in “m-learning tools” with audio 

and visual mediums as a way to increase students’ comprehension, motivation 

and self-confidence. At the same time researchers on the field of mathematical 
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ILEs point out that multimodal content can add a level of complexity when 

designing ILEs (Borba et al., 2013). They further argue that “the biggest 

conceptual transition for e-learning designers is to envision the content and 

learning objectives through graphical imagery and user interactions rather than 

explaining the content through text”. Part of this challenge is providing a high 

quality in terms of mathematical symbols and graphics which are consistent 

with any textbook, but also to avoid potential excessive use of multi-media 

elements so they add value to the learning context without distracting 

(Engelbrecht and Harding, 2005a; Engelbrecht and Harding, 2005b; Borba et 

al., 2013). Further practical issues with regards to the implementation of ILEs 

are discussed further later on. 

The emphasis in most reviews and critiques is on visualisation, as a desirable 

element in a variety of mathematical ILEs, such as web-based courses, m-

learning tools and simulations, and through features such as graphics, 

diagrams, graph plotters, animated images and java applets (Engelbrecht and 

Harding, 2005a; Engelbrecht and Harding, 2005b; Taleb et al., 2015; Borba et 

al., 2013; Joshi, 2017; Juan et al., 2008; McDonald, 2016). Such “visualisation” 

features can enhance comprehension and motivation (Engelbrecht and Harding, 

2005a; 2005b). Finally, one of the reasons visualisation is such an essential 

element, is because it contributes in presenting a mathematical content through 

multiple representations in variety of ILEs, an issue discussed in the following 

section.  

2) Multiple representations of mathematical content in ILEs 

According to Crowe and Zand (2000b), ILEs can serve towards creating 

representations of mental problems and facilitate their manipulation, as they 

have the capability, for example, to “transform symbolic-algebraic situations into 

spatial-geometric ones”. This is the case of graphing a function, where there is 

linking between numerical and graphical representations. Furthermore, the 

ability to make connections and translate properties across different 

representations is referred to as “representational versatility” or 

“representational fluency” (e.g. making connections amongst tables, graphs and 

expressions with regards to the concept of “function”) (Thomas and Holton, 

2003). 

The support for multiple representations and what they can offer across 

different mathematical ILEs spreads throughout older and more recent critiques. 

Multiple representations, especially those involving visualisation, can 
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complement the formal definitions and it is a way to “organise” mathematical 

concepts” or “re-organise” them, hence reconstructing knowledge (Crowe and 

Zand, 2000b; Artigue, 2013). Mathematical ILEs such as spreadsheets, 

interactive graph plotters, CAS, and geometric visualisation tools are good 

examples, where there is effective linking of multiple representations, as 

different views of same concept and their links can be viewed and investigated 

simultaneously, and understood further (Crowe and Zand, 2000b; Lagrange et 

al., 2003; Galbraith, 2006).  

Lagrange et al. (2003) also emphasise the possibilities in the use of multiple 

representations involving visualisation from simple calculators (i.e. with 

numerical, graphical and symbolic capabilities) to CAS, web-based tutorials and 

more intelligent environments (i.e. with symbolic, geometric and graphical 

capabilities).  They cautioned, however, with regards to the modifications, which 

“technological modifications” can bring to mathematical notions, pointing out 

that visualisation, for example does not make necessarily the learning easier 

but it can make it certainly richer by revealing the complexities of the symbolic 

aspects. 

Finally, Thomas and Holton (2003) argue that ILEs, such as CAS, graph 

plotters, geometric visualisation tool, and web-based systems can support 

representational fluency or versatility and reduce fragmentation and 

compartmentalisation of knowledge, which are so common with the traditional 

use of algebraic symbolic language. An ILE can engage students in higher 

education with multiple representations, and enhance their mathematical 

understanding, however, it can be still difficult for students to think of concepts 

in the same versatile way as tutors do. There can be also other obstacles as an 

ILE can be still used in higher education in a way that focuses on the 

procedural aspects of mathematics rather than the conceptual ones. This points 

to the issue that the curriculum or learning content has to be designed or 

redesigned in a way which supports conceptual and multiple representational 

aspects before integrating it in an ILE; an issue which is discussed further later 

on. 

3) Organisation/Structure of content in ILEs with regards to scaffolding 

There are a number of suggestions and cautions as to how the learning content 

can be organised in an ILE in a way that supports and engages students. Some 

of these are related to the fact that mathematics is a tall subject. This means 

that it is relatively linear in that a concept is built upon prior concepts and its 
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natural structure is more like scaffolding with many interconnected conceptual 

structures (Crowe and Zand, 2000b). The idea is that we can build the structure 

higher with new concepts as long as there are previous concepts reliably and 

solidly placed as “previous layers”. 

ILEs should support effective scaffolding (McDonald, 2016). At the same time 

this can be challenging as ILEs can “liberate” the order in which topics are 

presented and students have the freedom to explore the concept in any order 

(without necessarily mastering the previous ones) (Crowe and Zand, 2000b).  

A suggestion is that the tutor should give clear guidance with regards to the 

order in which topics are accessed in ILEs when using them in classroom, 

taking into consideration students’ characteristics such as prior knowledge; in 

essence relating scaffolding to students’ characteristics (Crowe and Zand, 

2000b).  This is also a capability that intelligent ILEs can do, without tutors’ 

intervention, with hints, directions and time-sensitive prompts (Kulik and 

Fletcher, 2016; VanLEHN, 2011; Scandura, 2012). However, non intelligent 

ILEs such as Khan’s academy can also achieve this by informing students’ 

guidance with self-diagnosed activities and tests, as shown in 6.4.2 (see also 

Appendix 6.3). 

A structure with effective scaffolding should also facilitate the linking between 

new knowledge and prior knowledge, by allowing students to review their work 

regularly, and facilitating their revision (Galbraith and Haines, 1998; Joshi, 

2017). There are features in ILEs, discussed later on, which facilitate students’ 

interaction with regards to these aspects. 

Finally, effective scaffolding is also related to features in an ILE, which allow 

further investigation of concepts, as discussed in following section. 

4) Investigation  

Facilitating further investigation of mathematical concepts and procedures is an 

aspect in ILEs which is considered important in various reviews (Wong, 2003; 

Engelbrecht and Harding, 2005a; Engelbrecht and Harding, 2005b; Borba et al.; 

2013; Joshi, 2017), because it can assist towards “reconstructing knowledge” 

(Crowe and Zand, 2000b) or “construct their own narrative” (Laurillard, 2002). 

There are suggestions for a number of ways to apply the “investigative” aspect 

in mathematical ILEs.  

First of all the “investigative” aspect is related to multiple representations. More 

specifically, features which allow the manipulation of representations (e.g. 
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graph plotters and CAS) facilitate students’ investigation and understanding of 

the nature of their connections (Crowe and Zand, 2000b; Joshi, 2017).  

Secondly, this aspect can be applied by facilitating the investigation of both 

concepts and procedures and how they are linked, helping in this way towards 

both procedural and conceptual understanding (i.e. proceptual) (Crowe and 

Zand, 2000b; Thomas and Holton, 2003; Engelbrecht and Harding, 2005a; 

Engelbrecht and Harding, 2005b).  

Thirdly, this aspect can be applied by allowing the search of concepts and 

procedures both within the learning content of an ILE and beyond, using 

“search” type of features, hyper links within the learning material to relate ideas, 

as well as external links to internet resources for mathematics (Engelbrecht and 

Harding, 2005a; Engelbrecht and Harding, 2005b; Joshi, 2017). According to 

Borba et al. (2013), exploring internet resources beyond the ILE, will require 

first for a student to do “a good deal of scaffolding” in order to have a focused 

search and find relevant data. They also argue that there is an issue with 

regards to the authenticity and the veracity of the search results. However, it 

seems that an Internet search is inevitable during a learning situation as a 

problem or question sparks most of the times an Internet search. This trend is 

identified by experts in the field of mathematical ILEs, such as Artigue (2013), 

as “Google reflex”. 

5) Amplifier of calculations 

ILEs can play an enabling role by performing calculations which would take time 

and effort to do them by hand (Crowe and Zand, 2000b). However, there is no 

really common agreement as to whether ILEs should play an enabling role 

(Crowe and Zand, 2000b), also this is not a characteristic which all ILEs have. 

Part of the problem is that there is no common agreement as to what 

“necessary algorithmic skills” mean and therefore there is lack of consensus as 

to what calculations should be done by hand and what calculations can be left 

to the ILE (Crowe and Zand, 2000b).  

Those in favour of using ILEs with this characteristic, from simple calculators to 

CAS, argue that it allows students more time to concentrate on more important 

tasks such as: formulating a problem; deeper understanding of mathematical 

concepts; and solving a complicated problem (e.g. non-linear algebraic 

calculations) without tracing an algorithmic solution and surpassing in this way 

the need for rote learning (Crowe and Zand, 2000b; Juan et al., 2008).  

There are those however, who are more cautious about leaving the calculations 



 24 

to an ILE, pointing to the issue of “black box”. Crowe and Zand (2000b) argue 

that if students leave the calculations to an ILE, then they may apply the results 

without checking whether the answer makes sense. They also support evidence 

which shows that: some student do not progress beyond the “black box level of 

utilisation”; and from a cognitive aspect, the use of such ILEs can make the 

“mind rely heavily on tools” and can hinder problem solving skills. Taking these 

concerns into consideration, it is the author’s opinion that the issue of the black 

box relates ultimately to the way students approach their studying and the use 

of ILEs. As Artigue (2013) indicated students can use technology as a white box 

when they ask technologies to carry out mathematical processes they are 

familiar with or they have mastered; however, they can also use it as a black 

box when they ask technologies to carry out for them mathematical processes 

which they do not know. It is reasonable to also indicate that the tutor’s 

intervention and guidance and the way the ILE is allowed to be used in class 

plays also a role as to the “black box” or “white box” utilisation of an ILE. 

6) Communication and Collaboration 

Finding ways to facilitate communication and collaboration amongst students 

and between tutors and students through ILEs can encourage a social-cultural 

approach in a learning situation; an approach which is valued by experts in the 

field mathematical ILEs (such as Crowe and Zand, 2000b; Lagrange et al., 

2003; Engelbrecht and Harding, 2005a; Engelbrecht and Harding, 2005b; 

Borba et al., 2013; Joshi, 2017; Taleb et al., 2015 ). In these reviews, experts 

argue that integrating collaborative aspects in ILEs can help engagement and 

deeper understanding, as students are actively involved in discussing maths, 

giving and receiving feedback, and explaining their thinking process with 

regards to problem solving strategies. However, advocates of the social aspect 

such as Engelbrecht and Harding (2005a) at the same time caution that 

students need clear guidance with regards to their collaboration and 

communication and cannot simply generate their own ways. 

There seems to be a variety ILEs in which this aspect is incorporated either 

specifically for mathematics, or for a variety of subjects such as Moodle and 

Blackboard (Juan et al., 2008; Artigue, 2013). There is particular emphasis on 

features that can be offered in web-based mathematical ILEs in order to 

encourage collaboration and/or communication. Reviews by Borba et al. (2013), 

Galbraith (2006), and Thomas and Holton (2003) indicate “collaborative” 

features that enable sharing annotations with regards to ideas, questions, and 

feedback; and direct communication (e.g. chatrooms).  
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Finally, it is worth mentioning that latest developments in mathematical ILEs 

such as m-learning tools facilitate the collaborative aspects (Joshi, 2017).  

7) Providing mathematical activity with support. 

There is a great variety of suggestions and opinions with regards to how 

activities in mathematical ILEs can be more supportive of students’ learning. 

According to Crowe and Zand (2000b), supportive mathematical activity 

requires first a certain degree of acquaintance with symbolic notation, hence 

there should be an effort to provide relevant support. Juan et al. (2008) note 

that this is especially important for adult students who may have not used 

mathematical notation for a long time, so there should be facilitation of revision 

of previous concepts and notations they are supposed to know. The degree of 

acquaintance differs across different ILEs. As discussed later, effective activity 

when using CAS, for example, requires much more than a minimum level of 

acquaintance with symbolic notation (Galbraith and Haines, 1998). Experts in 

mathematical ILEs, such as Artigue (2013) and Keady et al. (2006) also 

emphasise the need for guidance as to how the ILE works but also for creating 

intentional and organised activity. 

Furthermore, there are propositions with regards to web-based ILEs  to facilitate 

a range of activities which are built on existing knowledge and which encourage, 

motivate, and shape interactivity with a learning purpose (Engelbrecht and 

Harding, 2005a; 2005b). More recent reviews such as those by Joshi (2017) 

and Taleb (2015) emphasise that this can be achieved by including ILE features 

which: allow individual preferences to be considered, give students control and 

flexibility with regards to learning activities, and allow third party recognition 

such as rewards.  

Depending on the type of ILE there is a variety of activities suggested for  

supporting and engaging students when practicing exercises such as: 

interactive quizzes based on a pool of questions which facilitates unlimited 

practice and revision; automated feedback; model answers which allow 

students to compare against their own solutions; editable notepad to encourage 

students to articulate their findings (Crowe and Zand, 2000b; Laurillard, 2002; 

Engelbrecht and Harding, 2005a; Engelbrecht and Harding, 2005b; Galbraith 

and Haines, 1998; Sangwin, 2004). In addition, as discussed earlier on, some 

features support activities related to the characteristics of visualisation, multiple 

representations,  investigation, and communication and collaboration, 

mentioned earlier on (e.g. mathematical forums, activities involving graph 
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plotters, “search” features) (Sun et al., 2018; Wong, 2003; Joshi, 2017; Thomas 

and Holton, 2003). Designing activities which support the aforementioned ILE 

characteristics can lead towards a more reflective approach when students are 

practicing, rather  than adopting “trial and error strategies” or “fishing behaviour” 

Wong (2003).  

Finally, there are criticisms regarding the way mathematical activities are 

designed and delivered in ILEs. For example, a common criticism is related to 

the integration of mathematical notation in an ILE. Engelbrecht and Harding 

(2005a) and Juan et al. (2008) note that in online type of assessments typing 

mathematical symbols and interpreting mathematical symbolism in students’ 

answers can be problematic. They further argue that poor integration of 

mathematical notation in an ILE can cause students to find the communication 

of mathematical concepts tedious. Hoyles and Noss (2003) also point out that 

syntax and semantics of an ILE is also something that requires time for 

students to find out how it works. However, as indicated later on, in ILEs such 

as CAS, there are solutions which can address these issues. 

2.1.1.2 Practical Issues - Being pragmatic 

The above criteria are commonly observed across a number of reviews; 

however, they are no guarantee for resulting in effective learning and teaching. 

As a recent meta-analyisis on studies, conducted before and after 2010 on the 

use of ILEs by  Drijvers (2016), shows, it is not easy to prove the beneficial use 

of ILEs, as there are many factors involved, and when there is a positive impact, 

the effects are small. It makes sense to assume that digital technology is not a 

panacea and its effectiveness can depend on particular implementations and 

situations, such as educational setting, orchestration by the tutors, use of digital 

tools based on pedagogical theories and practices (Drijvers, 2016). 

At this point, it is also worth making a clarification. It is not only a matter of the 

ILS to support the aforementioned criteria; the curriculum of a course (i.e. 

learning content) should support them as well. Thomas and Holton (2003) 

argue that, for example, tertiary mathematics curriculum is not always designed 

to engage students with inter-representational thinking, and it is usually 

procedural in nature. When integration of an ILE is considered at classroom, 

they point out to the importance of rethinking the curriculum in terms of content 

and structure and even suggesting changing tutors’ teaching style. However, 

this is not always feasible and it cannot be always fully implemented. Thomas 

and Holton (2003) gave an example of integrating first-year curriculum  in CAS 
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for a linear algebra, where to fully integrate it would require changing the order, 

trivialising or making redundant topics, and adding new topics; something that 

at the end could not be fully implemented due to due to “lack of congruency and 

faculty support”.  

It is worth mentioning that it is not always the case that the curriculum has to 

drastically change in order to be fully integrated in an ILE. It is possible to have 

an ILE which has features supporting the aforementioned criteria, while at the 

same time follows a course’s curriculum. This can be a reasonable solution 

given that a university’s policy (i.e. regulations)  does not always allow drastic 

changes in a course’s curriculum, or it is not always practically feasible to re-

design the curriculum of a course in order to integrate it in an ILE. 

There are a number of experts in the field pointing to practical issues preventing 

from integration or full integration across different types of ILEs, such as CAS 

and web-based courses. Reviews by Keady et al. (2006), Hoyles and Noss 

(2003), Juan et al. (2008), Thomas and Holton (2003), and Joshi (2017)  point 

to financial and time-related issues which require: human resources for 

development and sustaining ILEs; time and money for training staff on using 

ILEs in classrooms; and time and money for setting up properly the technical 

infrastructure. Thomas and Holton (2003) in particular discuss how both 

students and staff should be allowed time to built “familiarity, suitability and 

expertise” when working with a medium. Other reviews by Joshi (2017) and 

Lavicza (2010)  also discuss policy-related issues, for example,  integration of 

ILEs may require changes in a university department’s policy and regulations, 

hence management or teaching or administrative staff may be unsupportive or 

unwilling of such changes.  

Finally, while it is essential to perform further research when integrating the 

curriculum in an ILE, as Artigue (2013) points out, it is still a challenge to have 

“well-developed and tested curriculum” in an ILE. Holyles and Noss (2003) also 

supports that the aforementioned practical issues may prohibit research in ILEs. 

2.1.1.3 ILEs 

At the time the current research was conducted, a variety of ILE systems for 

learning and teaching was used in undergraduate mathematical classes (see 

reviews by: Crowe and Zand (2000a) and (2000b),  Crowe and Zand (2001),  

Handal and Herrington (2003), Surowiec (2004),  Engelbrecht and Harding 

(2005a), Keady et al. (2006), and Thomas and Holton (2003)).  
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In this section, there was specific focus on the systems that seemed to be most 

commonly used in algebra, as this was central in the mathematics 

undergraduate curriculum and the most relevant to the current investigation at 

the time the data collection was taking place. These systems were: computer 

algebra systems (CAS), geometric visualisation environments and graph 

plotters, assessment systems, and interactive tutorials1. More specifically, the 

following sections discuss common activities and interactions related to the 

aforementioned criteria in these systems. It is worth clarifying that, intelligent 

tutoring systems are not discussed. The intention was simply to explore 

systems in which students’ behaviour was not altered by intelligent help or 

guidance, as this was thought to serve better the research purposes of the 

current investigation2.  

1) Algebraic manipulation system - Computer Algebra System (CAS) 

Computer Algebra Systems have been quite widely used, and the most 

commonly used3 CAS are: Maxima, Mathematica and Maple (Crowe and Zand, 

2001; Keady et al., 2006; Thomas and Holton, 2003).  

The primary function of CAS is the manipulation of mathematical expressions in 

symbolic form. More specifically, a typical CAS interface provides users with a 

type of text-editor in which they can type commands, variables and operators 

(Pratap, 2006). In this way users can perform symbolic algebraic computations 

on linear and non-linear equations, multiplication of matrices etc. (Daku, 2006). 

A secondary function of CAS is graphing. Besides plotting graphs, tutors can 

also create more interactive environments for visualisation such as animated 

graphs and graph plotters (Thomas and Holton, 2003). Hence, with regards to 

the aforementioned characteristics, CAS can be used as an amplifier for 

calculations, but also serves as a visualisation tool and can facilitate the 

manipulation of multiple representations (Thomas and Holton, 2003). From this 

aspect it also serves the “investigative” aspect as it facilitates students’ 

investigation and understanding of the nature of the connections amongst these 

                                                

1 At this point it is worth mentioning that the aforementioned reviews also show that these 
systems can be combined. 

2 As indicated in the methodology (see sections 3.6. and 3.7), the study takes place in real 
learning conditions, and we are after the participants genuine interactions. In this way both deep 
and surface approaches may manifest themselves in a genuine manner and this will serve 
better the aim which is establishing connections between approaches to studying and students’ 
interactions (see section 2.7.5). 

3 At least that was the case at the time the current research was taking place. 
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multiple representations (Crowe and Zand, 2000b; Crowe and Zand, 2001). 

However, there are mainly issues regarding its use, which may influence the 

effectiveness of mathematical activities and require further support from tutors 

and institutions. Starting with practical issues, CAS does not simply require a 

minimum level of knowledge of symbolic notation but also symbolic input in 

order to perform activities and internal processes (Crowe and Zand, 2000b). 

Galbraith (2006) discusses in depth a case where students’ performance was 

influenced by how well students know the syntax of Maple. Hence, there is the 

aforementioned need to allow time for familiarity and expertise of working in the 

specific medium. In addition, Engelbrecht and Harding (2005a) also note that 

students typing mathematical symbols and CAS can be also problematic, 

however according to them there is a further issue with the interpretation of 

mathematical symbolism in students’ answers. However, they cite a solution 

suggested by Sangwin (2004), according to which it is possible to interpret the 

students’ input in a test4.  

Furthermore, it requires for the curriculum to be redesigned which may cause 

policy-related issues and lack of institutional support (Lavicza, 2010; Thomas 

and Holton, 2003). For example, content favoured by CAS may be trivial in 

nature and of limited educational value, so new topics are included, or topics 

should be taught in a different order (Wong, 2003; Thomas and Holton, 2003; 

Crowe and Zand, 2000b).    

Finally, it is reasonable that these aforementioned practical issues may require 

a certain degree of financial investment in terms of human resources for 

development and training. Another thing to consider is the cost surrounding the 

use of CAS (Keady et al., 2006), as with the exception of Maxima, CAS such as 

Maple and Mathematica are not open source. 

2) Geometric visualisation environments and graph plotters 

In this section, the intention is to discuss ILEs whose primary characteristic is 

visualisation, and which they have been primarily used to support teaching in 

geometry and graphing. At the time the current research was taking place the 

                                                

4 The solution which is currently offered is via the computer aided assessment package (CAA) 

called STACK. While it provides questions for the quiz of  learning management system Moodle, 

it makes use of a CAS to evaluate the mathematical expressions (see: 

https://moodle.org/plugins/qtype_stack). The logic and ‘mechanics’ behind CAA underpinned by 

CA packages is discussed thoroughly in the papers by Keady (2006) and Sangwin et al. (2010).  

https://moodle.org/plugins/qtype_stack
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most commonly discussed ILEs of this type were: Dynamic Geometry (DG) 

environment such as Cabri Geometry and GeoGebra, and graph plotters 

(Crowe and Zand, 2001; Thomas and Holton, 2003; Hoyles and Noss, 2003).  

DGS has been used increasingly in classroom to support teaching and learning 

of geometry (Hoyles and Noss, 2003). However, DG such as GeoGebra along 

with geometry has also incorporated a number of other topics and aspects 

related to higher education such as graphing, calculus, and algebra5; hence it 

has been used for all levels of education, including  tertiary-level mathematics 

(Abdulwahed et al., 2012; Lavicza, 2010). From a practical aspect, GeoGebra 

also provides an authoring environment which supports tutors towards creating 

interactive material. 

A graph plotter is a typical example of a multiple representation tool and it is 

widely used in undergraduate math courses. Graph plotters can represent 

functions in a graphical, numerical and symbolic form; and typical examples of 

graph plotters are provided by Kleitman (2010b) and Waner (2010).  

Both DG environments and graph plotters are primarily used to enhance 

visualisation (Lagrange et al., 2003), and they may assist the students in their 

learning by showing them different representations of the same concept 

simultaneously . Students, for example, can manipulate those representations 

and hopefully come to understand the connections between graphic and 

numerical representation (Engelbrecht and Harding, 2005a;  Crowe and Zand, 

2000a).  

In this regard, they also serve the “investigative” aspect as they facilitate 

students’ investigation and understanding of the nature of the connections 

amongst these multiple representations (Borba et al., 2013; Abdulwahed et al., 

2012; Thomas and Holton, 2003; Joshi, 2017). Borba et al. (2013) specifically 

refers to observations in class which indicate that students understand better 

equations by exploring their graphs and trying to make sense of the 

relationships between equations and graphs. For this to occur successfully, 

there should be also supportive interactive activities involving a number of 

representations which expose students to conceptual processes and objects, as 

well as procedural skills (Thomas and Holton, 2003). In this respect, DG 

environments can provide direct feedback that can serve as a basis for 

reflection and further support in activities (Thomas and Holton, 2003; Hoyles 

                                                

5 (see: https://www.geogebra.org/about) 
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and Noss, 2003). At the same time, both Hoyles and Noss (2003) and Thomas 

and Holton (2003) discuss that students may encounter difficulties in terms of 

interpretation and construction. These issues however, can be resolved in 

classroom  with tutors’ intervention. In addition, the combination of  CAA system 

and DG environment can provide further support in activities, for example, by 

not just comparing students’ answer to model answers, but by also indicating “in 

what aspects and to what extend a wrong answer deviates from the correct one” 

(Sangwin et al., 2010). 

3) Assessment 

There are a number of online assessments, exercises and quizzes for 

undergraduates in mathematics, as shown by Saab (1999), which they are used 

to assist students with their preparation for an undergraduate course or with 

their undergraduate studies (without being part of one of the ILEs mentioned in 

this section). The ones with diagnostic purpose can assist tutors to test students’ 

prior knowledge (Crowe and Zand, 2001). A typical example of a diagnostic test 

is the one provided by the University of California6. Furthermore, revision type 

of tests in previous concepts and notations at the start of a course, may help 

towards more effective mathematical activity as it requires first a certain degree 

of acquaintance with symbolic notation. This may help, for example , adults who 

may have not used mathematical notation in a long time, and as discussed in 

section 2.1.1 7) , and who they may need further support. Overall in this type of 

assessments, students can usually respond by clicking on multiple-choice and 

multiple selections, or typing the answer in a fill-in-the-blank with numeric and 

numeric-plus-strings (e.g. algebraic expressions) type of response (Crowe and 

Zand, 2001).   

In relation to feedback, there are tests which communicate feedback (or hints 

about the correct answer) when answering each question; and tests which 

communicate the feedback for all questions after submitting the whole test 

(Stroppel et al., 2007). Depending on what learning objective they serve, 

feedback can be of formative or summative nature, and while the degree of 

support and guidance provided in feedback may differ according to that, the 

idea of giving feedback which does not only allow for comparisons to model 

answer but also reveals how far away students’ answer is from model answer 

(see Sangwin et. al., 2010),  is a way towards a  more constructive and helpful 

                                                

6 (see: https://www.math.ucla.edu/ugrad/diagnostic) 
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approach. 

Finally, there are tests which allow them to try a specific number of times and 

tests which allow them to try until they get the correct answer (Narciss, 2007) or 

improve their score (Crowe and Zand, 2001).  From a practical perspective this 

means generating a test from a ‘pool’ of questions and providing automated 

feedback (Crowe and Zand, 2001). To support further tutors with practical 

aspects of implementation, there are suggestions such as sharing databases 

with questions and CAA modules (Keady et al., 2006). 

4) Interactive tutorials 

Based on the definitions of tutorial systems by Alesi and Trollip (2001) and 

Handal and Herrington (2003), “tutorials”7 refer to a system which assists the 

learning of mathematical concepts and procedures by offering instruction and 

practice with exercises.  

As discussed in 2.1.1.1 3), maths is a tall subject and effective scaffolding 

should be supported in ILEs. In interactive tutorials, the order of topics is 

evident through menus and content pages, which underline the linear structure 

of the math curriculum. Simple examples are provided by Kleitman (2010a) and 

Seward and Puckett (2009).  

At the same time, there are interactive tutorials which can “liberate” the order on 

which the topics are presented, encouraging a more “investigative” approach, 

as discussed in section 2.1.1.1 4). This can be achieved both by providing 

“search” type of features, hyper links within the learning material to relate ideas, 

but also by providing features which allow the manipulation of multiple 

representations through graph plotters and function evaluators (see the 

interactive tutorial provided by Waner (2007)).  

Furthermore, the characteristics of visualisation and multimodality are served 

through  animations, graphics, graph plotters, and function evaluators (see 

interactive tutorials by Waner (2007) and Husch (2001a, 2001b, 2001c)).  

Despite that the above examples serve the aforementioned criteria, students 

might feel overwhelmed by the sheer volume of material provided and also let 

their investigation into the material go too far. As discussed in 2.1.1.1 3),  

students need to do first a good deal of scaffolding, and also as discussed in 

                                                

7 However, to avoid confusion with the tutorials which are taking place in class this type of ILEs 
will be referred as “interactive tutorials” in the thesis. 
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2.1.1.1 6) and 2.1.1.1 7), they need a good deal of support and guidance. If an 

ILE is used in class, then tutors need to point towards the right direction in 

terms of: visiting or revising a previous concept or process; communicating the 

intentional activity for the session and how to approach it; giving further 

feedback; directing the students’ investigation, etc. However, if this is not the 

case, then the ILE should provide this support during activities in class. 

A current interactive tutorial, which according to author’s opinion has managed 

to serve well the aforementioned criteria of “investigation”, “visualization”, 

“multimodality” with a variety of features and activities, while at the same time 

there is effective scaffolding, communication, guidance and support, is Khan’s 

Academy. However, this is discussed further in section 6.4.2 as it has been 

evolved the last years from an interactive tutorial to an open course type of 

environment (i.e. MOOC). 

2.1.1.4 ActiveMath (AM) – Justification  

The empirical aspects of the present study will be carried out using the 

ActiveMath system, which is based on the work of the DFKI team of the 

University of Saabrucken (Melis et al., 2006). It is essentially the type of 

interactive learning environment (ILE) which is a web-based “interactive tutorial”. 

At the time the data collection was taking place, ActiveMath was considered a 

good choice because: 

1. It had or allowed elements and features which served the criteria 

mentioned in section 2.1.1.1 

2. It was a pragmatic solution when considering practical aspects 

discussed in section 2.1.1.2 

3. It could serve methodological aspects (keeps logs of users actions and 

serve theoretical assumptions in relation to the chosen pedagogical 

theory). 

Starting from the first point, it had the potential to serve reasonably well the 

criteria of:  

 Multiple representation (e.g. connecting numerical, symbolic and graphical 

aspects of a function) and visualisation via graphics and a graph plotter  

 Investigation through a search-type of feature and hyper links for further 

exploration of  mathematical concepts  
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 Organisation as it provides consistently a table of contents (TOC) and 

previous/next buttons, which shows clearly the order of topics and allows to 

follow a linear structure,  hence facilitating scaffolding 

 Communication and collaboration as it provides the feature of “interactive 

notes”, similarly to the idea of sharing annotations discussed in section 2.1.1.1 

6) (i.e. the notes can be made public allowing in this way a possible 

collaboration amongst students and communication with tutor) 

 Mathematical activity with a reasonable degree of support, as it is possible to 

integrate a course’s curriculum (e.g. definitions, examples of mathematical 

concepts and procedures, model answers, and different types of mathematical 

exercises for which students can get feedback). Furthermore, students can 

annotate private or public notes for each exercise, similarly to the idea of 

“editable notepad” mentioned in 2.1.1.1 7). Also, it is possible to combine 

exercises with the use of graph plotter, encouraging the further exploration of 

multiple representational aspects of an exercise. 

There will be more detailed discussion in section 3.10.1.4 with regards to its 

interface and its features.  

 

With regards to the second point of practical considerations, ActiveMath had the 

potential to serve as an “empty shell”, with the aforementioned features 

included; that is an “empty shell” which could be adapted to the given 

curriculum and the learning outcomes of a maths module. Based on what was 

discussed in 2.1.1.2, and given that that its use in classroom would be in real 

conditions (during the actual tutorial sessions) and was destined for research 

purposes, it was deemed important, that its integration would not trigger 

changes at a university department’s policy and regulations; hence causing 

management or teaching or administrative staff being unsupportive or unwilling 

of its use. In other words, it was important that its integration would not require  

severe re-design of existing curriculum (such as changing the order of topics, 

trivialising or making redundant topics, and/or adding new topics).  

In terms of financial and time related issues, although the author would have to 

contribute a significant amount of time adopting AM to a given curriculum (see 

section 3.10.1.3 and 3.10.1.4), there would be no financial cost for its licence, or 

for its further development and its maintenance, as these aspects would be 

supported by the AM team. Furthermore, it was deemed important that training 
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the teaching staff or students for its use would not require a significant amount 

of time, hence AM was deemed appropriate as it provided the familiar interface 

of a website with typical, and relatively simple, navigational and “activity” 

features, as discussed in more detail in 3.10.1.4.  

At the same time, ILEs such as CAS were not deemed as a good solution. It 

was thought, for example, that their integration would interfere with the given 

structure and content of a course’s curriculum to the point of requiring changes 

in a university’s processes or regulations. It would also require more time to 

train staff and students for their use in classroom (e.g. with regards to its 

syntax), as indicated in 2.1.1.3. It would also require to rely on the university’s 

human resources and technical infrastructure, for its development and 

maintenance. In addition, it was thought at the time of the current investigation 

that the integration of a graph plotter, designed and implemented specifically for 

the needs of the specific learning material would cover well the criterion of 

multiple representations; hence the use of a  DG environment was not deemed 

necessary. Finally, other interactive tutorials described in 2.1.1.3 could not offer 

the methodological and practical aspects discussed below. 

With regards to the third point of methodological aspects, AM was also deemed 

appropriate. As discussed later on in 3.10.1.4, the use of features such as 

“notes”, “search”, “hyper links”, “TOC”, and “previous/next” contributes towards 

forming theoretical associations with aspects of a specific pedagogical theory 

(i.e. studying approaches), hence forming relevant assumptions. These are just 

some examples, however, other elements of AM (such as allowing students not 

to follow the given structure or allowing them to try a specific number of times to 

solve exercises or cancel them) also allowed to form relevant assumptions, as 

shown later on in sections 4.1.1 - 4.1.10. Furthermore, the implementation of 

AM was based on an XML mark-up which could reveal semantic information 

with regards to the content of the pages visited (i.e. definitions, examples, 

theory, and exercises), hence allowing the  calculation of more refined 

“interaction” metrics and offering the potential of making associations between, 

for example, time spent on a specific type of pages and aspects of the chosen 

pedagogical theory. Also, from a practical perspective, the fact that the team 

behind AM had the infrastructure, expertise and human resources to help with 

the implementation and do the action analysis (i.e. recording of web logs and 

calculation of required metrics) free of charge, influenced also this choice. 

Finally as discussed in section 3.10.3.11, the choice of AM served ethical 

issues. For example, one of the main reasons AM was chosen was because it 
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could help collect data in an unobtrusive way (e.g. recording web logs).  

Another ethical issue was avoiding setting tasks that would disrupt the learning 

process, hence it was reasonable to choose an ILE such as AM, which would 

not require significant amount of training for both students and staff.  

 

2.1.2 Students’ interactions when using mathematics education systems 

From the description of the above systems, it is evident that students need to 

make a number of decisions when studying in these systems. As supported by 

Heid and Todd (2001), Weigand and Weller (2001), and Borba  (2009), the way 

students work in mathematics is likely to change when using computer systems. 

The next section presents research on students’ interactions in mathematical 

ILEs. However, because there are various empirical findings as to whether the 

use of mathematical ILEs actually benefits achievement in mathematics, the 

discussion starts with an examination of relevant empirical investigations. 

Starting from the general effect of the use of technology on achievement in 

higher education, a meta-analysis by Schmid et al. (2009) reveal that there is 

an overall average low to moderate statistically significant effect size of 0.28. In 

general, their method seems to follow what is required in order to obtain internal 

and external validity. Their result is based on the results of a representative 

sample of 231 studies conducted in 1990 and onwards in higher education (and 

after reviewing 491 studies and selecting the ones that provide sufficient 

statistical information).  

The selected studies vary in terms of their research design, the type of 

technology used (e.g. systems with and without “cognitive support”), and the 

“intensity of their use” (e.g. whether there is use of more than one systems; the 

number of their features and functions; the duration and frequency of their use). 

Schmid et al. (2009) conduct further analysis to examine the impact of each of 

the above factors. Their results indicate that for systems which provide 

cognitive support (that is, systems that “guide, and extend the thinking 

processes of their users” (Jonassen, 1994)) there is a moderate effect size of 

0.41; whereas the intensity of use has a low effect size.  

The effect of technology, therefore, depends heavily on the way and the 

conditions in which the technology is used in a higher education class; 

consequently the results of the effect on achievement may vary. This seems to 

be also true for the effect of the use of systems for mathematical education on 
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achievement in a higher education mathematics class.  

There is a number of studies that suggest that the use of systems for 

mathematical education does not make any difference in relation to students’ 

performance (Jenks and Springer, 2002;  Buteau and Muller, 2006). On the 

other hand, there are more positive views and empirical evidence about the 

effect of systems for mathematical education on performance. Khoju et al. 

(2005), Hagerty and Smith (2005), Tokpah (2008), and Saha et al. (2015) argue 

that the use of systems for mathematical education influence significantly the 

students’ performance in mathematics compared to the use of traditional (non-

computer) learning material. In terms of the use of graph plotters in class, 

researchers such as Crowe and Zand (2000b), Goulding and Kyriacou (2007), 

and Hong and Thomas (2015) argue that it may be possible to enhance 

understanding by manipulating and exploring further the output (e.g. by scaling, 

zooming, moving, rotating, and reading data from it) and that this should be 

encouraged in the class.  

Furthermore, meta-analyses conducted by Schenker (2007), and Rosen and 

Salomon (2007) found effect sizes in the region of 0.23 and 0.46, respectively, 

on achievement. This difference can be explained if we consider that the meta-

analysis conducted by Schenker (2007) simply compares the use or non-use of 

mathematical systems, whereas in the meta-analysis by Rosen and Salomon 

(2007) it is the type of instructional method rather than the sheer existence of 

computer use that resulted in a moderate effect size on performance. The way 

and the conditions, therefore, in which the mathematical systems are used can 

make a difference; a conclusion which is in accordance with the findings of 

Schmid et al. (2009) about the general effect of the use of technology in 

education.  

These findings indicate a mixed image on the effectiveness of mathematical 

ILEs, so this leaves room for improvement.  Later on in section 2.1.7, it is 

discussed that to improve the effectiveness of mathematical ILEs, it is worth 

looking at how students interact with the ILEs and how their individual 

characteristics affect their interactions. 

 

The following sections examine literature describing some common student 

interactions when they use mathematical systems such as: interactions in low 

and high level control mathematical systems, interactions when they practise 

exercises, and degree of computer and mathematics interaction.  
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2.1.3 Students’ interactions and low and high degrees of control 

The degree of freedom a system allows learners when interacting with it varies. 

The degree of freedom in a system can be in relation to the choice of content, 

the  order in which learners view the topics, or the choice to follow or ignore the 

advice given by the system (Lunts, 1997).  

Lunt (1997) reviews a number of studies which examine the effectiveness of 

systems with various degrees and types of control on students’ performance. 

She concludes that there is lack of significant difference.  

According to Lunt (1997) the lack of significant difference may be due to the fact 

that the studies she reviewed on low and high control systems do not consider 

individual characteristics. She argues that students’ personalities, prior 

knowledge, abilities, goals, and preferences differ, and that these differences 

may affect the degree of control with which students are able to perform well.  

In the context of ILE for mathematical education Lunt’s argument seems 

reasonable. For example, students without prior knowledge may simply learn 

best when maths topics are viewed in the given order; especially since one of 

the characteristics of undergraduate mathematics is that it builds on previous 

concepts (Thurston, 1990). Differences in ability may also have an effect on 

performance depending on the degree of control an ILE provides. Li and 

Edmonds (2005), in their discussion, argue  that when dealing with at-risk adult 

students in mathematics only low control systems with small sequences and 

drill and repetition can help improve their performance.  

Finally, students’ interaction with a low and a high control system may differ. 

Henry (1995) compared the way students interact in a low and high control ILE 

for mathematics. More specifically, he compared the way they move around the 

system in terms of the number of pages, the number of revisitations and the 

time spent on the system. His results reveal that between the low and high 

control systems, students who use the low control system spend significantly 

more time interacting with it compared to students who use the high control 

system. He claims that research into learner’s characteristics may explain these 

differences further.  

2.1.4 Students’ interactions when carrying out practice on exercises 

Empirical research into the way students work while practising on exercises in 

systems for mathematical education reveals that there are some common 

patterns of interactions. The reason behind this type of research is usually to 
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examine whether the way the students work with these exercises actually 

differs compared to the way they work in a traditional session, and whether the 

way students practise in these systems leads to bad or good performance. This 

knowledge is important in order to improve the system’s design or give 

appropriate guidance in class. 

A common behaviour when practising exercises is “trial and error” where 

students try different solutions, but without using a systematic approach which 

would help them to improve with each attempt (Cazes et al., 2006;  Berry et al., 

2006). Berry et al. (2006) also observe some students using a more systematic 

approach, commonly called “trial and improvement”, which eventually leads to 

better results.  

Another common behaviour is “gaming the system” when students try to 

achieve good results by taking advantage of the system’s feedback (Baker et al. 

2008). “Gaming the system” has been linked to poor performance and has 

prompted researchers such as Cazes et al. (2006) to conduct relevant studies.  

They conduct a case study and use log files to record students’ behaviour when 

practising their exercises in an ILE, they find that some students tend to click 

every checkbox within a set of multiple-choice answers until the system 

identifies a correct answer and allows students to advance. Based on these 

findings, Cazes et al. (2008) make suggestions about how tutors may deal with 

such behaviour in class.  

Cazes et al. (2008) find patterns of interactions through a detailed recording of 

students’ interaction with the ILE when practising; however, they do not attempt 

to explain this behaviour by linking it, for example, to students’ individual 

characteristics. A reason for this may be simply that “gaming the systems” may 

be a natural part of the learning process and not necessarily something that can 

be dealt with. It is also possible that learners may apply compensatory 

strategies to simplify a task; a tactic which, according to Niederhauser (2007), is 

frequently applied in ILEs. On the other hand, the relationship between “gaming 

the system” and individual characteristics is examined thoroughly in the study of 

Baker et al (2008). Although their study concerns intelligent ILEs, which are not 

examined in this report, it is worth mentioning it briefly because they look into a 

fairly large number of individual characteristics such as goals, attitudes, beliefs, 

emotions and preferences towards learning and mathematics. More specifically, 

their results reveal that there are significant positive and fairly moderate 

correlations between “gaming” behaviour and the students’ characteristics of 

dislike for maths, frustration with the software, and lack of educational self-drive.  
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2.1.5 Computer and mathematics interaction 

According to Galbraith and Haines (1998) students indicating a high degree of 

computer and mathematics interaction (that is the extent to which mathematical 

thinking interacts with computer medium) have specific beliefs and attitudes 

towards computers and mathematics. For example, they believe that computers 

help their learning mainly through examples and by linking algebraic and 

geometric ideas, and that note-taking can complement the information given by 

the system.  

Gomez-Chacon and Haines (2008) conduct a study in which the aim is to gain a 

better understanding of the affective and behavioural factors of undergraduate 

students in mathematical courses, in which systems such as graph plotters are 

used. In their discussion, they suggest that research on students’ reactions and 

characteristics may provide information on how to best use mathematics tools 

and real world interfaces, evaluate computer courses and develop computer 

based curricula. Initially, they test the hypothesis that undergraduate students 

with high computer and mathematics interaction tend to link algebraic and 

geometric ideas, take notes, and review their activities within the system. Their 

results confirm that students with high interaction scores tend to link algebraic 

and geometric ideas. 

2.1.6 Discussion on students’ behaviour in systems for mathematical education 

and individual characteristics 

Section 2.1.3 discusses that the effects of the use of these systems on 

performance are real but of medium strength (with effect sizes in the region of 

0.3-0.4). In addition, based on what is discussed in 2.1.3 and 2.1.5, the systems 

on their own do not improve performance and it is rather the way they are used 

in class that can make a difference by providing additional and appropriate 

instructions, activities in the class (e.g. to prevent “gaming the system” etc.). 

Most importantly, this area of literature shows that the issue of students’ 

characteristics resurfaces in most aspects of students’ behaviour in using ILEs 

for mathematics, in an attempt to explain the behaviour and consequently make 

a system more effective. In previous sections, for example, we saw that 

students’ interaction and practising in mathematical systems have been linked 

to their attitudes, beliefs, goals, preferences and strategies as a way to improve 

the design of the system.   

Given that these ILEs are at best only moderately effective it is natural to ask 

how we might increase the effectiveness of these systems, and the impact of 
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the individual differences on the effectiveness of these systems suggests that 

the study of individual differences may provide some answers to this question. 

However, there is a large amount of research in the area of students’ 

characteristics, and it is reasonable to ask which research area of students’ 

characteristics might be most useful in addressing this issue.  

A research area that has a serious claim on offering further understanding on 

students’ individual differences when using ILEs and that could possibly help 

make ILEs more effective is the area of learning styles. As shown, later on, in 

section 2.3, they have played a significant role in the context of more general 

research on ILEs. This is not necessarily the case in the context of interactions 

in mathematical ILEs, however, there can be potential connections between 

learning styles and students’ interactions in mathematical ILEs. For example: 

 Moreno (2002) shows empirically students with a reflective learning style can 

cope better with the cognitive load generated by the interaction with a 

mathematical ILE compared to those with an impulsive learning style.  

 As shown in Henry’s study (1995) there are temporal and revisitation metrics 

which can indicate differences in students’ interaction in high and low control 

mathematical ILEs. This connection, between this type of metrics and learning 

styles, has been explored empirically in high and low level control ILEs in a 

number of studies as shown in the review by Chen and Macredie (2002).  

 Connections between the “gaming” behaviour and learning styles are possible. 

More specifically, according to Entwistle et al. (1979) and Entwistle (1997b) 

students with a high degree of a surface approach to studying may well exhibit 

“gaming the system” behaviour because it allows them to appear to succeed 

without risking failure. In the context of students’ interactions in an ILE, the 

behaviour of “gaming the system” has been linked empirically to anxiety about 

failing in the study of Baker et al. (2008), and it may have connections to 

Entwistle’s learning style which is linked to anxiety. 

 There can be a connection between learning styles and level of interaction in 

mathematical ILEs. According to the empirical observations of McCune (1998) 

students with a deep approach to studying tend to go vigorously through the 

learning material by making notes, and relating ideas in order to achieve 

personal understanding. It is possible that students intending to follow a deep 

approach show a similar type of active engagement with the learning material in 

a mathematical ILE, leading to a high degree of interaction. As shown in section 

2.1.6, the study by Galbraith and Haines (1998) indicates that a high degree of 
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what they refer to as “computer and mathematics interaction” is related to 

linking algebraic and geometric ideas, and note-making. 

 

These are some examples of possible connections between learning styles and 

the way students interact in systems for mathematical education. However, the 

area of learning styles is large with a number of theoretical frameworks, 

definitions and measurements. Before proceeding, therefore, with a more 

detailed account of existing empirical evidence of the relationship between 

learning style and students’ interaction in ILEs, the intention is to examine the 

approaches taken by learning style theorists to explain individual differences 

through a critical examination of its main traditions.  

2.2 ‘Style’ traditions 

One of the common criticisms of researchers who apply the ‘style’ theory is that 

they concentrate on applying a specific theoretical framework and 

measurement without really having a full understanding and overall view of the 

theory and its variety of theoretical frameworks, measurements, and definitions. 

This type of criticism one may find even in overall positive reviews with regards 

to applicability and usefulness the ‘style’ theory in education, such as the one 

by Ali et al. (2014). At this point, therefore, it is essential to acquire a more 

thorough understanding of the theory before making choices with regards to the 

theoretical framework the author intends to concentrate on. 

According to the reviews of researchers such as Rayner and Riding (1997), 

Sadler-Smith (1997), Curry (1987), and Coffield et al. (2004), there are three 

main traditions in theorising about styles: the personality tradition, the cognitive 

tradition, and the learning tradition. These traditions derive from three different 

movements arising from the historical development of style. Behind these 

categorisations of styles, learning style theorists attempt to rationalise, clarify 

and therefore facilitate the application of style theory by identifying common 

characteristics and differences among existing style constructs. However, as 

the literature on style is vast, the intention is to concentrate only on the 

cognitive style tradition and the learning style tradition, as they seem to be the 

most empirically relevant in the context of students’ interaction in ILEs (hence 

the personality tradition is excluded from the current literature review). 

2.2.1 Cognitive tradition  

The systematic development of styles in the cognitive tradition starts with a 30-
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year period beginning in the 1940s where studies in cognition and perception 

are conducted by cognitive psychologists (Rayner and Riding, 1997) . It has its 

roots in early 20th-century German typological theories (Sternberg and 

Grigorenko, 2001). In particular the Gestalt school’s research in perceptual 

differences inspired the first experiments on perceptual functioning in 

individuals when locating an upright object in space (Rayner and Riding, 1997).  

Sternberg and Grigorenko (1997) argue that the interest of cognitive 

psychologists in style started when research in intelligence could not really 

explain the processes of generating individual differences. In other words, there 

was a need to understand cognitive functioning beyond the measurement of 

intelligence. Research then started to focus on identifying styles and 

dimensions of cognitive processing (processing and organising information, 

problem solving) and perceptual functioning (Sternberg and Grigorenko, 2001).  

The cognitive tradition has produced a variety of style constructs in an attempt 

to capture individual differences in cognitive and perceptual functioning, 

generating at the same time a number of criticisms.  

One of the main criticisms is the resemblance of cognitive tradition styles to 

abilities, while there should be a clear distinction. One of the reasons for this 

resemblance is that certain measurements, such as Witkin’s field independence 

vs. field dependence, assess the maximum performance in the same way as 

the abilities tests (Sternberg and Grigorenko, 1997). 

Another criticism is that in this great variety of constructs, different labels are 

used to represent the same dimensions. According to Riding (1997), the reason 

behind this phenomenon is that between the 1940s and 1970s researchers 

worked in isolation, developing fragmented constructs and measurements. It is 

not until the 1990s that efforts for organisation of styles in this tradition take 

place by researchers such as Riding and Cheema (1991).  

The cognitive tradition starts as a way of expressing individual differences in the 

cognitive processes. However, in the 1970s and especially during the 1980s 

cognitive measurements begin to be used for educational purposes. The on-

going desire to apply cognitive theory in educational context leads to the 

creation of new measurements and the birth of the learning tradition.  

2.2.2 Learning tradition  

The systematic development of this approach begins in the 1970s and involves 

theories of individual differences in learning processes (Riding and Cheema, 
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1991). Unlike the cognitive tradition, the constructs and measurements in the 

learning tradition have been created to serve exclusively educational purposes. 

Therefore, this tradition focuses on the impact of individual differences during 

learning activities and the development of new constructs that are based on 

pedagogical theories (Rayner and Riding, 1997;  Sternberg and Grigorenko, 

2001).  

According to Sternberg and Grigorenko (2001), an influential pedagogical 

theory that formed conceptualisations for the styles of this tradition is the one 

proposed by Kolb in (1984). Coffield et al. (2004) also point out the pedagogical 

significance of Entwistle’s theoretical framework in relation to approaches to 

studying.  

Kolb’s theory proposes a four-stage experiential learning cycle. It consists of 

concrete experience (being involved in experiences and dealing with real 

situations); reflective observation (understanding the meaning of ideas and 

situations by observing and reflecting on them); abstracting conceptualisation 

(using logic in order to form general theories, build concepts, manipulate 

abstract symbols); and active experimentation (testing of concepts in new 

situations with an emphasis in practical applications (Kolb, 1984). Kolb’s theory 

formed styles and generated the Learning Style Inventory (LSI) measurement 

that proves to be extremely popular in various educational studies and 

applications.  

Entwistle’s construct is based mainly on the model of Marton and Säljö (1976). 

The learning style construct of Marton and Säljö (1976) arises from qualitative 

research. They conducted a qualitative analysis which indicated two terms: 

deep and surface. Initially, these terms represented approaches to reading 

(reading for meaning, and reading which focuses on the words and facts); 

however, these terms have been broadened to describe more general 

approaches to studying (Entwistle et al., 2001). Deep approach represents the 

intention to understand and analyse concepts; whereas surface approach 

represents the intention to complete the task with little personal engagement 

and memorising without reflecting (Entwistle et al., 2001). These two 

approaches are measured as separate scales in the Approaches and Study 

Skills Inventory for Students (ASSIST). Entwistle (1997) added also a third 

scale in ASSIST which measures a strategic approach to studying. The 

strategic approach represents the intention to achieve high academic 

performance through organised studying, time management, alertness to 

assessment demands and monitoring effectiveness.  
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Styles in the learning tradition have bonds with cognitive dimensions, at the 

same time they are strongly related, by definition, to the learning process. This 

leads to constructs that are influenced directly by the learning environment and 

which are very susceptible to change (Rayner and Riding, 1997). 

There are various criticisms concerning the constructs of the learning tradition. 

The first criticism concerns the ambiguity in the terms “learning strategy” and 

“learning style” (Rayner and Riding, 1997). Strategy refers to an organised 

series of tactics based on attitudes and motives (where tactics are the 

procedure of deciding which processes to apply, in which order, and using what 

skills) (Eysenck, 1994). Therefore, strategies may be learned and developed in 

order to cope with learning tasks, compared to learning styles that are relatively 

quantitative (Riding, 1997). Similar observations are made by Pask (1976b, 

p.133) who notes that strategies “are induced by systematic enforcement”, 

whereas learning styles manifest themselves in more “relaxed” learning 

environments. So, learners can apply the learning strategy of utilising 

knowledge about their learning style in order to improve their performance by 

matching style to instruction; or style flexibility can be applied when choosing or 

developing an appropriate strategy and employing different tactics in a novel 

situation (Curry, 1999).   

The popularity of the “styles” of the learning tradition in education has gradually 

increased due to their strong relevance to learning processes. Most of these 

theories start from the point of view of the student, rather than that of the 

researcher or the teacher and therefore, they offer a better understanding of the 

reality of student learning. Their ultimate goal also is to provide a theoretical 

and empirical rationale for practical solutions which may improve learning and 

teaching.  

Furthermore, in learning style theories such as the one proposed by Entwistle, 

there is emphasis on the way content and context influences students’ 

approach to learning. Characterisation of a student’s approach to learning is 

linked to a specific subject, department, school, thus providing a more realistic 

view on what is going on in a real learning environment.   

 

After reviewing the two traditions, it is evident that clarification of terminology is 

necessary. In the next section, the intention is to examine the differences 

between the terms “learning style” and “cognitive style”, what they represent, 

and their interrelationships. 
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2.2.3 Interrelationships and comparisons between terms and traditions 

It is evident from the above reviews of the two traditions that clarification of 

terminology in style theory is not straightforward. In addition, there is not really a 

common agreement as to how the styles from the two traditions influence each 

other and how they differ.  

Starting from the definition of the learning tradition, “learning style” is the pattern 

of behaviour related to acquiring, manipulating, and using knowledge in a 

learning environment or through a learning procedure. A learning environment 

or procedure consists of learning strategies and instructional preferences. This 

definition is derived from the definitions of Eysenck (1994) and Pask (1988), 

who relate learning style to habitual preferences and strategies.  

“Cognitive style” has a broader definition; it is defined as the pattern of acquiring 

knowledge in general and not specifically in a learning environment. The 

acquisition of knowledge derives from internal cognitive processes such as 

processing, organising, representing, perceiving information, and problem 

solving (Riding, 1997;  Liu and Ginther, 1999). Cognitive style differs from ability 

in that performance will increase as ability increases, whereas the same style 

can influence both negatively and positively the performance depending on the 

nature of the task (Curry, 1999;  Lemire, 2000;  Riding, 1997). 

The key difference between learning style and cognitive style is that learning 

style, unlike cognitive style, is influenced by the learning environment. Cognitive 

style is fairly quantitative, i.e. more stable over time, compared to learning style 

the interaction of which with the learning environment makes it less stable 

(Riding and Cheema, 1991;  Liu and Ginther, 1999).  In addition, this key 

difference between cognitive and learning style seems to be supported by most 

researchers in the Delphi study conducted by Armstrong et al. (2011) where 

there is an effort to establish consensus amongst researchers with regards to 

the definitions and the differences between cognitive and learning style 

(although total consensus does not occur as it shows that 27% of the 

researchers still believe that a student’s learning style is relatively stable).  

There is a range of perspectives on the interrelationships of these two traditions. 

According to Sadler-Smith (1997), there is empirical evidence showing that 

there is no relationship between cognitive style and learning style. However, 

there are those who argue that conceptually learning style constructs may arise 

from aspects of cognition (Sternberg and Grigorenko, 1997).  

So, these two traditions may interact, influence and even relate to each other, 



 47 

however they are very distinct and they should be represented accurately in the 

literature of styles by using the appropriate terminology. Awareness of the 

tradition behind a construct plays an important role in understanding the 

conceptual relationship between a style construct and other concepts such as 

students’ behaviour and interactions in learning environments. It can also help 

in selecting the appropriate tradition and eventually the appropriate style 

measurement from that tradition for a study.  

 

The next section will use these ideas in order to support a discussion of studies 

looking at students’ interactions in ILEs.  

2.3  Empirical evidence about styles and students’ interaction when using ILEs 

The concept of students’ interaction in the studies discussed in this section, can 

refer to a number of things, for example:  

 type of navigational options students select in order to move around in the ILE; 

 how long they spent on the content of the ILE; 

 how many pages and what type of pages (e.g. with more or less degree of 

detail) they visit and revisit;  

 whether they follow the given structure of the content in the ILE or impose their 

own organisation.   

A methodological design that has been commonly used in the context of styles 

and ILEs is to compare differences in students’ performance across different 

matching conditions. This type of study follows an experimental quantitative 

design (e.g. true or quasi experiments) where researchers investigate the effect 

of matching condition on learning performance. Learners are divided into 

groups according to their style, then each group is assigned to different 

treatments (matched or mismatched) and at the end each group’s learning 

performance is assessed. For example:  

 Students’ styles are matched to ILEs with different levels of control (different 

types of structures which allow more or less freedom of choice). Typical 

examples of such studies were conducted by: Lin and Davidson-Shivers (1996) 

who used Witkin’s cognitive style construct (field dependence vs. field 

independence); Graff (2005) who used Allinson and Hayes’ Cognitive Style 

Index (intuitive vs. analytical); Rasmussen and Davidson-Shivers (1998) who 

used Kolb’s learning style construct LSI; and Dunser and Jirasko (2005) who 
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used Felder and Silverman’s learning style construct (global vs. sequential 

dimension). 

 Students’ styles are matched to either an ILE that provides an overview of the 

available topics before entering in to the details of each topic (breadth-first 

order), or to an ILE that allows students to go directly into the details of each 

topic (depth-first order). A typical example of such a study was conducted by 

Ford and Chen (2001) who used Riding’s cognitive style construct CSA 

(analytic vs. holist). 

However, there is an ongoing debate as to whether matching or mismatching 

“style” to instruction is beneficial for the students. In a more general educational 

context, there is ongoing attention to the implications of matching style to 

instruction on performance. Researchers such as Witkin et al (1977), Dunn 

(2000), Riding (1997), and Myers-Briggs (1986) consider matching style to 

instruction an important factor for achievement. Another advocate of matching 

to instruction, Felder (1993) (cited in Coffield et al., 2014, p.122) claims based 

on empirical evidence in science courses that mismatching instruction to 

students’ “style” can result in lower grades and lack of intrinsic interest in the 

course material. However, Coffield et al. (2004), and Rohrer and Pasher (2012) 

(cited in Ali et al, 2014, p.83) argue that there is no empirical support for 

matching instruction to style. There are also researchers in the field of styles 

such as Curry (1990) and Moran (1991) who are critical of both matching and 

mismatching, and state that optimal results are not achieved when styles are 

systematically mismatched or matched to instructional methods. 

The debate of the matching hypothesis does not only concern the evidence 

about immediate performance gains, but it also extends to wider pedagogical 

concerns. For example, some researchers support deliberate mismatch as a 

way to create more versatile learners (Coffield et al., 2004;  Curry, 1990). A 

more recent review by  Ali et al. (2014) in the field of “styles” also discusses that, 

while there is support for matching, there is also support for mismatching 

student’s “style” and instruction, as it can challenge students so they can 

overcome their weaknesses and prepare them better for real life. This position 

resonates also with researchers in higher education such as Entwistle and 

Peterson (2004) who urge educators not to hesitate to design an environment 

which make students “somewhat uncomfortable yet provide enough support for 

new strategies to be developed without undue anxiety”. On the other hand, 

there are other researchers who consider deliberate mismatch unethical and 
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even catastrophic for students whose personality does not favour versatility 

(Miller, 1991).  

Because of these pedagogical concerns and mixed image on the performance 

gains of matching instruction to style, it was decided that a “matching 

hypothesis” type of design would not be appropriate for the current investigation. 

Hence, there will not be further detailed discussion with regards to “matching 

hypothesis” studies. 

However, there is type of methodological design which seems to be more 

relevant and appropriate for the current investigation. Relational design is also a 

widely used design, through which it is possible to investigate the relationship 

between style and students’ interaction. In this type of design, students’ 

interaction is related to their style as identified by style measurements. Since 

this type of design is more relevant to the current investigation, a detailed 

accounted is provided in the following sections, but it is restricted to university 

courses of any subject. 

2.3.1 Style and students’ interactions in terms of navigational metrics  

This section focuses on the empirical evidence that associates “style” to the use 

of navigational options presented in an ILE. 

2.3.1.1 Maps and menus and their use 

Use of navigational options has been also related to “styles” and particularly to 

the cognitive style constructs of Witkin’s GEFT (1971) (field dependence vs. 

field independence) and Riding’s CSA (2001) (analytic vs. holist).  

More specifically, a study by Ford and Chen (2000) indicates that there is a 

weak, positive, and statistically significant relationship between the CSA 

analytic-holist dimension and the use of the index. This means that the closer 

the learners are to the analytic end of the dimension the more they tend to use 

the index (which allows them to navigate quickly to the exact piece of 

information they prefer to focus on). It was found, however, that the magnitude 

of the shared variance accounted for is very small (r2=0.08). In relation to the 

use of the map, the results indicate a moderate, negative, and significant 

relationship between the CSA Analytic-Holist dimension and the use of the map. 

This means that the closer the learners are to the holist end of the dimension 

the more they tend to use the map (which allows them a conceptual overview of 

the learning content). The magnitude of the shared variance accounted for is 

small (r2= 0.10). In terms of generalisability, there are limitations as the sample 
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is a self-selected convenience sample and is relatively small (N=65).  

Finally, a review by Chen and Macredie (2002) present studies where the use 

of navigational options is related to Witkin’s cognitive styles (e.g. field 

independent tend to use more “search” and “index” options to find specific 

details and procedures in the content of the ILE). Again though, most studies 

rely on relatively small samples ranging from 5 to 63 participants. 

2.3.1.2 Linearity and the use of previous/next buttons 

A key aspect of a hypermedia design which is frequently investigated in relation 

to style is linearity. According to Botafogo et al. (1992), linearity indicates to 

what extent the hypermedia developer imposes order of reading, that is the trail 

of pages that must be viewed consecutively. There have been a number of 

studies which examine the relationship between cognitive style and path 

linearity when using an ILE. A review by Chen and Macredie (2002) presents 

studies which indicate, for example, that field dependent learners tend to take a 

more linear path in an ILE than field independent learners at the early and 

middle stages of the learning process.  

Furthermore, there are parts of ILEs that can offer linear navigation with the 

help of navigational options such as previous/next buttons; thus, linearity in 

users’ navigation is expressed through the use of these options. Chen and Ford 

(1998) examine in their study the relationship between Riding’s cognitive styles 

and use of the previous/next buttons. The results show that there is a 

statistically significant, negative, moderate relationship between the values of 

analytic/non-analytic variable and the use of previous/next buttons. The 

magnitude of the shared variance accounted for is moderate (r2=0.239). These 

results seem to support the hypothesis that learners classified as analytics 

demonstrate a less linear navigational behaviour than those classified as non-

analytics; however, given the small size of the above study (N=20), definite 

conclusions cannot be drawn.  

2.3.2 Style and students’ interactions  

Students’ interactions when using ILEs also differs in terms of path length, how 

often pages are revisited, and how long they spend on different pages. This 

section looks at some of the studies that have examined the relationship of 

these interactions to style.  
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2.3.2.1 Path length, visits and revisits 

Connections have been found between “path length” (total number of pages 

visited) and revisitation metrics (the number of times the same page was visited) 

and “styles” such as Riding’s analytic vs. holist and Entwistle’s learning style 

ASSIST. 

A study by Chen and Ford (1998) indicates that there is a statistically significant, 

negative, high relationship between the analytic/non-analytic variable and the 

metric of path length. This means that learners classified as analytics are likely 

to perform a shorter path than those classified as non-analytic. The magnitude 

of the shared variance accounted for is moderate (r2=0.31). In the same study, 

there are also some findings in relation to a revisitation metric called “pages 

duplicated”. The findings show that there is a statistically significant, negative, 

high relationship between the analytic/non-analytic variable and the metric of 

revisitation. This means that learners classified as analytics are less likely to 

revisit than those classified as non-analytic. The magnitude of the shared 

variance accounted for is moderate (r2=0.31).  

Chen and Ford (1998) say that it is not clear how individual differences become 

evident in an ILE. They interpret the navigational behaviour of the analytic 

learners as a sign of more efficient learning with fewer page duplications and 

navigational moves, although this interpretation would be more convincing if it 

was found that analytic learners had visited more distinct pages compared to 

the non-analytic learners which was not the case in their study. 

Measurements from the learning tradition have been also related to this aspect 

of students’ interaction. In the study of Mimirinis and Dafoulas (2008), the path 

length and the number of pages visited in specific sections of the ILE are 

examined in relation to the deep and surface scales of ASSIST (see section 

2.2.2). They conduct this study with final year computer-science students and 

their results indicate that:  

 there are no correlations between the above metrics and the deep scale and its 

subscales. 

 the higher students score on the surface subscale of unrelated memorising the 

more likely they are to visit the Content section (the theoretical section of the 

system).  The magnitude of the shared variance accounted for is fairly 

moderate (r2=0.16). 

The size of their study is relatively small (N=31). However, their findings can 
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give an indication of possible connections between path length and visitation 

metrics and Entwistle’s surface scales and subscales. For example, students 

with high values on the unrelated memorising surface subscale simply follow 

the route of rote learning without the intention of personal understanding 

(Entwistle, 1998); hence, they may simply try to get through as much learning 

content as possible without necessarily reflecting on what needs to be 

understood further or what is required of them.   

In an earlier study by Allinson (1992), it has been found that students (from art 

and science courses) with high scores on deep scale and low scores on the 

surface scale tend to go to more pages compared to those with low scores on 

the deep scale and high scores on the surface scale. 

The results from these two studies about the association between deep and 

surface approaches and students’ interaction are in disagreement. In the study 

by Miriminis and Dafoulas (2008) the higher students score in unrelated 

memorising –a surface subscale – the more pages they visit; whereas in the 

study of Allinson (1992) students with the high scores in the surface scale tend 

to visit fewer pages. This difference may be due to the educational context 

since the ASSIST scale is intended to be context specific – according to 

Entwistle (1997a) students should think of their answers in terms of the specific 

course. However, students may visit a lot of pages for different reasons, some 

because they tend to skim through the learning material in order to memorise 

and some because they want to elicit deeper meaning and understanding thus 

manifesting the same behaviour in ILEs but for different reasons.  

 

The above findings and interpretations should be treated with caution given the 

small size of all three studies and the differences in context. However, they do 

suggest that the number of page visits and revisits to a certain section of an ILE 

may be associated with cognitive and learning styles.  

2.3.2.2 Use of time 

Measuring the time that students spend doing various activities in the system 

may help achieve more accurate interpretations of interaction. This will be 

particularly the case when viewing times are recorded in relation to sections or 

pages with specific characteristics that reveal the degree of depth in subject 

hierarchy, degree of detail of learning material, or type of learning material (e.g. 

exercise or theory). 
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Based on the notion that analytic learners tend to focus on details and 

procedures in a field (Sadler-Smith, 1997;  Entwistle and Hanley, 1977), it might 

be expected that analytics are likely to spend more time on pages, sections or 

levels of the ILE that provide detailed learning material. This hypothesis is 

tested in the experimental correlational study of Ford and Chen (2000). 

Ford and Chen (2000) examine the correlation between the scores on Riding’s 

CSA Analytic-Holist dimension and measures of the time spent on the sections 

of the ILE with more and less detailed information about a subject. The results 

indicate that:  

 There is a weak, positive, and statistically significant relationship between the 

score on the Analytic-Holist dimension and the overall time spent on the section 

“Detailed Techniques” (which means that the closer the learners are to the 

analytic end of the dimension the more time they are likely to spend on the 

“Detailed Techniques” section). The magnitude of the shared variance 

accounted for is very small (r2=0.07).  

 There is a moderate, negative, and statistically significant relationship between 

the score on the Analytic-Holist dimension and the score of the overall time 

spent on one of the higher levels of the subject hierarchy (which means that the 

closer the learners are to the analytic end of the dimension the less likely they 

are to use sections with less detailed information about the subject). The 

magnitude of the shared variance accounted for is very small (r2=0.09).  

 There is a moderate, positive, and statistically significant relationship between 

the score on the Analytic-Holist dimension and the score of the overall time 

spent on one of the lower levels of the subject hierarchy (which means that the 

closer the learners are to the analytic end of the dimension the more likely they 

are to use sections with more detailed information about the subject). The 

magnitude of the shared variance accounted for is small (r2=0.14).  

The direction and statistical significance of the above relationships supports to a 

certain degree the hypothesis that analytic learners are likely to spend more 

time on sections that cover more details about the learning material; although 

more empirical evidence would be needed to support the practical significance 

of the relationship. 

 

The findings of this section indicate how cognitive and learning style can be 

associated with path length, visitation, use of navigational tools, revisitation and 



 54 

temporal metrics; although there should be careful interpretation of the results 

since practical significance ranges from weak to moderate. The empirical 

evidence, presented in this section, also shows that cognitive style constructs 

seem to be more widely used in this type of studies than learning styles.  

 

2.4 The relevance of the traditions to a study of interaction in an ILE 

There has been a range of empirical work, therefore, looking at the 

relationships between styles and student interaction when using ILEs. At this 

point, it is worth examining whether any of the traditions of work on style have 

particular relevance or appropriateness in the context of students’ interaction in 

an ILE.  

 Cognitive style tradition 

We have seen there are strong conceptual connections between cognitive style 

measurements and certain aspects of students’ interaction, and the empirical 

evidence in section 2.3 indicates the domination of cognitive style constructs in 

studies where different aspects of interaction in ILEs is involved. The theories 

behind the cognitive style constructs seem to fit in well conceptually with the 

different aspects of students’ behaviour in a variety of ILEs. As shown in section 

2.3, cognitive style measurements such as GEFT and CSA have been used 

widely in a variety of studies of different aspects of students’ interaction in ILEs. 

There is also the Allinson and Hayes’ CSI which, although it has not been used 

as extensively as the other two, has received positive criticism psychometrically 

(Coffield et al., 2004).  

Finally, it seems that this type of early empirical work, discussed in section 2.3, 

has formed the foundation for further empirical research and application in the 

field of adaptive ILEs and cognitive style measurements. As shown in the 

reviews by Al-Azawei and Badii (2014) and Ali et al. (2014), this seems to be 

particularly the case for all three cognitive style measurements: Witkin’s GEFT, 

Riding’s CSA, and Allison and Haye’s CSI. 

 Learning style tradition 

The learning tradition has been concerned both empirically and conceptually 

with the examination of the students’ interactions in ILEs through the learning 

style measurement of Kolb and Entwistle.  

With regards to Silverman’s ILS, as mentioned in 2.3, an early study has 
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indicated a possible connection to linearity. In Coffield et al. (2004) review, its 

potential impact as a leading learning style construct is not supported; however, 

recent reviews in the field of interactive learning environments show that ILS is 

amongst the most frequently used  learning style measurements because it is 

considered easy to apply with regards adaptive interactive learning 

environments (Deborah et al., 2014; Al-Azawei and Badii, 2014).  

There is a possible conceptual connection between Kolb’s LSI and the level of 

control in an ILE, as mentioned in section 2.3. This early empirical work seems 

to have paved the way for further application. Kolb’s construct is used in the 

field of adaptive ILEs (Drissi and Abdelkirim, 2012). However, LSI has been 

criticised for its lack of psychometric rigour (Ruble and Stout, 1994; Coffield et 

al., 2004).  

Entwistle’s learning style measurement ASSIST may be able to offer a better 

theoretical framework for examining styles in relation to students’ behaviour in 

ILEs. This measurement has been involved in studies of  relational design with 

regards to visitation as shown in 2.3.2.1 and has received a positive critique by 

sceptics of the style theory such as Coffield et al. (2004).  

According to Curry (1987), Coffield et al. (2004), and Eysenck (1994) the 

ASSIST deep subscales “relating ideas” and “use of evidence” are based on 

Pask’s learning styles holist and serialist, respectively. Students with a “relating 

ideas” approach tend to build up a broad view of the learning task and impose 

their own organisation on content (Entwistle, 1997a; Entwistle, 1981; Entwistle 

et al., 1979). On the other hand, students with a “use of evidence” approach 

tend to build up meaning from the details and prefer a linear sequence when 

studying the learning content (Entwistle, 1997a; Entwistle et al., 1979). 

The ASSIST learning style measurement is based on an extensive research on 

the way students approach their studying in real conditions. Entwistle (1981) 

and Entwistle and Ramsden (1983) through the discussion of their data (mainly 

interviews) provide a rich insight into issues such as: the amount of time that 

students with certain approaches are likely to spend on their studying; their 

intention to rehearse and repeat in order to memorise; their intention to follow 

the given structure in the learning content as defined by the lecturer.  

To give some examples, approaches of the ways in which ASSIST scales may 

connect to behaviour when using ILEs: 
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 Students with an “unrelated memorising” approach to studying tend to repeat 

the learning content in order to memorise (Entwistle, 1981), and this could be 

linked to revisitation of pages in an ILE.  

 Students with a “fear of failure” approach to studying –which relates to anxiety- 

tend to work slowly (Entwistle, 1981), so it is possible that this can be 

connected to time spent on the ILE.  

 Students with a “seeking meaning” approach - intention to understand the 

learning content for oneself - tend to go through the learning content fairly 

slowly, and impose their own structure on the content they are given (Entwistle 

and Ramsden, 1983). It is possible that the “seeking meaning” approach can be 

linked to the time spent on an ILE, to the degree of linearity in a hypermedia 

design and to students’ navigation in the system. 

Entwistle (1981) and Entwistle and Ramsden (1983) have connected their data 

and discussion on the way students approach studying to the subject being 

studied. They discuss and comment, for example, on the way science students 

approach problem solving or the way psychology students approach the writing 

of their essays. ASSIST considers how style may affect students’ behaviour in a 

specific learning environment, in a specific subject area and university course, 

making the interpretations of the findings difficult to generalise but more 

accurate.    

 

The above discussion indicates that from the learning tradition ASSIST is a 

sophisticated measurement which has been well researched.  

2.5 The influence of non-style factors on student interaction in ILEs 

Coffield et al. (2004) point out that style should not be considered as the only 

predictor of performance and behaviour. They suggest that “learners are not 

alike nor do they live out their lives in psychological laboratories…[and that 

factors such as] age, gender and race and class, all interact to influence their 

attitudes to learning” (Coffield et al., 2004, p.142). Furthermore, in the field of 

navigational behaviour, Scherly et al. (2000) suggest that users’ characteristics 

should be taken into account;  and Ford and Chen (2001) also argue that the 

failure to take into account background variables may result in findings 

appearing to be significant when in fact they are not. 

In the majority of studies discussed in 2.3, the background variables of age, 

gender, and prior knowledge are the ones that are most often examined as 



 57 

likely additional potential factors of influence on the relationship between style 

and interaction. However, with regards to age the population of the current 

investigation concerns first-year undergraduates, so the age of participants is 

not likely to be varied. With regards to gender, there are indications of a 

relationship between gender and interaction in ILEs (e.g. temporal metrics) 

(Chen and Ford, 1998; Fiorina et al., 2007). There seem to be, however, few 

findings from which concrete conclusions about the connection between gender 

and interaction in ILEs can be drawn.  

Amongst these background variables, therefore it makes sense to focus on 

prior knowledge, which seems to have stronger influence and relevance in the 

context of the current investigation. First, the involvement of prior knowledge is 

highly relevant in the context of mathematics education. There is a notable 

struggle in mathematics classes during the first-year of study in computer 

science courses, because of the poor level of entry qualifications of some 

students in those courses (Osmon, 2009). Secondly, it can influence the way 

students interact in ILEs, as shown in the following section. 

2.5.1 Prior knowledge of subject area 

Prior knowledge may enable a faster engagement with and understanding of a 

subject and this can be reflected on the way students interact with ILEs. For 

example:  

 Chen and Paul (2003) suggest that more knowledgeable learners may impose 

their own structure simply because they understand better the conceptual 

structure of the subject matter. In terms of empirical evidence, there are only 

few studies, in which the main focus of the investigation is the relationship of 

style and navigation, and where prior knowledge is also investigated in detail. 

 Chen and Ford (1998) and Chen and Ford (2000) examine correlations 

between prior knowledge in subject area to interaction metrics such as temporal 

ones, revisitation ones, and path length. The strength of most of these 

correlations varies from low to moderate. There is, also, a fairly high and 

significant correlation between prior knowledge of subject area and depth (i.e. 

the more knowledge of the subject area learners have, the deeper they are 

likely to navigate into the hypermedia hierarchy).  

Furthermore, these early studies have formed the foundation for further 

application of prior knowledge in the field of adaptive ILEs. Mampadi and 

Mokodedi (2012) present a good overview of prior knowledge’s involvement in 
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this type of application and empirical work. In their study, they adapt the ILE for 

experts and novices with regards to link hiding, provision of tips, annotated tips 

and navigational tools. Their results indicate that novices benefit more 

compared to experts in terms of the difference between the pre-test and post-

test scores from this adaptation.  

The above empirical findings indicate that when examining the relationship 

between style and students’ interaction in ILEs, prior knowledge seems to be a 

factor which is worth considering for further investigation. A student with a 

tendency towards a specific “style” can interact with an ILE in a specific way, 

albeit because of it, but its interactions are likely to be also influenced by the 

prior knowledge on a subject. 

2.6 How the Literature Review helps shaping the research enquiry 

The literature in this chapter has indicated possible connections between “style” 

and students’ use of ILEs.  At this stage, it is discussed how addressing certain 

mainly methodological issues and criticisms in the field of “style” helps in 

shaping further the research enquiry in the current investigation. 

2.6.1 Issues in the measurement of “style” 

If one is to use a quantitative research design to address the research aims, 

similarly to studies discussed in 2.3, then we need to be able to measure style. 

In the literature review, the general term “style” is used to refer to a behaviour 

that is sustained and thus repeated over time and has cognitive and learning 

aspects. Two issues arise at this point. First whether these aspects can be 

measured, and second whether they measure what they claim to measure. 

In relation to constructs coming from the cognitive tradition, well-known reviews 

such as those of Coffield et al. (2004), Curry (1983), De Bello (1990), Riding 

and Cheema (1991), and Ehrman (1990) argue that the cognitive aspect can be 

measured. The main debate on measuring this aspect is whether existing 

instruments measure the cognitive aspect of style or whether they measure 

ability; an issue that is briefly discussed in 2.2.1 and is analysed further below.  

In relation to the learning tradition, there is a greater debate on whether style 

can be measured. According to Coffield et al. (2004), the opponents of the idea 

of measuring the learning aspect of style dispute the objectivity of such results, 

because of the subjective judgements that students make about themselves. 

However, a review by Al-Azawei et al. (2014) indicates that the alternative 
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automated, data-driven, methods of identifying students’ style also has 

disadvantages as there are difficulties when measuring and interpreting 

students’ interactions in ILEs. To conclude, although self-report measurements 

have their limitations both in general educational context and in that of ILEs, 

alternative methods have not provided a significant advantage. A self-reported 

measurement which occurs from solid educational background can be an 

appropriate and satisfactory solution as a quantitative data collection method, if 

it has been designed in a way that can be linked to subtleties in students’ 

interaction without oversimplifying. 

Another general criticism is that learning style measurements cannot capture 

the subtleties and complexities of the individual human behaviour (Coffield et al., 

2004). Prominent theorists in the learning style tradition, such as Entwistle et al. 

(2001), not only encounter the debate between quantitative and qualitative 

methods when identifying approaches towards studying, but they also find ways 

to address it.  

Entwistle et al. (2001) notice that qualitative research methods, such as 

interviews and observation into everyday studying, were needed to complement 

or even counter the way that measurements oversimplify the complexity of 

studying in different environments. On the other hand, they also notice that by 

simplifying these complexities, they could identify constructs that provide a 

precise language to describe and discuss everyday studying. Such a construct 

may also be easier to link to educational practice. As a result, Entwistle’s 

learning style construct encompasses both qualitative and quantitative research 

methods by drawing ideas from two models: Holist-Serialist of Pask (1976) and 

deep-surface of Marton and Säljö (1976b). Pask’s construct is based on 

quantitative methods and demonstrates students’ consistency in experimental 

situations and normal studying from which his measurement derived. Marton 

and Säljö use qualitative studies to show evidence of variability, where students 

adapt their approaches according to the demands of the specific task. Based on 

this qualitative evidence Marton and Säljö produce eventually a theoretical 

construct.  

The above insights raise the issue of consistency versus variability of the 

learning aspect of style (as represented respectively by the constructs of Pask 

and Marton and Säljö). One of the questions in the field of learning styles is 

whether it is possible to measure the learning aspect of style if it is not stable. 

Entwistle et al. (1979, p.367) argue that “students will exhibit sufficient 

consistency in intention and process across broadly similar academic tasks to 
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justify measuring it as a dimension.”. At the same time, there is certainly an 

interaction between an individual’s learning style, the nature of the academic 

task, and the whole learning environment, so consistency and variation in 

learning approaches can manifest simultaneously, (Entwistle et al, 2001). 

Based on these ideas, Entwistle and his team produced the Approaches and 

Study Skills Inventory for Students (ASSIST) (1997).  

To return to the initial argument, a learning style construct that proposes a 

qualitative method is a possible way of identifying the learning aspect of style. 

The qualitative methods used in the model of Marton and Säljö are well 

documented and can be reproduced. However, quantitative methods can offer 

a precise language to discuss everyday learning and at the same time offer an 

easier way to link to educational practice. 

 

The above criticisms of quantitative methods of identifying style should not be 

ignored. Similarly to Entwistle’s approach, finding ways to endorse and address 

the above conclusions and criticisms on quantitative methods can be 

constructive for the current investigation. Whilst “style” is defined as a behaviour 

that is sustained and thus repeated over time, its sustainability may be a 

characteristic of the cognitive aspect of style, but, in relation to its learning 

aspect, there are certain constraints. The learning aspect of style may be 

sustained and repeated, but this is likely to happen across the same academic 

tasks, subject area, and in general similar learning environments, as suggested 

by Entwistle (2001).  

2.6.2  “Style” measurements and psychometric rigour 

In section 2.4, it is argued that in both traditions there are measurements which 

can have empirical relevance or conceptual relevance or both to students’ 

behaviour in ILEs. The empirical account in section 2.3 and the discussion in 

section 2.4 gave an insight into representative examples of style measurements 

from each tradition that:  

 are most frequently selected for studies where students’ interaction in learning 

environments is examined, such as Witkin’s, and Riding’s cognitive style 

measurements, Kolb’s LSI, and Felder and Silverman’s ILS learning style 

measurements;  



 61 

 are used less frequently but may offer a more well-grounded and realistic 

learning perspective in this type of studies, such as the Entwistle’s learning 

style measurement;  

 are used less frequently in this type of studies but have sound psychometric 

properties, such as the Allinson and Hayes’ CSI; 

However, independently of their frequent use and possible links in terms of 

student’s interaction in ILEs, the psychometric rigour of learning style 

measurements was (when the current investigation started) and still is a major 

concern as shown in reviews such as the one by Coffield et al. (2004) and Ali et 

al. (2014). Therefore, besides the empirical and conceptual relevance, it is also 

important to select measurements with reasonable psychometric properties. 

2.6.2.1 Validity and reliability issues 

According to Curry (1990), Lemire (2000), Coffield et al. (2004), and Ali et al. 

(2014) the lack of psychometric rigour is one of the main criticisms the style 

constructs face. In these reviews, the most frequently proposed types of validity 

and reliability are: construct validity, concurrent validity, test-retest reliability and 

internal consistency. In terms of validity, construct validity is supported by all the 

reviews and critiques on styles as the one criterion which researchers should 

examine before selecting a style measurement for any type of study. In addition, 

concurrent validity is used in detailed reviews, such as the one by Coffield et al. 

(2004), to support the meaning of the construct based on the comparison and 

correlation with another one. In terms of reliability, both test-retest and internal 

consistency are used and it is argued that they are necessary criteria for the 

selection of style measurements.  

2.6.2.2 Practical Considerations 

Another criterion for selection is whether a style measurement is practically 

manageable. In other words, whether it can be easily administered, scored, 

interpreted and also appropriately documented, as suggested in a review by 

James and Blank (1993). Practical considerations such as the above may not 

seem as important as the psychometric rigour of a measurement; however, they 

should be considered, since they may influence the organisation and the results 

of a study and therefore its validity and reliability. 

2.6.2.3 A brief critique on psychometric rigour 

With regards to the psychometric rigour and practical considerations of the 
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aforementioned “style” measurements, the main issues for each measurement 

are discussed briefly here:  

 Witkin’s GEFT (1971): There are no really issues with its internal consistency, 

reliability, and administration (Curry, 1987). However, there are serious issues 

with its construct validity, as it has been found to have correlations to ability, so 

its unclear relationship with intelligence and ability has generated a lot of 

controversy (Sternberg and Grigorenko, 1997; Coffield et al., 2004).  

 Riding’s CSA (2001): While its construct validity is acceptable and its 

administration is relatively easy, there are major concerns with its test-retest 

reliability (Coffield et al., 2004). Issues with its reliability also raised in the rather 

“positive” for “styles” review by Al-Azawei et al. (2014). 

 Allinson and Hayes’ (CSI) (1997):  Its validity and reliability are considered solid 

and its administration can be conducted easily (Coffield et al., 2004).  

 Kolb’s Learning Style Inventory (LSI) (1985; 1999): There are mixed reviews 

with regards to its psychometric rigour. Its construct validity and its reliability, 

both internal consistency and test-retest, are considered poor by certain 

reviews (Ruble and Stout, 1994); while its administration is considered easy 

(James and Blank, 1993). Issues with its construct validity are also raised by 

more recent review such as the one by Ali et al. (2014); whereas in the review 

by Al-Azawei et al. (2014) its validity and reliability is supported. 

 Felder and Silverman’s (ILS) (1996): There are mixed reviews with regards to 

its validity and reliability as shown in the review by Al-Azawei and Badii (2014). 

It is relatively easy to administer (Deborah et al., 2014). 

 Entwistle’s ASSIST (1997a): its construct validity and internal consistency are 

considered good based on independent evaluations, but there is a need for 

independent evaluation of its test-retest reliability (Coffield et al., 2004). 

It seems that amongst potential “candidates” for involvement in studies of 

students’ interaction in learning environments, the relatively more frequently 

used “style” measurements such as Witkin’s GEFT, Riding’s CSA, Kolb’s LSI, 

and Felder and Silverman’s ILS have received either poor or mixed evaluations 

with regards to their psychometric rigour. With regards to the relatively less 

frequently used measurements: Entwistle’s ASSIST has received a relatively 

good evaluation and Allinson and Hayes’ (CSI) a particularly good one. 
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2.6.3 The choice of measurement 

In current review, there are examples of style measurements which were 

prominent when the current investigation started in the field of students’ 

interaction in learning environments (albeit some more than others). In choosing 

a “style” measurement to explore students’ interaction in interactive learning 

environments for mathematics in higher education, there is a greater need to 

find one which: 

 Addresses, relatively well, criticisms and issues raised in the field of “styles” 

 Show promise of conceptual and/or empirical relevance in the field of students’ 

interactions in interactive learning environments 

A “style” measurement which can address the above issues reasonably well is 

Entwistle’s ASSIST.  

ASSIST can be relevant, appropriate and promising for investigating students’ 

interactions in a learning environment, particularly when this takes place in a 

real learning context. It is a measurement which is based on a construct which 

is well-grounded in an educational context, as it is based on longitudinal 

educational research, spanning over four decades, and which has been 

conducted in a realistic learning context in higher education. The extensive 

qualitative research conducted to develop ASSIST provides a rich account of 

students’ interactions in class: the way students approach their studying, in 

terms of the amount of time that students are likely to spend on their studying, 

their intention to rehearse the learning content, the amount of learning content 

they go through, their intention to follow the given structure of the learning 

content, and the way they practise their exercises. This type of research has 

been conducted through observations, interviews and eventually through the 

earlier and current versions of ASSIST, and in a variety of courses across 

different institutions in higher education. 

It is reasonable to say that a similar research with the specific construct has 

rarely been applied in the context of interactive learning environments. ASSIST 

has not really been used frequently in a digital learning context for a specific 

course. As discussed in 2.3 and 2.4, in comparison there are more prominent 

and frequently used constructs and measurements in the field of students’ 

interaction in learning environments from both the cognitive and learning 

tradition, such as Witkin’s GEFT, Riding’s CSA, and Kolb’s LSI, and Felder and 

Silverman’s ILS. In addition, as shown in 2.6.2.3, in comparison to Entwistle’s 

ASSIST, Allison and Hayes’ CSI seems to have received better evaluation in 



 64 

terms of psychometric rigour (specifically with regards to test-retest reliability). 

However, there are specific reasons for which ASSIST is deemed a better 

choice for the current investigation compared to the aforementioned 

measurements: 

 There is no issue of a close relationship with ability like with some “style” 

measurements from the cognitive tradition (see 2.6.2.3). 

 As discussed in 2.6.1, its varied educational research background shows that it 

can capture the complexity of studying in different environments, without 

oversimplifying by simply labelling students independently of the learning 

environment, task or subject area. It addresses reasonably, therefore the issue 

of consistency versus variability by acknowledging that the sustainability of the 

learning style depends on the academic task, subject area, and learning 

environment. 

 The rationale behind the development of ASSIST, and in general its use in any 

educational context, does not concern or serve matching/mismatching style to 

instruction. ASSIST is about identifying deep and surface approaches towards 

studying and encouraging and discouraging them respectively; which can bring 

more valuable insights in the context of the current investigation compared to 

the much-debated match/mismatch approach (an issue which is discussed 

further in section 2.7). On the contrary, most of the aforementioned “style” 

measurements, based on the early empirical evidence briefly mentioned in 2.3 

and the more recent developments discussed in 2.4, seem to serve mainly 

matching/mismatching scenarios. More specifically, Witkin’s GEFT, Kolb’s LSI 

and particularly Felder and Silverman’s ILS, are becoming increasingly more 

and more heavily involved in applications and studies regarding intelligent 

adaptive learning environments as indicated in reviews by Al-Azawei and Badii 

(2014). This is not a surprising development since the authors of most of these 

“style” measurements are advocates of matching style to instruction (with the 

exception of Allison and Hayes) and consider it an important factor for 

achievement, as mentioned in section 2.3.1. However, by using ASSIST, the 

current investigation moves away from the matching/mismatching approach and 

chooses to examine and apply a different pedagogical perspective. 

 As conducting a study in real learning conditions has become increasingly 

important in the context of students’ interactions in a learning environment (see 

section 2.6.4), ASSIST seems more appropriate mainly because it has been 

developed based on observations, interviews and surveys which explored the 
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variability and consistency of the learning approaches within specific contexts in 

higher education. ASSIST, therefore, gives an authentic account of learning 

context in higher education and provides the potential to capture and identify 

any complexities involved in how students interact in a learning environment in 

natural settings. Such examples of complex and authentic students’ interactions 

are discussed further in section 2.7. 

 If the only criterion for selection was psychometric rigour, one could argue that 

Allison and Hayes CSI is the best choice because of its solid validity and 

reliability which commonly acknowledged by reviews such as Coffield et al. 

(2004). However, CSI has been developed in the context of decision-making 

and work performance, and although it has been used in educational context, 

the pedagogical implications of the model have not been fully explored and 

more empirical evidence in educational context is needed, as suggested by the 

authors of CSI and Coffield et al. (2004). On the other hand ASSIST has a more 

solid educational research background which can reflect better the reality of 

how students learn in interactive learning environments, as discussed earlier. 

This in combination with reasonably sound psychometric properties make 

ASSIST more appropriate for the current investigation compared to CSI. 

2.6.4 Methodological weaknesses of existing studies 

The studies discussed in section 2.3 indicate two main methodological issues. 

More specifically: 

 In terms of empirical settings and sample sizes, they were usually carried out in 

experimental contexts rather in naturalistic teaching settings, and with relatively 

small or medium size samples. 

 In terms of practical significance, in studies where it was possible to calculate it, 

mainly weak and medium magnitudes of the shared variance were found.  

The intention is to address the above issues in the methodology of the current 

investigation (e.g. by planning a study appropriately so it can be carried out in 

natural teaching settings and obtaining a sample which is large enough so the 

findings are not limited in terms of generalisability). Finally, given that most of 

these studies encountered in the literature were conducted in experimental 

conditions and the intention is to carry out the current one in genuine learning 

conditions, it would be reasonably successful to find moderate correlation 

coefficients in the region of 0.3-0.4 and shared variance in the region of 9%-

16%. 
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2.7 Developing the aims and research questions 

This section discusses how the literature has shaped the aims and research 

questions of the thesis. 

2.7.1 Choosing a different pedagogical perspective 

The unresolved issues in studies that investigate the matching hypothesis in the 

context of style and ILEs, as shown in 2.3, led to the conclusion that there is a 

need to focus on researching the relationship between style and students’ 

interaction in ILEs similarly to the studies discussed in sections 2.3.1 and 2.3.2. 

Most importantly, the current literature led to also look at constructs with 

different pedagogical philosophy which examine students’ interactions in a 

learning environment from a different perspective.  

The aim of most studies that investigate how learners with different learning 

styles behave in ILEs is to help to design a system that adapts to learners’ 

preferences or needs in order to improve their performance. As discussed in 

section 2.3, there is an ongoing debate on the wisdom of matching or 

mismatching style to instruction and doubts have been expressed about 

whether it is pedagogically correct or whether there is enough empirical 

evidence about the effect of matching style and instruction on performance. On 

the other hand, Entwistle and his team showed when developing ASSIST that 

there are cases where both contrasting learning styles are used. For example, 

Entwistle and Ramsden (1983) find that a deep approach can be followed with 

a holist way of studying and a serialist way of studying; and as a result, 

Entwistle (1997a) includes in the deep scale of the ASSIST measurement both 

ways of studying as subscales. Entwistle (1981) also shows that achieving high 

grades can be attained by using a combination of approaches to studying, 

including the less appropriate studying approach of unrelated memorising. More 

specifically, students, with an intention to seek the meaning of the learning 

material of what they study, may later on try to commit facts and formulas to 

memory in order to deal with demands of a forthcoming closed-book 

examination. So, ASSIST acknowledges that students’ approaches to learning 

is something which can change or become more versatile depending on the 

academic task and in general on the demands of a learning environment. The 

pedagogical perspective which ASSIST construct represents, although more 

complex, strikes one as a more authentic account of what actually occurs in a 

class in terms of how students approach their studying. In addition, Entwistle’s 

observations on the versatility and sustainability of students approaches 
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towards studying resonate with the author’s experience as a tutor. Students in 

undergraduate courses during their practical sessions, for example, may exhibit 

a deep approach towards studying by trying to seek the meaning of what they 

learn and perform their one independent research on topic they are interested 

in, but occasionally the same students may show, for example, complete 

reliance on the given learning material (i.e. “syllabus boundness”) or memorise 

a concept without really understanding its meaning (especially when 

coursework and examination deadlines are close-by).  

Furthermore, it is reasonable to say that students with combined approaches to 

studying are not always encountered. There are students who may approach 

their studying in a deep or surface manner rather consistently, for example, 

during a specific module in a course; it is mentioned in 2.6.1 that students can 

exhibit sufficient consistency in intention and process across broadly similar 

academic tasks. Entwistle (1997a) describes again realistically through his 

construct what this means in a learning environment. Students with a surface 

approach, for example, tend to treat the learning material as unrelated bits of 

knowledge, concentrate narrowly on the minimum that the course requires, and 

feeling excessive anxiety about their course (Entwistle, 1997a; Entwistle and 

Peterson, 2004).There are also students who tend to understand concepts for 

themselves and explore them further concepts independently (Entwistle, 1997a). 

First-year undergraduates especially can demonstrate different approaches 

which have their origins in their schooling experiences (Entwistle and Peterson, 

2004). Again, this resonates with the author’s experience as a tutor. 

Challenging students preconceived ideas about their way of approaching 

learning, and their preferred way of teaching during their first year of their 

studies can be a challenge in itself (e.g. a habitual approach to treat learning 

material as unrelated bits of knowledge rather than seeking its meaning). It is a 

challenge, however, which as Entwistle and Peterson (2004) emphasises, 

should rather be embraced.  

2.7.2 How is this pedagogical perspective beneficial? 

So, this study will not seek ways of adapting a system to a specific learning 

style, but rather try to explain the students’ interactions in a learning 

environment. This eventually can serve towards creating ILEs which assist 

tutors during practical sessions in class to identify, quickly and effectively, 

students in particular with surface approaches. Considering the aforementioned 

challenges, this can be quite valuable for tutors, especially in large 
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undergraduate classes where identifying and keeping track of students’ 

approaches towards studying can be difficult.  Besides identifying approaches 

towards studying, tutors can be also helped to shift students’ surface 

approaches towards studying by the design of features of interactive learning 

environments which could encourage, for example, a deep approach towards 

studying and discourage a surface one. Entwistle and Peterson (2004) argue 

with regards to the importance of designing learning environments which 

override students existing approaches towards studying while providing enough 

support to develop new ones. So, the current investigation may ultimately serve 

to find ways of helping tutors identifying a prominent approach based on 

students’ interactions in an ILE and/or improving the design/features of an ILE, 

and thus encourage a deep approach to studying and/or discourage a surface 

approach to studying when used in classroom. 

Finally, this pedagogical perspective can eventually also help students’ 

academic performance. Entwistle and Ramsden (1983) and  Tait and Entwistle 

(1996) find that the adoption of a deep approach to studying by first-year 

undergraduate students correlates positively to their performance; whereas a 

surface approach to studying correlates negatively to their performance.  

2.7.3 The relevance and value of the new pedagogical perspective to 

mathematics education 

However, at this stage, the question is how relevant and valuable can this 

perspective be for mathematical education? In particular in mathematics 

education, the issue of discouraging rote memorisation of formulas and rules 

and encouraging a deep understanding of mathematical procedures is quite 

prominent (Ladson-Billings, 1997; Crowe and Zand, 2000b). Similar concerns 

have been raised by Liston and O'Donoghue (2009), who point to research 

which indicates that students often carry mathematical procedures without 

really understanding the concepts involved, and that they focus on each 

procedure separately rather than trying to find connections between different 

parts of mathematics. Saha et al. (2015) also give examples in algebra in which 

students cannot relate methods and concepts. What Liston and O'Donoghue 

(2009) and Saha et al. (2015) point to can be considered examples of surface 

approaches or rather the lack of deep ones in mathematics learning. It shows 

that in mathematical education, there are indications that some students may 

not seek the meaning of what they apply, and that they lack the versatility of 

combining both serialist and a holist approach towards studying (i.e. they just 
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concentrate on one mathematical procedure at a time without relating it to other 

concepts and procedures). To avoid such tendencies, Sangwin (2004) 

recommends moving students out of their comfort zone, for instance, by asking 

them to produce examples which reveal an “awareness of global criteria”, rather 

than asking them to apply steps of a particular mathematical procedure or 

simply applying a procedure after looking into a worked solution. 

Therefore, there are issues regarding deep and surface understanding in 

mathematical education which need to be addressed. An investigation on how 

undergraduate students approach their studying during their mathematical 

practical sessions can help us understand these issues further, and can 

eventually indicate how they can be resolved. As discussed in 2.1, just the use 

of mathematical ILE in class is not enough. What can eventually make a 

difference is for tutors to use them in a way that considers students’ individual 

approaches towards studying and accordingly support them with appropriate 

instructions and activities. Finally, it is also particularly valuable if the proposed 

investigation targets first-year students, for two main reasons: it can help 

towards the aforementioned challenge of teaching students who come with 

preconceived ideas about teaching and learning because of their school 

experiences, and it can help tutors to deal with students’ varied (or even poor) 

levels of prior knowledge in mathematics, based on their entry levels.   

2.7.4 New pedagogical perspective and some “natural” questions 

Despite the aforementioned benefits, the pedagogical perspective the author 

intends to explore in current investigation is not without issues and concerns.  

In order to discourage or encourage an approach, it will have to be identified. 

So, a crucial question is whether students’ deep and surface approaches 

towards studying can be identified through their interaction with a digital 

learning environment, given that there is currently little empirical evidence, as 

shown in section 2.3. It has been discussed previously how ASSIST is a 

construct which shows promise in capturing authentic complexities of students’ 

interactions in a learning environment used in natural settings in class. In its 

educational background research, one can find a rich account of students’ 

interactions in traditional learning environments which can be translated into 

interactions in digital ones. In section 2.4, there are examples on possible 

interactions with regards to deep and surface approaches: the surface 

approach of unrelated memorising can link to page revisitation; the surface 

approach of fear of failure can link to time spent on learning material; the deep 
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approach of seeking meaning can link to time spent on learning material and 

the linearity of the path followed when going through the learning material. In 

the methodology chapter, it will be shown that, in similar way, theoretical 

assumptions with regards to interactions in the learning environment can be 

formed for all deep and surface approaches. 

Another valid question is whether the adoption of a deep approach is something 

that can be induced. Fransson (1978) discusses how the efforts of Marton 

(1974), Dahlgren (1975) and Säljö (1975) to induce a deep approach by 

providing content neutral questions, different types of questions and content-

oriented guidance, were simply unsuccessful.  A deep approach cannot be 

induced in order to improve students’ performance, however, it can be 

encouraged or stimulated (Entwistle and Ramsden, 1983). Entwistle (1997a) 

finds linkages suggesting that the approach to studying can be affected by the 

type of teaching experienced. For example, Fransson (1978) argues, that 

although it may not be possible to induce the deep approach of intrinsic interest 

in content for learning (a state where the relevance of the content of the 

learning material is the learner’s main reason for learning) it is possible that a 

deep approach to studying, such as interest in ideas, can be encouraged and 

stimulated. For example, Beaty et al. (1997), Vockell (2006) and Martens et al. 

(2004) suggest in their discussion that intrinsic interest in learning content can 

be promoted or encouraged by allowing learners freely to choose what they 

want to learn and how they want to learn it; and by stimulating their curiosity in 

the learning environment which then encourages exploration of the content.  

An investigation of how students with a deep approach interact in a learning 

environment might help us understand whether there is a need for features that 

might promote a deep approach (e.g. freedom of choice, exploration) or 

whether certain features need to be designed in a way that stimulates curiosity 

in order to encourage or maintain an intrinsic interest approach towards the 

content of mathematics. In addition, an investigation into how students with a 

surface approach interact in an interactive learning environment can help us to 

understand whether there are features of the system that encourage, for 

example, unrelated memorising instead of discouraging such an approach. 

In a similar way, another question is: can a surface approach to studying being 

discouraged? According to Entwistle (1981) a surface approach to studying 

relies primarily on unrelated memorising (that is rote memorisation through 

overlearning). He argues that by explaining new concepts in terms of familiar 

ones and promoting meaningful associations, it is possible to discourage 
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unrelated memorising.  

Another question is whether the strategic approach, which is also part of the 

ASSIST measurement, is relevant in the context of the current investigation. 

The empirical research conducted by Entwistle and Ramsden (1983) indicates 

that the strategic approach is more likely to be relevant in more formal learning 

situations where formal assessment is taking place (e.g. preparation and 

revision for exams, implementation of coursework, implementation of final year 

project). As Entwistle (1997b) notes the distinction of deep and surface 

approaches to learning can be found in natural settings where the outcome of 

learning does not count, whereas the strategic approach expresses behaviour 

in learning situations where formal assessment is involved.  The current 

investigation focuses on deep and surface approaches and examines students’ 

interactions when they are engaged in practical sessions where they are not 

being formally assessed. As such the strategic scale is not as relevant as the 

deep and surface scales.  

2.7.5 Research aims 

It is now possible to refine the basic aim of this study as to investigate how first-

year undergraduate students with a deep approach and those with a surface 

approach to studying interact when using an ILE such as ActiveMath (AM) for 

mathematics in tutorial sessions, in the classroom, in real learning conditions. 

This can potentially serve towards identifying deep and surface approaches 

based on their interaction in AM. 

From this general aim, specific testable questions will be formed, as shown later 

on in the methodology chapter, about the relationship between the deep and 

surface approaches, as measured through ASSIST, and the students’ 

interactions in AM when practicing in tutorial sessions in the classroom. Chapter 

3 also discusses which metrics have the potential to express students’ 

interactions in the chosen interactive learning environment for mathematics AM. 

More specifically, it discusses the way in which the measurement of the 

students’ interactions is operationalized through specific “interaction” metrics. 

After looking at the possible theoretical connections between deep and surface 

approaches and “interaction” metrics, the intention is to examine:  

 The empirical associations between “deep” and “surface” approaches towards 

studying and “interaction” metrics 
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 Whether it is possible to predict surface and deep approaches towards studying 

from the combined knowledge of “interaction metrics” (i.e. there is an effort 

statistically to explain the variance of “deep” and “surface” scales by using a set 

of “interaction” metrics) 

 Whether it is possible to determine which “interaction” metrics are better 

predictors for deep and surface approaches towards studying (i.e. whether 

there are distinguishable aspects and tendencies in students interaction in an 

ILE such as AM which can identify deep and surface approaches) 

Furthermore, part of this aim, but of complementary and secondary value, is to 

investigate the influence of the non-style factor of prior knowledge on the 

relationship between deep and surface approaches towards studying and 

“interaction” metrics.  

Finally, the aforementioned examination can ultimately contribute towards:  

 Providing pedagogical insights in understanding the connections between deep 

and surface approaches towards studying and students interaction in an ILE 

such as AM  

 Helping a tutor to identify deep and surface approaches during students’ 

interaction in an ILE in order to facilitate intervention in class by providing 

certain recommendations 

 Providing a good starting point in terms of methodological recommendations for 

future studies in similar or different educational settings (i.e. “interaction 

metrics” which can be recommended as predictors of deep and surface 

approaches) 

 Providing recommendations with regards to future improvements in data 

capture and an ILE’s interface design and features 
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Chapter 3 - Methodology 

The aim is to look at the relationship between deep and surface approaches to 

studying (as measured by Entwistle’s ASSIST) and students’ interactions when 

using interactive learning environments (ILEs) in higher education, and in a 

specific context. This relationship is examined in the context of an ILE for 

mathematics; a subject area which can benefit from this type of investigation, as 

shown in the background research. In particular, the author intends to carry out 

the study involving the ILE for mathematics ActiveMath (AM), and for 

undergraduate first-year students; a sample to which the author has access. 

Given the aim and the context in which this aim is examined, the intention is to 

look at which “interaction” metrics can be relevant to identify deep and surface 

approaches to studying.  

3.1 Research Questions 

The primary research questions are: 

1. What is the relationship between students’ interactions in the learning environment 

AM and deep and surface approaches towards studying when learning 

mathematics at tutorial sessions in the classroom? 

2. To what extent do students’ interactions in the learning environment AM explain 

deep and surface approaches when learning mathematics at tutorial sessions in 

classrooms? 

The secondary research question is: 

3. Is the relationship between students’ interactions in the learning environment AM 

and the deep and surfaces approaches towards studying influenced by different 

levels of prior knowledge in mathematics, when learning mathematics at tutorial 

sessions in the classroom, and to what extent? 

 

3.2 Why quantitative and qualitative research design  

There are existing theoretical frameworks for deep and surface approaches and 

students’ interactions in learning environments that can provide a satisfactory 

degree of understanding in terms of what is the students’ intention and 

approach towards their studying, and what pages and features students access, 

use and spend time on, respectively. As discussed in 2.2.2 and 2.4 the 
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theoretical framework for deep and surface dimensions give a satisfactory 

conceptual understanding of the phenomenon of how students approach their 

studying. In 2.6.1, it is also discussed how students exhibit enough consistency 

in intention and process across similar academic tasks to justify measuring their 

approaches towards studying as dimensions.  

In addition, research on students’ interactions in learning environments 

produces a relatively well-articulated theory for the specific phenomenon. The 

theoretical frameworks of these two concepts (students’ approach towards 

studying and students’ interactions) can provide, therefore, a substantial 

amount of conceptual understanding, before planning an empirical study to 

investigate their relationship. According to Robson (2002), these characteristics 

fit well with the theory-driven methodology of quantitative design. 

What also derives from the research questions is that the phenomena 

(approaches towards studying and students’ interactions in AM) and their 

relationships are examined in the classroom. As discussed in section 3.10, one 

of the intentions is to plan ahead in order to avoid disruptions in the classroom 

as much as possible. According to Robson (2002), when a substantial amount 

of pre-specification is required, then this is an indication that a quantitative 

design methodology is appropriate. Furthermore, the literature review indicates 

that students interaction can be identified based on: “interaction” metrics that 

derive from web logs which is a frequently used quantitative method 8; and 

“interaction” metrics that derive from dynamic observation techniques such as 

“think aloud”, which is considered a widely accepted qualitative method 

(Protopsaltis, 2006;  Cockburn and McKenie, 2001). The use of web logs is an 

automated way to record users’ navigational behaviour that occurs in real time 

and, more importantly, without interfering with the learning process (Juvina and 

Van Oostendorp, 2004;  Barab et al., 1997). Therefore, in comparison to the 

“think aloud” technique, web logs are better suited for the requirement of 

maintaining the learning process as undisrupted as possible.  

Furthermore, a quantitative design allows investigating the research questions 

of the current study for larger samples, and thus supporting more the 

generalisation of the results to a larger population, an issue that constitutes one 

of the major criticisms of studies of the field.  

A quantitative design methodology, therefore, seems an appropriate choice and 

                                                

8 The logs provide quantitative data.  
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will constitute the primary methodology in order to answer the research 

questions and fulfil the aim of the current investigation. However, as the 

research questions indicate that the phenomena and relationships are 

examined in the classroom, there may be interactions and incidents that may 

influence them. A weakness of the quantitative design is that it cannot capture 

the subtleties and complexities of individual human behaviour in the way that 

qualitative design can. Ford and Chen (2001) argue that there is a need for 

complementary qualitative research in the “hypermedia” field, which may assist 

in developing a deeper understanding of the interactions between learners and 

the learning material. Robson (2002) suggests that a pragmatic approach 

where both qualitative and quantitative designs are combined is feasible in 

some studies and may cover the aims of a study in a more satisfactory way. 

According to Robson (2002), an observation technique may be used as a 

supportive or supplementary data collection method to complement data 

obtained by other techniques that constitute the primary method.  

In the current study, ASSIST measurement shows great promise in capturing 

subtleties and complexities in students’ interactions in a learning environment, 

as discussed in 2.7. However, also conducting observations in class, as a 

complementary task, could aid towards recording expected and unexpected 

events, which may influence the quantitative data, and even aid the 

interpretation of empirical findings. For example, conducting observations can 

help towards “cleaning the data” (i.e. deciding whether to exclude cases). It can 

aid towards obtaining complementary information about incidents or interactions 

that may influence the relationship between students’ studying approaches and 

“interaction” metrics such as: tutor’s tasks and instructions; incomplete sessions 

due to technical difficulties; students’ absences from the tutorial sessions; and 

students’ short attendance. It can also serve towards monitoring processes (i.e. 

students’ registration on the interactive learning environment). 

Entering into an investigation that involves other people is necessarily a 

complex and sensitive undertaking; especially when it involves real situations 

such as the current one. A quantitative design can assist in specifying in 

advance the majority of details required and a qualitative design can give 

complementary information to enhance further the capture of potential 

complexities of such an undertaking. The details for both designs are discussed 

further in section 3.10.  
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3.3 Approaches and Study Skills Inventory for Students (ASSIST) 

3.3.1 The ASSIST instrument 

The ASSIST instrument initially provides an explanation of its purpose, and a 

general instruction that encourages students to answer truthfully and “work their 

way through the questionnaire quite quickly”. It consists of three parts. In all 

three parts, each statement can be ranked from 1 to 5 on a Likert scale, and in 

the second and third part, students are encouraged to avoid selecting the 

unsure response in the middle of the scale.  

The first part is called “What is learning?” According to Entwistle (1997a), it is 

based on the conceptions of learning as described by Marton and Säljö (1976b) 

and extended by Hattie in 1996. It consists of six items and requires the 

students to consider general statements in relation to learning and rate them 

according to how close they are to their own way of thinking. This first part does 

not provide scores to indicate different styles or approaches. 

The second part is called “Approaches to studying” and consists of 52 items. It 

derives from ideas as described by Marton and Säljö (1976) and Pask (1976) 

(especially in relation to deep and surface approaches) and from work by 

Entwistle and Ramsden (1983), especially in relation to the strategic approach.  

The students are required to express their agreement or disagreement with 

statements about studying made by other students. The instructions for this part 

state that students should give their answers with a specific course in mind; that 

they have to answer all the questions and give their immediate responses. The 

scoring process of ASSIST for this part is carried out by adding the scores for 

statements corresponding to each of the three approaches (deep, surface and 

strategic) and their 13 subscales. There are 16 questions for each of the deep 

and surface scales (giving scores from 16 to 80); 20 questions for the strategic 

scale range (giving a score from 20 to 100); and four questions for each 

subscale (giving a score from 4 to 20). 

The third part of the questionnaire is called “Preferences for different types of 

course and teaching” and consists of eight items. It requires the students to 

express their agreement or disagreement with specific statements in relation to 

organisation and design of a course. The third part of the questionnaire does 

not provide scores to indicate different styles or approaches, so the results 

deriving from the third part of the questionnaire are not used in the current study. 

ASSIST is considered an ordinal-level measurement. In order to measure the 
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learning styles of the students in this study only the second part of the 

questionnaire will be used, since this is the element of the instrument that is 

concerned with learning styles. 

3.3.2 The ASSIST scales and subscales   

This section discusses further the deep and surface scales and subscales9.  

 The “deep” scale measures the extent to which there is an intention to 

understand for oneself; there is an interest in the subject, students relate ideas 

to previous knowledge and experience, and students check evidence and relate 

it to conclusions (Entwistle, 1997b; McCune, 1998). It is based on the research 

conducted by Marton and Säljö (1976b) who find that some students have an 

intention for personal understanding by interacting with ideas and evidence in 

order to draw their own conclusions. Further research reveals that their 

behaviour when studying is characterised by their intention to spend time on 

studying and impose their own structure. Svensson (cited in Entwistle and 

Ramsden, 1983, p.19) finds that students adopting a deep approach tend to 

spend longer in studying. In relation to their overall performance in a course, 

Entwistle and Ramsden (1983) also find positive correlations between score on 

the deep scale and performance.  

 Deep subscale “seeking meaning”: This measures the extent to which there 

is an intention to understand the learning content for oneself (McCune, 1998; 

Entwistle, 1997a). Entwistle (1998) finds based on students’ interviews that 

understanding the learning content for oneself means: how much material 

students bring together, how much effort had been used in forming connections 

between concepts, and the extent to which students impose their own structure 

on the lecturer’s learning content. Based on the interviews conducted by 

Entwistle and Ramsden (1983), students who follow this approach when 

studying do not skim through the learning content, but they tend to go through it 

fairly slowly (Entwistle and Ramsden, 1983).  

 Deep subscale “interest in ideas”: This measures the intrinsic interest of 

students in the content of a course they are taking (Entwistle, 1997b). 

According to the ASSIST manual, the subscale of “interest in ideas” is a 

correlate of intrinsic motivation (Entwistle, 1997a). Entwistle et al. (1979) find 

                                                

9  As discussed in section 2.7.4, the strategic approach is not relevant to the current 
investigation, so the strategic scale and subscales are not discussed here. 
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that a distinct type of intrinsic motivation is the one that stems from the interest 

of the students in the subject matter.  

 Deep subscale “relating ideas”: This measures the extent to which students 

study by building up a broad view of the learning task and looking into 

relationships between ideas (Entwistle, 1997a; Entwistle, 1981; Entwistle et al., 

1979). Entwistle based this approach to studying on research conducted by 

Pask (1976b) on the holist learning style. Pask (1976) notes the preference of 

students with such a style for a broad view and a personal organisation of the 

learning content. Students with a holist learning style tend to explore several 

topics of what may be known in the area and tend to adopt a top-down 

approach, in which they first concentrate on establishing an overview of what is 

learned before attending to the low level procedural information (Ford and 

Chen, 2001).  

 Deep subscale “use of evidence”: This measures the extent to which 

students study by building up meaning from the details, checking evidence to 

relate it to conclusions, and their preference for a linear sequence in their 

learning (Entwistle, 1997a, Entwistle et al., 1979). Entwistle based this 

approach to studying on research conducted by Pask (1976b) on the serialist 

learning style. Pask (1976) notes the preference of students with such style for 

step-by-step and tightly structured learning. Students with a serialist learning 

style tend to master one topic at a time and adopt a bottom-up approach in 

which they pay attention to the low level detail, building an overview at a later 

stage (Ford and Chen, 2001).  

 The “surface” scale measures the extent to which there is an intention to 

memorise and treat the content as unrelated bits of knowledge; there is 

motivation to avoid failure; there is an overall negative attitude to studying and 

an intention to cope minimally with the course requirement; and an intention to 

follow strictly the instructions and the structure of the learning content, and 

focus on the minimal requirements of the course (Entwistle, 1997a; Entwistle 

and Ramsden, 1983). It is based on the research conducted by Marton and 

Säljö (1976b) who find that some students have an intention to complete the 

task with very little engagement and with unreflective memorisation. In relation 

to their overall performance in a course, Entwistle and Ramsden (1983) find 

negative correlations between the surface scale and performance.  

 Surface subscale “unrelated memorising”: This measures the extent to 

which students intend to memorise facts and procedures and treat the learning 
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content as unrelated bits of knowledge (Entwistle et al., 2001, Entwistle, 

1997a). 

 Surface subscale “fear of failure”: This measures the extent to which 

students are motivated to avoid failure (Entwistle, 1997b; Tait et al., 1998; 

Entwistle, 1981). Students with “fear of failure” have an over-anxious concern 

about possible failure (Entwistle, 1981). Fransson (1978) finds that it is not so 

much that a threatening learning environment or situation causes this concern; 

it is rather that students perceive the situation as threatening. This type of 

anxiety affects the way in which students tackle their study, resulting most of 

the time in rote memorisation (Entwistle, 1981).  

 Surface subscale “lack of purpose”:  This measures the lack of interest in 

the subject (Entwistle, 1997a; Entwistle and Ramsden, 1983). It expresses an 

overall negative attitude to studying, and so when studying students tend to 

cope with the course requirements in a minimal way which is likely to result in 

ineffective studying (Entwistle and Ramsden, 1983; Entwistle et al., 2001).  

 Surface subscale “syllabus boundness”: This measures the extent to which 

students prefer clear instructions, deadlines, and defined course materials with 

clear structure (Entwistle, 1997a; Entwistle et al., 1979; Entwistle and 

Ramsden, 1983). Students who follow this approach are not autonomous when 

studying and they study little beyond what is required to pass (they simply focus 

on the course’s minimum requirements) (Entwistle, 1997a).  

Based on what is discussed in sections 3.3.1 and 3.3.2, it is worth mentioning 

that it is possible for a student to have a relatively high score in both the deep 

and surface scales and subscales. Entwistle et al. (2001) argue that whilst 

students have a tendency to adopt a particular approach to studying, their 

approach may vary in reaction to specific circumstances. For example, 

empirical evidence by Entwistle (1981) and Entwistle and Ramsden (1983) 

suggest that particularly in science subjects personal understanding may 

involve acquiring basic knowledge and a certain amount of rote learning 

especially in the early stages of learning. Thus, a deep approach may involve 

rote memorisation on occasion, at the same time these variations in approach 

do not minimise the crucial difference in intention (to achieve personal 

understanding of a topic, versus satisfying the teacher in a minimal way). This 

has been found across different subjects and is expressed through the ASSIST 

scales and subscales.  
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3.4 Examining students’ interactions when using an ILE – “Interaction” metrics 

Previous studies looking at the relationship between styles and students’ 

interactions in ILEs have examined interactions such as: the number of pages 

visited and revisited, the order in which students move around the learning 

material (e.g. following the given linear order of the material), the time they 

spend on the ILE; and the use of navigational options that allow them to have a 

more global or detailed view of the learning material.  

The present study will be carried out using AM, and so the students’ behaviour 

is to some degree specific to that ILE. Metrics will be chosen that enable us to 

capture how students move around and what students do in AM. We also wish 

to examine the link to the deep and surface scales and subscales of the 

ASSIST measurement, and so the design and choice of metrics will also be 

based on their relevance to examining this link. 

It is evident from the students’ interaction in an ILE for mathematical education, 

shown in section 2.1, that the more interactivity ILEs offer, the more choices 

and complex decisions students have to make. AM is a fairly interactive 

learning environment for mathematics in which students have to decide on: the 

pages (theory and exercises) they visit or revisit, the order in which they will go 

through the learning material, how long they spend on each reading or exercise 

page; how many exercises they do, whether to research a mathematical 

concept further (e.g. in relation to other concepts) using the search option, 

whether to make notes using the notes tool, whether to use the previous/next 

button to follow the given structure of the content. 

3.4.1 Path length and visitation metrics 

Path length is defined as the number of pages the user visits during the 

navigation session including revisits (in accordance with: Herder and Juvina, 

2004). Berendt and Brenstein (2001) and Cockburn and McKenie (2001) 

describe the number of pages visited by a user as one of the typical measures 

used to examine the way users navigate in a system. Cockburn and McKenie 

(2001) define the term “visit” in the context of navigation as the act of displaying 

a page regardless of the options used to reach the page.  

As shown in section 2.3.2.1 of the literature review, a path length metric has 

been involved in studies where there is an attempt to interpret students’ 

behaviour in ILEs and in relation to styles. A path length metric may give an 

overall idea of the amount of use of AM, as it may show the amount of activity 
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which takes place during the tutorial session.  

Path length can be analysed further to show the amount of activity in specific 

parts of an ILE. As shown in the study of Mimirinis and Dafoulas (2008) in 

section 2.3.2.1, the number of page visits is calculated separately for the 

practical and theoretical part of the ILE. In this way, a general “interaction” 

metric such as the number of page visits can be placed in a learning context 

and provide further information about what students do in an ILE. The creation 

of visitation metrics for the practical and theoretical part can reflect what 

students do in AM during their tutorial session - where they need both to visit 

exercises and practise and visit the mathematical theory, concepts and working 

examples. 

The question is how path length and visitation metrics can be related to the 

deep and surface scales and subscales and how path length and visitation 

metrics can be used in the context of an ILE such as AM.  

In relation to Entwistle’s studying approaches and visitation metrics, the study 

conducted by Mimirinis and Dafoulas (2008), as discussed in 2.3.2.1, indicates 

that there is a possible positive correlation between the number of visits in the 

theoretical section of the ILE and the surface subscale of “unrelated 

memorising”. However, path length and visitation metrics in current 

investigation such as the number of reading pages visited and the number of 

exercises pages visited may have a positive relationship to “unrelated 

memorising” subscale due to revisitation (as discussed in 3.4.3). So, a path 

length type of metric, such as the number of distinct pages (which does not 

include revisits) may express perhaps more accurately the interactions of 

students with a high “unrelated memorising” score, who tend to perform 

activities in a more repetitive manner compared to those with a lower score. 

More specifically, it is also possible that students with higher scores in the 

“unrelated memorising” scale may perform a more limited amount of activities in 

tutorial sessions by not accessing as many exercises, compared to those with 

the lower scores; or by visiting more of the same AM pages and less a variety 

of distinct AM pages, compared to those with the lower scores. So, high values 

on the “unrelated memorising” scale may result in low values in metrics such as: 

number of exercises accessed, and number of distinct pages visited. 

Interviews conducted by Entwistle and Ramsden (1983) show that students with 

“fear of failure” tend to feel that they are drowning in the sheer amount of 

material they have to cope with. It is possible that students with a high “fear of 
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failure” score may feel overwhelmed by the amount of material, and so they 

may access fewer AM reading pages and exercises pages, resulting in a 

shorter path than students with a low “fear of failure” score.  

Another possible link is between the deep approach and visits to the AM feature 

“notes”. According to the empirical observations of McCune (1998) students 

with deep approach to studying tend to interact vigorously with the learning 

material by making notes, selecting and organising learning material based on 

their own interests, relating ideas in order to achieve personal understanding. 

So, a metric with regards to visits to the AM “notes” feature can show an 

intention to create notes.  

The visitation metrics involved in this study are:  

 Number of reading (content) pages visited: The total number of reading 

pages visited. The reading pages 10  present the theory of mathematical 

concepts, procedures and the mathematical examples (see Appendices 3.4.1 

and 3.4.10). They can be requested by clicking on the links in the table of 

contents (TOC) (See Appendix 3.4.1), previous and next buttons (see Appendix 

3.4.2), or by using the back and forward browser buttons. 

 Number of exercise pages visited: The total number of exercise pages 

visited. The exercise pages present a list with exercise links (see Appendix 

3.4.2). They can be requested by clicking on the links in the table of contents 

(TOC), previous and next buttons, or by using back and forward browser 

buttons. 

 Number of exercises accessed based on tries: The number of times the 

student accesses an individual exercise by clicking on an exercise link on the 

exercise pages (see Appendices 3.4.4-3.4.7) 

 Number of distinct pages visited: The number of pages a student visits at 

least once. 

 Number of times “notes” link is clicked: the number of times a student visits 

the “notes” option by clicking on the notes link (see Appendices 3.4.8.a-3.4.8.c). 

 Path length: The sum of  

o the number of times exercise and reading (content) pages are visited 

                                                

10 Throughout the thesis the AM pages which contain the theoretical learning material will be 
referred to as “content” or “reading” pages. 
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o the number of times an individual exercise is accessed by clicking on an 

exercise link on an exercise page 

o the number of times a student requests help by clicking on the help link 

o the number of times a student visits the notes option by clicking on the 

notes link 

o the number of times a student visits the search option by clicking on the 

search link 

o the number of search results clicked on the search option 

o the number of submitted queries in the search option 

o the number of times student follows hyperlinks in the text of reading and 

exercise pages. 

3.4.2 Metrics related to use of hyperlinks and the search option 

Students can view the learning content in AM using hyperlinks in the text of the 

reading and exercise pages or by using the search option (in which students 

can submit queries for mathematical terms).  

The hyperlinks provided in AM can help towards relational linking between 

mathematical terms. Scherly et al. (2000) argue that the frequent use of the 

hyperlinks in the text and search option is an indicator of active reading. 

Furthermore, the use of hyperlinks for mathematical terms in the text may be 

connected conceptually to Entwistle’s “relating ideas” and “interest in ideas” 

subscales. Entwistle (1981) describes students with an “interest in ideas” 

approach as having active interest in the course content, so it is likely that they 

would use the option of the hypertext links to follow up on ideas in which they 

are interested in. 

Students with a “relating ideas” approach tend to look into relationships 

between concepts (Entwistle, 1997a; Entwistle, 1981; Entwistle et al., 1979). 

This approach may lead them to use the AM hyperlinks that provide a relational 

linking between mathematical terms.  

In relation to the AM search option, students can use it to submit queries for any 

mathematical term; the search returns all relevant AM reading pages in which 

the specific term is involved and it gives the student also the option to search 

beyond AM using standard search engines (see Appendix 3.4.3). After a query 

is submitted in AM, the search results show all the related theory, examples and 

exercises, facilitating the exploration of relationships between mathematical 
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concepts and their application. This allows the students to explore and select 

their reading based on their interest.  

The use of the search option may be connected conceptually to Entwistle’s 

“interest in ideas” subscales. Entwistle (1981) refers to the empirical work of 

Fransson (1978) on intrinsic motivation, who found that interest in content is 

likely to encourage a more exploratory search when students retrieve 

information. The search option can offer a more exploratory and active retrieval 

of the mathematical concepts which suits students with an “interest in ideas” 

approach, who according to Beaty et al. (1997), tend to have an exploratory 

and active approach towards the learning content.  

The use of the search option can also facilitate looking into relationships 

between mathematical concepts for students with a “relating ideas” approach.  

The use of hyperlinks can be expressed with the metric of number of hyperlinks 

(i.e. “concept links” linking to mathematical terms) of reading and exercise 

pages (see Appendix 3.4.11); whereas the use of search option can be 

expressed through the number of submitted queries and the number of search 

results visited.  

So, based on what is discussed in this section the metrics involved in this study 

are:  

 Number of hyperlinks (concept links) visited in reading and exercise 

pages: The number of hyperlinks to mathematical concepts visited followed in 

reading and exercise pages.  

 Number of times search option is clicked: The number of times a student 

visits the search option by clicking on the search link. 

 Number of submitted queries in search option: The number of queries 

submitted in the search option. 

 Number of search results visited in search option: The number of search 

results visited in the search option after the submission of queries.  

3.4.3 Revisitation metric 

As shown in section 2.3.2.1, revisitation behaviour has been examined in 

studies where there is an attempt to interpret students’ behaviour in ILEs in 

relation to styles. In the study conducted by Chen and Ford (1998) revisiting 

pages is interpreted as a sign of less efficient learning with the ILE.  

It is likely that there is a connection between revisitation behaviour and the 
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surface subscale of “unrelated memorising”. Students with an “unrelated 

memorising” approach tend to rehearse and overlearn the learning content 

(Entwistle et al., 2001; Entwistle, 1997a; Entwistle and Ramsden, 1983). It is 

possible, of course, that students independently of their studying approach may 

revisit, for example, a reading page in AM in order to review the mathematical 

concepts, procedures and working examples to help them with their exercises. 

However, it is also likely that revisitation will be used as a way to rehearse and 

overlearn the learning material by students with an “unrelated memorising” 

approach; and as a result students with high “unrelated memorising” scores 

may more often revisit pages than students with low “unrelated memorising” 

scores

A formula which can express how often students are likely to revisit pages has 

been suggested by researchers in the field of revisitation behaviour such as 

(Obendorf et al., 2007;  Cockburn and McKenie, 2001; Tauscher and 

Greenberg, 1997; Herder, 2003). It is given as the recurrence rate R or relative 

amount of revisits. Tauscher and Greenberg (1997) calculate the formula for the 

recurrence rate as: 

      R = ((“total URLs visited” – “different URLs visited”)/”total URLs 

visited”)*100% 

where “total URLs visited” is the number of pages visited (including revisits) and 

“different URLs visited” is the number of distinct pages.  

Based on what is discussed in this section the “revisitation” metric involved in 

this study is:  

 Relative amount of revisits: The probability that the visit to any URL is a 

repeat of a previous visit.  

3.4.4 Temporal metrics  

Time spent by a user viewing a page is defined as the time spent on each page 

(excluding the time spent on loading the page) until the moment they select to 

leave that page by clicking on a link (in accordance with Shahabi et al., 1997). 

As shown in 2.3.2.2, time spent on pages of an ILE has been examined 

empirically in relation to styles. In relation to the ASSIST measurement, there 

are possible connections to: the “deep” scale, “interest in ideas” subscale, and 

“fear of failure” subscale. 

In relation to the ASSIST measurement, there are possible connections to the 

two subscales of “interest in ideas” and “fear of failure”. Entwistle (1981) finds 
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that students with relevant “interest in ideas” tend to “get hooked” on topics and 

keep studying them, and in general explore the content in a more leisurely 

manner. Regarding the “fear of failure” subscale, Entwistle (1981) argues that 

students with a higher score tend to work more slowly, putting more effort into 

tasks and persisting longer to solve problems.  

Therefore, temporal metrics could be related to those two subscales. It should, 

however, be noted that the tutorial sessions in the current study have a 

relatively fixed duration and therefore all students are likely to spend around the 

same overall time on the AM reading and exercise pages. What may differ, 

though, is the time a student chooses to spend on each AM reading or exercise 

page as a student’s intrinsic interest in a topic or persistence in tasks due to 

anxiety may increase the time spent on specific pages.  

According to Berendt and Brenstein (2001), average view time is a typical 

measure which can be used to formalise temporal behaviour per page in an ILE. 

Herder and Juvina (2004) note that average view time is a temporal metric 

which has been involved in studies examining behaviour in hypermedia 

environments in relation to individual differences. Shahabi et al. (1997) and 

Herder and Juvina (2004) also find that average view time is an indicator of 

users’ interest in the content of a hypermedia environment.  

In the context of AM, students with higher scores in “interest in ideas” subscale 

focus and spend more time on average on a reading or exercise page than 

ones with lower scores do. Time per page may also assist in showing that 

students with higher scores in the “fear of failure” subscale are likely to persist 

in their tasks and spent more time on a reading or exercise page than the ones 

with lower scores. What we have here are a deep and a surface approach, 

whose relationship to the temporal metrics of average view time is assumed to 

have the same direction. 

Besides the average view time, there are also other temporal metrics which 

have the potential to enlighten the current investigation in terms of students’ 

interaction according to their studying approach (i.e. they may contribute to a 

more enriching complete profile for a scale or subscale). For example, 

increasing the maximum view time on an AM page (relating to an increasing 

score on a deep scale or a surface scale) can indicate some sort of “extreme 

interaction” or “imbalance” in terms of how students allocate their time with 

regards to reading and exercise pages in AM. This “imbalance” in terms of time 

can be due to an effort to seek and research further the meaning of a concept 
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or process it further by relating it to other concepts and processes with regards 

to a deep approach. Or it can be due to experiencing difficulties with solving the 

exercises related to a specific mathematical concept or process, because they 

tend to treat it as unrelated bits of knowledge with regards to a surface 

approach. A similar theoretical assumption can be made for minimum view time 

on an AM page: decreasing minimum view time on an AM page (relating to an 

increasing score on “lack of purpose” and “syllabus boundness” subscales) can 

indicate some sort of “imbalance” in terms of how students engage with the 

learning process or learning material. This “imbalance” in terms of time can be 

due to the intention of engaging minimally with the learning process or the 

learning material with regards to these two surface subscales. 

So, the temporal metrics involved in this study are: 

 Average View Time on Exercise Pages: The average time during which an 

exercise page in AM is viewed in a tutorial session.  

 Average View Time on Content (Reading) Pages: The average time during 

which a reading page in AM is viewed in a tutorial session. 

 Maximum View Time on Exercise Page: The longest time a student has 

viewed an exercise page in AM during a tutorial session. 

 Minimum View Time on Exercise Page: The shortest time a student has 

viewed an exercise page in AM during a tutorial session. 

 Maximum View Time on Content (Reading) Page: The longest time a student 

has viewed a reading page in AM during a tutorial session. 

 Minimum View Time on Content (Reading) Page: The shortest time a 

student has viewed a reading page in AM during a tutorial session. 

3.4.5 Path metrics: stratum and compactness 

These “interaction” metrics are called “path” metrics, and their purpose is to 

characterise (or quantify) user’s navigational path in a hypermedia environment 

(McEneaney, 2001). Herder and Juvina (2004) also consider them as metrics of 

navigational “complexity”11. 

In order to look at users’ paths in hypertext systems McEneaney (2001) 

developed the concepts of path stratum and path compactness, which he 

                                                

11 This type of metrics may reveal the “navigational complexity” of a user which can be defined 
as “any form of navigation that is not strictly linear” (Herder and Juvina, 2004). 
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calculated by adapting the formulae of Botafogo et al. (1992), using the number 

of distinct pages of the user’s path in place of the pages in the network. In a 

communication with the DFKI team and the author, MacEneaney clarified that in 

his formulae for stratum and compactness, he used the distinct pages of the 

user’s path instead of the number of nodes (pages) the hypertext consists of 

because “this seemed a reasonable choice on both theoretical and practical 

grounds”. More specifically: 

 Path Stratum 

Stratum refers to the degree of linearity of a network, as indicated “by the extent 

to which a network is organised so that certain pages must be read before 

others” (McEneaney, 2001, p.765). It captures the extent to which pages can be 

identified as departure, destination and in-between points based on the 

structure of the network. The value of the stratum is closer to one when the 

network is more linear; whereas it is closer to zero when it is less linear (which 

means that almost every page is connected to every other page and there is no 

structural basis for distinguishing points of departure and destination) 

(McEneaney, 2001). To make this distinction, a “prestige” value is assigned to 

each page which indicates the “pecking order” of the page in relation to the rest 

of the pages in the user’s path (McEneaney, 2001). This calculation of stratum 

was initially introduced by Botafogo et al. (1992) to assess and improve 

hypertext systems. Finally, stratum has been used to express linearity in the 

more general context of users’ navigation. Juvina and van Oostendorp (2006) 

suggest that stratum is a fairly common measure for computing linearity by 

assessing the user’s path.  

Linearity path is the extent to which the user follows the given structure of the 

content in a hypermedia environment. It is a concept which has been examined 

frequently in relation to styles, as shown in section 2.3, to indicate the extent to 

which students with a certain style prefer to impose their own structure or 

simply follow the given structure of the ILE. In the more general context of 

user’s navigation it has been also used to investigate whether users choose a 

more or less passive way to retrieve information (McEneaney, 2001).  

There may be a possible connection between the surface subscale of 

“unrelated memorising” and linearity. Based on interviews conducted by 

Entwistle and Ramsden (1983), it is found that science students with an 

intention for “unrelated memorising” are unlikely to be autonomous in their 

learning. They appear to transfer lecture information to the memory without 
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thinking about it, without reassessing it or reorganising it, so in a rather “passive” 

way. This may suggest that students with high “unrelated memorising” scores 

are more likely to follow the given structure of the content in AM and navigate in 

a more passive linear way.  

There may also be a connection between the deep scales and linearity. 

Entwistle (1998) finds that students who make an effort to seek an individual 

interpretation tend to impose their own structure on their learning material. This 

suggests that students with high scores on “seeking meaning”, for example, are 

less likely to follow a linear path in order to retrieve the AM pages, compared to 

those with low score.  

In the current context, students who tend to seek the meaning of what they 

learn may follow a less linear path when materials using materials, thus 

producing smaller stratum. Students with a surface “unrelated memorising” 

approach, who tend to rely exclusively on the structure of the given content, 

may follow the pecking order of the pages in AM thus producing a higher path 

stratum.  

 Path Compactness 

According to McEneaney (2001), “compactness refers to the connectedness of 

a network”. A network’s compactness is closed to zero when “it is sparsely 

linked”; whereas it is closer to one when “it is more densely connected” 

(McEneaney, 2001). So, the value of the connectedness is closer to one when 

the network is more compact; whereas it is closer to zero when it is less 

compact. 

In the current investigation, there can be links to the studying approaches. 

According to Entwistle and Ramsden (1983), students with an intention for 

“unrelated memorising” tend to overlearn and repeat what they learn. So, 

students with a tendency for repetitive overlearning are likely to interact more 

closely around a certain set of pages. So, high values on surface subscale of 

“unrelated memorising” may result in high values in compactness.  

The metrics discussed in this section have the potential to express the extent to 

which students with a specific approach to studying follow a linear and compact 

path in AM. The intention is therefore to involve the following metrics: 

 Path Stratum: The degree of linearity of students’ path, calculated according to 

the formula of McEneaney (2001).  

 Path Compactness: The degree of compactness of students’ path, calculated 
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according to the formula of McEneaney (2001). 

3.4.6 Metrics related to use of AM navigational options 

In the context of AM, students have the option of visiting the reading and 

exercise pages via the use of the following navigational options: 

 previous/next options 

The use of previous/next options offers a linear way to explore the learning 

content. Linearity of path with the use of previous/next options, is one of the 

aspects of students’ interactions that has been examined in relation to styles, as 

shown in section 2.3.1.2. Furthermore, McEneaney (2001) found that passive 

readers were more likely to rely on the use of previous/next buttons to move 

through hypermedia materials. So, similarly to what is discussed in section 

3.4.5 with regards to “unrelated memorising” subscale and linearity, it is 

possible that there is a positive relationship between the “unrelated memorising” 

subscale and the use of previous/next buttons. The involvement of the use of 

previous/next options may be also valuable. 

 table of content (TOC) 

The use of TOC in AM allow students to navigate quickly to the exact piece of 

information they prefer to focus on (like when using an index or a menu), 

however it can also indicate the structure of the learning material and it being 

used in a linear way. So, the TOC can be used to navigate through the learning 

material in both a linear and non-linear way. As shown in 2.3.1.1, there are 

empirical findings which indicate the preference of certain “styles” for specific 

navigational options. In addition, Chen et al. (2016) refer to empirical studies 

which indicate that serialists, based on Pask’s construct, prefer both 

back/foreword buttons and index. In the current context, there are no clear 

indications that the use of TOC is the likely interaction of a specific studying 

approach. The use of TOC can be relevant to the “use of evidence” and 

“relating ideas” approaches to studying, since they are based on Pask’s 

construct serialist/holist (two learning styles which have been involved 

empirically in relation to the use of navigational options as indicated by Chen et 

al. (2016)). However, as has been shown earlier, serialists can prefer both 

back/forward and index options, and TOC in AM is designed to serve flexibly 

linear and non-linear preferences in terms of navigation, so it is not possible to 

make associations with a positive or negative direction. Nevertheless, the 

inclusion of use of TOC as a metric is deemed valuable in the current 
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investigation. First, because it may enlighten us as to the navigational 

preferences of the studying approaches, and second, because it may offer a 

sort of contrast to the use of previous/next options. So, the metrics involved in 

this study are: 

 Number of pages visited using the previous/next buttons: The number 

pages visited from the previous and next option (see Appendix 3.4.10). 

 Number of pages visited using the TOC: The number pages visited from 

TOC option (see Appendix 3.4.1). 

3.4.7 Performance-related metrics related to number of tries when practising 

exercises  

As shown in 2.1.5, practising exercises is an important activity in a 

mathematical ILE. AM provides exercises for students to practise in their tutorial 

sessions. The activity of practising exercises is designed so that it allows 

students to evaluate their answers and receive feedback. If the answer is 

incorrect, they are encouraged to try again, and are allowed three attempts in 

all (see Appendices 3.4.4-3.4.7). 

Capturing data on the students’ responses to these exercises can indicate 

whether they get the correct answer, and also whether they get it correct on the 

first, second or third attempt, or whether they do not manage to solve the 

question at all. This data may indicate whether students are clicking every 

checkbox until they get the correct answer; a “gaming” behaviour or “trial and 

error” behaviour where students try different solutions without a systematic 

approach. These are interactions which have been commonly observed in 

mathematical ILEs, as discussed in section 2.1.7. 

Which approaches to studying are likely to be associated with such interactions? 

As discussed in section 2.1.7, anxiety has been linked to “gaming” behaviour, 

hence such behaviour can manifest in students with high “fear of failure” scores. 

In the context of the current study, it is likely that the higher students score in 

the “fear of failure” subscale, the lower the number of exercises they are likely 

to solve on the first attempt and the higher the number of exercises they are 

likely to solve on the second or third attempt, or fail to solve at all. 

Interviews conducted by Entwistle and Ramsden (1983) suggest that science 

students with an “unrelated memorising” approach seem to be just “grinding the 

numbers, getting some kind of solution”, and then if the result is not correct “go 

back and pick different values”. This is a “trial and error” approach trying 
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different values in the formula in an unsystematic way until they get correct 

answer.  In the context of the current study, it is likely that the higher students 

score on the “unrelated memorising” subscale, the lower the number of 

exercises they are likely to solve on the first attempt, and the higher the number 

of exercises they solve on the second or third attempt, or fail to solve altogether. 

In addition, there may be connections between the subscale of “syllabus-

boundness” and quitting (or cancelling) exercises. Mavrikis et al. (2003) 

observe during the pilot testing of WALLIS (an ILE for mathematics) that a 

proportion of students quit their activities. Based on the data collected in the 

interviews, they find that one of the reasons behind this behaviour is that 

students do not see the relevance of the activities to their assessment. This 

behaviour seems to fit the profile of students who tend to be bound to the 

syllabus and who, according to Entwistle and Ramsden (1983), tend to gear 

their studying closely to just what seems relevant to their assessment and in 

general do very little beyond what is required.  

Furthermore, these metrics may give indications as to whether the students do 

well (or perform well) while practising their exercises during their tutorial 

sessions. Entwistle and Ramsden (1983) find that scores on the surface scale 

had a negative correlation with performance, whereas score on the deep scale 

has a positive correlation to performance. So, it is possible that there are 

positive correlations between the deep scale and subscales and the number of 

exercises solved on first try metric; and negative correlations between the deep 

scale and subscales and the metrics related to the number of exercises solved 

on second try, the number of exercise solved on third try, or the number of 

exercises finished but not solved. Also, in a similar way and in line with what is 

discussed earlier, it is possible that there are negative correlations between 

surface scales and subscales and the number of exercises solved on first try 

metric; and positive correlations between the surface scale and subscales and 

the metrics related to the number of exercises solved on second try, the number 

of exercise solved on third try, or the number of exercises finished but not 

solved. 

Therefore, the metrics related to the number of tries on the exercises, used in 

the study are:  

 Number of Exercises Solved on First Try: number of exercises solved on the 

first attempt  



 93 

 Number of Exercises Solved on Second Try: number of exercises solved on 

the second attempt 

 Number of Exercises Solved on Third Try: number of exercises solved on 

the third attempt  

 Number of Exercises Finished but Not Solved: number of exercises that 

were completed but not solved on the third attempt  

 Number of Exercises Cancelled: number of exercises that were cancelled 

3.4.8 Metrics related to average number of links followed per page 

This group of metrics is in relation to the average number of links followed per 

page. According to Herder and Juvina (2004), this type of so-called “frequency 

per page” is represented by calculating the ratio between the number of links 

followed and the number of distinct pages visited, which is expressed as: 

number of links followed / number of distinct pages. The formula is used for the 

calculation of metrics in relation to AM features such as “search” and “notes” to 

give a more proportional image of the intention to use these features. So, the 

intention is to involve: 

 Average number a “notes” link is clicked per page: It is calculated as: 

number of times “notes” link is clicked / number of distinct pages 

 Average number a “search” link is clicked per page: It is calculated as: 

number of times “search” link is clicked / number of distinct pages 

As, these metrics are likely to highly correlate with number of times “notes” link 

is clicked and number of times “search” link is clicked respectively, it will be 

shown later on in strategy how the choice between them will occur in terms of 

their involvement in the statistical analysis. 

3.5 Development of specific hypotheses for each ASSIST scale and subscale 

As shown in section 3.4, the development of hypotheses is based on existing 

literature about the way students with a specific approach to studying interact in 

traditional learning environments, and on the limited empirical research which 

has examined the associations between the ASSIST scales and subscales and 

students’ interactions in learning environments. In section 3.4, the author has 

already shown examples of connections between students’ “interaction” metrics 

and the ASSIST scales and subscales, to justify the selection of metrics with 

regards to their relevance to the scales. To help the reader, Chapter 4 presents 
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all the theoretical assumptions concerning the associations between each of 

the aforementioned metrics and each deep and surface ASSIST scale and 

subscale. 

3.6 Correlational design 

The hypotheses require the investigation of the relationship between ASSIST 

deep and surface scales and subscales and students’ “interaction” metrics. This 

is a relationship in which each factor has a number of variables, and where 

these variables may need to be examined simultaneously. On one hand, there 

are the ten ASSIST scales and subscales; while in terms of students’ interaction 

in AM, there are selected metrics, which may be associated with those scales. 

Therefore, the type of quantitative design to be applied should allow for the 

examination of a plethora of variables and their relationships simultaneously. 

According to Cohen (2000) and Robson (2002), a correlational or relational 

design is the type of non-experimental quantitative strategy which can meet this 

requirement.  

In addition, there is no intention deliberately to alter the interactions of the 

participants. Conducting the study in real learning conditions assumes certain 

considerations about treating all participants the same without involving 

treatment in the form of different ILEs. A non-experimental type of design can 

fulfil these requirements. This type of design allows the study of learning 

behaviour in a more realistic setting (Cohen et al., 2000,  Robson, 2002); and it 

can be applied when modifying variables is not feasible or should be avoided 

(Robson, 2002).  

3.7 Real learning conditions 

As discussed in 2.6.4, one of the main methodological issues in the existing 

studies is that they are carried out in experimental conditions rather than in 

naturalistic settings. However, conducting the current investigation in real 

learning conditions can be particularly valuable. Ford (2000) suggests that 

research and real course delivery can complement each other. This argument is 

supported by Robson (2002) who suggests that there is much to be gained by 

transferring an enquiry from the laboratory to the real world since the emphasis 

tends to be on the practical significance rather than assessing the statistical 

significance.  

Real settings may also favour the validity of a study, as in more experimental 

conditions participants tend to do what they think the researcher wants them to 
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do (Robson, 2001). On the other hand, the same author argues that the validity 

may be threatened by “compensatory equalisation of treatments” (this means 

that if one group receives special treatment, then there may be pressures by 

the organisation or institution for a control group to receive it). Furthermore, in 

experimental conditions (where students know that they are not really in a 

teaching-learning situation, that they are observed and that certain things are 

demanded of them), they are not likely to engage with the learning material in 

the same way they would in a real teaching-learning situation. This is because 

of what Robson (2002) calls “demand characteristics”. Such biases and 

constraints make the applicability and generality of the results to the real world 

questionable (Entwistle, 2008). 

Similarly, generalisability seems to be favoured by the fact that the study may 

be replicated in real conditions. However, there are constraints because of the 

choice of the subject area and it certainly depends on the representativeness of 

the sample. Therefore, conducting a study in real life settings is not an absolute 

guarantee for better generalisability.  

Robson (2002) argues that proper access to study people in real life settings 

can be obtained only if researchers use their skills to provide some sort of 

service. Conducting a real world enquiry, therefore, may help in obtaining more 

genuine interactions. 

As discussed also in section 2.7, the choice of ASSIST as a construct shows 

promise in capturing authentic complexities of students’ interactions in a 

learning environment used in natural settings in class. So, it is an opportunity to 

examine whether it can indeed give valuable insights into students’ interactions 

in a learning environment when these take place in the actual tutorial sessions 

of mathematics in a course. 

So, conducting the study in real learning conditions allows us to combine 

addressing the research aims of the current study with the requirements of the 

course examined. Carrying out a study in real learning conditions serves the 

research questions better in that it makes it possible to answer questions and 

address potential criticisms related to the impact of the students’ studying 

approaches in real situations and in the context of mathematical interactive 

learning environments in higher education. Also, conducting a study in real life 

settings does not require students to perform a task outside the scope of the 

course, and it may even provide solutions to help improve the course delivery 

and facilitate students’ learning.  
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Ford (2000) and Ford and Chen (2001) highlight the importance of conducting 

studies in real world contexts but do not give a clear definition about what this 

actually means. However, what they seem to mean is that the tasks of students 

carried out using the hypermedia learning environment are related directly to 

students’ coursework, and that there is consultation with teaching staff about 

students’ coursework, and about students’ study needs and the course’s 

outcome. Robson (2002) suggest that what also characterises a real world 

enquiry is that it takes place in a real environment such as a school and not in a 

research institution. In this study, real learning conditions will be taken to mean 

that:  

 The study is conducted in the classroom 

 ActiveMath as well as any learning material provided are part of the course 

delivery 

 ActiveMath and its learning material is structured and designed according to the 

course’s outcomes and syllabus and the students’ study needs and there is 

consultation about it with teaching staff 

 Students are assessed on the learning material delivered via ActiveMath 

This carried a number of implications for the study. Since students are 

assessed on learning material delivered via ActiveMath, there is an ethical 

consideration that none of the participants should lose out and all participants 

should be treated equally by using the same version of the interactive learning 

environment as well as completing the ASSIST questionnaire12.  

It is also important that the study runs smoothly in parallel with the learning 

process and without disrupting it. This can be achieved by:  

 Planning the procedures at an early stage and in a detailed way. 

 Seeking to apply relatively unobtrusive methods of data collection where 

possible, as shown in Ford’s review (2000). 

 Designing the study so that students’ behaviour is not directed by tasks that are 

set by the researcher when the actual learning process takes place.  

                                                

12 This was one of the main ethical issues that were discussed with a member of the ethics 
committee of the University of Westminster.  
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 Planning a pre-session with AM activities, with written and verbal instructions 

about AM, so students are familiar with the interface, navigational aids and AM 

before using it for learning purposes. 

  Collaborating closely with teaching staff for the integration of the current study 

into the learning process.  

3.8 Sampling strategy 

The use of probability samples allows for generalisation from the sample to the 

population, however, choosing a random mathematics course or modules 

among UK universities did not seem a feasible strategy for the current study, as 

getting permission to access the sample would require time-consuming 

negotiations. In addition, planning the study in real conditions required close 

collaboration with teaching, administrative and technical staff as well as 

awareness of the regulations and policies of the chosen institution. It was 

certainly an advantage to be familiar with environment, people and regulations 

of the chosen institution, before even starting the planning of a study of this 

type. Furthermore, this was a “cold-start” empirical investigation, in that at the 

time the current investigation started there were no really prior similar empirical 

findings 13  to support methodological choices, theoretical assumptions and 

interpretation of the findings14. One of the reasons for using a “convenient” 

sample, therefore, was that the author’s familiarity and experience as a tutor 

with the general learning environment and the type of students recruited in the 

specific institution would aid towards making appropriate choices and ultimately 

to a better understanding of the findings.  

In addition, a crucial criterion for selecting a sample is its size. One of the main 

criticisms of most studies in the field is the lack of generalisability because of 

relatively small sample size, and the use of non-representative samples (arising 

from a combination of convenience sampling and self-selection). Later on in the 

strategy, it will be clarified exactly how the sample size relates to the statistical 

power and how this influences the development of regression models in terms 

number of explanatory variables (i.e. predictors) included in the regression 

                                                

13 By similar studies, the author means studies whose aim was to identify deep and surface 
approaches towards studying through students’ interactions in ILEs when practising exercises 
during tutorial sessions in the classroom.  

14 “Cold-start” is a term borrowed from the context of automated systems whose purpose is to 
detect profiles based on users’ actions. Al-Azawei and Badii (2014) discuss that in a “cold start” 
there is no initially data to detect profiles and initialize models. 
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models. However, it is worth emphasising here that the bigger the sample size 

the more statistical power is ensured, and the greater the number of predictors 

allowed to be included in the models (i.e. the bigger the sample size the more 

metrics can be included in the models to explain the interactions in terms of 

studying approaches). One of the reasons, therefore, for choosing a sample of 

convenience was that it offered the potential to work with a big size course, 

which would ultimately result in a big size sample. 

In the current study, therefore, convenience sampling could not be avoided and 

in that respect the generalisability of the study was compromised to a certain 

degree.  

More specifically, the sample used in the current study occurred from a 

combination of sampling of convenience and self-selecting (since the sample 

depends on students’ attendance). The study was carried out at the School of 

Computer Science, where the author is a member of staff and so is familiar with 

the environment, regulations and procedures and as well as staff. The course 

selected was the mathematics course “Information Fundamentals”. This was a 

core course, taken by all first-year undergraduates in the specific school during 

the first semester. It offered the potential of working with a big size sample, as 

previous records showed that there were approximately 240 to 300 first-year 

undergraduate students registering each year and that there was also good 

attendance on this course.  

3.9 Sample 

The initial sample consisted of 276 first-year undergraduate students from a 

London-based university who registered for the common core course of 

mathematics in the School of Computer Science. However, 38 students 

withdrew from the course and another 5 second-year students, repeating the 

module, never attended the tutorial sessions or registered in AM. This resulted 

in working with a sample size of 233 students who registered in the course and 

in AM as users.  The specific course takes place during the first semester of the 

first year of their computer science studies. In the sample, there are 190 males 

and 43 females aged between 18 and 46.  

3.10 Description of the study 

3.10.1 Planning the study 

Planning the study required a great number of details to be pre-specified in 
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order for the study to run smoothly and in parallel with the real learning process, 

which was one of the main considerations set out in section 3.7.  

Planning of the study started in January 2005, when the author introduced the 

idea of developing an ILE for the undergraduate computer-science students to 

the leader of the maths course and the teaching and learning coordinator of the 

computer science department.  

Around the same time the author approached the team of DFKI from the 

University of Saarbrücken in Germany, regarding the provision of ActiveMath 

and because of DFKI’s experience in action analysis; an experience that was 

valuable for the current study since the data for navigational behaviour would 

be collected through web-logs. Discussions with both parties continued over the 

following months. 

3.10.1.1 Planning with the maths teaching team 

The author discussed with the leader of the maths course issues relating to:  

 How the course is organised 

 The usual level of attendance in the course 

 Which chapters from the existing handbook would be most useful to integrate in 

AM 

 When and how AM would be introduced and used during the tutorial slots; 

conducting a pilot study in order to test the process and AM 

  How the learning material could be structured and designed for an ILE 

 How the study would be designed in a way that would not disrupt but help the 

learning process and the learning outcomes of the course 

Eventually, it was agreed that:  

 A pilot study would take place during the summer school in August 2005 with 

undergraduate students who were deferred or referred in maths over the 

academic year 2004-2005.  

 Chapters with the most demanding graphs (such as Functions, Graphs and 

Matrices15) would benefit from an ILE in which improved pictorial representation 

and a graph plotter would be provided. 

                                                

15 There were exercises in the subchapter of “solving simultaneous equations using the inverse 
matrix” which would benefit from the use of the graph plotter. 
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 Storyboards indicating the instructional and interface design 16  would be 

checked and approved first by the leader of the maths course before 

proceeding with the implementation. 

AM would be involved in:  

 All tutorial sessions which, based on the records of previous years, were 

estimated to be around 15 sessions. 

 The first teaching week (from the 26th to the 30th of September) during which 

students would register and get familiar with AM before using it for learning 

purposes (in order to avoid any disruptions during the learning process). 

 The third teaching week (from the 10th to the 14th of October) for the learning of 

chapters “Functions” and “Graphs”. 

 The fourth teaching week (from the 17th to the 21st of October) for the learning 

of chapter “Matrices”. 

It was also agreed that: 

 Due to overlapping tutorial sessions in the timetable, a research assistant would 

help with the observational tasks and registration process. 

Administration of the ASSIST questionnaire would take place during the tutorial 

sessions of the revision week, for the following reasons: 

 The instructions at the start of the ASSIST questionnaire state that students 

should answer the questions in terms of a particular course 

 Judging from previous years, there would be enough time during the revision 

week to administer the questionnaire without disrupting the learning process; in 

previous years, the revision week also had very good attendance. 

The author discussed with the six tutors involved in the maths course the scope 

and settings of the study, the use of AM, and in general how the process would 

be conducted in parallel with the learning process each week. In general, the 

tutors seemed keen on integrating AM in their tutorials and agreed with the 

research process. 

As none of the tutors had encouraged collaboration between students in 

previous years (since the tutorial exercises have not been designed for group 

                                                

16 The decisions in relation to interface design (what type of features are needed, what type of 
features exist, and how they would be customised) were also influenced by previous research 
on styles and navigational behaviour.  
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work), it was agreed the students would continue to work on their own. This 

point was considered important for the study since collaboration between 

students could alter a student’s own behaviour in AM. 

Tutors’ intervention 17  could also alter a student’s own behaviour in AM. 

However, asking tutors to intervene less was not a possibility as this would 

have meant severe interference with the learning process.  

3.10.1.2 Planning with the AM team 

A series of meetings with DFKI in Germany was arranged at the start of June 

2005. During the first meeting the author presented the proposed study and 

discussed the following issues: what it was feasible to implement considering 

the human resources and time constraints; details on how the study would be 

conducted; and how the application could be customised to suit the research 

questions of the study and the learning outcomes of the maths course.  

In terms of the process, it was concluded that:  

 The AM team could calculate most of the proposed “interaction” metrics18 

 Learning material would be broken down into more pages as this would provide 

more detail in relation to what type of learning material the subject examines 

and for how long19 

 There should be close supervision and strict instructions during the registration 

process to avoid double registration 

 There should be a demonstration of AM to the students and written instructions 

should be provided before the registration process in order to avoid mistakes 

 There should be an administration account for the author in order to access 

accounts, create accounts, delete potential double registrations, and help the 

students create a new password in case they forgot their existing one 

In terms of the application, it was concluded that:  

                                                

17 This was raised when some tutors explained that they tend to give specific tasks or conduct 
revisions. 

18 Certain metrics could not be calculated. For example, the use of the browser buttons or the 
number of external links explored through the search engine could not be calculated.  

19 Another solution was the use of the AM eye-tracker feature. The eye-tracker highlighted 
exactly what the users were pointing at, while the rest of the content became blurred. However, 
it was decided that its use would be disruptive for the learning process and it was removed from 
AM.  
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 AM features such as search engine, help and hyperlinks would be customised 

to serve the research questions of the current investigation and the learning 

outcomes of the course 

 AM features such as the different visual presentation for each element (that is 

theory, example, and exercise) would be maintained 

 AM features required by the maths course leader such as the graph plotter did 

not exist in AM and could not be implemented by the AM team 

 The AM team would provide software development training to the author and 

they would also help with the integration of the learning material in AM (and 

specifically the exercises) 

 Given the time constraints it was only feasible to implement the three chapters 

mentioned above 

The above conclusions helped to further shape the process and the application. 

3.10.1.3 Implementation of AM 

Following the meetings with maths course leader and DFKI, the design and 

implementation of the application was intensified. The author designed 

(according to the given feedback) and completed the storyboards on the 19th 

July 2005, and the author designed a graph plotter to fit the requirements of the 

learning material.  

The integration of the three chapters in AM took place from mid-June until mid-

September. The implementation consisted of image processing (e.g. creation of 

diagrams) and XML programming. The final testing of AM took place from the 

14th September to the 22nd September 2005 in various computer labs using a 

range of browsers. Technical errors and typos were corrected.  

It is estimated that for the design of storyboards, implementation, and testing of 

AM the author spent approximately 1000 hours. 

3.10.1.4 Design of AM 

The design version of AM used in the current study was based on the work of 

DFKI team (Melis et al., 2006). However, its interface and its features were 

changed to suit the study, the learning outcomes of the maths course, and the 

requirements set by the module team. 

The AM interface and features were customised to integrate the learning 

material, as defined in the syllabus, and serve the learning outcomes of the 
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course. The interactive learning environment was therefore changed to 

integrate concepts, procedures, examples and exercises in verbal (text and 

numerical) and visual form with regards to Functions, Graphs and Matrices.  

In addition, AM allows students control in terms of what theory example and 

exercise they will view and practise on and what options they will use to access 

them. Initially, students login with their own username and password. On the 

home page, students have to choose between the three available chapters: 

Functions, Graphs, and Matrices (see Appendix 3.4.9). After choosing a chapter, 

students can navigate through two main options: 

 The table of contents (TOC), which is consistently placed on the left-hand side 

of the screen (see Appendix 3.4.1). It is placed in a position which can draw 

students’ attention, as it starts from the top-left corner of the interface, which is 

considered a primal optical area (Lidwell et al., 2010), and expands to the 

bottom-left corner of the interface. The items in the TOC are ordered and 

structured according to the topics of the curriculum. Each topic may be a theory, 

an example or an exercise and is presented on a link to either a superordinate 

category (e.g. “Linear Graphs”) or a subordinate category (e.g. “The meaning of 

gradient”). In the TOC, students can follow the specified order, or they can jump 

to a specific topic.  

 Students can also navigate in a linear way using the Previous/Next buttons at 

the bottom of the page (see Appendix 3.4.2).  

These were navigational options which were already provided in AM and it was 

considered reasonable to retain both, as providing different ways for the users 

to navigate through the material adds more flexibility to the way the information 

is accessed in a system (Issa and Isaias, 2015; Dix et al., 1998). When 

selecting a topic from the TOC or clicking on the Previous/Next button, the 

relevant content is displayed on the right-hand side of the screen. There are two 

different types of learning content presented on the right-hand side of the 

screen: 

 Reading page: students can view the mathematical concepts, theory, and 

working examples for mathematical procedures (see Appendices 3.4.1 and 

3.4.10). The reading pages also have hyperlinks which allow the student to visit 

new concepts or revisit previous concepts by opening a pop-up window with the 

relevant information.  



 104 

 Exercise page: students can view on each exercise page a group of exercises 

(see Appendix 3.4.2). For each exercise, there is a short description and a 

“Start exercise” link which opens a pop-up window, allowing students to work on 

the exercise. There are three types of exercises: multiple choice, multiple 

selections and fill-in-the-blank. In the fill-in-the-blank exercises the type of 

response can be numeric or numeric-plus-strings. After selecting (or typing), 

students receive feedback which tells them whether their answer is correct. If 

the answer is incorrect, they are encouraged to try again up to three times. 

Throughout their three attempts, the previous wrong answers are retained and 

highlighted by AM (see Appendices 3.4.4-3.4.7). After the third attempt, they 

receive the correct answer (see Appendix 3.4.4). Students can also cancel an 

exercise at any point.  

Furthermore, the decision to implement three different type of exercise was 

based on the way the exercises were presented on the textbook of the module. 

It was agreed with the module team that it was important to keep the way the 

exercises were presented consistent between the textbook and AM as much as 

possible (as students would also be allowed to consult the textbook during the 

tutorial sessions). The decision to allow the students to try three times for the 

correct answer before getting the right answer from AM was also something 

which was decided by the module team. 

Students have constant access to Help, Home Page and Logout, and the 

interactive and investigative features of Notes, Graph Plotter, and Search (see 

Appendix 3.4.1).  These options are grouped in a horizontal bar placed at the 

top-right corner of the screen. Although they do not occupy the primal optical 

area, they are placed in the “strong fallow area” which is the next area in the 

interface to attract the users’ attention (Lidwell et al., 2010). The students can 

interact with these tools as follows:  

 Students can choose two different types of graph plotter, depending on the 

exercise. For example, the “two lines” graph plotter can be used in 

simultaneous solutions for two linear equations and the “parabola and line” 

graph plotter can be used in simultaneous solutions for quadratic and linear 

equations. Each graph plotter has two panels. Students can change the graphs 

in the right-hand panel by moving the sliders in the left-hand panel for changing 

the quadratic coefficient, the linear coefficient, the constant (for the quadratic 

equation), and the gradient and intercept for the linear equation. Students can 

see the change of function graphically and numerically.  
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 Students can write notes by clicking on the Notes option. This action opens a 

pop-up window in which they can type and save a note (see Appendices 

3.4.8.a-3.4.8.c).  

 Students can enter a maths term in the text field of the Search option (see 

Appendix 3.4.3). After submitting their query, there is a list of search results 

from which they can choose. There is also an option to expand their search 

beyond the AM tutorial by searching for the term on other websites such as 

Google, Wikipedia and MathWorld. 

The decision to include the above tools was based on what was considered by 

the module team as beneficial for the students, and it was also based on the 

needs of the study (i.e. forming associations between the use of features and 

studying approaches). More specifically, with regards to the use of graph plotter, 

it was a request made by the module team as it was thought that it would 

contribute to the process of solving specific exercises. The beneficial role of the 

graph plotter was also supported in the literature, as indicated in section 2.1.1 it 

could help students to understand the connections between graphic and 

numerical representation. 

Furthermore, the “notes” feature was an existing feature in AM which was 

retained for the current investigation. This was because making notes was 

found capable of being linked to deep approaches towards studying, as 

discussed in 3.4.1. So, its use contributes towards forming associations with the 

studying approaches, but also at the same time it may encourage a deep 

approach towards studying. 

Similarly, the “search” feature was also an existing feature in AM which was 

retained for the current investigation. This was because its use can offer a more 

exploratory and active retrieval of the mathematical concepts which suits 

students with an “interest in ideas” approach, as discussed in 3.4.2. So, its use 

contributes towards forming associations with the studying approaches, but also 

at the same time it may encourage a deep approach towards studying. 

Finally, there was a decision to retain the hyperlinks (concept links) in the text of 

the AM pages. As discussed in 3.4.2, the use of hyperlinks for mathematical 

terms in the text may be connected to the “relating ideas” and “interest in ideas” 

approaches towards studying. Besides contributing towards forming 

associations with the studying approaches, it may also facilitate students in 

relating mathematical concepts. 
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3.10.2 The pilot study 

The pilot study was conducted on 15th August 2005 during the summer school20. 

Previously, the author had prepared AM accounts for all students in order to 

help them with their registration, prepared the materials for ASSIST 

questionnaire, and created an observation sheet. 

3.10.2.1 The process 

It was expected that 24 deferred and referred students in maths would 

participate, however, summer school was not compulsory and only three 

students attended.  

The session with AM followed after a revision lecture by the maths course 

leader where the author was present. At the start, the author presented AM to 

students and helped them to log in. The students used the usernames and 

passwords set by the author. The above tasks took 15 minutes. The maths 

course leader instructed them to start from Linear Graphs without specifying, 

though, whether they should start from exercises, examples or theory. They 

used AM for the duration of 1.5 hours.  

During this time, the author tried to keep her intervention minimal. However, 

because of the students’ slow progress (and after the course leader’s 

indication), the author suggested (half an hour before the end of the session) 

exploring a different subchapter.  

At the end of the session, the ASSIST questionnaire was administered. The 

completion of the questionnaire took an average time of 15 minutes. 

3.10.2.2 Conclusions from pilot study 

Because of the poor attendance, the study did not have any value in terms of 

collecting data but only in terms of testing the process and the AM application. 

In terms of the AM application, the pilot indicated one technical problem in 

relation to the graph plotter which was addressed in time for the main study. In 

terms of process, it was observed that students initially needed time to 

familiarise themselves with the interface, structure and navigation of AM. This 

fact reinforced the idea of planning a session with AM activities before the 

actual use of AM for learning purposes in the main study.  

                                                

20 The purpose of the summer school was to prepare the deferred and referred students for their 
August exams. 
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3.10.3 Main study 

After conducting the pilot study and until the commencement of the main study - 

on 19th September - the author continued with the preparation of materials and 

the refinement of the process for the main study. During the registration week, 

the number of tutorial sessions was finalised to 15. 

3.10.3.1 Preparatory task for observation 

Starting from the observation task, the forms used in the pilot study seemed to 

cover well the requirements for recording incidents and interactions that may 

influence the relationship. Observations would give complementary information 

about incidents or interactions that may influence the relationship between 

students’ learning styles and students’ behaviour in AM such as tutor’s tasks, 

incomplete sessions due to technical difficulties, students’ absences from the 

tutorial sessions, reasons for short attendance; and collaboration between 

students. 

The observation task was planned to be as unobtrusive as possible. The 

observer would record the number of the computer used by each student, and 

match it to the student ID number in the attendance list.  

3.10.3.2 Preparatory task for registration 

In relation to the registration process, it was decided that the students would 

have to register themselves. The author designed the online registration form 

so that all the form elements were mandatory and there were simple and 

concise instructions for its completion (see Appendix 3.10.4). Additional 

instructions would be given in a written form (see Appendix 3.10.2), along with 

the manual for AM, to avoid overloading the interface of the online form with 

more details.  

3.10.3.3 First week of study - registration and introduction to AM 

During the first teaching week, the students were introduced to AM. The 

presentation lasted an average time of 15 minutes. During the presentation, the 

author demonstrated the features and interface of AM, highlighting the 

advantages of its use. The author also explained that users’ AM interactions 

would be recorded for research purposes and asked the students’ permission. 

Furthermore, it was highlighted that the students could contact the author via 

email for any kind of technical assistance with AM. After the presentation, the 

author distributed the instructions for registration (see Appendix 3.10.2) and 
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explained the registration process.  

The main problem encountered during the first day was that a number of 

students double-registered. The students’ IDs of these students were recorded 

on the observation sheet and double-registrations were tracked down and 

deleted through the administration account (see Appendix 3.10.5). Double-

registrations decreased after highlighting more frequently the importance of 

checking the form with the tutor before submitting it. 

After the registration session, the students were given the AM manual (see 

Appendix 3.10.1) and a sheet with AM navigational exercises (see Appendix 

3.10.3). These exercises had the purpose of helping the students become 

familiar with AM in order to avoid disruptions during the learning process (as 

suggested in 3.10). 

At the end of the first week, 195 students had registered and spent time getting 

familiar with AM. In 10 out of the 15 tutorial sessions, the students used AM 

approximately for 1 hour. There were, however, 3 tutorial sessions that were 

taking place at the same time. As a result, three tutorial groups, which were 

introduced to AM only during the second hour of the tutorial session, had an 

average time of use of 20 minutes.  

3.10.3.4 Second week of study - registration of remaining students 

By the end of the first week, it was noticed that not all expected students had 

attended the first week’s tutorial sessions. It was estimated that there were 

approximately 43 students who had not registered in AM21, because they did 

not show up to the tutorial sessions. It was decided with the maths course 

leader that during the second teaching week (from 3rd to 7th October) the author 

would visit the classes and help register those students who had not attended 

during the first week. The registration took place during breaks, at the very start 

or the very end of the two-hour tutorial session to avoid any disruptions. By the 

end of the second week, 13 more students had registered and there were 208 

students in total in the AM registry.  

3.10.3.5 Conclusions from first and second week 

The events and observations of the first two weeks of the study revealed that it 

                                                

21 During the first three weeks, there were students who did not show up, changed courses etc. 
As a result, it was not feasible at that point to know the exact number of those who were 
registered on the course.  
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is essential to have a pre-session where students register and test the ILE. This 

way, any potential disruptions during the learning process can be avoided; but 

also the collection of web log data will not be influenced heavily by technical 

and administrative problems, which frequently occur during the first week of a 

big size course, as well as by the inexperience of users with the ILE. 

3.10.3.6 Third week of study - Use of AM for learning purposes  

During the third week, from 10th until 14th October, AM was used for the first 

time for learning purposes, specifically for the chapters of “Functions” and 

“Graphs”. The tutorial sessions ran smoothly since most students were familiar 

by now with the environment and the login process. There were 15 more 

students who registered because they had not attended the course in the two 

previous weeks. This raised the number of AM users to 223. 

The author recorded observations for each tutorial session with the help of a 

research assistant who covered the overlapping sessions. The observers 

recorded incidents and interactions.  

Finally, during the third week, 170 students attended the tutorial sessions and 

participated in AM. According to the web logs, the average time for AM use 

during the two-hour tutorial session was 1 hour and 27 minutes.  

3.10.3.7 Fourth week of study - use of AM for learning purposes  

During the fourth week, from 17th until 21st October, AM was used for the 

learning of the “Matrices” chapter. There were 7 new students who registered in 

AM raising the number of possible AM users to 230. During the fourth week, 

there were 154 students who attended and used AM. According to the web-logs, 

the average time for AM use during the two-hour tutorial session was 1 hour 

and 26 minutes. In general, sessions ran smoothly and the observation process 

was conducted similarly to the third week. 

3.10.3.8 Fifth week of study – use of AM for revision  

During the fifth week, there was unexpected use of AM by some tutors who 

used it for revision purposes. The tutorials of the fifth week, from 24th to 28th 

October, were dedicated to the revision for an in-class test that would take 

place during the sixth teaching week. Three tutors planned their revision in a 

way that included AM, so it was used by 90 students in 7 tutorial slots and the 
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average time of use was 42 minutes22.  

During the fifth week 5 more students, who attended for the first time, registered 

in AM. This raised the number of possible AM users to 233 out of the 238 who 

had registered for the course23.  

3.10.3.9 Fifth week of study – administration of ASSIST 

ASSIST was administered in all 15 sessions during the tutorials of the revision 

week. Out of the 184 students who attended the tutorial sessions, 174 students 

completed ASSIST voluntarily. There were 10 students who did not complete it 

because they had to leave class early for personal reasons. In most tutorials, 

the administration of ASSIST took place at the end of the session; however, in 

three sessions which were taking place at the same time the process took place 

at the start of the session. The author initially explained the purpose of the 

questionnaire and the study. She also repeated the instructions written on the 

questionnaire, emphasising that students should think of their answers in terms 

of the maths course. The process lasted an average time of 20 minutes per 

tutorial session, and the actual completion of the questionnaire lasted an 

average of 15 minutes per tutorial session. 

After collecting the data, ASSIST was examined statistically in terms of internal 

reliability (i.e. internal consistency) using the statistical method of Cronbach’s α 

in SPSS. According to Field (2009), the generally accepted value is 0.8, 

however the value of α depends also on the number of items, so a value of 0.5 

and above can be also respectable when there are a few items in a scale. The 

“deep” and “surface” main scales appeared to have good internal consistency, 

with α =0.804 and α=0.837, respectively. With regards to the “deep” subscales 

of “seeking meaning”, “interest in ideas”, “use of evidence” and “relating ideas” 

the value of α ranges between 0.518 and 0.593, which is considered 

respectable given that they consist of only 4 items. Finally, regarding the 

“surface” subscales of “lack of purpose”, “unrelated memorising”, “syllabus 

boundness” and “fear of failure”, the value of α ranges between 0.563 and 

0.737, which is considered respectable given that each subscale consists of 

only 4 items. So, overall, the scales of ASSIST appeared to have good internal 

consistency. 

                                                

22 The average time was less compared to previous weeks because the tutors also spent time 
revising chapters not included in AM.  

23 There were 5 students in total who did not attend any tutorial sessions and never registered in 
AM, possibly because they were retaking the module.  
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3.10.3.10 Data collection of secondary background variable – prior 

knowledge  

Data in relation to the secondary background variable, prior knowledge (that is, 

their maths level based on their entry qualifications), was collected together with 

the completion of ASSIST measurement. On the same way data was also 

collected in relation to the secondary background variables age and gender, 

however, as stated in a previous chapter, the intention is to focus on the 

influence of the prior knowledge.  

The level of maths was based on the students’ university entry qualifications 

and it was discussed and assessed in collaboration with the module leader of 

the maths module team. The great disparity in students’ prior knowledge in 

mathematics due to accepting students (especially through the clearing process) 

with a variety of entry level qualifications and the way it affects the students’ 

learning, teaching and performance has been always a concern for the maths 

module team of the university in which the current investigation took place, and 

the specific year the study took place it was no exception: the students had 

again great disparity with regards to prior knowledge. This reinforced the 

argument made in the literature about the influence of prior knowledge. In 

addition, measuring prior knowledge based on their entry qualifications, 

although not a straightforward and completely unbiased process, seemed the 

most reasonable way of collecting such data at the time, since logistically a pre-

test on their maths knowledge could not be implemented and administered. 

For the purpose of the current study, as will be shown later on, it was essential 

to distinguish between two groups.24  So, after identifying the different entry 

qualifications, then two groups were formed. The first group consisted of those 

students, who were considered to have low prior knowledge and it was called 

“low prior knowledge” group. This group consists of students with GCSE maths 

qualifications graded D-G25. The second group consisted of those students, 

who were considered to have medium to high prior knowledge and it was called 

“high prior knowledge”. This group consists of students with the following maths 

qualifications: GCSE graded A-C and diplomas or certificates (e.g. BTEC) in 

                                                

24 As is shown in 2.11.3, this distinction between the two prior knowledge groups will be used to 
split the sample for each multiple regression model in each ASSIST scale and subscale. 

25  Those were students who at the time had certificates in AVCE ICT or BTEC National 
Diplomas (relevant to computer science and multimedia subjects) and in which either there 
were no maths units or they were optional and were not taken. Hence, their GCSE maths 
qualifications were considered. 
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which maths units were taken; Foundation course in Computer Science (where 

maths units are part of the course’s diet); European/International Baccalaureate 

(where maths units with standard or high level were taken); AS-level Maths 

(graded B-D), and A-level Maths (graded E-D). 

3.10.3.11 Ethical issues 

The author asked the ethics committee of the University of Westminster for 

permission to carry out the study with the students at university. Permission 

was given to go ahead after it was confirmed that:  

 The participants did not belong to a vulnerable group such as children, and 

adults with physical or mental illnesses. 

 The nature of the study was not intrusive in that it would not cause any mental 

or physical harm.  

 The author would obtain the informed consent of the students to use the data 

for research purposes (verbal consent was sufficient).  

 None of the participants would lose out since all participants would use 

ActiveMath and complete the questionnaires. The study would not be designed 

to include a control group (which would not use ActiveMath) and a treatment 

group (which would use ActiveMath), and all students would use the same 

version of the ILE.  

The last point was especially important since the study was conducted in real 

learning conditions. In the methodology and the description of the study, it was 

shown how this fact shaped and produced a number of considerations: 

planning the tasks at an early stage and in such detail that the study could run 

smoothly and in parallel with the learning process; applying techniques of data 

collection which are as unobtrusive as possible (e.g. recording web logs); 

avoiding setting tasks that would disrupt the learning process; and avoiding 

setting tasks at a time, place and in a way that would be inconvenient for the 

tutors, the students, and the learning objectives of the course. 

Furthermore, the author explained to the students at the beginning of each data 

collection process (e.g. before administering the tests and when presenting AM), 

that the data would be used only for research purposes and that the results 

would be confidential and anonymous. The participants were also asked orally 

whether they agreed to allow their data to be used for research purposes. All 

students agreed to allow their data to be used for research purposes. In the 
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case of the administration of ASSIST (which was not part of the normal learning 

process), students were asked if they would like to participate and it was also 

made clear to them that they could withdraw their consent to participate at any 

time. The above questionnaire was also introduced to students according to the 

guidelines of their creators. With regards to the completion of the ASSIST 

measurement, 10 students out of the 184 declined to participate and left the 

class. Feedback on Entwistle’s questionnaire was given on demand.  

Overall, it was thought that participants would benefit from the experience, and 

the application was designed in a way to ensure that it would accomplish this. 

ActiveMath was adjusted, with guidance by the people teaching the course, in 

order to cater for the needs of the students and the learning outcomes of the 

maths course. It was also thought that ActiveMath as a computerised and a 

more interactive way of learning maths would engage students whose subject 

of study is Computer Science.  

In addition, it was very clear to the fellow lecturers that the study would take 

place for one academic year only.  

To preserve the anonymity of the participants, the author used the student ID of 

the students rather than their surname and name in the data files. Files that 

would allow matching student IDs to students’ names were stored on a 

password protected machine.   

3.11 Strategy for analysis 

In the current investigation, the strategy suggested for the statistical analysis 

has been selected based on the research aims and research questions. Both 

the research aims and questions aim to examine the relationships between 

deep and surface approaches towards studying and “interaction” metrics, but 

also go a step further and examine whether combinations of “interaction” 

metrics can explain or predict deep and surface approaches towards studying. 

Hence, correlational analysis and multiple regression analysis have been 

deemed appropriate statistical methods. In this section, the author examines 

how these methods are being applied. 

3.11.1 Final sample-size involved in the analysis 

There were 233 students who actually participated in the study. From this 

sample, 117 students attended the two tutorial weeks in which AM was used for 

learning purposes as initially scheduled (i.e. third week and fourth week) and 

completed the ASSIST measurement. During the process of ‘data-cleaning, 
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there was also further exclusion of two more cases due to lack of interaction in 

AM which resulted in ‘NULL’ data, resulting in the final sample size of 11526.  

3.11.2 Correlational Analysis 

The process of correlational analysis is typically a process which is appropriate 

for correlational design. Most importantly it serves as a statistical method which 

indicates which “interaction” metrics are the most relevant to be included in the 

regression models based on their empirically statistically significant 

relationships to the ASSIST scales and subscales. Applying correlational 

analysis prior to multiple regression is for this purpose is quite common (Steele, 

2003), but it is especially useful for a “cold-start” type of investigation, such as 

the current one where there are no really prior empirical findings in a similar 

context to indicate which metrics  are the most relevant for each approach. 

As stated in 3.3.1, ASSIST is an ordinal-level measurement, whereas the 

students’ “interaction” metrics are considered interval-level measure. According 

to De Vaus (2002), a Spearman correlation coefficient (rs) is the preferred 

statistic for relations between ordinal variables with a lot of categories (such as 

the ASSIST scales and subscales), and it is also a suitable method for 

examining the associations  between ordinal-level and interval-level measures. 

As a result, the Spearman correlation coefficient is calculated to test the 

hypotheses. The value of the Spearman correlation coefficient is calculated for 

each hypothesised relationship, with statistical significance set at p=0.05.  

The analysis was carried out on 115 students of the sample, described in 

section 3.11.1, who attended and used AM during the third and fourth weeks of 

the study, and who completed ASSIST.  

3.11.3 Multiple Regression – Development of models 

3.11.3.1 General strategy and statistical measures 

According to the research questions discussed in 3.1, to identify the students’ 

interactions with regards to each studying approach, as measured in ASSIST, it 

is appropriate to apply multiple regression analysis. It is a typical technique 

employed in behavioural science when several variables predict a quantitatively 

measured criterion variable (Meyers and Gamst, 2013). So, in each regression 

                                                

26 It was clarified with the DFKI team, that in these two cases there was no data with regards to 
temporal metrics because they have not visited the AM pages. These two cases are typically 
called “outliers for data cleaning” (Meyers et. al., 2006). 
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model the explanatory variables (or independent variables or predictors) are 

amongst the “interaction” metrics mentioned in 3.4, and the dependent variable 

(or criterion variable) is each ASSIST deep and surface scale and subscale as 

discussed in 3.3.2. 

The strategy with regards to the development of regression models is formed 

based on a combination of the accepted statistical practices when developing 

multiple regression models and specific tactics which have been adopted to aid 

and enrich the interpretation of the empirical findings in the specific context. The 

author performed the analysis using the SPSS statistical software. However, it 

is important to mention that the author does not rely on automated statistical 

methods (such as “forward” and “backwise” which are typically offered in 

statistical software such as SPSS) for the development of the models. Field 

(2009) and Meyers et al. (2006) discuss these methods along with various 

criticisms and particularly that independent variables with good predictive 

qualities on their own may be awarded very little weight in the model, in which 

case the researcher need to exercise some judgement as to which variables to 

enter. Meyers et al. (2006) recommend a “researcher-controlled” method when 

developing a model, where the researcher judges which predictors should be 

included in the model. They also suggest that selection of predictors should be 

based on a particular theory and/or empirical basis. Field (2009) also supports 

that the development of models should not be out of the hands of the 

researcher. The author’s intention is to follow a “research-controlled” method, 

as it can ensure better that the most relevant predictors are included based on 

the theory and the empirical findings. 

The statistical measures which are used during the development of the models 

are the ones which are typically suggested by statisticians such as Field (2009), 

Meyers et al. (2006) and Steele (2003). More specifically, the following 

statistical measures are used: 

 R2 which is the variance explained by the model. 

 Adjusted R2 which takes some account of the inflation error and shows the 

shrinkage of the explained variance if we were to apply the model in the 

population. Throughout the process, we should keep an eye on the difference 

between R2 and Adjusted R2, as their values should be as close to each other 

as possible. 

 Sig. which is the value for the overall significance of the model. 
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 Sig. which is the value for the significance of each predictor. 

 b value which is partial regression coefficients (relative contribution of each 

predictor while controlling for the effects of the other predictors). They reflect 

raw scores. Because variables are assessed in different metrics, you cannot 

see based on b weights, which independent variable is the strongest predictor 

in the model. 

 beta value which is standardised regression coefficient (weight for 

standardised predictors).  

3.11.3.2 Clarifications on expectation in terms of effect size and variance 

explained 

Before discussion the models representing the surface and deep scale, it is 

useful to clarify certain statistical issues regarding the thresholds of statistical 

measures for multiple regression. Cohen (1992) sets thresholds for correlations 

and multiple regression (see Appendix 3.11.1). Cohen (1992) suggests an 

“effect size index”, which is widely cited when thresholds are needed to interpret 

statistics in behavioural sciences by statisticians such as Field (2009), but also 

in learning style research (Law and Meyer, 2009). To understand whether 

expectations are met in terms of the deep and surface models, it is reasonable, 

therefore, to use these thresholds in the current research. In terms of multiple 

regression, there are thresholds for the magnitude of the variance explained -or 

variance accounted R2, and for the effect size d2. As shown in Table 2 in 

Appendix 3.11.1, a small effect size of 0.02 corresponds to a small R2 of 1.96% 

and R of 0.14; a medium effect size of 0.15 corresponds to a medium R2 of 

13.04% and R of 0.36; a large effect of 0.35 corresponds to a large R2 of 

25.92%, and R of 0.51. 

It is commonly accepted, of course, that the higher the R2, the better the model 

fits the data. However, there are varied opinions regarding the magnitude of the 

R2 and its importance with regards to the quality of a study (Moksony, 1990). 

There are also suggestions that in psychology and social science studies a less 

than large amount of variance is due to the unpredictability of human behaviour 

(Frost, 2014), and that it can be still valuable (Ramsey and Schafer, 2013).  

Furthermore, researchers in the field of statistics suggest that magnitude of R2 

really depends on context or subject area of a study (Chalmer, 1987). So, at 

this point it is important to point back to our review of learning styles in 

interactive environments, where it is stated that medium effects (and therefore 
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medium variance explained) are reasonable expectations. This is also enforced 

by the fact that the study took place in natural settings where unpredictable 

behaviour can manifest itself. Therefore, according to the aforementioned 

Cohen’s thresholds, it is -at least- expected to be found a medium effect f2 of 

0.15, which corresponds to a medium variance explained of 13.4%.  

3.11.3.3 Stages of development of models 

The development of models consists of five main stages: 1) Initial selection of 

predictors, 2) Exclusion of outliers, 3) Exclusion of predictors 4) Decision-

making on final recommended model, and 5) Examination of the influence of 

prior knowledge. As it is discussed in the following sections, these stages are 

based on the recommendations of statisticians such as Meyers et al. (2006), 

Field (2009) and Steele (2003), as well on what the author considers relevant 

and appropriate for investigating the research questions. 

1) Initial selection of predictors 

During this first stage of the development, the following points need to be 

considered: 

 Relevance of predictors based on theoretical and empirical connections 

The first version of the model is formed based on theoretical connections and 

empirical connections (i.e. based on the initial correlational analysis between 

metrics and each scale). The “interaction” metrics with empirical connections to 

the ASSIST scales will be given priority and be included always in the model, 

over those metrics whose inclusion is based only on the theoretical connections 

to ASSIST scales found in the relevant literature related to ASSIST. If, for 

example, the maximum number of predictors allowed according to sample size 

(an issue discussed later on) is reached based on empirical connections (i.e. 

initial correlations between metrics and ASSIST scales), then the first version of 

the model will simply rely only on them. In the case where there are no 

correlations between a scale and “interaction” metrics or there are very few of 

them, then the first version of the model will simply rely more on predictors 

which occur from the theoretical connections and according to the author’s 

judgement have the most potential to enlighten us in terms of students’ 

interactions according to their studying approach. The idea is to “take 

advantage” of the maximum number of predictors which are allowed in the first 

version of the models according to the sample size, in order to obtain an as 

enriching and as complete a picture as possible of the interactions in AM which 
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may explain a specific approach to studying. Furthermore, in cases where there 

is no clear indication, according to the theory, as to which metric would be the 

more “enriching” as a predictor for the model, or when there is a multicollinearity 

issue (as discussed below) the decision of inclusion will be made based on 

whether a predictor contributes to variance explained by the model in terms of 

R2 and Adjusted R2, ensuring at the same time that the model remains overall 

statistically significant. This means that the contribution of some predictors may 

be examined in terms of R2 and Adjusted R2 in a “trial” type version of the 

models (what the author calls “pre-models”), and then a decision will be made 

as to their inclusion in the first version of the model. It is also discussed later on 

that in general the aim is to recommend a model with the highest possible R2, 

but also the highest possible Adjusted R2. A pre-model, for example, where with 

the inclusion of a specific predictor (or combination of predictors), R2 is 

increased while Adjusted R2 is decreased compared to the rest of pre-models, 

will not be recommended.  

Finally, as indicated by Field (2009) the predictors should have some variation 

in value, so if a predictor has variation of 0 value (or close to 0), then it will not 

be considered for inclusion. 

 Multicollinearity 

When deciding which predictors should be included in the first version of the 

model, it is important not to include predictors which correlate with each other. 

A commonly used threshold to judge multicollinearity between predictors is 

r >0.75 (Meyers et al., 2006). If there is a “multicollinearity” issue, then a 

decision should be made as to which predictor to include. For example, in the 

group of temporal metrics, average time view on content pages is likely to 

correlate highly with the maximum view time on content page; or average 

number of notes clicked per page very likely correlates to number of times 

“notes” link is clicked (given that they are both based on the number of times 

the “notes” feature is accessed).  

The decision, with regards to which metric is included, can be made according 

to the empirical connection between these metrics and the ASSIST scale with 

regards to statistical significance and strength of correlation (i.e. which one has 

the highest and statistically significant correlation). In the absence of an 

empirical connection between the metrics and the ASSIST scale, a decision can 

be made according to the theoretical connection between these metrics and the 

ASSIST scale (i.e. which one is deemed to have stronger theoretical 
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connections or is deemed to have the most potential to enlighten us in terms of 

students’ interactions according to a specific studying approach). Furthermore, 

in the absence of an empirical connection, or in cases when there are 

predictors which are deemed equally important empirically and/or theoretically 

(or in general when there is no clear indication as to which predictor will be the 

most “enriching” for the model), both predictors can be tried separately in the 

model  to check which one contributes more. This solution can give a clearer 

indication as to which one contributes more based on the statistical measures 

of R2 and Adjusted R2. While following this process, there is also a need to keep 

an eye on the overall significance of the model (Sig. value), making sure that no 

matter which predictor is chosen, the model still remains overall statistically 

significant. 

 Including appropriate number of predictors  

There are different methods to estimate the appropriate number of predictors 

included in a regression model. With regards to the first method, Field (2009) 

and Robson (2002) indicate the simple and quite commonly used rule of thumb 

of ‘1 predictor per 15 participants’. With regards to the second method, Field 

(2009) proposes a method which considers the expected effect size of the 

relationships between predictors and explanatory variable and the statistical 

power. With regards to the third method, Cohen (1992) proposes a method 

which considers expected significance and size-effects with regards to 

regression models. More specifically, this is how each of these methods 

calculate the number of predictors based on the current sample-size: 

o First method: The rule of thumb indicates 1 predictor per 15 

participants. This means that for 7 predictors there should be 105 

participants (7x15=105), or for 8 predictors there should be 120 

participants (8x15=120).  So, for the current sample of 115 

participants there can be between 7 and 8 predictors. 

o Second method: It considers the effect size and indicates that if a 

medium effect is expected (which is according to the initial 

expectations as discussed in 2.6.4), then for 6 predictors in a model 

there should be a sample of at least 100 participants. This is to 

ensure statistical power of at least 0.8, which is a commonly 

accepted threshold proposed by Cohen (1988, 1992) (as cited in 

Field, 2009, p.223).  
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o Third method: Cohen (1992) indicates that to ensure statistical 

power of 0.8 (a commonly accepted threshold) and if, with regards to 

the regression models, the statistical significance is set at a=0.0527 

and the expected effect size is a medium f2=0.15 28 , then there 

should be sample for at least 107 participants corresponding to 8 

predictors. 

Based on the above three methods, it is reasonable, therefore to conclude that 

an appropriate number of predictors to include in the first version of each 

regression model for the sample size of 115 participants is maximum 8 

predictors.  

It is also worth mentioning that the estimations suggested in the above methods 

are useful throughout the development of the models. In the following stages, 

there will be exclusion of outliers as well as exclusion of predictors, meaning 

that it should be always ensured that there is an appropriate number of 

predictors according to sample size in the subsequent versions of the models, 

and especially in the versions suggested by the author (see Chapter 4). In that 

aspect, the three methods can help with the lowest limits with regards to the 

number of participants and corresponding number of predictors. Based on the 

first and third method, it is possible to have between 105 and 107 participants 

for 7 predictors; and based on the second method there should be at least 100 

participants for 6 predictors. Throughout the development of the models, it has 

to be ensured that the number of participants and number of predictors in the 

model are well within the aforementioned limits. 

2) Exclusion of outliers (using Cook’s Distance) 

During the second stage, after running the model with the initial predictors, 

there is a need to rerun consecutive models in which one by one the outliers 

(extreme cases) are excluded. Meyers et al. (2006) calls them “multivariate 

outliers”. The importance of detecting outliers when developing regression 

models is stressed by Field (2009), as it can cause the model to be biased. 

Steele (2003) proposes detection of outliers using “Cook’s Distance” method. 

The box plot of Cook’s distance shows the outliers through asterisks (the most 

extreme cases) and circles (less the extreme cases).  

                                                

27   This is the expected level of significance and all regression models will be developed 
according to this, which is the default in SPSS. 

28 This is the expected effect size, based on what is discussed in 2.6.4. 
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As indicated previously, there is a need to ensure that the sample size is 

according to the number of predictors, so it can be the case that it is not 

possible to exclude all outliers. A reasonable way to judge which outliers are 

candidates for exclusion is to focus on the most extreme cases (which are 

indicated in the boxplot by an asterisk), and then check whether the exclusion 

of each outlier increases the variance explained by the model based on the 

measures of R2 and adjusted R2. If the exclusion of an outlier decreases the 

variance, then it should not be excluded. This is a process which is supported in 

the field of multivariate analysis (Esbensen et al., 2002).  

However, as this is a time-consuming process and it is not possible to exclude 

all outliers (since there is a need to keep an appropriate sample size for the 

number of predictors), the intention is to mainly focus on the exclusion of the 

most extreme cases (those indicated in the box-plot by an asterisk and not 

those indicated with a circle)29. This is also supported by Meyers et al. (2006) 

who suggest that if multivariate outliers are not very extreme, then it is better 

not to exclude them. This is an example of how the process will work. Suppose 

the “Cook’s Distance” boxplot indicates more than one extreme outlier 

(indicated with an asterisk). If there are 3 extreme outliers, cases 11, 22, and 33, 

then the exclusion starts from the most extreme case (e.g. case 22). Then the 

variance explained of the model (e.g. called “Model 2a”) is examined. If the 

exclusion of case 22 increases the variance explained by “Model 2a”, then 

“Model 2a” is re-run with the exclusion of both cases 22 and the next most 

extreme case (e.g. case 11). In the new (e.g. called “Model 2b”), if it is found 

that the exclusion of case 11 decreases the variance explained compared to 

the variance of Model 2a, then case 22 is not excluded from sample. Next, a 

new model is re-run (e.g. called “Model 2c”) in which cases 22 and 33 are 

excluded. If the exclusion of these two cases increase the variance explained 

by “Model 2c” compared to the one of “Model 2a”, then the exclusion of cases 

22 and 33 in “Model 2c” is accepted.  

3) Exclusion of predictors (according to R2, Adjusted R2, beta value and Sig. 
value) 

The third stage starts with the rerun of the best version of the model, as 

determined by the second stage. The model is rerun in a consecutive way by 

removing the predictors one at a time. In this process the issues that need to be 

                                                

29 However, there can be exceptions if there are very few extreme outliers and it is found that 
less extreme outliers (the ones indicated by circles) can increase the variance of a model. 
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considered are: what the order of the elimination is and according to which 

criteria.  

More specifically, the decision on which predictors to eliminate and in what 

order should be based on which predictors are statistically redundant (Field, 

2009). The elimination of the predictors is therefore based on: which one is the 

most insignificant according to the Sig. value and the most unimportant 

according to the beta value. More specifically: 

 It is sensible to start with the exclusion of predictors from amongst the most 

insignificant predictors; they can influence the overall significance of the model 

as well. The question is whether there will be a complete elimination of all 

predictors which are insignificant, as this is an accepted practice. The intention 

of the author is to create models which are meaningful and which offer a 

satisfactory insight with regards to students’ interactions and their studying 

approaches. It is possible that a version of a model which is the “leanest and 

meanest”, where all insignificant factors are eliminated, may not give a 

meaningful and insightful view of how students interact in AM in relation to the 

studying approaches. For example, cases where the remaining predictors or 

predictor cannot really highlight differences between a high deep and a high 

surface approach towards studying. So, the intention in the current investigation 

is to check, every time the most insignificant predictor is excluded, whether R2 

and Adjusted R2 both start decreasing (or only Adjusted R2 starts decreasing 

creating in this way an even bigger difference in relation to R2) while making 

sure at the same time that the overall significance of model remains always 

below 0.05. A case for keeping an insignificant predictor in a model (and not 

obtaining the “leanest and meanest” version of the model), therefore, would be 

if: the overall significance of model remains below 0.05 and that its exclusion 

reduces the overall variance explained by the model. Keeping such a predictor 

in a way makes sense, given that it is included in the model at first place 

because it helps towards a meaningful and insightful model based on the theory 

and therefore serves towards the aim and the research questions of the current 

investigation.  

 With regards to the exclusion according to beta value (which shows the 

contribution of a predictor in a standardised and more comparable way), the 

intention is to check it together with Sig. before making a decision about which 

predictor to eliminate. Usually, those two values go hand in hand in that the 

predictor with the weakest beta is usually also the most insignificant one (Field, 
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2009). When this is not the case, then the decision for elimination should based 

on the Sig. value of the predictor and the rest of the factors as discussed 

previously. 

4) Decision making on suggested (recommended) model 

A decision has to be made as to which version will be the recommended one. 

As discussed in the third stage, the intention is not to recommend necessarily 

the “leanest and meanest” version. The recommended version of the model will 

be one which has overall statistical significance (p<0.05), and it is the best in 

terms of variance explained based on the statistical measures of R2 and 

adjusted R2. This means that the recommended version will have both the 

highest possible R2 and Adjusted R2. Or in absence of such a model version, 

the recommendation will be for the version of the model with the same or 

decreased R2 but an increased Adjusted R2 compared to the previous version. 

This means that the recommended model may have predictors which 

individually are not statistically significant. The reason for this decision is that 

the “leanest and meanest” version might not give us as enriching and insightful 

information when interpreting students’ interactions in the learning environment 

for an approach to studying, as the recommended version does. This decision 

of course can put limitations in terms of generalisation when evaluating and 

interpreting the model at predictor-level, so the intention is to showcase also the 

“leanest and meanest” version of the model for each scale and subscale and 

make comparisons which ultimately may contribute to useful conclusions in the 

discussion of the empirical findings.  

At this stage, it is essential to ensure that the models and especially the 

recommended version of the model fits well the observed data. In other words, 

it is possible to generalise to other samples at model-level. As Field (2009) 

states: “generalisation is a critical additional step, if we find that our model is not 

generalizable, then we must restrict any conclusions based on the model to the 

sample used.” The generalisation at model-level can be checked according to 

whether the following assumptions hold for the model (which are commonly 

recommended by statisticians):  

 Assumption regarding normal distribution of residuals, using normal distribution 

diagram (Steele, 2003). 

 Assumption of whether the variance of residuals is constant (i.e. there is 

homoscedasticity of standardised residuals against predicted ones) (Steele, 

2003). 
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 Assumption regarding normality, with a plot which shows whether points lie on a 

straight line (Steele, 2003). 

5) Examination of the influence of prior knowledge 

One of the research questions, indicated in 3.1, examines whether and to what 

extend different levels of the prior knowledge in mathematics influences the 

interactions of students with deep and surface approaches towards studying 

when learning mathematics using the interactive learning environment AM in 

tutorial sessions in the classroom. To examine the influence of prior knowledge, 

the intention is to include it as a selector variable in the recommended model, 

which means splitting the sample into two groups (levels): low prior knowledge 

and high prior knowledge. SPSS provides the option to split the sample into two 

groups, as part of the multiple regression process. In this way, it will be possible 

to examine whether students’ interactions are explained better with regards to a 

specific studying approach in the low or high prior knowledge group. As prior 

knowledge is a secondary background variable, and the examination of its 

influence is of complementary and secondary value for this investigation (as 

indicated in research aims and questions), the intention is to keep the 

examination of the low and high prior knowledge models for each ASSIST scale 

at model-level and simply make comparisons with regards to R2.  

 

 

According to the aforementioned methodology, in the following chapter, 

Chapter 4, there will be individual discussion with regards to the development, 

analysis and interpretation of the multiple regression models for each ASSIST 

scale. 
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Chapter 4 - Regression Analysis & Model Interpretation 

In this chapter the theoretical assumptions (i.e. hypotheses) in relation to 

subscales of ASSIST and the “interaction” metrics are discussed in detail. Then 

the intention is to examine if there is a relationship between ASSIST scales and 

the way students interact with a mathematical interactive learning environment 

while practising in their tutorial sessions. The “interaction” metrics are an 

attempt to measure the way students interact in AM when practising 

mathematics in their tutorial sessions during weeks 3 and 4 (so the metrics 

express the combined interactions which took place during these two weeks). 

By examining the correlations between these measures30, the intention is to 

answer the first research question, but also have an indication of what metrics 

to include in the first version of the model for each scale. Furthermore, this 

chapter will demonstrate the development of the model for each scale 

according to the strategy indicated in 3.11. A discussion will follow with regards 

to the empirical findings for each model. 

4.1 The “surface” scale and students’ “interaction” metrics 

4.1.1 Surface Scale – theoretical assumptions 

The “surface” scale measures the extent to which there is: an intention to 

memorise and treat the content as unrelated bits of knowledge; motivation to 

avoid failure; an overall negative attitude to studying and an intention to cope 

minimally with the course requirement; and an intention to follow strictly the 

instructions and the structure of the learning content, and focus on the minimal 

requirements of the course (Entwistle, 1997a; Entwistle and Ramsden, 1983). It 

is based on the research conducted by Marton and Säljö (1976b) who find that 

some students have an intention to complete the task with very little 

engagement and with unreflective memorisation.  

During the learning process:  

 In performance-related metrics, Entwistle and Ramsden (1983) find negative 

correlations between the surface scale and performance. So, in general 

educational context, high values on surface scale may result in low values in 

performance. Their overall negative attitude towards studying, and their 

intention to cope minimally and with unreflective memorisation, may also 

                                                

30 Part of these results were published in a conference paper by Margeti and Mavrikis (2015). 
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influence their performance when practising their exercises in tutorial sessions 

in a similar way. It is likely that the higher the score on the surface scale, the 

lower the number of exercises students are likely to solve on the first attempt, 

and the higher the number of exercises they solve on third attempt or fail to 

solve at all. Therefore, it is expected that there will be negative association 

between:  

o Surface scale and number of exercises solved on the first try 

While, there will be positive associations between: 

o Surface scale and number of exercises solved on the second try 

o Surface scale and number of exercises solved on the third try 

o Surface scale and number of exercises finished but not solved.  

 In terms of search-related metrics, because of their lack of engagement and 

intention to cope minimally (Entwistle and Ramsden, 1983; Entwistle, 1997a), it 

is also expected that students with a high score on surface scale are not likely 

to try to elicit more information with regards to mathematical concepts and 

procedures. This means that students with high values on surface scale may 

result in low values in metrics related to researching a concept further –an 

aspect which is represented by number of hyperlinks visited in reading and 

exercise pages and the metrics related to the search option, as indicated in 

section 3.4.2. So, it is expected that there will be negative associations between 

surface scale and: 

o number of times search option is clicked 

o number of submitted queries in search option 

o number of search results visited in search option 

o number of hyperlinks (concept links) visited in reading and exercise 

pages 

 In terms of path metrics, for the same reasons mentioned earlier in this section, 

as students with high surface scores have a tendency to repetitive overlearning 

of material, they are likely to interact more closely around a certain set of 

pages. It is expected that there will be positive associations between: 

o Surface scale and compactness 

 In terms of temporal metrics, students with higher values on surface scale may 

experience more difficulties when solving exercises, hence spending an 
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increasing amount of time in an effort to solve them, compared those with lower 

scores. So, it is expected that students with high scores on surface scale may 

result in high values on average view time on exercise and reading pages. 

Another reason for this positive association can be that surface consists of the 

“fear of failure” subscale. So, students with a high score on the surface scale 

may work slower, putting more effort into tasks and persisting longer when 

solving exercises due to their anxiety (Entwistle, 1981). Furthermore, as also 

indicated in 3.4.4, the metric of maximum view time on exercise and reading 

pages can indicate some sort of “extreme temporal interaction” due to the 

aforementioned difficulties. To conclude, positive associations are expected 

between surface scale: 

o average view time on exercise pages 

o average view time on a reading pages 

o maximum view time on a reading page 

o maximum view time on an exercise page 

4.1.2 Surface Scale – Results on Correlations 

Following the proposed methodology in 3.11, we run correlational analysis to 

identify predictors for the model. There are statistically significant correlations, 

as expected between: 

o Number of exercises solved on first try with rs=-0.368  

o Number of exercises solved on third try with rs=0.314  

o Number of exercises finished but not solved with rs=0.270 

o Compactness with rs=0.216  

o Average view time on exercise pages with rs=0.183 

There is also, an unexpected positive (and not negative as initially assumed), 

statistically significant relationship between the surface scale and number of 

hyperlinks (concept links) visited on reading and exercises pages, with rs=0.197. 

Regarding other metrics, mentioned in section 4.1.1, there are no statistically 

significant relationships. However, the importance of these metrics for the 

surface scale is discussed further in the following section with regards to the 

regression models. 
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4.1.3 Surface models: Development, Analysis and Discussion  

In this section, there is a brief discussion on the development of regression 

models for the surface scale and analysis and discussion on the results for the 

selected model version. 

4.1.3.1 Surface Scale - Initial selection of predictors 

Table 4.1.3.1 shows briefly that the reason behind the initial selection of 6 

predictors is their correlations to the scale. As indicated in the methodology, the 

sample size allows for the inclusion of up to 8 predictors and the intention is to 

take full advantage of this upper limit. So, the potential of including two more 

predictors is examined amongst the rest of the predictors mentioned in 4.1.131. 

The decision is to include two temporal predictors, because of theoretical 

connections to the scale, and the potential of enriching the discussion (see 

further information in Table 1 and Table 2 of Appendix 4.1.1). 

Selected Predictors Reason for selection 

Number of exercises solved on 
first try  

Statistical (see 4.1.2) 

Number of exercises solved on 
third try  

Number of exercises finished but 
not solved  

Compactness 

Average view time on exercise 
pages  

Number of hyperlinks (concept 
links) visited in reading and 
exercise pages 

Maximum view time on exercise 
page 

Theoretical connections and enriching the 
discussion further 

Maximum view time on content 
page 

Table 4.1.3.1. Selected predictors for first version of model. 

As a result, at this stage, “Model 1b” is the first version for the “surface” scale 

with all the selected eight aforementioned predictors, which is the maximum 

number predictors according to this thesis’s strategy, indicated in the 

methodology. 

4.1.3.2 Surface Scale – Development of model 

For “Model 1b” the variance explained R2 is 37.3% and the Adjusted R2 is 

currently 32.5%. The process of improving both these measures of variance 

and the overall significance starts by excluding specific outliers. This results in 

                                                

31 Certain of these predictors have not been considered because their variation is close to 0 (i.e. 
the metrics related to the use of the search option). 
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“Model 2g” (see Table 4.1.3.2 below) with R2 and Adjusted R2 at 45.6% and 

41.3% respectively. 

4.1.3.3 Surface Scale – Selection of Model 

After excluding the outliers, there is gradual exclusion of predictors, as shown 

on Table 4.1.3.2 below. From Model 2g to Model 3, Adjusted R2 increases while 

R2 gradually slightly decreases, making their difference smaller. 

After Model 3 the regression is re-run three more times. In model 3 the best 

candidate for exclusion is  compactness with the lowest beta (0.078) and high 

insignificance (p>0.05). In the leaner versions, Model 5 and Model 6, there is 

gradual exclusion of predictors: number of hyperlinks (concept links) visited on 

reading and exercises pages, and number of exercises finished but not solved. 

Model 6 is the leanest and meanest model where all 4 predictors are 

statistically significant (see Table 9 in Appendix 4.1.3). 

 

 R2 Adj. R2 Sig. 

Model 1b (all 
initially selected 
predictors) 

37.3% 32.5% 0.000 
 

Model 2a 
(exclusion of case 
132) 

41% 36.5% 0.000 

Model 2b 
(exclusion of case 
132 and 46) 

42.3% 37.9% 0.000 

Model 2c 
(exclusion of case 
132, and 46 and 
76) 
[Rejected] 

41.6% 37% 0.000 

Model 2d 
(exclusion of 
cases 132, 46 and 
58) 

42.7% 38.3% 
 
 

0.000 

Model 2e 
(exclusion of 
cases 132, 46, 58, 
and 25) 

44.4% 40% 
  
 

0.000 

Model 2f 
(exclusion of 
cases 132, 46, 58, 
25, and 35) 
[Rejected] 

43.1% 38.6% 
 

0.000 

Model 2g 
(exclusion of 
cases 132, 46, 58, 
and 25 and 38) 
 
 
 

45.6% 41.3% 
 
 

0.000 
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Model 3 
(exclusion of 
cases 132, 46, 58, 
25, and 38) 
 (exclusion of 
predictors: 
average view time 
on exercise pages) 
 

45.5% 41.8% 0.000 

Model 4 
(exclusion of 
cases 132, 46, 58, 
25, and 38) 
 (exclusion of 
predictors: 
average view time 
on exercise pages, 
and compactness) 

45% 41.8% 0.000 

Model 5 
(exclusion of 
cases 132, 46, 58, 
25, and 38) 
 (exclusion of 
predictors: 
average view time 
on exercise pages, 
compactness, 
number of 
hyperlinks 
(concepts links) 
visited in reading 
and exercise 
pages) 

43.7% 41% 0.000 

Model 6-Leanest 
and Meanest 
(exclusion of 
cases 132, 46, 58, 
25, and 38) 
 (exclusion of 
predictors: 
average view time 
on exercise pages, 
and compactness, 
number of 
hyperlinks 
(concepts links) 
clicked on exercise 
and reading 
pages, and 
number of 
exercises finished 
but not solved) 

42.3% 40.1% 0.000 

Table 4.1.3.2. Summary of measures of variance and significance for accepted and rejected 
models 

In Table 4.1.3.2, it is observed that the overall significance holds for all versions 

of the model (p<0.05). When comparing Model 3 to Model 4, Adjusted R2 

remains the same at 41.8%, whereas R2 decreases slightly from 45.5% to 45%. 

In models 5 and 6, both R2 and Adjusted R2 decrease gradually to 42.3% and 
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40.1%, respectively. Therefore, according to our strategy, Model 3 is suggested 

as the best solution, as it combines simultaneously the highest possible R2 and 

Adjusted R2. Finally, Model 3 has 7 predictors, instead of the initial 8 predictors 

of Model 1, with a sample size of 110 (after the exclusion of 5 outliers), which is 

well within the thresholds stated in the strategy, in section 3.11. 

4.1.3.4 Surface Scale – Model 3 – Generalisation  

The assumptions regarding: normal distribution of residuals, homoscedasticity 

of standardised residuals against predicted ones, and the normality of residuals 

hold well. 

Figure 4.1.3.1. Histogram of standardised residuals for the final model 

 

Regarding the assumption about the normal distribution of residuals, as shown 

in Figure 4.1.3.1, residuals fit quite closely to a normal distribution.  
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Figure 4.1.3.2. Plot of standardised residuals 

 

Figure 4.1.3.2 shows that the normality assumption holds since the points lie on 

the straight line.  

 

Figure 4.1.3.3 Plot of the standardised residuals against the predicted ones for the model 

 

The assumption about the residuals is whether the variance of the residuals is 

constant, in other words there is homoscedasticity. Figure 4.1.3.3 shows that 

the scatter plot is reasonably random and the residuals are homoscedastic) and 

that most residuals are homoscedastic. 
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To conclude, the assumptions are not violated and therefore we can generalise 

the findings beyond the sample. 

4.1.3.5 Surface Scale – Equation 

By selecting Model 3, we can conclude that for both weeks, the surface is 

expressed through the predictors: number of exercises solved on first try, 

number of exercises solved on third try, number of exercises finished but not 

solved, maximum view time on exercise page, maximum view time on reading 

page, number of hyperlinks (concepts links) visited in reading and exercise 

pages and compactness. So, the equation, which is formed is as follows: 

SurfaceScalei = b0 - b1(Number of exercises solved on first try)i + b2(Number of 

exercises solved on third try)i + b3(Number of exercises finished but not solved)i 

+ b4(Maximum view time on an exercise page)i  - b5(Maximum view time on a 

reading page)i + b6(Number of hyperlinks (concepts links) visited in reading and 

exercises pages)i + b7(Compactness)i (1) 

If the b values found in Table 6 in Appendix 4.1.2 are replaced in the above 

equation, then the equation of the fitted regression model is obtained: 

SurfaceScalei = 46.502 – 0.161(Number of exercises solved on first try)i + 

0.805(Number of exercises solved on third try)i + 0.340(Number of exercises 

finished but not solved)i + 0.002(Maximum view time on an exercise page)i -

0.004(Maximum view time on a reading page)i + 0.450(Number of hyperlinks 

(concepts links) visited in reading and exercises pages)i +7.580Compactness (2) 

 

4.1.3.6 Surface Scale – Interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the surface scale score increases, there is increment on the following 

predictors: 

o number of exercises solved on third try 

o number of exercises finished but not solved 

o maximum view time on an exercise page  

o compactness 
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o number of hyperlinks (concepts links) visited in reading and exercises 

pages 

As the surface scale score increases, there is a decrease on the following 

predictor: 

o number of exercises solved on first try 

o maximum view time on a reading page  

It is worth mentioning that the direction of relationships is as expected in the 

initial theoretical assumptions in 4.1.1. The exceptions are the relationships with 

regards to the predictor maximum view time on a reading page, and number of 

hyperlinks (concepts links) visited in reading and exercises pages (for which an 

opposite direction was initially assumed). This will be discussed further later on.  

 

The issue at this point is whether it is possible to explain the “surface” approach 

towards studying based on the combined knowledge of “interaction” metrics, 

and whether there are distinguishable “interaction” metrics in students’ 

interactions for this specific approach. 

b) Further discussion of model and predictors 

First of all, the recommended model (model 3) explains approximately 45.5%. 

This amount of variance is large (see regarding recommended thresholds in 

Appendix 3.11.1). Furthermore, the leanest and meanest model (model 6) 

explains also a large amount of variance at 40.1%. Given that a medium 

amount of variance was expected, this is an indication that the model is 

generally giving us a good picture of students’ interaction in the AM with 

regards to the surface approach towards studying. 

In addition, despite the fact that the model is overall significant (see Table 

4.1.3.2 above) and holds well with regards to the assumptions, it is observed 

that not all predictors are significant (see Table 6 in Appendix 4.1.2). The 

reason for which these predictors were kept is mainly because their inclusion 

would allow for a richer insight into students’ interaction with regards to the 

specific scale. So, the question is: does this “allowance” enrich the 

interpretation of the findings? 

Model 3 with its 7 predictors can enrich the interpretation of findings, as it can 

draw a pretty good picture of (and help to identify) students with high scores on 

the scale. More specifically, if tutors detect that students –repeatedly- do not 
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manage to solve the exercises on first try and need to try several times (which 

can be considered a sign of “gaming the system”), then there is cause for 

intervention. This is especially necessary if the same type of exercises (i.e. 

which have the same level of difficulty, or require the same type of logic or 

formula for their solution) continue to be solved on subsequent attempts or not 

at all.  Furthermore, the maximum view time on an exercise page increases as 

the surface score increases. Given the aforementioned performance when 

solving exercises, this can be interpreted to put it simply as “getting stuck” on a 

specific exercise or types of exercises, which again can trigger a tutor 

intervention. Finally, students with high scores on the scale tend to follow a 

rather compact limited path when going through the learning material AM. 

On the other hand, there are some unexpected relationships. With regards to 

maximum amount of time on a content (reading) page, the direction of its 

relationship to surface scale is negative which is not quite as expected. It 

seems that, in the context of the current study, students with a high score on 

surface scale are less likely to spend an increasing amount of time on a specific 

theoretical page, compared to those with low scores. This is also reinforced by 

the observations made in class, as a number of students would not go through 

the theory, even when they were “getting stuck” on specific exercises, unless 

the tutor advised them to do so. Furthermore, a positive relationship between a 

surface scale and number of hyperlinks (concepts links) visited in reading and 

exercise pages was also not expected. It can be the case that presenting 

mathematical concepts through hypertext links in reading and exercise in AM 

can be used as a mean for unreflective memorization or repetitive overlearning, 

at least in the context of the specific study. 

In comparison to Model 3, Model 6 does not have “contradicting” predictors 

such as the number of hyperlinks (concept links) visited in reading and exercise 

pages, which can contribute to a more straightforward interpretation, however, it 

is less enriching for the findings as it does not include the predictors 

compactness and number of exercises finished but not solved. So, overall, 

Model 3 gives a more insightful picture of students’ interactions in AM with 

regards to the surface approach towards studying. 
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4.2 Surface subscale “unrelated memorising” and students’ “interaction” 

metrics 

4.2.1 Unrelated memorising – Theoretical assumptions 

This study approach is characterised as rote memorisation and defined by 

Marton (cited in Entwistle and Ramsden, 1983, p.56) as the process where: 

“Information can be held in store for longer periods by internal repetition 

(rehearsal) and if repeated sufficiently often (overlearning) it will become a 

permanent memory trace in episodic long-term memory (LTM)”. Overlearning is 

related to reviewing chapters and textbooks (Rohrer et al., 2005), so it is 

reasonable to relate it to revisitation of pages in AM. Based on interviews by 

Entwistle and Ramsden (1983), science students with an intention for 

memorisation and unrelatedness are likely to try to remember formulae and 

procedures and use them to tackle problems – without reference to their mutual 

relationship. 

During the learning process:  

 Regarding path-length and visitation metrics, Mimirinis’ and Dafoulas’ study 

(2008) finds no significant correlations between the “unrelated memorising” 

subscale and path-length and number of visits in the system’s practical section. 

However, there could be other associations with other type of “visitation” 

metrics. It is possible that those with higher “unrelated memorising” scores limit 

themselves by visiting more of the same rather than a variety of distinct AM 

pages, because they approach the learning material in a more repetitive, 

memorising manner (Entwistle and Ramsden, 1983). So, high values on 

“unrelated memorising” may result in low values in metrics, which indicate some 

sort of “non-repetitiveness” during practical sessions, like number of exercises 

accessed and number of distinct pages visited. So, negative associations are 

expected between “unrelated memorising” subscale and: 

o number of exercises accessed 

o number of distinct pages visited 

 Regarding path metrics (see 3.4.5), students with high “unrelated memorising” 

scores have a tendency for repetitive overlearning of materials (Entwistle and 

Ramsden, 1983), so they are likely to interact more closely around a certain set 

of pages, compared to those with low scores. Hence, a positive association is 

expected between: 

o “Unrelated memorising” subscale and compactness 
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 Additionally, students with high “unrelated memorising” scores are more likely to 

follow the given content structure and navigate more passively and linearly, 

compared to the ones with low score (see 3.4.5). Accordingly, students with 

high “unrelated memorising” scores are likely to make more use of 

previous/next buttons, compared to those with low scores (see 3.4.6). Therefore 

positive associations are expected between the “unrelated memorising” 

subscale and: 

o stratum 

o number of pages visited using previous/next buttons 

 In terms of revisitation metric, students with high scores on “unrelated 

memorising” are more likely to revisit parts of the learning material compared to 

those with low scores (Entwistle and Ramsden, 1983; Rohrer et al., 2005). 

Thus, it can be assumed that revisitation in AM pages may contribute to 

rehearsal and overlearning of mathematical concepts, procedures and 

exercises for those students. Hence, a positive association is expected 

between: 

o “Unrelated memorising” subscale and relative amount of revisits 

 For performance-related metrics, in a more general context, there is empirical 

evidence that associates academic performance and the subscale of “unrelated 

memorising”: Tait and Entwistle (1996) find a negative statistically significant 

correlation between “unrelated memorising” subscale and performance (sample 

of 649 first-year undergraduate students). In the context of mathematics 

education, Schoenfeld (2006) and Gierl and Bisanz (2003) argue that solving a 

mathematical problem is a process where memorising procedures and formulas 

are unlikely to result in a successful outcome. In the current study, it is expected 

that students with higher “unrelated memorising” scores are unlikely to do well 

when solving exercises in mathematics, compared to those with lower scores. 

More specifically it is likely that the higher students score on the “unrelated 

memorising” subscale, the lower the number of exercises they are likely to 

solve on the first attempt, and the higher the number of exercises they are likely 

to solve in subsequent attempts or not at all.  

Therefore a negative association is expected between:  

o “Unrelated memorising” subscale and number of exercises solved on 

the first try 

  Positive associations are expected between: 
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o “Unrelated memorising” subscale and number of exercises solved on 

second try 

o “Unrelated memorising” subscale and number of exercises solved on 

third try 

o “Unrelated memorising” subscale and number of exercises finished but 

not solved 

 Regarding temporal metrics, students with higher values on “unrelated 

memorising” may experience more difficulties when solving exercises related to 

a combination of mathematical concepts, because they tend to treat different 

concepts as unrelated bits of knowledge (Entwistle, 2001, Entwistle, 1997a). 

Hence, those students may spend an increasing amount of time on exercises, 

possibly resulting in high values on average view time on exercise and reading 

pages. Furthermore, the metric maximum view time on exercise and reading 

pages can indicate an extreme interaction due to aforementioned difficulties. 

Thus, positive associations are expected between “unrelated memorising” 

subscale: 

o average view time on exercise pages  

o average view time on reading pages 

o maximum view time on a reading page 

o maximum view time on an exercise page 

4.2.2 Unrelated memorising – Results on Correlations 

Following the proposed methodology in 3.11, we run correlational analysis to 

identify predictors for the model. There are statistically significant correlations, 

as expected, between “unrelated memorising” subscale and: 

o Number of exercises solved on first try with r=-0.377 

o Number of exercises solved on third try with rs=0.211 

o Number of exercises finished but not solved with rs=0.198 

o Compactness with rs=0.230  

o Average view time on exercise pages with rs=0.224 

o Relative amount of revisits with rs=0.264  

o Number of exercises accessed with rs=-0.257  

o Number of distinct pages visited with rs=-0.218 
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For other metrics mentioned in section 4.2.1 there are no statistically significant 

relationships. However, there was no expectation of a statistically significant 

correlation between the “unrelated memorising” subscale and: 

o number of hyperlinks (concept links) visited on reading and exercises 

pages, where there is a statistically significant and positive relationship 

with rs=0.209.  

o average number of times a “notes” link is clicked per page metric, where 

there is a statistically significant and positive relationship with rs=0.207. 

4.2.3 Unrelated memorising models: Development, Analysis and Discussion  

In this section, there is a brief discussion on the development of regression 

models for the “unrelated memorising” subscale and analysis and discussion on 

the results for the selected model version. 

4.2.3.1 Unrelated memorising - Initial selection predictors 

Table 4.2.3.1 shows that the main reason for initial selection of predictors is 

their correlations to the subscale. Number of exercises accessed and number of 

distinct pages have not been selected due to multicollinearity issues, although 

there have statistically significant correlations to the subscale (see further 

information in Table 1 of Appendix 4.2.1). 

Selected Predictors Reason for selection 

Number of exercises solved on 
first try  

Statistical (see 4.2.2) 

Number of exercises solved on 
third try  

Number of exercises finished but 
not solved  

Compactness 

Relative amount of revisits  

Average view time on exercise 
pages  

Number of hyperlinks (concept 
links) visited in reading and 
exercise pages 

Average number of times a 
“notes” link is clicked per page  

Table 4.2.3.1 Selected predictors for first version of model. 

As a result, “Model 1” is the first version for the “unrelated memorising” 

subscale with all aforementioned eight predictors, which is the maximum 

number of predictors according to strategy (see 3.11). 

4.2.3.2 Unrelated memorising – Development of model 

As previously, the process of improving measures of variance and the overall 
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significance starts by excluding specific outliers. This results in increasing the 

variance: from Model 1 with R2 32.9% and Adjusted R2 27.8% to Model 2c with 

R2 40.4% and Adjusted R2 35.8% (see Table 4 in Appendix 4.2.2). 

4.2.3.3 Unrelated memorising – Selection of Model 

After excluding the outliers, there is gradual exclusion of predictors, as shown in Table 

4.2.3.2 below.  

 R2 Adj. R2 Sig. Comments 

Model 3 
(exclusion of 
cases 69, 132, 46, 
and 127, and 
relative amount of 
revisits) 

40.4% 36.3% 
  
 

0.000 Note how 
Adjusted R2 
increases 
while R2 
gradually 
slightly 
decreases, 
making their 
difference 
smaller. 
 
 

Model  4 
(exclusion of 
cases 69, 132, 46, 
and 127, and 
relative amount of 
revisits, and 
number of 
hyperlinks 
(concepts links) 
visited on exercise 
and reading 
pages) 

40.3% 36.9% 
 

0.000 

Model 5 
(exclusion of 
cases 69, 132, 46, 
and 127, and 
relative amount of 
revisits, number of 
hyperlinks 
(concepts links) 
visited on exercise 
and reading 
pages, and 
average view time 
on exercise pages) 

40.2% 37.4% 
 

0.000 

Model 6 
(exclusion of 
cases 69, 132, 46, 
and 127, and 
relative amount of 
revisits, number of 
hyperlinks 
(concepts links) 
visited on exercise 
and reading 
pages, average 
view time on 
exercise pages, 
and number of 
exercises solved 
on third try) 
 

40% 37.7% 
 

0.000 
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Model 7 - Leanest 
and Meanest 
(exclusion of 
cases 69, 132, 46, 
and 127, and 
relative amount of 
revisits, number of 
hyperlinks 
(concepts links) 
visited on exercise 
and reading 
pages, average 
view time on 
exercise pages, 
number of 
exercises solved 
on third try, and 
average number of 
times a “notes” link 
is clicked per 
page) 

39.4% 37.7% 
 

0.000 Leanest and 
meanest 
model where 
all three 
remaining 
predictors 
are 
statistically 
significant 
(see 
Appendix 
4.2.4). 
 
 
 
 
 
 
 
 
Note also 
that all 
models are 
overall 
statistically 
significant 
(p<0.05). 

Table 4.2.3.2. Summary of measures of variance and significance 

In Table 4.2.3.2, Model 6 has simultaneously the highest R2 and adjusted R2, 

and with 4 predictors can offer a more enriching interpretation of the findings 

(compared to Model 7); hence it is suggested as best solution amongst all 

versions. Finally, Model 6 has 4 predictors, instead of the initial 8 predictors of 

Model 1, for a sample size of 111 (after the exclusion of 4 outliers) which is 

within the thresholds stated in the strategy, in section 3.11. 

4.2.3.4 Unrelated memorising – Model 6 – Generalisation 

For the selected Model 6 of the subscale, the assumptions are not violated and 

therefore it is possible to generalise the finding beyond the sample (see the 

assumptions in Appendix 4.2.3). 

4.2.3.5 Unrelated memorising – Equation 

Model 6 indicates that the “unrelated memorising” subscale is expressed 

through the predictors: number of exercises solved on first try, number of 

exercises finished but not solved, average number of times a notes link is 

clicked, and compactness. Thus, the following equation is formed: 

UnrelatedMemorisingSubscalei = b0 - b1(Number of exercises solved on first try)i 

+ b2(Number of exercises finished but not solved)i + b3(Compactness)i + 

b4(Average number of times a “notes” link is clicked per page)i (1) 
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If we replace the b values found in Table 7 in Appendix 4.2.2 in the above 

equation, then we obtain the equation of the fitted regression model: 

UnrelatedMemorisingSubscalei = 10.967 – 0.064(Number of exercises solved on 

first try)i + 0.187(Number of exercises finished but not solved)i + 

5.401(Compactness)i + 1.757(Average number of times a “notes” link is clicked 

per page)i (2) 

4.2.3.6 Unrelated memorising – Interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the unrelated memorising subscale score increases, there is increment in 

the following predictors: 

o number of exercises finished but not solved 

o compactness 

o average number of time a “notes” link is clicked per page 

As the surface scale score increases, there is a decrease in the following 

predictors: 

o number of exercises solved on first try 

It is worth mentioning that the direction of the relationships is as expected in the 

theoretical assumptions in section 4.2.1. The exception is the relationship with 

regards to average number of times a “notes” link is clicked per page for which 

there was no theoretical assumption. This will be discussed later on. 

The issue here is whether it is possible to explain the “unrelated memorising” 

approach towards studying based on the combined knowledge of “interaction” 

metrics, and whether there are distinguishable “interaction” metrics in students’ 

interactions for this specific approach. 

b) Further discussion of model and predictors 

First, the recommended model (model 6) explains a large 40% of variance (see 

regarding recommended thresholds in Appendix 3.11.1). As a medium amount 

of variance was expected, this indicates that the model generally gives a good 

picture of students’ interaction in AM with regards to the “unrelated memorising” 

approach. 

Additionally, despite the model being overall significant (see Table 4.2.3.2 

above) and holding up well in regards to the assumptions, we observe that one 
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predictor is not significant (see Table 7 in Appendix 4.2.2). This predictor 

average number of times a “notes” link clicked per page is kept chiefly because 

its inclusion might yield a richer insight into students’ interaction.  

So the question is: Does the inclusion of average number of times a “notes” link 

clicked per page offer any insight or use for interpretation? In Model 1 it was 

included purely based on the correlations indicated in 4.2.2, so it is interesting 

to examine why there might be such statistical indications, based on the 

observations made in class. More specifically, it was observed that some 

students would access and use the “notes” feature of AM simply to copy and 

paste learning material from AM reading pages or simply record answers to 

exercises. This type of interaction accords with trying to remember formulae 

and procedures rather than understand – a characteristic of “unrelated 

memorising”. Note-making has been considered in the literature as a sign of 

deep learning because it shows students’ effort to impose their own structure on 

learning material, however in the current study the “notes” feature in AM was 

used differently by some students. The current data does not allow for a link 

between the “unrelated memorising” score and the type of notes students make 

in AM, however in a similar study this aspect is worth further exploration.  

The rest of the predictors in the model can give a useful and insightful 

interpretation of the findings. For example, tutors may have cause for 

intervention if they detect that students repeatedly fail to solve exercises on first 

try or cannot solve them at all and instead allow AM to provide the answer (a 

behaviour which can be considered as “gaming the system”). Another indication 

for intervention can be if students tend to follow a highly “compact” path and 

interact more closely around a limited set of pages than do students with low 

scores on this subscale. 

In comparison to Model 6, the leanest and meanest Model 7 (with the 

elimination of the predictor average number of times a “notes” link is clicked per 

page) gives a slightly less enriching picture with regards to the “unrelated 

memorising” subscale, but it certainly gives a clear indication of a surface 

approach.  

Overall, it is the author’s opinion that the suggested predictors of Model 6 offer 

a useful insight into students’ interactions with regards to the unrelated 

memorising approach; however, the inclusion of average number of times a 

“notes” link is clicked per page requires further investigation in future. More 

specifically, to reinforce the above interpretations, it would be worth examining 
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further in future studies if students with high scores on unrelated memorising 

subscale tend to use “note-taking” features more to serve “unrelated 

memorising” tactics. Finally, to enrich further the above interpretations, it would 

be also worth examining whether those with high scores on the subscale tend 

to target more identical exercises when following a compact path, compared to 

those with low scores. 

4.3 The surface subscale “fear of failure” and students’ “interaction” metrics 

4.3.1 Fear of failure - theoretical assumptions 

The “fear of failure” subscale measures the extent to which students are 

motivated to avoid failure (Entwistle, 1997b; Tait et al., 1998; Entwistle, 1981). 

Students with “fear of failure” have an over-anxious concern about possible 

failure and this affects the way they tackle their study (Entwistle, 1981).  

During the learning process:  

 In terms of temporal metrics, as discussed in 3.4.4, it is possible that students 

with higher score in the “fear of failure” subscale are likely to spend more time 

on average on an exercise or reading page, than the students with lower 

scores. Thus, we expect positive associations between “fear of failure” subscale 

and:  

o average view time on exercise pages  

o average view time on reading pages 

o maximum view time on a reading page 

o maximum view time on an exercise page 

 In terms of performance-related metrics, based on the empirical findings by 

Entwistle and Ramsden (1983), it is found in a sample of 865 science first-year 

undergraduate students that there is a statistically significant, negative 

correlation between the factor of “fear of failure” and performance. In a more 

recent study, Tait and Entwistle (1996) find, in a sample of 649 first-year 

undergraduate students, that there is a statistically significant, negative 

correlation between “fear of failure” subscale and performance. In the context of 

the current study, the above findings lead to the general assumption that 

students with high “fear of failure” scores are not likely to perform well when 

practising with the AM exercises. Furthermore, as indicated in 2.1.7 and 3.4.7, 

students’ interaction with the exercises can indicate whether students are 

simply abusing the affordances of the environment to achieve good results but 
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with questionable learning gains. This “gaming” behaviour, where students try 

different solutions without a systematic approach and take advantage of the 

system’s answers, has been linked empirically to anxiety about failing. It is 

expected that there will be negative associations between:  

o “Fear of failure” subscale and number of exercises solved on the first try 

While it is expected that there will be positive associations between: 

o “Fear of failure” subscale and number of exercises solved on the second 

try 

o “Fear of failure” subscale and number of exercises solved on the third 

try 

o “Fear of failure” subscale and number of exercises finished but not 

solved 

4.3.2 Fear of failure - Results on Correlations 

Following the proposed methodology in 3.11 we run correlational analysis to 

identify predictors for the model. There are statistically significant correlations, 

as expected, between “fear of failure” and: 

o Number of exercises solved on first try with rs=-0.263 

o Number of exercises solved on third try with rs=0.262 

o Average view time on exercise pages with rs=0.218 

o Maximum view time on an exercise page with rs= 0.258 

For other metrics mentioned in section 4.3.1 there are no statistically significant 

relationships. However, the importance of these metrics for the “fear of failure” 

scale is discussed further in the following section with regards to the regression 

models. 

4.3.3 Fear of failure models: Development, Analysis and Discussion  

In this section, there is a brief discussion on the development of regression 

models for the “fear of failure” subscale and analysis and discussion on the 

results for the selected model version. 
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4.3.3.1 Fear of failure - Initial selection predictors 

Table 4.3.3.1 shows that the main reason for initial selection of predictors is 

their correlations to the subscale.  

Selected Predictors Reason for selection 

Number of exercises solved on first try  Statistical (see 4.3.2) 

Number of exercises solved on third 
try  

Average view time on exercise pages  

Maximum view time on an exercise 
page 

Number of exercises finished but not 
solved. 

Theoretical connections and enriching 
further the discussion. 

Maximum view time on a reading page 

Table 4.3.3.1. Selected predictors for first version of model. 

At this stage, these are the 4 predictors which are to be included in the first 

version of the model. As indicated in the methodology, the sample size allows 

for the inclusion of up to 8 predictors and the intention is to take full advantage 

of this upper limit. So, the potential inclusion of the rest of the metrics 

mentioned in 4.3.1 is examined. 

With regards to the metric of number of exercises finished but not solved, 

besides the theoretical connection discussed in 4.3.1, its inclusion allows for 

useful comparisons to the rest of the “performance-related” metrics which are 

already included.  

With regards to average view time on reading pages and maximum view time 

on a reading page, it is also enriching for the discussion of the “fear of failure” 

subscale to explore whether students with high score on the “fear of failure” 

subscale tend to persist and spend time, not only on the practical part of the AM 

learning material, but also on the reading pages of AM, which include the 

theoretical aspects of the learning material. Because there is a multicollinearity 

issue, it is not possible to include both. As there is no clear theoretical indication 

as to which of two metrics can be more enriching for the model, the intention is 

to choose the one which best contributes in the model. When comparing the 

variance between pre-models 1a and 1b (see table 1 in Appendix 4.3.1), it is 

observed that maximum view time on a reading page contributes more to the 

variance in Model 1b (compared to average view time on reading pages in 

Model 1a).  

So, the first version of the model, “model 1” for the “fear of failure” subscale will 

include the 6 predictors indicated in table 4.3.3.1. This is according to the 

strategy indicated in the methodology (see section 3.11). 
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4.3.3.2 Fear of failure - development of model 

As previously, the process of improving measures of variance and the overall 

significance starts by excluding specific outliers. This results in increasing the 

variance: from Model 1 with R2 30.5% and Adjusted R2 26.6% to Model 2f with 

R2 42.1% and Adjusted R2 38.8% (see Table 4 in Appendix 4.3.2). 

4.3.3.3 Fear of failure – Selection of Model 

After excluding the outliers, there is gradual exclusion of predictors, as shown in 

Table 4.3.3.2 below.  

 R2 Adj. R2 Sig. Comments 

Model 3 
(exclusion of 
cases 132, 38, 78, 
and 52 and 
predictor of 
number of 
exercises finished 
but not solved) 

42.1% 39.4% 
  
 

0.000  

Model 4 - Leanest 
and Meanest 
(exclusion of 
cases 132, 38, 78, 
and 52 and 
predictors number 
of exercises 
finished but not 
solved, and 
average view time 
on exercise pages) 

41.6% 39.4% 0.000 Selected 
model which 
is also the 
leanest and 
meanest as 
all predictors 
are 
statistically 
significant 

Table 4.3.3.2. Summary of measures of variance and significance. 

In Table 4.3.3.2, it is observed that the overall significance holds for all versions 

of the model (p<0.05). 

In comparison to Model 3, in Model 4 there is a slight decrease for the R2 from 

42,1% to 41.6%, whereas the Adjusted R2 remains the same at 39.4% (see 

Table 4.3.3.2). At this stage, we would normally select the more enriching 

version (that is, Model 3). However, in terms of predictors, the difference 

between the two models is the average view time on exercise pages which is 

not likely to contribute to a more enriching interpretation, because of 

contradicting empirical findings. More specifically, the b and beta values in 

Model 3 indicate a borderline negative relationship, whereas the correlation to 

the subscale indicates a positive one (see section 4.3.2), and the b value in 

Model 1 (see Table 3 in Appendix 4.3.2) is 0.  Hence, it is suggested that the 

best solution is Model 4. 

Finally, Model 4 has 4 predictors, instead of the initial 6 predictors of Model 1, 
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with a sample size of 111 (after the exclusion of 4 outliers), which is within the 

thresholds stated in the strategy, in section 3.11. 

4.3.3.4 Fear of failure –Model 4 - Generalisation  

For the selected Model 4 of the subscale, the assumptions are not violated and 

therefore it is possible to generalise the finding beyond the sample (see the 

assumptions in Appendix 4.3.3). 

4.3.3.5 Fear of Failure– Equation 

By selecting Model 4, we can conclude that for both weeks, “fear of failure” is 

expressed through the predictors: number of exercises solved on first try, 

number of exercises solved on third try, maximum view time on an exercise 

page, and maximum view time on a reading page.  So, the equation which is 

formed is as follows: 

FearofFailureSubscalei = b0 - b1(Number of exercises solved on first try)i + 

b2(Number of exercises solved on third try)i + b3(Maximum view time on an 

exercise page)i  -b4(Maximum view time on a reading page)i  (1)  

If we replace the b values, found in Table 7 in Appendix 4.3.2, in the above 

equation, then we obtain the equation of the fitted regression model: 

FearofFailureSubscalei = 14.714 – 0.060(Number of exercises solved on first try)i 

+ 0.348(Number of exercises solved on third try)i + 0.001(Maximum view time on 

an exercise page)i  -0.001(Maximum view time on a reading page)i  (2) 

4.3.3.6 Fear of Failure - Interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the “fear of failure” subscale score increases, there is increment on the 

following predictors: 

o number of exercises solved on third try 

o maximum view time on an exercise page  

As the “fear of failure” subscale increases, there is a decrease on the following 

predictors: 

o number of exercises solved on first try 

o maximum view time on a reading page  
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It is worth mentioning that while the direction of relationships is as expected in 

the initial hypotheses, there is one exception. The relationship between 

maximum view time on a reading page and the “fear of failure” subscale is 

negative, and not positive as it was initially suggested. This will be discussed 

further later on. 

The issue at this point is whether it is possible to explain the “fear of failure” 

approach towards studying based on the combined knowledge of “interaction” 

metrics, and whether there are distinguishable “interaction” metrics in students’ 

interactions for this specific approach. 

b) Further discussion of model and predictors 

First of all, the recommended model, which is also the leanest and meanest 

version, (model 4) explains approximately 41.6%. This amount of variance is 

large (see regarding recommended thresholds in Appendix 3.11.1). Given that a 

medium amount of variance was expected, this is an indication that the model is 

generally giving us a good picture of students’ interaction in the AM with 

regards to the “fear of failure” approach towards studying. In addition, Model 4 

is overall significant (see Table 4.3.3.2 above) and holds well with regards to 

the assumptions and all 4 predictors are also statistically significant (see Table 

7 in Appendix 4.3.2).   

Model 4 with its 4 predictors can enrich the interpretation of findings, as it can 

draw a pretty good picture (and help to identify) students with high scores on 

the subscale. More specifically, students with a high score on the subscale are 

less likely to solve exercises on first attempt and more likely to solve them on 

third attempt. Furthermore, the maximum view time on an exercise page 

increases as the “fear of failure” score increases. Combined with the 

aforementioned performance when solving exercises, this can be interpreted, to 

put it simply, as “getting stuck” on a specific exercise or types of exercises, 

which can trigger a tutor intervention. 

In addition, with regards to the relationship between “fear of failure” and 

maximum amount of time on a reading page, its direction is negative, as 

opposed to positive, as initially assumed in section 4.3.1.  It seems that in the 

context of the current study, students with a high score on “fear of failure” 

subscale are less likely to spend an increasing amount of time on a specific 

theoretical page, compared to those with low scores. This is also reinforced by 

the observations made in class, as a number of students would not go through 

the theory, even when they were experiencing difficulties with specific exercises, 
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unless the tutor advised them to do so. Overall, it is the author’s opinion that the 

predictors of Model 4 can offer a useful insight into students’ interactions with 

regards to the “fear of failure” approach. 

 

4.4 The surface subscale “syllabus boundness” and students’ “interaction” 

metrics 

4.4.1 Syllabus boundness - theoretical assumptions 

As discussed in 3.3.2, the “syllabus boundness” subscale measures the extent 

to which there is a preference for clear instructions, clear deadlines and well-

defined learning materials with clear structure (Entwistle et al., 1979; Entwistle 

and Ramsden, 1983; Entwistle, 1997a). Students with a high score on the scale 

are not likely to be autonomous when studying and they tend to study little 

beyond what is required to pass (they simply focus on the course’s minimum 

requirements) (Entwistle, 1997a).   

During the learning process:  

 In terms of path metrics (based on what is discussed in 3.3.2) students with 

high scores on the “syllabus boundness” scale may go about their activities in a 

less autonomous and more orderly manner, compared to those with low scores. 

So, it can be the case that they tend to follow the structure of the learning 

material as indicated in AM more closely, compared to those with low scores. 

This means that high scores on “syllabus boundness” may result in high values 

in a “linearity” metric such as stratum. It is also expected that since students 

with high scores on the “syllabus boundness” subscale are likely to concentrate 

more on the part of the learning material which is deemed necessary to pass 

(Entwistle, 1997a), they are likely to interact more closely around a certain set 

of pages and follow a more “compact” path, compared to those with low scores 

on the subscale. This means that high scores on the syllabus boundness 

subscale may result in high values in compactness. It is expected that there will 

be positive associations between the “syllabus boundness” subscale and: 

o compactness 

o stratum 

 In terms of performance-related metrics, it is possible that students with high 

scores on the “syllabus boundness” subscale, because they tend to study little 

beyond what is required (Entwistle, 1997a), are not likely to do as well when 
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solving exercises in mathematics as those with low scores. It is expected that 

there will be negative association between:  

o “Syllabus boundness” subscale and number of exercises solved on the 

first try 

While it is expected that there will be positive associations between: 

o “Syllabus boundness” subscale and number of exercises solved on the 

second try 

o “Syllabus boundness” subscale and number of exercises solved on the 

third try 

o “Syllabus boundness” subscale and number of exercises finished but 

not solved  

There is also a possible association between “syllabus boundness” and number 

of exercises cancelled. As discussed in 3.4.7, students with high scores on 

“syllabus boundness” tend to gear their studying closely just to what seems 

relevant to their assessment. This means that they may cancel for example, 

exercises that they consider not to be as relevant to the assessment 

requirements as other exercises. It is expected that there will be positive 

associations between: 

o “Syllabus boundness” subscale and number of exercises cancelled 

 In terms of temporal metrics, there can be associations with the “syllabus 

boundness” subscale, although the theory in studying approaches does not 

specifically state such an association. It is possible, though, that students with 

high scores on “syllabus boundness” may spend more time on a specific 

exercise and reading page, compared to those with low scores, especially if 

they consider these pages highly relevant to the assessment requirements, and 

especially if they experience difficulties when solving specific exercises in those 

pages. So, high scores on the “syllabus boundness” subscale may result in high 

values on average view time and maximum view times on both reading and 

exercise pages.  It is expected that there will be positive associations between 

“syllabus boundness” subscale and: 

o average view time on exercise pages 

o average view time spent on reading pages 

o maximum view time on a reading page 

o maximum view time on an exercise page 
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On the other hand, as discussed in 3.4.4 with regards to the minimum view time 

on an AM page, due to the intention to engage minimally with the learning 

material and focus only on what they consider relevant to the assessment, it is 

possible that students with a high score on the “syllabus boundness” subscale 

may spend a decreasing amount of minimum view time on an AM page which 

they do not consider relevant to assessment requirements. So, it is possible 

that there is a negative association between the “syllabus boundness” subscale 

and: 

o minimum view time on an exercise page 

o minimum view time on a reading page 

4.4.2 Syllabus boundness - Results on Correlations 

Following the proposed methodology in 3.11 we run correlational analysis to 

identify predictors for the model. There are statistically significant correlations, 

as expected, between the “syllabus boundness” subscale and: 

o Number of exercises solved on first try with rs=-0.266 

o Number of exercises solved on third try with rs=0.191 

o Number of exercises finished but not solved with rs=0.190 

o Number of exercises cancelled with rs=0.192 

o Compactness with rs=0.190 

o Average view time on reading pages with rs=0.189 

However, there was no expectation of a statistically significant correlation 

between the “syllabus boundness” scale and number of pages visited using the 

TOC with rs=0.183. 

For other metrics mentioned in section 4.4.1 there are no statistically significant 

relationships. However, the importance of these metrics for the “syllabus 

boundness” subscale is discussed further in the following section with regards 

to the regression models. 

4.4.3 Syllabus boundness models: Development, Analysis and Discussion 

In this section, there is a brief discussion on the development of regression 

models for the “syllabus boundness” subscale and analysis and discussion on 

the results for the selected model version. 
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4.4.3.1 Syllabus boundness - Initial selection predictors 

Table 4.4.3.1 shows that the main reason for initial selection of predictors is 

their correlations to the subscale. The sample size allows for the inclusion of up 

to 8 predictors (see section 3.11), so the intention is to consider an 8th predictor 

amongst those suggested ones in section 4.4.1, as its inclusion has the 

potential to enrich further the discussion regarding the “syllabus boundness” 

models. This predictor is minimum view time on an exercise page, as indicated 

in Table 4.4.3.1. 

Selected Predictors Reason for selection 

Number of exercises solved on 
first try  

Statistical (see 4.4.2) 
 
 
 
 
 
 
 
 
 
 

Number of exercises solved on 
third try  

Number of exercises finished but 
not solved  

Number of exercises cancelled 

Compactness 

Number of pages visited using 
the TOC 

Average view time on reading 
pages 

Minimum view time on an 
exercise page 

Its inclusion is enriching for the subscale, as 
discussed in 4.4.1. Amongst the rest of the 
temporal metrics, when tried on pre-models, it is 
the one that contributes best in terms of 
variance in the model along with the 
aforementioned predictors (see Model 1b in 
Table 1 in Appendix 4.4.1). 

Table 4.4.3.1. Selected predictors for first version of model. 

As a result, at this stage, Model 1b is the first version for the “syllabus 

boundness” subscale with all the selected eight aforementioned predictors, 

which is the maximum number of predictors, according to the strategy indicated 

in the methodology (see section 3.11). 

4.4.3.2 Syllabus boundness - development of model 

As previously, the process of improving measures of variance and the overall 

significance starts by excluding specific outliers. This results in increasing the 

variance: from Model 1b with R2 19.7% and Adjusted R2 13.6% to Model 2d 

with R2 21.7% and Adjusted R2 15.7% (see Table 4 in Appendix 4.4.2). 

4.4.3.3 Syllabus boundness – Selection of Model 

After excluding the outliers, there is gradual exclusion of predictors, as shown in 

Table 4.4.3.2 below. 
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 R2 Adj. R2 Sig. Comments 

Model 3 
(exclusion of 
cases 35 and 31) 
(exclusion of 
predictors: number 
of pages visited 
using TOC) 

21.7% 16.4% 0.000 Note how 
Adjusted R2 
increases 
while R2 
gradually 
slightly 
decreases, 
making their 
difference 
smaller. 
 
 

Model 4 
(exclusion of 
cases 35 and 31) 
(exclusion of 
predictors: number 
of pages visited 
using TOC, and 
number of 
exercises solved 
but not finished) 

21.6% 17.1% 0.000 

Model 5 
(exclusion of 
cases 35 and 31) 
(exclusion of 
predictors: number 
of exercises 
solved but not 
finished, number 
of pages visited 
using TOC, and 
compactness) 

20.3% 16.5% 0.000 By running 
the 
regression 
model two 
more times, 
we obtain the 
leanest and 
meanest 
model. Note 
how both R2 
and Adjusted 
R2 decrease. 
 
Model 6 has 
all 4 
predictors 
statistically 
significant 
(see 
Appendix 
4.4.4) 
 
Note also 
that all 
models are 
overall 
statistically 
significant 
(p<0.05). 
 

Model 6- Leanest 
and meanest 
(exclusion of 
cases 35 and 31) 
(exclusion of 
predictors: number 
of exercises 
solved but not 
finished, number 
of pages visited 
from TOC, 
compactness, and 
number of 
exercises solved 
on first try)  

18.7% 15.7% 0.000 

Table 4.4.3.2. Summary of measures of variance and significance 

In Table 4.4.3.2, Model 4 combines the highest possible R2 and adjusted R2; 

hence it is suggested as the best solution amongst all versions. Finally, Model 4 

has 6 predictors, instead of the initial 8 predictors of Model 1, for a sample size 

of 113 (after the exclusion of 2 outliers), which is within the thresholds stated in 

the strategy, in section 3.11. 
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4.4.3.4 Syllabus boundness – Model 4 - Generalisation  

For the selected Model 4 of the subscale, the assumptions are not violated and 

therefore it is possible to generalise the finding beyond the sample (see the 

assumptions in Appendix 4.4.3). 

4.4.3.5 Syllabus boundness – Equation 

By selecting Model 4, we can conclude that for both weeks, “syllabus 

boundness” is expressed through the predictors: number of exercises solved on 

first try, number of exercises solved on third try, number of exercises cancelled, 

compactness, average view time on reading pages, and minimum view time on 

an exercise page. So, the equation which is formed is as follows: 

SyllabusBoundnessSubcalei = b0 - b1(Number of exercises solved on first try)i + 

b2(Number of exercises solved on third try)i + b3(Number of exercises cancelled)i  

+ b4(Compactness)i  + b5(Average view time on reading pages)i - b6(Minimum 

view time on an exercise page)i (1) 

  If the b values, found in table 7 in Appendix 4.4.2, are replaced in the above 

equation, then the equation of the fitted regression model obtained is as follows: 

SyllabusBoundnessSubcalei = 10.871 – 0.014(Number of exercises solved on first 

try)i + 0.190(Number of exercises solved on third try)i + 0.129(Number of 

exercises cancelled)i +3.250(Compactness) + 0.007(Average view time on reading 

pages) -0.011(Minimum view time on an exercise page) (2) 

4.4.3.6 Syllabus boundness - Interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the “syllabus boundness” subscale score increases, there is increment on 

the following predictors: 

o number of exercises solved on third try 

o number of exercises cancelled 

o average view time on reading pages  

o compactness 

As the “syllabus boundness” scale score increases, there is a decrease on the 

following predictors: 

o number of exercises solved on first try 
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o minimum view time on an exercise page   

It is worth mentioning that the direction of relationships is as expected in the 

initial theoretical assumptions in 4.4.1. 

The issue at this point is whether it is possible to explain the “syllabus 

boundness” approach towards studying based on the combined knowledge of 

“interaction” metrics, and whether there are distinguishable “interaction” metrics 

in students’ interactions for this specific approach. 

b) Further discussion of model and predictors 

First of all, the recommended model (model 4) explains 21.6% of variance. This 

amount of variance is medium as expected (see the recommended thresholds 

in Appendix 3.11.1). However, this is a bit more than 1/5 of the variance of the 

model explained, and therefore, it is reasonable to say that we do not seem to 

get the full picture of how students with low and high scores on the “syllabus 

boundness” scale interact with AM during the tutorial sessions.  

In addition, despite the fact that the model is overall significant (see table 

4.4.3.2 above) and holds reasonably well all the required assumptions, it is 

observed that not all predictors are statistically significant (see Table 7 in 

Appendix 4.4.2). The reason they were kept is mainly because their inclusion 

will allow for a richer insight into students’ interaction with regards to the specific 

subscale. So, the question is: does this “allowance” enrich the interpretation of 

the findings?   

The inclusion of all 6 suggested predictors in Model 4 has the potential to offer 

a useful insight. If tutors, or a system that records student interactions, detect 

certain tendencies, then there can be cause for intervention. More specifically, 

these tendencies relate to: not solving the exercises on the first attempt but 

rather on subsequent attempts; cancelling exercises; and following a rather 

compact limited path without going through specific exercise pages or spending 

very little time on them. 

In comparison to Model 4, the leanest and meanest Model 6 (with the 

elimination of the predictors number of exercises solved on first try and 

compactness) gives a less enriching picture with regards to the “syllabus 

boundness” subscale (although Model 6 gives an indication that is a part of a 

surface approach mainly through the predictor number of exercises cancelled).  

So, Model 4 is a more “enriching” model and the above interpretations on the 

findings seem to give a useful insight, however, as discussed earlier, the model 
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still does not give the full picture (the variance explained is not as much as in 

other surface subscales), so it may be the case that factors such as prior 

knowledge have influenced the relationship of this subscale with the predictors. 

Another reason can be that the exercises do not require knowledge beyond 

what is delivered in class and through AM. Students’ interactions might manifest 

more intensely for high and low scores on the subscale if the exercises required 

further knowledge (students exploring further concepts or more complicated 

exercises).  

4.5 The surface subscale “lack of purpose” and students’ “interaction” metrics 

4.5.1 Lack of purpose – Theoretical assumptions 

As discussed in 3.3.2, the “lack of purpose” subscale measures the extent to 

which students intend to cope minimally with the course requirements, because 

of their lack of interest in the subject (Entwistle et al., 2001; Entwistle and 

Ramsden, 1983). As a result, those with high scores on the scale are likely to 

engage less with their studies, compared to those with low scores on the scale. 

During the learning process:  

 In terms path metrics, because of their lack of interest and intention to cope 

minimally (Entwistle and Ramsden, 1983; Entwistle et al., 2001), students with 

high score on the “lack of purpose” subscale are likely to interact more closely 

around a certain set of pages and follow a more “compact” path, compared to 

those with low scores on the scale. This means that high scores in the “lack of 

purpose” subscale may result in high values in compactness. It is expected that 

there will be positive association between: 

o “Lack of purpose” subscale and compactness 

 In terms of performance-related metrics, students with high score on the lack of 

purpose subscale, due to their lack of interest on subject and intention to cope 

minimally with their studies (Entwistle and Ramsden, 1983; Entwistle et al., 

2001), may be experiencing difficulties when solving exercises which means 

that they are more likely to solve exercises on the second orthird attempt, or not 

at all, rather on the first attempt. It is expected that there will be negative 

association between:  

o “Lack of purpose” subscale and number of exercises solved on the first 

try 

While it is expected that there will be positive associations between: 
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o “Lack of purpose” subscale and number of exercises solved on the 

second try 

o “Lack of purpose” subscale and number of exercises solved on the third 

try 

o “Lack of purpose” subscale and number of exercises finished but not 

solved 

In terms of temporal metrics, in general students with high scores on the “lack 

of purpose” subscale, due to their lack of interest and their intention to engage 

minimally with the their studies (Entwistle et al., 2001; Entwistle and Ramsden, 

1983), are more likely to spend less time on the reading and exercise pages on 

AM, compared to those with low scores. On the other hand, it can be also the 

case that those with high scores on “lack of purpose”, due to the difficulties they 

experience when solving exercises, tend to spend more time on specific AM 

pages, compared to those with low scores. So, with regards to temporal metrics 

and the “lack of purpose” subscale, while there can be an association, it is not 

possible to indicate its exact direction. 

4.5.2 Lack of purpose – Results on Correlations 

Following the proposed methodology in 3.11 we run correlational analysis to 

identify predictors for the model. There are statistically significant correlations, 

as expected, between “lack of purpose” subscale and: 

o Number of exercises solved on first try with rs= -0.220  

o Number of exercises solved on third try with rs=0.257  

o Number of exercises finished but not solved with rs=0.250 

o Compactness with rs=0.207 

There was no expectation of statistically significant correlations between the 

“lack of purpose” subscale and: 

o Relative amount of revisits with rs=0.268 

o Number of pages visited from TOC with rs=0.195 

o Stratum with rs= -0.194 

Finally, regarding the temporal metrics, there are no any statistically significant 

relationships, which is not surprising given that there is uncertainty as to the 

direction of the relationship, as mentioned in section 4.5.1. It seems that 

sometimes students with high scores on the “lack of purpose” subscale may 
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spend more time on the learning material in AM due to experiencing difficulties 

compared to those with low scores; and sometimes they may spend less time 

on the learning material in AM due to their lack of engagement, compared to 

those with low scores.  

4.5.3 Lack of purpose: models: Development, Analysis and Discussion 

In this section, there is a brief discussion on the development of regression 

models for the “lack of purpose” subscale and analysis and discussion on the 

results for the selected model version. 

4.5.3.1 Lack of purpose – Initial selection predictors 

Table 4.5.3.1 shows that the reason for initial selection of predictors is their 

correlations to the subscale.  

Selected Predictors Reason for selection 

Number of exercises solved on 
first try  

Statistical (see 4.5.2) 
 
 
 
 
 
 
 
 
 

Number of exercises solved on 
third try  

Number of exercises finished but 
not solved  

Relative amount of revisits 

Compactness 

Number of pages visited using 
the TOC 

Table 4.5.3.1. Selected predictors for first version of model. 

It is worth mentioning that stratum is not included, despite its correlation to the 

subscale, due to a multicollinearity issue with compactness (for further 

information see Appendix 4.5.1). 

The sample size allows for the inclusion of up to 8 predictors (see section 3.11). 

However, the inclusion of the temporal metrics, mentioned in 4.5.1, will not be 

examined further, as there are no clear theoretical or empirical indications 

regarding the direction of the relationship between these metrics and the 

subscale. As a result, at this stage, Model 1 is the first version for the “lack of 

purpose” subscale with all the selected six aforementioned predictors, which is 

according to the strategy (see section 3.11). 

4.5.3.2 Lack of purpose – development of model 

As previously, the process of improving measures of variance and the overall 

significance starts by excluding specific outliers. This results in increasing the 

variance: from Model 1 with R2 16.1% and Adjusted R2 11.4% to Model 2g with 

R2 21% and Adjusted R2 16.4% (see Table 4 in Appendix 4.5.2). 
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4.5.3.3 Lack of purpose – selection of model 

After excluding the outliers, there is gradual exclusion of predictors, as shown in Table 

4.5.3.2 below.  

 R2 Adj. R2 Sig. Comments 

Model 3 
(exclusion of 
cases 76, 86, 70, 
and 24) 
 (exclusion of 
predictors: number 
of pages visited 
from TOC) 

21% 17.2% 0.000 Note how 
Adjusted R2 
increases, 
while R2 
remains the 
same. 
 
 

Model 4 
(exclusion of 
cases 76, 86, 70, 
and 24) 
 (exclusion of 
predictors: number 
of pages visited 
from TOC, and 
compactness) 

21% 18% 0.000 

Model 5 
(exclusion of 
cases 76, 86, 70, 
and 24) 
(exclusion of 
predictors: number 
of pages visited 
from TOC, 
compactness, and 
number of 
exercises solved 
on third try) 

20.2% 17.9% 0.000 By running 
the 
regression 
model two 
more times, 
we obtain the 
leanest and 
meanest 
model. Note 
how both R2 
and Adjusted 
R2 decrease. 
 
 
Model 6 has 
all predictors 
statistically 
significant 
(see 
Appendix 
4.5.4). 
 
 
 
Note also 
that all 
models are 
overall 
statistically 
significant 
(p<0.05). 

Model 6 –Leanest 
and Meanest 
(exclusion of 
cases 76, 86, 70, 
and 24) 
(exclusion of 
predictors: number 
of pages visited 
from TOC, 
compactness, 
number of 
exercises solved 
on third try, and 
number of 
exercises solved 
on first try) 

19% 17.4% 0.000 

Table 4.5.3.2. Summary of measures of variance and significance 

In Table 4.5.3.2, Model 4 combines the highest possible R2 and Adjusted R2; 

hence it is suggested as the best solution amongst all versions. Finally, Model 4 

has 4 predictors, instead of the initial 6 predictors of Model 1, for a sample size 
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of 111 (after the exclusion of 4 outliers) which is within the thresholds stated in 

the strategy, in section 3.11. 

4.5.3.4 Lack of purpose – Model 4 - Generalisation 

For the selected Model 4 of the subscale, the assumptions are not violated and 

therefore it is possible to generalise the finding beyond the sample (see the 

assumptions in Appendix 4.5.3). 

4.5.3.5 Lack of purpose – Equation 

By selecting Model 4, it can be concluded that for both weeks, the “lack of 

purpose” is expressed through the predictors: number of exercises solved on 

first try, number of exercises solved on third try, number of exercises finished 

but not solved, and relative amount of revisits. So, the equation which is formed 

is as follows: 

LackOfPurposeSubcalei = b0 - b1(Number of exercises solved on first try)i + 

b2(Number of exercises solved on third try)i + b3(Number of exercises finished 

but not solved)i  + b4(Relative amount of revisits)i  (1) 

If the b values found in table 7 in Appendix 4.5.2 are replaced in the above 

equation, then the equation of the fitted regression model is obtained: 

LackOfPurposeSubcalei = 6.028 – 0.013(Number of exercises solved on first try)i 

+ 0.145(Number of exercises solved on third try)i + 0.124(Number of exercises 

finished but not solved)i  + 6.129(Relative amount of revisits)i  (2) 

 

4.5.3.6 Lack of purpose - Interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the “lack of purpose” subscale score increases, there is increment on the 

following predictors: 

o number of exercises solved on third try 

o number of exercises finished but not solved  

o relative amount of revisits 

As the “lack of purpose” subscale score increases, there is a decrease in the 

following predictor: 

o number of exercises solved on first try 
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It is worth mentioning that the direction of relationships is as expected in the 

initial theoretical assumptions in 4.5.1, except from the relative amount of 

revisits for which there are no initial theoretical assumptions (an issue which is 

discussed later on). 

The issue at this point is whether it is possible to explain the “lack of purpose” 

approach towards studying based on the combined knowledge of “interaction” 

metrics, and whether there are distinguishable “interaction” metrics in students’ 

interactions for this specific approach. 

b) Further discussion of model and predictors 

First of all, the recommended model (model 4) explains only 21% of variance. 

This amount of variance is medium (see regarding recommended thresholds in 

Appendix 3.11.1). However, this is only a bit more than 1/5 of the variance of 

the model explained. Therefore, it is reasonable to say that we do not seem to 

get the full picture of how students with low and high scores on the “lack of 

purpose” subscale interact with AM during the tutorial sessions. 

In addition, despite the fact that the model is overall significant (see Table 

4.5.3.2 above) and holds reasonably well all the required assumptions, it is 

observed that not all predictors are significant (see Table 7 in Appendix 4.5.2). 

The reason for which these predictors were kept is mainly because their 

inclusion would allow for a richer insight into students’ interaction with regards 

to the specific subscale. So, the question is: does this “allowance” enrich at 

least the interpretation of the results?   

Model 4 with its 4 predictors can draw, not quite a complete, but at least a 

distinguishing and reasonable picture, as it can help to identify students with 

high and low scores on the subscale. More specifically, students with a high 

score on the subscale are less likely to solve exercises on first attempt and 

more likely to solve them on third attempt or not at all, compared to those with a 

low score. Those with high scores are also more likely to revisit pages, 

compared to those with low scores. This finding is unexpected specifically with 

regards to the specific subscale but it fits fairly well with regards to 

compactness, as mentioned earlier. It is reasonable that students with high 

scores on the subscale tend to follow a more repetitive compact path when 

going through the learning material in AM, compared to those with low scores. 

To conclude: all these are reasonable findings, which can serve towards tutor 

intervention. 

In comparison to Model 4, the leanest and meanest Model 6 with the elimination 
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of the predictors number of exercises solved on third try, and number of 

exercises solved on first try, gives a less “enriching” picture with regards to the 

“lack of purpose” subscale (although there are still indications that it represents 

part of a surface approach mainly because of the remaining predictor relative 

amount of revisits).  

So, Model 4 is a more “enriching” model, and the above interpretations on the 

findings seem to give a useful insight. However, as discussed earlier, the model 

still does not give the full picture (also the variance explained is not as much as 

in other surface subscales). It may be the case, therefore, that factors such as 

prior knowledge have influenced the relationship of this subscale with the 

predictors (an issue which is explored further in the next chapter). 

4.6 The deep scale and students’ “interaction” metrics 

4.6.1 Deep Scale – Theoretical assumptions 

As discussed in 3.3.2, the “deep” scale measures the extent to which there is (a) 

an intention to understand for oneself (McCune, 1998; Entwistle, 1997a) (b) an 

interest in the subject (c) an intention to relate concepts to each other and (d) 

built-up understanding based on detailed type of information in the learning 

material (Entwistle, 1997a).   

During the learning process:  

 For performance-related metrics, as discussed in 3.4.7, there is an overall 

expectation that students with high scores on the deep scale will do better when 

practising the exercises during the tutorial sessions, compared to those with low 

scores. More specifically, the higher students score on the deep scale, the more 

exercises they are likely to solve on the first attempt and the fewer exercises 

they are likely to solve on the second and third attempt, or fail to solve at all. 

Therefore, it is expected that there will be positive association between:  

o Deep scale and number of exercises solved on the first try  

While there will be negative associations between: 

o Deep scale and number of exercises solved on the second try 

o Deep scale and number of exercises solved on the third try  

o Deep scale and number of exercises finished but not solved 

 Regarding search-related metrics, it is expected that students with high scores 

on the deep scale are likely to try to elicit more information around concepts, in 
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order to find deeper meaning and understanding in them, compared to those 

with low scores. This explorative behaviour is an element of those with a high 

score in the “interest in ideas” subscale (which is part of the deep scale). 

Martens et al. (2004) points out a link between intrinsic interest and exploration 

of concepts. This means that high scores on the deep scale may result in high 

values in search-related metrics indicated in 3.4.2. There will be positive 

associations between the deep scale and:  

o number of times “search” option is clicked 

o number of submitted queries in search option 

o number of search results visited in search option 

o number of hyperlinks (concept links) visited in reading and exercise 

pages 

 In terms of visiting the AM “notes” feature, as discussed in 3.4.1, students with 

high scores in deep approach to studying tend to interact more vigorously with 

the learning material by making notes, compared to those with low scores; so 

there can be a positive association between the deep approach and the number 

of visits to the “notes” feature which shows an intention to create notes with 

regards to the learning material in AM. As there are two metrics related to the 

visits to the “notes” feature (see sections 3.4.1 and 3.4.8), the potential positive 

associations are between the deep scale and: 

o number of times “notes” link is clicked 

o average number of times a “notes” link is clicked per page 

 Regarding temporal metrics, as discussed in 3.4.4, it is expected that due to an 

effort to seek and research further the meaning of a mathematical concept or 

process it, students with high scores on the deep scale may dedicate more time 

to their tasks in class compared to those with low scores. So, high scores on 

deep scale may result in high values in temporal metrics. Thus, there will be 

positive associations between: 

o Deep scale and average view time on exercise pages  

o Deep scale and average view time on reading pages 

o Deep scale and maximum view time on a reading page 

o Deep scale and maximum view on an exercise page 
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4.6.2 Deep Scale –Results on Correlations 

Following the proposed methodology in 3.11, we run correlational analysis to 

identify predictors for the model. There is one statistically significant correlation 

between deep scale and maximum view time on an exercise page with rs=0.234, 

which is expected.  

Regarding other metrics mentioned in section 4.6.1, there are no statistically 

significant relationships. However, the importance of these metrics for the deep 

scale is discussed further in the following section with regards to the regression 

models. 

4.6.3 Deep models: Development, Analysis and Discussion 

In this section, there is a brief discussion on the development of regression 

models for the deep scale and analysis and discussion on the results for the 

selected model version. 

4.6.3.1 Deep Scale – Initial selection of predictors 

Table 4.6.3.1 shows briefly that the reasons behind the initial selection of most 

predictors are their  theoretical connections to the scale, and that they may 

enrich the discussion by allowing useful comparisons to surface scales and/or 

by giving a more complete picture as to how students deal with their exercises 

during their tutorial sessions according to the specific approach to studying (see 

further information in table 1 of Appendix 4.6.1).  

Selected Predictor Reason for selection 

Number of exercises solved on 
first try  

Theoretical connections and enriching further 
the discussion 

Number of exercises solved on 
second try 

Number of exercises solved on 
third try  

Number of exercises finished but 
not solved  

Number of hyperlinks (concepts 
links) visited on exercise and 
reading pages 

Average number of times a 
“notes” link is clicked per page  

Maximum view time on an 
exercise page 

Statistical (see 4.6.2) 

Table 4.6.3.1. Selected predictors for first version of model. 

As indicated in the methodology, the sample size allows for the inclusion of up 

to 8 predictors and the intention is to take full advantage of this upper limit. So, 

the potential of including an 8th predictor is examined amongst the rest of the 

predictors mentioned in 4.6.1.  However, certain of these predictors have not 
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been considered because their variation is close to 0 (i.e. the metrics related to 

the use of the “search” option). In other cases, there are no strong theoretical 

indications as to which of these predictors will be the most “enriching” for the 

model, and also when they are tried in pre-models they do not contribute to 

their variance (see further information in Table 2 of Appendix 4.6.1). 

As a result, at this stage, Model 1 is the first version for the deep scale with the 

seven predictors shown in Table 4.6.3.1. 

4.6.3.2 Deep Scale – development of model 

For Model 1 the variance explained R2 is 13.3% and the Adjusted R2 is 7.7%. 

The process of improving both these measures of variance and the overall 

significance starts by excluding specific outliers. This results in Model 2j with R2 

18.5% and Adjusted R2 12.9% (see Appendix 4.6.2 for detailed discussion). 

4.6.3.3 Deep Scale – selection of model 

After excluding the outliers, there is gradual exclusion of predictors, as shown 

on Table 4.6.3.2 below. From Model 2j to Model 4, Adjusted R2 increases while 

R2 gradually decreases slightly, making their difference smaller. 

After Model 4, the regression is re-run two more times. In Model 5, there is 

exclusion of the predictor number of exercises solved on first try, since in Model 

4 this predictor has the least importance (beta=0.122) and highest 

insignificance (p>0.05). Finally, in model 6 (see Table 6 in Appendix 4.6.2), 

there is exclusion of predictor average number of times a “notes” link clicked 

per page, since in Model 5 this predictor has the least importance (beta=0.143) 

and highest significance (p>0.05). Model 6 is the leanest and meanest model 

where all three remaining predictors are statistically significant. 
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 R2 Adj. R2 Sig. 

Model 1 (all initially selected 
predictors) 

13.3% 7.7% 0.029 

Model 2a (exclusion of case 112) 13.4% 7.7% 0.029 

Model 2b (exclusion of case 112 
and 123) [Rejected] 

11.3% 5.3% 0.076 

Model 2c (exclusion of case 112 
and 116) 

14.6% 9% 0.017 

Model 2d (exclusion of case 112, 
116, and 36) [Rejected] 

14.4% 8.6% 0.021 

Model 2e 
(exclusion of case 112, 116, and 
81) [Rejected] 

14.3% 8.5% 0.022 

Model 2f 
(exclusion of case 112, 116, and 
111) 

14.9% 9.2% 0.016 

Model 2g 
(exclusion of case 112, 116, 111, 
and 85) 

16.5% 10.9% 0.008 

Model 2h 
(exclusion of case 112, 116, 111, 
85, and 76) 

17.7% 12.1% 0.005 

Model 2i 
(exclusion of case 112, 116, 111, 
85, 76, and 60) [Rejected] 

16.2% 10.4% 0.011 

Model 2j 
(exclusion of case 112, 116, 111, 
85, 76, and 105)  

18.5% 12.9% 0.004 

Model 3  
(exclusion of case 112, 116, 111, 
85, 76, and 105, and number of 
exercises solved on third try) 

18.5% 13.7% 0.002 

Model 4 
(exclusion of case 112, 116, 111, 
85, 76, and 105, and number of 
exercises solved on third try, and 
number of hyperlinks (concepts 
links) visited in exercise and 
content pages)  

18.3% 14.4% 
 
 

0.001 

Model 5 
(exclusion of case 112, 116, 111, 
85, 76, and 105, and number of 
exercises solved on third try, 
number of hyperlinks (concepts 
links) visited in exercise and 
content pages, and number of 
exercises solved on first try)  

17.2% 14% 
  
 

0.001 

Model 6-Leanest and Meanest  
(exclusion of case 112, 116, 111, 
85, 76, and 105, and number of 
exercises solved on third try, 
number of hyperlinks (concepts 
links) visited in exercise and 
content pages, number of 
exercises solved on first try, and 
average number of times a notes 
clicked per page)  

15.3% 12.9% 
 
 

0.001 

Table 4.6.3.2. Summary of measures of variance and significance for accepted and rejected 
models 

In Table 4.6.3.2, it is observed that the overall significance holds for all versions 
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of the model (p<0.05). When comparing to Model 4, both R2 and adjusted R2 

gradually decrease in models 5 and 6 from 18.3% to 15.3%, and from 14.4% to 

12.9% respectively. Therefore, according to our strategy, Model 4 is suggested 

as the best solution, as it combines simultaneously the highest possible R2 and 

Adjusted R2. Finally, Model 4 has 5 predictors, instead of the initial 7 predictors 

of Model 1, with sample size of 109 (after excluding the 6 outliers), which is 

within the thresholds stated in the strategy, in section 3.11. 

4.6.3.4 Deep Scale – Model 4 – Generalisation 

The assumptions regarding: normal distribution of residuals, homoscedasticity 

of standardised residuals against predicted ones, and the normality of residuals 

hold well. 

Figure 4.6.3.1. Histogram of standardised residuals for the final model 

 

Regarding the assumption about the normal distribution of residuals, as shown in 

Figure 4.6.3.1, that residuals fit very closely to a normal distribution.  
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Figure 4.6.3.2. Plot of standardised residuals 

 

Figure 4.6.3.2 shows that the normality assumption holds since the points lie 

quite closely on the straight line.  

 

Figure 4.6.3.3. Plot of the standardised residuals against the predicted ones for the model  
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The assumption about the residuals is whether the variance of the residuals is 

constant, in other words whether there is homoscedasticity. Figure 4.6.3.3 

shows that the scatter plot is reasonably random and most residuals are 

homoscedastic (there are only a few cases which are heteroscedastic).  

To conclude, the assumptions are not violated and therefore we can generalise 

the findings beyond the sample. 

4.6.3.5 Deep Scale – Equation 

By selecting Model 4, it can be concluded that for both weeks, the deep scale is 

expressed through the predictors: number of exercises solved on first try, 

number of exercises solved on second try, number of exercises finished but not 

solved, average number of times a “notes” link clicked per page, and maximum 

view time on exercise pages. So, the equation which is formed is as follows: 

DeepScalei = b0 + b1(Number of exercises solved on first try)i – b2(Number of 

exercises solved on second try)I + b3(Number of exercises finished but not 

solved)i +b4(Maximum view time on exercise pages)i +b5(Average number of 

times a “notes” link clicked per page)i (1) 

If we replace the b values (see Table 6 in Appendix 4.6.2) in the above 

equation, then we obtain the equation of the fitted regression model: 

DeepScalei = 56.977 + 0.036(Number of exercises solved on first try)i – 

0.637(Number of exercises solved on second try)i + 0.488(Number of exercises 

finished but not solved)i +0.003(Maximum view time on exercise pages )i 

+10.619(Average number of times a “notes” link clicked per page)i (2) 

4.6.3.6 Deep Scale – Interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the deep scale score increases, there is increment on the following 

predictors: 

o number of exercises solved on first try 

o number of exercises finished but not solved 

o maximum view time on exercise pages 

o average number of times a “notes” link clicked per page  

As the deep scale score increases, there is a decrease in the following 
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predictors: 

o number of exercise solved on second try  

It is worth mentioning that the direction of relationships is as expected in the 

initial assumptions, except from the number of exercises finished but not solved. 

 

The issue at this point is whether it is possible to explain the “deep” approach 

towards studying based on the combined knowledge of “interaction” metrics, 

and whether there are distinguishable “interaction” metrics in students’ 

interactions for this specific approach. 

b) Further discussion of model and predictors 

First of all, the recommended model (Model 4) explains 18.3% amount of 

variance. This amount of variance is medium as expected (see recommended 

thresholds in Appendix 3.11.1). However, this is close to only 1/5 of the 

variance of the model explained. Furthermore, to make another comparison, the 

variance explained in the recommended model (Model 4) for the deep scale is 

less than half of the variance explained for surface scale.  Therefore, it is 

reasonable to say that we do not seem to get the full picture of how students 

with low and high scores on the deep scale interact with AM during the tutorial 

sessions. 

In addition, despite the fact that the model is overall significant (see Table 

4.6.3.2 above) and holds well according to all the required assumptions, it is 

observed that not all predictors in Model 4 are statistically significant (see Table 

6 in Appendix 4.6.2). The reason these predictors were kept is mainly because 

their inclusion would allow for a richer insight into students’ interaction with 

regards to the specific scale. So, the question is: does this “allowance” enrich 

the interpretation of the findings?   

First of all, it would be difficult to advise - a tutor for example- how to identify a 

deep approach to studying based on the number of exercises solved on second 

try, which is the most important predictor and the one which “survives” also in 

the leanest and meanest version Model 6 (see Table 9 in Appendix 4.6.3). This 

is a predictor which can be interpreted better in combination with other 

predictors of this type. More specifically, we can say that the more a student is 

likely to score high on the deep scale, the less likely he or she is to solve an 

exercise on second try. This would be fine, as it is according to our initial 

assumption; however, on its own does not say much. It makes more sense if we 
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look at it in combination with the predictor the number of exercises solved on 

first try, and number of exercises solved but not finished in Model 4. The 

positive b and beta values show that students with a high deep approach 

towards studying are likely to solve exercises on first try. However, the positive 

b and beta values of number of exercise solved but not finished indicate that its 

relationship to the deep scale is not as initially expected. So, students with a 

high deep approach towards studying can be distinguished mainly based on the 

predictor number of exercises solved on first try. 

In addition, the b and beta values of the remaining predictor of Model 4, which 

is the maximum view time spent on exercise page, indicate the expected 

positive relationship to the deep scale. It is assumed that students with high 

scores on the scale who tend to seek meaning for achieving personal 

understanding are more likely to dedicate time to parts of the learning material 

in order to achieve personal understanding, compared to those with low scores. 

However, it is possible that they may experience difficulties with a specific 

group of exercises, as there is also an aforementioned tendency not to solve 

exercises at all, (similarly to those with high scores on the surface scale). So, 

maximum view time on an exercise page does not necessarily serve towards 

distinguishing between a high surface score and a high deep score. 

Finally, other complementary manifestations of the deep approach concern the 

accessing of the AM “notes” feature, which can show an intention for those with 

high scores on the scale to make more notes, compared to those with low 

scores on the scale (as discussed in 4.6.1). 

In comparison to the suggested Model 4, the leanest and meanest Model 6 

(see Table 9 in Appendix 4.6.3) consists of three predictors: number of 

exercises solved on second try, number of exercises finished but not solved, 

and maximum exercises spent on exercise page. As mentioned earlier, these 

three predictors alone cannot really give a clear and enlightening picture in 

relation to students’ interaction and the deep approach. Therefore, Model 4 is 

considered more enriching in terms of the interpretation, however, since the 

model explains only about 1/5 of the variance of the deep scale, the next logical 

step would be to examine if prior knowledge can explain further the model 

representing the deep approach (an issue which is explored further in the next 

chapter). 



 173 

4.7 The deep subscale “interest in ideas” and students’ “interaction” metrics 

4.7.1 Interest in ideas – theoretical assumptions 

As discussed in 3.4.2, the “interest in ideas” subscale measures the extent to 

which there is intrinsic interest in the content of a course students are taking. In 

the general educational context, intrinsic interest in the subject matter has been 

linked to explorative behaviour, and the freedom to choose beyond the given 

syllabus. 

During the learning process: 

 In terms of search-related metrics (use of hyperlinks and search option), there 

are conceptual links, which can be made as discussed in 3.4.2. Entwistle (1981) 

describes students with an “interest in ideas” approach as having active interest 

in the course content; hence those with a high score on the subscale may use 

more features which can satisfy this active interest in the course content (i.e. by 

exploring it further) compared to those with low scores. Furthermore, in the 

context of students’ interaction in interactive learning environments, Martens et 

al. (2004) have found a statistically significant, positive and medium association 

between the intrinsic interest scores of students and the number of pages with 

explorative content they visited. 

 The search option in AM can allow exploration of a mathematical concept in 

relation to other concepts, mathematical examples and procedures. The search 

feature gives also learners the freedom to explore a mathematical concept 

beyond the AM content by allowing them to find further information on other 

websites. High “interest in ideas” therefore may lead students to explore 

mathematical concepts by submitting a high number of query submissions and 

visit a high number of the search results produced. It is expected that the higher 

the students score in the “interest in ideas” deep subscale, the more clicks there 

will be on the search option, the more queries they will submit and the greater 

number of search results they will click on (in order to explore a concept 

further). There will be positive associations between the “interest in ideas” 

subscale and: 

o number of times “search” option is clicked 

o number of submitted queries in search option 

o number of search results visited in search option 
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 Entwistle (1981) finds that there are certain academic topics which can attract 

the attention of students with a high score on the “interest in ideas” subscale 

and prompt them to follow them up. In the reading and exercise pages of AM 

there are contextual hyperlinks, which allow students to visit new concepts or 

revisit previous ones. Therefore, it is possible that contextual hyperlinks may 

entice more students with a high score on the subscale to follow up those 

pieces of information in the content they find interesting, compared to those with 

low scores. It is expected that there will be positive association between:  

o “Interest in ideas” and number of hyperlinks (concept links) visited in 

reading and exercise pages. 

 In terms of temporal metrics, as discussed in 3.4.4, it is possible that students 

with a high score in the “interest” in ideas subscale are likely to spend more 

time on an exercise or reading page, than the students with low scores. Thus, 

positive associations are expected between “interest in ideas” subscale:  

o average view time on exercise pages  

o average view time on reading pages 

o maximum view time on a reading page 

o maximum view time on an exercise page 

 In terms of performance-related metrics, in a more general context, there is 

empirical evidence that associates academic performance and the subscale of 

“interest in ideas”. Based on the empirical findings by Entwistle and Ramsden 

(1983), it is found in a sample of 865 science first-year undergraduate students 

that there is a statistically significant, positive and correlation (r=0.24) between 

the factor of “interest in ideas” and performance. In a more recent study, Tait 

and Entwistle (1996) find in a sample of 649 first-year undergraduate students 

that there is a statistically significant positive low correlation (r=0.12) between 

the “interest in ideas” subscale and performance. On the other hand, in the 

context of interactive learning environments, empirical evidence in the study of 

Martens et al. (2004) indicate that the scores of intrinsic motivation do not 

correlate with students’ performance. A possible explanation for these varied 

results between “interest in ideas” and performance can be found in the wider 

context of educational psychology. Entwistle and Ramsden (1983) refer to a 

study conducted by Fransson (1978) where the results reveal that the factor of 

anxiety can interact with intrinsic motivation. Fransson (1978) finds that the 

factor of anxiety relates negatively to performance among students with a high 
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level of intrinsic motivation, but not among those students with a low level of 

intrinsic motivation.  

 There are mixed views therefore with regards to this specific relationship. 

However, as it is a deep subscale, which expresses intrinsic interest, it is 

possible that such students may perform well. Therefore, it is expected that 

there will be positive association between:  

o “Interest in ideas” subscale and number of exercises solved on the first 

try 

 While there will be negative associations between: 

o “Interest in ideas” subscale and number of exercises solved on the 

second try  

o “Interest in ideas” subscale and number of exercises solved on the third 

try 

o “Interest in ideas” subscale and number of exercises finished but not 

solved 

4.7.2 Interest in ideas - Results on Correlations 

Following the proposed methodology in 3.11 we run correlational analysis to 

identify predictors for the model. There are statistically significant correlations, 

as expected, between the “interest in ideas” subscale and: 

o Maximum view time on an exercise page with rs=0.188 

o Average view time on exercise pages with rs=0.185 

For other metrics mentioned in section 4.7.1 there are no statistically significant 

relationships. However, the importance of these metrics for the “interest in ideas” 

subscale is discussed further in the following section with regards to the 

regression models. 

4.7.3 Interest in ideas models: Development, Analysis and Discussion 

In this section, there is a brief discussion on the development of regression 

models for the “interest in ideas” subscale and analysis and discussion on the 

results for the selected model version. 

4.7.3.1 Interest in ideas –Initial selection of predictors 

Table 4.7.3.1 shows briefly that the reasons behind the initial selection of most 

predictors are their theoretical connections to the subscale, and that they may 
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enrich the discussion by allowing useful comparisons to surface scales and/or 

by giving a more complete picture of how students deal with their exercises 

during their tutorial sessions according to the specific approach to studying (see 

further information in Table 1 of Appendix 4.7.1).  

Selected Predictor Reason for selection 

Number of exercises solved on 
first try  

Theoretical connections and enriching further 
the discussion 

Number of exercises solved on 
second try 

Number of exercises solved on 
third try  

Number of exercises finished but 
not solved  

Number of hyperlinks (concepts 
links) visited on exercise and 
reading pages 

Maximum view time on an 
exercise page 

Statistical (see 4.7.2) 

Average view time on exercise 
pages 

Table 4.7.3.1. Selected predictors for first version of model. 

As indicated in the methodology, the sample size allows for the inclusion of up 

to 8 predictors and the intention is to take full advantage of this upper limit. After 

examining the potential of including an 8th predictor amongst the rest of the 

predictors mentioned in 4.7.1, it was decided to include just the seven 

aforementioned predictors (see further justification in table 2 of Appendix 4.7.1). 

4.7.3.2 Interest in ideas – development of model 

As previously, the process of improving measures of variance and the overall 

significance starts by excluding specific outliers. This results in increasing the 

variance: from Model 1 with R2 9.9% and Adjusted R2 4% to Model 2f with R2 

15.8% and Adjusted R2 10% (see Table 4 in Appendix 4.7.2). 

4.7.3.3 Interest in ideas – selection of model 

After excluding the outliers, there is gradual exclusion of predictors, as shown in 

Table 4.7.3.2 below.  
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 R2 Adj. R2 Sig. Comments 

Model 3 
(exclusion of 
cases 76, 116, 
111, 4, 46, and 
Number of 
exercises solved 
on first try) 
 
 
 

15.8% 10.9% 0.006 Note how 
Adjusted R2 
increases 
while R2 
gradually 
slightly 
decreases, 
making their 
difference 
smaller. 
 
 

Model 4 
(exclusion of 
cases 76, 116, 
111, 4, 46, and 
Number of 
exercises solved 
on first try, and 
number of 
hyperlinks 
(concept links) in 
reading and 
exercise pages) 

15.7% 11.6% 
 
 

0.003 

Model 5 
(exclusion of 
cases 76, 116, 
111, 4, 46, and 
Number of 
exercises solved 
on first try, number 
of hyperlinks 
(concept links) in 
reading and 
exercise pages, 
and average view 
time on exercise 
pages) 

14.7% 11.4% 
  
 

0.002 By running 
the 
regression 
model two 
more times, 
we obtain the 
leanest and 
meanest 
model. Note 
how both R2 
and Adjusted 
R2 decrease. 
 
 
Model 6 has 
all predictors 
statistically 
significant 
(see 
Appendix 
4.7.4) 
 
 
 
 
 
 
 
 
 
Note also 
that all 
models are 
overall 
statistically 
significant 
(p<0.05) 

Model 6 –Leanest 
and Meanest 
(exclusion of 
cases 76, 116, 
111, 4, 46, and 
Number of 
exercises solved 
on first try, number 
of hyperlinks 
(concept links) in 
reading and 
exercise pages, 
average view time 
on exercise 
pages, and 
number of 
exercises solved 
on second try) 

12.2% 9.7% 0.003 

Table 4.7.3.2. Summary of measures of variance and significance 
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In Table 4.7.3.2, Model 4 is suggested as the best solution, as it combines 

simultaneously the highest possible R2 and Adjusted R2. Finally, Model 4 has 5 

predictors, instead of the initial 7 predictors of Model 1, with sample size of 109 

(after excluding the 6 outliers), which is within the thresholds stated in the 

strategy, in section 3.11. 

4.7.3.4 Interest in ideas – Model 4 – Generalisation 

For the selected Model 4 of the subscale, the assumptions are not violated and 

therefore it is possible to generalise the finding beyond the sample (see the 

assumptions in Appendix 4.7.3). 

4.7.3.5 Interest in ideas – Equation 

By selecting Model 4, it can be concluded that for both weeks, the “interest in 

ideas” is expressed through the predictors: average view time on exercise 

pages, maximum view time on an exercise page, number of exercises solved 

on second try, number of exercises solved on third try, and number of exercises 

finished but not solved. So, the equation, which is formed is as follows: 

InterestInIdeasSubcalei = b0 - b1(Number of exercises solved on second try)i -  

b2(Number of exercises solved on third try)i + b3(Number of exercises finished 

but not solved)i + b4(Maximum view time on exercise page)i + + b5(Average view 

time on exercise pages)i (1) 

If we replace the b values, found in Table 7 in Appendix 4.7.2, in the above 

equation, then we obtain the equation of the fitted regression model: 

InterestInIdeasSubcalei = 13.112 – 0.120(Number of exercises solved on Second 

Try)i  -  0.262(Number of exercises solved on Third Try)i + 0.254(Number of 

Exercises Finished but not Solved)i + 0.001(Maximum View Time on Exercise 

Page)i  + 0.001(Average View Time on Exercise Pages)i (2) 

 

4.7.3.6 Interest in ideas – Interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the “interest in ideas” subscale score increases, there is increment on the 

following predictors: 
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o number of exercises finished but not solved 

o maximum view time on an exercise page 

o average view time on exercise pages 

As the “interest in ideas” subscale score increases, there is a decrease in the 

following predictor: 

o number of exercises solved on third try 

o number of exercises solved on second try 

It is worth mentioning that the direction of relationships with regards to the 

temporal metrics are as expected in the initial assumptions. However, the 

direction of the relationship with regards to the number of tries when solving 

exercises (i.e. number of exercises finished but not solved) is not as expected 

in the initial assumptions. It seems that having an intrinsic interest in a subject 

does not necessarily guarantee good performance. 

 

The issue here is whether it is possible to explain the “interest in ideas” 

approach towards studying based on the combined knowledge of “interaction” 

metrics, and whether there are distinguishable “interaction” metrics in students’ 

interactions for this specific approach. 

b) Further discussion of model and predictors 

First of all, the recommended model (Model 4) explains 15.7% amount of 

variance. This amount of variance explained is medium as expected (see 

regarding recommended thresholds in Appendix 3.11.1). However, this is close 

to only 1/6 of the variance of the model explained. Therefore, it is reasonable to 

say that we do not seem to get the full picture of how students with low and high 

scores on the interest in ideas subscale interact with AM during the tutorial 

sessions. 

In addition, despite the fact that the model is overall significant (see Table 

4.7.3.2 above) and holds reasonably well all the required assumptions, it is 

observed that not all predictors in Model 4 are statistically significant (see Table 

7 in Appendix 4.7.3). The reason for which these predictors were kept is mainly 

because their inclusion would allow for a richer insight into students’ interaction 

with regards to the specific subscale. So, the question is: does this “allowance” 

enrich at least the interpretation of the results?   

In the suggested Model 4, it is observed that students with high scores on 
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intrinsic interest are less likely to solve the exercises on the second or third try, 

but they are more likely to not to solve the exercises at all, compared to those 

with low scores. These findings, although they do not help in distinguishing a 

high “interest in ideas” studying approach, are not totally unexpected. As 

discussed in 4.7.1, although the general expectation was that those with high 

scores on the subscale would do overall well compared to those with low scores, 

there were indications in the literature that factors such as anxiety may 

influence this relationship.  

Furthermore, it is possible that the average time spent on exercise pages, as 

well as the maximum time spent on an exercise page, increases as the intrinsic 

interest on mathematics increases, because of the difficulties students with high 

scores seem to be experiencing while solving exercises (i.e. it can be also 

interpreted as “getting stuck” on specific exercise pages).  

With regards to the leanest and meanest Model 6 (where all 3 predictors are 

statistically significant), students with high intrinsic interest are not more likely to 

solve exercises on the third try and they are more likely not to solve the 

exercises, compared to those with low scores. Furthermore, the maximum time 

spent on an exercise page increases as the intrinsic interest on mathematics 

increases, which again can be due to the aforementioned performance when 

solving exercises. 

So, while Model 4 gives a slightly more complete image compared to Model 6, 

they both point to the same issue: they do not manage necessarily to serve 

towards distinguishing those with high scores on the subscale through their 

interactions in AM during the tutorial sessions, since their interactions seem to 

resemble more those with high scores on surface approaches.  

Finally, other search-related metrics such as number of times search option is 

clicked and number of submitted queries in the search option, which could have 

contributed in the variance explained by the model, were not included because 

of lack of variation. It is possible, therefore, that these missing “search-related” 

interactions can be also responsible for the rest of the variance which is 

unexplained in the model (also they could give a more “distinguishing” quality to 

the “interest in ideas” model). 

Finally, a factor which may explain the aforementioned unexpected 

relationships or lack of variance in the model is the students’ prior knowledge; 

an issue which is discussed in detail in the next chapter. 
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4.8 The deep subscale “seeking meaning” and students’ “interaction” metrics 

4.8.1 Seeking meaning - theoretical assumptions 

As discussed in 3.3.2, the “seeking meaning” subscale shows the extent to 

which there is an intention for personal understanding, seeking an individual 

interpretation and imposing their own structure (McCune, 1998; Entwistle, 

1997a; Entwistle, 1998). Furthermore, students with an intention to seek 

meaning are also likely to go through the material fairly slowly (Entwistle and 

Ramsden, 1998).  

During the learning process:  

 In terms of search-related metrics, there can be associations with the “seeking 

meaning” subscale. Students with high scores on the “seeking meaning” 

subscale may access and use more features in an interactive learning 

environment which aid towards exploring further concepts and procedures and 

forming connections between them, compared to those with low scores on the 

subscale. So, the use of these features may help those with a high score on the 

subscale towards processing the learning material in a way that aids individual 

interpretation. This means that there can be positive associations between the 

subscale and the search-related metrics (as indicated in 3.4.2). More 

specifically, there can be positive associations between the “seeking meaning” 

subscale and: 

o number of hyperlinks (concept links) visited in reading and exercise 

pages 

o number of times “search” option is clicked 

o number of submitted queries in search option 

o number of search results visited in search option 

 In terms of the path metric stratum, students with high scores on “seeking 

meaning” tend more to impose their own structure on the learning material 

(Entwistle, 1998), compared to those with low scores. Therefore, those with 

high scores on the subscale are not likely to go about their activities in an 

orderly manner compared to those with low scores. This means that high 

scores on the “seeking meaning” subscale are likely to result in low values on 

stratum. So, there can be a negative association between: 

o “Seeking meaning” subscale and stratum  
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 In terms of temporal metrics, students with high scores on “seeking meaning” 

tend to go through the material fairly slowly (Entwistle and Ramsden, 1998), so 

there can be a positive association between the subscale and the temporal 

metrics of average view time and maximum view time on exercise and content 

(reading) pages. More specifically, there can be positive associations between 

“seeking meaning” subscale:  

o average view time on exercise pages  

o average view time on reading pages 

o maximum view time on a reading page 

o maximum view time on an exercise page  

 In terms of performance-related metrics, as it is a deep subscale which 

expresses an intention for personal understanding, it can be assumed that 

students with high scores on the subscale can do well when practising on their 

exercises during the tutorials. This is also reinforced by literature in 

mathematics education which supports that students are not likely to do well if 

they carry out mathematical procedures without really seeking the meaning of 

the concepts involved (Liston and O'Donoghue, 2009). So, students with a high 

score on the subscale who tend to seek the meaning of mathematical concepts 

are more likely to do well, compared to those with low scores. Therefore, a 

positive association is expected between:  

o “Seeking meaning” subscale and number of exercises solved on the first 

try 

 While there will be negative associations between: 

o “Seeking meaning” subscale and number of exercises solved on the 

second try 

o “Seeking meaning” subscale and number of exercises solved on the 

third try 

o “Seeking meaning” subscale and number of exercises finished but not 

solved 

4.8.2 Seeking meaning - Results on Correlations 

Following the proposed methodology in 3.11 we run correlational analysis to 

identify predictors for the model. There is one statistically significant correlation, 

as expected, between the “seeking meaning” subscale and: 
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o Maximum view time on an exercise page with rs=0.204 

There was no expectation of statistically significant correlations between the 

“seeking meaning” subscale and: 

o Number of pages visited using TOC with rs=-0.183 

Regarding other metrics, mentioned in section 4.8.1, there are no statistically 

significant relationships. However, the importance of these metrics for the 

“seeking meaning” subscale is discussed further in the following section with 

regards to the regression models. 

4.8.3 Seeking meaning models: Development, Analysis and Discussion 

In this section, there is a brief discussion on the development of regression 

models for the “seeking meaning” subscale and analysis and discussion on the 

results for the selected model version. 

4.8.3.1 Seeking meaning - Initial selection of predictors 

Table 4.8.3.1 shows briefly that the main reasons behind the initial selection of 

most predictors are their theoretical connections to the subscale, and that they 

may enrich the discussion by allowing useful comparisons to surface scales 

and/or by giving a more complete picture of how students deal with their 

exercises during their tutorial sessions according to the specific approach to 

studying (see further information in table 1 of Appendix 4.8.1).  

Selected Predictor Reason for selection 

Number of exercises solved on 
first try  

Theoretical connections and enriching further 
the discussion 

Number of exercises solved on 
second try 

Number of exercises solved on 
third try  

Number of exercises finished but 
not solved  

Number of hyperlinks (concepts 
links) visited on exercise and 
reading pages 

Stratum 

Maximum view time on an 
exercise page 

Statistical (see 4.8.2) 

Number of pages visited using 
the TOC 

Table 4.8.3.1. Selected predictors for first version of model. 

As a result, at this stage, Model 1 is the first version for the “seeking meaning” 

subscale with all the selected 8 aforementioned predictors. According to the 

strategy indicated in the methodology, this is the maximum number of 

predictors (see section 3.11). 
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4.8.3.2 Seeking meaning – development of model 

As previously, the process of improving measures of variance and the overall 

significance starts by excluding specific outliers. This results in increasing the 

variance: from Model 1 with R2 13.5% and Adjusted R2 7% to Model 2g with R2 

20.8% and Adjusted R2 14.5% (see Table 4 in Appendix 4.8.2). 

4.8.3.3 Seeking meaning – selection of model 

After excluding the outliers, there is gradual exclusion of predictors, as shown in 

Table 4.8.3.2 below.  

 R2 Adj. R2 Sig. Comments 

Model 3 (exclusion of case 
36, 123, 61, 85, and 103, 
and Stratum) 

20.8% 15.4% 0.001 Note how 
Adjusted R2 
increases 
while R2 
gradually 
slightly 
decreases, 
making their 
difference 
smaller. 

Model 4 
(exclusion of case 36, 123, 
61, 85, and 103, and 
stratum, number of 
exercises finished but not 
solved) 

20.1% 15.5% 
 
 

0.001 

Model 5 
(exclusion of case 36, 123, 
61, 85, and 103, and 
stratum, number of 
exercises finished but not 
solved, number of 
exercises solved on 
second try) 

17.9% 14% 
  
 

0.001 By running 
the 
regression 
model three 
more times, 
we obtain the 
leanest and 
meanest 
model. Note 
how both R2 
and Adjusted 
R2 decrease. 
 
 
 
 
 
 
Model 7 has 
all predictors 
statistically 
significant 
(see 
Appendix 
4.8.4) 
 
 
Note also 
that all 
models are 
overall 
statistically 
significant 
(p<0.05) 

Model 6  
(exclusion of case 36, 123, 
61, 85, and 103, and 
stratum, number of 
exercises finished but not 
solved, number of 
exercises solved on 
second try, number of 
exercises solved on third 
try,) 

17% 13.8% 
 
 

0.001 

Model 7-Leanest and 
Meanest 
(exclusion of case 36, 123, 
61, 85, and 103, and 
stratum, number of 
exercises finished but not 
solved, number of 
exercises solved on 
second try, number of 
exercises solved on third 
try, number of hyperlinks 
(concept links) on reading 
and exercise pages) 

15.4% 13% 
 

0.000 

Table 4.8.3.2. Summary of measures of variance and significance  
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In Table 4.8.3.2, it is observed that Model 4 is the best solution, as it combines 

simultaneously the highest possible R2 and Adjusted R2. Finally, Model 4 has 5 

predictors with sample size of 110 (after excluding the 5 outliers), which is 

within the thresholds stated in the strategy, in section 3.11. 

4.8.3.4 Seeking meaning – Model 4 – Generalisation  

For the selected Model 4 of the subscale, the assumptions are not violated and 

therefore it is possible to generalise the finding beyond the sample (see the 

assumptions in Appendix 4.8.3). 

4.8.3.5 Seeking meaning – Equation 

By selecting Model 4, it can be concluded that for both weeks, “seeking 

meaning” is expressed through the predictors: maximum view time on an 

exercise page, number of exercises solved on first try, number of exercises 

solved on second try, number of exercises on third try, number of pages visited 

using TOC and number of hyperlinks (concept links) visited in reading and 

exercise pages. So, the equation, which is formed is as follows: 

SeekingMeaningSubcalei = b0 + b1(Maximum view time on exercise page)i + 

b2(Number of exercises solved on first try)i -  b3(Number of exercises solved on 

second try)i + b4(Number of exercises solved on third try)i + b5(Number of 

hyperlinks (concept links) visited in reading and exercise pages)i – b6(Number of 

pages visited using TOC)i (1) 

If we replace the b values, found in Table 7 in Appendix 4.8.2, in the above 

equation, then we obtain the equation of the fitted regression model: 

SeekingMeaningSubcalei = 14.198 + 0.001(Maximum view time on exercise page)i 

+  0.021(Number of exercises solved on first try)i -  0.111(Number of exercises 

solved on second try)i + 0.226(Number of exercises solved on third try)i - 

0.197(Number of hyperlinks (concept links) visited in reading and exercise 

pages)i – 0.028(Number of pages visited using TOC)i  (2) 

4.8.3.6 Seeking meaning – interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the “seeking meaning” subscale score increases, there is increment on the 

following predictors: 

o number of exercises solved on first try 
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o number of exercises solved on third try 

o maximum view time on an exercise page  

As the “seeking meaning” subscale score increases, there is a decrease in the 

following predictors: 

o number of exercises solved on second try 

o number of hyperlinks (concept links) visited in reading and exercise 

pages 

o number of pages visited using TOC  

It is worth mentioning that the direction of relationships is as expected in the 

initial assumptions, except from the number of exercise solved on third try and 

number of hyperlinks (concept links) visited in reading and exercise pages. 

 

The issue at this point is whether it is possible to explain the “seeking meaning” 

approach towards studying based on the combined knowledge of “interaction” 

metrics, and whether there are distinguishable “interaction” metrics in students’ 

interactions for this specific approach. 

 

b) Further discussion of model and predictors 

First of all, the recommended model (model 4) explains 20.1% of variance. This 

amount of variance is medium as expected (see the recommended thresholds 

in Appendix 3.11.1). However, this is only 1/5 of the variance of the model 

explained. Therefore, it is reasonable to say that we do not seem to get the full 

picture of how students with low and high scores on the “seeking meaning” 

subscale interact with AM during the tutorial sessions. 

In addition, despite the fact that the model is overall significant (see Table 

4.8.3.2 above) and holds reasonably well all the required assumptions, it is 

observed that not all predictors in Model 4 are statistically significant (see Table 

7 in Appendix 4.8.2). The reason for which these predictors were kept is that 

their inclusion would give us a richer insight into students’ interaction in the 

specific subscale. So, the question is: does this “allowance” enrich at least the 

interpretation of the results?   

According to the suggested Model 4, students with a high score on the 

subscale tend to solve more exercises on the first try, but they tend more to 
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solve exercises on the third try, compared to those with low scores. In terms of 

the temporal aspect of interactions, the maximum view time on an exercise 

page increases as the score on the subscale increases as well. It is assumed 

that students with high scores on the subscale who tend to seek meaning for 

achieving personal understanding are more likely to dedicate time to parts of 

the learning material in order to achieve personal understanding, compared to 

those with low scores. However, it is possible that they may experience 

difficulties with a specific group of exercises in a specific page, as there is also 

an aforementioned tendency to solve exercises on the third try, like in a “high” 

surface approach32. 

Other complementary manifestations according to Model 4 of the “seeking 

meaning” subscale concern the use of AM features. With regards to the use of 

TOC, it seems that those with high scores on the subscale tend to use it less in 

order to access the AM pages compared to those with low scores. However, 

this finding is not very enlightening as there are no relationships with regards to 

the use of the other AM navigational tools and the subscale to be able to make 

comparisons.  

Furthermore, with regards to the use of hyperlinks (concept links), it is 

surprising that there is a negative relationship to the subscale, as it was 

originally thought that it is a feature which would help towards achieving further 

understanding of mathematical concepts. Possible reasons for this unexpected 

relationship relate to the influence of prior knowledge and design of the 

hyperlinks, as discussed further in Chapter 5 and Chapter 6. 

In comparison to the suggested Model 4, the leanest and meanest Model 7 

(see Table 10 in Appendix 4.8.4) consists of three predictors: number of 

exercises on first try, maximum view time on an exercise page, and number of 

pages visited using TOC. One could argue that in Model 7, there are no 

predictors with a “controversial” relationship to the subscale such as the number 

of hyperlinks (concept links) visited in reading and exercise pages, and number 

of exercises solved on the third try, hence it provides less enriching but clearer 

interpretation findings. However, with either Model 4 or Model 7 we have the 

same issue: they explain only about 1/5 and 1/6 of the variance of the “seeking 

meaning” subscale, respectively. 

A possible explanation for the unexplained variance can be that metrics such as 

                                                

32 This means students with a high score on the surface scales. 
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number of times “search” option is clicked and number of submitted queries in 

the search option, which were not included because of lack of variation, could 

have contributed to the variance explained by the model (see Table 2 in 

Appendix 4.8.1). It is possible, therefore, that these missing search-related 

interactions can be also responsible for the small variance explained in the 

model. 

Finally, the reason that neither version of the “seeking meaning” model seems 

to give us the full picture, may be that factors such as prior knowledge could 

have influenced the relationship of this subscale with the predictors, and 

particularly the aforementioned unexpected ones. The influence of prior 

knowledge on the subscale is discussed further in the next chapter. 

4.9 The deep subscale “relating ideas” and students’ “interaction” metrics 

4.9.1 Relating ideas – theoretical assumptions 

As discussed in 3.3.2, the “relating ideas” subscale, which is based on Pask’s 

holist learning style, measures the extent to which there is an intention to form 

an overview by exploring topics of what may be known, relating one concept to 

another, and imposing a personal organisation on learning content (Entwistle, 

1997b; Entwistle, 1981; Entwistle et al., 1979; Pask, 1976b).  

During the learning process:  

 In terms of search-related metrics, students with high values on the “relating 

ideas” subscale may access and use more features in an interactive learning 

environment to explore further the relationships between the mathematical 

concepts and procedures, compared to those with low scores. This is also 

reinforced by research in the field of interactive learning environments which 

indicates that students who are characterised as holists (based on Pask’s 

theory) tend to have a preference for hypertext links within the content of a 

subject, exactly because it allows them to find relationships between topics 

(Chen et al., 2016). Since, there is a conceptual link between the holist learning 

style and the “relating ideas” approach, it can be assumed that there can be 

positive relationships between the subscale and the visits to AM features 

(particularly the feature of hyperlinks) which facilitate further exploration of 

learning material and creating links among concepts. This means that there can 

be positive associations between the subscale and the search-related metrics, 

as indicated in 3.4.2. More specifically, there can be positive associations 

between the “relating ideas” subscale and:  
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o number of hyperlinks (concept links) visited in reading and exercise 

pages 

o number of times “search” option is clicked 

o number of submitted queries in search option 

o number of search results visited in search option 

 In terms of performance-related metrics, as it is a deep subscale, which 

expresses an intention to explore and relate concepts to each other, it can be 

assumed that students with high scores on the subscale will do better when 

practising on their exercises during the tutorials, compared to those with low 

scores. This is also reinforced by literature in mathematics education which 

supports that students are not likely to do well if they focus on each procedure 

separately rather than trying to find connections between different parts of 

mathematics (Liston and O’Donoghue, 2009). So, students with a high score in 

the subscale who tend to build up their understanding in maths by relating 

concepts are more likely to do well, compared to those with low scores. 

Therefore, a positive association is expected between:  

o “relating ideas” subscale and number of exercises solved on the first try 

While, there will be negative associations between “relating ideas” and: 

o number of exercises solved on the second try  

o number of exercises solved on the third try  

o number of exercises finished but not solved 

 In terms of temporal metrics, it is possible that students with high scores on the 

“relating ideas” subscale, in an effort to explore and draw relationships between 

concepts and procedures and form their own overview, may dedicate more time 

on average to the AM reading and exercise page or to a specific reading and 

exercise page, compared to those with low scores on the subscale. Similarly to 

what it is discussed in section 4.8.1 with regards to the “seeking meaning” 

subscale, students with high scores on the “relating ideas” subscale are not 

likely to skim through the learning material, but go through it fairly slowly in 

order to build an understanding by drawing relationships between concepts and 

procedures. In other words, what is suggested here is that trying to build up an 

understanding of learning concepts and procedures by looking thoroughly into 

their relationships can be time-consuming. There can be therefore, positive 

associations between the “relating ideas” subscale and:  
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o average view time on exercise pages  

o average view time on reading pages 

o maximum view time on a reading page 

o maximum view time on an exercise page  

 With regards to the metric of number of times the “notes” link is clicked there 

can be an association with the “relating ideas” subscale. According to Einstein 

et al. (1985), there is evidence that note-taking allows students to engage in 

processing such as “relating ideas” to one another or integrating the information 

with one’s existing knowledge. So, it is possible that students with a high score 

on “relating ideas” may access the “notes” link more times with that intention, 

compared to those with low scores. As there are two metrics related to the visits 

to the “notes” feature (see sections 3.4.1 and 3.4.8), the potential positive 

associations are between the “relating ideas” subscale and: 

o number of times “notes” link is clicked 

o average number of times a “notes” link is clicked per page 

4.9.2 Relating ideas – Results on Correlations 

Following the proposed methodology in 3.11 we run correlational analysis to 

identify predictors for the model. There is a statistically significant correlation, as 

expected, between the “relating ideas” subscale and average number of times a 

“notes” link clicked per page with rs=0.180.  

Regarding other metrics, mentioned in section 4.9.1, there are no statistically 

significant relationships. However, the importance of these metrics for the 

“relating ideas” subscale is discussed further in the following section with 

regards to the regression models. 

4.9.3 Relating ideas models: Development, Analysis and Discussion 

In this section, there is a brief discussion on the development of regression 

models for the “relating ideas” subscale and analysis and discussion on the 

results for the selected model version. 

4.9.3.1 Relating ideas - initial selection of predictors 

Table 4.9.3.1 shows briefly that the reasons behind the initial selection of most 

predictors are their theoretical connections to the subscale, that they may 

enrich the discussion, and that they are the best contributors when they are 
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tried in pre-models (see further justification in Appendix 4.9.1).  

Selected Predictor Reason for selection 

Number of exercises solved on 
first try  

Theoretical connections and enriching further the 
discussion 

Number of exercises solved on 
second try 

Number of exercises solved on 
third try  

Number of exercises finished 
but not solved  

Number of hyperlinks 
(concepts links) visited on 
exercise and reading pages 

Maximum view time on an 
exercise page  

Maximum view time on a 
reading page 

Average number of times 
“notes” link is clicked per page 

Statistical (see 4.9.2) 

Table 4.9.3.1. Selected predictors for first version of model. 

As a result, at this stage, Model 1 is the first version for the “relating ideas” 

subscale with all the selected eight aforementioned predictors, which is the 

maximum number of predictors according to the strategy in the methodology. 

4.9.3.2 Relating ideas - development of model 

As previously, the process of improving measures of variance and the overall 

significance starts by excluding specific outliers. This results in increasing the 

variance: from Model 1 with R2 13.4% and Adjusted R2 6.8% to Model 2g with 

R2 25.8% and Adjusted R2 19.9% (see Table 4 in Appendix 4.9.2). 

4.9.3.3 Relating ideas - selection of model 

After excluding the outliers, there is gradual exclusion of predictors, as shown in 

4.9.3.2.  
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 R2 Adj. R2 Sig. Comments 

Model 3 
(exclusion of 
cases 112, 85, 42, 
98, 105, and 84, 
and number of 
exercises solved 
on third try) 

25.2% 20% 
 

0.000 
 

 

In 
comparison 
to Model 2g, 
note how 
Adjusted R2 
increases 
while R2 
gradually 
slightly 
decreases, 
making their 
difference 
smaller. 
 

Model 4 
(exclusion of 
cases 112, 85, 42, 
98, 105, and 84, 
and number of 
exercises solved 
on third try, and 
maximum view 
time on exercise 
page) 

24.1% 19.6% 
 
 

0.000 By running 
the 
regression 
model two 
more times, 
we obtain the 
leanest and 
meanest 
model. Note 
how both R2 
and Adjusted 
R2 decrease. 
 
Model 5 has 
all predictors 
statistically 
significant 
(see 
Appendix 
4.9.4) 
 
 
 
 
Note also 
that all 
models are 
overall 
statistically 
significant 
(p<0.05). 

Model 5 
(exclusion of 
cases 112, 85, 42, 
98, 105, and 84, 
and number of 
exercises solved 
on third try, 
maximum view 
time on exercise 
page, and number 
of hyperlinks 
(concept links) 
visited in reading 
and exercise 
pages) 

22.5% 18.7% 
  
 

0.000 

Table 4.9.3.2. Summary of measures of variance and significance 

In Table 4.9.3.2, we observe that Model 3 is the best solution, as it combines 

simultaneously the highest possible R2 and Adjusted R2. Finally, Model 3 has 7 

predictors with sample size of 109 (after excluding the 6 outliers), which is 

within the thresholds stated in the strategy, in section 3.11. 

4.9.3.4 Relating ideas – Model 3 – Generalisation  

For the selected Model 3 of the subscale, the assumptions are not violated and 
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therefore it is possible to generalise the finding beyond the sample (see the 

assumptions in Appendix 4.9.3). 

4.9.3.5 Relating ideas – Equation 

By selecting Model 3, we can conclude that for both weeks, the “relating ideas” 

is expressed through the predictors: maximum view time on an exercise page, 

maximum view time on a reading page, number of exercises solved on first try, 

number of exercises solved on second try, number of exercises finished but not 

solved, number of hyperlinks (concept links) visited in reading and exercise 

pages, and average number of times a “notes” link is clicked per page. So the 

equation is formed is as follows: 

RelatingIdeasSubcalei = b0 + b1(Number of exercises solved on first try)i -  

b2(Number of exercises solved on second try)i + b3(Number of exercises finished 

but not solved)i + b4(Average number of times a “notes” link is clicked per page)i 

- b5(Number of hyperlinks (concept links) visited in reading and exercise pages)i 

+ b6(Maximum view time on an exercise page)i + + b7(Maximum view time on a 

reading page)i (1) 

If we replace the b values, found in Table 7 in Appendix 4.9.2, in the above 

equation, then we obtain the equation of the fitted regression model: 

RelatingIdeasSubcalei = 13.132 + 0.019(Number of exercises solved on first try)i -  

0.202(Number of exercises solved on second try)i + 0.203(Number of exercises 

finished but not solved)i + 5.789(Average number of time a “notes” link is clicked 

per page)i – 0.138(Number of hyperlinks (concept links) visited in reading and 

exercise pages)i + 0.000415(Maximum view time on an exercise page)i  + 0.001 

(Maximum view time on a reading page)i (2) 

 

4.9.3.6 Relating ideas - interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the “relating ideas” subscale score increases, there is increment on the 

following predictors: 

o number of exercises solved on first try 

o number of exercises finished but not solved 

o average number of times a “notes” link is clicked per page 
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o maximum view time on an exercise page 

o maximum view time on a reading page 

As the “relating ideas” scale score increases, there is a decrease in the 

following predictors: 

o number of exercises solved on second try 

o number of hyperlinks (concept) links visited in reading and exercise 

pages  

It is worth mentioning that the direction of relationships is as expected in the 

initial hypotheses, except from the number of exercise finished but not solved, 

and number of (hyperlinks) concept links visited in reading and exercise pages. 

 

The issue at this point is whether it is possible to explain the “relating ideas” 

approach towards studying based on the combined knowledge of “interaction” 

metrics, and whether there are distinguishable “interaction” metrics in students’ 

interactions for this specific approach. 

b) Further discussion of model and predictors 

First of all, the recommended model (Model 3) explains 25.2% of variance. This 

amount of variance explained is medium as expected (see regarding 

recommended thresholds in Appendix 1). It explains 1/4 of the variance of the 

model explained, which amongst the “deep” recommended models, is the 

highest amount of variance explained.  

In addition, despite the fact that the model 3 is overall statistically significant 

(see Table 4.9.3.2 above) and holds reasonably well all the required 

assumptions, it can be observed that not all predictors in Model 3 are 

statistically significant (see Table 7 in Appendix 4.9.2). The reason for which 

these predictors were kept is mainly because their inclusion would allow for a 

richer insight into students’ interaction with regards to the specific subscale. So, 

the question is: does this “allowance” enrich at least the interpretation of the 

results?   

In the suggested Model 3, the inclusion of all 7 predictors can offer a useful 

insight, if they are examined in a combined way. For example, the factor which 

seems to contribute the most in the model (number of exercises solved on 

second try) is the kind of predictor which helps towards a more insightful 

interpretation, but only when combining it with the predictors number exercises 
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solved on first try and number of exercises solved but not finished. More 

specifically, students with high scores on the subscale tend to solve more 

exercises on the first try and fewer exercises on the second try, but they also 

tend to finish more exercises without solving them (in this way allowing AM to 

give them the answers), compared to those with low scores. Furthermore, the 

maximum view time on an exercise and a reading page increases as the 

“relating ideas” score increases. This could be interpreted as follows: those with 

high scores on the subscale, who tend to relate mathematical concepts to a 

greater degree compared to those with low scores, may spend more time on a 

specific exercise or theoretical page in AM. However, given of the 

aforementioned tendency of not solving exercises at all, this tendency to spend 

an increasing amount of time on specific pages, may be because students 

experience difficulties with their exercises and occasionally “get stuck” on an 

exercise page. 

Other complementary manifestations, according to Model 3 of the “relating 

ideas” subscale, concern the use of AM features: “notes” and hyperlinks 

(concept links). With regards to the “notes” feature, it seems that those with 

high scores on the subscale tend to access it more on average per page, 

compared to those with low scores, which makes sense as those with high 

scores may use it more as a way to relate mathematical concepts, compared to 

those with low scores. On the other hand, with regards to the use of hyperlinks 

(concept links), it is unexpected that there is a negative relationship to the 

subscale (as stated in 4.9.3.1 it is originally assumed that it is a feature which 

would help those with high scores on the subscale towards building 

understanding by relating mathematical concepts). 

In comparison to the suggested Model 3, the leanest and meanest Model 5 

includes the same performance-related metrics. Furthermore, Model 5 also 

shows that the maximum view time with regards to the theoretical aspects of 

the learning material has endured the eliminations, compared to maximum view 

time on exercise pages which has not. With regards to the use of AM features, 

the predictor showing average access per page of the AM “notes” feature has 

also endured in the leanest and meanest model. On the other hand, the use of 

hyperlinks (concept links) has not endured in Model 5; which, considering the 

aforementioned unexpected negative relationship, makes the findings more 

compatible to the theoretical assumptions in 4.9.1. Hence Model 5 provides a 

less enriching, but yet a clearer interpretation in terms of findings, compared to 

Model 3.  
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Finally, for both Model 3 and Model 5 there is a need to discuss possible 

reasons for the unexplained variance of the models. One possible explanation 

for the unexplained variance can be that metrics such as number of times 

search option is clicked and number of submitted queries in the search option, 

which could have contributed in the variance explained by the model, were not 

included because of lack of variation. Another reason can be that a factor such 

as prior knowledge might have influenced the relationship of this subscale with 

its predictors and can be behind the aforementioned unexpected relationships 

(an issue which is discussed in detail in the next chapter). 

4.10 The deep subscale “use of evidence” and students’ “interaction” metrics 

4.10.1 Use of evidence - theoretical assumptions 

The “use of evidence” subscale measures the extent to which students study by 

building up meaning from the details, checking evidence to relate it to 

conclusions, and their preference for a linear sequence in their learning 

(Entwistle, 1997a; Entwistle et al., 1979). Entwistle based this approach to 

studying on research conducted by Pask (1976b) on the serialist learning style. 

Pask (1976) notes the preference of students with such style for step-by-step 

and tightly structured learning. They also tend to master one topic at a time and 

adopt a bottom-up approach in which they pay attention to the low level detail, 

building an overview at a later stage (Entwistle and Hanley, 1977; Riding and 

Cheema, 1991). 

During the learning process: 

 In terms of temporal metrics, it is possible that students with high scores on the 

“use of evidence”, in an effort to master one topic at a time and focus on 

detailed information to build meaning, may dedicate more time on average to 

the AM reading and exercise pages or to a specific reading and exercise page, 

compared to those with low scores. Similarly to what it is discussed in section 

4.8.1 with regards to the “seeking meaning” subscale, students with high scores 

on “use of evidence” are not likely to skim through the learning material, but go 

through it fairly slowly in order to build an understanding by mastering one topic 

at a time regarding a specific mathematical concept or procedure. In other 

words, what is suggested here is that trying to build up an understanding of 

learning concepts and procedures by looking thoroughly into detailed 

information with regards to mathematical concepts can be time-consuming. 



 197 

There can be therefore, positive associations between the “use of evidence” 

subscale and:  

o average view time on exercise pages  

o average view time on reading pages 

o maximum view time on a reading page 

o maximum view time on an exercise page  

 In terms of path metrics, there can be an association with path linearity (i.e. 

stratum). As discussed in 2.4, it can be the case that students with high scores 

on the “use of evidence” subscale tend to prefer a more linear sequence when 

studying the learning content, compared to those with low scores. However, in 

the current investigation this is unlikely to be the case because of the way the 

learning  material is structured in AM, and the tendency for students with a high 

score on “use of evidence” subscale to start building  the meaning of concepts 

based more on detailed information (Entwistle, 1997a), compared to those with 

low scores. Students with a “serialist” approach tend to try to thoroughly 

understand a topic or a sub-section, for example by looking into detailed 

examples, before moving on to the next topic (Hills, 2003). In the current 

investigation, this means those with high scores on the subscale may be 

“forced” to impose their own structure when going through the learning material 

in AM. This is because the learning material in AM is not structured in a way 

which specifically favours a bottom up, “serialist” approach33 (i.e. going from the 

detailed worked examples to more generic theoretical type of learning material). 

So, it can be that those with high scores on the “use of evidence” subscale 

follow a less linear sequence with regards to the learning material in AM, 

compared to those with low scores; hence it is very likely that there is a 

negative association between:   

o “Use of evidence” and stratum 

 In terms of performance-related metrics, theory on studying approaches does 

not specifically state that the specific subscale is related to good performance. 

However, as it is a deep subscale which expresses an intention to build up 

meaning from details and master one topic at a time, it can be assumed that 

                                                

33 It is worth mentioning that it does not favour specifically a top down approach either (i.e. 
going from the generic and theoretical type of learning material to detailed worked examples 
specific type of information). In other words, the structure of the learning material in AM is 
designed in a versatile manner so it favours both approaches. 



 198 

students with high scores on the subscale may do better when practising their 

exercises during tutorials, compared to those with low scores. More specifically, 

there can be positive association between:  

o “Use of evidence” subscale and number of exercises solved on the first 

try  

While there will be negative associations between: 

o “Use of evidence” subscale and number of exercises solved on the 

second try  

o “Use of evidence” subscale and number of exercises solved on the third 

try  

o “Use of evidence” subscale and number of exercises finished but not 

solved 

4.10.2 Use of evidence - Results on Correlations 

There is only one statistically significant correlation between “use of evidence” 

and maximum view time on an exercise page with r=0.180, as expected. 

Regarding other metrics, mentioned in section 4.10.1, there are no statistically 

significant relationships. However, the importance of these metrics for the “use 

of evidence” subscale is discussed further in the following section with regards 

to the regression models. 

4.10.3 Use of evidence models: Development, Analysis and Discussion 

In this section, there is a brief discussion on the development of regression 

models for the “use of evidence” subscale and analysis and discussion on the 

results for the selected model version. 

4.10.3.1 Use of evidence - initial selection of predictors 

Table 4.10.3.1 shows briefly that the reasons behind the initial selection of most 

predictors are their theoretical connections to the subscale, and that they may 

enrich the discussion (see further information in Appendix 4.10.1). 
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Selected Predictor Reason for selection 

number of exercises solved on 
first try  

Theoretical connections and enriching further the 
discussion. 

number of exercises solved on 
second try 

number of exercises solved on 
third try  

number of exercises finished 
but not solved  

Stratum 

maximum view time on a 
content (reading) page 

maximum view time on an 
exercise page 

Statistical (see 4.10.2) 

Table 4.10.3.1. Selected predictors for first version of model. 

As indicated in the methodology, the sample size allows for the inclusion of up 

to 8 predictors and the intention is to take full advantage of this upper limit. After 

examining the potential inclusion of the 9 predictors mentioned in 4.10.1, it was 

decided to include just the seven aforementioned predictors (see further 

justification in Appendix 4.10.1). 

4.10.3.2 Use of evidence - development of model 

As previously, the process of improving measures of variance and the overall 

significance starts by excluding specific outliers. This results in increasing the 

variance: from Model 1 with R2 15.2% and Adjusted R2 9.7% to Model 2h with 

R2 18.3% and Adjusted R2 13.3% (see Table 4 in Appendix 4.10.2). 

4.10.3.3 Use of evidence - selection of model 

After excluding the outliers, there is gradual exclusion of predictors, as shown in 

Table 4.10.3.2 below. 

 

 

 

 

 

 

 

 

 

 



 200 

 R2 Adj. R2 Sig. Comments 

Model 3  
(exclusion of 
cases 36, 111, 35, 
and 94, and 
number of 
exercises finished 
but not solved) 

18.8% 14.1% 
 

0.001 Note how 
Adjusted R2 
increases 
while R2 
gradually 
slightly 
decreases, 
making their 
difference 
smaller. 
 

Model 4 
(exclusion of 
cases 36, 111, 35 
and 94, and 
number of 
exercises finished 
but not solved, and 
number of 
exercises on first 
try) 

18.8% 14.9% 
 
 

0.000 

Model 5 – 
(exclusion of 
cases 36, 111, 35 
and 94, and 
number of 
exercises finished 
but not solved, 
number of 
exercises on first 
try, and maximum 
view time on 
reading page) 

18.7% 15.6% 
  
 

0.000 

Model 6 – 
Leanest and 
Meanest 
(exclusion of 
cases 36, 111, 35 
and 94, and 
number of 
exercises finished 
but not solved, 
number of 
exercises on first 
try, maximum view 
time on a reading 
page, and number 
of exercises 
solved on third try) 

17.1% 14.7% 0.000 By running 
the 
regression 
model one 
more time, 
we obtain the 
leanest and 
meanest 
model with 
all predictors 
are 
statistically 
significant 
(see 
Appendix 
4.10.4) 
 
 
Note also 
that all 
models are 
overall 
statistically 
significant 
(p<0.05). 

Table 4.10.3.2. Summary of measures of variance and significance 

In Table 4.10.3.2, it observed that Model 5 is the best solution as it as it 

combines simultaneously the highest possible R2 and Adjusted R2.  
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4.10.3.4 Use of evidence – Model 5 – Generalisation 

For the selected Model 5 of the subscale, the assumptions are not violated and 

therefore it is possible to generalise the finding beyond the sample (see the 

assumptions in Appendix 4.10.3). 

4.10.3.5 Use of evidence – Equation 

By selecting Model 5, we can conclude that for both weeks, the “use of 

evidence” is expressed through the predictors: maximum view time on an 

exercise page, number of exercises solved on second try, number of exercises 

solved on third try, and stratum. So, the equation, which is formed is as follows: 

UseofEvidenceSubcalei = b0 - b1(Number of exercises solved on second try)i + 

b2(Number of exercises solved on third try)i + b3(Maximum view time on an 

exercise page)i  - b4Stratum (1) 

If we replace the b values, found in Table 7 in Appendix 4.10.2, in the above 

equation, then we obtain the equation of the fitted regression model: 

UseofEvidenceSubcalei = 17.314 – 0.248(Number of exercises solved on second 

try)i + 0.156(Number of exercises solved on third try)i + 0.001(Maximum view time 

on an exercise page)i  - 4.532(Stratum) (2) 

 

4.10.3.6 Use of evidence - interpretation of model parameters 

a) Direction of relationship between predictors and outcome based on b 

values 

As the “use of evidence” subscale score increases, there is increment on the 

following predictors: 

o Number of exercises solved on third try 

o Maximum view time on an exercise page 

As the interest in ideas scale score increases, there is a decrease in the 

following predictors: 

o Number of exercises solved on second try 

o Stratum 

It is worth mentioning that the direction of relationships with regards to the 

temporal metrics are as expected in the initial hypotheses. However, the 
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direction of the relationship with regards to the number of tries when solving 

exercises is not quite as expected in the initial hypothesis (i.e. we were 

expecting a negative relationship to the number of exercises solved on third try).  

 

The issue at this point is whether it is possible to explain the “use of evidence” 

approach towards studying based on the combined knowledge of “interaction” 

metrics, and whether there are distinguishable “interaction” metrics in students’ 

interactions for this specific approach. 

 

b) Further discussion of model and predictors 

First of all, the recommended model (Model 5) explains 18.7% of variance. This 

amount of variance is medium as expected (see the recommended thresholds 

in Appendix 3.11.1). However, this is only a bit less than 1/5 of the variance of 

the model explained. Therefore, it is reasonable to say that we do not seem to 

get the full picture of how students with low and high scores on the “use of 

evidence” subscale interact with AM during the tutorial sessions. 

In addition, despite the fact that the model is overall significant (see Table 

4.10.3.2 above) and holds reasonably well all the required assumptions, it is 

observed that not all predictors are significant (see Table 7 in Appendix 4.10.2). 

The reason for which these predictors were kept is mainly because their 

inclusion would allow for a richer insight into students’ interaction with regards 

to the specific subscale. So, the question is: does this “allowance” enrich at 

least the interpretation of the results?   

The main issue in the suggested Model 5 is that performance-related predictors 

like number of exercises solved on first try, which could give an indication that is 

part of a “deep” approach, have not survived the elimination process, as shown 

previously in Table 7 in Appendix 4.10.2. As to the rest of the performance-

related predictors in Model 5, the direction of their relationships to the outcome 

is not quite as expected, based on the theoretical assumptions in 4.10.1. More 

specifically, students with high scores on the “use of evidence” subscale are 

less likely to solve the exercises on the second try, but more likely to solve them 

on third try, compared to those with low scores.  

With regards to the temporal aspect, the maximum view time on an exercise 

page increases as the “use of evidence” score increases. This could be 

interpreted as trying to building up meaning from details which can be a time-
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consuming task; however, when considering their aforementioned performance, 

it could be just that they “get stuck” on a specific exercise page. Hence, it is 

reasonable to say that the aforementioned findings resemble more the 

interaction of students with high “surface” scores rather than students with high 

“deep” scores.  

There is, however, a distinguishing aspect of interaction with regards to stratum 

and the specific subscale. It seems that students with a high score on the 

subscale tend to follow in a less linear way the given structure of the AM 

material, compared to those with low scores. 

At this point it is also worth mentioning that the leanest and meanest Model 6 

(where all 3 predictors are statistically significant) with the exception of stratum, 

does not really give any indications that it represents part of a deep approach. 

This is because the elimination of the predictor number of exercises solved on 

third try does not allow for comparisons to the predictor number of exercises 

solved on second try.  

However, the issue of unexplained variance still remains for both models, hence 

there is a need to explore whether a factor such as prior knowledge can explain 

further the variance of the model and the aforementioned unexpected 

relationship.  

 

 

This chapter indicates which models allow for a richer insight into students’ 

interaction with regards to the specific subscale, and in which models there is a 

need to explore further reasons for unexplained variance and unexpected 

relationships between the scales and the “interaction” metrics. In the next 

chapter, the intention is to use these insights in order to make comparisons 

between the deep and surface scales, determine which “interaction” metrics are 

better predictors for deep and surface approaches towards studying for the 

current and future studies, and explore further the influence of prior knowledge 

in the models. 
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Chapter 5 - General Discussion 

In this chapter, following the analysis and discussion of each individual “deep” 

and “surface” model, the purpose is to summarise the findings and draw 

conclusions which will facilitate comparisons amongst the models. More 

specifically, the intention is to examine the variance explained and the 

contribution of the predictors in both the suggested and the leanest versions of 

the models. Furthermore, there is a discussion regarding the predictors and 

their contribution across all models. There will also be an effort to explain the 

unexplained variance of the models; hence there is further analysis and 

discussion with regards to the role of prior knowledge and whether it can 

increase the unexplained variance.  

5.1 General discussion on Surface Scales 

5.1.1 Surface Scales - size effects and variance explained according to 

expectations 

The model which explains the most variance concerns the main “surface” scale, 

with R2 at 45.5% and Adjusted R2 at 41.8%. In comparison, the models with the 

least variance are with regards to the “syllabus boundness” subscale with at R2 

21.6% and Adjusted R2 at 17.1%, and “lack of purpose” with R2 at 21% and 

Adjusted R2 at 18%. The results for variance explained are summarised in a 

table in Appendix 5.1.  

In terms of our expectation for a medium effect size f2 and explained variance 

R2, the expectations are met. The summarised results, in the table of Appendix 

5.1, indicate that all the models have an effect size f2 above the medium 

threshold of 0.15, and that the variance explained R2 is above the medium 

threshold of 13.04%. In fact, the models representing the scales of the “surface” 

“fear of failure” and “unrelated memorising” approaches are considered, 

according to the thresholds indicated in section 3.11.3, to have large effect 

sizes f2 since their values are above 0.35, and large variance explained R2, 

since their values are above 25.92%. The other two surface scales, “lack of 

purpose” and “syllabus boundness” have the expected medium effect sizes and 

variance explained. 

It is also worth mentioning that the results indicate that the Adjusted R2 of the 

models for the “surface” scales (see Appendix 5.1), which shows the shrinkage 

of the explained variance, also meets the expectations for medium variance 
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explained. The Adjusted R2 ranges from 17.1% for “syllabus boundness” (which 

is above the threshold of medium variance explained) to 41.8% for “surface” 

scale (which is above the threshold of large variance explained). In other words, 

if we were to apply the model in a different sample, then the variance explained 

would be expected to range between medium and large. Considering the 

expectations for medium effect sizes and variance explained, these findings are 

rather positive in terms of generalisability. 

Despite the fact that expectations are met in terms of effect size and variance 

explained, there is still close to half, or more for some of the “surface” models, 

unexplained variance. Moksony (1990) supports that independently of the 

variance explained, a model should be judged in terms of its theoretical 

reasoning, as a model relies on a theory. In the current investigation, there were 

initial theoretical assumptions, the majority of which were reflected in the 

models, as shown during the development and the discussion of the “surface 

models” in Chapter 4. So, the “surface” models do make sense according to the 

initial theoretical expectations and they do give useful information, as discussed 

in Chapter 4. However, as indicated in the individual discussion of the models, 

especially with regards to the models of “lack of purpose” and “syllabus 

boundness”, there is close to 4/5 of variance unexplained. In Chapter 4, the 

author mentioned as a possible reason the influence of prior knowledge, an 

issue which is discussed in greater detail in section 5.5. There can, however, be 

other reasons for the unexplained variance with regards to the metrics, as 

discussed in the following section.  

5.1.2 Possible reasons for the unexplained variance 

First, in terms of the models representing the “surface” approaches to studying, 

the unexplained variance may be due to the fact that a certain group of 

temporal metrics which relate to both “reading” (i.e. theoretical) and “exercise” 

pages of the learning material in AM do not capture certain subtleties in terms 

of students’ interactions. For example, temporal metrics in terms of the “reading” 

pages can be more indicative in terms of: basic definitions (e.g. definition of 

function); advanced concepts (e.g. scalar multiplication); theoretical examples; 

and worked examples. In this way, it is possible to know whether students with 

high scores on a specific “surface” scale tend to spend more time on a specific 

type of theoretical page, compared to those with low scores. 

Secondly, in order to ensure stronger contributions (i.e. higher beta values), 

another possibility is to attach more educational meaning to temporal and 
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performance-related metrics by indicating the level of difficulty of the exercises. 

In terms of temporal metrics for exercise pages, considering the level of 

difficulty concerns especially the models representing the surface scales of 

“syllabus boundness”, “surface” and “fear of failure”, where temporal metrics 

with regards to the “exercise” pages contribute in both the suggested and the 

leanest versions of the models, as shown Appendix 5.3. This suggestion can 

also help enrich the findings with regards to the model of “unrelated 

memorising”, where the metric of average view time on exercise pages is 

correlated to the subscale initially (see section 4.2.2), but it is excluded from the 

suggested version of the model, due to its insignificance and weak beta value.  

Furthermore, the level of difficulty is an element which can be introduced in all 

performance-related metrics, as a way to strengthen even more their 

contribution to the “surface” scales. For example, it could enrich further the 

findings if it was possible to know whether the exercises, which are not solved 

on first try, have a basic, medium or advanced level of difficulty.  A model that 

could possibly benefit from this is the one representing the “lack of purpose” 

studying approach. For example, level of difficulty might have helped to indicate 

in the leanest version of the model, whether students with a high score on the 

subscale are more likely not to solve exercises on first try with a medium or 

advanced level of difficulty compared to those with a low score34. 

However, this suggestion only makes sense if the learning material is quite 

varied in terms of difficulty. In the current investigation, it is possible that the 

level of difficulty of the learning material in AM is not varied enough to capture 

better specific students’ interactions in certain aspects and this might have 

affected the contribution of certain predictors in specific models. For example, 

with regards to the model of the “syllabus boundness” studying approach, the 

low beta values of certain predictors may be due to the fact that the exercises in 

the specific module do not require knowledge beyond the syllabus. More 

specifically, the variation in the predictor compactness could be increased, if the 

exercises required further knowledge and had a more varied level of difficulty. 

In this way, the contrast between those who explore further concepts –and 

conduct a more extensive path- possibly to solve more advanced exercises, 

and those would perform a more compact path, would manifest itself more 

intensely.  

                                                

34 As it is, the metric of number of exercises solved on first try is eliminated in the leanest and 
meanest version (see Appendix 5.3). 
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So, level of difficulty is an element which has the potential to add further 

educational meaning and increase the contribution of temporal, performance-

related and path-related metrics. More specific recommendations with regards 

to what improvements can be made in terms of data capture are discussed 

further in 6.2. 

5.1.3 A summary on the inclusion of predictors 

In this section, the intention is to summarise the conclusions with regards to the 

inclusion of all predictors across all suggested versions of the “surface” scales, 

as indicated in sections 4.1-4.5. Table 5.1.3.1 below shows a summary of all 

the included predictors across all suggested versions of the “surface” models. 

Scale 
 
 
 
 
 
R2/ 
Adjusted R2 

Unrelated 
Memorising 
(based on 
Model 6) 
 
 
40%/ 
37.7% 

Syllabus 
Boundness 
(based on 
Model 4) 
 
 
21.6%/ 
17.1% 

Lack of 
purpose 
(based 
on 
Model 4) 
 
21%/ 
18% 

Fear of 
Failure 
(based 
on 
Model 4) 
 
41.6%/ 
39.4% 

Surface 
(based 
on 
Model 3) 
 
 
45.5% 
/41.8% 

Number of exercises 
solved on first try 

(-) (-) (-) (-) (-) 

Number of exercises 
solved on third try 

 (+) (+) (+) (+) 

Number of exercises 
finished but not solved 

(+)  (+)  (+) 

Number of exercises 
cancelled 

 (+)    

Average number of times 
a ‘notes’ link is clicked per 
page 

(+)     

Compactness (+) (+)   (+) 

Maximum view time on 
content (reading) page 

   (-) (-) 

Average view time on 
content (reading) pages 

 (+)    

Maximum view time on 
exercise page 

   (+) (+) 

Minimum view time on 
exercise page 

 (-)    

Relative amount of 
revisits 

  (+)   

Number of hyperlinks 
(concept links) visited in 
reading and exercise 
pages 

    (+) 

Table 5.1.3.1. A summarised table of all predictors in the suggested versions of the “surface 
models” (Note: the “(+)” indicates a positive relationship between predictor and scale and the “(-
)” indicates a negative relationship between predictor and scale according to the signs of b and 
beta values). 

 More specifically, with regards the metrics included in the “surface” models, the 

following general observations can be made: 
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a) Performance-related predictors 

With regards to performance-related metrics, Table 5.1.3.1 shows that the 

metric of number of exercises solved on first try is included in all “surface” 

scales. The other performance-related metric, which is included in all models 

except the one of the “unrelated memorising” subscale, is number of exercises 

solved on third try. It is followed by the metric of number of exercises finished 

but not solved, which is included in 3 out of the 5 “surface” models; and the 

metric of number of exercises cancelled which is included only in the model of 

the “syllabus boundness” subscale.  

The performance-related metrics have the expected direction, according to the 

initial theoretical assumptions, with regards to the “surface” scales, which also 

consistent across all the “surface” models. Furthermore, the strength of this 

type of metrics is when they are interpreted in a combined way, as they can 

allow for comparisons, which help to give a clear picture about whether a 

student does well or not with the exercises during the tutorial sessions. For 

example, students with high “surface” scores are less likely to solve the 

exercises on first try and more likely to solve exercises on third try or not at all, 

compared to those with low scores. The key predictor, however, seems to be 

the metric of number of exercises solved on first try. This is because its 

consistently negative relationship across all “surface” models facilitates 

interpretation, as it allows meaningful comparisons to the other performance-

related predictors; and this can lead to flagging up a high “surface” approach 

either to a tutor or in an intelligent interactive learning environment. 

b) Temporal predictors 

Temporal metrics seem to play a role but not across all the “surface” models. It 

seems that the maximum view time on exercise page and maximum view time 

on content page are relatively more important compared to the equivalent 

average view times, since they contribute to two of the scales: the “fear of 

failure” subscale and the main “surface” scale. With regards to maximum view 

time on exercise page, when comparing to the metric of average view time on 

exercise pages, this can be because it may help to capture more extreme 

interactions like experiencing problems with a specific group of exercises on a 

specific page, thus working much slower. This type of interactions particularly 

relates to anxiety but also to the more general surface approach to studying. 

Furthermore, with regards to maximum view time on content page, its negative 

relationship to the “surface” scales means that temporal interactions change 

with regards to the theoretical pages of the learning material. The reason for not 
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having increasingly extreme interactions, as the scales increase, can be that 

they are simply anxious to get on with the practical part; or that they are helped 

by the tutor with explanations regarding the theory.  

With regards to minimum view time on exercise page and average view time on 

content pages, these seem to help only in the interpretation of the “syllabus 

boundness” model. An increasing score on “syllabus boundness” scale is linked 

to a decreasing minimum time for a specific exercise page and increasing 

average on time spent on the “theoretical” pages. This means that those with 

high scores on the subscale may spend on average more time on theory, but in 

terms of exercises they tend to spend time only on what they consider relevant 

to the requirements of the current task (i.e. spending the minimum possible time 

on a specific exercise page which they consider less relevant). 

Finally, the students’ interactions with regards to “unrelated memorising” and 

“lack of purpose” do not seem to be influenced by any temporal metrics in the 

suggested versions of the models. With regards to the “unrelated memorising” 

scale, despite the initial theoretical and empirical relevance, average view on 

exercise pages did not survive the exclusion process; whereas for “lack of 

purpose” there was no theoretical or empirical evidence for potential inclusion. 

c) Revisitation predictor 

Relative amount of revisits was expected to contribute to the “unrelated 

memorising” subscale, as there was both theoretical and empirical evidence 

(see sections 4.2.1 and 4.2.2). However, it survives the exclusion process only 

for the “lack of purpose” subscale. As discussed further below, this is still quite 

useful, as it gives a distinguishing aspect of the specific approach.  

d) “Compactness” predictor 

The characteristic of the path, which concerns how compact it is, also seems to 

contribute to most “surface” models. Compactness contributes, as expected 

according to the theoretical assumptions, to most “surface” subscales: 

“unrelated memorising”, “syllabus boundness” and the main “surface”. Its 

consistently positive relationship to the scales adds a distinguishing aspect to 

the models of the surface approaches towards studying. 

The question at this point is whether the suggested versions of “surface” 

models have distinguishing aspects which can help towards identifying them as 

surface approaches to studying. More specifically: 
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 Lack of purpose model, besides the combined performance-related metrics, is 

the only model to include the metric representing the revisitation of pages in the 

AM learning material.  

 Syllabus boundness model, besides the combined performance-related 

metrics and compactness, is the only one which includes the metric 

representing the cancellation of exercises.  

 Fear of Failure model, besides the combined performance-related metrics, 

includes temporal metrics whose relationships to the subscale offer an 

interesting contrast: the maximum view time on reading page has a negative 

relationship to the subscale; while the maximum view time on exercise page 

has a positive one. 

 Unrelated memorising model: besides the combined performance-related 

metrics, another distinguishing aspect is provided by the metrics of 

compactness. Otherwise, it is the only “surface” model to include an initially 

unexpected metric: accessing the AM “notes” feature. At first glance, this might 

not make sense theoretically. Note-taking requires a significant degree of 

cognitive effort (Piolat et al., 2005), which is usually considered part of a deep 

approach to studying. However, it is possible that during the tutorial sessions, 

the AM notes feature is used differently, as a text-copying technique (for results 

or parts of theory) to reproduce knowledge, rather as a note-making which 

leads to comprehension. Indeed observations in class showed some students 

used it for copying and pasting text or simply for recording the solutions –a note 

taking technique which does not lead to deeper understanding (Katayama et al., 

2005). 

The overall picture we get in section 5.1 is that the metrics which survived the 

elimination process during the development of the models give a useful insight 

and a quite distinguishing picture of students’ interactions with regards to 

“surface” approaches towards studying. More specifically, it is not just that there 

are distinguishing aspects in some models (i.e. predictors such as relative 

amount  of revisits, and number of exercises cancelled), it is also that we do get 

an overall picture which allow us to distinguish those with high scores on the 

subscales through their interactions in AM during the tutorial sessions, since 

they reflect reasonably well initial expectations. 

In Chapter 6, there is further discussion as to the pedagogical implications of 

these findings and specifically whether a surface approach can be identified 

and discouraged. 
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5.2 General discussion on Deep Scales 

5.2.1 Deep Scales - size effects and variance explained according to 

expectations 

The model that explains the most variance concerns the “relating ideas” 

subscale, with R2 at 25.2% and Adjusted R2 at 20%. In comparison, the model 

with the least variance is the one for the “interest in ideas” subscale with R2 at 

15.7% and Adjusted R2 at 11.6%. The results for variance explained are 

summarised in table in Appendix 5.1.  

In terms of our expectation for a medium effect size f2 and explained variance 

R2, the expectations are met. The summarised results in the table in Appendix 

5.1 indicate that all the models have an effect size f2 above the medium 

threshold of 0.15, and variance explained R2 above the medium threshold for of 

13.04%. It is also worth mentioning that none of the “deep” models have large 

effect size or large variance like the “surface” models.  

It is also worth mentioning that the results (see Appendix 5.1) indicate that the 

Adjusted R2 of the models for the “deep” scales, which shows the shrinkage of 

the explained variance, also meets the expectations for medium variance 

explained. The exception is the model for the “interest in ideas” subscale with 

Adjusted R2 at 11.6%. The Adjusted R2 for the other subscales ranges from 

14.4% for the “deep” model to 20% for the “relating ideas” subscale (see 

Appendix 5.1), which according to the thresholds indicated in section 3.11.3 is 

considered medium variance. This means that, if we were to apply the model in 

a different sample, then it would be possible to achieve medium a variance 

explained R2.  

Despite that most expectations in terms of effect size and variance explained 

are met, there is between 74.8% and 80% of variance which is unexplained in 

the models. This is an issue which is discussed in the following sections. 

However, it is also reasonable to discuss whether the findings with regards to 

the “deep” models make sense theoretically, as independently of the variance 

explained a model should be also judged in terms of its theoretical reasoning 

(Moksony,1990). For example, a theoretical issue that needs to be examined in 

relation to the deep scales is prior knowledge in relation to the deep scales and 

particularly in relation to the scale of “interest in ideas” (whose model has the 

lowest R2 and Adjusted R2).  
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5.2.2 Possible reasons for the unexplained variance 

Starting with the model with the lowest variance which represents the “interest 

in ideas” subscale, there could be various reasons for the unexplained variance. 

Based on the theory, the “interest in ideas” approach is linked to intrinsic 

interest, syllabus freedom and independent thinking (Entwistle, 2001). 

According to Brophy (2010), to encourage and maintain the interest in subject, 

there is a need to “provide opportunities to make choices deciding what to do 

and to exercise autonomy in doing it”.  There is certainly an effort to design AM 

in this way, by giving students the navigational options (i.e. TOC) to choose 

which topics to engage with and in what order; providing hyperlinks to visit 

concepts; and providing a “search” feature to explore further mathematical 

concepts and procedures beyond the given learning material in AM (in Google, 

Wikipedia and MathWorld). However, all the search-related metrics, such as 

number of times “search” option is clicked, number of submitted search queries, 

and number of results visited in “search” option, produced very little data. It 

seems that the students did not use the search option, hence these metrics 

could not be used as predictors in the models because of lack of variation, as 

indicated in Chapter 4. There are possible reasons for the lack of use. Brophy 

(2010) suggests that there should be emphasis on the curriculum content and 

on learning activities that connect with students’ interests. There was certainly 

an effort to consider this when adjusting the AM design to suit the purposes of 

this study35. 

However, it seems that the search-related options are not emphasized visually 

at least enough in order to attract students’ attention, or they are not 

emphasized when they are most needed (for example, when student spends an 

enormous amount of time on a specific exercise page with a specific group of 

exercises). To conclude, the lack of search-related interactions may result in 

weak manifestation of the specific approach; subsequently, the lack of these 

search-related predictors in the model can be responsible for part of the 

unexplained variance. 

In addition, the unexplained variance in the model “interest in ideas” might be 

due to the influence of prior knowledge. Tobias (1994) indicates that the effects 

of interest in a subject account for less variance than those attributable to prior 

                                                

35 The author made changes on the standard AM design to emphasise the search feature, by 
placing, for example, the search link at the top menu (prior to this it was hidden inside the 
“dictionary” feature) 
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knowledge. For example, it can be the case that the elimination of predictor 

number of exercises solved on first try from the suggested version of the model, 

based on its weak beta value, is due to the influence of prior knowledge (i.e. low 

prior knowledge may influence in a negative way the number of exercises 

solved on first try for those with higher scores on the subscale or high prior 

knowledge may influence in a positive way the specific metric for those with 

lower scores on the subscale). 

With regards to the “relating ideas” and “seeking meaning” models, the initial 

theoretical assumptions again are that students may use features such as the 

search option in AM to find and explore further the relationships between the 

mathematical concepts. As discussed previously, students did not use the 

search option. So again, the lack of search-related interactions may result in 

weak manifestation of the specific approaches; subsequently, the lack of these 

search-related predictors in the models can be responsible for part of the 

unexplained variance.   

Furthermore, lack of a stronger contribution of the number of exercises solved 

on first try can also explain part of the unexplained variance in models of 

“seeking meaning”, “relating ideas” and “deep” scales. Again, it is possible that 

prior knowledge might have influenced the contribution of this predictor in these 

models (i.e. low prior knowledge might influence in a negative way the number 

of exercises solved on first try for those with the higher scores on the subscale, 

or high prior knowledge may influence in a positive way the specific metric for 

those with lower scores on the subscale). 

Finally, with regards to the “use of evidence” model, lack of a stronger 

contribution of the predictor stratum can be a reason for part of the unexplained 

variance. It is worth mentioning that the contribution of the stratum depends on 

the way the learning material in AM is structured. For example, the less the 

structure suits those with high scores on the “use of evidence” subscale, the 

more they are forced to follow a non-linear path compared to those with low 

scores, and the more variation across the “use of evidence” scores there will be 

in the metric of stratum36. Furthermore, the absence of the predictor number of 

                                                

36 Saying this, there is no suggestion that the structure of the material should be changed to suit 
less those with higher scores on the use of evidence scale (on the contrary, later on in 5.2.1 the 
author makes a case for designing a versatile ILE). The author simply points out that stratum 
would have more variability and therefore more contribution to the model if the learning material 
was structured in a way that would force those with high scores to follow a path with even 
greater non-linearity.  
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exercises solved on first try can be another reason for the unexplained variance 

of the model. Again, this could be due to the influence of prior knowledge (i.e. 

low prior knowledge might influence in a negative way the number of exercises 

solved on first try for those with the higher scores on the subscale, or high prior 

knowledge may influence in a positive way the specific metric for those with 

lower scores on the subscale). 

5.2.3 A summary on the inclusion of predictors 

In this section, the intention is to summarise the conclusions with regards to the 

inclusion of all predictors across all suggested versions of the “deep” scales, as 

indicated in sections 4.6-4.10. Table 5.2.3.1 below shows a summary of all the 

included predictors across all suggested versions of the “deep” models. 

Scale 
 
 
 
 
 
 
R2/ 
Adjusted R2 

Seeking 
Meaning 
(based on 
Model 4) 
 
 
 
20.1%/ 
15.5% 

Relating 
Ideas  
(based on 
Model 3) 
 
 
 
25.2%/ 
20% 

Interest 
in Ideas  
(based 
on 
Model 
4) 
 
15.7%/ 
11.6% 

Use of 
evidenc
e  
(based 
on 
Model 5) 
 
18.7%/ 
15.6% 

Deep 
(based 
on 
Model 4) 
 
 
 
18.3%/ 
14.4% 

Number of exercises solved 
on first try 

(+) (+)   (+) 

Number of exercises solved 
on third try 

(+)  (-) (+)  

Number of exercises solved 
on second try 

(-) (-) (-) (-) (-) 

Number of exercises finished 
but not solved 

 (+) (+)  (+) 

Stratum    (-)  

Maximum view time on 
exercise page 

(+) (+) (+) (+) (+) 

Maximum view time on a 
content (reading) page 

 (+)    

Average view time on 
exercise pages 

  (+)   

Number of pages visited 
using the TOC 

(-)     

Number of hyperlinks 
(concept links) visited in 
reading and exercise pages 

(-) (-)    

Average number of times 
notes link is clicked per page 

 (+)   (+) 

Table 5.2.3.1. A summarised table of all predictors in the suggested versions of the “deep” 
models (Note: the “(+)” indicates a positive relationship between predictor and scale and the “(-)” 
indicates a negative relationship between predictor and scale according to the signs of b and 
beta values). 

More specifically, with regards the metrics included in the “deep” models, the 

following general observations can be made: 
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a) Performance-related predictors 

With regards to the performance-related metrics, Table 5.2.3.1 shows that the 

metric number of exercises solved on second try is included in all “deep” scales, 

and also its relationship to the deep scales is also consistently negative. 

However, it is the type of “performance-related” predictor which on its own 

cannot say much regarding the performance of the students.  The predictor 

number of exercises solved on first try can help in this, as it has the expected 

positive relationship to the “deep” scales, but it contributes only to 3 of the 

“deep” scales: “seeking meaning”, “relating ideas” and “deep”. Furthermore, the 

predictor number of exercises finished but not solved has a consistent but 

unexpected positive relationship to the deep scales. In addition, the predictor 

number of exercises solved on third try has the expected negative relationship 

but only for the “interest in ideas” subscale; it has a negative relationship to the 

“seeking meaning” and “use of evidence” subscales.  

Now, if we examine the performance-related predictors for each deep scale, 

then in “seeking meaning”, “relating ideas” and “deep” scale, the inclusion of 

number of exercises solved on first try offers some sort of clarity in that it 

supports the initial general assumption that those with high scores on the deep 

scales tend to perform better compared to those with low scores. However, in 

the “use of evidence”, and “interest in ideas” deep scales, those with high 

scores do not seem to perform better compared to those with low scores. More 

specifically, those with high scores on the “use of evidence’” scale are more 

likely to solve exercises on third try and not on second try compared to those 

with low scores; and those with high scores on the “interest in ideas” scale are 

more likely not to solve exercises at all and less likely to solve exercises on 

second and third try, compared to those with low scores. 

It is therefore reasonable to conclude that the performance-related metrics do 

not give a very clear overall pattern for the “deep” scales, or even the expected 

outcome for two of the subscales in terms of how students do when solving 

exercises during their tutorial sessions.  

A reasonable question at this point is whether these findings contradict the 

general initial theoretical assumption that the main deep scale indicates a 

positive relationship to performance. Entwistle and Peterson (2004) support that 

the deep approach is linked to positive academic performance, but this is more 

likely to happen when the tasks require a deep level of understanding. In other 

words, it could be that the practical tasks and in general the level of difficulty of 

exercises during the tutorials simply do not require a deep level of 
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understanding. This is reinforced by the recorded notes of students, especially 

with regards to the “functions and graphs” exercises 37 . For example, they 

commented on the level of difficulty for “real function” exercises with comments 

such as: “tooo easy…”,  “answer is eeeeeeeesy -1”, or  “i know…so calm down 

it’s very basic”.  

Therefore, while there are no overall clear patterns with regards to the 

performance-related metrics and deep scales, as there are in the surface scales, 

the findings reflect other observations made in other educational contexts. 

b) Temporal predictors 

Temporal metrics such as the maximum view time on exercise page seem to 

make a contribution as they are included in all “deep” models and have a 

consistently positive relationship with all of them. It was initially assumed that 

students who tend to seek meaning for achieving personal understanding make 

an effort to relate concepts, try to construct understanding based on details, 

and have an intrinsic interest, are thus likely to dedicate more time studying 

specific pages of the learning material, compared to those who do not have 

these tendencies. However, it can be simply that those with high scores in deep 

scales may experience difficulties with a specific group of exercises, as across 

the high scores of the deep scales there are tendencies to not solving exercises 

at all or solving them on the third try. Similar interpretations can be made for the 

positive relationship between average view time on exercise pages and the 

“interest in ideas” subscale.  

To conclude, maximum view time and average view time on exercise pages can 

help to explain interactions with regards to a deep approach. However, since 

their positive relationships to the deep scales may be interpreted as those with 

high scores experiencing difficulties with the exercises,  these type of metrics 

do not really offer a distinguishing aspect. This is reinforced by the fact that 

some surface scales have also a positive relationship with the maximum view 

time on exercise page. 

With regards to the maximum view time on a reading page, there is a positive 

relationship to “relating ideas” scale, as expected. For those with high scores on 

the subscale, this can be interpreted as trying to relate more mathematical 

concepts, compared to those with low scores, or again that they are likely to 

                                                

37 Students used the “public” option of the AM “notes” feature to comment on the difficulty of the 
exercises. 
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experience more difficulties understanding a specific procedure or concept 

(given that there is a tendency for not solving exercises at all). However, it is 

worth mentioning that maximum view time on a content page differs with 

regards to the direction of its relationship between deep and surface scales (i.e. 

it has a positive relationship to the “relating ideas” scale, but a negative 

relationship to the “fear of failure” and main “surface” scales).  

c) “Number of hyperlinks (concept links) visited in reading and exercise 
pages” predictor 

With regards to the number of concept links visited in reading and exercise 

pages, there is an unexpected, according to the initial theoretical assumptions, 

negative relationship to “seeking meaning” and “relating ideas” scales. It seems 

that the use of concept links in AM does not help towards encouraging deep 

approaches such as “seeking meaning” and “relating ideas” towards studying. 

However, it is worth mentioning that the metric differs with regards to the 

direction of its relationship between deep and surface scales (i.e. it has a 

negative relationship to “relating ideas” and “seeking meaning” subscales, but a 

positive relationship to the main “surface” scale).  

d) “Average number of notes links is clicked per page” predictor 

The metric representing the access in the AM “notes” feature has the expected 

positive relationship to the “relating ideas” and the main deep scale. However, it 

is worth mentioning at this point that its relationship has the same direction as 

the “unrelated memorising” subscale. It seems that note-taking features in an 

interactive learning environment such as AM can be used as a “copying” 

strategy for over-rehearsing, as well as note-making to improve understanding. 

Also, based on observations, some students used it to ask for help, so it is 

possible that those with “high” scores on the “unrelated memorising” subscale 

might have used it more to seek help from fellow students (see Appendix 6.1).  

e) “Stratum” predictor 

With regards to the stratum, its negative relationship to the “use of evidence” 

scale reveals the tendency for the students with high scores on the subscale to 

impose their own structure. In the current investigation, this makes sense as the 

learning content, especially the theoretical part, in AM is structured in a versatile 

way (i.e. the concepts and procedures are presented both in an inductive way 

by starting from the detailed worked examples and leading to more theoretical 

and generic examples; and in a deductive way by starting from more theoretical 

generic examples and leading to detailed worked examples or by including 
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summaries of procedures or operations 38(see structure of theory in AM in 

Appendix 5.4).  

So, this metric can offer a distinguishing aspect in terms of students’ interaction 

with regards to this studying approach, but, at the same time, as discussed in 

5.1.3, its variability and relationship to the “use of evidence” scale really 

depends on the way the learning material is structured in an ILE. For example, 

if the learning environment suits both those who tend to build up meaning from 

the details in a quite inductive manner, and those who tend to build up meaning 

from an overview of what may be known in a quite deductive manner (that is if it 

is structured in a versatile way39), then a tendency to follow a more non-linear 

path should be expected for those with higher scores on the “use of evidence” 

subscale compared to those with lower scores.  

f) “Number of pages visited using the TOC” predictor 

With regards to the number of pages visited using the TOC, its negative 

relationship to the “seeking meaning” subscale is not particularly enlightening, 

as mentioned in section 4.8.3.6. This is also reinforced by the fact that it is a 

predictor which is not involved in any suggested versions of deep and surface 

models, to allow for some potential useful comparisons. 

 

The question at this point is whether the suggested versions of “deep” models 

have distinguishing aspects which can help towards identifying them as deep 

approaches to studying through students’ interactions. More specifically: 

 The “deep” model includes the predictor number of exercises solved on first 

try, which can mainly offer a distinguishing aspect with regards to the deep 

approach towards studying.  

 The “seeking meaning” model primarily includes the predictor number of 

exercises solved on first try, which can mainly help towards identifying it as part 

of the deep approach towards studying. 

                                                

38 As discussed in 2.3, in other empirical studies an inductive type of structure has been also 
described as “depth-first” or “bottom-up”; while a deductive type of structure is described as 
“breadth-first” or “top-down”.  

39 It is worth mentioning here that the author makes a case for a versatile ILE, later on in section 
5.2.1, based on Pask’s (1976a, 1976b) theory of “versatile” learners. 
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 The “relating ideas” model includes the predictors number of exercises 

solved on first try and maximum view time on a content page, which can mainly 

help towards identifying it as part of the deep approach towards studying. 

 The “use of evidence” model includes primarily one predictor, which may give 

a distinguishing aspect: stratum.  

 The “interest in ideas” model includes predictors which do not seem to offer 

distinguishing aspects for a subscale which is considered part of the deep 

approach towards studying. 

The overall picture we get in section 5.2 is that the metrics which survived the 

selection process during the development of the “deep” models give some 

insight, but do not quite give an overall distinguishing picture of the deep 

approaches towards studying. More specifically, there are some isolated 

distinguishing aspects in most of them, however overall we get a rather mixed 

picture which does not really serve towards distinguishing those with high 

scores on the subscales through their interactions in AM during the tutorial 

sessions, since most of their interactions seem to resemble more those with 

high scores on the “surface” scales.  

In Chapter 6, there is further discussion as to the pedagogical implications of 

these findings, specifically: whether the deep approach is easy to capture at 

first place (and if not why not); to what degree the deep approach can be 

encouraged based on the use and design of an interactive learning 

environment alone; and whether these findings contradict or reinforce what it is 

known about deep approaches. 

5.3 Comparisons between deep and surface scales 

In this section the intention is to make comparisons between the deep and 

surface scale and with regards to their variance and size effects. 

5.3.1 Contribution on deep and surface scales according to beta values 

In sections 5.1.3 and 5.2.3, certain indications have been given as to which 

predictors seem to play an important role in the models. To obtain further 

understanding with regards to this aspect, it is worth examining the 

contributions of predictors across surface and deep models, according to their 

beta value, as shown in table 5.3.1.1.  
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Scale Highest Contributing Predictor Beta value (expressed in 
absolute values) in 
suggested versions of 
models 

Fear of failure Number of exercises solved on first 
try 

0.440 

Lack of purpose Relative amount of revisits 0.275  

Syllabus boundness Minimum view time on exercise 
page 

0.253 

Unrelated 
memorising 

Number of exercises solved on first 
try 

0.512 

Surface  Number of exercises solved on first 
try 

0.435 

Deep  Number of exercises solved on 
second try 

0.326 

Interest in ideas Number of exercises finished but 
not solved 

0.385  

Relating ideas Number of exercises solved on 
second try 

0.360 

Seeking meaning Maximum view time on exercise 
page 

0.297  

Use of evidence Number of exercises solved on 
second try 

0.405 

Table 5.3.1.1. A summary of the predictors with the highest contribution per model, based on 
the beta values. 

Starting with the “surface” models, the highest contributing predictor for “fear of 

failure”, “unrelated memorising” and “surface” models is the number of 

exercises solved on first try. This along with the fact that it is a predictor which 

contributes to all “surface” models and three of the “deep” models, and offers a 

distinguishing aspect, makes it an important predictor for future 

recommendations. 

Furthermore, the highest contributing predictor for the “lack of purpose” model 

is the relative amount of revisits. This, in combination with the fact that this 

predictor gives a distinguishing aspect in this subscale, means that revisitation 

of learning material is the most important element in this approach towards 

studying and a predictor which can be recommended for similar future studies. 

With regards to the “syllabus boundness” model, the highest contributing 

predictor is the minimum view time on exercise page, and this in combination 

with the fact that it gives a distinguishing aspect to the subscale, makes it also a 

good recommendation for future studies. 

Amongst the deep scales, the highest contributing predictor for “deep”, “relating 

ideas” and “use of evidence” models is the number of exercises solved on 

second try. This finding gives a useful insight; however, as mentioned earlier, 
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this predictor cannot say much on its own.   

Furthermore, the highest contributing predictor for the “interest in ideas” model 

is the predictor number of exercises finished but not solved; however, its 

positive relationship to the scale means that this predictor cannot really offer a 

distinguishing aspect for the specific approach. 

In a similar way, the highest contributing predictor for the “seeking meaning” 

model, maximum view time on exercise page, does give a useful insight, but 

due to its positive relationship to both the specific scale and the “surface” scales 

cannot really offer a distinguishing aspect for the specific approach. 

 

The conclusion reached in sections 5.1.3 and 5.2.3 is reinforced here again. 

When comparing the models representing the surface and deep approaches 

towards studying, it is possible to get more useful insights and a clearer and 

more distinguishing picture of the “surface” models compared to the “deep” 

models.  

5.3.2 Comparing the variance explained by Surface and Deep scales 

There is certainly more variance explained for the “surface” models compared 

to the “deep” models. While in surfaces scales variance ranges between 21% 

and 45.5%, in the deep scales variance range between 15.7% and 25.2% (see 

Appendix 5.1). Three of the models representing the surface scales (“unrelated 

memorising”, “fear of failure” and the main “surface” scale) have almost double 

the amount of variance compared to the model of the deep scales.  

The question at this point is: why there is overall more unexplained variance in 

the models of the deep scales compared to the models of the surface scales? 

Further to what is discussed in section 5.2.3 with regards to this issue, Entwistle 

(2008), Marton and Säljö (1976), and Entwistle and Peterson (2004) argue that 

a deep approach towards studying is not quite consistent and it does not 

manifest itself as strongly as one might have hoped for. This can be because 

students may have the intention for it, but they may find themselves in a 

university course with a learning and teaching environment which simply does 

not encourage it, so they end up behaving in a surface manner. In that sense, it 

is seems that it is not easy to capture the students’ deep approach towards 

studying when using an interactive learning environment during tutorial 

sessions of a specific module (which is only a part of their university course).  
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It is reasonable to conclude, therefore that the deep scale is a dependent 

variable with a high degree of complexity; and as Meyers et al. (2006) suggest, 

in the general field of statistics, unexplained variance can be due to the 

complexity of a variable. 

On the other hand, the surface scale does not seem to have the same degree 

of complexity and it tends to manifest more strongly. For example, according to 

Entwistle and Peterson (2004), academic performance has a strong relationship 

with the surface approach, and specifically indicates a poor academic 

performance (while deep approach is linked to academic performance only 

when tasks require a deep level of understanding). It is reasonable to say that 

while a deep approach manifests itself under certain conditions, for the surface 

approach this does not seem to be the case. 

 

Furthermore, Entwistle (2008) suggests that the adoption of a deep approach 

towards studying depends also on students’ prior knowledge. More specifically, 

those students declaring low prior knowledge are more likely to follow a surface 

approach towards studying (Entwistle and Peterson, 2004). Ramsden (2005) 

also suggests that prior knowledge is mentioned more in science students as a 

factor which can lead to lack of comprehension, anxiety, superficial learning and 

passiveness. So, the unexplained variance in both deep and surface models 

can be due to the fact that prior knowledge is not considered in the models; 

hence the decision to examine further empirically and theoretically its influence 

on the scales (see section 5.5).  

5.3.3 “Surface” models and “deep” models – Ensuring Statistical Power 

Throughout the development of the models, there was a continuous effort to 

ensure that the typical threshold for the statistical power of 0.8, as proposed by 

Cohen (1992), is achieved. Based on the expectations and thresholds indicated 

in the strategy (see section 3.11.3), initially it was suggested that a reasonable 

number of maximum 8 predictors should correspond to the study’s sample size 

of 115 participants. Then, throughout the exclusion of outliers and predictors in 

the models, it was ensured that the limits, indicated in the strategy (i.e. no more 

than 6 predictors for 100 participants, and no more than 7 predictors for 105-

107 participants) were always respected. As shown on Table 1 in Appendix 5.1, 

all suggested models have an effect size which ranges from medium to large, 

and for sample sizes between 109-113 participants there are between 4 and 7 

predictors (see Appendix 5.1).  
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5.3.4 Surface scales and deep models– Ensuring Overall Statistical 

Significance 

Throughout the development of the models, there was also an effort to hold the 

level of significance at the expected a=0.05 (which was set up from the 

beginning for the whole analysis). The exclusion of outliers and predictors with 

the highest insignificance assisted toward achieving the expected level of 

significance at a=0.05, in all the suggested versions of the models, as shown in 

Appendix 5.1. 

5.3.5 Predictors which do not survive in any of the leanest and meanest models 

Despite the fact that the suggested versions of the models have overall 

statistical significance, there is a need to address the fact that certain predictors 

in the suggested versions models are not significant. These predictors are kept 

in the suggested versions of the models, because they have the highest 

possible variance explained both in terms of R2 and Adjusted R2 and the same 

time there is the potential to offer a more enriching interpretation of the models. 

However, it is also reasonable to examine the leanest and meanest versions of 

the models for all scales, because it allows for useful comparisons and may 

also ultimately lead to recommendations for future studies.  

At this stage a reasonable question is: which predictors do not survive in any of 

the leanest and meanest models?  

With regards to the “surface” models, as shown in table 2 in Appendix 5.3, the 

predictor number of hyperlinks (concept links) visited in reading and exercise 

pages does not contribute in any of the leanest and meanest versions of the 

models. Given that the initial theoretical assumption indicated a negative 

relationship and not a positive one, its loss from the meanest models can be an 

indication that the direction of its relationship to the surface scales can alter in a 

different sample. This can be also the case with regards to the average number 

a “notes” link is clicked per page and the direction of its relationship to the 

“unrelated memorising” subscale, which also does not survive in the leanest 

and meanest version of the model.  

In the “deep” models, as shown in table 1 of Appendix 5.3, the predictors 

average view time on exercise pages, and number of hyperlinks (concept links) 

in reading and exercise pages do not contribute in any of the leanest and 

meanest versions of the deep models.  

With regards to the average view time on exercise pages, its loss does not 
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really take away a lot from the interpretation of the “interest in ideas” scale, as 

there is another temporal predictor –maximum view time on exercise page- 

which can give a good insight regarding the relationship of temporal metrics to 

the specific scale. With regards to the number of hyperlinks (concept links) 

visited in reading and exercise pages, there is a negative relationship to the 

deep scales, while it was initially assumed that it would have a positive one. So, 

what was stated earlier with regards to the surface scales and the same 

predictor is reinforced here: its loss from the meanest models means that there 

may be a relationship between deep scales and the  specific predictor, but the 

direction of its relationship to the deep scales can alter in a different sample.  

5.3.6 Surface scales and deep scales – Leanest and Meanest models 

In this section the intention is to draw certain conclusions and get a clearer 

picture as to whether the leanest and meanest versions of the models can still 

give useful insights (i.e. an enriching picture) and distinguishing aspects with 

regards to the “deep” and “surface” scales, compared to the suggested version 

of the models (as shown in Appendix 5.3). Based on the findings in Chapter 4 

and the aforementioned observations made in sections 5.1, 5.2, 5.3.5 and 5.3.6, 

it is possible to summarise the following conclusions: 

 Surface: As discussed in 4.1.3.6, the eliminated predictors number of exercises 

finished but not solved, compactness and number of hyperlinks (concepts links) 

visited in reading and exercise pages contribute to a more enriching picture of 

students’ interactions with regards to this approach, albeit a less “contradicting” 

one. The remaining factors in the leanest version (see Appendix 4.1.3) can still 

give indications that this model represents the surface approach through: the 

performance-related metrics; and the interesting contrast of having the 

maximum view time on reading page with a negative relationship to the 

subscale and the maximum view time on exercise page with a positive one, as 

observed in section 5.1.3. Finally, the amount of variance explained by the 

leanest model is still large as in the suggested version of the model. 

 Fear of failure: This is the only scale in which the suggested version of the 

model is also the leanest and meanest one. As discussed in section 4.3.3.6, 

overall the model offers useful insights, and a distinguishing aspect can be the 

contrasting relationships between the subscale and the predictors maximum 

view time on reading page and maximum view time on exercise page to the 

scale, as observed in section 5.1.3. Finally, the amount of variance explained 

by the leanest model is still large as in the suggested version of the model. 
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 Unrelated memorising: As discussed in sections 4.2.3.6, 5.1.3 and 5.3.5 the 

only eliminated predictor, compared to the suggested version, is average 

number of “notes” links per page, whose relationship to the subscale can be 

explained and to certain degree it is enriching, but its role in the model requires 

further investigation in future studies. The remaining predictors can still give 

useful insight and distinguishing aspects with predictors such as compactness40 

(see Appendix 4.2.4). Finally, the amount of variance explained in the leanest 

version is still large as in the suggested version of the model. 

 Lack of purpose: As discussed in section 4.5.3.6, the eliminated predictors 

number of exercises solved on third try and number of exercises solved on first 

try contribute to a more enriching and distinguishing picture of students’ 

interactions with regards to this approach. The remaining two predictors in the 

leanest version (see Appendix 4.5.4), and especially the relative amount of 

revisits can still give an indication that the model represents a part of a surface 

approach, as discussed in 5.1.3; however the fact remains that the picture we 

get from the leanest model does not seem to be complete, and the amount of  

variance explained, although at medium level, is approximately half the 

variance explained compared to the aforementioned surface models (see 

Appendix 5.1). 

 Syllabus boundness: As discussed in section 4.3.3.6, the eliminated 

predictors compactness and especially number of exercises solved on first try 

contribute to a more enriching picture of students’ interactions with regards to 

this approach. The remaining predictors, and especially the number of 

exercises cancelled can still give an indication that the model represents a part 

of a surface approach. However, there is still the issue of the amount of 

variance explained: the syllabus boundness model explains only approximately 

half of the amount of variance, compared to the variance explained by the 

aforementioned “surface” models (see Appendix 5.1).  

 Deep:  As discussed in section 4.5.3.6, the eliminated predictor number of 

exercises solved on first try is in essence the main predictor which gives an 

indication that this model represents a deep approach. The remaining 

predictors in the leanest version have the same direction in their relationships 

as with the “surface” scales. The exception is the number of exercises solved 

on second try, which needs, however, to be interpreted and compared with the 

                                                

40 It is worth mentioning that compactness survives only in the leanest and meanest version of 
the unrelated memorising model.  
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other performance-related metrics to make sense, as discussed in section 5.2.3. 

The variance of leanest version of the model remains at medium level as the 

one in the suggested version of the model; however, it is less than half 

compared to the variance explained by the “surface” model and explains only 

about 1/6 of the model. 

 Interest in ideas: As discussed in section 4.7.3.6, neither the suggested nor 

the leanest and meanest version of the model gives an enriching or 

distinguishing picture that can be considered part of a deep approach. Amongst 

all the leanest and meanest versions of both “deep” and “surface” models, this 

the only one where the amount of variance explained is at a small level and not 

medium as in the suggested version of the model. 

 Relating ideas: As discussed in section 4.9.3.6, compared to the suggested 

version the eliminated predictors in the leanest and meanest model are: the 

maximum view time on exercise page (which has the same positive relationship 

to the surface scales), and the number of hyperlinks (concept links) visited in 

reading and exercise pages (which has an unexpected negative relationship to 

the subscale). So, the leanest and meanest model may be a less enriching but 

it gives a clearer indication that it represents part of a deep approach. For 

example, predictors which contribute to this are: maximum view time on content 

page (which has a unique positive relationship to the “relating ideas” subscale, 

while it has a negative one to the surface scale); and number of exercises 

solved on first try. The amount of variance explained by the model remains at 

medium level as in the suggested version of the model; however, it explains a 

bit less than ¼ of the model. 

 Seeking meaning: As discussed in section 4.8.3.6, the eliminated predictors 

are number of exercises solved on third try, number of exercises solved on 

second try, and number of hyperlinks (concept links) visited in reading and 

exercise pages. These may give insight, but do not really bring any 

distinguishing aspects to the model. In the leanest model, the remaining 

predictor number of exercises solved on first try gives an indication that it 

represents part of a deep approach. The amount of variance explained by the 

model, which is at medium level as in the suggested version of the model, still 

explains only about 1/6 of the model. 

 Use of evidence: As discussed in 4.10.3.6, the predictors of neither the 

suggested nor the leanest and meanest version of the model give an enriching 

or distinguishing picture that can be considered part of a deep approach. The 

only exception is the predictor stratum which remains in the leanest version, but 
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as discussed in sections 5.2.2 and 5.2.3, its relationship to the subscale 

depends on the structure of the learning material in the ILE. Finally, the amount 

of variance explained by the model is at a medium level as in the suggested 

version of the model, but still it explains only about 1/6 of the model. 

 

Based on the above conclusions, and the discussion on predictors in sections 

5.1.3 and 5.2.3, when comparing both the suggested and leanest versions of 

the models at predictor level there is more confidence regarding their 

distinguishing aspects for the surface models compared to the deep ones. 

Overall, the leanest version of the “surface” models, with the exception of the 

“lack of purpose” one, offer a complete image and useful insights compared to 

the deep ones. Amongst the deep models, the “relating ideas” seems to be the 

one with the most useful insights and distinguishable aspects. In Chapter 6, the 

pedagogical implication of these findings is discussed further (i.e. whether it 

contradicts the findings in different contexts and what it means for future studies 

in this context). 

5.4 Surface and Deep Scales - Generalisation and Limitations 

In order to draw conclusions about a population based on regression analysis 

done on a sample, typically certain assumptions should be checked in 

regression models (Field, 2009).  Therefore, throughout the process of 

development, as shown in Chapter 4, it is ensured that: 

 Predictors with close to zero variance (such as number of times “search” option 

is clicked, number of submitted search queries in “search” option, and number 

of results visited in “search option”) are not included in the models. 

 Multicollinearity is respected and predictors which correlate highly are not 

included in the models (such as average view time on content pages and 

maximum view time on content page). 

 For all the suggested versions of the models, the variance of residuals is 

reasonably homoscedastic and the residuals are reasonably normally 

distributed. 

Furthermore, a statistical measure such as the Adjusted R2 can indicate the 

amount of variance explained in regression models, if we were to conduct the 

study with a different sample. Specific thresholds for the Adjusted R2 based on 

empirical evidence in similar context have not been found; so as indicated in the 

methodology throughout the development of the models, there is an effort to 

suggest the model with the highest possible Adjusted R2 (in order to achieve at 
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the same time the smallest possible difference between R2 and Adjusted R2 and 

also the most “enriching” version of the model). With regards to the surface 

scales, the results in terms of Adjusted R2 are particularly encouraging, as its 

values range from medium to large; while with regards to the deep scales, its 

values are medium for all scales except for one, the “interest in ideas” subscale, 

where its value is small. 

Despite the generally reasonable statistical results in terms of generalisation, 

there are however limitations. First of all, the sample is a sample of 

convenience and not a random one. Secondly, the ASSIST instrument poses 

limitations in terms of generalisation as the students are asked to answer its 

questions with a specific module in mind, which is part of a specific course and 

in a specific institution. So, all the data collected is influenced by the context of 

a specific educational setting. Thirdly, as discussed in section 5.3.2, a student’s 

intention for a deep approach is not consistent as it is influenced by the wider 

teaching and learning environment in which the ILE is used. Ramsden (2005, 

p.216) points to research findings which indicate that: “intense effort must be 

made in course planning, and in the setting of assessment questions, to avoid 

presenting a learning context which is perceived by students to require, or 

reward, surface approaches. It is not enough to assume that course materials 

will encourage students to think deeply about the subject matter, however 

carefully they have been designed: it is necessary to consider the students’ 

perspective on what is required”. More specifically, it is possible that in a low-

league university, students with the intention for a deep approach towards 

studying may interact in a “surface manner”, because the wider teaching and 

learning environment (besides the interactive learning environment) does not 

encourage a deep approach or students do not perceive that a deep approach 

is required. Hence the deep approach to studying does not manifest itself 

strongly or interact with the environment as expected.  On the other hand, in a 

high-league university, where a deep approach towards studying is supposed to 

be encouraged more, a deep approach towards studying could manifest more 

strongly and as expected, because the teaching-learning environment 

encourages it, or because students perceive that a deep approach is required.  

The above insights show that it would not be wise to claim generalisation for the 

current findings, without considering carefully the differences between the 

educational settings of the current study and any future study. For example, 

deep approaches towards studying can manifest differently in a high-league 

university even if it is in a similar course and module, and with a similar 
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interactive learning environment which is used during tutorial sessions. Or, to 

give another example, if in a future study the way the learning material is 

designed and structured in an interactive learning environment alters, then the 

relationships between certain predictors and subscales may also change (e.g. 

stratum and “use of evidence”).  

Despite the aforementioned limitations in terms of generalisation, however, the 

empirical findings and the insights of the current research can give a starting 

point for forming initial assumptions for a different sample. Even if the sample 

differs greatly because of the educational setting, adjustments can be made 

with regards to the initial assumptions which may reflect both these differences 

and the current findings. Hence it can provide a good starting point in terms of 

methodological recommendations for future studies. 

5.5 Prior knowledge and its relevance to the current study and findings 

5.5.1 Prior knowledge as a selection variable in the model of deep and surface 

approaches 

The intention in this section is to address the secondary complementary 

question with regards to the influence of the students’ prior knowledge. As 

discussed in 2.5, the level of prior knowledge can influence students’ interaction 

in a learning environment and it may influence the variance of the models 

representing the deep and surface scales and subscales. Hence, as indicated 

in the methodology in section 3.11.3, starting from the suggested versions of 

the models, prior knowledge is included as a “selection” variable and the 

sample is split into a “low prior knowledge” group and “high prior knowledge” 

group. After running the multiple regression for all models, there will be 

comparisons, at model level, regarding the variance explained by the models of 

the groups. To facilitate these comparisons, a summary of the variances 

explained by the models for both groups and the initial sample is shown in 

Appendix 5.2. 

5.5.2 Models in low and high prior knowledge groups 

When comparing the variance explained for low and high prior knowledge 

groups across all scales, it is observed that with regards to the models of the 

“low prior knowledge” groups, 8 out of the 10 models have increased variance 

R2, compared to the suggested models of the whole sample (see the R2 values 

highlighted in green in Appendix 5.2). The 2 models which have decreased 

variance R2, compared to the suggested models of the whole sample, are those 
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representing the “unrelated memorising” and “fear of failure” subscales. These 

observations mean that in most models the predictors explain better the 

variance of the ASSIST scales. This is especially the case for the models of the 

deep subscales. This is an important finding given that the suggested versions 

of the models for the whole sample do not explain as much variance as those in 

the surface subscales. It is an indication that prior knowledge as a selector 

variable makes a difference in the variance explained.  

Furthermore, with regards to the models of the “high prior knowledge” group, it 

is observed that 8 out of the 10 models have decreased variance R2, compared 

to the suggested models of the whole sample (see the R2 values highlighted in 

green in Appendix 5.2). The only 2 models with an increased variance R2, 

compared to the suggested models of the whole sample, are those representing 

the “fear of failure” and “use of evidence” subscales41 . These observations 

mean that in most models the predictors do not explain better the variance of 

the ASSIST scales, compared to models of the whole sample.  

Therefore, prior knowledge as a selector variable makes a difference in the 

variance explained, but mainly in the “low prior knowledge” groups, more 

specifically those representing the deep subscales. This is reinforced by the 

finding that, in 4 out of the 5 deep models, the variance explained is almost 

doubled (see Appendix 5.2).  

 

In the following sections, there is further discussion with regards to the possible 

reasons for which there are changes in terms the variance explained, compared 

to the suggested versions of the models for the whole sample. 

5.5.3 Deep models in low and high prior knowledge groups 

In this section, there is an attempt to examine and compare the variance 

explained by the “deep” models with regards to the low and high prior 

knowledge groups. 

                                                

41 There are also two models which are not significant at 0.05 (see Sig. values highlighted in 
blue in Appendix 5.2). If we were to continue further development of the insignificant model by 
excluding the most insignificant predictor, then the model would become significant at some 
point.  However, further development of the low/high prior knowledge group models is not 
intended. The intention here is to simply get some indication at model-level as to which groups 
are most influenced by prior knowledge.  
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5.5.3.1 Deep scales in the “low prior knowledge” group 

In the “low prior knowledge” group, the variance R2 increases for all “deep” 

models, compared to the variance of the “deep” models for the whole sample, 

and in most models the R2 value increases as much as double (see Appendix 

5.2). More specifically it is observed that there is an overall 17.8% to 21.5% 

increase: from 18.3% to 36.1% for the “deep” model; from 15.7% to 32.4% for 

the “interest in ideas” model; from 20.1% to 41.3% for the “seeking meaning” 

model; and from 25.2% to 43.1% for the “relating ideas” model.  The only model 

in which there is a relatively small increase is the one representing the “use of 

evidence” subscale with 2.6% (from 18.7% to 21.3%). 

In terms of Adjusted R2, there is an increase for four of the “deep” models, and 

for as much as approximately double the amount of variance in certain cases. 

More specifically, it is observed that there is an increase: from 14.4% to 28.1% 

for the “deep” model; from 11.6% to 23.7% for the “interest in ideas” model; 

from 15.5% to 32.3% for the “seeking meaning” model; from 20% to 32.6% for 

the “relating ideas” model. The only model in which there is a slight decrease is 

the one representing the “use of evidence” subscale with 1.9% (from 15.6% to 

13.7%)42.  

These findings indicate that the students’ interactions in AM with regards to the 

deep approaches towards studying are influenced greatly by the “low prior 

knowledge” group. In the models representing the deep scales, the predictors 

are able to explain more for students belonging to the “low prior knowledge” 

group. This finding can have implications as encouraging a deep approach 

towards studying is especially important in groups with little or no experience in 

a subject (i.e. it can help tutors in class and also inform the design of an ILE 

regarding tackling the “low prior knowledge” groups of students which at the 

same time have a tendency towards a “low” deep approach towards studying). 

On the other hand, the specific predictors do not seem to explain as much if a 

student with a low or high scores on the scale belongs to the “high prior 

knowledge” group, as discussed below.  

                                                

42 If we were to continue further with the development of the model by excluding the most 
insignificant predictor, then the Adjusted R2 would be very likely increased. However, further 
development of the low/high prior knowledge group models is not intended. The intention here 
is simply to get some indication at model-level as to which groups are most influenced by prior 
knowledge.  
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5.5.3.2 Deep subscales in the “high prior knowledge” group 

In the “high prior knowledge” group, the variance R2 decreases for 4 of the 

“deep” models, compared to the variance of the “deep” models for the whole 

sample (see Appendix 5.2). More specifically, it is observed that there is a 

decrease: from 18.3% to 13.3% for the “deep” model; from 15.7% to 12.2% for 

the “interest in ideas” model; from 25.2% to 22.3% for the “relating ideas” model; 

and from 20.1% to 9% for the “seeking meaning” model. The only model in 

which there is a relatively slight increase is the one representing the “use of 

evidence” subscale with 0.6% (from 18.7% to 19.3%). 

In terms of Adjusted R2, there is decrease for all the deep scales43 . More 

specifically, it is observed that there is a decrease between 1.7% and 15.5% 

amongst the “deep” models of the “high prior knowledge” group.  

 

These findings indicate that the students’ interactions in AM with regards to the 

deep approaches towards studying do not seem to be influenced greatly by the 

“high prior knowledge” group. Whether a student has a low or high score on the 

deep scales, the predictors are not able to explain as much for the students 

belonging to the “high prior knowledge” group as they do for the whole sample 

and especially for the students belonging to the “low prior knowledge” group 

(with the exception of the “use of evidence” model as indicated above). In the 

following sections, there is an attempt to find possible reasons behind these 

findings. 

 

a) Deep Interest in Ideas  

According to Tobias (1994)  there is empirical evidence supporting that “the 

effects of interest account for less variance than those attributable to prior 

knowledge”. The empirical evidence comes from studies in different contexts; 

however, it can be a starting point from which it can be assumed that the 

involvement of prior knowledge as a selector may increase variance.  

                                                

43 If we were to continue further development of the model by excluding the most insignificant 
predictor, then the Adjusted R2 would be increased. However, further development of the 
low/high prior knowledge group models is not intended. The intention here is to simply get some 
indication at model-level as to which groups are most influenced by the prior knowledge. 
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In the context of the specific study, the variance explained by the “interest in 

ideas” model is increased substantially, but only in the “low prior knowledge” 

group. The “interest in ideas” model (see Table 5.2.3.1 in section 5.2.3) seems 

to represent better those with a low level of prior knowledge compared to those 

with a high level of prior knowledge. This can be explained by the unexpected 

finding with regards to the most contributing predictor number of exercises 

finished but not solved; according to which the higher the score on the subscale, 

the higher the number of unsolved exercises (see section 4.7.3.6). Therefore, it 

seems that the direction of the relationship in the model between the specific 

predictor and the “interest of ideas” scale expresses better the interactions of 

the “low prior knowledge group” rather than those of the “high prior knowledge” 

group across the specific scale. 

b) Deep relating ideas  

As indicated earlier, the variance explained by the “relating ideas” model is 

increased substantially, but only in the “low prior knowledge” group. The 

“relating ideas” model (see Table 5.2.3.1 in section 5.2.3) seems to represent 

better the interactions of those with a low level of prior knowledge rather than 

those with a high level of prior knowledge. This can be explained by the 

unexpected finding with regards to the second most contributing predictor, 

number of exercises finished but not solved; according to this, the higher the 

score on the subscale, the higher the number of unsolved exercises (see 

section 4.9.3.6). Another reason can be the unexpected finding with regards to 

the predictor number of hyperlinks (concept links) visited in reading and 

exercise pages, which indicates a negative relationship to the subscale instead 

of a positive one (see section 4.9.3.6). One would expect that a positive 

relationship might be also more relevant to the interactions of those students in 

the “high prior knowledge” group, as the increasing use of hyperlinks would 

show perhaps a tendency to relate old and new concepts. However, this is not 

the case, which points to a potential issue with regards to the way the 

hyperlinks are designed in AM; an issue which is discussed further in Chapter 6. 

Therefore, it seems that the direction of the relationships in the model between 

the aforementioned predictors and the “relating ideas” subscale seems to 

express the interactions of the “low prior knowledge” group better than those of 

the “high prior knowledge” group across the specific scale. 

c) Deep seeking meaning  

As indicated earlier, the variance explained by the “seeking meaning” model is 
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increased substantially, but only in the “low prior knowledge” group. The 

“seeking meaning” model (see Table 5.2.3.1 in section 5.2.3) seems to 

represent better the interactions of those with a low level of prior knowledge 

rather than a high level of prior knowledge. This can be explained by the 

unexpected finding with regards to the predictor number of exercises solved on 

third try, according to which the higher the score on the subscale, the higher the 

number of exercises solved on the third try (see section 4.8.3.6). An indication 

that this can be the case is the unexpected finding with regards to the predictor 

number of hyperlinks (concept links) visited in reading and exercise pages, 

which indicates a negative relationship to the subscale instead of a positive one 

(see section 4.8.3.6). One would expect that a positive relationship might be 

also more relevant to the interactions of those students in the “high prior 

knowledge” group, as the increasing use of hyperlinks would show perhaps a 

tendency to relate old and new concepts. However, this is not the case, which 

points to a potential issue with regards to the way the hyperlinks are designed 

in AM; an issue which is discussed further in Chapter 6. Therefore, it seems 

that the direction of the relationships in the model between certain predictors 

and the “seeking meaning” subscale seems to express better the interactions of 

the “low prior knowledge” group, than those of the “high prior knowledge” group 

across the specific scale. 

d) Deep use of evidence 

Amongst the models of the three groups the amount of variance explained 

ranges between 18.7% and 21.3% (see Appendix 5.2), so it is reasonable to 

say that it does not really differ as greatly as it does for all the other deep 

models. The slightly more increased variance explained in the model of the “low 

prior knowledge” group, compared to the one of the “high prior knowledge” 

group, can be explained by the unexpected finding with regards to the predictor 

number of exercises solved on third try; according to which the higher the score 

on the subscale the higher the number of exercises solved on the third try (see 

section 4.10.3.6). 

 

Going back to the variance explained amongst the four models, it seems that 

the “use of evidence” model is the only deep model in which prior knowledge 

seem to make relatively little difference in terms of the variance explained by 

the model. So, with regards to this subscale, the issue is more about why the 

model overall does not explain more variance, which has been discussed 
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previously in section 5.2.2.  

To conclude, certain unexpected relationships found in the deep models can be 

behind the differences between the variance explained amongst the models of 

the group. Furthermore, as previously discussed in section 5.1.2, the 

contribution of certain predictors with distinguishing aspects for the deep scales, 

such as number of exercises solved on first try, could be responsible for the 

unexplained variance of the model for the whole sample. It is possible that they 

could be also responsible for this difference in variance between the models of 

the “low prior knowledge” and “high prior knowledge” groups. It can be the case 

that the specific predictor, for example, does not have strong enough 

contribution to represent better the interactions of the “high prior knowledge” 

group across the scales. Or perhaps it is not possible for this predictor to 

contribute more to the deep models of the “high prior knowledge” group (i.e. the 

number of exercises solved on first try by students with a high level of prior 

knowledge could be simply independent of their high and low scores on the 

deep scales).  

5.5.4 Surface models in low and high prior knowledge groups 

In this section, there is an attempt to examine and compare the variance 

explained by the “surface” models with regards to the low and high prior 

knowledge groups. 

5.5.4.1 Surface scales in the “low prior knowledge” group 

In the “low prior knowledge” group, the variance R2 increases for 3 of the 

“surface” models, compared to the variance of the “surface” models for the 

whole sample (see Appendix 5.2). More specifically there is an increase: from 

45.5% to 55.8% for the “surface” model, from 21% to 24.4% for the “lack of 

purpose” model and from 21.6% to 33.3% for the “syllabus boundness” model. 

On the other hand, there is a decrease: from 41.6% to 33.2% for the “fear of 

failure” model, and from 40% to 37.5% for the “unrelated memorising” model.  

The values of Adjusted R2 follow the same patterns to those of R2, with the 

exception of the “lack of purpose” model44 where there is a slight decrease from 

                                                

44 If we were to continue further development of the model by excluding the most insignificant 
predictor, then the Adjusted R2 would be increased. However, further development of the 
low/high prior knowledge group models is not intended. The intention here is to simply get some 
indication at model-level as to which groups are most influenced by prior knowledge. 
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18% to 17% (see Appendix 5.2). More specifically, it is observed that there is an 

increase between 5.4% and 6.2% for the “surface” model and the “syllabus 

boundness” model. In addition, there is a decrease between 12.7% and 1% for 

the “fear of failure” model, the “unrelated memorising” model, and the “lack of 

purpose” model.  

The findings indicate that the students’ interactions in AM with regards to some 

of the surface approaches towards studying (i.e. “surface”, “lack of purpose”, 

and “syllabus boundness”) seem to be influenced by the level of prior 

knowledge, specifically in the “low prior knowledge group”. In the models 

representing these surface scales, the predictors are able to explain more for 

students belonging to the “low prior knowledge” group. This finding can have 

implications as it can help tutors in class and also inform the design of an ILE 

regarding tackling the “low prior knowledge” groups of students with a tendency 

towards a “high” surface approach towards studying. 

On the other hand, the predictors of the suggested models for “fear of failure” 

and “unrelated memorising” do not seem to explain as much, if a student with a 

low or high scores on these two scales belongs to the “low prior knowledge” 

group; an issue which is discussed further below.  

5.5.4.2 Surface scales in the “high prior knowledge” group 

In the “high prior knowledge” group, the variance R2 decreases for four of the 

“surface” models, compared to the variance of the “surface” models for the 

whole sample (see Appendix 5.2). More specifically it is observed that there is a 

decrease: from 45.5% to 40.7% for the “surface” model, from 40% to 38.9% for 

the “unrelated memorising” model, from 21% to 13.1% for the “lack of purpose” 

model, and from 21.6% to 19% for “syllabus boundness”. The only model in 

which there is an increase is the one representing the “fear of failure” subscale 

with 2.9% (from 41.6% to 44.5%). The values of Adjusted R2 follow the same 

patterns to those of R2. 

It is reasonable to say, therefore, that there is not really a clear pattern with 

regards to the variance explained by the “surface” models amongst the groups 

(as there is in the “deep” models, where there is more variance explained for 

the “low prior knowledge” group). In the following sections, there is further 

discussion regarding each “surface” model, which may shed more light as to 

why some “surface” models are explained better in the “low prior knowledge” 

group and some are explained better in the “high prior knowledge” group. 
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a) Surface fear of failure  

The model representing the “fear of failure” subscale, which relates to anxiety 

during studying, is clearly a model which behaves differently compared to the 

rest amongst the groups (i.e. the variance explained is increased in the model 

for the “high prior knowledge” group compared to that of the whole sample and 

the “low prior knowledge” group). The “fear of failure” model (see table 5.1.3.1 

in section 5.1.3) represents better the interactions of those with a high level of 

prior knowledge across the scores of the subscale. As indicated in 5.5.4.2, the 

predictors explain more variance in the “fear of failure” model for the “high prior 

knowledge” group compared to the “low prior knowledge” group. It seems, for 

example, that the tendency of those with the higher scores on the “fear of failure” 

subscale to solve more exercises on third try and fewer exercises on first try 

compared to those with lower scores, is stronger in the “high prior knowledge” 

group. This is also reinforced by existing literature with regards to the effects of 

anxiety on prior knowledge. It can be that “it is difficult for the high anxious 

individual to generate a wide range of response alternatives and to evaluate 

their appropriateness in relation to his own prior knowledge” (Tobias, 1994).  

Tobias (1994) also suggests that this can even happen when the response 

alternatives are presented as multiple-choice problems, (which is the case in 

AM as most exercises are presented in a multiple-choice format. So, it seems 

that, even if students have a high level of prior knowledge in the subject of 

mathematics, the higher the degree of their anxiety while solving exercises 

during their tutorials, the more likely they are to solve exercises on third, rather 

on the first try.  

b) Surface unrelated memorising  

The model representing the “unrelated memorising” subscale (see table 5.1.3.1 

in section 5.1.3), is the only one amongst the “surface” models in which the 

predictors explain better the variance R2 for the whole sample with 40% (see 

Appendix 5.2). The findings also indicate that amongst the two groups, the 

predictors explain a bit better the variance of the “high prior knowledge” group 

with 38.9% compared to that of the “low prior knowledge” groups with 37.5%. 

However, overall, it is reasonable to say that there is no really great difference 

amongst the variances explained, and the predictors seem to explain relatively 

well 45  the students’ interactions with regards to the “unrelated memorising” 

                                                

45 It is reasonable at the same time to say that there is always room for improvement, as 
indicated previously in 5.1.2. 
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approach independently of students’ level of prior knowledge. Furthermore, 

there is literature to support that high level of prior knowledge does not seem to 

make a great difference, when there is a high degree of rote learning involved. 

It is suggested that rote learning does not help to establish proper relationships 

between new knowledge and prior knowledge for meaningful learning to occur 

(Terry and Holim, 2008). So, in the context of the current investigation, even if 

students have a high level of prior knowledge in the subject of mathematics, 

they are not likely to use it if there is a tendency for rote memorisation. Hence 

relationships in the model, for example, such as the negative one between the 

“unrelated memorising” subscale and number of exercises solved on first try, 

can manifest as strong, if not a bit stronger in the model for the “high prior 

knowledge” group, compared to the “low prior knowledge” group.  

c) Surface syllabus boundness  

The model representing the “syllabus boundness” subscale (see table 5.1.3.1 in 

section 5.1.3), explains best the variance R2 in the “low prior knowledge” group 

with 33.3%. The variance explained R2 regarding the model of the “high prior 

knowledge” group with 19% is relatively close to the one of the whole sample at 

21.6%. The “syllabus boundness” model better represents overall the 

interactions of those with a low level of prior knowledge across the scores of the 

subscale. It seems, for example, that the more there is a tendency to rely 

exclusively on the given learning material, the less likely it is to solve exercises 

on first try; and this manifestation becomes even stronger in the “low prior 

knowledge” group.  

Regarding the relatively low variance explained by the models for the “high prior 

knowledge” group and the whole sample, it is discussed previously in section 

5.1.2 how the level of difficulty of the learning material may be the reason 

behind this. It is possible that if the level of difficulty of exercises or tasks during 

the tutorial session required students further to extend their knowledge and 

perform research beyond the given syllabus, then the differences in interactions 

in AM across the scores on the subscale would be stronger and the data more 

varied. 

d) Surface scale lack of purpose across all groups 

The model representing the “lack of purpose” subscale best explains the 

variance R2 in the “low prior knowledge” group with 24.4% (which is 3.4% more 

than the whole sample) while for the “high prior knowledge” group there is a 

relatively lower amount of variance explained at 13%. The “lack of purpose” 
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model (see table 5.1.3.1 in section 5.1.3) better represents overall the 

interactions of those with a low level of prior knowledge across the scores of the 

subscale. It seems, for example, that the more there is tendency to cope 

minimally with the requirements of the course and the more there is lack of 

interest, the less likely it is for a student to solve exercises on first try and more 

likely to not solve exercises at all; and this manifestation becomes even 

stronger in the “low prior knowledge” group.  

Regarding the relatively low variance explained for the models for the “high 

prior knowledge” group and the whole sample, it is discussed previously in 

section 5.1.2 how again the level of difficulty of the learning material may be the 

reason behind this. It can be that the practical tasks during the tutorial sessions 

are not challenging enough to distinguish the interactions of those who have 

lack of interest and tend to cope minimally from those who do not, especially if 

they belong to a “high prior knowledge” group. It is possible, for example, that 

the number of exercises solved on first try for those students with a high level of 

prior knowledge is independent of their scores on the subscale46. 

 

To conclude, throughout section 5.5, there is an effort to examine and explore 

the influence of prior knowledge across all models of the ASSIST scales, in 

alignment with investigating the influence of the non-style factor of prior 

knowledge on the relationship between deep and surface approaches towards 

studying and “interaction” metrics. Enriching findings did occur, especially with 

regards to the deep models of the “low prior knowledge” group where there is a 

quite consistent pattern, but the analysis also indicated some useful insights 

with regards to the “surface” models and prior knowledge, despite the fact that 

there was not an overall pattern. These contributions are discussed further in 

section 6.3.4. Furthermore, possible explanations have been given for these 

findings; however, it is reasonable to say that the current investigation provides 

just a good starting point for future studies, where prior knowledge will have a 

more central role. Further examination is required, with further analysis of the 

models at predictor-level, where the issue of the influence of prior knowledge 

will be addressed as a primary question, and will not just have a complementary, 

                                                

46 However, this situation can only last for a relatively short time. Tobias (1994) suggests that 
those with a low interest in the subject and high prior knowledge will eventually end up having 
low interest in the subject and a low level of knowledge, eventually affecting their performance. 
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secondary, value as in the current investigation.  

 

Finally, in Chapter 5, comparisons amongst the models and predictors allow us 

to see that overall the surface models have more distinguishing aspects, while 

the deep models seem to be explained better when prior knowledge is involved. 

In the next chapter, it will be shown how the insights of this chapter serve 

towards helping tutors to identify approaches towards studying during students’ 

interaction in an ILE  in order to facilitate intervention and providing 

recommendations with regards to future improvements in data capture and an 

ILE’s interface design and features. 
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Chapter 6 - Recommendations and Contributions 

This chapter discusses the contribution of the thesis. Section 6.1 looks at 

methodological contributions both in terms of the statistical analysis and the 

challenges which can occur when setting up a similar study.  Section 6.2 

discusses improvements with regards to the ILE features and the predictors of 

the “deep” and “surface” models in order to achieve a more enriching 

interpretation of results in future studies. Finally, 6.3 discusses the pedagogical 

implications of the findings. 

6.1 Methodological reflections 

This section highlights the expectations regarding the variance of “deep” and 

“surface” models and the predictors worth considering in future studies. First, 

there are some practical recommendations regarding the setting up of a similar 

study.  

6.1.1 Dealing with the challenges of setting up a study in real conditions 

A key concern underling this thesis’s study was its “ecological” validity in order 

to examine the way students engage with learning material in the same way 

they would in a real learning situation. As mentioned in 3.7, in order to avoid 

biases that would challenge the generality of the results to the real world and 

particularly what Robson (2002) refers to as “demand characteristics”, the 

current study was conducted in real conditions. However, the process of setting 

up a study which takes place during the tutorial sessions is not without 

challenges. This is because of what Robson (2002) calls “mundane realism”, 

referring to real life events which are complex and can cause ambiguities. As 

the author dealt with a number of expected and unexpected complexities due to 

real conditions, this section can help researchers who run studies in similar 

contexts to foresee these complexities and plan ahead, or provide awareness at 

least regarding how they can influence their data. 

6.1.1.1 Handling the implications of ethical issues in real teaching-learning 

conditions 

Ethical issues may cause limitations and challenges when a researcher is 

planning a similar study in real teaching-learning conditions. First of all, it has to 

be ensured that: none of the students is treated differently (i.e. is given different 

learning materials); the study is conducted in parallel with the tutorial sessions 
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and is integrated in the whole module schedule in a non-disruptive way; the 

learning material integrated in the ILE still serves the learning outcomes and 

aims of module and course; and that the design of the ILE benefits students’ 

learning and does not hinder their learning. So, ultimately it has to be ensured 

that there is no negative impact on their academic performance due to changes 

introduced by the study into the learning and teaching process of the module.  

In the current investigation, this meant that the author, as the instigator and 

organiser of the study, had to discuss and agree with the module team on a 

number of points:  

 which chapters from the module’s textbook would be integrated (e.g. the 

module team judged that it would be beneficial for students to include the 

chapter of Functions-Graphs where graph plotters for functions could be 

integrated). 

 the integration of the study in the module schedule and, specifically, when and 

how tutors and students would register and familiarise themselves with AM, so 

the introduction of AM would not disrupt their learning (as discussed in 3.10.3). 

This is also something which is supported in the general context of educational 

technology: letting students get familiar with the mathematical system is a 

reasonable step when going through the process of integrating it in class (Maat, 

2010). 

 the way the learning material was structured and designed in the ILE. This 

required, for example, the distribution of detailed storyboards to ensure that 

there was a common agreement with regards to the structure and the features 

included in AM. It was particularly important that the structure of topics and 

subtopics in AM was according to the one given on the textbook which reflected 

the syllabus and the learning outcomes of the module. In addition, it was 

important for the module team that there would be features which would 

potentially promote further active reading, exploration, and engagement with the 

learning material, such as: hyperlinks (concept links), search and advanced 

search features, and a graph plotter.  

 the way exercises would work. This again required detailed storyboards which 

indicated: how the exercises included in the textbook would be designed in AM 

(i.e. fill-in-in the blank, multiple choice, etc.); how many times the students 

would be allowed to try an exercise until the solution was given by the system; 

and what type of feedback would be given for each try.  
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6.1.1.2 Designing an ILE to serve both theoretical assumptions and ethical 

aspects 

There is a fine balance between designing an ILE to serve the theoretical 

assumptions (i.e. made for the approaches towards studying and the metrics 

representing the students’ interactions), and designing an ILE to serve the 

above ethical and practical considerations. The design of the ILE should ideally 

encompass both, and this is certainly possible when both theoretical 

assumptions made for the study and ethical and practical considerations can 

coincide. For example, in the current investigation there was certainly an effort 

to design AM based on theoretical assumptions which linked the deep 

approaches to use of AM features (e.g. search feature for further exploration of 

concepts); but this in a way served the ethical aspects as well, as there was an 

effort to design an ILE which benefits students’ deep understanding in concepts. 

However, it can be the case that respecting the aforementioned ethical aspects 

means that sometimes it is not possible to make changes that can better serve 

the theoretical assumptions of the study. In the current investigation, there were 

such cases:  

 Learning material integrated in AM certainly served the learning outcomes of 

the module, as it did not differ from the learning material of the approved 

textbook; however, it did not seem to stimulate elements of “high deep” learning 

such as exploring further concepts, building up understanding based on 

students’ own conclusions, and trying to relate concepts. This was possibly 

because a lot of the exercises were repetitive, and most exercises were a direct 

application of the generic formulas and the working examples given, and in very 

few of them the students had to draw their own conclusions, explore further 

concepts, or relate different concepts. These conclusions resonate with the 

suggestions of researchers, such as Sangwin (2004) mentioned in 2.7.3, about 

designing ILE exercises which are not just direct application of previous worked 

solutions, but encourage deep learning (e.g. by requiring the generation of 

examples that satisfy certain criteria, or by trying to provide another answer 

after having taken tailored feedback into account). Here it is worth noting that 

the provision of feedback also warrants further investigation as, for example, 

based on an empirical review by Beaten et al. (2010), it seems that there are no 

concrete findings as to the relationship between how students use feedback 

and deep and surface approaches. 
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 AM eye-tracker which was deemed too disruptive to the learning process was 

omitted from AM. Initially, its inclusion was considered because it would ensure 

that view time on AM exercises and reading pages did not include lack of 

engagement or inactivity and it would give further accuracy in capturing 

students’ interactions. 

6.1.1.3 Selecting a big-size module to “afford the potential reductions” 

It is commonly acknowledged that the bigger the sample size, the greater the 

statistical power (Meyers, 2006), so it makes sense to alert researchers who 

intend to conduct studies in similar context as to how (and to what degree) real 

teaching-learning conditions can have an impact on the sample-size. More 

specifically, when setting up a similar study in real conditions, it is possible that 

the initial sample size, based on the module’s size, can be reduced because of 

students’ withdrawals from course, students’ lack of attendance, students’ lack 

of interaction with ILE, or not completing ASSIST.  

In the current investigation, there were 276 students initially; however, there 

were reductions as shown in 3.10.3, resulting in a sample size of 115 students 

Reduction of the originally estimated sample-size due to events which naturally 

occur during a university course, as well as during a study in real settings where 

participants do not necessarily behave as expected, can have an impact on the 

statistical power of the study’s results. In the current investigation, despite the 

significant reduction (which was 59% of the initial estimated module size), it was 

still possible further to exclude up to 6 outliers and sustain the typical threshold 

for statistical power with models (which included up to 8 predictors in their first 

versions).  

Although this reduction in sample size can differ across educational settings, it 

would be advisable for a researcher ideally to choose a big size module 

(between 250-300 students) to counteract potential big reductions which can 

naturally occur when a study in this context takes place in real conditions. 

6.1.1.4 Dealing with mundane realism due to unexpected events 

In real conditions, students might not use an ILE as expected, or generally 

behave in the study as expected, causing complexities and ambiguities (i.e. 

“mundane realism”). More specifically, the following cases were observed:  
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a) There were students who double-registered in AM (even if there were detailed 

written and verbal instructions for registration and support during the tutorial 

sessions by moderator and tutor).  

b) There were students who used each other’s accounts to interact with AM. 

c) There were students who did not use AM at all or at least not throughout during 

the sessions (e.g. lack of attendance, preference for textbook, leaving tutorial 

earlier).  

These unexpected events may cause complexities during the study and 

ambiguities in the data, but in most cases, it is possible to deal with them. More 

specifically: 

 With regards to point b), there should be constant monitoring so the moderator 

of the study can intervene and instruct students to use their own account, and 

possibly sort out any password and username issues.  

 With regards to point c), these cases should be observed and recorded 

because it can serve the “cleaning of data”. This means that, at a later stage, a 

decision should be made as to whether to exclude cases from the sample. For 

example, in the current investigation, exclusions took place when a student 

never visited exercise pages, and there were NULL values in the temporal data 

for these pages. There was also exclusion of data coming from sessions which 

were disrupted because of technical reasons. Furthermore, even if the 

aforementioned cases are not excluded from the sample at the start, it is good 

to record the reasons for irregular AM use, because it may explain why they are 

flagged up by the statistical processes as multivariate outliers47.  

 With regards to point a), there is a need for constant monitoring and updating of 

the registration list with the students’ details, as well as ensuring that the 

sessions with NULL usage, due to double-registration and duplicated accounts, 

are deleted. 

6.1.1.5 Impact of mundane realism as occurred from expected events 

There can be expected events, which may add another layer on students’ 

interaction with an ILE and influence their approaches towards studying during 

the tutorial sessions. More specifically:  

                                                

47 We have, for example, the case of a student who left both tutorials sessions quite early for no 
obvious reason, except perhaps for “lack of interest”. This case (case 25) was flagged up as an 
outlier later on during the development of models possibly because the surface score was not 
high enough to justify the lack of interaction in AM. 
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 In big size modules, such as the current one, typically the tutorials are spread 

out throughout the week after the lecture. So, differences in temporal distance 

between lecture and tutorial sessions may affect students’ interaction with an 

ILE. 

 Tutor intervention can also influence interaction in an ILE. In a big size module, 

such as the current one, there are usually a number of tutors involved and, 

unless there are very specific instructions on how to instruct and guide the 

students during the tutorial sessions, there are different tutoring styles. It is 

beyond the scope of the current investigation to identify and examine the way 

tutors instruct and support the students during the tutorial sessions48. However, 

it has to be acknowledged and broadly discussed how differences between the 

ways tutors instruct and support students in class may have influenced 

students’ interactions in ILE49. Here are some examples, based on observations 

made in class:  

o Some tutors at the start of the sessions would revise the mathematical 

concepts (from the lecture) for the whole class by using AM or the 

board. This revision amongst tutors would also differ in terms of time. 

So, this type of intervention, for example, can affect students’ interaction 

regarding the time spent on theoretical pages and examples in AM; or 

even their intention to research a mathematical concept further (they 

may perceive, for example, that what tutor revises is what they basically 

need to know for solving the exercises of the specific tutorial session, 

and they do not need to explore anything further). 

o Some tutors would give specific instructions on how to start (i.e. starting 

from revising a specific mathematical concept, or starting from a specific 

exercise before moving on to another). So, this intervention, for 

example, can affect the order in which they view theoretical and 

exercise pages in AM. 

o Some tutors would instruct students to do specific exercises in a given 

amount of time (so they can progress further to more advanced 

                                                

48 This would be a study on its own right, as there is existing literature dedicated on the way 
tutors instruct and support students in class (see: De Grave et al. (1999), and Turan et al. 
(2009)). 

49 The author does not aim here to criticise in any way the different tutoring styles (as all tutors 
indicated an exceptional degree of professionalism in adapting their intervention according to 
the needs of the class), but merely to give a few broad examples how differences in intervention 
may in general influence students’ interactions in an ILE in a real learning conditions. 
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exercises within the time-frame of the tutorial session). This can affect 

again the time spent on exercise pages (or even push some students to 

solve exercises on first try or other students to finish exercises without 

really solving them and getting the answers from the system).   

In the current investigation, the impact of these expected events could not really 

be eliminated in order to prevent the potential ambiguity caused in the statistical 

results. Regarding the first point, for practical reasons it was not possible to 

schedule all tutorials of a big size module on the same day. Regarding the 

second point, for ethical reasons, it was not really possible for the author to stop 

tutors from intervening or apply pressure on them in order to change their 

intervention (given that as specialists in the subject they are supposed to know 

what is best for students’ learning). However, the impact of such expected 

events should be acknowledged as they can be responsible for unexplained 

variance in the regression models; and in a future study one could investigate 

further the impact of tutoring styles/profiles on students’ interactions in an ILE, 

as despite the existing literature on tutor profiling (Turan et al., 2009; De Grave 

et al., 1999), there seems to be a gap in bringing together the areas of tutoring 

style, approaches to studying and interaction in ILEs.  

6.1.2 Researcher as a collaborator and mediator between two teams 

The author was the instigator and organiser of the current investigation, so the 

first challenge, and since there was no funding involved, was to demonstrate 

how both teams could benefit from the current investigation (i.e. for the module 

team an opportunity to distribute the learning material in a more engaging way 

which might benefit students; and for the AM/Action analysis team an 

opportunity to test AM with a big size “maths” module and get valuable data for 

action analysis). Once both teams were on board, another challenge for the 

author was ensuring a smooth collaboration, coordination and mediation 

between the two teams (which were located in different institutions, different 

countries, and were never in contact with each other).  

These challenges produce valuable experiences on how a researcher can run 

such an operation with two teams smoothly, ensuring at the same time that they 

both get what was initially agreed without creating any false expectations. 

6.1.2.1 Collaborating with the module team 

First of all, to achieve a good collaboration, it is important to find a module team 

which is willing to incorporate an ILE in their module and work with it. Collis and 
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Moonen (2001) discuss that when integrating an interactive learning 

environment in a course it important that there is a certain vision about 

technology within the institution and that there is a readiness and willingness to 

change in this direction. Within the specific university, and specifically the 

computer science department, there was a vision for integrating technology in 

the teaching and learning processes. Furthermore, although the “maths” 

module team was positive regarding the integration of AM in the tutorial 

sessions, it was essential to demonstrate how the results of the current 

research could benefit the students taking this core “maths” module. At the time 

of the study, the module team was particularly worried about the discrepancy 

regarding the level of prior knowledge of the students (some students had A-

levels in maths, and some did not) and how they can bridge these differences in 

class. So, an ILE which had the potential to help connecting basic concepts 

more effectively and also new, more advanced, concepts (e.g. through 

hyperlinks and search features) seemed an appealing solution. An integrated 

search feature, for example, would allow students with high prior knowledge to 

explore further advanced mathematical concepts.  In addition, it was appealing 

that the integration of chapters such as the one of Functions and Graphs in AM 

would potentially engage students further, with the use of graph plotters, and 

also aid their understanding of functions, compared to the textbook.  

Furthermore, to ensure a smooth collaboration and communication, it was 

deemed essential to ensure clarity and agreement on any given decisions and 

solutions with regards to the AM design; and also to ensure that all tutors 

involved were updated with all the changes regarding the module schedule and 

were familiar and comfortable with the use of AM before going into the 

classroom. 

Finally, such a collaboration can create further obligations. There was also an 

agreement for the students to keep using AM for the following year, only, to 

ensure consistency in terms of the delivery of the module. 

To conclude, for a smooth collaboration with the module team behind the 

learning material of an ILE, it is important to:  

 identify any existing “teaching-learning” concerns in the module and examine 

how they can be addressed in the design of the ILE. 

 try to accommodate in the process of the study and the design of the ILE what 

the module team thinks can benefit the students. 
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 distribute detailed storyboards about the design of the ILE prior to the 

implementation and seek approval (a similar procedure to a corporate “sign-off” 

in the design process of a digital product). This is also an important step, 

because it ensures a smoother collaboration with the team responsible for the 

implementation of the design and provides more clarity and confidence in the 

whole process for both teams. 

 distribute details on the way the study will be conducted, along with all the 

materials used (e.g. guidelines for registration and the manual of the ILE), and 

show clearly how it will be incorporated in the module schedule in unobtrusive 

way. 

 ensure that all tutors are familiar and comfortable with the use of the ILE and 

help them to find ways to incorporate it in their teaching in class. 

 ensure that if further demands are made for further use of the ILE beyond the 

study, they can be met without creating any false expectations. 

6.1.2.2 Collaborating with the AM/Action Analysis team 

Clear and ongoing communication and negotiation were also crucial elements 

essential for a smooth collaboration with the AM and Action Analysis team 

involved in the current study. There were two phases in that collaboration. 

The first phase was with regards to adapting AM in order to incorporate the 

learning material from the module’s textbook. This required an ongoing quality 

control process, with updates and corrections to ensure that the learning 

material was presented appropriately according to the requirements of the 

module team. 

The second phase was with regards to the action analysis. At this phase, it was 

essential to clarify with the team whether metrics suggested by the author were 

possible to calculate, and whether and how AM can be adapted to ensure that 

the raw data required for the suggested metrics is collected. For example, with 

regards to the search feature, its placement in AM was made more prominent to 

ensure its use, and it was clarified which metrics could be calculated or not. 

Furthermore, it was also essential to communicate to the team the module 

schedule, the duration of the tutorial sessions, and unexpected events such as 

server interruptions and double-registrations to help with data cleaning. Finally, 

it was essential to clarify the limitations of such a collaboration so there are no 

false expectations on either side. For example, in terms of the data received, it 

was clarified that due to ethical reasons the author could not provide the team 
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with data regarding students’ final grades in the “maths” module; on the other 

hand the AM/Action Analysis team could not commit to a second phase where 

the metrics and AM would be revised (based on the current statistical results) 

and the study would be repeated. 

 

To conclude, for a smooth collaboration with the team responsible for the 

implementation of the ILE and the action analysis, it is important to: 

 identify with the team from the beginning what is possible to adapt or design 

and implement in terms of ILE features to serve both requirements set by 

module team and metrics required for the study 

 distribute detailed storyboards about the design of the ILE prior to the 

implementation and ensure an ongoing quality control process for any potential 

corrections and updates on the learning material 

 identify with the team which of the suggested metrics can be calculated 

 communicate detailed schedules for the module and the study 

 inform the team of any unexpected events, occurring during the study, which 

may influence the quality of data, so the team can perform data-cleaning 

 be clear about what the expectations and limits of the collaboration are on both 

sides 

6.1.3 Data analysis reflections 

6.1.3.1 Decisions on the initial inclusion of predictors in models 

The inclusion of predictors in the first version of the models is based on the 

theory surrounding the approaches towards studying and the correlations that 

occurred between the “deep” and “surface” scales and the “interaction” metrics. 

As shown in Chapter 4, more correlations occurred for the “surface” scales 

compared to the “deep” scales, so while for the inclusion of predictors in the 

“surface” models there was more reliance on the empirical results of the 

correlations, for the “deep” models there was more reliance on the theoretical 

assumptions. For the “deep” models, the decision was based on which metrics 

had the strongest indications and the most potential of giving a more enriching50 

                                                

50  By “enriching”, we mean that it offers an additional dimension regarding the students’ 
interaction in an ILE during the tutorials. 
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and complete picture of students’ interactions in AM with regards to a specific 

approach to studying. For example, this was the case of the performance-

related metrics which have been included as a combined group in every model, 

because: a) they were strongly relevant to the main task of practising the 

exercises during the tutorials and b) there was the potential for meaningful 

comparisons if they were included in a combined way51. However, there were 

cases in which a specific aspect in terms of students’ interaction was deemed 

enriching based on the theory, but there were no strong indications as to which 

specific metric to include (e.g. the inclusion of temporal metrics in the “relate 

ideas” model as shown in section 4.9.3.1). In such cases, a “trial” type of 

version of a deep model (i.e. what the author called “pre-model”) was used to 

indicate which predictor contributes best in the model; hence a choice was 

made based on this finding. Overall, these tactics helped in deciding the best 

possible choices for the “deep” models; and in the cases of the “deep” scale, 

the “relating ideas” subscale, and the “seeking meaning” subscale, helped in 

getting some useful insights and certain distinguishing aspects with regards to 

the deep approaches to studying. 

Based on the strategy and procedures implemented for the initial inclusion of 

predictors in the models, there are certain conclusions which can be of value in 

similar future studies. The decision with regards to which predictors to include in 

a regression model is a straightforward affair, if there are correlations to indicate 

which metrics are more likely to explain and contribute to the variance of the 

models. However, if there are no such empirical indications, and there are no 

prior studies in a similar context to give stronger theoretical indications, the 

process of inclusion requires different and relatively more complex tactics. First 

of all, it is suggested to take advantage of the maximum number of predictors 

which are allowed in the first version of the models according to the sample size, 

as this will allow comparing the contributions of as many predictors as possible. 

Secondly, when relying on theoretical assumptions for the inclusion of 

predictors, it is worth concentrating on those with the strongest theoretical 

connections to the scale, with the most relevance to the students’ practical 

tasks, and which facilitate in making meaningful comparisons. Thirdly, if certain 

metrics are considered enriching, but there is no clear indication as to how 

                                                

51 This was especially the case for the performance-related in “deep” models because of their 
unexpected relationships to the “deep” scales. Their combined inclusion extended our 
understanding on how students perform when practicing tutorial exercises in class with regards 
to the deep approaches towards studying in the specific educational setting.   
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exactly they relate to the scale or which ones from a specific group is likely to 

best contributes to a model (e.g. temporal metrics), then it is worth checking 

their contribution to the variance by including them in “pre-models”. 

6.1.3.2 Thresholds for statistical measures in this context 

The thresholds for statistical measures are based on expectations which occur 

from the literature on learning styles and interaction in ILEs (i.e. there is an 

expectation for a medium effect size as indicated in section 2.6.4), and they are 

also based on Cohen’s (1992) suggestions for variance explained R2 based on 

the effect size (see Appendix 3.11.1). However, since this study can serve as a 

starting point for studies of a similar context (where approaches to studying are 

examined in relation to students’ interaction in ILEs and specifically during 

tutorial sessions and in real learning conditions), it is reasonable to suggest 

what thresholds one may expect in terms of the variance explained R2.  

In terms of R2, there is a difference in terms of expectations between the deep 

and surface approaches to studying. In most “surface” models, there seems to 

be approximately double the amount of variance explained compared to the 

“deep” models (see Appendix 5.1). More specifically, due to reasons discussed 

in section 5.3.2, it seems that the “deep” models are more sensitive to factors in 

the teaching and learning environment. Hence, regarding the variance 

explained R2, the expectations for a similar study (for a similar study in similar 

educational settings, ILE, and metrics) are medium between 15.7% and 25.2% 

(see Appendix 5.1); whereas, for the “surface” model, one can expect in a 

similar study from medium to large variance explained an R2 between 21% and 

45.5%.  Researchers should consider these thresholds, but always in relation to 

the educational settings in which the study takes place. It is possible, for 

example, as discussed in section 6.3.1, that in educational settings where a 

deep approach is encouraged more –or is expected and rewarded according to 

students’ perceptions- deep approaches may manifest themselves more 

strongly, hence the amount of variance explained may reach large levels. 

6.1.3.3 Importance of the exclusion of multivariate outliers 

Some insights gained from the process of the exclusion of outliers as part of 

development of the models, and which can be useful for future studies, are: 

 The exclusion of outliers can have great impact during the development of the 

models, as it can double the amount of variance explained by the model or 
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increase it in certain cases from small to medium (e.g. the “interest in ideas” 

model). 

 Particular consideration should be given as to how it affects the sample size, 

and there should be a strategy to ensure that the typical thresholds for 

statistical power, sample size and number of predictors are always respected.  

Through the current development process, it is found, for example, that up to 6 

“extreme” outliers are a reasonable number to exclude, as this ensures the 

highest increase in terms of variance, without at the same time compromising 

the statistical power according to the thresholds set by Cohen (1992) with 

regards to sample size and number of the predictors included in models. 

6.1.4 Recommendations for surviving and non-surviving predictors 

6.1.4.1 Surviving predictors 

Based on what is discussed in sections 5.1.3 and 5.2.3, there are metrics which 

serve the models well and can be good recommendations for future studies.  

a) Number of exercises solved on first try 

This metric has proved to be a particularly important predictor and there are a 

number of reasons to recommend it in future studies.  

First of all, it helps making meaningful comparisons to the rest of the 

performance-related metrics, and offers a distinguishing aspect between “deep” 

and “surface” models, which is important if there is a need to flag up a surface 

approach in an ILE or to inform the tutor about it. More specifically, as 

discussed in sections 5.1.3 and 5.2.3, the specific metric seems to be 

particularly valuable for the “deep” models as it seems to be amongst the few 

predictors to give a distinguishing aspect with regards to the deep approach 

and which has a consistently negative relationship with the “surface” subscales 

and the main “surface” scale. 

 Secondly, as shown in section 5.3.6, it survives in the leanest and meanest 

models of most “surface” models (see also Appendix 5.3). 

Thirdly, as indicated in 5.3.1, it is the predictor which contributes the most to the 

models of “fear of failure”, “unrelated memorising” and the main “surface” scale.   

Overall, these findings reinforce the initial theoretical assumptions made in 

sections 4.1.1-4.1.10, that the number of exercises solved on first try can be a 

metric which can indicate students’ performance when solving exercises during 

the tutorials with regards to surface and deep approach towards studying. 
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Based on these findings, there are also certain recommendations which can be 

made for future studies in similar context:  

 It is reasonable to include it in “unrelated memorising”, “fear of failure”, and 

main “surface” models. It is worth re-examining its contribution even in the “lack 

of purpose” and “syllabus boundness’” models, as it can offer a more 

meaningful comparison to the performance-related metrics which survive in 

their leanest and meanest versions (see Appendix 5.3). 

 It is reasonable to include it in “seeking meaning” and “relating ideas” models. 

 It is worth re-examining its contribution to the main “deep” model, since its 

remaining predictors in the leanest and meanest version cannot really offer a 

distinguishing aspect with regards to a deep approach (see Appendix 5.3). 

 It is worth considering its inclusion in the “interest in ideas” and “use of 

evidence” models, especially if the researcher judges that the deep approach 

can manifest more strongly in the educational setting in which the study takes 

place. This could be because the ILE better supports a deep approach towards 

studying (see the “design” recommendations in section 6.2.1), or because the 

whole university course of which the ILE is part has been designed in such a 

way that a deep approach is encouraged. 

b) Compactness 

This metric has proved to be particularly important for certain “surface” models. 

First, it fits well with the theoretical assumptions (see sections 4.1.1, 4.2.1 and 

4.4.1) that the higher the students score on certain “surface” scales, the more 

compact the path they undertake (that is the more closely they interact around a 

certain set of pages).  

Secondly, it helps enriching the “unrelated memorising”, “syllabus boundness”, 

and main “surface” models by offering an additional dimension regarding the 

students’ path characteristics when interacting with a learning environment 

during tutorials. It has a consistently positive relationship with the 

aforementioned surface scales (see Appendix 5.3), and along with the rest of 

the predictors in these models, it can help to flag up a surface approach in an 

ILE, or to inform the tutor. 

Thirdly, as shown in section 5.3.6, it survives in the leanest and meanest model 

of the “unrelated memorising” subscale. This means that it is a statistically 

significant predictor, which gives reassurance about its contribution in the 

specific model for future studies.  
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Based on these findings, there are certain recommendations which can be 

made for future studies in similar context: 

 It is reasonable to include it in the “unrelated memorising” model. 

 It is worth re-examining its contribution to the main “surface” and “syllabus 

boundness” models, as it is the only path-related metric with regards to these 

models which has the potential to enrich further and offer a distinguishing 

aspect with regards to the students’ interactions and these surface approaches. 

 It is worth considering its inclusion in the model of “lack of purpose” because, as 

shown in section 4.5.2, there is a positive correlation between compactness and 

the specific subscale (although the metric does not survive in the suggested 

version of the model). This is especially the case, if the researcher judges that 

this type of surface approach can manifest more strongly in the educational 

setting in which study takes place (e.g. if an issue with students’ lack of interest 

in their studies has been identified as a general problem in a university course).  

c) Relative amount of revisits 

This metric has the potential to play an important role in certain surface models. 

Firstly, it helps enrich the “lack of purpose” model by offering an additional 

dimension regarding students’ page visitation when interacting in an ILE during 

tutorials; and it also offers a distinguishing aspect to the “lack of purpose” model, 

as it is only included in the specific model (see section 5.1.3). 

Secondly, as it is indicated in 5.3.1, it is the predictor that contributes the most 

to the “lack of purpose” model.  

Thirdly, it survives in the leanest and meanest version of the “lack of purpose” 

model, which gives reassurance with regards to its contribution in the specific 

model for future studies. 

Based on these findings, there are certain recommendations which can be 

made for future studies in similar context: 

 It is reasonable to include it in the “lack of purpose” model. 

 It is worth considering its inclusion in the “unrelated memorising” model. This is 

because there are quite strong theoretical indications that students with high 

scores on unrelated memorising are more likely to revisit parts of the learning 

material compared to those with low scores (Entwistle and Ramsden, 1983, 

Rohrer et al., 2005). Furthermore, as shown in section 4.2.2, there is a positive 

correlation (although the metric does not survive in the suggested version of the 
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model). It is especially worth considering its inclusion if a researcher judges that 

this type of surface approach can manifest more strongly in the educational 

setting in which the study takes place (e.g. if an issue with students using rote 

learning as an approach towards learning has been identified as a general 

problem in a university course).  

d) Stratum 

The specific metric can help enriching the “use of evidence” model as it adds 

another aspect to students’ interactions in an ILE during the tutorials regarding 

the linearity of the path they undertake. It can also add a distinguishing aspect 

to the “use of evidence” model, as it is only included in this specific model (see 

section 5.2.3). Furthermore, it survives in the leanest and meanest version of 

the “use of evidence” model.  

However, as discussed in sections 5.2.2 and 5.2.3, it seems that its contribution 

really depends on the way the learning material is structured in the ILE. So, it 

can be recommended for inclusion in the “use of evidence” model, but, 

depending on the structure of the learning material, its contribution, and even its 

relationship to the “use of evidence” scale, can change from negative to positive. 

For example, this can be the case if the learning material in the ILE is designed 

in a way that suits more those with higher scores on the subscale compared to 

those with lower scores.  

Overall, this is what one may expect in a similar study, but it is worth clarifying 

that the above insights do not imply that learning material should be designed in 

a way that suits those with higher scores on the subscale.  Recommendations 

on how the material in an ILE can be designed are discussed further in section 

6.2.1.  

e) Other performance-related metrics with regards to surface approaches 

Number of exercises solved on third try with regards to “surface” models 

First, it helps enrich “surface” models by contributing with a positive relationship. 

For example, its inclusion serves towards making meaningful comparisons with 

the number of exercises solved on first try. 

Secondly, it survives in the leanest and meanest version of the “syllabus 

boundness”, “fear of failure” and the main “surface” models (see Appendix 5.3). 

However, the specific metric does not have the distinguishing “power” 

(compared to the predictor number of exercises solved on first try), given that it 

contributes also to positive beta values in the suggested “deep” models for the 
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“seeking meaning” and “use of evidence” subscales.   

Based on these findings, there are certain recommendations which can be 

made for future studies in a similar context: 

 It is reasonable to include it in the “syllabus boundess”, “fear of failure”, and 

“surface” models. However, it makes sense to include it along with number of 

exercises solved on first try to allow for meaningful enriching comparison in 

terms of students’ performance when solving exercises during tutorials. 

 It is worth considering it for inclusion in the “lack of purpose” model because, as 

shown in section 4.5.2, there is a positive correlation as expected (although the 

metric does not survive in the suggested model). It is especially worth 

considering its inclusion if a researcher judges that this type surface approach 

can manifest more strongly in the educational setting in which the study takes 

place (e.g. if an issue with students’ lack of interest in their studies has been 

identified as a general problem in a university course).  Another condition for its 

inclusion is that it be included only if number of exercises solved on first try is 

included as well. 

Number of exercises finished but not solved with regards to “surface” models 

First, it helps enrich the “surface” models. This is because it can point to an 

aspect of students’ interaction called “gaming” behaviour, as discussed in 

sections 2.1.7 and 3.4.7. As observed in similar systems, students’ interaction 

when solving exercises can indicate whether students are simply abusing the 

affordances of the environment to achieve good results but with questionable 

learning gains (Baker et al., 2008; Mavrikis, 2010). This behaviour has been 

characterized as “gaming”, as students try different solutions without a 

systematic approach and take advantage of the system’s feedback (Baker et al., 

2008).  

Secondly, it survives in the leanest and meanest version of models for the 

“unrelated memorising” and “lack of purpose” subscales (see Appendix 5.3).  

Thirdly, despite the fact that it does not survive in the suggested version of the 

“fear of failure” model, it is worth considering its inclusion in the specific model. 

This is because there are quite strong indications in the literature that the 

behaviour of “gaming the system” is linked empirically to anxiety about failing 

(Baker et al., 2008); possibly because it allows students to succeed without 

risking failure (Entwistle et al., 1979). So, it is a predictor that in future similar 

studies, and especially in educational settings where surface and “fear of failure” 
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approaches can manifest strongly, has still the potential to contribute to the 

“fear of failure” model. 

However, it is worth mentioning that the specific metric does not have the 

distinguishing power (compared to the predictor number of exercises solved on 

first try), given that it contributes also with positive beta values in the leanest 

and meanest versions of the deep models for “relating ideas”, “interest in ideas” 

and the main “deep” scales.   

Based on these findings, there are certain recommendations which can be 

made for future studies in a similar context: 

 It is reasonable to include it in the “unrelated memorising” and “lack of purpose” 

models. 

 It is worth considering it for inclusion in the “surface” model because, as shown 

in section 4.1.2, there is a positive correlation and it does survive in the 

suggested version of the model.   

 It is worth re-examining its inclusion in the model “fear of failure” because of the 

theoretical connections discussed previously. 

f) Other performance-related metrics with regards to “deep” models 

As discussed in section 5.2.3, the performance-related metrics, except for 

number of exercises solved on first try, give a rather unexpected picture of the 

students’ interactions when solving exercises for most of the “deep” models.  

Because of this unexpected picture, a sensible recommendation is to consider 

those performance-related predictors surviving in the leanest and meanest 

versions of the “deep” models (see Appendix 5.3). Furthermore, because a 

deep approach towards studying seems to be very much influenced by the 

broader educational environment and settings, as discussed in section 5.3.2, it 

makes sense that one should consider them before making assumptions with 

regards to the relationships between the performance-related metrics and the 

deep scales.  

If there is a question as to which deep approach the performance-related 

metrics give the most reasonable, complete and enriching model of with 

regards to students’ interactions when practising tutorial exercises, then after 

looking at the leanest and meanest versions of the models (see Appendix 5.3), 

the answer is the “relating ideas” approach. It seems to be the only “deep” 

model in which the performance-related metrics make the most sense or at 

least give the most complete picture (that is, students with high scores on the 
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“relating ideas” subscale are more likely to solve exercises on the first attempt 

or not at all, and not likely to solve exercises on the second attempt, compared 

to those with low scores). So, it is worth considering for inclusion the predictors 

number of exercises solved on second try and number of exercises finished but 

not solved in the “relating ideas” model. As for the rest of the deep models, as 

recommended previously, the general educational setting should be considered 

first before any decisions for their inclusion are made, but also their combined 

inclusion in models should be considered to allow for more meaningful 

comparisons. 

g) Temporal metrics  

Maximum view time on a reading (content) page 

As shown in section 5.3.6 and Appendix 5.3, this metric survives in the leanest 

and meanest versions of the “fear of failure” and the main “surface” models, and 

the “relating ideas” model. This means that it is a statistically significant 

predictor, which gives reassurance about its role for the specific models in 

future studies. Furthermore, it gives a distinguishing aspect to these models, as 

it has a unique positive relationship to the “relating ideas” subscale, while it has 

a negative one to the above surface scales. Based on these findings, it is 

sensible to recommend it for inclusion in the aforementioned models.  

Average view time on reading (content) pages 

As shown in section 5.3.6, this metric survives only in the leanest and meanest 

model of the surface model “syllabus boundness”. This means that it is a 

statistically significant predictor, which gives reassurance about its role for the 

specific model in future studies. It is worth mentioning that it is not included in 

any other model (neither in the suggested versions nor in the leanest and 

meanest versions), so it does give a distinguishing aspect to the specific model. 

Theoretically speaking, spending on average an increasing amount of time on 

the theory as the score on the scale is also increasing, also makes sense in the 

specific approach, as those with high scores on the subscale are more likely to 

want to ensure that they follow the given syllabus and dedicate more time to it, 

compared to those with low scores. 

Maximum view time on an exercise page 

As discussed in sections 5.1.3 and 5.2.3, this is a temporal predictor which 

plays an important role in both “deep” and “surface” models.  

More specifically, it contributes to all the leanest and meanest versions of the 
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“deep” models, with the exception of the “relating in ideas” one where it is 

included in the suggested version of the model.  It also is the highest contributor 

in the “seeking meaning” model. With regards to the surface scales, it 

contributes in the leanest and meanest versions of the “fear of failure” and the 

main “surface” models.   

However, it has the same positive relationship to both deep and surface scales. 

This, as discussed in sections 5.1.3 and 5.2.3, can be for different reasons. Still 

it is the type of temporal predictor which does not have the distinguishing power 

other temporal predictors have, such as the maximum view time on reading 

(content) page.  

A sensible recommendation is to include it in all the aforementioned models in 

future studies. However, to aid further the interpretation of its contribution to 

these models (e.g. whether students with higher scores on the deep scale tend 

to spend an increasing amount of time on a specific exercise page because of 

their intention to seek deeper understanding of the logic behind the exercises, 

or because they experience difficulties with the specific group of exercises) it is 

worth: 

 considering it and interpreting it along with the performance-related metrics 

(e.g. if students with higher scores on the deep scale tend not to solve the 

exercises at all, then it could be that they spend an increasing amount of time 

on a specific group of exercises because they experience difficulties). 

 improving the metric as suggested later on in section 6.2.2 

 

To conclude, the recommendations in section 6.1.4.1 can help a researcher in 

deciding when planning a similar study as to the number of predictors which 

should be initially included in the models, and whether the targeted sample size 

is enough with respect to the “desirable” number of predictors and the typical 

threshold of statistical power, as indicated in 3.11.3. 

6.1.4.2 Non-surviving predictors 

As shown in section 5.3.6, there are predictors which are not involved in the 

leanest and meanest versions of the “deep” or “surface” models. However, it 

may be worth considering them in future studies, because:  

 They link to both deep and surface scales both theoretically and empirically (i.e. 

there are initial correlations or contribution to the suggested models) 
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 There is a need for more clarity as to their relationship to the scales 

 There are design recommendations in relation to them which may improve their 

contribution if they are applied  

More specifically: 

 The number of hyperlinks (concept links) visited in reading and exercise pages 

can be a good candidate for inclusion in the “surface”, “relating ideas” and 

“seeking meaning” models, as there are empirical and theoretical links, and its 

inclusion offers an opportunity to clarify further the nature of its relationship to 

these scales. 

 The average number of times a notes link is clicked per page survives in the 

leanest and meanest model of the “relating ideas” model only, but there is the 

potential of further development of the “notes” feature so it can contribute 

further to other deep models, as discussed in 6.2.1. 

6.2 User interface design and data capture 

In this section, there is discussion with regards to improvements for the ILE 

features and the predictors of the “deep” and “surface” models in order to 

achieve a more enriching interpretation of results in future studies. 

6.2.1 User interface design recommendations 

6.2.1.1 Search Feature  

It was initially expected that there would be possible links between the use of 

the search feature and the subscales of “relating ideas” and “interest in ideas”. 

Indeed, there are scenarios in which it could have been used. The search 

option could have been used during the third week of study in AM by those 

students with an interest in linking mathematical concepts between the chapters 

on Functions and Graphs. For example, if they typed “function” in the search 

option, they would get links to the topic of “quadratic graphs”. The search option 

could also support the students’ interest to go beyond the syllabus of the 

current week and make connections between mathematical topics of the third 

week and mathematical topics of the fourth week. For example, if they typed 

“simultaneous equations” in the search option, the search would, amongst other 

results, return links about the topic of “matrix representation of linear equation” 

(a topic from the chapter of Matrices taught in the fourth week).  

However, the search option was not used and there is no data and variability to 
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enable us to examine its relationship to the deep scales. It is possible that the 

practical nature of the tutorials did not encourage the further exploration of 

mathematical concepts in graphs and functions. It can also be due to tutor 

intervention as discussed in section 6.1.1. But the lack of its use most likely 

relates to the way the search option is presented in AM. The search option in a 

system like AM can be designed in a way that can gratify students’ intrinsic 

interest and seeking further meaning in mathematics, encouraging in this way a 

deep approach. Vockell (2006) in his discussion argues that to promote intrinsic 

motivation, there is a need to stimulate students’ sensory curiosity (by making 

changes that are perceived by the senses) and cognitive curiosity (by making 

the learner wonder about something) in a learning environment. In addition, 

Ryan & Deci, (2000) (cited in Martens et al, 2004, p. 371) find that high intrinsic 

motivation is positively related to curiosity and exploration. They also argue that 

students with high intrinsic motivation are likely to explore the parts of a 

programme that gratify their curiosity. It seems that the search option in AM was 

not seen as a means to satisfy the curiosity of students, not even of those with 

high scores in the “interest in ideas” subscale.  

However, it is possible to improve the AM search option. Fransson (1978) notes 

that intrinsic interest in a subject is not so much something one creates but 

rather something one finds. He also notes that if we want to utilise students’ 

intrinsic motivation, we must focus on what they are interested in and link the 

study material to it. Following this suggestion and taking into account Vockell 

(2006) who argues that the curiosity of intrinsically motivated students can be 

triggered by making them notice a change through their senses or by making 

the learner wonder about something,  the search option should not simply be a 

choice placed statically at the navigation bar, but an option that can emerge at 

crucial moments and suggest a search at a moment that is likely to be noticed. 

The idea of encouraging deep understanding in crucial moments in a way is 

supported in the literature. Entwistle and Patterson (2004) support that 

presentation of content should be enhanced with the identification of 

“troublesome knowledge” (i.e. knowledge which students find difficult to 

understand). Recommended predictors of students’ interactions, discussed in 

section 6.1.4.1 can help with the identification of “troublesome knowledge”. For 

example: 

 when students fail to solve on first attempt a specific type of mathematical 

exercise related to a specific mathematical concept;  



 263 

 when the time spent on a specific exercise page exceeds a reasonable limit 

(considering as well the length of the tutorial session); 

 when students excessively revisit specific pages of learning material, as 

revisitation can be linked to the “lack of purpose” scale; 

 when students conduct a very compact path and do not expand on material 

they are supposed to practise on. 

At that point a suggestion could emerge to explore a mathematical concept or a 

detailed worked example related to the specific type of exercise.  

Tendency not to solve on first try, excessive amount of time spent on an 

exercise page, and excessive revisitation and compactness can be primary 

indicators for “troublesome knowledge”. But other predictors can be used as 

well, such as: failing to solve exercises on second or third attempt, or not 

solving them at all. The module team, which designs the learning material and 

is aware of the level of difficulty, can be involved in deciding the predictors 

involved and the thresholds. To conclude, the main recommendations for the 

design of search are as follows:  

 identify “troublesome knowledge” based on predictors which are linked to 

surface approaches towards studying (for more discussion on such indicative 

predictors see section 6.3.2) 

 design a search which is responsive to “troublesome knowledge” and emerges 

at these crucial moments  

6.2.1.2 Notes Feature  

It is discussed in section 6.1.4.2 that there are indications that students with 

high scores on the “unrelated memorising”, “relating ideas” and “deep” scales 

are more likely to access the “notes” feature.  

So, use of this feature is not necessarily linked to the deep approaches, as 

initially assumed. This is also reinforced also by the observations made in class, 

and the recorded notes (see Appendix 6.1). They indicate that there are 

students who used notes in a rather “surface” manner (e.g. to copy and paste 

learning material in them or simply record the answers of the exercises), and 

other students who use them in a “deeper” manner (e.g. to record the logic 

behind the solution of an exercise).  

It is possible that if the use of the “notes” feature could help the deep approach 

to manifest itself more strongly, then further contribution to the “deep” models 



 264 

could be attributed to the predictor representing it. This can be a pedagogical 

issue, but it is also a design issue. The question is whether there is a way to 

improve the design of the “notes” feature to encourage further a deep approach 

towards learning. One way to do this is further to develop the social aspect of 

the “notes” feature. This is also supported in the literature. Entwistle and 

Peterson (2004) support the provision of opportunities for  group discussion of 

both content and learning processes, and Baeten et al. (2010) point to empirical 

evidence which indicates that feedback received online from peer-groups 

encourages a deep approach.  

Currently, in the “notes” feature, there is the option “Allow others to see this 

note”. This public aspect of the “notes” feature can be further enhanced by 

allowing students to create a study group of their choice (e.g. specific study 

group, tutorial group or whole module). The reason behind this suggestion is 

that it can serve two major “intrinsic motivation” elements: autonomy and 

relatedness (Ryan and Deci, 2000). In the field of user interface design, 

researchers such as Lockton (2012) emphasises the importance of designing 

for intrinsic motivation by finding ways to make users feel that they interact with 

choice (i.e. autonomy) and that they are part of a community (i.e. relatedness). 

By allowing students to share information and give support to each other within 

a group of their choice, can help them to feel more autonomous and offer a 

feeling of belonging to a specific learning community52.  

Another recommendation is to allow students and tutors to rate highly the public 

notes that show deep understanding such as explaining the logic behind an 

exercise. Based on the recorded notes in the current study, it occurs that 

students record in notes the logic of an exercise and are happy to share it (see 

Appendix 6.1). If the design of the “notes” feature allows users to reward this 

type of students’ actions by favouring them, then it can be a way to express 

support and encouragement by peers and tutors, which in return can motivate 

towards a deep approach towards studying  (Baeten et al., 2010). In addition, it 

can again increase the aspect of intrinsic motivation which has to do with 

relatedness, as it is another way to make the students feel that they belong in 

the learning community in which their peers and tutors show appreciation for 

                                                

52 There are already indications, based on the recorded notes, that these design suggestions 
can be quite well-received, as students used the “notes” feature to ask for help or share 
amongst themselves advice on the logic and solutions of the exercises during the tutorial 
sessions (see Appendix 6.1). 
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their efforts.   

To conclude, the recommendation is: to develop further the current “public” 

option of the “notes” feature, so that it allows students the autonomy to share 

information with a group of their choice, and allow peers and tutor to favour 

“public notes”, increasing in this way support, encouragement, relatedness and 

ultimately the students’ intrinsic motivation. 

6.2.1.3 Hyperlinks (Concept Links) Feature - creating links between concepts 

As discussed in sections 6.1.4.2, the number of hypertext concept links has an 

unexpected relationship in terms of direction to the deep and surface scales. It 

seems that those with higher scores on the “relating ideas” and “seeking 

meaning” subscales are less likely to use them, compared to those with lower 

scores. In contrast, those students with higher scores on the “surface” scale are 

more likely to use them, compared to those with lower scores. So, there are 

indications through the suggested versions of these models, that the use of 

hyperlinks is not necessarily linked to the deep approaches, as initially assumed, 

and there is even an indication that they are used by those with higher scores 

on the “surface” scale.  

With regards to the “deep” models, a possible reason can be the influence of 

students’ prior knowledge. As discussed in 5.5.3.2, it seems that the direction of 

the relationships in these models seem to express better the interactions of the 

“low prior knowledge” group, than those of the “high prior knowledge” group 

across the specific scales. In a way, this is also supported in the literature, 

which indicates that those with low prior knowledge can have issues with 

cognitive overload and not being able to integrate new pieces of information to 

the whole of what they learn when they study in an ILE (Mampadi and Mokotedi, 

2012). It is possible, therefore, that even those with higher scores in the deep 

scales tend to not use the hyperlinks because perhaps because they felt 

cognitively overloaded by all the available choices in AM, or because the 

hyperlink’s current design does not help them enough to understand the 

connections between the concepts. In the field of educational technology, there 

have been various efforts and suggestions for designing links in ways that 

better suit students’ individual characteristics (e.g. link hiding, link annotation, 

direct guidance) (De Bra and Calvi, 1998; Brusilovsky, 2001; Mampadi and 

Mokodedi, 2012).  

Based on these suggestions, AM could be made more responsive with regards 

to the hyperlinks by  highlighting the hyperlinks similarly to the search feature, 
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at crucial moments when they are likely to be noticed. Recommended 

predictors of students’ interactions, discussed in section 6.1.4.1 (and further 

discussed in section 6.3.2) can help with the identification of “troublesome 

knowledge” when content needs to be enhanced (Entwistle and Patterson, 

2004).  For example: 

 when students fail to solve on first attempt a specific type of mathematical 

exercise related to a specific mathematical concept;  

 when the time spent on a specific exercise page exceeds a reasonable limit 

(considering as well the length of the tutorial session); 

 when students excessively revisit specific pages of learning material, as 

revisitation can be linked to the “lack of purpose” scale; 

 when students conduct a very compact path and do not expand on material 

they are supposed to practise on. 

Furthermore, the reason behind the tendency to use hyperlinks for those with 

the higher scores on the “surface” scale, could be because the content of the 

hyperlinks in AM simply repeats information about concepts and procedures 

found in AM pages, possibly contributing to repetitive overlearning. So, what 

can be recommended here is providing further information through the 

hyperlinks, for example extra examples with regards to a concept, especially if 

students have already visited pages with relevant content (in other words the 

content of the hyperlink for a specific page can be changed according to what 

has been previously seen).  So, instead of repeating information, which might 

have been previously seen, the content of hyperlinks will aim to extend further 

what is currently known. 

As the function of facilitating links between mathematical concepts is important 

for encouraging a deep approach, it is worth trying to find another way to 

introduce it in an interactive learning environment. Another feature which can be 

considered is a digital concept map. There are currently stand-alone 

applications and websites for creating digital concept maps53; however, the idea 

is to incorporate such a tool in AM. It can work in to two ways: 

 encourage students to find links themselves between current concepts and 

apply this visually by creating nodes; and 

                                                

53 They are also called mind maps. Some examples are: Cmap, Giffy Online, and Bubb.us. 
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 activate learners’ prior knowledge of by highlighting and differentiating the old 

concepts, and allow students to connect them to new concepts. 

The idea of concept maps has support in the context of mathematics at 

university level. Beng and Yunus (2013) support that a concept map can help 

apply a holistic approach (which relates strongly to the “relating ideas” approach) 

and most importantly strengthen and activate prior knowledge; hence they 

apply it in the mathematical concept of calculus. 

This recommended feature, an embedded digital concept map in an ILE, 

besides enhancing understanding regarding the relationship between old 

concepts and new concepts, can serve also as way for the tutor to check on 

students’ prior knowledge and any misconceptions regarding the connections 

and structure of students’ concept maps. By relating teaching in this way to 

prior knowledge and facilitating students to reflect on the relationship between 

old and new concepts, one can create a more student-oriented learning 

environment that encourages a deep approach (Entwistle and Peterson, 2004). 

6.2.1.4 Distinguishing detailed worked examples from the rest of the theoretical 

generic material  

Sections 5.1.3, and 5.2.3 discuss that it is possible that the way the material is 

structured and the AM interactive learning environment is designed (although 

flexible and versatile) do not really encourage the “use of evidence” approach to 

emerge.  So, it is worth looking at possible solutions which can encourage this 

specific approach. Based on Hills (2003) “design” recommendations for an ILE, 

AM can display suggestions to check detailed worked examples, but in a timely 

manner, especially when there are signs of “troublesome knowledge”, as 

discussed previously.  According to Hill (2003), this type of help is likely to 

benefit those who pay attention to the low-level detail, and master one topic at a 

time. These are tendencies for those with higher scores on the “use of evidence” 

subscale, (a scale which is based on Pask’s (1976) serialist approach towards 

studying, as discussed in section 4.10.1). Students with such tendencies are 

also likely to ask for help before moving to the next topic (Chen et al., 2016), 

which in a way reinforces the ideas of giving them “timely suggestions”. 

Based on the above insights, it is possible to make the following 

recommendations:  

 First, make a clear distinction between the way the mathematical concepts and 

operations are presented and structured in the interactive learning environment 
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by distinguishing detailed worked examples (see Appendix 3.4.11) from more 

theoretical and generic learning material (see Appendix 3.4.1)54. 

 Secondly, make “timely suggestions” for students to check on a relevant 

detailed worked example when there are signs that they are dealing with 

“troublesome knowledge”. 

In a similar way, distinctions in the learning material and “timely suggestions” 

can be made for those who tend to form an overview by exploring topics of what 

may be known, and relating a concept to another, as discussed in 4.9.1. These 

are tendencies for those with the higher scores on the “relating ideas” subscale, 

(a scale which is based on Pask’s (1976) holist approach towards studying, as 

discussed in section 4.9.1). Based on these insights, a possible 

recommendation is to create more summarised generic material (see an 

example of such a page in Appendix 3.4.12), which brings together related 

mathematical concepts and examples, and which can be suggested in a timely 

manner, when for example there are signs of “troublesome knowledge”. 

6.2.1.5 Need for a versatile interactive learning environment 

Finally, recommendations regarding the design of an ILE should aim for a 

versatile learning environment. The current structure of the learning material in 

AM does support a versatile structure by incorporating both an inductive and a 

deductive manner of delivering the learning material, as discussed in section 

5.2.3. However, more could be done to achieve a more versatile ILE. 

The current recommendations are based on Pask’s (1976b, 1976a) insights 

with regards to the concept of “versatile learners”. These are individuals who 

tend to study both the low-level detail following a “serialist” approach, and the 

overview and relationship of concepts to build understanding following a “holist” 

approach. Entwistle and Ramsden (2015) and Entwistle (2001) indicate that 

both approaches (the “serialist” one which points to the “use of evidence” 

approach and  the “holist” one which points to the “relating ideas” approach) are 

needed in order to obtain a deep level of understanding. So, the 

                                                

54 When the given learning material was incorporated in AM, there was an effort to make such a 
distinction, but this was not always possible (see Appendix 3.4.10) because of the way the 
learning material was written and produced in a textbook by the lecturer in charge of 
mathematics module. The way the learning material was structured and presented in AM could 
not be altered significantly compared to the textbook, as it required the lecturer’s approval. 
There were also ethical reasons: the approved module syllabus represented in the textbook 
serves specific learning outcomes, hence it cannot be changed because it can affect those 
learning outcomes and ultimately students’ performance. 
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recommendation here is for an ILE which incorporates both approaches in its 

design. The aim is to facilitate these two approaches to studying, but move at 

the same time towards combining both to encourage versatility in studying. 

Indeed, as discussed previously, the incorporation of both a digital concept map 

and “timely suggestions” for checking on summarised theoretical generic 

material, which can encourage a “relating ideas” approach, and the “timely 

suggestions” to check detailed worked examples which can encourage a “use 

of evidence” approach, may serve towards creating a more ‘versatile’ ILE. 

Finally, as indicated previously, both the “timely suggestions” for detailed 

worked examples or summarised theoretical generic learning material can 

occur when there are signs of “troublesome knowledge”. To support students’ 

autonomy55 in terms of choices and versatility in terms of learning, however, it is 

worth considering giving them choice on whether they prefer visiting content 

with relevant detailed worked examples or are content with more generic 

theoretical material, independently of their scores on the “relating ideas” and 

“use of evidence” scales. 

6.2.1.6 Identifying a more “concrete” picture of an approach in an interactive 

learning environment 

It is possible to create a feature in an “intelligent” ILE which identifies students 

who interact, for example, in a “surface” manner. This can assist tutors to 

identify, quickly and effectively, students especially with surface approaches. 

To give a more concrete picture of how a student with a very high surface score, 

for example, would interact in the specific system and in real learning conditions, 

one idea is to use “values of interest” with regards to the regression model 

representing a scale. The idea derives from an example given by Field (2009) 

regarding how to use a regression model. More specifically, the extreme values 

of interest, which are the minimum and maximum values of each predictor in 

the model, are used according to the direction of the relationship to the 

outcome.  

For example, with regards to Model 4 representing the main surface approach, 

the minimum values of the predictors are used where there is a negative 

relationship with the outcome, and the maximum values of the predictors are 

used where there is a positive relationship with the outcome (see Appendix 6.2).  

                                                

55 This can also contribute to students’ intrinsic motivation, as discussed in section 5.2.1. 
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It is possible to say that a student with the highest score on the surface scale 

could interact in the specific system as follows: 

 Given that the specific system allows a student to try up to 3 times to find the 

correct answer and at the end it reveals the answer, the student is likely to 

solve four exercises on first try, 15 exercises on third try, and 32 exercises will 

be finished but not solved (which means on the third try the answer was 

incorrect) over two tutorial sessions. To give a more proportional picture, we 

can say that out of all the exercises solved on first and third try or not at all, a 

student with the highest score on the surface scale is likely to solve just 7.8% of 

the exercises the first time, 29.4% of the exercises the third time, and 

approximately 62.7% of the exercises will be solved but not really finished. 

 For the maximum amount of view time on an exercise page, a student may well 

spend around 3750 seconds (62.5 minutes) (which is basically half the two-hour 

tutorial session on one specific exercise page); while for the maximum amount 

of view time on a content (reading) page, a student may spend just around 

108.9 seconds (1.8 minutes) on the theory. To give a more proportional picture, 

the maximum number of minutes spent on an exercise page can be 

approximately 35 times greater than the maximum number of minutes spent on 

a page with theory. 

 They are also likely to follow a highly compact path, and visit up to 11 

hyperlinks (concepts links) on reading and exercise pages. 

These “extreme interaction profiles” can be presented for training tutors who 

can in this way develop an appreciation of the kinds of interaction they should 

expect, or not, from the students. In addition, an intelligent system could use the 

previous data and models to identify the students who tend to interact in a 

“surface” manner.   

 

6.2.2 Improvements in data capture 

In Chapter 5, there is discussion regarding the reasons behind the unexplained 

variance in the models (i.e. not strong enough contributions of existing predictor 

and absence of other predictors). The contribution of current predictors can be 

strengthened by improving the predictors (both those which are involved and 

those which are not involved in the suggested models).  

Furthermore, in both Chapters 4 and 5, there is an attempt to interpret students’ 

interactions based on the models representing each approach towards studying. 
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In deep models particularly, there is an attempt to explain unexpected findings; 

whereas in the surface models, where results are mostly the expected ones, 

there is an attempt to interpret students’ interactions and even distinguish one 

subscale from another.  Although the current interpretations are reasonable and 

give a good indication of certain type of interactions, improvements to ensure a 

more enriching interpretation in similar studies can be made with regards to the 

predictors. 

6.2.2.1 Recommendations for improvements on path metrics 

Path-length related metrics such as path length and number of reading pages 

and number of exercise pages have not been found to correlate with any of the 

scales, and have not contributed to the models of the deep and surface scales. 

This can be due to the fact that, despite the distinction between reading and 

exercise pages, they still seem to be generic and are probably missing 

semantic elements (i.e. elements which can reveal more about the learning 

content of a page) which would make them more sensitive to capturing changes 

in the variability of students’ page visitation across the scores of the scales.  

Something that can be recommended to address this issue is distinguishing in 

reading pages between: those which include definitions, generic theoretical 

examples, summarized pages which show how concepts related to each other 

(see examples in Appendices 3.4.1, 3.4.13, and 3.4.12); and those which 

include detailed working examples (see Appendix 3.4.11). By making this 

distinction, it is expected that predictors representing visitation of these two 

different types of reading pages can relate or contribute better to the “relating 

ideas” and “use of evidence” scales respectively. More specifically, and based 

on the definitions given by Entwistle et al. (1979), Entwistle (1981) and Pask 

(1976b)  for these two different approaches, it is expected that those with a high 

score on the “relating ideas” scales are likely to visit more pages which have a 

broader view of the theoretical content (e.g. pages with theoretical examples 

explaining the general logic of operations (see an example in Appendix 3.4.14), 

or pages with an overview/summary of the concepts and their relationships (see 

an example in Appendix 3.4.12); while those with high scores on the “use of 

evidence” scale are likely to visit more pages which have more specific detailed 

worked examples (see Appendix 3.4.11). The inclusion of the suggested 

predictors in the “relating ideas” and “use of evidence” in future studies may 

reinforce the previous design recommendation for creating a versatile 

interactive learning environment where both the “relating ideas” and the “use of 
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evidence” approaches may manifest much more strongly. 

6.2.2.2 Recommendations for improvements on temporal and performance-

related metrics 

In a similar way, more semantic elements can be attached to temporal and 

performance-related metrics to ensure stronger relationships and contributions 

for these predictors in the models and decrease the amount of unexplained 

variance. 

For example, the element of “level of difficulty” can be incorporated in temporal 

and performance-related metrics. However, the educational research on the 

level of difficulty and how it affects students’ learning is vast and it requires 

thorough investigation in order for a researcher to make decisions on how it can 

be incorporated in the data. There is a field of educational research which 

examines, for example, how awareness of the difficulty of learning tasks or the 

perceived level of difficulty by students can affect performance, motivation and 

anxiety (Kukla, 1974; Martin and Manning, 1995).  So, a researcher, for 

example, has to make decisions with regards to whether the level of difficulty 

can be defined by the lecturer/tutor (based on his or her expertise on the 

specific subject and teaching experience in a specific module and course), or 

whether it can be defined as the perceived level of difficulty by students. 

Another decision could be whether the assigned levels of difficulty will be known 

to the students or not.  

In the following sections, there are various examples of how the aspect of level 

of difficulty could be involved in temporal, performance-related and path metrics 

(without, though, going into further detail, as further investigation on the level of 

difficulty is beyond the scope of this thesis). More specifically, with regards to: 

a) Temporal metric - Average time view time on exercises pages 

As shown in Chapter 4, average view time on exercise pages has produced 

statistically significant relationships to the “unrelated memorising”, “fear of 

failure”, and the main “surface” scales. However, its contribution is not enough 

to be included it in their suggested models. So, for example, there can be a 

distinction into: average view time on exercise pages of basic level difficulty, 

average view time on exercise pages of medium level of difficulty, and average 

view time on exercise pages of high level of difficulty; which may offer more 

variability for the metric across the scores of the aforementioned scales. For 

example, it could be the case that students with a higher degree of anxiety (i.e. 
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those with the higher scores on the “fear of failure” scale) tend to spend on 

average more time on exercise pages with a high level of difficulty, compared to 

those with a lower degree of anxiety.  

b) Temporal metric - Maximum view time on exercise page  

As shown in section 5.3.6, maximum view time one exercise page survives in 

the leanest and meanest models of the “fear of failure” and the main “surface” 

scales. Capturing the maximum view time on an exercise page with regards to 

the level of difficulty can be more enriching in terms of interpretation. In section 

5.1.3, it is discussed that the specific metric can help to reveal more extreme 

interactions like a student experiencing problems with a specific group of 

exercises on a specific page and thus working much more slowly. This 

interpretation can be reinforced if it is shown, for example, that students with 

high “surface” scores tend to spend maximum view time on a group of 

exercises with a high level of difficulty. A distinction, therefore can be made with 

regards to the specific metric, such as: maximum view time on exercise pages 

of basic level difficulty, maximum view time on exercise pages of medium level 

of difficulty, and maximum view time on exercise pages of high level of difficulty.  

Furthermore, in section 5.2.3, it is discussed that there are two possible 

interpretations for the positive contribution of maximum view time on an 

exercise page to the “deep” models (either that it is a time-consuming effort to 

build understanding of concepts and procedures, or that students may 

experience difficulties with a specific group of exercises with a high level of 

difficulty). The previous distinction may aid further with the interpretation of the 

deep scales as well. 

c) Temporal metric - Maximum view time on reading (content) page  

Although the specific metric has more distinguishing power compared to 

maximum view time on exercise page as the direction of its relationship 

between deep and surface scale differs (see discussion in section 5.2.3), it is 

worth considering similar improvements. For example, the element “level of 

difficulty” may aid the interpretation of the positive association between the 

metric and the “relating ideas” scale (i.e. whether increasing maximum view 

time means an increasing intention and effort to relate mathematical concepts, 

or whether it means that students occasionally “get stuck” on a specific page 

with exercises of a high level of difficulty). 
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d) Performance-related metrics 

If the difficulty of a task is defined as an informational component which 

conveys the probability of success in accomplishing it, then it can certainly 

affect performance (Martin and Manning, 1995). It is an element, therefore, 

which is worth considering in performance-related metrics, as it has the 

potential to enrich further the interpretation and increase the contribution of 

these metrics on both “deep” and “surface” models.  

The importance of performance-related predictors in “surface” models is 

discussed in section 5.1.3 and 5.3.1. For example, predictors such as number 

of exercises solved on first try contribute to all scales, and in three of the 

“surface” models, including the main “surface” one, is the highest contributor. 

Adding another aspect to these predictors has the potential to provide even 

more enriching comparisons. It is possible to compare, for example, if those 

students with high surface scores tend to not solve on first try exercises with a 

high level of difficulty; whereas they tend to solve exercises on third try (or not 

at all) with a medium or low level of difficulty.  

Adding the aspect of level of difficulty can serve towards increasing the 

variance of the models; especially those with the least variance, as indicated in 

section 5.1.3. For example, the variance of the model representing the “lack of 

purpose” scale can benefit from a predictor which indicates the level of difficulty 

for the number of exercises solved on first try (or third try or not solved at all). It 

can show whether students with an intention to cope minimally with the course 

requirements engage with all levels of difficulty when solving exercises (it can 

be the case for example, that they engage mainly with exercises of a low level 

of difficulty). 

Finally, level of difficulty is an aspect which can aid in increasing the 

contribution and aid the interpretation of number of exercises cancelled in the 

“syllabus boundness” model. This is also reinforced by literature which indicates 

that quitting a learning task is linked to students’ evaluation that a task is difficult 

(a type of self-regulation that is deemed to be counterproductive) (Winne and 

Hadwin, 2009). It is possible that students with a high score on the “syllabus 

boundness” scale tend to quit exercises with a high level of difficulty because 

they tend to do the wrong type of self-regulation.  

e) New metrics occurring from design recommendations 

In section 6.2.1, there are design recommendations for further development of 

existing AM features. The implication of these design recommendations is that 
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there should be new metrics to capture the use of these features. 

Metrics for concept map 

With regards to student’s use of the concept map, the proposed metrics can 

capture, for example: access of the concept map (i.e. number of clicks on the 

relevant link); interactions regarding the creation of the concept map (i.e. 

number of clicks on “create”, “edit” and “save” buttons); tutor’s rating on 

students’ concept maps. 

Furthermore, as discussed in section 6.2.1, the use of the concept map as a 

way of facilitating students to create links between mathematical concepts can 

encourage a deep approach. Therefore, there are expectations of positive 

relationships between the deep scales and the proposed metrics. The specific 

metrics are particularly expected to contribute to the “relating ideas” model, as it 

represents a studying approach which is about the intention to relate one 

concept to another (Entwistle, 1997a; Pask, 1976b). 

Metrics for notes feature 

With regards to the use of the “notes” feature, the proposed metrics can capture, 

for example: an indication that a note is created (i.e. number of clicks on “save” 

buttons); choice in terms of creating a public or private note (i.e. number of 

private and public notes); creation of peer-group when creating a public note; 

access to notes feature (i.e. number of clicks on relevant link); and indication 

that a note has been favoured or rated by peers or tutor based on its quality or 

usefulness.  

Furthermore, as discussed in 6.2.1, the students’ choice to create a peer group 

or share notes with the peer-group can increase motivation and encourage 

interest in the subject, so metrics indicating sharing notes with the peer-group 

may have positive relationships with the “interest in ideas” scale. In addition, 

metrics indicating the notes’ rating based on its quality can offer a distinguishing 

aspect for both “deep” and “surface” models (i.e. positive relationships for “deep” 

scales and negative for “surface” scales). For example, a note with a high rating, 

which explains the rationale of a mathematical solution, can be an indication of 

students’ intention to understand for themselves: an intention associated with 

the deep approach towards studying (Entwistle, 1997a). 

 

To conclude, the proposed improvements on AM features and interaction 

metrics aim to encourage further the deep approaches, while offering at the 
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same time the potential for more distinguishing and enriching aspects with 

regards to the interaction metrics. 

6.3 Pedagogical Insights 

In this section, there is discussion as to: how the pedagogical insights occurred 

in the current investigation can help towards supporting tutors in class; serve 

researchers who intend to conduct similar studies; and help towards addressing 

criticisms in the field of learning styles. Finally, there is discussion as to whether 

and how prior knowledge influences students’ interactions with regards to the 

deep and surface approaches towards studying. 

6.3.1 Deep approach in specific context and in other contexts 

6.3.1.1 Does the deep approach have distinguishable aspects? 

What mainly comes out of the discussion of the empirical findings in section 5.2 

is that there is unexplained variance in the deep models, and that the metrics 

which survived the selection process during the development of the models give 

an indication of students’ interactions with regards to deep approaches towards 

studying, but not a clear picture. These findings can be explained. According to 

Entwistle (2008) a deep approach during a degree course is neither as 

consistent nor as strong as one might hope. An indication that this is the case is 

the inconsistent picture which occurs from the performance-related metrics, with 

the exception of number of exercises solved on first try for three of the “deep” 

scales. According to Entwistle (2008) and Marton and Säljö (1976a), it appears 

also that it is not easy to move students towards a deep approach. For example, 

the hyperlinks (concept links) in reading and exercise pages are less likely to be 

accessed by those students with high scores on the deep scales, and access to 

the AM “notes” feature is also likely to be done by those with high scores on the 

“unrelated memorising” scale.  

Also, the difficulty in capturing the deep approach towards studying can be due 

to “dissonant orchestrations” – a concept introduced by Entwistle and Peterson 

(2004). This means that the intention to understand can be sometimes 

associated with surface processes, so while students have the intention to 

understand, and declare it in the questionnaire, it may be the case that the way 

the course is designed (e.g. design of examination and coursework 

requirements) prevents that approach. In the context of the current study, they 

may declare an intention for a deep approach, but, in reality, they interact in AM 

in a “surface” manner. This is reinforced by Ramsden (2005), who points to 
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research findings which show that a deep approach can also be influenced by 

the general course planning and the setting of the assessment questions. The 

module material might not be enough to encourage students to think deeply 

about the subject matter. If students have the perception that the general 

learning environment (besides the interactive one provided during the tutorials) 

rewards a surface approach, they may simply behave in this way, despite their 

deep intentions. This is also reinforced by Entwistle and Peterson (2004) who 

argue that a deep approach is linked with high academic performance only 

when tasks require a deep level of knowledge. 

Similar insights to the aforementioned research findings and arguments have 

been also found with regards to teaching mathematics in higher education. 

Sangwin (2004) argues that simply changing the assessment and introducing a 

sophisticated ILE (i.e. one that gives tailored feedback to students’ answers) is 

not necessarily sufficient to orient students towards a deep approach towards 

studying. More specifically, he supports the argument, citing Crawford et al. 

(1998), that in order to orient towards a deep approach, students’ whole 

learning experience in a course has to change (e.g. students’ conceptions 

about the nature and purpose of the subject, students’ perceptions about tutors’ 

attitudes etc.). 

This could be mainly why students with high scores on the “deep” scales tend 

not to perform well when solving exercises and not to use “concept links” as 

expected, and also the reason why the AM “notes” feature seems to be used in 

both a “deep” and a “surface” manner. So, when using an interactive learning 

environment in tutorial lessons and for a specific module, it is advisable not to 

forget that it is part of a wider teaching and learning ecosystem, which includes 

among other things students’ perceptions regarding the course design and 

other assessment requirements and learning materials. It seems that the whole 

teaching and learning environment should encourage a deep approach and not 

just the interactive learning environment. Otherwise, performance and use of 

features may not be as expected. 

Furthermore, the direction of some of the performance-related and temporal 

predictors might have been influenced by the element of students’ prior 

knowledge –an issue which is discussed further in section 6.3.5-.  
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6.3.1.2 Possible recommendations for tutors 

As a result of the discussion in 6.3.1.1 and as occurred from the study’s findings, 

there are recommendations which can be made for tutor, however they do 

come with certain cautions.  

First of all, tutors should be aware that to encourage a deep approach, hence 

help it manifest in a stronger way, it is not just a matter of improvements in the 

context of a module or an ILE, but also in the wider context of teaching and 

learning of the course in which the module and ILE are part of. For example, 

when they start a course, managing students’ expectations and perceptions 

about the course, and even challenging or correcting their conceptions about 

what “learning” means. This can be done by, for example, informing and 

mentoring them about how they are expected to approach their studying, make 

clear what their responsibilities are throughout the course, raise awareness 

about the different approaches to studying. In relation to these suggestions, 

Entwistle and Peterson (2004) give specific guidelines for learning that support 

a deep approach: encourage reflection and metacognitive alertness, and self-

regulation in studying, and provide opportunities for group discussions of 

learning process. They also provide other guidelines with regards to the 

connections and alignment of aims, assessment, learning material, and student 

support (see Entwistle and Peterson (2004), p.424). 

Secondly, despite the aforementioned cautions, it is possible for a tutor to 

detect signs of a deep approach during tutorial sessions, based on a 

combination of certain characteristics as expressed by the predictors of each 

deep model (see sections 5.2.3 and 5.3.6, and Appendix 5.3). More specifically, 

such indications can be: 

 A tendency to solve exercises on the first try, especially with regards to models 

of the “seeking meaning” and “relating ideas” approaches. This can be also the 

case with regards to the main “deep” approach, but possibly not across various 

educational settings. This is because the metric number of exercises solved on 

first try  does not survive on the leanest and meanest model of this subscale. 

However, with regards to the rest of performance-related,  predictors their 

combined inclusion in the “deep” models do not provide a meaningful picture, 

so it is not advisable to make any further recommendations. There is also 

another reason. Based on the findings according to which the influence of the 

prior knowledge explains better the “deep” models in the “low prior knowledge” 

group, it is reasonable to recommend that tutors should be aware of students’ 
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prior knowledge in a systematic way (e.g. via a diagnostic test at the start of 

course, similarly to the process followed by University of California, as 

discussed in 2.1.1.3 3) ). In this way, it will be more clear whether their 

performance during the tutorial activities is due lack of prior knowledge or lack 

of a deep approach towards studying.  

 A tendency to make notes, especially with regards to especially with regards to 

model of the “relating ideas” approach, possibly in an effort to relate 

mathematical concepts and procedures. This can be also the case with regards 

to the main “deep” approach, but possibly not across various educational 

settings. This is because the metric of average number a ‘notes’ link is clicked 

per page,  does not survive on the leanest and meanest model of this subscale. 

 A tendency to follow a less linear path (i.e. stratum) with regards to model of the 

“use of evidence” approach; however, there is a caution. This is especially the 

case if the structure of the learning material in the ILE does not support building 

the meaning of concepts starting from the more detailed information. 

 A tendency for spending an increasing amount of time on the theoretical 

aspects, especially with regards to the “relating ideas” model, possibly in an 

effort to create relationships between concepts. Although this is a 

distinguishable aspect for this “deep” model, it needs to be interpreted by the 

tutor in combination with the performance in the tutorial exercises, as it is also 

possible that students may experience difficulties understanding a specific 

procedure or concept (e.g. if it coexists with the tendency for not solving 

exercises at all). 

6.3.1.3 Deep approach – Conclusion on pedagogical insights 

To conclude, researchers who conduct similar studies should consider that the 

deep approach towards studying is sensitive to the broader learning and 

teaching environment in which the interactive one is used, and that this, 

together with the perceptions and prior knowledge of students, can influence it. 

Therefore, it is also not that easy to capture it and encourage it. Whether the 

deep approach manifests strongly or not depends on the educational setting 

and conditions in which the study takes place. Hence, the initial theoretical 

assumptions made for predictors and deep subscales should consider this 

before deciding which predictors are the most important or can be considered 

for inclusion in the deep models, as discussed in 6.1.4.1. Finally, if we want the 

deep approach to manifest strongly, then there should be improvements not 
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only in the interactive learning environment and the predictors, as discussed in 

6.2, but also in the broader learning and teaching environment (i.e. the design 

and delivery of the whole degree course)56. 

6.3.2 Surface approach in specific context and other contexts 

6.3.2.1 Does the surface approach have distinguishable aspects? 

Based on the discussion of the findings in sections 5.1 and 5.3, when 

examining both the suggested and leanest and meanest models of the surface 

approaches –both at model level and at predictor level- there is more 

confidence in them compared to the “deep” models. First of all, there is more 

variance explained in most “surface” models. At predictor level, there are 

predictors which help them to have distinguishable aspects as “surface” 

models57. So, the surface approach does manifest in the specific educational 

setting more strongly (in particular through the performance-related metrics). 

Hence, it seems that surface approach is more easily captured, flagged-up and 

potentially discouraged. These conclusions are supported by relevant literature. 

Entwistle (2008) supports the argument that it is easier to move away from a 

surface approach rather than move towards a deep approach. Entwistle and 

Peterson (2004) indicates that a surface approach relates strongly with poor 

academic performance, hence it is easier to identify. 

So, identifying and flagging up the surface approach is possible, and it is more 

easily discouraged, but, still, improvements in the interactive environment 

cannot do this alone; there should be improvements in the broader learning and 

teaching environment (i.e. the degree course) as discussed previously.   

6.3.2.2 Possible recommendations for tutors 

The implication of this is that the findings can help a tutor to decide whether to 

intervene; or to intervene at an early stage of the tutorial sessions when there 

                                                

56 It is beyond the scope of this thesis to make suggestions for improvements in the broader 
teaching and learning environment of a degree course; however Entwistle (2008), Entwistle and 
Peterson (2004),  Fusaro (2008), and Baeten et al. (2010) make suggestions as to how a deep 
approach can be encouraged in  degree courses. 

57 Although the author cannot go as far as claiming that they can be distinguished from each 
other, especially when considering the leanest and meanest models. For example, the “leanest 
and meanest” models of both the “fear of failure” and the “surface” approaches consist of the 
same predictors (see Appendix 5.3). But in every surface model there are “distinguishable” 
enough predictors  to allow us to characterise them as surface approaches (even in the “lack of 
purpose” model with only two predictors). 
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are indications of a surface approach, based on a combination of certain 

characteristics as expressed by the predictors of each surface model (see 

sections 5.1.3 and 5.3.6, and Appendix 5.3). More specifically, such indications 

can be: 

 A tendency not to solve exercises on the first try but in subsequent ones, 

especially with regards to models of the main “surface” and “fear of failure” 

approaches. This can be also the case with regards to the “syllabus boundness” 

and “lack of purpose” approaches, but possibly not across various educational 

settings. This is because the metric number of exercises solved on first try  

does not survive on either of the leanest and meanest models of these two 

subscales, while number of exercises solved on third try does not survive in the 

leanest and meanest model of the “lack of purpose” subscale). 

 A tendency not to solve exercises on the first attempt, but also not solving 

exercises at all and getting the answers from the ILE (pointing to a possible 

“gaming” behaviour), especially with regards to the model of “unrelated 

memorising” and “lack of purpose” approaches. This can be also the case with 

regards to the main surface approach, but possibly not across various 

educational settings (as the metric number of exercises finished but not solved 

does not survive in its leanest and meanest model). 

 A tendency to conduct a compact path and not possibly expand on the learning 

material which is supposed to be covered during the tutorials. This is especially 

the case for the model of the “unrelated memorising” approach. This can be 

also the case with regards to the main “surface” and “syllabus boundness” 

approaches, but possibly not across various educational settings (as the metric 

of compactness does not survive in their leanest and meanest models). 

 A tendency to revisit the same pages, especially with regards to the model of 

the “lack of purpose” approach. 

 A tendency to cancel exercises, which can be the case for the model of the 

“syllabus boundness” approach. 

 A tendency for an increasing amount of time to be spent on a page with a group 

of exercises, especially with regards to the “fear of failure” and the main 

“surface” models. However, because the metric has also a positive relationship 

with all the deep approaches, there is a need to be considered with the rest of 

the predictors of these two approaches and especially the performance-related 

metrics. 
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The above summary of tendencies can give tutors reasonable indications of a 

surface approach and help in terms of deciding on intervention when students 

interact in an ILE during tutorial sessions. However, based on the author’s 

experience as a tutor, it is not realistic to expect a tutor to keep track of all the 

different combinations corresponding to each approach while being in a class 

with 20 students during the tutorial sessions58. At the same time, in certain 

cases, such as the maximum view time on an exercise page, which has also a 

positive relationship with the deep scales, it is not advisable to consider a 

predictor in isolation.  

So, if one wants the intervention to be based on greater detail and include the 

combined predictors of a model, then it is reasonable to do this with the help of 

a feature in the ILE which does exactly that. For example, in the educational 

settings of the current study, an AM feature could inform after the first tutorial 

session of a combination of predictors which characterises the surface 

approach of a student, and flag it up based on the following combined 

interactions (or tendencies):  

a) tendency not to solve exercises on the first but on a subsequent third attempt; 

b) tendency to not solve exercises but get answers from the ILE;  

c) tendency to spend an increasing amount of maximum time on a page with a 

group of exercises;  

d) tendency to spend a decreasing amount of a maximum time on a page with 

theoretical learning content;  

e) tendency to use a compact path and not expand on the learning material 

designated for the tutorial session;  

f) tendency to use “concept links”. 

Furthermore, if one wants to generalise the “surface” tendencies for any future 

systems, then one would rely on the first four shown above.   

However, it is worth mentioning at this point that the study does not necessarily 

provide evidence that, based on the current “surface” models, it is possible to 

distinguish one surface approach from another (e.g. “fear of failure” from the 

rest of the surface approaches). It seems that, in each surface model, there are 

enough “distinguishable” predictors to characterise it as a surface approach. To 

support this, it is worth drawing our attention to the leanest and meanest model 

                                                

58 This might be also the case for a module leader who is managing a big-size module like in 
current study. 
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of the “lack of purpose” approach. In the specific model, there are only two 

predictors left; however, the predictors number of exercises finished but not 

solved which can point to low performance and possibly a “gaming” behaviour, 

and relative amount of revisits which can point to repetitive overlearning, are 

good indicators of a surface approach (as was argued in the initial theoretical 

assumptions). 

6.3.2.3 Surface approach – Conclusion on pedagogical insights 

To conclude, according to the findings, it is reasonable and possible to:  

 give indications of surface approaches to a tutor in a short but easily-

comprehensible manner so it can be used in a direct and practical way in class, 

as follows: a tendency not to solve exercises on first attempt but on subsequent 

ones or not at all (pointing to a “gaming” behaviour); a tendency to an 

increasing amount of time spent on a page with a group of exercises (combined 

with not being able to solve them on first try but on subsequent ones or not at 

all); a quite compact path (i.e. students do not expand on the learning material 

they are supposed to examine); a tendency for revisiting the same pages; and a 

tendency to cancel exercises. 

 have a system through which a tutor can be informed in a much more detailed 

manner about how combinations of characteristics (i.e. tendencies) can point to 

a surface approach, as suggested previously.  

6.3.3 How findings address criticisms in the field of learning styles 

As discussed in Chapter 2, there are pedagogical criticisms regarding learning 

styles. When starting the current investigation, there was a question as to 

whether a theory which has produced so many theoretical frameworks, 

constructs and measurements, and inspired a huge amount of empirical work in 

a variety of contexts in education, still has anything useful to offer. The literature 

review discussed how the qualitative and quantitative research methods with 

which Entwistle and his team produced the Approaches and Study Skills 

Inventory for Students (ASSIST) seemed a way to address these pedagogical 

criticisms.   

The first criticism is with regards to matching or mismatching learning style to 

instruction. As discussed in Chapter 2, the main aim of most studies which use 

learning style in a very similar context is eventually to propose ILEs which can 

be adapted to suit students' style (Papanikolaou et al., 2003; Bajraktarevic et al., 

2003; Stash et al., 2004; Paredes and Rodriguez, 2004). However, the current 
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investigation shows that the frequently used, but much criticized pedagogical 

approach of matching learning style to instruction (Coffield et al., 2004; Curry, 

1990; Moran, 1991), is not the only way to use the learning styles in the context 

of student interaction in learning environments. Entwistle’s ASSIST can offer a 

different pedagogical approach in this context. More specifically, the current 

empirical findings show that this pedagogical approach can be insightful and 

enriching with regards to students’ interaction in ILEs, and has the potential to 

improve learning and teaching by helping systems and tutors identify a surface 

approach towards studying (and ultimately discourage it and improve students’ 

performance).  

More specifically, the findings (based on the statistical significance of predictors 

and their survival in their leanest and meanest models, as shown in Appendix 

5.3) show that “surface” approaches consist of certain distinguishable 

characteristics, which may also manifest in similar studies and similar ILEs. 

Such characteristics are: the tendency not to solve the exercises on first 

attempt but on subsequent ones; the tendency for an increasing maximum view 

time on a page with a specific group of exercises, and a decreasing view time 

on a page with theory; the tendency to conduct a compact path; the tendency to 

get the answers to the exercises from the system (pointing to a “gaming” 

behaviour); the tendency to cancel exercises; and the tendency to revisit of 

learning material. 

The second criticism is whether learning styles can be measured or capture 

subtleties and complexities of individual human behaviour in real educational 

settings. In order to address this criticism, this study is set in real educational 

setting, when students are practising their tutorial exercises during the tutorial 

sessions and as part of a specific module in a specific course. AM is also 

populated with the learning material of the module syllabus.  Students’ intention 

towards studying is declared in that context, and although this does pose 

limitations in terms of generalisation, at the same time it addresses the severe 

aforementioned criticism. The findings show that these subtleties and 

complexities of individual human behaviour can be captured, and there is a 

realistic view of students’ interaction in a learning environment.  

More specifically: 

 the “unclear” image we get of the deep approach is not contradictory, as 

explained in 6.1.4.1. On the contrary, it shows a realistic complexity: students 

may declare the intention for deep studying but they do not always follow it 
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through, hence their performance can suffer (i.e. solving exercises on third 

attempt or not at all). This can be due to the broader educational setting, or that 

the students are not challenged enough, or because of their lack of prior 

knowledge eventually results in a surface approach. 

 the direction of the relationship between the deep approaches and the use of 

certain tools in AM is not as expected. Concept links tend to be used by those 

with high scores on surface scales instead of those with high scores on deep 

scales, which simply shows that a deep approach is not easily encouraged and 

there is a need for improvements in the interactive learning environment (see 

section 6.2.2), as well as the broader learning environment (see section 6.3.1). 

In addition, the AM “notes” feature tends to be accessed both by those with high 

scores on the “unrelated memorising” scale and by those on the “relating ideas” 

scale; so the way it is designed again it does not seem to discourage a surface 

approach, hence the design recommendations in section 6.2.2. 

 the surface approach breaks down to approaches which are explained by 

different combinations of predictors, and in which the highest contributed 

predictor can be also different (see sections 5.1.3 and 5.3.1). Based on the 

author’s teaching experience, this resonates with the complex but realistic 

situation a tutor typically faces in a class, where a student can behave in a 

“surface” manner for different reasons (e.g. anxiety, tendency for rote 

memorisation, tendency to cope minimally with course requirements etc.). It is 

reasonable therefore that each one of the surface approaches have similarities 

but can also dictate different characteristics in the way it interacts with the 

learning environment, as there are different reasons for triggering each surface 

approach. This complex but realistic situation is reflected in the current 

empirical findings. For example, those with high scores on the “fear of failure” 

scale (which is heavily influenced by the element of anxiety) and on “unrelated 

memorising” scale (which is influenced by the tendency of rote memorisation) 

tend not to solve exercises on the first attempt. However, there are differences 

between the two surface approaches: while those with high scores on the “fear 

of failure” scale tend to solve exercises on subsequent attempts, it seems that 

those with high scores on the “unrelated memorising” scale are likely to be 

given the answers of the exercises by the system (pointing to a “gaming” 

behaviour). So, the reason behind a surface approach (e.g. anxiety or rote 
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memorisation) can be responsible for differences in students’ interaction in an 

ILE59. 

 

To conclude, while a deep approach cannot simply manifest itself strongly, and 

cannot be captured and encouraged easily, it seems that the surface approach 

can be captured, and flagged up. It even seems possible potentially to 

distinguish one surface approach from another, based on differences in 

interactions, so that a tutor or a system would have evidence whether a 

“surface” interaction is due to anxiety or to rote memorization. Therefore, the 

current empirical findings show that the use of ASSIST in real educational 

settings helps in revealing realistic complexities with regards to students’ 

interaction in learning environments and, in this way, it manages to address the 

criticism of the field of learning styles.  

6.3.4 The influence of prior knowledge 

Prior knowledge can influence the surface and deep approach to studying. 

Ramsden’s (2005) insights remind us how important its influence is for the 

studying approaches. He argues that attempts to understand the material may 

be disrupted by inadequate “background knowledge” of the relevant field. He 

emphasises that this is especially the case when the learning task demands 

that the student has grasped a fundamental concept in scientific subjects. For 

example, in the context of the current investigation, students during the tutorials 

had to have grasped the concept of “transpose of a matrix” in order to solve the 

relevant exercises. Hence, prior knowledge is more frequently related to the 

approach a student takes towards a task in science disciplines, than in arts and 

in social science disciplines.  It can also influence students’ performance, and 

the way students interact with an ILE by influencing path-related metrics, 

temporal metrics, and metrics related to use of navigational options (Chen and 

Ford, 2000; Chen and Paul, 2003; Chen et al., 2016).  

Therefore, based on the literature only, there are strong arguments for a 

researcher to investigate further its influence in the current context. However, 

what it is not known is how exactly it influences the models representing the 

deep and surfaces approaches towards studying, models which indicate how 

                                                

59 By saying this the author does not claim that they can be completely distinguished based on 
the findings of the current study, but simply that there are strong indications that there are 
different elements which constitute the interaction of each surface approach, and that in future 
studies after applying the recommended improvements a better distinction is possible. 
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students interact in ILEs during their tutorials sessions in mathematics with 

regards to their studying approaches. 

The discoveries made in the current investigation reinforce what is known in the 

literature regarding prior knowledge in relation to approaches to studying and 

students’ interaction in ILEs. However, they also contribute further as presented 

below.  

6.3.4.1 Discovery number #1 – Prior knowledge split is increasing the variance 

of all the “deep” models in the “low prior knowledge” group 

The first discovery is that the split into “prior knowledge” groups seems to 

increase the variance explained by some of the models. More specifically, the 

variance of all the deep models is increased in the “low prior knowledge” group 

compared to the “high prior knowledge” group and the whole sample (see 

Appendix 5.2). To give an indication of how important this increase is for some 

“deep” models, it is worth re-examining the variance explained when placing 

them in the “low prior knowledge” group. The variance explained by models 

representing the main “deep” approach, and by the “seeking meaning” and the 

“interest in ideas” approaches in the “low prior knowledge” group almost 

doubles compared to the ones for the whole sample. “Placing” also the “relating 

ideas” model in the “low prior knowledge” group is responsible for 41.5% of its 

variance60. So, with the exception of the “use of evidence” model where there is 

a relatively small increase, it seems that prior knowledge has impact on the 

“deep” models. 

6.3.4.2 Discovery number #2 – Prior knowledge split does not really have the 

same impact in terms of increasing the variance in the surface models 

On the other hand, prior knowledge does not have a similar consistent and 

dramatic impact in terms of increasing the variance in the surface models 

(either in low or high prior knowledge groups). More specifically, as shown in 

Appendix 5.2, the models of the main “surface”, “fear of failure”, and “unrelated 

memorising” explain relatively large amounts of variance in both high and low 

prior knowledge groups (and the whole sample). Also, there is no consistency 

as to where they explain more variance. For example, in main “surface” model 

and in the “lack of purpose” and “syllabus boundness” models, more variance is 
                                                

60 Author estimated the proportional difference versus R2
LowPKgroup in % as follows: (R2

LowPKgroup - 
R2

WholeSample)/ R2
LowPKgroup 

 



 288 

explained in the “low prior knowledge” group, while in the “fear of failure” model, 

more variance is explained in the “high prior knowledge” group. 

However, as indicated in 5.5.4.2, there are also some useful insights with 

regards to the “surface” models and prior knowledge, despite the fact that there 

is not an overall pattern. One of the insights relates to the “fear of failure” 

subscale, where it seems that even for those students with a high level of prior 

knowledge, the higher the degree of their anxiety, the more negatively it will 

affect their performance when solving exercises61. Furthermore, with regards to 

the “unrelated memorising” subscale, independently of the level of prior 

knowledge, the degree of rote memorisation seems to be the one which mainly 

affects students’ interactions62. 

 

The findings described in sections 6.3.4.1 and 6.3.4.2 reinforce that students 

with low prior knowledge in a subject are more likely to follow a surface 

approach towards studying (Entwistle and Peterson, 2004); and prior 

knowledge can influence the decision to follow a deep approach towards 

studying (Entwistle, 2008). In addition, the current investigation indicates that 

those students who declared a deep approach towards studying, might just 

have behaved in a manner with “surface” characteristics or tendencies while 

practising their exercises in class, because their low prior knowledge is a 

hindrance. This can explain why there is such a big difference in terms of 

variance explained between the “low prior knowledge” group of most of the 

“deep” models, and the “high prior knowledge” group. This confirms that deep 

approaches to studying –except from the “use of evidence” one – seem to be 

more sensitive to this specific factor. It also resonates with the conclusions in 

section 6.3.1 which also show that the deep approaches are generally sensitive 

to the broader learning environment in which a study takes place. 

                                                

61 As shown in Appendix 5.2, the variance explained R2, although large in both ‘fear of failure’ 
models of low and high prior knowledge groups, is larger in the “high prior knowledge” group, 
compared to the “low prior knowledge” group by 11.3%. So, it seems that the performance-
related metrics seem to explain better the model in the “high prior knowledge” group. 

62 As shown in Appendix 5.2, the variance explained R2 between the ‘unrelated memorising’ 
models of low and high prior knowledge groups differs by only 1.4%. 
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6.3.4.3 Discovery number #3 – Prior knowledge split seems to explain better the 

“paradoxical” findings at least in “low prior knowledge” groups of deep 

models 

It seems to explain the paradoxical mixed “deep” and “surface” tendencies 

found in the deep models. More specifically, it makes sense that: 

 In the “low prior knowledge” group, highly intrinsically motivated students tend 

not to solve exercises on the second or even third try. On the contrary, students 

seem not solve the exercises at all and get the answers from AM (see the 

suggested model in section 5.2.3). It seems that the students’ prior knowledge 

greatly influences performance when solving tutorial exercises with regards to 

the “interest in ideas” approach. 

 In the “low prior knowledge” group, while students with high scores on the 

“seeking meaning” scale tend to solve exercises on the first try, there is at the 

same time a tendency to not to solve exercises on the second, but on the third 

try. 

 In the “low prior knowledge” group, while students with high scores on “relating 

ideas” scale tend to solve exercises on the first try, there is also a tendency not 

to solve exercises on the second try and not solve exercises at all but get the 

answers from AM. Furthermore, those with high scores on the subscale have 

also the tendency not to use hyperlinks in order to relate concepts. This can be 

a design issue, as discussed in  6.2.1, but it can be also an issue of low prior 

knowledge as there are not as many old concepts to make connections to. 

 In the “low prior knowledge” group, while students with high scores on the main 

“deep” scale tend to solve exercises on the first try, there is also a tendency not 

to solve exercises on the second try or solve exercises at all but get the 

answers from AM. 

6.3.4.4 Discovery number #4 –Prior knowledge seems to be particularly 

influential for the “interest in ideas” deep scale 

The model “interest in ideas” has the highest increase (compared to any other 

model) in terms of variance R2 in the “low prior knowledge” group. It increases 

by 16.4% from 15.7% for the whole sample to 32.4% for the “low prior 

knowledge” group (as shown in section 5.5.3.2 and Appendix 5.2). This is not 

surprising, as literature shows interest in a subject and prior knowledge go hand 

in hand, and one should be seen in light of the other. Ramsden (2005) argues 

that it is expected to find that interest and background knowledge are related to 
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each other in the natural setting of student learning. More specifically, it is 

argued that comprehending entails the use of prior knowledge, and interest in a 

subject empowers students to direct this knowledge in order to synthesise it 

with new pieces of knowledge (Brophy, 2010). So, high interest in the subject in 

combination with a deep approach towards studying may activate prior 

knowledge in order to make connections with new concepts. It is reasonable, 

therefore, to say that the lack of prior knowledge does not give the opportunity 

to students to use their declared interest in the subject in this way, hence it 

does not manifest strongly. The current findings for the “interest in ideas” 

approach and prior knowledge show in a stronger way (compared to any other 

deep scales) that students in the “low prior knowledge” group have “high 

surface” tendencies in the way they interact, because declaring a high interest 

or low interest is not as influential as their lack of knowledge. This is further 

supported in the literature, where it is argued that prior knowledge has a more 

direct effect in a learning environment compared to interest in the subject 

(Tobias, 1994). In the current investigation, this is confirmed, but the findings go 

a step further as they indicate that this direct effect is stronger for the “low prior 

knowledge” group. 

6.3.4.5 Discovery number #5 – Prior knowledge is not particularly influential for 

the “use of evidence” deep scale 

It seems that being in a low or high prior knowledge group does not really 

explain the variance of the “use of evidence” model more. As shown in section 

5.5.3.2 and Appendix 5.2, the variance R2 remains at medium range and 

increases very little for both high and low prior knowledge groups, with 18.7% 

for the whole sample, and 19.3% for the “high prior knowledge” group and 21.3% 

for the “low prior knowledge” groups. It is possible that this is because the 

design of an ILE may influence the interactions of students with high scores on 

the “use of evidence” subscale (those with tendencies to a “serialist” approach 

as discussed in 6.2.1) more, compared to prior knowledge. First of all, the 

influence of the design of an ILE for those with tendencies to a “serialist” 

approach is indicated in the current background research, which shows that 

since the late 1990s there is a body of empirical work with regards to  design of 

interactive environments and their preferences. Secondly, there is more recent 

empirical evidence which shows that this connection is still relevant. More 

specifically, Chen et al. (2016) point to empirical evidence which shows that if 
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an ILE does not have suitable design choices for those who have tendencies to 

a “serialist” approach, then it can have negative effects for them 63 . This 

supports what is claimed previously that the design environment can have more 

influence on the “use of evidence” approach (i.e. it can be one of the reasons it 

does not emerge strongly). It also resonates with what it is discussed in 6.2.1, 

where there are suggestions to offer in terms of design more suitable features 

for those with high scores on the “use of evidence” subscale. 

So, overall, these discoveries indicate that mostly the online interactions of 

deep approaches towards studying (except for the “use of evidence” one) seem 

to be explained better in the “low prior knowledge” group. It also shows that 

students’ intention to interact in a “deep” manner is not enough and those 

students may interact in a manner that manifests “surface” tendencies, when 

there is lack of prior knowledge of a subject. This resonates with what has been 

observed specifically with regards to prior knowledge in mathematics. Ramsden 

(2005) observes that prior knowledge is mentioned more in science students as 

a factor which can lead to lack of comprehension, anxiety, superficial learning 

and passiveness. Ramsden (2005, p.201) gives the example of a science 

student who “describes how his previous knowledge of a type of problem helps 

him to take a deep approach, while his weakness in a basic mathematical 

concept makes his approach to another part of the same question anxious, 

passive and superficial”. 

These conclusions can be useful and quite enriching information for tutors and 

for the design of ILEs. For example, it may be useful for a tutor to know that the 

reason a student interacts with an ILE in a manner which indicates “surface” 

tendencies is lack of prior knowledge in a concept. Practically speaking, though, 

in a class with 20 students during a tutorial session it is not always easy to 

identify lack of prior knowledge of a concept and tackle it. However, an ILE and 

particularly an intelligent one as we described in 6.2.1 can help do that in a 

more systematic way, evidenced from the interaction with the ILE. In addition, in 

6.2.1, there is already a design suggestion of a digital concept map 

incorporated in ILE (where students will have the opportunity to highlight old 

concepts and link them to new concepts) and which will be checked and given 

feedback by the tutor. In this way, the tutor will be able more easily to identify 

                                                

63 In the study of Chen et al. (2016), the holist/serialist construct is not measured through 
ASSIST; but through SPQ measurement which is based on Pask’s theoretical framework, 
similarly to the “use of evidence” and “relating ideas” approaches.  
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and tackle gaps in students’ prior knowledge. Furthermore, the “notes” feature, 

as suggested in 6.2.1, can also help a tutor understand if there are gaps in a 

student’s knowledge, as students can publish questions which can reveal lack 

of prior knowledge in a concept (current records on students’ notes in this study 

indicate that this can occur).  

Besides helping the tutor to identify effectively and quickly students’ gaps in 

prior knowledge, the “notes” and “concept map” features offer a direct solution 

which facilitates students’ prior knowledge. As discussed in 6.2.1, a feature like 

a concept map can strengthen and activate students’ prior knowledge, so it can 

serve both those students who need to identify gaps in their prior knowledge, 

and those who have a good degree of prior knowledge but need to start 

activating and reflecting on it. 

The above design recommendations point to an ILE which encourages a deep 

approach: by relating teaching to prior knowledge and facilitating students to 

reflect on the relationship between old and new concepts, one can create a 

more student-oriented learning environment that supports a deep approach 

(Entwistle and Peterson, 2004). 

6.4 Latest developments in the field of ILEs since data collection took place 

Since the time the data collection took place, there are a number developments 

in the field of ILEs. The following sections discuss the ones, which according to 

the author’s opinion seem to be the most commonly discussed and important 

with regards to future work. They  also discuss how the current investigation 

can be still relevant to these developments, which are inevitable as the 

technology in ILEs evolves rapidly. 

6.4.1 An evolution toward more flexible and most cost-effective ways of 

updating and implementing materials on ILEs serving different learning 

purposes. 

As discussed in 2.1.1.2 there are practical considerations which may influence 

the choice of an ILE both for use in class and research. Since the time during 

which the data collection took place, there has been an evolution in terms of the 

development of mathematical ILEs. This  positive evolution, has allowed 

practitioners to find more effective ways time-wise and cost-wise to deal with 

the creation and updating of learning materials as well as incorporating those 

materials in ILEs. Older open source ILEs such as Tall’s graphic calculus 
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approach64, discussed in the review by (Crowe and Zand, 2001; Crowe and 

Zand, 2000b), although useful at the time, could not allow much variety in terms 

of features and materials, and flexibility in terms of adapting and incorporating 

learning materials for the learning objectives of a specific course or module 

because of aforementioned practical reasons. At the time the current research 

was taking place, there were of course open source learning management 

systems such as Moodle which could offer relatively easy incorporation of 

learning materials. However this type of ILEs has a more generic learning 

purpose as it serves a number of different subjects.  

Based on the example of the evolution of a mathematical ILE such as 

GeoGebra (see Hohenwarter, 2015), we can now say that there are more 

effective solutions for practitioners to deal with the aforementioned practical 

considerations by offering a flexible authoring environment for creating and 

uploading materials or offering to download applications such as graphic 

calculators 65.  This type of development helps an ILE to serve as a better 

“means to an end”, as discussed later on in 6.4.5. 

 

6.4.2 Massive Open Online Courses (MOOCs) 

MOOCs is not a newfound type of ILE 66 , however, the importance and 

popularity has increased in recent years in higher education (Kaplan and 

Haenlein, 2016; Yuan and Powell, 2013; Artigue, 2013). Its two key features are: 

open access (i.e. anyone can participate in an online course for free); and 

scalability (i.e. courses are designed to support an indefinite number of 

participants) (Yuan and Powell, 2013). Yan and Powell (2013) also indicate 

common features which encourage collaboration, apply visualisation (videos), 

and offer personalised experience. At the same time, they raise concerns with 

regards to the quality assurance (related to the lack of structure as there is no 

instructor in central role), and the assessment and credit.  

A good example of a non-profit MOOC is Khan’s Academy, which along with 

other subjects for different educational levels, it also offers algebra topics for 

                                                

64 See: http://www.graphiccalculus.co.uk/ 

65 See: https://www.geogebra.org/m/W7dAdgqc 

66 Yuan and Powell (2013) place the first early examples in 2008. Although, the author observes 
that the foundations for one of the most pioneering non profit MOOC, MIT OPEN Courseware, 
started back in 2001 (see: https://ocw.mit.edu/about/). 
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higher education. It is an example which serves well the criteria, discussed in 

2.1.1.1, with a variety of features (see Appendix 6.3). It is also a well-balanced 

example of effective scaffolding and self-directed learning. While it gives the 

freedom for individual exploration, at the same time it indicates a clear structure 

regarding the order of topics and gives guidance through self-diagnosed 

activities and tests to start from an appropriate topic and level of knowledge. It 

is an example which satisfies experts who support that ILEs should consider 

individual preferences and allow students more control (Joshi, 2017), but it also 

satisfies experts who are concerned about ILEs relying solely on discovery, and 

who support a more guided mode of learning and more structured ways of 

collaboration and solving problems (Engelbrecht and Harding, 2005a).  

  

6.4.3 Use of programming languages have gained popularity 

 A recent development seems to be that programming languages such as 

MATLAB67 seems to win over CAS in terms of the use of ILEs in classrooms in 

higher education (and more specifically in the context of mathematical courses 

which offer also computer programming modules in UK universities) (Sangwin 

and O'Toole, 2017).  

However, it seems that MATLAB was not always the most popular choice for 

courses with pure mathematics. In older reviews such as Lavicza (2010), CAS 

seemed to be a relatively more popular choice. Sangwin and O’ Toole (2017) 

indicate that in mathematical undergraduate courses MATLAB is more 

frequently used in first-year courses  compared to CAS, such as Maple. 

Furthermore, according to their findings Mathematica and GeoGebra are not 

used by single institutions, while open source ILEs such as Derive, Octave, 

Scilab, Maxima are not used anymore. They suggest that the use of an ILE 

depends on its tight practical integration, referring also to its availability outside 

the labs and guidance for its use. However, based on the opinions of teaching 

staff inquired in the same study, there seem to be also other reasons for the 

involvement of programming languages in mathematical courses (e.g. belief 

that programming should be compulsory and/or that there is a need for 

employability reasons). 

                                                

67 It has been developed over the years from numerical analysis in linear algebra classes to a 
programming language package with features for advanced visualisation, large scale modelling, 
data analysis, etc. (Moler, 2004; Moler, 2006; MathWorks, 2017). 
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6.4.4 Gravitation towards  M learning tools 

Since the review of Crowe and Zand (2000), where web-based ILEs seemed to 

be one of the mathematical ILE choices, now not only they are a necessity but 

there is also a gravitation to be accessed in mobile devices. (Artigue, 2013) 

points out to this evolution. Reviews such as (Taleb et al., 2015) support that 

the use of m learning tools can: facilitate distance learning, be more cost-

effective, promote collaborative learning, and engage more students. They also 

support that m learning tools which provide programming aspects for 

mathematics and/or multimodality (through writing, voice, and graphics) can 

increase comprehension of mathematical concepts and students’ motivation 

and self-confidence. However, it is reasonable to suggest that incorporating 

ILEs on mobile devices, would also require aspects and features, which Taleb 

et al. (2015) characterise as ‘trust-built’ factors, such as collaborative features, 

and activities which offer support (e.g. feedback, rewards, external auditing, and 

personalisation).  

6.4.5 Latest developments and current investigation 

The above developments give food for thought as to how the present and future 

of ILEs is shaping and pose a challenge for every researcher who conducts an 

investigation in the field. As Hoyles and Noss (2003) point out there is always a 

danger that the rapid changes in technology often result in research being 

outdated by the time it is completed. In this sense, there is always going to be a 

question as to whether any latest developments in ILEs are still relevant to an 

investigation in the specific field by the time it is completed. 

A way to deal with such an issue is to use any ILE involved in an investigation 

as a “means to an end”. More specifically, the use of AM as the ILE of choice 

for this research, although is justified as discussed in 2.1.1.4, it serves towards 

establishing associations between students’ interaction and their approaches 

towards studying. Although there can be constraints as to the generalisation of 

findings, the methodological reflections and pedagogical insights suggested in 

this section can serve as good starting point for future investigations involving 

the recent developments discussed in 6.4.2, 6.4.3, and 6.4.4. For example, 

understanding which predictors can be the most contributing in future models 

representing students’ interaction in a MOOC, in a MATLAB software, or in a 

mobile application, can be a good starting point for a future investigation. Or 

understanding that a deep approach does not necessarily manifest strongly 

based solely on the use of an ILE, but it depends also on the wider educational 
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setting68, can be a useful insight which can help towards having reasonable 

expectations from findings. In this sense the current investigation offers insights 

that can be relevant and transferable to future investigations regardless of the 

exact ILE; an issue which is also further discussed in sections 7.2 and 7.3.  

Finally, with regards to the development discussed in 6.4.1, for an ILE to serve 

as a “means to end” in the future investigations  it is essential to include a cost-

effective and time-effective authoring aspect, as it has become increasingly 

important to find ways which allow researchers  to catch up with the rapid 

technological developments and changes in trends in the field of mathematical 

ILEs. 

 

                                                

68 It is worth mentioning at this point that if the educational setting consists solely of a MOOC 
environment, which offers the possibility of a complete online course and not just a module, 
then this will certainly give more control to researchers doing similar investigations to ensure the 
stronger manifestation of the deep approach. 
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Chapter 7 - Conclusion 

The current research starts with the aim of investigating how first-year 

undergraduate students with a deep approach and those with a surface 

approach to studying interact when using an ILE such as ActiveMath for 

mathematics in tutorial sessions, in the classroom, in real learning conditions. 

This investigation can ultimately help towards finding ways to support first-year 

undergraduate students in the subject of mathematics by capitalising on the 

potential of interactive learning environments, and looking into how they can be 

more effective in classroom by taking into account students’ individual 

characteristics, and specifically their studying approaches. The focus of the 

current investigation into supporting first-year students in their practical 

sessions in mathematics is motivated by the challenges tutors face in the 

classroom. These challenges have long been identified and discussed in the 

literature of higher education, but they also resonate with the author’s own 

experience in teaching first-year undergraduates.  

7.1 The challenges 

As stated in the literature, first-year undergraduates can demonstrate different 

approaches towards their studying which have their origins in their schooling 

experiences (Entwistle and Peterson, 2004). They are likely to have already 

formed preferred or habitual ways of approaching studying, which can influence 

the way they approach their undergraduate studies in either a negative or a 

positive way. A deep approach towards studying, for example, which is about 

seeking the meaning of the concepts and procedures and trying to find 

meaningful relationships amongst them, may lead to good academic 

performance (Entwistle, 1997a; Entwistle and Ramsden, 1983). On the other 

hand, a surface approach towards studying, which is about treating the learning 

material as unrelated bits of knowledge and coping minimally with the course 

requirements, can eventually have a negative influence on academic 

performance (Entwistle, 1997a; Entwistle and Ramsden, 1983). Changing 

habitual surface approaches towards studying can be challenging for tutors in 

classroom, as it requires first identifying and keeping track of students’ studying 

approaches at an early stage (which becomes even more challenging when 

tutors have to manage and teach large undergraduate classes).  

Furthermore, challenges with regards to the way students approach their 

studying have been also identified in mathematics education. For example, the 
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challenge of discouraging rote memorisation of formulas and rules and 

encouraging a deep understanding of mathematical procedures is quite 

prominent (Ladson-Billings, 1997; Crowe and Zand, 2000b; Sangwin, 2004). 

Similar concerns have been raised by Liston and O'Donoghue (2009) and Saha 

et al. (2015) who point to research which indicates that students often carry out 

mathematical procedures without really understanding the concepts involved, 

and that they focus on each procedure separately rather than trying to find 

connections between different parts of mathematics, or between methods and 

concepts.  

The thesis demonstrated that “interaction” metrics derived from the use of an 

interactive learning environment when students are practising their exercises in 

tutorial sessions can help towards identifying students’ surface approaches to 

studying. But it is important to go a step further and design learning 

environments which stimulate students to develop productive strategies 

(Entwistle and Peterson, 2004). Especially with regards to digital environments, 

an empirical investigation on their use can help us understand how it is possible 

to use and design them in a way that encourages a deep approach towards 

studying and discourages a surface one. 

7.2 Implications and limitations of findings 

During the current investigation, it has become apparent that Entwistle’s 

instrument reflects an educational philosophy that is based on a rich theoretical 

background and decades of research that recognises subtleties and offers a 

realistic view of a student’s intentions and actions in a learning environment.  

However, there was initially a question as to whether the rich theory behind the 

ASSIST inventory could allow for theoretical assumptions in the specific context. 

More specifically, it was questionable whether the inventory would eventually 

help to identify surface and deep approaches towards studying, given there was 

no similar research to uncover relationships between the students’ approaches 

towards studying and students’ interaction with ILEs during tutorial sessions in 

class.  

The findings indicate that it is possible to identify tendencies in students’ 

interactions in an ILE such as AM, which are linked to surface approaches (e.g. 

the performance-related interaction metrics and particularly number of 

exercises solved on first try, which consistently contributes to all the 

“recommended” surface models, and has the highest contribution and survives 

in 3 out of 5 of the leanest and meanest versions of the surface models). This is 
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a positive outcome of the current investigation, as it can serve towards creating 

interactive environments which assist tutors during practical sessions with the 

challenge of identifying and keeping track of students’ approaches towards 

studying quickly and effectively, especially in large undergraduate classes. 

The findings also indicate that it is not easy to identify deep approaches, as 

there are tendencies in the deep models which theoretically and empirically are 

linked to surface approaches (i.e. unexpected relationships between “deep” 

scales and “interaction” metrics which better suit the assumptions made for the 

surface scales). Furthermore, the findings show that in the “deep” models there 

is simply not as much variance explained as there is in the “surface” models. 

However, valuable conclusions can be also drawn from the findings with 

regards to the deep approaches. In the context of the current investigation, 

deep approaches seem to be sensitive to the broader learning and teaching 

environment in which the interactive environment is used. In addition, it is 

shown empirically that prior knowledge of students in mathematics can 

influence deep approaches. More specifically, the variance of most “deep” 

models increases, and in certain models it is twice as much, in the “low prior 

knowledge” group compared to the “deep” models for the whole sample. As 

discussed in sections 5.5.3 and 6.3.4, a possible reason behind this increase is 

that there are certain “surface” tendencies in the “deep” models, which manifest 

more strongly in the group with low prior knowledge in mathematics, compared 

to the “high prior knowledge” group. 

Despite the fact that the findings with regards to the “deep” models do not give 

as many distinguishable aspects in the students’ interaction with the ILE as 

those for the “surface” models, overall the findings do show that the approaches 

towards studying as measured by ASSIST can be linked to the realistic 

complexities of the students’ interaction with an ILE during tutorial sessions. For 

example, the “deep” model consists of predictors with both an unexpected 

relationship to the “deep” scale (such as number of exercises solved but not 

finished) and with an expected relationship, which also gives a distinguishable 

aspect, to the “deep” scale (such as number of exercises solved on first try). 

This finding expresses the realistic complexity, that a student with a high score 

on the “deep” scale tends to solve exercises on first try, but tends also not to 

solve exercises at all (possibly because of his low prior knowledge, considering 

that the contributions of the predictors in the “deep” model are explained better 

in the “low prior knowledge” group). 

To conclude, certain unexpected relationships found in the “deep” models can 
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be behind the differences between the variance explained amongst the models 

of the group. Furthermore, as previously discussed in section 5.1.2, the 

contribution of certain predictors with distinguishing aspects for the deep scales 

such as number of exercises solved on first try could be responsible for the 

unexplained variance of the model for the whole sample. It is possible that they 

could also be responsible for this difference in variance between the models of 

the “low prior knowledge” and “high prior knowledge” groups. It could be the 

case that the specific predictor, for example, does not have a strong enough 

contribution to represent better the interactions of the “high prior knowledge” 

group across the deep scales. Or perhaps it is not possible for this predictor to 

contribute more to the deep models of the “high prior knowledge” group (i.e. the 

number of exercises solved on first try by students with a high level of prior 

knowledge could be simply independent of their high and low scores on the 

deep scales).  

 

Capturing  these realistic complexities of students’ interactions with regards to 

the approaches towards studying can however be at the expense of the 

generalization of findings. The students’ intention towards studying is declared 

in the specific context of a module, which belongs to a specific course and in a 

specific university. The advantage is that such usage of learning styles provides 

a realistic and complex view with regards to students’ interaction in ILEs. 

However, this at the same time comes at an expense, as it poses limits to the 

generalisation of the findings, and ultimately recommendations for future 

studies. So, making recommendations based on findings which cannot be fully 

generalised can be challenging, but it does not mean that that it cannot be done 

and that it cannot give a good starting point for future studies in different 

educational settings. To add clarity to the whole process of predictor selection 

and give more concrete recommendations, a differentiation can be made 

between the predictors which survive the selection process and make it into the 

suggested (or recommended) models (the ones with the highest R2 and 

Adjusted R2) and those which survive and make it in the leanest and meanest 

models (where all predictors are statistically significant). More specifically, a 

distinction is possible according to:  

 the predictors which should be considered, because they survive in the leanest 

and meanest versions of the models and therefore can be relied on more for 

future studies;  



 301 

 the predictors which can be considered but with a certain degree of caution 

because they enrich the suggested (or recommended) versions of the model 

(by adding further aspects with regards to students’ interactions), but they can 

be sensitive across different educational settings and students’ prior knowledge. 

This is especially the case for the models of the “deep” approach which, as 

discussed previously, is sensitive to change (e.g. there are predictors such as 

the number of tries on exercises whose relationship to the deep scale may 

change if the broader educational setting encourages more a deep approach 

towards studying).  

Furthermore, tendencies found in both “deep” and “surface” models with 

regards to the use of the AM “notes” and “concept links” features pointed 

towards possible improvements in these AM features (see section 6.2.1), which 

may help towards encouraging a deep approach to studying. However, in this 

case as well there is a need for further investigation which will indicate whether 

the recommended changes in those features can indeed strengthen the links 

between their use and the deep approaches towards studying. 

 

7.3 Future work 

With regards to future work, the current investigation has opened up 

possibilities for a number of studies in the field.  

First of all, a natural continuation would be a study with a similar sample and in 

similar education settings (e.g. a university of a similar league, a similar course 

and module, and similar variation in terms of prior knowledge). It would require, 

however, the recommended changes in terms of predictors, discussed in 

chapter 6, to take place in an effort to capture better the deep approaches 

towards studying. It could also take into account the recommendations for 

design modifications and features that could further encourage a deep 

approach. Furthermore, a similar study would give an opportunity to re-examine 

the predictors of the “surface” models and re-affirm their distinguishing aspect 

but also go a step further and distinguish one surface approach from another. 

For example, it is worth verifying further tendencies which can distinguish the 

“fear of failure” approach from the “unrelated memorising” approach, as it would 

be useful for a tutor to know that a student behaves in a “surface” manner 

because of anxiety or rote memorisation. 

Secondly, as deep approaches are sensitive to the educational setting, it would 
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be worth investigating them in a teaching and learning environment where they 

might manifest more strongly. For example, in a high league university but in a 

similar course and module, students’ intention to follow a deep approach might 

manifest more strongly because as Ramsden (2005) indicated students might 

perceive that the teaching and learning environment required it from them. 

Thirdly, another possible line of future investigation could be with regards to the 

influence of prior knowledge on the deep and surface scales in a study where it 

would be the prime concern. It would be worth verifying, for example, whether 

its influence is still stronger on the deep approaches compared to surface 

approaches. However, it would also be worth going a step further and 

examining the models at predictor-level, as this would give further insights into 

what specific interactions in an ILE represent students’ deep and surface 

approaches at a specific level of prior knowledge. 

The current investigation opens up, therefore, various lines of investigation 

whose combined knowledge has the potential to lead to ILEs with more 

intelligent features which can help tutors deal with challenging situations which 

typically manifest in classrooms when teaching first-year undergraduates. It can, 

for example, help tutors identify at an early stage students’ habitual “surface” 

approaches towards studying, as well as helping tutors support students in 

adopting more productive approaches.  
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Appendices – Chapter 3 – Methodology 
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Appendix 3.3 – The ASSIST instrument 
 

 

A S S I S T 

Approaches and Study Skills Inventory for Students 
 
 
 
 
 

 
This questionnaire has been designed to allow you to describe, in a systematic way, how you go about learning and studying. The 

technique involves asking you a substantial number of questions which overlap to some extent to provide good overall coverage of 

different ways of studying. Most of the items are based on comments made by other students.  Please respond truthfully, so that your 

answers will accurately 

describe your actual ways of studying, and work your way through the questionnaire quite quickly. 
 
 
 
 

Background information 
 

 
Name or Identifier ........................................... Age   .......  years Sex M   /   F 

University or College ....................................... Faculty or School ...................................... 

Course  .............................................................. Year of study   ........ 
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A. What is learning? 
 

When you think about the term ‘LEARNING ‘, what does it mean to you? 

Consider each of these statements carefully, and rate them in terms of how close they are to your own way of thinking about it. 
 

 

 Very 

close 

Quite 

close 

Not so 

close 

Rather 

different 

Very 

different 

a. Making sure you remember things well. 5 4 3 2 1 

b. Developing as a person. 5 4 3 2 1 

c. Building up knowledge by acquiring facts and information. 5 4 3 2 1 

d Being able to use the information you’ve acquired. 5 4 3 2 1 

e. Understanding new material for yourself. 5 4 3 2 1 

f. Seeing things in a different and more meaningful way. 5 4 3 2 1 

 

 

 
 Please turn over 
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B. Approaches to studying 
 

The next part of this questionnaire asks you to indicate your relative agreement or disagreement with com- ments about studying again 

made by other students.    Please work through the comments, giving your immediate response. In deciding your answers, think in terms 

of this particular lecture course.  It is also very important that you answer all the questions: check you have. 
 

5 means agree (    )            4 = agree somewhat (   ? )            2 = disagree somewhat ( x? )         1 = disagree ( x ). 

Try not to use  3 = unsure ( ?? ), unless you really have to, or if it cannot apply to you or your course. 

? ?? x? x 
 

1.   I manage to find conditions for studying which allow me to get on with my work easily. 5 4 3 2 1 
 

2.   When working on an assignment, I’m keeping in mind how best to impress the marker. 5 4 3 2 1 
 

3.   Often I find myself wondering whether the work I am doing here is really worthwhile. 5 4 3 2 1 
 

4.   I usually set out to understand for myself the meaning of what we have to learn. 5 4 3 2 1 
 

5.   I organise my study time carefully to make the best use of it. 5 4 3 2 1 
 

6.   I find I have to concentrate on just memorising a good deal of what I have to learn. 5 4 3 2 1 
 

7.   I go over the work I’ve done carefully to check the reasoning and that it makes sense. 5 4 3 2 1 
 

8.   Often I feel I’m drowning in the sheer amount of material we’re having to cope with. 5 4 3 2 1 
 

9.   I look at the evidence carefully and try to reach my own conclusion about what I’m studying.  5 4 3 2 1 
 

10.  It’s important for me to feel that I’m doing as well as I really can on the courses here. 5 4 3 2 1 
 

11.  I try to relate ideas I come across to those in other topics or other courses whenever possible.   5 4 3 2 1 
 

12.  I tend to read very little beyond what is actually required to pass. 5 4 3 2 1 
 

13.  Regularly I find myself thinking about ideas from lectures when I’m doing other things. 5 4 3 2 1 
 

14.  I think I’m quite systematic and organised when it comes to revising for exams. 5 4 3 2 1 
 

15.  I look carefully at tutors’ comments on course work to see how to get higher marks next time. 5 4 3 2 1 
 

16.  There’s not much of the work here that I find interesting or relevant. 5 4 3 2 1 
 

17.  When I read an article or book, I try to find out for myself exactly what the author means. 5 4 3 2 1 
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18.  I’m pretty good at getting down to work whenever I need to. 5 4 3 2 1 
 

19.  Much of what I’m studying makes little sense: it’s like unrelated bits and pieces. 5 4 3 2 1 
 

20.  I think about what I want to get out of this course to keep my studying well focused. 5 4 3 2 1 
 

21.  When I’m working on a new topic, I try to see in my own mind how all the ideas fit together.  5 4 3 2 1 
 

22   I often worry about whether I’ll ever be able to cope with the work properly. 5 4 3 2 1 
 

23.  Often I find myself questioning things I hear in lectures or read in books. 5 4 3 2 1 
 

24.  I feel that I’m getting on well, and this helps me put more effort into the work. 5 4 3 2 1 
 

25.  I concentrate on learning just those bits of information I have to know to pass. 5 4 3 2 1 
 

26.  I find that studying academic topics can be quite exciting at times. 5 4 3 2 1 
 

27.  I’m good at following up some of the reading suggested by lecturers or tutors. 5 4 3 2 1 
 

28.  I keep in mind who is going to mark an assignment and what they’re likely to be looking for.   5 4 3 2 1 
 

29.  When I look back, I sometimes wonder why I ever decided to come here. 5 4 3 2 1 
 

30.  When I am reading, I stop from time to time to reflect on what I am trying to learn from it. 5 4 3 2 1 
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31. 

 

 
I work steadily through the term or semester, rather than leave it all until the last minute. 

 

 
5 

? 

4 

?? 

3 

x? 

2 

x 

1 

32. I’m not really sure what’s important in lectures so I try to get down all I can. 5 4 3 2 1 

33. Ideas in course books or articles often set me off on long chains of thought of my own. 5 4 3 2 1 

34. Before starting work on an assignment or exam question, I think first how best to tackle it. 5 4 3 2 1 

35. I often seem to panic if I get behind with my work. 5 4 3 2 1 

36. When I read, I examine the details carefully to see how they fit in with what’s being said. 5 4 3 2 1 

37. I put a lot of effort into studying because I’m determined to do well. 5 4 3 2 1 

38. I gear my studying closely to just what seems to be required for assignments and exams. 5 4 3 2 1 

39. Some of the ideas I come across on the course I find really gripping. 5 4 3 2 1 

40. I usually plan out my week’s work in advance, either on paper or in my head. 5 4 3 2 1 

41. I keep an eye open for what lecturers seem to think is important and concentrate on that. 5 4 3 2 1 

42. I’m not really interested in this course, but I have to take it for other reasons. 5 4 3 2 1 

43. Before tackling a problem or assignment, I first try to work out what lies behind it. 5 4 3 2 1 

44. I generally make good use of my time during the day. 5 4 3 2 1 

45. I often have trouble in making sense of the things I have to remember. 5 4 3 2 1 

46. I like to play around with ideas of my own even if they don’t get me very far. 5 4 3 2 1 

47. When I finish a piece of work, I check it through to see if it really meets the requirements. 5 4 3 2 1 

48 Often I lie awake worrying about work I think I won’t be able to do. 5 4 3 2 1 

49 It’s important for me to be able to follow the argument, or to see the reason behind things. 5 4 3 2 1 

50. I don’t find it at all difficult to motivate myself. 5 4 3 2 1 

51. I like to be told precisely what to do in essays or other assignments. 5 4 3 2 1 

52. I sometimes get ‘hooked’ on academic topics and feel I would like to keep on studying them. 5 4 3 2 1 

 

C. 
 

Preferences for different types of course and teaching 
     

5 means definitely like ( ) 4 = like to some extent (   ? ) 2 = dislike to some extent  ( x? )  1 = definitely dislike ( x ). 

Try not to use  3 = unsure ( ?? ), unless you really have to, or if it cannot apply to you or your course. 
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a. 

 
lecturers who tell us exactly what to put down in our notes. 

 
5 

? 

4 

?? 

3 

x? 

2 

x 

1 

b. lecturers who encourage us to think for ourselves and show us how they themselves think 5 4 3 2 1 

c. exams which allow me to show that I’ve thought about the course material for myself. 5 4 3 2 1 

d. exams or tests which need only the material provided in our lecture notes. 5 4 3 2 1 

e. courses in which it’s made very clear just which books we have to read. 5 4 3 2 1 

f. courses where we’re encouraged to read around the subject a lot for ourselves. 5 4 3 2 1 

g. books which challenge you and provide explanations which go beyond the lectures. 5 4 3 2 1 

h. books which give you definite facts and information which can easily be learned. 5 4 3 2 1 

 

Finally, how well do you think you have been doing in your assessed work overall, so far? 

Please rate yourself objectively,  based on the grades you have been obtaining 
 

Very well  Quite Well  About average  Not so well  Rather badly 

9 8 7 6 5 4 3 2 1 

 

Thank you very much for spending time completing this questionnaire: it is much appreciated. 
 

 

 

 

 

Note from the author: The author acknowledges that she has no copyright of  the ASSIST instrument presented on pages 316-321 

and that it has been taken from the following source: ENTWISTLE, N. 1997a. Approaches and Study Skills Inventory for Students 

(ASSIST) [Online]. ETL Project. Available: http://www.etl.tla.ed.ac.uk/questionnaires/ASSIST.pdf [Accessed 07 / 1 / 13]. 

http://www.etl.tla.ed.ac.uk/questionnaires/ASSIST.pdf
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Appendix 3.4 .1 - Typical ‘reading’ page and features in AM 
 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.2 – Typical ‘exercise’ page and ‘exercise’ window’ in AM 
 

 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.3 - Search option  
 

 

[AM screenshot was removed because of potential copyright restriction] 

 

 

 

 

 

 

 

 

 

 

 

 



 325 

 

 

Appendix 3.4.4 - Exercise that is completed but not solved 
 

 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.5 - Exercise solved on first try 
 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.6 - Exercise solved on second try 
 

 

[AM screenshot was removed because of potential copyright restriction] 

 

 

 

 

 

 

 

 

 

 

 

 

 



 328 

 

Appendix 3.4.7 - Exercise solved on third try  
 

 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.8.a – ‘Notes’ option –Create 
 

 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.8.b – ‘Notes’ option – Making a note 
 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.8.c – ‘Notes’ option – Editing and Deleting a note 
 

 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.9 – Home Page 
 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.10 – Worked Example 
 

 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.11 – Worked Example and Hyperlinks 
 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.12 – Worked Example - Summary 
 

 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.4.13 – Theoretical Example 
 

 

[AM screenshot was removed because of potential copyright restriction] 

 



 337 

Appendix 3.4.14 – Worked Example  
 

[AM screenshot was removed because of potential copyright restriction] 
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Appendix 3.10.1 - ActiveMath manual 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ActiveMath – Interactive Notes  
 

for  
 

Module: 2COS404 "Information Fundamentals" 
 

What is ActiveMath 

ActiveMath has been created in order to provide you with interactive 

exercises and examples which are essential in this module. Interactive 

features such as the Graph Plotter and detailed coloured graphs will help 

you to better understand the mathematical concepts involved in this module.  

ActiveMath includes the complete subject material for the following 

chapters: 

 Chapter 4 – Functions 

 Chapter 5 – Graphs  

 Chapter 8 – Matrices 
 

Here is a short guide that will help you understand how to use ActiveMath.  

A short guide 

First open the browser (Internet Explorer or Netscape) and type the 

following URL: 

http://iclass.activemath.org/ActiveMath2/ 

1. Log-in page 

You can access ActiveMath, only if you have registered and created your 

own personal account. For each session, you will need to use your own 

unique username and password.  

2. Home page  

At the home page, you can select among the following chapters: 

 Chapters 4 – Functions 

 Chapter 5 – Graphs  

 Chapter 8 – Matrices  
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Appendix  3.10.1 – ActiveMath Manual (continue) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Main Menu 

The menu (at the top right corner) has the following options: 

 Home page: This always leads to the home page in case you want to 
select another chapter. 

 Contact: In case you are experiencing log-in problems in ActiveMath 
(such as forgetting your password etc), please contact Maria Margeti 
in the following e-mail address: M.M.Margeti@wmin.ac.uk 

 Help: This provides brief but useful information about ActiveMath. 

 Logout: Please remember to logout as soon as you finish your 
session. 

 Graph Plotter: The graph plotter will help you to comprehend certain 
mathematical concepts and solve the exercises. You will use it mainly 
in the examples and exercises of Chapter 5-Graphs.  

There are two different types of graph plotters that you will use: 

 The first graph plotter consists of plotting a parabola and a line.  

 The second graph plotter consists of plotting two lines. 
 

Each graph plotter serves the needs and purposes of different examples 
and exercises. However, there are exercises in which you can use either of 
the two (e.g. the exercises that you need to plot only a line). Each exercise 
and example usually indicates which type of graph plotter you should use.  

 

4. How to move around in ActiveMath 

 Search 
This consists of three options:  

o The Simple option helps you to jump quickly to a specific piece 
of information in the content.   

o The Advanced option helps you to locate more accurately 
information using options such as “contain phrase”.  You can 
also search many keywords at the same time.  

o The History option stores automatically your searches for each 
session. 

Each time you conduct a simple or advanced search about a mathematical 
concept, the results will be displayed in a pop-up window. At the bottom of 
the pop-up window, there are also three external links: 

o Google 
o Wikipedia 
o MathWorld 
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Appendix 3.10.1 – ActiveMath Manual (continue) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above three links will permit you to do further research about a 

mathematical concept.  

 Table of contents 
The table of contents is always placed on the left-hand side of the 

screen and allows you to move around the subchapters of the 

chapter. By clicking on the main subchapters more subchapters 

will be revealed in certain cases. The information of each 

subchapter is presented to the right part of the screen.  

 Previous and Next Buttons 
At the bottom of each page you can find the previous and the next 

buttons that can help you to move from one page to another of 

each chapter in a linear way (like in a book).  

 Explanation of mathematical terms 
Sometimes you may forget certain mathematical terms and 

concepts. In order to help you remember these terms, we have 

highlighted them in bold, and by clicking on them a pop-up 

window comes up with an explanation of the term.  

 

5. Other features of ActiveMath  

 Theory – Examples –Exercises 
The titles of the subchapters indicate whether they are theory, 

examples, or   exercises.  For example: 

o Theory: They are presented in an orange/pink background.  
o Examples: They are presented with two vertical orange 

lines.  
o Exercises: They are presented in a blue background. 

  

 Exercises 

To start each exercise, you should click on “Start exercise” which 

opens up a pop-up window. An exercise can be single choice, 

multiple choice,  or fill-in the  blank.  

Select or type your answer and then click on “Evaluate” to get the 

feedback. ActiveMath will allow you three attempts before it gives 

you the correct answer.  
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Appendix 3.10.1 – ActiveMath Manual (continue) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Notes 
ActiveMath gives you the option of keeping notes for each theory, 

example, or exercise. For example, you can keep notes about the 

correct answer of an exercise by clicking on   . 

You will find this icon at the top right corner of a theory, example, 

or exercise.   

The Notes, you make, are kept permanently and you can view 

them whenever you access your account. You can also change 

them (“Edit”), or delete them (“Delete”).  

 

 Print  
You can print the right part of the screen in PDF by clicking on 

“Print this page as PDF” (at the bottom of each page).  You can 

also print the whole chapter by clicking on “print the whole book” 

(at the table of contents).  

 

 

 

If you have any further questions concerning ActiveMath, 

please contact Maria Margeti in the following e-mail address: 

M.M.Margeti@wmin.ac.uk 

 

mailto:M.M.Margeti@wmin.ac.uk
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Appendix 3.10.2 - ActiveMath registration guidelines  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ActiveMath - Interactive Notes  
 

for 
 

Module: 2COS404 "Information Fundamentals" 
 

 
Accessing and using ActiveMath is easy. You just need a personal 
username and password that is unique for each student. In order to 
create a personal username and password you need to create an account.  
 
Please follow the following guidelines to create an account: 
 

 Type in your browser (Internet Explorer or Netscape) the URL:  
      http://iclass.activemath.org/ActiveMath2/ 

      After typing the URL, the following screen will be displayed: 

 

                 

 Click on “register?” to open the registration form. 

 In the registration form you should complete accurately all your 
personal details.  

 Students ID: It should be typed as: w12345678 

 Date of Birth 
o It should be typed as: dd/mm/yyyy 
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Appendix 3.10.2 – ActiveMath registration guidelines (continue) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Username 
o The username should be your student ID (for example, 

w12345678). The username should be typed in lower-case.  

 Password 
o The password should be your date of birth. It should be 

typed as: ddmmyyyy. The password is case sensitive. 
 

Note:  Do not submit the registration form, before your tutor checks it  

with you.  

Should you have any problems logging in, please contact Maria 

Margeti. 
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Appendix 3.10.5 – ActiveMath administration account    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note from author: the details of users have been obscured to protect the identity 

of participants. 
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Appendix 3.11.1 - Thresholds for effect size and variance 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Thresholds - Correlation coefficients -effect sizes r – shared variance explained r2 
based on Cohen, (1992). 

 

f2  (effect size) 

R2 / 1- R2 

Small 

0.02 

Medium 

0.15 

Large 

0.35 

R2 (variance 

explained) 

0.0196 

(1.96%) 

0.1304 

(13.04%) 

0.2592 

(25.92%) 

R  0.14 0.36 0.51 

 

Table 2. Thresholds – Multiple Regression – effect size f2 – variance explained R2 – 

Correlation coefficient R, based on Cohen (1992). 

 

 

 

 

 

 

r  

correlation 

coefficient 

(effect 

size) 

0.1 

small 

0.3 

medium 

0.5 

large 

r2  

shared 

variance 

explained 

(or 

variance 

accounted 

for) 

1% 9% 25% 
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Appendices – Chapter 4 - Regression Analysis and Model 
Interpretation 
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Appendices 4.1 – Surface Models 

Appendix 4.1.1 –Further Justification for inclusion of predictors 
Selected Predictors Reason for selection 

Number of exercises 
solved on first try  

Statistical (see 4.1.2) 

Number of exercises 
solved on third try  

Number of exercises 
finished but not solved  

Compactness 
 

Average view time on 
exercise pages  
 

Number of hyperlinks 
(concept links) visited in 
reading and exercise 
pages 
 

Maximum view time on 
exercise page 

It is enriching for the discussion to explore 
whether students with high score on surface 
scale are spending an, increasingly, excessive 
amount of time on a specific exercise page, 
compared to those with low scores 

Maximum view time on 
content page 

 

-It is enriching for the discussion of the surface 
scale to explore whether students with high 
score on surface scale tend to persist and spend 
time, not only on the practical part of the AM 
learning material, but also on the content 
(reading) pages of AM. 

-It is preferred compared to Average view time 
on content (reading) pages (with which there is a  
multicollinearity issue). When tried in premodels 
1a and 1b, maximum view time on content page 
contributes more in the variance (see table 2 
below) 

 

Table 1. Reasons for selection 
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Pre-models  R2 Adj. R2 Sig. 

Model 1b 

(Maximum view 
time on content 
(reading) page, 
Average View Time 
on Exercise Pages, 
Compactness, 
Maximum View Time 
on Exercise Page, 
Number of exercises 
solved on third try, 
Number of concept 
links visited in 
reading, exercise 
pages, Number of 
exercises solved on 
first try, Number of 
exercises finished 
but not solved)  

37.3% 32.5% 0.000 

Model 1a 

(Average view time 
on content 
(reading) pages, 
Average View Time 
on Exercise Pages, 
Compactness, 
Maximum View Time 
on Exercise Page, 
Number of exercises 
solved on third try, 
Number of concept 
links visited in 
reading, exercise 
pages, Number of 
exercises solved on 
first try, Number of 
exercises finished 
but not solved) 

36.6% 31.8% 0.000 

Table 2. Pre-models 
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Appendix 4.1.2 – Detailed discussion on development of model 

Model 1b – Surface Scale - All predictors based on initial selection 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .610a .373 .325 8.287 

a. Predictors: (Constant), Maximum View Time on Content 

Page, Average View Time on Exercise Pages, 

Compactness, Maximum View Time on Exercise Page, 

Number of Exercise Solved on Third Try, Number of 

hyperlinks (concept links) visited in reading and exercise 

pages, Number of Exercise Solved on First Try, Number of 

Exercise Finished But not Solved 

        b. Dependent Variable: Surface Scale 

Table 1 – Model Summary 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 – Overall Significance of model 

 

 

 

 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 4323.297 8 540.412 7.868 .000b 

Residual 7280.146 106 68.681 
  

Total 11603.443 114 
   

a. Dependent Variable: Surface Scale 

b. Predictors: (Constant), Maximum View Time on Content Page, Average View Time on 

Exercise Pages, Compactness, Maximum View Time on Exercise Page, Number of Exercises 

Solved on Third Try, Number of hyperlinks (concept links) visited in reading and exercise pages, 

Number of Exercises Solved on First Try, Number of Exercises Finished But not Solved 
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Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 41.340 5.745  7.196 .000 

Number of 
hyperlinks 
(concept links) 
visited in 
reading, 
exercise pages  

.044 .371 .010 .120 .905 

Number of 
Exercise 
Finished But 
not Solved 

.348 .246 .156 1.419 .159 

Number of 
Exercise 
Solved on First 
Try 

-.153 .034 -.416 -4.560 .000 

Number of 
Exercise 
Solved on Third 
Try 

.661 .414 .173 1.597 .113 

Compactness 16.955 7.822 .178 2.168 .032 

Maximum View 
Time on 
Exercise Page 

.002 .001 .142 1.760 .081 

Average View 
Time on 
Exercise Pages 

-.001 .002 -.031 -.340 .734 

Maximum View 
Time on 
Content Page 

-.002 .002 -.115 -1.415 .160 

a. Dependent Variable: Surface Scale 

Table 3 – B, Beta, and Sig. values for predictors 
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Surface Scale – Exclusion of outliers 
 

To exclude the outliers from Model 1 the intention is to use the Cook’s Distance 

method. The box plot of Cook’s distance below shows a number of outliers. However, 

the intention is to exclude amongst the most extreme ones (those indicated with an 

asterisk), those which improve the measures of variance R2 and adjusted R2.  

 

Figure 1. Cook’s Distance Box Plot 

 

 

In Fig.1, it is observed that the most extreme outliers are cases: 132, 46, 76, 58, 25, 35 

and 38. These cases are excluded gradually on models Model 2a, 2b, 2c, 2d, 2e, and 

2f, and 2g. It is observed that the exclusion of cases 132, 46, 58, 25, and 38 has 

increased both R2 and adjusted R2 (from 37.3% in Model 1 to 45.6% in Model 2g for R2, 

and from 32.5% in Model 1 to 41.3% in Model 2g for adjusted R2). However, outliers 76 

and 35 decrease the variance, thus they are not excluded from the sample. So, the five 

cases which are excluded are: 132, 46, 58, 25 and 38. 
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Model 3  – Surface Scale- Recommended version 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .675a .455 .418 7.542 

a. Predictors: (Constant), Maximum View Time on Content 

Time, Number of Exercises Solved on First Try, Compactness, 

Number of Exercises Solved on Third Try, Maximum View Time 

on Exercise Page, Number of concept links visited in reading, 

exercise pages, Number of Exercises Finished But not Solved 

b. Dependent Variable: Surface Scale 

Table 4 – Model Summary 

 

 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 4848.324 7 692.618 12.175 .000b 

Residual 5802.594 102 56.888 
  

Total 10650.918 109 
   

a. Dependent Variable: Surface Scale 

a. Predictors: (Constant), Maximum View Time on Content Time, Number of 

Exercises Solved on First Try, Compactness, Number of Exercises Solved on Third 

Try, Maximum View Time on Exercise Page, Number of concept links visited in 

reading, exercise pages, Number of Exercises Finished But not Solved 

Table 5 – Overall significance of model 

 

 

 

 

 

 

 



 353 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 46.502 5.187  8.965 .000 

Number of 
hyperlinks 
(concept links) 
visited in reading, 
exercise pages 

.450 .357 .101 1.262 .210 

Number of 
Exercises Finished 
But not Solved 

.340 .225 .157 1.512 .134 

Number of 
Exercises Solved 
on First Try 

-.161 .028 -.435 -5.737 .000 

Number of 
Exercises Solved 
on Third Try 

.805 .386 .213 2.085 .040 

Compactness 7.580 7.498 .078 1.011 .314 

Maximum View 
Time on Exercise 
Page 

.002 .001 .167 2.168 .032 

Maximum View 
Time on Content 
Time 

-.004 .002 -.188 -2.412 .018 

a. Dependent Variable: Surface Scale 

Table 6 – B, Beta, and Sig. values for predictors 

 

Appendix 4.1.3 – Surface Scale – Model 6 – Leanest and Meanest  
Exclusion of outliers 132 and 46 and 58 and 25 and 38 and predictors Average View Time on 
Exercise Pages and Compactness and Number of concepts clicked on exercise and reading 
pages and Number of Exercises Finished but not Solved 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .650a .423 .401 7.651 

a. Predictors: (Constant), Maximum View Time on Content Time, 
Number of Exercises Solved on First Try, Number of Exercises 
Solved on Third Try, Maximum View Time on Exercise Page 

b. Dependent Variable: Surface Scale 

Table 7 – Model Summary 
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ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 4504.207 4 1126.052 19.236 .000b 

Residual 6146.712 105 58.540   

Total 10650.918 109    

a. Dependent Variable: Surface Scale 

b. Predictors: (Constant), Maximum View Time on Content Time, Number of Exercises 
Solved on First Try, Number of Exercises Solved on Third Try, Maximum View Time on 
Exercise Page 

 

Table 8 – Overall Significance of model 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 52.995 2.545  20.822 .000 

Number of 
Exercises 
Solved on First 
Try 

-.170 .028 -.458 -6.032 .000 

Number of 
Exercises 
Solved on 
Third Try 

1.312 .283 .347 4.639 .000 

Maximum View 
Time on 
Exercise Page 

.002 .001 .146 1.903 .060 

Maximum View 
Time on 
Content Time 

-.003 .001 -.174 -2.308 .023 

a. Dependent Variable: Surface Scale 

Table 9 – B, Beta, and Sig. values for predictors 
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Appendices 4.2 –Unrelated Memorising Models 

Appendix 4.2.1 –Further Justification for inclusion of predictors 
Non-Selected Predictors Reason for non-selection 

Number of exercises 

accessed 

-Multicollinearity issue with Number of Exercises 

solved on First Try 

-Number of Exercises solved on First Try was selected 

instead because of the: stronger correlation to the 

subscale; the potential of enriching for the discussion 

of the model, as it allows for useful comparisons with 

regards to the rest of the performance-related metrics. 

 

Number of distinct pages -Multicollinearity issue with Average view time on 

exercise pages 

- Average view time on exercise pages was selected 

instead because of the: stronger correlation to the 

subscale; the potential of enriching for the discussion 

of the model, as it represents the temporal aspect of 

students’ interactions in AM 

- Number of distinct pages can indicate a repetitive 

tendency when students are going through the learning 

material, but this is also represented well by relative 

amount of revisits (which has been already included in 

the model) 

 

Table1. Reasons for not selecting predictors 
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Appendix 4.2.2 – Further information on development of model 

Model 1 – Unrelated Memorising Scale - All predictors based on initial selection 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .574a .329 .278 2.879 

a. Predictors: (Constant), Average View Time on Exercise Pages. 
Compactness, Number of Exercises Solved on Third Try, 
Avg number a notes link is clicked per page, Number of 

hyperlinks (concept links) visited in reading, exercise pages, 

Number of Exercises Solved on First Try, Relative amount of 

revisits, Number of Exercises Finished But not Solved 

b. Dependent Variable: Surface subscale Unrelated Memorising 

Table 1 – Model Summary 

 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 430.658 8 53.832 6.496 .000b 

Residual 878.438 106 8.287 
  

Total 1309.096 114 
   

a. Dependent Variable: Surface subscale Unrelated Memorising 

b. b. Predictors: (Constant), Average View Time on Exercise Pages. Compactness, 
Number of Exercises Solved on Third Try, Avg number a notes link is clicked per 
page, Number of hyperlinks (concept links) visited in reading, exercise pages, 
Number of Exercises Solved on First Try, Relative amount of revisits, Number of 
Exercises Finished But not Solved 

Table 2 – Overall significance of model 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 11.135 1.915  5.815 .000 

Number of 
hyperlinks 
(concept 
links) visited 
in reading, 
exercise 
pages  

.034 .131 .024 .260 .795 

Relative 
amount of 
revisits  

.879 2.445 .038 .360 .720 

Number of 
Exercises 
Solved on 
First Try 

-.056 .012 -.452 -4.816 .000 

Number of 
Exercises 
Solved on 
Third Try 

.099 .143 .077 .694 .489 

Number of 
Exercises 
Finished But 
not Solved 

 

.131 .084 .175 1.567 .120 

Compactness 4.280 3.224 .134 1.328 .187 

Avg number 
an notes link 
is clicked per 
page  

1.297 1.882 .059 .689 .492 

Average View 
Time on 
Exercise 
Pages 

.000 .001 -.027 -.286 .775 

a. Dependent Variable: Surface subscale Unrelated Memorising 

Table 3 – B, Beta, and Sig. values for predictors 
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Figure 1. Cook’s Distance Box Plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Summary of measures of variance and significance for accepted and rejected models 
for exclusion of outliers 

 R2 Adj. 
R2 

Sig. 

Model 1 (all initially 
selected predictors) 

32.9% 27.8% 0.000 

Model 2 (exclusion of 
cases 69) 

34.2% 29.2% 0.000 

Model 2a (exclusion of 
cases 69, 132) 

37% 32.2% 0.000 

Model 2b (exclusion of 
cases 69, 132, and 46) 

37.9% 33.1% 0.000 

Model 2c (exclusion of 
cases 69, 132, 46, and 
127) 

40.4% 35.8% 

 

 

0.000 

Model 2d (exclusion of 
cases 69, 132, 46, 127, 
55) [Rejected] 

38.2% 33.4% 0.000 

Model 2e (exclusion of 
cases 69, 132, 46, 127, 
and 58) [Rejected] 

40.2% 35.4% 0.000 

Model 2f(exclusion of 
cases 69, 132, 46, 127, 
and 99) [Rejected] 

39.9% 35.1% 0.000 

Model 2g(exclusion of 
cases 69, 132, 46, 127, 
and 75) [Rejected] 

38.3% 33.3% 0.000 
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Model 6 – Unrelated Memorising – Recommended model 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .633a .400 .377 2.657 

a. Predictors: (Constant), Avg number an notes link is clicked per 
page, Number of Exercises Finished But not Solved, Number of 
Exercises Solved on First Try, Compactness 

b. Dependent Variable: Surface subscale Unrelated Memorising 

Table 5 – Model Summary 

 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 499.178 4 124.794 17.675 .000b 

Residual 748.408 106 7.060   

Total 1247.586 110    

a. Dependent Variable: Surface subscale Unrelated Memorising 

b. Predictors: (Constant), Avg number an notes link is clicked per page, Number of 
Exercises Finished But not Solved, Number of Exercises Solved on First Try, Compactness 

Table 6 – Overall significance of model 

 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 10.967 1.685  6.507 .000 

Number of 
Exercises Solved 
on First Try,  

-.064 .009 -.512 -6.745 .000 

Number of 
Exercises 
Finished But not 
Solved 

 

.187 .056 .253 3.309 .001 

 

Compactness 5.401 2.554 .166 2.115 .037 

Avg number an 
notes link is 
clicked per page  

1.757 1.715 .080 1.025 .308 

a. Dependent Variable: Surface subscale Unrelated Memorising 

Table 7 – B, Beta, and Sig. values for predictors 
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Appendix 4.2.3 – Unrelated memorising – Model 6 – Generalisation - 
Assumptions 
The assumptions regarding: normal distribution of residuals, homoscedasticity of 
standardised residuals against predicted ones, and the normality of residuals hold well. 

 

Figure 2. Histogram of standardised residuals for the final model 

 

Regarding the assumption about the normal distribution of residuals, as shown in 
Figure 2, that residuals fit quite closely to a normal distribution.  
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Figure 3. Plot of standardised residuals 

 

Figure 3 shows that the normality assumption holds since the points lie on the straight 
line.  

Figure 4. Plot of the standardised residuals against the predicted ones for the model  

 

The assumption about the residuals is whether the variance of the residuals is constant, 
in other words there is homoscedasticity. Figure 4 shows that the scatter plot is 
reasonably random and the residuals are homoscedastic with a few exceptions.  
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Appendix 4.2.4 – Unrelated Memorising subscale –Model 7 – Leanest and 
Meanest 
Excluding cases 69 and 132 and 46 and 127 and Relative amount of revisits, Number 
of hyperlinks (concept links) visited in reading and exercise pages, Avg View Time 
Ex.Pages, Number of exercises solved on third try, and Avg number a notes links is 
clicked per page. 
 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .628a .394 .377 2.658 

a. Predictors: (Constant), Compactness, Number of Exercises 
Solved on First Try, Number of Exercises Finished But not Solved 

b. Dependent Variable: Surface subscale Unrelated Memorising 

Table 8 – Model Summary 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 491.766 3 163.922 23.206 .000b 

Residual 755.820 107 7.064   

Total 1247.586 110    

a. Dependent Variable: Surface subscale Unrelated Memorising 

b. Predictors: (Constant), Compactness, Number of Exercises Solved on First Try, Number 
of Exercises Finished But not Solved 

Table 9 – Overall significance of model 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 10.781 1.676  6.432 .000 

Number of 
Exercises Solved 
on First Try 

-.065 .009 -.520 -6.895 .000 

Number of 
Exercises 
Finished But not 
Solved 

.182 .056 .246 3.233 .002 

Compactness 6.036 2.478 .186 2.436 .017 

a. Dependent Variable: Surface subscale Unrelated Memorising 

Table 10 – B, Beta, and Sig. values for predictors 
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Appendices 4.3 –Fear of Failure Models 

Appendix 4.3.1 –Further Justification for inclusion of predictors 
 

Pre-models  R2 Adj. R2 Sig. 

Model 1a 

(Average View 
Time on Content 
Pages, Maximum 
View Time on 
Exercise Page, 
Number of 
Exercises Solved 
on Third Try, 
Average View 
Time on Exercise 
Pages, Number of 
Exercises Solved 
on First Try, 
Number of 
Exercises Finished 
But Not Solved) 

 

29.4% 25.5% 0.000 

Model 1b  

(Maximum View 
Time on Content 
Pages, Maximum 
View Time on 
Exercise Page, 
Number of 
Exercises Solved 
on Third Try, 
Average View 
Time on Exercise 
Pages, Number of 
Exercises Solved 
on First Try, 
Number of 
Exercises Finished 
But Not Solved) 

30.5% 26.6% 0.000 

Table1. Pre-models 
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Appendix 4.3.2 – Further information on development of model 

Model 1 – Fear of Failure Scale - All predictors based on initial selection 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 

Std. Error of 
the Estimate 

1 .552a .305 .266 3.232 

a. Predictors: (Constant), Maximum View Time on Content Page, Average 
View Time on Exercise Pages, Number of Exercises Solved on Third Try, 
Maximum View Time on Exercise Page, Number of Exercises Solved on 
First Try, Number of Exercises Finished But Not Solved 

b. Dependent Variable: Surface subscale Fear for Failure 

Table 1 – Model Summary 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 494.294 6 82.382 7.884 .000b 

Residual 1128.489 108 10.449   

Total 1622.783 114    

a. Dependent Variable: Surface subscale Fear for Failure 

b. Predictors: (Constant), Maximum View Time on Content Page, Average View Time on Exercise 
Pages, Number of Exercises Solved on Third Try, Maximum View Time on Exercise Page, Number of 
Exercises Solved on First Try, Number of Exercises Finished But Not Solved 

Table 2 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 14.161 1.347  10.513 .000 

Number of 
Exercises Solved 
on First Try 

-.048 .013 -.349 -3.747 .000 

Number of 
Exercises Solved 
on Third Try 

.332 .157 .232 2.117 .037 

Number of 
Exercises Finished 
But Not Solved 

.043 .095 .051 .450 .654 

Maximum View 
Time on Exercise 
Page 

.001 .000 .253 3.012 .003 

Average View Time 
on Exercise Pages 

.000 .001 -.028 -.302 .763 

Maximum View 
Time on Content 
Page 

-.001 .001 -.160 -1.925 .057 

a. Dependent Variable: Surface subscale Fear for Failure 

Table 3 – B, Beta, and Sig. values for predictors 
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Figure 1. Cook’s Distance Box Plot 

 

 

 R2 Adj. R2 Sig. 

Model 1 (all initially 
selected predictors) 

30.5% 26.6% 0.000 

Model 2a (exclusion of 
case 132) 

35.1% 31.5% 0.000 

Model 2b (exclusion of 
cases 132 and 38) 

38.4% 34.9% 0.000 

Model 2c (exclusion of 
cases 132, 38, and 78) 

40.2% 36.8% 0.000 

Model 2d (exclusion of 
cases 132, 38, 78, and 
35) [Rejected] 

39.3% 35.1% 0.000 

Model 2e (exclusion of 
cases 132, 38, 78, and 
1) 

[Rejected] 

36.9% 33.3% 

 

 

0.000 

Model 2f (exclusion of 
cases 132, 38, 78 and 
52) 

42.1% 38.8% 0.000 

Table 4. Summary of measures of variance and significance for accepted and rejected models 
for exclusion of outliers 
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Model 4  – Fear of Failure – Recommended version (and Leanest and Meanest) 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .645a .416 .394 2.848 

a. Predictors: (Constant), Maximum View Time on Content Page, 
Number of Exercises Solved on First Try, Number of Exercises 
Solved on Third Try, Maximum View Time on Exercise Page 

b. Dependent Variable: Surface subscale Fear for Failure 

Table 5 – Model Summary 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 611.943 4 152.986 18.856 .000b 

Residual 860.021 106 8.113 
  

Total 1471.964 110    

a. Dependent Variable: Surface subscale Fear for Failure 

b. Predictors: (Constant), Maximum View Time on Content Page, Number of Exercises 
Solved on First Try, Number of Exercises Solved on Third Try, Maximum View Time on 
Exercise Page 

Table 6 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 14.714 .936  15.717 .000 

Number of 
Exercises 
Solved on First 
Try 

-.060 .010 -.440 -5.785 .000 

Number of 
Exercises 
Solved on Third 
Try 

.348 .104 .251 3.351 .001 

Maximum View 
Time on 
Exercise Page 

.001 .000 .281 3.657 .000 

Maximum View 
Time on Content 
Page 

-.001 .001 -.208 -2.733 .007 

a. Dependent Variable: Surface subscale Fear for Failure 

Table 7 – B, Beta, and Sig. values for predictors 
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Appendix 4.3.3 – Fear of Failure – Model 4 – Generalisation - Assumptions 
The assumptions regarding: normal distribution of residuals, homoscedasticity of 

standardised residuals against predicted ones, and the normality of residuals hold well. 

Figure 2. Histogram of standardised residuals for the final model 

 

Regarding the assumption about the normal distribution of residuals, as shown in 

Figure 2, that residuals fit quite closely to a normal distribution.  
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Figure 3. Plot of standardised residuals 

 

Figure 3 shows that the normality assumption holds since the points lie on the straight 

line.  

Figure 4. Plot of the standardised residuals against the predicted ones for the model  

 
 

The assumption about the residuals is whether the variance of the residuals is constant, 
in other words there is homoscedasticity. Figure 4 shows that the scatter plot is 
reasonably random and most residuals are homoscedastic. 
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Appendices 4.4 –Syllabus Boundness Models 

Appendix 4.4.1 –Further Justification for inclusion of predictors 
Pre-models R2 Adj. R2 Sig. 

Model 1a 

(Average View Time 
on Content Pages, 
Compactness, Number 
of Exercises 
Cancelled, Number of 
Exercises Solved on 
Third Try, Number of 
Exercises Solved on 
First Try, Number of 
pages visited from 
TOC, Number of 
Exercises Finished But 
Not Solved) 

[With only 7 
predictors] 

14.4% 8.8% 0.017 

Model 1b  

Minimum View Time 
on Exercise Page, 
Number of Exercises 
Finished But Not 
Solved, Number of 
Exercises Solved on 
First Try, 
Compactness, Number 
of Exercises 
Cancelled, Average 
View Time on Content 
Pages, Number of 
pages visited from 
TOC, Number of 
Exercises Solved on 
Third Try 

[Recommended 
model] 

19.7% 13.3% 0.002 

Model 1c 

Minimum View Time 
on Content Page, 
Number of Exercises 
Solved on Third Try, 
Compactness, Number 
of Exercises 
Cancelled, Number of 
Exercises Solved on 
First Try, Average 
View Time on Content 
Pages, Number of 
pages visited from 
TOC, Number of 
Exercises Finished But 
Not Solved 

15.9 9.5 0.016 
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Model 1d 

Average View Time 
on Exercise Pages, 
Compactness, 
Average View Time on 
Content Pages, 
Number of Exercises 
Cancelled, Number of 
Exercises Solved on 
Third Try, Number of 
pages visited from 
TOC, Number of 
Exercises Solved on 
First Try, Number of 
Exercises Finished But 
Not Solved 

14.5% 8% 0.029 

Model 1e 

Maximum View Time 
on Exercise Page, 
Number of Exercises 
Cancelled, 
Compactness, 
Average View Time on 
Content Pages, 
Number of Exercises 
Solved on Third Try, 
Number of Exercises 
Solved on First Try, 
Number of pages 
visited from TOC, 
Number of Exercises 
Finished But Not 
Solved 

14.6% 8.1% 0.029 

Table 1. Pre-models 

Note: maximum view time on content pages is not tried in a pre-model because of the 
multicollinearity issue with average view time on content pages 
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Appendix 4.4.2 – Further information on development of model 

Model 1b – Syllabus Boundness subscale - All predictors based on initial 
selection 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .444a .197 .136 2.673 

a. Predictors: (Constant), Minimum View Time on Exercise 

Page, Number of Exercises Finished But Not Solved, Number of 

Exercises Solved on First Try, Compactness, Number of 

Exercises Cancelled, Average View Time on Content Pages, 

Number of pages visited from TOC, Number of Exercises 

Solved on Third Try 

b. Dependent Variable: Surface subscale Syllabus-boundness 

Table 1 – Model Summary 

 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 185.604 8 23.200 3.246 .002b 

Residual 757.526 106 7.146 
  

Total 943.130 114 
   

a. Dependent Variable: Surface subscale Syllabus-boundness 

b. Predictors: (Constant), Minimum View Time on Exercise Page, Number of 

Exercises Finished But Not Solved, Number of Exercises Solved on First Try, 

Compactness, Number of Exercises Cancelled, Average View Time on Content 

Pages, Number of pages visited from TOC, Number of Exercises Solved on Third Try 

Table 2 – Overall significance of model 
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Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 11.820 1.839  6.428 .000 

Number of 
Exercises 
Solved on First 
Try 

-.020 .010 -.192 -1.987 .050 

Number of 
Exercises 
Solved on Third 
Try 

.141 .133 .129 1.055 .294 

Number of 
Exercises 
Finished But Not 
Solved 

.041 .079 .065 .519 .605 

Number of 
Exercises 
Cancelled 

.109 .076 .141 1.428 .156 

Number of 
pages visited 
from TOC  

.000 .017 .002 .022 .982 

Compactness 2.737 2.614 .101 1.047 .297 

Average View 
Time on Content 
Pages 

.004 .002 .162 1.584 .116 

Minimum View 
Time on 
Exercise Page 

-.011 .004 -.251 -2.634 .010 

a. Dependent Variable: Surface subscale Syllabus-boundness 

Table 3 – B, Beta, and Sig. values for predictors 

 

 

 

 

 

 

 

 

 



 373 

Figure 1.  Cook’s Distance Box Plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Summary of measures of variance and significance for accepted and rejected models 
for exclusion of outliers 

 R2 Adj. R2 Sig. 

Model 1b (all 
initially 
selected 
predictors) 

19.7% 13.6% 0.002 

Model 2a 
(exclusion of 
case 35) 

20.9% 14.9% 0.001 

Model 2b 
(exclusion of 
case 35 and 
29)  

[Rejected] 

18.1% 11.8% 0.006 

Model 2c 
(exclusion of 
case 35 and 
75) 

[Rejected] 

20% 13.9% 0.002 

Model 2d 

(exclusion of 
cases 35 and 
31) 

21.7% 15.7% 

 

 

0.001 
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Model 4 – Syllabus Boundness – Recommended model 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .465a .216 .171 2.591 

a. Predictors: (Constant), Minimum View Time on Exercise 
Page, Number of Exercises Solved on Third Try, Number of 
Exercises Solved on First Try, Compactness, Number of 
Exercises Cancelled, Average View Time on Content Pages 

b. Dependent Variable: Surface subscale Syllabus-boundness 

Table 5 – Model Summary 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 195.764 6 32.627 4.862 .000b 

Residual 711.369 106 6.711   

Total 907.133 112    

a. Dependent Variable: Surface subscale Syllabus-boundness 

b. Predictors: (Constant), Minimum View Time on Exercise Page, Number of Exercises 
Solved on Third Try, Number of Exercises Solved on First Try, Compactness, Number 
of Exercises Cancelled, Average View Time on Content Pages 

Table 6 – Overall significance of model 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 10.871 1.758  6.182 .000 

Number of Exercises 
Solved on First Try 

-.014 .010 -.138 -1.428 .156 

Number of Exercises 
Solved on Third Try 

.190 .099 .177 1.931 .056 

Number of Exercises 
Cancelled 

.129 .069 .170 1.861 .065 

Compactness 3.250 2.446 .119 1.329 .187 

Average View Time 
on Content Pages 

.007 .003 .233 2.295 .024 

Minimum View Time 
on Exercise Page 

-.011 .004 -.253 -2.753 .007 

a. Dependent Variable: Surface subscale Syllabus-boundness 

Table 7 – B, Beta, and Sig. values for predictors 
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Appendix 4.4.3 – Syllabus Boundness – Model 4 – Generalisation - 
Assumptions 
The assumptions regarding: normal distribution of residuals, homoscedasticity of 
standardised residuals against predicted ones, and the normality of residuals hold well. 

 

Figure 2. Histogram of standardised residuals for the final model 

 

Regarding the assumption about the normal distribution of residuals, as shown in 
Figure 2, that residuals fit quite closely to a normal distribution.  
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Figure 3. Plot of standardised residuals 

 

Figure 3 shows that the normality assumption holds since the points lie on the straight 
line.  

Figure 4. Plot of the standardised residuals against the predicted ones for the model  

 

The assumption about the residuals is whether the variance of the residuals is constant, 
in other words there is homoscedasticity. Figure 4 shows that the scatter plot is 
reasonably random and that most residuals are homoskedastic.  
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Appendix 4.4.4 – Syllabus Boundness subscale –Model 6 – Leanest and 
Meanest 
Exclusion of outliers 35 and 31 and Number of pages visited from TOC and Number of 
Exercises Finished but not Solved and Compactness and Number of exercises solved 
on first try 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .433a .187 .157 2.613 

a. Predictors: (Constant), Minimum View Time on Exercise 
Page, Number of Exercises Solved on Third Try, Number of 
Exercises Cancelled, Average View Time on Content Pages 

b. Dependent Variable: Surface subscale Syllabus-boundness 

Table 8 – Model Summary 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 169.756 4 42.439 6.216 .000b 

Residual 737.377 108 6.828 
  

Total 907.133 112 
   

a. Dependent Variable: Surface subscale Syllabus-boundness 

b. Predictors: (Constant), Minimum View Time on Exercise Page, Number of Exercises Solved on 
Third Try, Number of Exercises Cancelled, Average View Time on Content Pages 

Table 9 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 
(Constant) 

11.883 .612 
 

19.415 .000 

Number of Exercises 
Solved on Third Try .227 .097 .211 2.347 .021 

Number of Exercises 
Cancelled .152 .068 .201 2.245 .027 

Average View Time 
on Content Pages .009 .003 .312 3.372 .001 

Minimum View Time 
on Exercise Page -.012 .004 -.274 -3.001 .003 

a. Dependent Variable: Surface subscale Syllabus-boundness 

Table 10 – B, Beta, and Sig. values for predictors 
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Appendices 4.5 – Lack of Purpose Models 

Appendix 4.5.1 –Further Justification for inclusion of predictors 
Non-Selected Predictors Reason for non-selection 

Temporal metrics   There are no clear theoretical or empirical 

indications regarding the direction of the relationship 

between these metrics and the subscale. 

Stratum Stratum correlates highly with predictor Compactness 

(r=-0.790). Therefore, as explained in the strategy, 

only one of them will be included in the first version of 

the model. As they both correlate to the subscale, the 

inclusion will be based on which one has the 

strongest correlation. As shown in 4.5.2, amongst the 

two metrics the one with the strongest correlation is 

Compactness. 

Table 1. Reasons for not selecting predictors 
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Appendix 4.5.2 – Further information on development of model 

Model 1 – Lack of Purpose- All predictors based on initial selection 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .401a .161 .114 3.208 

a. Predictors: (Constant), Number of pages visited from TOC, 
Number of Exercises Solved on First Try, Number of Exercises 
Solved on Third Try, Compactness, Relative amount of revisits, 
Number of Exercises Finished But Not Solved 

b. Dependent Variable: Surface subscale Lack of purpose 

Table 1 – Model Summary 

ANOVAa 

Model 

Sum of 

Squares df 
Mean 
Square F Sig. 

1 Regression 212.835 6 35.473 3.448 .004b 

Residual 1111.113 108 10.288   

Total 1323.948 114    

a. Dependent Variable: Surface subscale Lack of purpose 

b. Predictors: (Constant), Number of pages visited from TOC, Number of 
Exercises Solved on First Try, Number of Exercises Solved on Third Try, 
Compactness, Relative amount of revisits, Number of Exercises Finished But 
Not Solved 

Table 2 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardize
d 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 5.386 1.985  2.713 .008 

Number of Exercises 
Solved on First Try 

-.022 .012 -.175 -1.892 .061 

Number of Exercises 
Solved on Third Try 

.172 .157 .133 1.097 .275 

Number of Exercises 
Finished But Not Solved 

.111 .094 .147 1.174 .243 

Compactness 4.714 3.542 .147 1.331 .186 

Relative amount of revisits 1.194 2.843 .051 .420 .675 

Number of pages visited 
from TOC  

.003 .020 .016 .145 .885 

a. Dependent Variable: Surface subscale Lack of purpose 

Table 3 – B, Beta, and Sig. values for predictors 
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Figure 1.  Cook’s Distance Box Plot 

 

 R2 Adj. R2 Sig. 

Model 1 (all initially 
selected predictors) 

16.1% 11.4% 0.004 

Model 2a (exclusion of 
case 36) [Rejected] 

15.7% 10.9% 0.005 

Model 2b (exclusion of 
case 76)  

16.6% 12% 0.003 

Model 2c (exclusion of 
cases 76, and 86) 

18.9% 14.3% 0.001 

Model 2d 

(exclusion of cases 76, 
86, and 14) [Rejected] 

18.8% 14.1% 

 

 

0.001 

Model 2e 

(exclusion of cases 76, 
86, and 113) 
[Rejected] 

18.5% 13.8% 

  

 

0.001 

Model 2f 

(exclusion of cases 76, 
86, and 70) 

19.6% 15% 0.001 

Model 2g 

(exclusion of cases 76, 
86, 70, and 24) 

21% 16.4% 0.000 

Table 4. Summary of measures of variance and significance for accepted and rejected models 
for exclusion of outliers 
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Model 4 – Lack of Purpose – Recommended model 

Model Summaryb 

Model R R Square 

Adjusted 

R Square 

Std. Error of the 

Estimate 

1 .458a .210 .180 2.871 

a. Predictors: (Constant), Relative amount of revisits, Number 
of Exercises Finished But Not Solved, Number of Exercises 
Solved on First Try, Number of Exercises Solved on Third Try 

b. Dependent Variable: Surface subscale Lack of purpose 

Table 5 – Model Summary 

ANOVAa 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 231.761 4 57.940 7.031 .000b 

Residual 873.536 106 8.241   

Total 1105.297 110    

a. Dependent Variable: Surface subscale Lack of purpose 

b. Predictors: (Constant), Relative amount of revisits, Number of 
Exercises Finished But Not Solved, Number of Exercises Solved on 
First Try, Number of Exercises Solved on Third Try 

Table 6 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardiz
ed 

Coefficient
s 

t Sig. B Std. Error Beta 

1 (Constant) 6.028 1.007  5.984 .000 

Number of 
Exercises Solved 
on First Try 

-.013 .010 -.114 -1.278 .204 

Number of 
Exercises Solved 
on Third Try 

.145 .141 .122 1.035 .303 

Number of 
Exercises Finished 
But Not Solved 

.124 .081 .178 1.524 .131 

Relative amount  
of revisits 

6.129 2.025 .275 3.027 .003 

a. Dependent Variable: Surface subscale Lack of purpose 

Table 7 – B, Beta, and Sig. values for predictors 
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Appendix 4.5.3 – Lack of Purpose – Model 4 – Generalisation - 
Assumptions 
The assumptions regarding: normal distribution of residuals, homoscedasticity of 
standardised residuals against predicted ones, and the normality of residuals hold well. 

 

Figure 2. Histogram of standardised residuals for the final model 

 

Regarding the assumption about the normal distribution of residuals, as shown in 
Figure 2, that residuals fit quite closely to a normal distribution.  
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Figure 3. Plot of standardised residuals 

 

Figure 3 shows that the normality assumption holds since the points lie on the straight 
line.  

Figure 4. Plot of the standardised residuals against the predicted ones for the model  

 

The assumption about the residuals is whether the variance of the residuals is constant, 
in other words there is homoscedasticity. Figure 4 shows that the scatter plot is 
reasonably random and the residuals are homoscedastic with a few exceptions.  
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Appendix 4.5.4 – Lack of Purpose subscale –Model 6 – Leanest and 
Meanest 
Exclusion of outliers 76 and 86 and 70 and number of pages visited from TOC, 
compactness, number exercises solved on third try, and number of exercises solved on 
first try 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .435a .190 .174 2.880 

a. Predictors: (Constant), Relative amount of revisits, Number of 
Exercises Finished But Not Solved 

b. Dependent Variable: Surface subscale Lack of purpose 

Table 8 – Model Summary 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 209.457 2 104.729 12.626 .000b 

Residual 895.840 108 8.295 
  

Total 1105.297 110    

a. Dependent Variable: Surface subscale Lack of purpose 

b. Predictors: (Constant), Relative amount of revisits, Number of Exercises Finished But 
Not Solved 

Table 9 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 5.293 .796  6.653 .000 

Number of 
Exercises 
Finished But Not 
Solved 

.178 .061 .256 2.926 .004 

Relative amount 
of revisits 

7.039 1.951 .316 3.608 .000 

a. Dependent Variable: Surface subscale Lack of purpose 

Table 10 – B, Beta, and Sig. values for predictors 
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Appendices 4.6 – Deep Models 

Appendix 4.6.1 –Further Justification for inclusion of predictors 
 

Selected Predictor Reason for selection 

Number of exercises solved 
on first try  

-Theoretical connections discussed in section 4.6.1  

-Enriching further the discussion by allowing useful 
comparisons to the surface scales, as shown in 
sections 4.1 - 4.5 

- Their combination gives a more complete picture as 
to how students deal with their exercises during their 
tutorial sessions according to the specific approach 
to studying 

Number of exercises solved 
on second try 

Number of exercises solved 
on third try  

Number of exercises finished 
but not solved  

Number of hyperlinks 
(concepts links) visited on 
exercise and reading pages 
 

-Theoretical connections discussed in section 4.6.1  

-Enriching further the discussion by allowing useful 
comparison to the surface scales (in which they have 
been found to have statistical connections). 

 

 

Note: Average number a ‘notes’ link is clicked per 
page is statistically more relevant to the deep scales 
(i.e. it correlated to ‘relating ideas’ subscale), so it is 
selected instead of number of times ‘notes’ link is 
clicked. 

Average number a ‘notes’ link 
is clicked per page  

Maximum view time on an 
exercise page 
 

Statistical (see 4.6.2) 

Table 1. Reasons for selection 

 

Non-Selected Predictors Reason for non-selection 

Average view time on content 
(reading) pages 

-No strong indications, based on the theory, as to 
which of these predictors would be the most 
‘enriching’ for the model. 
-When tried in pre-models 1a, 1b and 1c neither of 
these metrics contribute to the ‘deep’ model with 
both  a higher R2 and a higher Adjusted R2 
compared to Model 1 (see table 3 below). 
  

Maximum view time on a 

content (reading) page 

Average view time on exercise 

pages 

Table 2. Reasons for not selecting predictors 
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Pre-models  R2 Adj. R2 Sig. 

Model 1 

(Avg number an notes link 
is clicked per page, 
Number of Exercises 
Solved on Second Try, 
Maximum View Time on 
Exercise Page, Number of 
concept links visited in 
reading and exercise 
pages, Number of 
Exercises Solved on First 
Try, Number of Exercises 
Finished But Not Solved, 
Number of Exercises 
Solved on Third Try) 

13.3% 7.7% 0.029 

Model 1a 

(Average view time on 
exercise pages, Avg 
number an notes link is 
clicked per page, Number 
of Exercises Solved on 
Second Try, Maximum 
View Time on Exercise 
Page, Number of concept 
links visited in reading and 
exercise pages, Number of 
Exercises Solved on First 
Try, Number of Exercises 
Finished But Not Solved, 
Number of Exercises 
Solved on Third Try ) 

13.8% 7.3% 0.40 

Model 1b  

(Maximum view time on a 
reading page, Avg number 
an notes link is clicked per 
page, Number of 
Exercises Solved on 
Second Try, Maximum 
View Time on Exercise 
Page, Number of concept 
links visited in reading and 
exercise pages, Number of 
Exercises Solved on First 
Try, Number of Exercises 
Finished But Not Solved, 
Number of Exercises 
Solved on Third Try ) 

 

 

 

 

 

14% 7.6% 0.036 
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Model 1c 

(Average view time on 
reading (content) pages, 
Avg number an notes link 
is clicked per page, 
Number of Exercises 
Solved on Second Try, 
Maximum View Time on 
Exercise Page, Number of 
concept links visited in 
reading and exercise 
pages, Number of 
Exercises Solved on First 
Try, Number of Exercises 
Finished But Not Solved, 
Number of Exercises 
Solved on Third Try) 

13.7% 7.2% 0.042 

Table 3. Pre-models 
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Appendix 4.6.2 – Detailed discussion on development of model 

Model 1 – Deep Scale - All predictors based on initial selection 
 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .365a .133 .077 8.348 

a. Predictors: (Constant), Avg number an notes link is clicked per 
page, Number of Exercises Solved on Second Try, Maximum View 
Time on Exercise Page, Number of concept links visited in reading 
and exercise pages, Number of Exercises Solved on First Try, 
Number of Exercises Finished But Not Solved, Number of 
Exercises Solved on Third Try 

b. Dependent Variable: Deep Scale 

Table 1 – Model Summary 

 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 1145.816 7 163.688 2.349 .029b 

Residual 7455.957 107 69.682 
  

Total 8601.774 114 
   

a. Dependent Variable: Deep Scale 

b. Predictors: (Constant), Avg number an notes link is clicked per page, Number of 

Exercises Solved on Second Try, Maximum View Time on Exercise Page, Number of 

concept links visited in reading and exercise pages, Number of Exercises Solved on 

First Try, Number of Exercises Finished But Not Solved, Number of Exercises Solved 

on Third Try 

Table 2 – Overall Significance of model 
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Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 57.933 2.719  21.310 .000 

Number of 
Exercises Solved on 
First Try 

.030 .033 .095 .926 .357 

Number of 
Exercises Solved on 
Second Try 

-.644 .234 -.347 -2.757 .007 

Number of 
Exercises Solved on 
Third Try 

.229 .444 .070 .517 .606 

Number of 
Exercises Finished 
But Not Solved 

.418 .250 .218 1.671 .098 

Maximum View 
Time on Exercise 
Page 

.003 .001 .246 2.603 .011 

Number of concept 
links visited in 
reading and 
exercise pages 

-.274 .357 -.074 -.767 .445 

Avg number an 
notes link is clicked 
per page 

-1.746 5.410 -.031 -.323 .748 

a. Dependent Variable: Deep Scale 

Table 3 – B, Beta, and Sig. values for predictors 
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Deep Scale – Exclusion of outliers 
To exclude the outliers from Model 1 the intention is to use the Cook’s Distance 
method. The box plot of Cook’s distance below shows a number of outliers. However, 
the intention is to exclude amongst the most extreme ones (those indicated with an 
asterisk), those which improve the measures of variance R2 and adjusted R2.  

 

Figure 1. – Cook’s Distance Box Plot 

 

 

In Fig.1, it is observed that the most extreme outliers are cases: 112, 123, 116, 36, 81, 
111, 85, 76, 60, and 105. These cases are excluded gradually on models Model 2a, 2b, 
2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j. It is observed that the exclusion of cases 112, 116, 111, 85, 
76, and 105 has increased both R2 and adjusted R2 (from 13.3% in Model 1 to 18.2% in 
Model 2j for R2, and from 7.7% in Model 1 to 12.9% in Model 2j for adjusted R2). The 
only exception is the exclusion of outliers 123, 36, 81, and 60 in Models 2b, 2d, 2e, and 
2i; since these models do not increase the variance, they are rejected. 
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Model 4  – Deep Scale- Recommended version 

Model Summaryb 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate 

1 .428a .183 .144 7.551 

a. Predictors: (Constant), Avg number an notes link is clicked per page, Number 
of Exercises Finished But Not Solved, Number of Exercises Solved on First Try, 
Maximum View Time on Exercise Page, Number of Exercises Solved on 
Second Try 

b. Dependent Variable: Deep Scale 

Table 4 – Model Summary 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 1319.549 5 263.910 4.628 .001b 

Residual 5873.386 103 57.023   

Total 7192.936 108    

a. Dependent Variable: Deep Scale 

b. Predictors: (Constant), Avg number an notes link is clicked per page, Number of 
Exercises Finished But Not Solved, Number of Exercises Solved on First Try, Maximum 
View Time on Exercise Page, Number of Exercises Solved on Second Try 

Table 5 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 56.977 2.524  22.574 .000 

Number of Exercises 
Solved on First Try 

.036 .029 .122 1.225 .223 

Number of Exercises 
Solved on Second 
Try 

-.637 .216 -.326 -2.945 .004 

Number of Exercises 
Finished But Not 
Solved 

.488 .195 .267 2.506 .014 

Maximum View Time 
on Exercise Page 

.003 .001 .251 2.614 .010 

Avg number an notes 
link is clicked per 
page 

10.619 6.460 .154 1.644 .103 

a. Dependent Variable: Deep Scale 

Table 6 – B, Beta, and Sig. values for predictors 
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Appendix 4.6.3 – Deep Scale – Model 6 – Leanest and Meanest 
Excluding outliers 112, 116, 111, 85, 76, and 105 – Number of exercises solved on 
third try, Number of concept links visited in reading and exercise pages, Number of 
exercises solved on first try and Avg number a notes link is clicked per page 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .391a .153 .129 7.617 

a. Predictors: (Constant), Maximum View Time on Exercise Page, 
Number of Exercises Finished But Not Solved, Number of 
Exercises Solved on Second Try 

b. Dependent Variable: Deep Scale 

Table 7 – Model Summary 

 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 1100.391 3 366.797 6.321 .001b 

Residual 6092.545 105 58.024   

Total 7192.936 108    

a. Dependent Variable: Deep Scale 

b. Predictors: (Constant), Maximum View Time on Exercise Page, Number of Exercises 
Finished But Not Solved, Number of Exercises Solved on Second Try 

Table 8 – Overall Significance of model 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 58.788 2.228  26.382 .000 

Number of 
Exercises Solved 
on Second Try 

-.564 .203 -.289 -2.781 .006 

Number of 
Exercises Finished 
But Not Solved 

.423 .189 .231 2.236 .027 

Maximum View 
Time on Exercise 
Page 

.003 .001 .269 2.931 .004 

a. Dependent Variable: Deep Scale 

Table 9 – B, Beta, and Sig. values for predictors 
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Appendices 4.7 – Interest in Ideas Models 

Appendix 4.7.1 –Further Justification for inclusion of predictors 
Selected Predictor Reason for selection 

Number of exercises solved 
on first try  

-Theoretical connections discussed in section 4.7.1  

-Enriching further the discussion by allowing useful 
comparisons to the surface scales, as shown in 
sections 4.1-4.5 

- Their combination gives a more complete picture as 
to how students deal with their exercises during their 
tutorial sessions according to the specific approach 
to studying. 

 

Number of exercises solved 
on second try 

Number of exercises solved 
on third try  

Number of exercises finished 
but not solved  

Maximum view time on an 
exercise page 
 

Statistical (see 4.7.2) 

Average view time on 
exercise pages 
 

Number of hyperlinks 
(concepts links) visited on 
exercise and reading pages 

-It is enriching to know whether students with high 
score on intrinsic interest tend to use more such a 
common ILE feature in order to follow up 
mathematical concepts, compared to those with low 
scores.   

-It allows for comparisons with the surface scales, 
since it has been found to correlate unexpectedly in a 
positive direction with some of them (see sections 4.1 
and 4.2).  

 

Table 1. Reasons for selection 

 

Non-Selected Predictors Reason for non-selection 

Average view time on content 
(reading) pages 

-No strong indications, based on the theory, as to 
which of these predictors would be the most 
‘enriching’ for the model. 
-When tried in pre-models 1a, 1b neither of these 
metrics contribute to the ‘interest in ideas’ model with 
both a higher R2 and a higher Adjusted R2 compared 
to Model 1 (see table 3 below). 
  

Maximum view time on a 
content (reading) page 
 
 
 
 

Metrics related to use of 
search option mentioned in 
3.7.1 

Their variation is close to 0, so they cannot be 
included as predictors. 

Table 2. Reasons for not selecting predictors 
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Pre-models R2 Adj. R2 Sig. 

Model 1 

(Number of concept 
links visited in reading 
and exercise pages, 
Maximum View Time on 
Exercise Page, Number 
of Exercises Solved on 
Second Try, Average 
View Time on Exercise 
Pages, Number of 
Exercises Finished But 
Not Solved, Number of 
Exercises Solved on 
First Try, Number of 
Exercises Solved on 
Third Try) 

9.9% 4% 0.121 

Model 1a 

(average view time on 
reading pages, 
Maximum View Time on 
Exercise Page, Number 
of concept links visited 
in reading and exercise 
pages, Number of 
Exercises Finished But 
Not Solved, Average 
View Time on Exercise 
Pages, Number of 
Exercises Solved on 
First Try, Number of 
Exercises Solved on 
Second Try, Number of 
Exercises Solved on 
Third Try) 

10 % 3.2% 0.175 

Model 1b  

(maximum view time 
on a reading page, 
Maximum View Time on 
Exercise Page, Number 
of concept links visited 
in reading and exercise 
pages, Number of 
Exercises Finished But 
Not Solved, Average 
View Time on Exercise 
Pages, Number of 
Exercises Solved on 
First Try, Number of 
Exercises Solved on 
Second Try, Number of 
Exercises Solved on 
Third Try) 

10% 3.2% 0.174 

Table 3. Pre-models 
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Appendix 4.7.2 – Further information on development of model 
 

Model 1 –Interest in Ideas - All predictors based on initial selection 

 

Table 1 – Model Summary 

 

 

Table 2 – Overall significance of model 

 

 

Table 3 – B, Beta, and Sig. values for predictors 
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Figure 1. Cook’s Distance Box Plot 

 

 

 R2 Adj. R2 Sig. 

Model 1 (all initially 
selected predictors) 

9.9% 4% 0.121 

Model 2a (exclusion of 
case 76) 

13.4% 7.7% 0.029 

Model 2b (exclusion of 
case 76, 116)  

14.4% 8.7% 0.019 

Model 2c (exclusion of 
cases 76, 116, and 123) 
[Rejected] 

12.3% 6.4%  0.051 

Model 2d (exclusion of 
cases 76, 116, and 111) 

14.7% 8.9% 0.018 

Model 2e exclusion of 
cases 76, 116, 111, and 
4) 

15.3% 9.5% 0.015 

Model 2f (exclusion of 
cases 76, 116, 111, 4, 
46) 

15.8% 10% 0.012 

Model 2g (exclusion of 
cases  76, 116, 111, 4, 
46 and 81) [Rejected] 

15.6% 9.8% 0.014 

Table 4. Summary of measures of variance and significance for accepted and rejected models 
for exclusion of outliers 
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Model 4 – Interest in Ideas – Recommended version 

 

Table 5 – Model Summary 

 

 

Table 6 – Overall significance of model 

 

 

Table 7 – B, Beta, and Sig. values for predictors 
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Appendix 4.7.3 – Interest in Ideas – Model 4 – Generalisation - 
Assumptions 
The assumptions regarding: normal distribution of residuals, homoscedasticity of 
standardised residuals against predicted ones, and the normality of residuals hold well. 

Figure 2. Histogram of standardised residuals for the final model 

 

Regarding the assumption about the normal distribution of residuals, as shown in 
Figure 2, that residuals fit quite closely to a normal distribution.  

Figure 3. Plot of standardised residuals 
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Figure 3 shows that the normality assumption holds since all points are quite close to 
the straight line.  

 

Figure 4. Plot of the standardised residuals against the predicted ones for the model  

 

 

The assumption about the residuals is whether the variance of the residuals is constant, 
in other words there is homoscedasticity. Figure 4 shows that the scatter plot is 
reasonably random and the residuals are homoscedastic with a few exceptions.  
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Appendix 4.7.4 – Interest in Ideas subscale –Model 6 – Leanest and 
Meanest 
Exclusion outliers 76, 116, 111, 4, and 46 and Number of Exercises solved on first try 
and Number of concept links in reading and exercise pages and Average view time on 
exercise pages and Number of exercises solved on second try 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .349a .122 .097 2.788 

a. Predictors: (Constant), Maximum View Time on Exercise Page, 
Number of Exercises Solved on Third Try, Number of Exercises 
Finished But Not Solved 

b. Dependent Variable: Deep subscale Interest in Ideas 

Table 8 – Model Summary 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 114.320 3 38.107 4.903 .003b 

Residual 823.870 106 7.772   

Total 938.191 109    

a. Dependent Variable: Deep subscale Interest in Ideas 

b. Predictors: (Constant), Maximum View Time on Exercise Page, Number of Exercises 
Solved on Third Try, Number of Exercises Finished But Not Solved 

Table 9 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 12.847 .680  18.880 .000 

Number of 
Exercises Solved 
on Third Try 

-.351 .142 -.313 -2.462 .015 

Number of 
Exercises Finished 
But Not Solved 

.225 .085 .342 2.659 .009 

Maximum View 
Time on Exercise 
Page 

.001 .000 .271 2.933 .004 

a. Dependent Variable: Deep subscale Interest in Ideas 

Table 10 – B, Beta, and Sig. values for predictors 
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Appendices 4.8 – Seeking Meaning Models 

Appendix 4.8.1 –Further Justification for inclusion of predictors 
Selected Predictor Reason for selection 

Number of exercises solved 

on first try  

-Theoretical connections discussed in section 4.8.1  

-Enriching further the discussion by allowing useful 

comparisons to the surface scales, as shown in 

sections 4.1- 4.5 

- Their combination gives a more complete picture as 

to how students deal with their exercises during their 

tutorial sessions according to the specific approach 

to studying. 

 

Number of exercises solved 

on second try 

Number of exercises solved 

on third try  

Number of exercises finished 

but not solved  

Maximum view time on an 

exercise page 

 

Statistical (see 4.8.2) 

Number of pages visited 

using the TOC 

Number of hyperlinks 

(concepts links) visited on 

exercise and reading pages 

-It is enriching to know whether those with high a 

score on the subscale tend to use more such a 

common ILE feature in order obtain personal 

understanding for the concepts, compared to those 

with low scores.  

-It allows for comparisons with the surface scales, 

since it has been found to correlate unexpectedly in a 

positive direction with some of them (see sections 4.1 

and 4.2).  

 

Table 1. Reasons for selection 

 

Non-Selected Predictors Reason for non-selection 

Metrics related to use of search 

option mentioned in 3.8.1 

Their variation is close to 0, so they cannot be 

included as predictors. 

Table 2. Reasons for not selecting predictors 

 

 

 



 402 

Appendix 4.8.2 – Further information on development of model 

Model 1 –Seeking Meaning - All predictors based on initial selection 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .367a .135 .070 2.675 

a. Predictors: (Constant), Number of Exercises Finished But Not 
Solved, Number of Exercises Solved on First Try, Number of 
concept links visited in reading and exercise pages, Maximum View 
Time on Exercise Page, Number of pages visited from TOC, 
Stratum, Number of Exercises Solved on Second Try, Number of 
Exercises Solved on Third Try 

b. Dependent Variable: Deep subscale Seeking Meaning 

Table 1 – Model Summary 

 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 118.438 8 14.805 2.069 .045b 

Residual 758.605 106 7.157   

Total 877.043 114    

a. Dependent Variable: Deep subscale Seeking Meaning 

b. Predictors: (Constant), Number of Exercises Finished But Not Solved, Number of 
Exercises Solved on First Try, Number of concept links visited in reading and exercise 
pages, Maximum View Time on Exercise Page, Number of pages visited from TOC, 
Stratum, Number of Exercises Solved on Second Try, Number of Exercises Solved on 
Third Try 

Table 2 – Overall significance of model 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 14.903 1.401  10.637 .000 

Maximum View 
Time on Exercise 
Page 

.001 .000 .227 2.402 .018 

Number of pages 
visited from TOC  

-.023 .015 -.151 -1.487 .140 

Number of 
concept links 
visited in reading 
and exercise 
pages 

-.202 .115 -.172 -1.755 .082 

Stratum -.701 2.487 -.030 -.282 .779 

Number of 
Exercises Solved 
on First Try 

.015 .011 .151 1.427 .157 

Number of 
Exercises Solved 
on Second Try 

-.150 .075 -.253 -1.995 .049 

Number of 
Exercises Solved 
on Third Try 

.162 .143 .154 1.139 .257 

Number of 
Exercises 
Finished But Not 
Solved 

.056 .083 .091 .676 .501 

a. Dependent Variable: Deep subscale Seeking Meaning 

Table 3 – B, Beta, and Sig. values for predictors 
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Figure 1.  Cook’s Distance Box Plot 

 

  R2 Adj. R2 Sig. 

Model 1 (all initially selected 
predictors) 

13.5% 7% 0.045 

Model 2a (exclusion of case 36) 14.3% 7.8% 0.034 

Model 2b (exclusion of cases 36  
and 123) 

14.5% 7.9% 0.033 

Model 2c (exclusion of cases 36, 
123, and 116) [Rejected] 

12.7% 5.9%  0.073 

Model 2d (exclusion of cases 36, 
123, and 61) 

15.6% 9.1% 0.021 

Model 2e (exclusion of cases 36, 
123, 61, and 85) 

18.2% 11.8% 0.007 

Model 2f (exclusion of cases 36, 
123, 61, 85, and 38) [Rejected] 

18.2% 11.7% 0.008 

Model 2g (exclusion of cases 36, 
123, 61, 85, and 103) 

20.8% 14.5% 0.002 

Model 2h (exclusion of cases 36, 
123, 61, 85, 103, and 27) 

[Rejected] 

19.7% 13.3% 0.004 

Model 2i (exclusion of cases 36, 
123, 61, 85, 103, and 81) 

[Rejected] 

19.6% 13.2% 0.004 

Table 4. Summary of measures of variance and significance for accepted and rejected models 
for exclusion of outliers 
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Model 4 – Seeking Meaning – Recommended version 

Model Summaryb 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate 

1 .449a .201 .155 2.371 

a. Predictors: (Constant), Number of Exercises Solved on Third Try, Maximum 
View Time on Exercise Page, Number of Exercises Solved on First Try, Number of 
pages visited from TOC, Number of concept links visited in reading and exercise 
pages, Number of Exercises Solved on Second Try 

b. Dependent Variable: Deep subscale Seeking Meaning 

Table 5 – Model Summary 

ANOVAa 

Model 
Sum of Squares 

df Mean Square F Sig. 

1 Regression 
145.882 6 24.314 4.326 .001b 

Residual 
578.882 103 5.620   

Total 
724.764 109    

a. Dependent Variable: Deep subscale Seeking Meaning 

b. Predictors: (Constant), Number of Exercises Solved on Third Try, Maximum View Time on 
Exercise Page, Number of Exercises Solved on First Try, Number of pages visited from TOC, 
Number of concept links visited in reading and exercise pages, Number of Exercises Solved on 
Second Try 

Table 6 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 14.198 .789  17.999 .000 

Maximum View Time 
on Exercise Page 

.001 .000 .297 3.281 .001 

Number of pages 
visited from TOC  

-.028 .013 -.201 -2.156 .033 

Number of concept 
links visited in reading 
and exercise pages 

-.197 .105 -.177 -1.871 .064 

Number of Exercises 
Solved on First Try 

.021 .009 .227 2.277 .025 

Number of Exercises 
Solved on Second Try 

-.111 .066 -.189 -1.678 .096 

Number of Exercises 
Solved on Third Try 

.226 .126 .197 1.795 .076 

a. Dependent Variable: Deep subscale Seeking Meaning 

Table 7 – B, Beta, and Sig. values for predictors 
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Appendix 4.8.3 – Seeking Meaning – Model 4 – Generalisation - 
Assumptions 
The assumptions regarding: normal distribution of residuals, homoscedasticity of 
standardised residuals against predicted ones, and the normality of residuals hold well. 

 

Figure 2. Histogram of standardised residuals for the final model 

 

 

Regarding the assumption about the normal distribution of residuals, as shown in 
Figure 2, that residuals fit quite closely to a normal distribution.  
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Figure 3. Plot of standardised residuals 

 

Figure 3 shows that the normality assumption holds since all points are quite close to 
the straight line.  

Figure 4. Plot of the standardised residuals against the predicted ones for the model  

 

The assumption about the residuals is whether the variance of the residuals is constant, 
in other words there is homoscedasticity. Figure 4 shows that the scatter plot is 
reasonably random and that most residuals are homoscedastic.  
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Appendix 4.8.4 – Seeking Meaning subscale –Model 7 – Leanest and 
Meanest 
Exclusion of outliers 36, 123, 61, 85, and 103 and Stratum and Number of Exercises 
Finished but not Solved and Number of Exercises on Second Try, Number of Exercises 
on Third Try, and Number of concept links visited on reading and exercise pages. 

Model Summaryb 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate 

1 .392a .154 .130 2.405 

a. Predictors: (Constant), Number of Exercises Solved on First Try, Number of 
pages visited from TOC, Maximum View Time on Exercise Page 

b. Dependent Variable: Deep subscale Seeking Meaning 

Table 8 – Model Summary 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 111.652 3 37.217 6.434 .000b 

Residual 613.111 106 5.784   

Total 724.764 109    

a. Dependent Variable: Deep subscale Seeking Meaning 

b. Predictors: (Constant), Number of Exercises Solved on First Try, Number of pages visited 
from TOC, Maximum View Time on Exercise Page 

Table 9 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 13.728 .734  18.702 .000 

Maximum View 
Time on 
Exercise Page 

.001 .000 .312 3.408 .001 

Number of 
pages visited 
from TOC  

-.031 .012 -.224 -2.506 .014 

Number of 
Exercises 
Solved on First 
Try 

.016 .009 .174 1.893 .051 

a. Dependent Variable: Deep subscale Seeking Meaning 

Table 10 – B, Beta, and Sig. values for predictors 
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Appendices 4.9 – Relating Ideas Models 

Appendix 4.9.1 –Further Justification for inclusion of predictors 
 

Selected Predictor Reason for selection 

Number of exercises solved 
on first try  

-Theoretical connections discussed in section 4.9.1  

-Enriching further the discussion by allowing useful 
comparisons to the surface scales, as shown in 
sections 4.1- 4.5 

- Their combination gives a more complete picture as 
to how students deal with their exercises during their 
tutorial sessions according to the specific approach to 
studying. 

 

Number of exercises solved 
on second try 

Number of exercises solved 
on third try  

Number of exercises finished 
but not solved  

Number of hyperlinks 
(concepts links) visited on 
exercise and reading pages 

-It is enriching to know whether those with high scores 
on the subscale tend to use more such a common ILE 
feature (due to their intention to relate mathematical 
concepts in an ILE) compared to those with low 
scores. 

Maximum view time on an 
exercise page  

-When tried in Model 1 these metrics contribute to the 
‘relating ideas’ model with both a higher R2 and a 
higher Adjusted R2 compared to pre-models 1a, 1b, 1c 
and 1d,  (see table 3 below). Model 1 is also the only 
one which is overall statistically significant. 

Maximum view time on a 
content (reading) page 

Average number of ‘notes’ 
link is clicked per page 

Statistical (see 4.9.2) 

Table 1. Reasons for selection 

 

Non-Selected Predictors Reason for non-selection 

Average view time on content 
(reading) pages 

-No strong indications, based on the theory, as to 
which of these predictors would be the most 
‘enriching’ for the model. 
-When tried in pre-models 1a, 1b and 1c neither of 
these metrics contribute to the ‘relating ideas’ model 
with both a higher R2 and a higher Adjusted R2 
compared to Model 1 (see table 3 below). 
 
 -Note also that there is a multicollinearity issue 
between maximum view time on a content (reading) 
page and average view time on content (reading) 
pages (so, they cannot be tried in the same model). 

Average view time on exercise 
pages 
 
 

Metrics related to use of search 
option mentioned in 3.9.1 

Their variation is close to 0, so they cannot be 
included as predictors. 

Table 2. Reasons for not selecting predictors 
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Pre-models R2 Adj. R2 Sig. 

Model 1d 

(Avg number of times 
a ‘notes’ link is clicked 
per page, Number of 
Exercises Solved on 
First Try, Number of 
Exercises Solved on 
Third Try, Number of 
hyperlinks (concept 
links) visited in reading 
and exercise pages, 
Number of Exercises 
Solved on Second Try, 
Number of Exercises 
Finished But Not 
Solved) 

9.9% 4.9% 0.075 

Model 1a 

(maximum view time 
on an exercise page, 
average view time on 
exercise pages, avg 
number of times a 
‘notes’ link is clicked 
per page, Number of 
Exercises Solved on 
First Try, Number of 
Exercises Solved on 
Third Try, Number of 
hyperlinks (concept 
links) visited in reading 
and exercise pages, 
Number of Exercises 
Solved on Second Try, 
Number of Exercises 
Finished But Not 
Solved) 

11.9 % 5.3% 0.086 

Model 1b  

(Maximum view time 
on an reading page, 
average view time on 
exercises pages, Avg 
number of times a 
‘notes’ link is clicked 
per page, Number of 
Exercises Solved on 
First Try, Number of 
Exercises Solved on 
Third Try, Number of 
hyperlinks (concept 
links) visited in reading 
and exercise pages, 
Number of Exercises 
Solved on Second Try, 
Number of Exercises 
Finished But Not 
Solved) 

12.3%% 5.6% 0.076 
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Model 1c 

(average view time 
on reading pages, 
maximum view time 
on an exercise page, 
Avg number of times a 
‘notes’ link is clicked 
per page, Number of 
Exercises Solved on 
First Try, Number of 
Exercises Solved on 
Third Try, Number of 
hyperlinks (concept 
links) visited in reading 
and exercise pages, 
Number of Exercises 
Solved on Second Try, 
Number of Exercises 
Finished But Not 
Solved) 

12.3% 5.6% 0.076 

Model 1 

(Maximum View Time 
on Content Page, 
Maximum View Time 
on Exercise Page, 
Avg number of times a 
‘notes’ link is clicked 
per page, Number of 
Exercises Solved on 
First Try, Number of 
Exercises Solved on 
Third Try, Number of 
hyperlinks (concept 
links) visited in reading 
and exercise pages, 
Number of Exercises 
Solved on Second Try, 
Number of Exercises 
Finished But Not 
Solved) 

13.4% 6.8% 0.048 

Table 3. Pre-models 
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Appendix 4.9.2 – Further information on development of model 

Model 1 – Relating Ideas- All predictors based on initial selection 
 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .365a .134 .068 2.738 

a. Predictors: (Constant), Maximum View Time on Content Page, 
Avg number an notes link is clicked per page, Number of Exercises 
Solved on First Try, Number of Exercises Solved on Third Try, 
Maximum View Time on Exercise Page, Number of concept links 
visited in reading and exercise pages, Number of Exercises Solved 
on Second Try, Number of Exercises Finished But Not Solved 

b. Dependent Variable: Deep subscale Relating Ideas 

Table 1 – Model Summary 

 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 122.446 8 15.306 2.042 .048b 

Residual 794.597 106 7.496   

Total 917.043 114    

a. Dependent Variable: Deep subscale Relating Ideas 

b. Predictors: (Constant), Maximum View Time on Content Page, Avg number an 
notes link is clicked per page, Number of Exercises Solved on First Try, Number of 
Exercises Solved on Third Try, Maximum View Time on Exercise Page, Number of 
concept links visited in reading and exercise pages, Number of Exercises Solved on 
Second Try, Number of Exercises Finished But Not Solved 

Table 2 – Overall significance of model 
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Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 13.785 .963  14.308 .000 

Number of 
Exercises 
Solved on First 
Try 

.015 .011 .143 1.383 .170 

Number of 
Exercises 
Solved on 
Second Try 

-.224 .078 -.368 -2.878 .005 

Number of 
Exercises 
Solved on Third 
Try 

.197 .146 .183 1.353 .179 

Number of 
Exercises 
Finished But Not 
Solved 

.117 .082 .187 1.425 .157 

Avg number an 
notes link is 
clicked per page 

1.873 1.777 .101 1.054 .294 

Number of 
concept links 
visited in reading 
and exercise 
pages 

-.141 .120 -.118 -1.177 .242 

Maximum View 
Time on 
Exercise Page 

.000 .000 .125 1.305 .195 

Maximum View 
Time on Content 
Page 

.001 .001 .137 1.411 .161 

a. Dependent Variable: Deep subscale Relating Ideas 

Table 3 – B, Beta, and Sig. values for predictors 
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Figure 1.  Cook’s Distance Box Plot 

 

 

 R2 Adj. R2 Sig. 

Model 1 (all initially 
selected predictors) 

13.4% 6.8% 0.048 

Model 2a (exclusion of 
case 112) 

15.9% 9.5% 0.017 

Model 2b (exclusion of 
case 112 and 123) 
[Rejected] 

14.2% 7.6% 0.037 

Model 2c (exclusion of 
cases 112 and 85) 

18.4% 12.2%  0.005 

Model 2d (exclusion of 
cases 112, 85 and 42) 

19.9% 13.7% 0.003 

Model 2e exclusion of 
cases 112, 85, 42, and 
98) 

20.9% 14.7% 0.002 

Model 2f (exclusion of 
cases 112, 85, 42, 98, 
and 105) 

23.4% 17.3% 0.001 

Model 2g (exclusion of 
cases 112, 85, 42, 98, 
105, and 84) 

25.8% 19.9% 0.000 

Table 4. Summary of measures of variance and significance for accepted and rejected models 
for exclusion of outliers 
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Model 3 – Relating Ideas – Recommended version 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square Std. Error of the Estimate 

1 .502a .252 .200 2.363 

a. Predictors: (Constant), Maximum View Time on Content Page, Number of 
Exercises Solved on First Try, Avg number an notes link is clicked per page, 
Number of Exercises Finished But Not Solved, Maximum View Time on Exercise 
Page, Number of concept links visited in reading and exercise pages, Number of 
Exercises Solved on Second Try 

b. Dependent Variable: Deep subscale Relating Ideas 

Table 5 – Model Summary 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 190.022 7 27.146 4.862 .000b 

Residual 563.941 101 5.584   

Total 753.963 108    

a. Dependent Variable: Deep subscale Relating Ideas 

b. Predictors: (Constant), Maximum View Time on Content Page, Number of Exercises 
Solved on First Try, Avg number an notes link is clicked per page, Number of Exercises 
Finished But Not Solved, Maximum View Time on Exercise Page, Number of concept links 
visited in reading and exercise pages, Number of Exercises Solved on Second Try 

Table 6 – Overall significance of model 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 13.132 .845  15.542 .000 

Number of 
Exercises Solved 
on First Try 

.019 .009 .200 2.031 .045 

Number of 
Exercises Solved 
on Second Try 

-.202 .065 -.360 -3.126 .002 

Number of 
Exercises 
Finished But Not 
Solved 

.203 .062 .354 3.291 .001 

Avg number an 
notes link is 
clicked per page 

5.789 2.024 .269 2.861 .005 

Number of 
concept links 
visited in reading 
and exercise 
pages 

-.138 .103 -.125 -1.337 .184 

Maximum View 
Time on Exercise 
Page 

.000415 .000 .113 1.237 .219 

Maximum View 
Time on Content 
Page 

.001 .000 .242 2.631 .010 

a. Dependent Variable: Deep subscale Relating Ideas 

Table 7 – B, Beta, and Sig. values for predictors 
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Appendix 4.9.3 – Relating Ideas – Model 3 – Generalisation - Assumptions 
The assumptions regarding: normal distribution of residuals, homoscedasticity of 
standardised residuals against predicted ones, and the normality of residuals hold well. 

 

Figure 2. Histogram of standardised residuals for the final model 

 

Regarding the assumption about the normal distribution of residuals, as shown in 
Figure 2, that residuals fit quite closely to a normal distribution.  
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Figure 3. Plot of standardised residuals 

 

Figure 3 shows that the normality assumption holds since all points are quite close to 
the straight line.  

Figure 4. Plot of the standardised residuals against the predicted ones for the model  

 

The assumption about the residuals is whether the variance of the residuals is constant, 
in other words there is homoscedasticity. Figure 4 shows that the scatter plot is 
reasonably random and that most residuals are homoscedastic.  
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Appendix 4.9.4 – Relating Ideas subscale –Model 5 – Leanest and Meanest 
Exclusion of outliers 112, 85, 42, 98, 105, and 84 and number of exercises solved on third try, 
and Max View Time view time on exercise page, and Number of concept links visited in reading 
and exercise pages 

Model Summaryb 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate 

1 .474a .225 .187 2.382 

a. Predictors: (Constant), Maximum View Time on Content Page, Number of 
Exercises Solved on First Try, Avg number an notes link is clicked per page, 
Number of Exercises Finished But Not Solved, Number of Exercises Solved on 
Second Try 

b. Dependent Variable: Deep subscale Relating Ideas 

Table 8 – Model Summary 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 169.726 5 33.945 5.984 .000b 

Residual 584.237 103 5.672   

Total 753.963 108    

a. Dependent Variable: Deep subscale Relating Ideas 

b. Predictors: (Constant), Maximum View Time on Content Page, Number of Exercises Solved on 
First Try, Avg number an notes link is clicked per page, Number of Exercises Finished But Not 
Solved, Number of Exercises Solved on Second Try 

Table 9 – Overall significance of model 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 13.564 .686  19.767 .000 

Number of 
Exercises Solved 
on First Try 

.019 .009 .194 1.988 .049 

Number of 
Exercises Solved 
on Second Try 

-.205 .065 -.366 -3.151 .002 

Number of 
Exercises Finished 
But Not Solved 

.189 .062 .328 3.054 .003 

Avg number an 
notes link is 
clicked per page 

5.427 1.918 .252 2.830 .006 

Maximum View 
Time on Content 
Page 

.001 .000 .228 2.537 .013 

a. Dependent Variable: Deep subscale Relating Ideas 

Table 10 – B, Beta, and Sig. values for predictors 
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Appendices 4.10 – Use of Evidence Models 

Appendix 4.10.1 –Further Justification for inclusion of predictors 
 

Selected Predictor Reason for selection 

number of exercises solved on 
first try  

-Theoretical connections discussed in section 4.10.1  

-Enriching further the discussion by allowing useful 
comparisons to the surface scales, as shown in 
sections 4.1- 4.5 

- Their combination gives a more complete picture as 
to how students deal with their exercises during their 
tutorial sessions according to the specific approach to 
studying. 

 

number of exercises solved on 
second try 

number of exercises solved on 
third try  

number of exercises finished 
but not solved  

stratum It is enriching to know whether those with high scores 
on the subscale tend to master each topic according to 
the given structure and go through the material in a 
more linear way compared to those with low scores. 

maximum view time on a 
content (reading) page 

-When tried in Model 1 along with the rest metrics 
contribute to the ‘use of evidence’ model with both a 
higher R2 and a higher Adjusted R2 compared to pre-
models 1a, 1b, 1c and 1d, and 1e  (see table 3 below). 

maximum view time on an 
exercise page 

Statistical (see 4.10.2) 

Table 1. Reasons for selection 

 

Non-Selected Predictors Reason for non-selection 

average view time on content 
(reading) pages 

-No strong indications, based on the theory, as to 
which of these predictors would be the most 
‘enriching’ for the model. 
-When tried in pre-models 1b, 1c, 1d, and 1e neither 
of these metrics contribute to the “use of evidence” 
model with both a higher R2 and a higher Adjusted R2 
compared to Model 1 (see table 3 below). 

average view time on exercise 

pages 

 

 

Table 2. Reasons for not selecting predictors 
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Pre-models R2 Adj. R2 Sig. 

Model 1a 

(number of exercises 
solved on first try, number 
of exercises solved on 
third try, number of 
exercises solved on 
second try, number of 
exercises finished but not 
solved, stratum, and 
maximum view time on 
an exercise page) 

14.4% 9.6% 0.009 

Model 1b 

(average view time on 
exercise pages, number 
of exercises solved on 
first try, number of 
exercises solved on third 
try, number of exercises 
solved on second try, 
number of exercises 
finished but not solved, 
stratum, and maximum 
view time on an exercise 
page) 

14.4 % 8.8% 0.017 

Model 1c 

(average view time on 
content (reading) 
pages, number of 
exercises solved on first 
try, number of exercises 
solved on third try, 
number of exercises 
solved on second try, 
number of exercises 
finished but not solved, 
stratum, and maximum 
view time on an exercise 
page) 

14.5%% 8.9% 0.016 

Model 1d 

(average view time on 
content (reading) 
pages, average view 
time on exercise pages, 
number of exercises 
solved on first try, number 
of exercises solved on 
third try, number of 
exercises solved on 
second try, number of 
exercises finished but not 
solved, stratum, and 
maximum view time on 
an exercise page) 

 

14.5% 8.1% 0.029 
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Model 1e 

(average view time on 
exercise pages, 
maximum view time on 
a content (reading) 
page, number of 
exercises solved on first 
try, number of exercises 
solved on third try, 
number of exercises 
solved on second try, 
number of exercises 
finished but not solved, 
stratum, and maximum 
view time on an exercise 
page) 

15.3% 8.9% 0.021 

Model 1 

(maximum view time on 
exercise page, 
maximum view time on 
a content (reading) 
page, number of 
exercises solved on first 
try, number of exercises 
solved on third try, 
number of exercises 
solved on second try, 
number of exercises 
finished but not solved, 
stratum, and maximum 
view time on an exercise 
page 

15.2% 9.7% 0.012 

Table 3. Pre-models 
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Appendix 4.10.2 – Further information on development of model 

Model 1 –Use of Evidence - All predictors based on initial selection 

 

Table 1 – Model Summary 

 

Table 2 – Overall significance of model 

 

Table 3 – B, Beta, and Sig. values for predictors 
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Figure 1.  Cook’s Distance Box Plot 

 

 

 R2 Adj. R2 Sig. 

Model 1 (all initially selected 
predictors) 

15.2% 9.7% 0.012 

Model 2a (exclusion of case 
123) [Rejected] 

13.8% 8.1% 0.024 

Model 2b (exclusion of case 
36)  

15.4% 9.8% 0.012 

Model 2c (exclusion of cases 
36, and 111)  

17.5% 12%  0.004 

Model 2d (exclusion of cases 
36, 111, and 75) [Rejected] 

17.4% 11.8% 0.005 

Model 2e (exclusion of cases 
36, 111, and 92) [Rejected] 

16.4% 10.8% 0.008 

Model 2f (exclusion of cases 
36, 111, and 35) 

18.1% 12.6% 0.003 

Model 2g (exclusion of cases 
36, 111, 35, and 38) 
[Rejected] 

17.3% 11.6% 0.006 

Model 2h (exclusion of cases 
36, 111, 35 and 94) 

18.3% 13.3% 0.003 

Table 4. Summary of measures of variance and significance for accepted and rejected models 
for exclusion of outliers 
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Model 5 – Use of Evidence – Recommended version 

 

Table 5 – Model Summary 

 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 127.029 4 31.757 6.083 .000b 

Residual 553.403 106 5.221   

Total 680.432 110    

a. Dependent Variable: Deep subscale Use of Evidence 

b. Predictors: (Constant), Stratum, Maximum View Time on Exercise Page, Number of 

Exercises Solved on Third Try, Number of Exercises Solved on Second Try 

Table 6 – Overall significance of model 

 

 

Table 7 – B, Beta, and Sig. values for predictors 
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Appendix 4.10.3 – Use of Evidence – Model 5 – Generalisation - 
Assumptions 
The assumptions regarding: normal distribution of residuals, homoscedasticity of 
standardised residuals against predicted ones, and the normality of residuals hold well. 

 

Figure 2. Histogram of standardised residuals for the final model 

 

 

Regarding the assumption about the normal distribution of residuals, as shown in 
Figure 2, that residuals fit quite closely to a normal distribution.  
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Figure 3. Plot of standardised residuals 

 

Figure 3 shows that the normality assumption holds since all points are quite close to 
the straight line.  

 

Figure 4. Plot of the standardised residuals against the predicted ones for the model  

 

The assumption about the residuals is whether the variance of the residuals is constant, 
in other words there is homoscedasticity. Figure 4 shows that the scatter plot is 
reasonably random and the residuals are homoscedastic with a few exceptions. 
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Appendix 4.10.4 – Use of Evidence subscale –Model 6 – Leanest and 
Meanest 
Exclusion 36, 111, 35 and 94, and number of exercises finished but not solved, number 
of exercises solved on first try, maximum view time on content page and number of 
exercises solved on third try  

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .413a .171 .147 2.297 

a. Predictors: (Constant), Stratum, Maximum View Time on 

Exercise Page, Number of Exercises Solved on Second Try 

b. Dependent Variable: Deep subscale Use of Evidence 

Table 8 – Model Summary 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 116.115 3 38.705 7.339 .000b 

Residual 564.318 107 5.274   

Total 680.432 110    

a. Dependent Variable: Deep subscale Use of Evidence 

b. Predictors: (Constant), Stratum, Maximum View Time on Exercise Page, Number of 

Exercises Solved on Second Try 

Table 9 – Overall significance of model 

 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 17.447 .958  18.212 .000 

Maximum View Time on 

Exercise Page 

.001 .000 .213 2.397 .018 

Number of Exercises 

Solved on Second Try 

-.204 .058 -.333 -3.533 .001 

Stratum -4.852 2.049 -.222 -2.367 .020 

a. Dependent Variable: Deep subscale Use of Evidence 

Table 10 – B, Beta, and Sig. values for predictors 
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Appendices – Chapter 5 – General Discussion 
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Appendix 5.1 – Summary – Effect size R – Variance explained (or accounted for) R2 and Adjusted R2 – Significance Sig.  
Whole 
Sample/Recommended 
Model 

 

 

R R2 / Adj.R2 Effect Size   

f2=1-R2/R2 

Significance Sample Size / Number 
of Predictors 

Deep 
(Model 4 - Suggested) 
 
 
 

0.428 18.3%  /  14.4% 

 

  

0.223 Sig. 0.001 

 

109/5 predictors 

Interest in Ideas 
(Model 4 -Suggested) 
 
 
 

0.396 15.7%  / 11.6% 0.186 Sig. 0.003 

 

110/5 predictors 

Relating Ideas 
(Model 3 - Suggested) 
 
 
 

0.502 25.2%  /  20% 0.336 Sig. 0.000 

 

109/7 predictors 

Use of Evidence 
(Model 5 -Suggested) 
 
 
 

0.432 18.7%   /  15.6%  

 

0.230 Sig. 0.000 

 

111/ 4 predictors 

Seeking Meaning 
(Model 4 - Suggested) 
 
 
 

0.367 20.1%  /  15.5% 0.251 Sig. 0.001 

 

110/6 predictors 
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Surface 
(Model 3 -Suggested) 

0.675 45.5%  /  41.8%  

 

0.834 Sig. 0.000 

 

110/7 predictors 

Fear of Failure (Model 4 –
Suggested and Leanest and 
Meanest) 

0.645 41.6%  /   39.4% 

 

 

0.717 Sig. 0.000 

 

111/4 predictors 

Unrelated Memorising 
(Model 6 -Suggested) 

0.633 40%  /  37.7% 0.666 Sig. 0.000 

 

  111/4 predictors 

Lack of Purpose 
(Model 4 Suggested) 

0.458 21%  /  18% 0.265 Sig.0.000 

 

111/4 predictors 

Syllabus Boundness 
(Model 4 - Suggested) 

0.465 21.6%  /  17.1% 0.275 Sig. 0.000 

 

113/6 predictors 

Table 1. Multiple regression effect size is based on Cohen’s f2, given the value R2 of models 
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Appendix 5.2 - Summary of Variance of models in Deep and Surface scales (for whole sample and low-high prior knowledge 
groups) – Meta Analysis 
 

 Whole Sample/Suggested Model 

 

R2 / Adjusted R2 

Significance 

High Prior Knowledge 

 

R2 / Adjusted R2 

Significance 

Low Prior Knowledge 

 

R2 / Adjusted R2 

Significance 

Deep 18.3%/14.4% 

Sig. 0.001 

(Model 4 - Suggested) 

13.3% / 5.7% 

Sig. 0.137 

36.1% / 28.1%  

Sig. 0.002 

Interest in 
Ideas 

15.7%/11.6% 

Sig. 0.003 

(Model 4 -Suggested) 

12.2% / 4.8% 

Sig. 0.162 

 

32.4% / 23.7% 

Sig. 0.007 

Relating Ideas 25.2%/20% 

Sig. 0.000  

(Model 3 - Suggested) 

22.3% /12.4% 

Sig. 0.043 

43.1% / 32.6% 

Sig. 0.002 

 

Use of 
Evidence 

18.7% / 15.6% 

Sig. 0.000 

(Model 5 -Suggested) 

19.3% / 13.9% 

Sig. 0.011% 

21.3% / 13.7% 

Sig. 0.039 

Seeking 
Meaning 

20.1% / 15.5% 

 

Sig. 0.001 

(Model 4 -Suggested) 

 

9% / 0.006% 

 

Sig. 0.477 

 

41.3% / 32.3% 

 

Sig. 0.001 
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Surface 45.5% /41.8% 

 

Sig. 0.000 

(Model 3 -Suggested) 

40.7% / 33.6% 

 

Sig. 0.000 

55.8% / 47.2% 

 

Sig. 0.000 

Fear of Failure 41.6% / 39.4%  

Sig. 0.000 

(Model 4 –Suggested and Leanest 
and Meanest) 

44.5% / 40.8% 

Sig. 0.000 

33.2% / 26.7%  

 

 

Sig. 0.002 

Unrelated 
Memorising 

40% / 37.7% 

 

Sig. 0.000 

(Model 6 -Suggested) 

38.9% / 34.8% 

 

Sig. 0.000 

 

 

37.5% / 31.4% 

 

Sig. 0.001 

 

Lack of 
Purpose 

21% / 18% 

Sig.0.000 

(Model 4 -Suggested) 

13.1% / 7.3% 

Sig. 0.072 

24.4%/ 17% 

Sig.0.020 

Syllabus 
Boundness 

21.6% / 17.1% 

Sig. 0.000 

(Model 4 - Suggested) 

19% / 10.8% 

 

 

Sig. 0.045 

33.3% / 23.3% 

 

 

Sig.  0.009 

Table 1. Multiple regression models for whole sample, “high prior knowledge” group and “low prior knowledge” group 

Note (1): variance of models in high/low prior knowledge groups are highlighted in red when variance is larger than that for the whole sample, while it is 
highlighted in green when it is higher than that for the whole sample. 

Note (2): statistical significance is highlighted in blue when is p>0.05. 
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Appendix 5.3 – Predictors on Leanest and Meanest Models (compared to recommended models) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table1. It shows which predictors are eliminated in the leanest and meanest versions of the models of deep scales compared to the suggested versions of the (or 
recommended) models 

Note: Eliminated predictors are highlighted in red 

Scale 

 

R2/ 

Adjusted R2 

Seeking 
Meaning 

(based on 
Model 7) 

15.4%/ 

13% 

Relating 
Ideas  

(based on 
Model 5) 

22.5%/ 

18.7% 

Interest in 
Ideas  

(based on 
Model 6) 

12.2%/ 

9.7% 

 

Use of evidence  

(based on Model 
6) 

17.1%/ 

14.7% 

Deep 

(based on Model 
6) 

15.3%/ 12.9% 

Number of exercises solved on first try (+) (+)   (+) 

Number of exercises solved on third try (+)  (-) (+)  

Number of exercises solved on second try (-) (-) (-) (-) (-) 

Number of exercises finished but not 
solved 

 (+) (+)  (+) 

Stratum    (-)  

Maximum view time on exercise page (+) (+) (+) (+) (+) 

Maximum view time on content page  (+)    

Average view time on exercise pages   (+)   

Number of pages visited using the TOC (-)     

Number of hyperlinks (concept links) 
visited in reading and exercise pages 

(-) (-)    

Average number a ‘notes’ link is clicked 
per page 

 (+)   (+) 
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Scale 

 

 

R2/ 

Adjusted R2 

Unrelate 

Memorising 

(based on 
Model 7) 

39.4%/ 

37.7% 

Syllabus 

Boundness 

(based on 
Model 6) 

18.7%/ 

15.7% 

Lack of 
purpose 

(based on 
Model 6) 

19%/ 

17.4% 

Fear of 
Failure 

(based on 
Model 4) 

41.6%/ 

39.4% 

Surface 

(based on Model 6) 

 

42.3% / 

40.1% 

Number of exercises solved on first try (-) (-) (-) (-) (-) 

Number of exercises solved on third try  (+) (+) (+) (+) 

Number of exercises finished but not solved (+)  (+)  (+) 

Number of exercises cancelled  (+)    

Average number a ‘notes’ link is clicked 
per page 

(+)     

Compactness (+) (+)   (+) 

Maximum view time on content page    (-) (-) 

Average view time on content pages  (+)    

Maximum view time on exercise page    (+) (+) 

Minimum view time on exercise page  (-)    

Relative amount of revisits   (+)   

Number of hyperlinks (concept links) 
visited in reading and exercise pages 

    (+) 

Table2. It shows which predictors are eliminated in the leanest and meanest models of surface scales compared to the suggested (or recommended) models 
(Note: Eliminated predictors are highlighted in red) 
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Appendix 5.4 – Structure of AM learning material showing whether 
information is ‘deduced’ or ‘induced’  
 

Chapter 4  -Graphs and Functions 
 
4.0 Preliminaries on functions 
Sets (Definition - example) – deduction  
Real numbers (definition -example) –deduction  
Intervals (definition - example) - deduction 
----------------- 

 

4.1 Introduction to functions 

 

Introduction  (examples of functions)  
 ------------------ 
Definition of Function (theory)  
 ----------------- 
Definition of function – Examples 4.1 and 4.2  
(theoretical-generic examples) 
 ------------------ 
 

4.2 Real Functions 
 
 Definition of Real functions (theory) 
 ---------------------- 
 Real functions – Example 4..3  
 ------------------------ 
 Real functions – Example 4.4  
 ---------------------- 
 Exercises  

 

 

 

 

 

 

 

 

 

 

 

Induction 

Deduction 
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Appendix 5.4 – Structure of AM learning material showing whether information is 

‘deduced’ or ‘induced’ (continue) 

Chapter 5 –Graphs 

5.0 Introduction to Graphs 

 Introduction to Graphs 
 Axes (definition - example) - deduction 
 ------------ 

 Introduction to Graphs – Example 5.1 (example) 

 ----------- 

 Introduction to Graphs  
 Example 5.2 (example – definition linear function) 
 Example 5.3 (example) 
 Example 5.4 (example) 
 Definition of variable  
----------------------- 

 

5.1 Linear Graphs  

 Linear Graph Definition 
 Linear Graphs – Example 1 
 Linear Graphs – Example 2  
 Linear Graphs – Intercept and Gradient (definition) 
 ---------------------- 

 Linear Graphs – Exercises  

------------------------ 

5.2 Graphical Solutions of Simultaneous Equations  

Graphical Solutions of Simultaneous Equations [induction] 
 ----------------- 
 Exercise 
 ---------------- 
5.3 Quadratic Graphs  

Introduction to Quadratic Graphs (theoretical generic examples) 
Quadratic - Special examples (theoretical generic examples) 
 --------------- 
Quadratic Graphs – Plotting and Interpreting graphs - worked example 
5.4.1  
 --------------- 
Quadratic Graphs – Plotting and Interpreting graphs - worked example 
5.4.2 
 -------------- 
 Exercises  

 

 

 

Induction 

Induction 

Deduction 
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Appendix 5.4 – Structure of AM learning material showing whether information is 

‘deduced’ or ‘induced’ (continue) 

 

Chapter 8 -Matrices 

8.1 Introduction to matrices  

Introduction to matrices 
What is a Matrix? - A practical Solution  
----------- 

Definition for Matrices  
Examples of matrices 
Conventions in Matrices 
----------- 
Introduction to matrices – Exercise 8.1 
--------- 

Types of matrices 
Types of Matrices – Square Matrix (definition - example) [deduction] 
Types of Matrices – Diagonal Matrix (definition - example) [deduction] 
Types of Matrices – Unit Matrix (definition - example) [deduction] 
Types of Matrices – Zero Matrix (definition - example) [deduction] 
Types of Matrices – Symmetric Matrix (definition - example) [deduction] 
Types of Matrices – Row Matrix (definition - example) [deduction] 
Types of Matrices – Column Matrix (definition - example) [deduction] 

 

8.2 Matrix Operations 

 Matrix Addition –Definition 
 --------- 
 Worked Example for matrix addition 
 ------ 
 Matrix Subtraction –Definition 
 ---------- 
 Worked Example for matrix Subtraction 
 ----- 
 Exercise  
 ------ 
 Scalar Multiplication – Definition  
 --------- 
 Worked example for scalar multiplication 
 ---------- 
 Exercises 
 -------- 

 Multiplication of Matrices (examples) 

 -------- 

Multiplication of Matrices – Process (example) 

Worked example for matrix multiplication  
------- 
Summary on Matrix Multiplication Process (theory) 
--------- 
Exercises 

 ------- 

Induction 

Deduction 

Induction 

Deduction 

Induction 
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Appendix 5.4 – Structure of AM learning material showing whether information is 

‘deduced’ or ‘induced’ (continue)  

The transpose of a Matrix (definition - example) 
 ------- 
 Worked example for the transpose of a matrix 
 --------- 
 Exercise 
 -------- 
  
 
Summary of Matrix Operations (theory) 
 Summary on Addition and Subtraction  
 Summary on Scalar Multiplication 
 Summary on Multiplication 
 Summary on Transpose Matrix 
 -------- 

 

 

8.3 Identity and Inverse for 2x2 Matrices 

Introduction to Identity and Inverse for 2x2 Matrices  
(examples - definitions) 

 -------- 
 Identity Matrix (exercise - definition) 
 ------- 
  

 Inverse Matrix (general definition) 
 ------ 
 Exercise 
 ------- 
 Worked example for inverse matrix 
 ------ 
 Exercise  
 
 -------------- 

Solving Simultaneous equations using the Inverse Matrix 

  Intro Matrix Representation of Linear Equations 
  ----- 
                          Worked examples for Matrix Representation of Linear           

                                                                 Equations (first example then general formula) 
  -------- 

Solutions of systems of simultaneous equations            
(general formula) 

  ------- 
Worked examples for systems of simultaneous 
equations (application of formula) 
-------- 
Exercises 
-------- 

  The determinant of Matrix 
  Introduction to Determinant of Matrix (theory) 
  -------- 
  Determinant of matrix (example – general conclusion) 
   

-------- 
  Exercises  

Deduction 

Deduction 

Induction 

Deduction 

Deduction 

/Induction 

Induction 
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Appendices – Chapter 6 – Recommendations and Contributions 
 

Appendix 6.1 - Notes – Based on observations and the records on 
students’ notes 
 

The commentary in the ‘notes’ feature shows that it is used in a number of ways: 

 

1. To comment on difficulty of exercises, for example: 
 
Student 1: “toooo easyyyy” 

Student 2: “i kno... so calm down it's very basic” 

Student 3: “way too easy” 

Student 4: “found this quite tricky.” 

2. To record the answers to exercises, for example: 
 
Student 5:  
“x = 4” 
 
Student 6:  
“-3^2 -5(-3)+8  
-9+15+8=32  (--=+)” 
 

3. To express questions with regards to the learning material, for example: 
 
Student 7:  
“wat is this, bk 2 primary? 
(it probably means, book 2 primary for maths)” 

 
4. To demonstrate how they went about the solution of an exercise and ask support 

from fellow students, for example: 
 
Student 8:  
“i started off by substituting all the x's for 0's which made the equation look like this. 
 
02-5*0+8 
(02=zero squared) 
 
after doing this is bracketed them off, 
resulting in; 
 
(02-5)*(0+8) 
 
i then worked out that 02-5=-5 and 0+8=8 i then multiplied them and the product was 
40. 
 
i typed in this answer and incorrect, i then figured maybe because it was a minus 
number it would produce a negative result. so i then typed in -40 and was still incorrect, 
at this time i was frustrated and typed in 20. 
 
to my surprise the answer was 8. 
can anybody let me know (step by step) where i went wrong and how 2 avoid it in 
future. 
 
thanks jme” 
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5. To record the logic behind an exercise and not just the actual answer: 
 
Student 9:  
“as complicated as they are the logic sequence is unmistakable 
once I know what i need to do - it becomes 'easy' 
[a,b] a<=x<=b 
(a,b) a ” 

             
            Student 10:  

“we take the values of X nad enter them into the given equation 
values x= 0, 1, 2 
y=2x-1 
for 0 y= -1 
for 1 y= 1 
for 2 y= 3” 
 
 

6. To give advice to other students or share tutor’s advice: 
 
Student 11: “write them as they are x=4, z=3 it is very hard to work out duhh” 
 
Student 12:  
“This i did not understand! 
Tutor cleared things up 
you take the -3 to the other side, negative becomes positive 

and bobs your unkle” 
 

7. To comment or criticise on the way the feedback of exercises is presented by 
AM: 
 
Student 13:  
“demonstration would have been more useful than just giving the answers” 

 
Student 14: 
“a bug ? when you give the right answer (det=0, no inverse) you get a message at the 
end : ... verify ... multiply  ... to get I !!! 
(it appears only if it is the first answer)” 
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Appendix 6.2 – Surface scale – Minimum and Maximum 
 Minimum Maximum 

Surface Scale 

 
26 72 

 

Number of 
Exercises Solved 
on First Try 

 

4 131 

Number of 
Exercises Solved 
on Third Try 

 

0 15 

Number of 
Exercises Finished 
But Not Solved 

0 32 

 

Maximum View 
Time on Exercise 
Page 

314.819000 3750.835000 

 

Maximum View 
Time on Content 
Page 

 

108.932000 3118.114000 

Compactness 

 
.30 .90 

Number of concept 
links visited in 
reading and 
exercise pages 

0 11 
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Appendix 6.3 – A non-profit MOOC - Khan’s Academy 
 

Criteria  

(as defined in 

2.1.1.1) 

Features 

Multimodality video lectures, graphics, animated demonstrations, video 

transcripts 

Amplification  calculators 

Investigation Students can investigate freely topics with features such as 

“explore” and “search” 

Collaboration It allows collaboration amongst students and tutors with 

features such as “Ask a question”, and “Tips and Thanks”. 

Providing 

mathematical 

activity with support. 

More specifically, it provides the following elements and 

features: 

1) the element of personalisation, which facilitates appropriate 

scaffolding at it allows students to complete “missions” 

(activities) and self-diagnose their level within a chosen topic.  

2) the element of formative assessment by providing hints 

(video and textual hints) during the activities and model 

answers. 

3) the element of summative assessment by providing a 

summary progress report which shows what skills they have 

mastered and which ones they need further practice and also 

directs towards the next most appropriate task. 

4) the element of reward (e.g. badges and points according to 

number of correct answers and levels of skills and 

knowledge). However the badges can be given for reasons 

that are not related just to good performance but also for 

being a good collaborator, helping others, persisting in 

problem solving, etc. 

5) the element of personalisation by providing a “profile” 

feature which shows recent activities, completed videos, and 

“discussion” activity. 

 


