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Abstract

Thin films of metal oxides, like Al,O3 and LaAlOs3, play a crucial role in emerging
nanoelectronic devices. Using density functional theory (DFT) and other computa-
tional methods, the properties of defects and intrinsic polaron trapping have been

calculated in LaAlO3; and amorphous Al,Os3.

The spectroscopic properties of neutral (V%) and charged (Vz)r ) oxygen vacan-
cies in cubic and rhombohedral LaAlO3 have been investigated using Time Depen-
dent DFT and the embedded cluster method. The peaks of the optical absorption
spectra are predicted at 3.5 and 4.2 eV for V% and 3.6 eV for Vg in rhombohedral
LaAlO3. The calculated electron paramagnetic resonance (EPR) parameters of Vg

accurately predict the width (3 mT) and position of its EPR spectrum.

Amorphous Al,Oj3 is then investigated, which has applications in non-volatile
memory and a-IGZO (amorphous indium-gallium-zinc oxide) thin film transistors.
Amorphous Al,O3 structures were generated using a molecular dynamics melt-
quench approach and found to be in good agreement with experiment. DFT cal-
culations, using a tuned hybrid functional, determined that the a-Al,O3 band gap
decreases to 5.5 eV, compared to 8.6 eV in a-Al,O3, because of the reduction in Al
coordination number in the amorphous phase. This causes a shift in the electrostatic
potential that lowers the conduction band minimum, adding support to experimental

measurements of band offsets.

Then intrinsic polaron and bipolaron trapping in a-Al,O3 is modeled. The
average trapping energy of hole polarons in a-Al,O3 was calculated to be 1.26 eV,
much higher than the 0.38 eV calculated for a-Al,O3. Electrons were found not to

trap in both crystalline and amorphous Al,Os.



vi Abstract

To explain the negative charging of Al,Os films the properties of oxygen, hy-
drogen and aluminium defects were calculated. A mechanism is proposed to explain
experimental trap spectroscopy measurements, whereby negatively charge defects
are compensated by positively charged defects that have unoccupied states in the
band gap.

These predictions will facilitate experimental identification of defect states in

LaAlO5; and Al,O3 and their effect on nanodevices.
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Chapter 1

Introduction

1.1 Background and motivation

Controlling the properties of defects in materials is crucial to developing devices on
the nanoscale. In this thesis, defects in LaAlO3; and amorphous Al,O3 (a-Al,O3)
are investigated using atomistic modeling techniques in order to understand their
properties and enable experimentalists to positively identify defects in lab grown
thin films. Both LaAlO3 and amorphous Al,O3 are high k dielectric metal oxides
with interesting applications in electronic devices [1]. Their use as dielectrics means
that charge trapping in both materials affects device performance, stimulating the

interest in their defect properties.

In crystals, a defect is a deviation from the infinite crystal lattice which is
not periodically repeated. It is generally created by the removal or addition of an
ion into the structure, or the translation of an ion away from its equilibrium lattice
position. This traditional definition of a point defect would not seem to apply to
amorphous materials, which by their nature are not infinitely repeating in any di-
rection. However, as will be demonstrated in this thesis, local ion relaxations after
the removal or addition of atoms into amorphous structures and the resulting effect
on electronic structure show that defects can also be created in amorphous metal

oxides, analogous to those in crystals.

Defects in materials have been studied since the early part of the 20th century,

when it was suggested that point defects caused by the removal of an anion from
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an alkali halide crystal lattice were responsible for the strongly coloured absorption
bands observed from spectroscopy. The study of these ‘colour centres’ led to the
understanding that many material properties are determined by defects, the control
of which can allow careful tuning of material characteristics for technological ap-
plications. For example, the doping of semiconductors with defect impurities was
patented in the 1940s [2], allowing control over the majority charge carrier in mate-
rials. This enabled the development of p-n junctions and formed the basis of modern
computer processors. Now, careful control over defects is necessary when creating
materials for use in a variety of fields [3], including photovoltaics [4,5], solid oxide

fuel cells [6], and modern nanoelectronics [7].

The origin of this thesis was work done by Littlewood et al. [8,9] and Sushko
et al. [10, 11] on LaAlO3/SrTiOs heterostructures. With funding from Argonne
National Laboratory, and working with Prof. Littlewood, the aim of this project
was to investigate controlling the electronic properties of thin films and interfaces
using defects. This also meant understanding the properties of defects in the bulk

materials, specifically LaAlOs3.

LaAlO3z is a polar material, a property which is used to generate a 2-
dimensional electron gas (2DEG) at its interface with SrTiOs [12], despite both
being band insulators. Various mechanisms have been proposed for the forma-
tion of the 2DEG at the LaAlO3/SrTiO3 interface, including the polar discontinu-
ity [8,9,13-15], La/Sr intermixing [10, 11, 16] and defects in both the LAO [17-20]
and STO [21] layers. To better understand their role in the formation of the 2DEG,
the spectroscopic properties of oxygen vacancies in LaAlO3 were calculated, with
the hope that these theoretical predictions would allow experimentalists greater in-

sights into the properties of LaAlOs3.

After a change in priorities at Argonne National Laboratory, it was not pos-
sible to obtain any experimental data on LaAlO3/SrTiO3 heterostructures. Instead
it was decided to change direction and investigate amorphous Al,O3, another high
k dielectric metal oxide where control over its electronic properties using defects

was of interest to the experimental community. Also, an opportunity to collaborate
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with Prof. V. Afanas’ev’s group at the University of Leuven meant that experi-
mental data on amorphous alumina thin films was kindly made available, offering a
point of comparison for the results of the computational modeling performed in this

thesis.

Amorphous Al,O3 is an important material in the development of a large
number of nanoelectronic devices, including non-volatile charge trap flash mem-
ory [22, 23], amorphous indium gallium zinc oxide (a-IGZO) thin film transis-
tors [24], and perovskite solar cells [25-27]. It is one of a growing list of metal
oxides whose amorphous phase is being studied for use in technological applica-

tions, including HfO, [28,29], TiO, [30,31] and ZrO; [29, 32].

These metal oxides are not natural glass formers, but when deposited as thin
films, using techniques like atomic layer deposition (ALD) [33,34], they often sta-
bilize in their amorphous phase. Amorphous materials differ from crystals in that
they are not periodic and show no long range order. Their non-periodicity is ac-
companied by a wide distribution of bond lengths, bond angles and coordination
numbers of ions. This change in structure can affect the electronic properties of the
metal oxides. Amorphous oxides can exhibit higher trapping energies of intrinsic
polarons [28], band shifting [35] and changes in surface morphology [36]. Ad-
justments in growth conditions, such as deposition temperature and oxygen partial

pressure, allows experimental control over these properties [36].

Whilst amorphous materials open up new opportunities when it comes to the
properties of metal oxide thin films, they also create new challenges in modeling the
electronic structure of defects. The use of density functional theory (DFT) to calcu-
late the properties of defects in crystals has been well established for decades [37],
but the lack of periodicity of amorphous materials, the large variation in local struc-
ture, and the uncertainty in experimental data, means modeling defects in amor-
phous materials brings its own complexities. However, through the use of molec-
ular dynamics and DFT these complexities can be overcome and the properties of

amorphous Al,O3 calculated.
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1.2 Scope of this thesis

In this thesis atomistic modeling methods are used to predict the spectroscopic prop-
erties of oxygen vacancies in LaAlO3, and the structural, electronic and charge
trapping properties of amorphous Al,O3. Through developing our theoretical un-
derstanding of defects in these materials, experimentalists are able to identify them,

and thus control their properties.

First, the theoretical background of the methods used to model LaAlO3z and
amorphous Al,O3 are presented. This starts with an explanation of molecular dy-
namics and the equations that describe classical particle motion. Then, density
functional theory (DFT) is discussed, including details of the Gaussian and Plane
Wave (GPW) method, hybrid functionals, and the auxiliary density matrix method
(ADMM). Following is an explanation of formation energy calculations and the
nudged elastic band method (NEB). NEB is used to calculate the energy barriers
and lowest energy pathways of ionic displacements. Finally a description of time
dependent density functional theory (TDDFT) is given, which allows the calcula-
tion of the energies of optical transitions into excited states, and their oscillator

strengths.

In chapter 3 the optical absorption spectra and ESR parameters of oxygen va-
cancies in LaAlOs are predicted, using DFT, TDDFT and both periodic and em-
bedded cluster methods. The structure, formation energies and Kohn-Sham energy
levels of neutral (V%) and charged (Vg and V20+) oxygen vacancies in cubic and
rhombohedral LaAlOs3 are calculated. TDDFT is then used to calculate the optical
absorption spectra of V% and Vz-g. Analysis of the defect’s point symmetry explains
the shape of the absorption spectra, and the splitting observed in the rhombohedral
LaAlO3 peaks. Calculations of the g-tensor and isotropic hyperfine constants of the
V{; defect are also reported, which accurately predict the position and width of the
ESR signature. When these results are combined, they are shown to explain experi-
mental measurements of oxygen vacancies in LaAlOj3 crystals, and help to establish

their role at the LaAlO3/SrTiOj5 interface.

The next chapter turns to the study of amorphous Al,O3. To accurately de-



1.2. Scope of this thesis 5

scribe the electronic structure and defect properties of a-Al,O3, first a representa-
tive sample of structures must be created. To generate these structures, a molecu-
lar dynamics melt and quench method is used. Analysis of the structural geome-
tries showed they were in good agreement with experimental x-ray diffraction [38],
NMR [39] and density measurements [33]. Careful attention was then paid to tuning
the PBEO-TC-LRC [40] functional so as to make it Koopman compliant. DFT cal-
culations of the bulk structure of crystalline o-Al,O3 were then used to benchmark
the functional. After calculations of a-Al,Os, analysis suggests that the observed
decrease in its band gap is due to a shifting of the conduction band downwards, as
a result of the change in Al coordination number and electrostatic potential profile.
This provides support to one competing interpretation of the experimental measure-

ments of the band gap shift [35].

The intrinsic trapping of hole and electron polarons in a-Al,O3 is then dis-
cussed. The DFT setup described in the previous chapter is first used to calculate
the structural and electronic properties of Mg at an Al site (Mga) in -Al;O3. The
Mg, defect, in the neutral state, donates a hole into alumina making it a suitable test
system. The tuned functional is able to predict the structural properties of defects in
Al,O3 and to accurately model the localization of holes and electrons in defects and
the optical transition properties. Calculation of the Mga; defect’s hyperfine con-
stants are also shown to be in excellent agreement with experiment. Intrinsic hole
trapping was then observed in both a-Al,O3 and a-Al, O3, though trapping energies
were much higher in the amorphous structures. Electron polarons are shown not to

trap in a-Al,O3 or a-Al, O3

Having demonstrated that electrons do not self-trap in alumina, the final re-
sults chapter discusses the role of defects in the negative charging of a-Al,O3 thin
films which is observed experimentally [22,23,41,42]. The properties of interstitial
hydrogen (H;), oxygen vacancies (Vp), oxygen interstitials (O;), aluminium vacan-
cies (V1) and aluminium interstitials (Al;) are calculated using DFT. In order to
explain the experimental charge trap spectroscopy data [22], a mechanism is pro-

posed whereby negatively charged O; and V 41 defects are compensated by H;, Vo
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and Al; defects, which are positively charged. The negative charging is then a result
of filling the unoccupied states of Hj, Vo and Al; that lie in the band gap.
The last chapter summarizes the main conclusions of the thesis and suggests

future work that would build upon its results.

1.3 Main results

Here is a short summary of the main findings presented in this thesis:

. Vg in rhombohedral LaAlO3 exhibits an optical absorption peak which ex-
tends from 3.2-4.0 eV, with a maximum at 3.6 eV. Its isotropic g-value is
calculated to be 2.004026, and due to the nearest neighbour Al ions there is
a calculated hyperfine splitting which leads to a 3.0 mT broadening of the
EPR signal. These results are in good agreement with experimental EPR and

absorption spectra measurements of oxygen deficient LaAlO3 [43].

* DFT calculations predict that a-Al,O3 has an average HOMO-LUMO gap
of 5.48 eV, a significant reduction from the 8.6 eV band gap of crystalline
a-Al,O3. Analysis shows that the change in Al coordination shifts the Al
electrostatic potential downwards by 1.6 V, causing the conduction band to
lower. This provides theoretical evidence for the conduction band lowering

observed experimentally [35].

* Hole polarons are shown to spontaneously trap in a-Al,O3 with an average
trapping energy of 1.26 eV, higher than the 0.38 eV trapping energy calculated
for holes in a-Al,O3. The edge of the valence band is shown to be highly
localized as a result of 2 coordinated oxygen Gz*p states. These localized
states results in a trap site density of 2.6x10%® cm™3. Electron polarons are
shown not trap in a-Al,O3 or o-Al,O3, due to the delocalized nature of the

conduction band minimum.

e From DFT calculations of the H;, Vg, Oj, Va1 and Al; defects, a theory is

proposed to explain experimental trap spectroscopy measurements [22]. O;
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has a (0/-2) charge transfer level that lies on average 3.4 eV below the a-
Al>,O3 conduction band minimum, and Vs has a (-2/-3) charge transfer level
lying 3.5 eV below the conduction band minimum. Though they act as deep
acceptors, they have no Kohn-Sham levels in the gap and so must be compen-
sated by Al;, Vg or H;j, which have unoccupied states in the band gap in their
positive charge states. After electron injection, these states become occupied
and transitions in the energy range 2.7-4.0 eV can be observed, in accordance

with experiment [22].






Chapter 2

Methodology

In order to accurately describe the electronic and structural properties of crystalline
and amorphous systems and their defects a variety of modelling techniques are re-
quired. Here the theoretical background of the methods common to later chapters
is covered. Specific techniques and methods pertinent to individual chapters are
addressed at the beginning of those chapters, along with the specific details of any
calculations. Within this methodology chapter a brief overview of molecular dy-
namics (MD) is first given. This is followed by a description of density functional
theory (DFT) and aspects of its implementation in the CP2K code [44], specifically
the use of the Gaussian and Plane Wave (GPW) method, details of the PBEO-TC-
LRC functional and the auxiliary density matrix method (ADMM). After DFT, for-
mation energy calculations are described and the theory behind the nudged elastic
band (NEB) method is explained. The chapter is concluded by a description of time
dependent density functional theory (TDDFT).

2.1 Molecular Dynamics

Molecular dynamics (MD) allows the trajectories of a large number of ions to be
determined using classical Newtonian mechanics. It is widely used to model large
interacting systems of atoms in solids and liquids. Modelling atomic trajectories
requires the force on each atom in the interacting system to be calculated, from
which the trajectories can then be determined using the classical equations of mo-

tion. These forces are in turn derived from the total potential energy of the sys-
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tem, U({R}), where {R} is the complete set of atomic coordinates of the system
(R1,Ry,R3...). The total potential energy is dependent on the interactions be-
tween atoms, and can be determined using either classical potentials, or from quan-
tum mechanical calculations. Classical potentials use relatively simple functions to
model the complex interaction between nuclei and electrons. In the case of quan-
tum mechanical calculations (such as density functional theory, see section 2.2.1),
the Born-Oppenheimer approximation is assumed, with the electronic contribution
to the energy dependent on fixed nuclei positions, and the nuclear trajectory then
determined using MD. In this thesis molecular dynamics has been principally used
to generate amorphous structures of Al,O3 with the melt and quench method, de-

scribed in chapter 4.2.1, using classical inter-atomic potentials.

2.1.1 Classical potentials

Classical potentials are analytic functions that model the complex interactions be-
tween nuclei and electrons in order to allow the calculation of a system’s total po-
tential energy, without the need to explicitly solve the Schrodinger equation. This
means the total energy can be given as a sum of the intra- and inter-atomic potentials

of the atoms:

U({R}) =) Vext(R) + ) Y Vouir(RR) + Y Y Y Vaboay(Ri, Rj,Ry) + ...
i i j>i i j>ik>j

(2.1)
where U ({R}) is the total energy of a system in configuration {R}. In the first term,
Vext(R;) is the ‘one-body’ potential, which in a periodic system is the result of an
externally applied field. Vp,ir(R;,R;) is the 2 body potential and tends to be the
largest contributor to the total energy. It describes the interactions between pairs of
atoms. V3.pody (Ri, R, Ry) is the 3-body potential term, which allows the inclusion
of angle-dependent terms often included for covalently bonded systems. Higher

order terms, such as 4-body potentials, can also be included.
In chapter 4, a pair-wise (2-body) potential is sufficient to generate accurate

structures of amorphous Al,O3. Here the specific treatment of electrons is neglected

and atoms are treated as charged ions, with repulsive terms included to model the



2.1. Molecular Dynamics 11

effects of electron exchange, a result of the Pauli exclusion principle. It takes the
form [45,46]
_qiqj GG

V(Ri;) =

2.2)

Ai+A;—R;;
+D(B; +B;) exp (4)

Bi—I—Bj

where R;; is the distance between pairs of atoms, g; is the charge of atom i, and
A, B and C are constants dependent on the atomic species of the pair of atoms.
The first term of the potential is the Coulomb interaction between pairs of ions,
and in a system with periodic boundary conditions it is calculated using the Ewald
summation method [47]. The second term, C;C; /R?j, represents a van der Waals
interaction. The third term models the short range repulsion which prevents ions
from approaching too close, as electron orbitals overlap and Pauli exclusion comes

into play.

Although the form of various classical potentials differ, they often contain sim-
ilar long range Coulomb interactions and short range repulsive and attractive terms
that mimic ionic and covalent bonding. The terms of the potentials can then be pa-
rameterized empirically using structural data (from diffraction experiments), elastic
constants and other physical properties, or fitted using quantum mechanical calcu-
lations. These potentials can then be used to calculate the total potential energy of

a system.

2.1.2 The equations of motion and the Verlet integration scheme

After calculating the total energy of the system in configuration {R} through the
use of potentials or ab initio methods, the evolution of the atom trajectories can be

considered. The force, Fy, acting on ion /, is given by the expression

_ _9U({R})
F; = JR, (2.3)
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where U is the total energy of the system and R; is the position vector of ion I. The

time evolution of the ions is then Newton’s equation of motion;

d’R,
dr? ’

Fr=M, (2.4)

where M is the ion mass.

Solving the trajectories from equation 2.4 is an N body problem, where N can
be in the 10s of thousands (or larger) for MD calculations. This means the time
evolution of the ion positions cannot be solved analytically but instead has to be
obtained through an iterative method. The integration of the equation of motion of

the ions is carried out numerically using small fixed time steps, Ot.

A commonly employed method is the Verlet [48] algorithm, which Taylor ex-
pands the ion coordinates forwards and backwards a time step, around the point in

time, ¢, so that

R;(t+ 8t) = R;(t) + dltl’t(t ) 51 + lez\(;,) 5t% + b’ét) 512 + 0(81%) (2.5)
Ry (1 — 1) = Ry(1) — ‘“Z’t(t ) 51+ ZIA(;,) 52 — b’ét Jsdroty @6

By adding both equations 2.5 and 2.6 an expression for the ion position after one

time step is obtained;

R (1 + 6t) = 2Ry (1) — Ry(t — O1) +F;4—(t)5t2+0(6t4) (2.7)
1

which cancels out the velocity and the cubic terms, meaning the equation is accu-
rate to the fourth order. The algorithm only requires the current and previous ion
positions, and the calculation of the force from the potential energy, to calculate the
next position. The velocities can also be calculated from the subtraction of equation

2.6 from 2.5, so that after rearranging

vi(t) = %[RIU +51) —Ry(t— 81)] + 0(58) . 2.8)
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2 initial time step positions are needed to apply the Verlet algorithm. These are
obtained from the input coordinates of the ions, with the position after the first time
step calculated using a random velocity that fits a pre-defined velocity distribution
profile. Thus by applying the Verlet algorithm and using classical or quantum me-
chanical models of the potential energy the trajectories of all ions in the system can

be obtained.

2.2 Density Functional Theory

2.2.1 General theory of DFT

DFT is a well established technique for modelling the electronic structure of
molecules and solids and has been used extensively in this work. Although it is
well understood, a brief outline of it will be given here to allow further discussion
of its implementation.

In order to understand the properties of a material the Schrodinger equation
has to be solved for N interacting electrons experiencing an external field v(r),

predominantly due to the nuclei present. The Hamiltonian of the material system is
H=T+U+V =Hy+V (2.9)

where T is the sum of the kinetic energy of the electrons, U is the sum of the
Coulomb interactions of the electrons with each other and V is the sum of the
electron-nuclei Coulomb interactions. The Born-Oppenheimer approximation has
been applied to this Hamiltonian, which does not include the nuclear kinetic energy
term, and thus assumes that the nuclei remain in fixed positions. This allows the
electronic and nuclear parts of the wavefunction to be treated separately and the

total wavefunction becomes

lI]Total = lPnuclear({R}) X lI]electronic ( {R} ’ {I‘}) (2- 10)

where {r} are the set of electronic coordinates and {R} is the set of nuclear coordi-

nates, which enter the electronic wavefunction as a parameter.
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The expectation value of the Hamiltonian (in equation 2.9) is the ground state
energy of the system,

E, = (W|Hy+V |¥) (2.11)

where W is the many-electron wavefunction of the system (Welectronic ({R}, {r}) in
equation 2.10). However, calculating the many-electron wavefunction ¥ is practi-
cally impossible with modern techniques and computational power, except for the
simplest of systems (i.e. Hydrogen). Instead, the ground state energy can be calcu-
lated as a functional of the electron density p(r), which is a function of merely the
3 spatial coordinates.

Using the density rather than the many-electron wavefunction to determine the
ground state properties of the system is justified by the 2 Hohenberg-Kohn theo-
rems [49]. The first theorem states that 2 potentials v(r) and V/(r) that differ by
more than an additive constant do not have the same ground state density p(r). It

also implies that the ground state energy E,; can be calculated from the equation

Ee= [ [drvwp(m)] +Flo(r) 2.12)

where the first part of the equation determines the energy of the electrons interacting
with the external potential v(r) and F[p(r)] is a universal functional of the density
which determines the kinetic energy of the electrons and the energy of the electron-
electron interactions. The second Hohenberg-Kohn theorem states that given the
external potential v(r), the ground state energy can be obtained by minimizing equa-
tion 2.12 with respect to p(r). The expression for the total ground state energy of
the electronic system (in a fixed nuclear environment) is normally expressed as a

functional of the density in the form

Eglp(r)] = Exin[p (1)] + Eext [ (1)] + Entar [P (r)] + Exc [ (r)] (2.13)

where Ey;, is the kinetic energy of the electrons, E¢y; is the energy due to the external
potential, Ey,, is the Hartree energy and Ey. is the exchange-correlation energy.

Unfortunately, the exact form of the exchange-correlation functional is currently
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unknown and so it has to be approximated in order to calculate its contribution to
the energy, these approximations are discussed in section 2.2.4. Aside from the fact
that the exchange-correlation functional is unkown, it has also proven difficult to
calculate the Eyi,[p(r)] term in equation 2.13, as there is currently no acceptably
accurate functional to determine the kinetic energy term directly from the density,
p(r). This is addressed by the Kohn-Sham [50] (KS) approach to DFT where the

density .
p(r) =Y |yl (2.14)
i=1

where y; are the single particle wave functions of non-interacting electrons that
produce the same density as the physical system (the same as the probability density
of the many-electron wavefunction). The single particle wave functions can be
computed by way of the self consistent field (SCF) method using the Kohn-Sham

equation [50],

SV (Vewa(F) Vo) + vxc<r>>] wir) =ewir), (219

where Vi is the external potential (which is pre-determined and normally due to the
nuclei), Vi, is the Hartree potential (electron-electron Coulomb interaction) given

by

Vigar (1) = / i P (2.16)

v —r|
and V. is the exchange-correlation potential. All of these terms can be exactly
calculated using the electron density except for Vy., whose true form is unknown.
Improvements in calculating the electronic structure of crystals comes from finding
better approximations to V. which is the functional derivative of the unkown energy
functional Ex.[p(r)];

Vie(r) = SEx[p(r)] : (2.17)

5p(r)
Common approximations are the local density approximation (LDA), the general-
ized gradient approximation (GGA), and hybrid functionals which include a portion

of exact exchange [51,52].
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2.2.2 Periodic boundary conditions and k-point sampling

Physical samples of crystals or solid materials tend to contain on the order of 10?3
atoms, far to many to model explicitly using DFT. Instead, by using periodic bound-
ary conditions infinite bulk solids can be modelled. This is especially useful for
crystals, which by their nature are periodic, but can also be used to simulate pseudo-

amorphous materials through the use of large simulation cells.

A crystal will have a potential with periodic boundary conditions (due to a

repeated motif of atoms) which takes the form:
V(r)=V(r+R), (2.18)

where R is a Bravais lattice vector. A Bravais lattice describes a system where any

position translated by a lattice vector is equivalent. The lattice vector is defined as,
R =nja; + maj + njas, (2.19)

where a; are the primitive lattice vectors, and n; are integers.

Having defined the real space lattice, the reciprocal lattice can be defined. This
is the Bravais lattice of all allowed k vectors of a plane wave, ¢®T_that has the same
periodicity as the real space Bravais lattice described by R. The reciprocal lattice
vector, G, must satisfy the condition that:

eiG~(r+R) — eiG'I‘, (220)

where the plane wave has the same periodicity as the real space lattice. From equa-

tion 2.20 it can be clearly seen that
e

iGR _ 1 (2.21)

and from here G can be calculated. The reciprocal lattice vectors, G, can be formed
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from primitive vectors of the reciprocal lattice, b;, where
G = g1b1 +g2b2 +g3b3, (2.22)

as long as

b,’ ‘A= 27[51'] (223)

and g; are integers, otherwise equation 2.21 won’t be satisfied. It is useful to note
that all the points in reciprocal space closest to a single lattice point are defined as

the first Brillouin zone, the Wigner-Seitz cell (or unit cell) of the reciprocal lattice.

Next the wavefunctions of electrons in periodic potentials can be considered,
which allows the construction of Kohn-Sham orbitals for DFT calculations. From
Bloch’s theorem, the one electron wavefunction (which can be used to describe
the Kohn-Sham non-interacting electron wavefunctions used in equation 2.15) of a

system with a periodic potential can be written as a Bloch function:

Wik (1) = €™ T (1) (2.24)

where

k(1) = i (r +R) (2.25)

is a function with the same periodicity as the lattice, where n and k specify all

possible electronic states. Bloch functions have the property that:
Wk (r +R) = e® TRy (04 R) = R Ry (1), (2.26)

demonstrating that a translation of the Bloch function by a lattice vector results in

the same function with an additional phase factor.

Bloch functions are used to solve equation 2.15 (the Kohn-Sham equation) for
systems with periodic boundary conditions, often involving Fourier transforms. The
main advantage being that the periodicity of the reciprocal lattice and the properties

of Bloch functions allows integrals over k-space to be re-formed as integrals over
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just the 1st Brillouin zone, where all unique k-points are described. This is because

any wavevector kK’ can be rewritten as
kK =k+G, (2.27)

where k belongs to the first Brillouin zone. Bands extending outside the first Bril-
louin zone are therefore ‘folded’ into the first Brillouin zone, with multiple energies
described at each unique k-point, as a sum over the reciprocal lattice vectors.

In an infinite lattice with an infinite number of electrons, there are also an
infinite number of k-points in the first Brillouin zone. If it is assumed that the
energy as a function of k is smoothly varying then the integral over all k-points can
be replaced with a sum over a finite mesh of k-points, the most common scheme of
which is that proposed by Monkhorst and Pack [53].

The Monkhorst-Pack [53] scheme for sampling the Brillouin zone involves
evenly spacing the k-points to be calculated within the first Brillouin zone, and
ignoring any symmetrically equivalent k-points. The k-points are determined by the
expression

k = u1b; +urby +usbs, (2.28)
where the fractions

_ 2r—q-—1

={1,2,3,... 2.29
2q r { YA 7(]}7 ( )

Ui
and the integer g determines the number of k-points sampled. However, in this the-
sis, periodic calculations have been undertaken using the I" point code CP2K [44],
which means all calculations are performed at k = 0. In order to accurately calculate
energy dispersion at the I" point, larger supercells have to be used. This is because
as the lattice parameters are increased, the size of the Brillouin zone decreases and
more effective k-points are sampled as the bands are folded in. This can be seen in
equation 2.23, where |b;| decreases as |a;| increases, meaning doubling the size of
the supercell halves the size of the first Brillouin zone. This is utilized to calculate

the electronic structure of amorphous solids, where real systems are not periodic.
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In this instance it is more advantageous to use cells with as large a number of atoms

as possible, as opposed to having a dense k-grid.

2.2.3 Gaussian and Plane Wave (GPW) method

In order to perform KS DFT a suitable basis set has to be defined with which
to construct the KS wavefunction and electron density. The periodic DFT code
CP2K [44], which has been used extensively in this work, makes use of the Gaus-
sian and plane wave (GPW) method [54] in order to reduce the computational cost
of calculating various terms of the energy functional by using the most efficient
basis set. This allows the calculation of large systems, which is essential for under-
standing the properties of amorphous systems and allows greater structural relax-

ations when studying defects.

Gaussian type basis sets are atom centred and in the GPW representation are

used to construct the KS orbitals. They are composed of atomic orbitals

0a(r) = ¥ Ciasi(r) (2.30)

where Cjy are constant coefficients and g; are primitive Gaussian functions of the
form

gi(r)=e 4" (2.31)

The density is then defined using the Kohn-Sham (molecular) orbitals, yg which

are a linear combination of atomic orbitals
yp(r) =Y Dp¢;(r), (2.32)
J

where D g are coefficients that are varied with each calculation step. This means

the density can be written

p(r)=Y fslvsl*, (2.33)
B

where fp is the occupation of the KS orbitals. The density can also be written in
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terms of the atomic orbitals and the density matrix elements P;;
(r) = Y Pi(r)¢;(r) . (2.34)
ij
The density can also be represented using plane waves in the form

Z p(G)exp(iG.r) (2.35)

where Q is the volume of the unit cell, G are the reciprocal lattice vectors and
P (G) are the expansion coefficients. As the real space basis is expressed in terms
of Gaussians, Pp(G) can be determined using Fast Fourier Transforms (FFT) by
noting that the product of 2 Gaussians is a Gaussian, and its Fourier transform
is also a Gaussian. In theory the expression shown in equation 2.35 is an exact
representation of the density, in practice an energy cutoff is applied which limits the

sum over lattice vectors to plane waves with a kinetic energy less than the cutoff.

The GPW method allows efficient calculation of the energy functional using
the most suitable basis set for each energy term. The energy functional is then

given by the expression

ZPU 0i(r |——v2|¢]< r)) (2.36)

+ZPU 0:(r)|[ViPP (1) | 9;(r) +ZP,, 0:(0) | VEP (r,1') |()) (2.37)

+2mz&’;((}) (2.38)
zz
+ / xcl dr+ 2.39

where part 2.36 is the kinetic energy of the electrons, part 2.37 describes the energy
of the electron interaction with the local and non-local part of the pseudo-potential
describing the ion potential and the core electrons, part 2.38 is the Hartree energy
and part 2.39 is the exchange-correlation energy and the interaction energy of the

ionic cores. The use of the Gaussian basis set for the majority of terms allows for
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efficient calculation, as its integrals can be determined analytically. The Hartree en-
ergy (part 2.39) is calculated in reciprocal space and uses the plane wave representa-
tion of the density, allowing a large speed up of the calculation. The pseudopotential
term is introduced to reduce the number of electrons in the calculation, as often only
the valence electrons are of interest. In the CP2K [44] code the Goedecker-Teter-

Hutter (GTH) pseudopotentials [55,56] are used.

2.2.4 The exchange-correlation functional

Unfortunately there is no default choice for the exchange-correlation (XC) func-
tional in DFT, instead the level of approximation has to be chosen based on the
properties being investigated, the system size and the computational resources avail-
able. The most simple choice of XC functional is the local density approximation
(LDA) which was proposed in the original Kohn-Sham DFT paper [50]. It is given

by the expression

Exlp(r)] = [ drelP(p(r)). (2.40)

where & is the energy density, a function dependent only on p(r). Although inex-
pensive computationally and reasonably accurate when calculating lattice parame-
ters it tends to overestimate binding energies by about 1 eV/bond.

The next level of approximation to the XC functional are the general gradient
approximation (GGA) functionals, such as PBE [57,58]. Here the energy density
is dependent on both the local density and the gradient of the density at the point r
and is given by

Eclp(r)] = [ drel® (p(x).|Vp(x)]). (2.41)

GGA functionals require differentiation of the density leading to more computa-
tionally expensive calculations than LDA functionals. Both types of functional are
unable to correctly predict the electronic structure of most materials, with the KS
band gap usually severely underestimated,often by a factor of 2 in the case of wide
gap insulators. They also tend to increase delocalization of holes and electrons in
defects and so cannot accurately predict charge trapping or charge transfer energy

level positions. In order to address these issues hybrid functionals can be introduced
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which separate the exchange and correlation parts of the functional and include a

portion of the exact exchange.

2.2.5 PBE(O-TC-LRC functional

The hybrid functional PBEO-TC-LRC [40] is used extensively throughout this work.
This functional has been introduced to allow efficient and accurate calculation of
exact exchange in I" point codes, such as CP2K, and provides large speedup of the
calculations without loss of accuracy. The exchange-correlation part of the PBEO-

TC-LRC functional has the form
Ei. = aE)I({F’TC + aEfBE’LRC +(1— a)EfBE + EEBE . (2.42)

PBEQ is the standard PBE hybrid functional [57, 58], with the proportion of exact

E)I(-IF,TC E)}:BE,LRC is

exchange, a = 0.25. is the truncated Hartree-Fock exchange,

the long range PBE exchange with a truncated Coulomb potential, EFBE is the PBE

PBE
EC

exchange and is the PBE correlation. The truncated Coulomb (TC) version of

the Hartree-Fock exchange takes the form
1
EFIC = 25 [[w)witn)serna i) Wi dnd, - 243)
i,

where the operator

% forrip <R
gic(r2) = (2.44)
0 for rip >R

and R is the cutoff parameter. The introduction of the cutoff is necessary in order to
converge the expression for the exchange energy when calculated at the I point [59].
The cutoff radius is constrained so that its maximum should be less than the radius
of the smallest sphere that fits inside the cell. This is imposed in order to prevent
pairwise exchange between distinguishable electrons in different cells. In practice
the constraint is imposed is that R < L/2 where L is the smallest lattice parameter
in an orthorhombic cell, though more care has to be taken in cells with different

symmetries. The long-range correction (LRC) is based on the spherically averaged
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PBE exchange hole [40]. This functional is similar to HSE06 [60—62] in that, unlike
many other range-separated hybrid functionals, it uses short-range exact exchange

and a long-range semi-local functional.

2.2.6 Auxiliary Density Matrix Method (ADMM)

The use of hybrid functionals, such as those described above, requires the calcu-
lation of the Hartree-Fock (exact) exchange, as given in equation 2.43. Equation
2.43 can be rewritten in terms of the density matrix, P (see equation 2.34), and the

2 electron integrals so that

EYF[P] = ——Z P (ik|1 ) (2.45)

ijkl
Calculation of the exact exchange scales to the fourth order with size of basis set
and thus significantly increases the computational cost. The auxiliary density matrix
method (ADMM) speeds up the calculation by replacing the orginal density matrix
P, with one that is smaller in size, ﬁ, known as the auxiliary density matrix. The

exchange energy can then be written in terms of P so that
E(P] = EXF(P)+ [EXF[P) - £ [P (2.46)

and then an approximation to the second term on the RHS of the expression can be
made so that

EIP) ~ B[P+ | EGOA[P] - ESOA[P (2.47)

The precise difference in the exchange energy between the original and auxiliary
densities is approximated by the difference calculated using the exchange part of
the GGA functional. Even though the absolute total value of the exchange energy
does significantly differ between the GGA and Hartree-Fock method, the change
in the exact exchange energy, as the density varies with each SCF step, is well
approximated by the GGA functional.

The primary density matrix is reconstructed using an auxiliary basis set which

is smaller than the primary basis set. The KS orbitals, y; are re-written using the
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auxiliary basis set as

Yi(r) = Y. Dij9;(r) (2.48)
J

where 5 ;(r) are the atomic orbitals of the contracted basis set. This means the
reduced density matrix

Pj=Y DyDj . (2.49)
k

The new KS orbital coefficients, D;;, are chosen so as to minimize the absolute
difference with the KS orbitals described using the primary basis set. Through the
use of ADMM and PBEO-TC-LRC [40] large systems of 100s of atoms can be

calculated in CP2K using hybrid functionals.

2.3 Calculating defect formation energies

In order to determine the thermodynamic stability of various defects and their
charge transition levels, the formation energies of neutral and charged defects in pe-
riodic systems are calculated using the method outlined by Lany and Zunger [63].

The formation energy [63] is given by the formula
AI_ID,q = [ED,q - Ebulk] + Zn(x.u(x + CI(EV + AEF) + Ecorr ) (250)
o

where AHp 4 is the formation energy of a defect D with charge ¢, Ep q and Epyy are
the total energy of the system with and without the defect, respectively, ny are the
numbers of species of each type removed (ny > 0) or added (ny < 0) to the bulk
cell, and py are their respective chemical potentials. Ey is the difference between
the energies of the bulk neutral system and the bulk system with a +|e| charge and
AEF is the difference between the Fermi level (electron chemical potential) and the

valence band maximum (VBM).

The term E.r 1s the correction to the formation energy that accounts for the
electrostatic interaction between periodic images of the charged defect, embedded
in a screening background charge (making the overall charge of the cell neutral).

This correction only applies to defects that are calculated in a system with periodic
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boundary conditions. In this thesis, the Lany and Zunger method is used to calculate
the charge correction term [64,65]. The charged defect is treated as a series of point
charges within a periodic lattice that has a uniform background screening charge,

with the correction given by the expression [64, 65];

1 qzaMad
Eeorr = [1— (1——)]—, 251
corr Csh P 2el ( )

where ¢ is the charge of the defect, € is the macroscopic dielectric constant of the
material, Og,q 1S the Madelung constant for a charge in a periodic system with the
system cell geometry, L is the linear supercell dimension (L = Q~1/3 where Q is the
cell volume), and cgy, is a constant that depends on the shape of the supercell [65].

For cubic cells ¢gn = 7/300\aq, and it is trivial to compute for tetragonal cells [65].

Calculations of defects in embedded clusters are also presented in this thesis.
The expression for the formation energy of these systems differs from that in the pe-
riodic case as there are no periodic image charges, or background screening charge,
to correct for. Instead a correction has to be applied as a result of the polarization
of the fixed charges in the cluster that are not allowed to relax when a charge is
introduced into the centre of the system. The formation energy of a defect in an

embedded cluster is given by the expression
AHES' = [ERU — EQWRT + Y natta + q(Ev + AEF) + Epol , (2.52)
o

similar to that for the periodic system except with a correction term, Ej,, as a result
of the polarization of the embedding charges. The correction [66] is based on the
Mott-Littleton [67] method and is defined as

2 1

q
Epol = 2 (1 — - 2.
pol 2R( 8) ( 53)

where ¢ is the defect charge, € is the dielectric constant and R is the radius of the
region allowed to fully relax. This energy is due to the interaction of the dipoles

induced on the rigid lattice of ions outside the ‘cavity’ of radius R when a charge is
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introduced to the centre of the cluster. Inside the cavity both ions and electrons are
able to respond to the polarization and therefore correctly contribute to the energy.
In the case of neutral defects the relaxation effects are much shorter ranged and

relate mainly to the displacement of nearest neighbours.

2.4 Nudged elastic band calculations

The nudged elastic band (NEB) method [68] allows the minimum energy path
(MEP) of a transition between an initial and a final state of a system to be cal-
culated. This has important applications in calculating the activation energy for
certain reactions in materials and can be used to calculate reaction and diffusion
rates. Here it is used to calculate the activation energy for hole polaron transitions
between precursor sites.

First the initial (Rg) and final (Ry) states of a system are determined and a
series of N+ 1 images are constructed, where the coordinates [Rg,Rj,...Ry_1,Ry]
define the images that form the elastic band. Often, an initial guess is to linearly
interpolate between the initial and final images which are then connected by elastic
bands that have a pre-set spring constant. In this implementation of NEB [68] the

tangent, 7;, to the path at each image, i, is then defined

- (2.54)

T =R —R;j if Vi <V <V

1.e. the estimate of the tangent is only taken between the image, i, and the adjacent
image with the highest energy, where V; is the energy of image i. This is designed to
prevent kinks occurring in the MEP. An exception occurs at the minima and maxima
of the MEP, as otherwise drastic changes in the tangent happen as the neighbouring
images change energies, leading to convergence problems. Instead, in this situation,

the tangent is given by a weighted average so that

Ti+AVl-maX T Ti_AVimin if VH—l > Vi
= (2.55)
TEAVIN L DAV GV < Vi
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where AV"™ is the maximum and AVl.mi“ is the minimum of the two expressions
Vig1 — Vil and [Vi—y — Vi.
In order to find the MEP the images have to be relaxed. The total force act-

ing on an image is the combination of the spring force acting along the tangent of

the MEP (F""™"¢| 1)- and the actual force of the system acting perpendicular to the

tangent (F§y5tem| ). Thus, the force acting on image i is
F; = FPe) L Feem| (2.56)
where
FP| ) = k(|Riy1 — Ri| — |[R; —Ri_1]) - %, (2.57)

and k is the spring constant and 1; = 7;/|7;| is the normalized tangent to the MEP.
Trivially, the actual force due to the system environment perpendicular to %; is
FPYM L = VV(R;) — [VV(R)) - £]%; . (2.58)
The MEP is then found by minimizing the force, F;, using a standard minimization
algorithm for each image. NEB works well, though it does have limitations. It
will only find the closest MEP to the initial guess and therefore can over estimate
activation energies. It can also under estimate barriers if corners are cut along the

MEP. As long as these limitations are considered it is powerful tool for calculating

energy barriers for transitions.

2.5 Time Dependent Density Functional Theory

Whilst DFT performs well in determining the ground state properties of a material,
in order to model phenomena such as photoabsorption, or other interactions with
electromagnetic fields, excited states have to be considered. Time dependent density
functional theory (TDDFT) allows calculation of the time dependent Schrodinger
equation from an initial known state where the external potential varies with respect

to time.
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2.5.1 Runge-Gross theorem

TDDEFT is justified by the Runge-Gross theorems [69], similar to how the
Hohenberg-Kohn theorems [49] underpin DFT. The first theorem states that two
external time dependent potentials, v(r,7) and V/(r,7), that differ by more than an

additive time dependent function, ¢(7), so that

v(r,t) =V (r,t) # c(t), (2.59)

uniquely map to different time dependent densities, p(r,z) and p’(r,z), that have
evolved from the same initial state, Wo(t = (). As they both evolve from the same

initial state, the potentials must necessarily be equal when t = 1.

The first step of the proof demonstrates that the current densities, j(r,#) and
j'(r,t) are uniquely determined by the potentials in equation 2.59. Using the

Heisenberg equation of motion

i% (W) 00t) (1)) = (¥(1)| i%o&) +[0(t), H{1)] |¥(1)) (2.60)

and the definition of the current density

Jj(r,r) = (P(@)] j(r) ¥ (1)) (2.61)

jr) = %[V D) S(r—r) {r'|—|r)8(r—1') (F| V] (2.62)

and then combining them, it can then be stated that

i%j(r,t) = (P(0)|[J(r), AO] [¥(1)) - (2.63)

Then, using the condition that both current densities evolve from the same initial

state Wy, the evolution of the difference in current densities can be evaluated using
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equation 2.63 where

i%[ﬂw) — (0] = = (Po| [J(r), A (t0) — H'(10)] [¥o) ~ (2.64)

— ip(r,10) V[v(r, 10) — V(1. 10)] - (2.65)

At this point a further condition is imposed by Runge-Gross, that the external poten-
tial can be expanded as a Taylor series about 79, meaning that, because of equation

2.59, there exists an integer value k whereby

ak

w[v(r,t) —V/(r,1)]|1=1, # constant, (2.66)

and when combined with equation 2.65 it becomes

plag! , ok ,
e [j(rt) = j(r,0)]i= = iP(I‘JO)V[w[V(I’Jo) —V'(1,00))i=1) #0 . (2.67)

This completes the initial proof by showing that the 2 current densities differ im-
mediately as time evolves from #y. Now all that remains to be shown is that the

different densities also digress immediately after the intitial time.

The final step of the proof uses the continuity equation

G .
Spes) ==V j(r.1) (2.68)

which when differentiated £+ 1 times with respect to ¢z, and combined with equation

2.67 gives

ok+2
W[P (r,6) = p'(1,0) )=y = =V - (p(r,20) Vit (r)) , (2.69)

evaluated at the time r = #;. It can be demonstrated that the densities will differ if

the RHS of the equation can be shown to be non-zero. If instead it is asserted that

— V.- (p(r,19)Vug(r)) =0, (2.70)
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the proof can be completed via reductio ad absurdum. Using equation 2.70 and ap-
plying the divergence theorem, specifically one of the Green’s identities, generates

the expression

J[[ dru¥ - (p(r10)Vue(0) = f dS-p(e 100 Vielr)  @71)
— / / Vdrp(r,to)yvuk(r)|2 (2.72)

The surface integral over an infinite surface on the RHS of this equation must be
zero as both uy(r) and p(r,#p) will decay to 0. If the LHS is also zero as asserted in
equation 2.70, this would then require |Vuy (r)|?> = 0, which directly contradicts that
uy(r) # constant from equation 2.67. This completes the proof and demonstrates

that the densities are uniquely determined by the potential.

2.5.2 Time dependent Kohn-Sham equation

Analagous to the Kohn-Sham equation, a time dependent Kohn-Sham equation can
be derived from the action integral as shown in Runge-Gross’s original paper [69].

The action integral is given by the expression

AW] = : dt (¥ i% A0 W) | 2.73)
which is stationary when the wavefunction, ', is the solution to the time dependent
Schrodinger equation. It can be shown that the action integral is an exact functional
of the time dependent density, A[p], and so the exact density can be calculated when
0A[p]/dp(r,t) = 0. The functional derivative takes the form of the Euler equation
for a set of indepedent particles experiencing an effective potential and so we can
calculate the single particle orbitals, y;(r,7), from the time dependent Kohn-Sham
equation

ig‘lfi(l‘,l‘) = (—%VZ +veff(r,t,p(r,t))) v;i(r,1) (2.74)

where veg(r,1, p(r, 1)) is the effective potential given by

Veff(rvfap(l’;f)) = Vext(rat) + VHar(ral) + ch(P (I‘,l‘)) (2.75)
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where vex(r,?) is the external potential which includes the contributions from the
ions and the time depednent perturbing field, vy, (r, ) is the time dependent Hartree
potential and v (p(r,7)) is the time dependent exchange-correlation potential. The

time dependent density can then be calculated from the single particle orbitals

N
p(r,t) =Y yi(r,1)] (2.76)
i=1

which can be solved self-consistently.

2.5.3 Linear response TDDFT

Having demonstrated that TDDFT is founded on a solid theoretical base, it is im-
portant to extract from it measurable, observable values. Linear response TDDFT
(LR-TDDFT) allows the calculation of excitation energies and oscillator strengths
for optical transitions in a system, thus allowing comparison with experimentally
measured photoabsorption spectra, a common tool for examining defects in solids.
The full treatment has been treated in many reviews [70,71], but a brief overview is

given here.

The starting point for LR-TDDFT is examining the linear response of the den-

sity experiencing a small time dependent perturbation, 8v(r,t),

p(r,1) = po(r) +8p(r,1) . (2.77)

This can then be used to define the density response function

ronN op(r,z)
X(r,lyral)—mto (2.78)

which is related to the dynamic polarizability. This is significant as finding the
excitation energies of the system experiencing an external field maps onto the prob-
lem of finding the poles of the Fourier transform of the density response function,

x(r, r, ®). In the Casida formulation of LR-TDDFT the excitation energies, @, are
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the solution to the matrix eigenvalue problem,

A B||X 1 0] |X
| = . (2.79)
B* A*| |Y 0 -1 Y
where
Ajac,jpr = 5ij5ab501(8a0 — i) + (ia fiar +ffcf |jb) (2.80)
Bius,jbr = (ial frar + fre' |Jb) - (2.81)

Here, fiar = 1/|r — 1’| and in the adiabatic approximation

- 8%Exc ]
= 5po (1))

(2.82)

where Ey. is the exchange correlation functional used in the ground state DFT cal-
culation. This is a common approximation for calculating one-electron transitions
of semi-localized states. It is interesting to note that the RHS of equation 2.80 con-
sists of the Kohn-Sham energy eigenvalue differences and a correction due to the
electron repulsion and exchange-correlation 2 body terms. Equation 2.79 can be
further simplified by implementing the Tamm-Dancoff approximation [72] which
sets B = 0, which has the effect of neglecting the contribution of the relaxation of
the unnoccupied ground state, which in many systems can be neglected with little

loss of accuracy. This means that equation 2.79 becomes
AX = oX . (2.83)

Not only can the excitation energies, ® be extracted, but the oscillator strengths can
also be determined from the eigenvectors X . This method has been used to calculate

the optical absorption spectra of oxygen vacancies in LaAlOs3.



Chapter 3

Spectroscopic properties of oxygen

vacancies in LaAlOs

3.1 Introduction

Understanding the structural and electronic and properties of point defects in com-
plex oxides, and the mechanisms for controlling their properties, facilitates the de-
velopment of new functional materials with tuneable performance characteristics.
Not surprisingly, this is an area of active experimental, theoretical and computa-

tional research [9,73].

LaAlO3 (LAO) is of interest because its relatively large band gap, reported to
be between 5.6 and 6.3 eV [74,75], may allow oxygen vacancies in several charge
states resulting in a range of optical absorption energies. LAO is also used as a
substrate for other metal oxide thin films and has potential application as a gate
dielectric in complementary metal-oxide-semiconductor (CMOS) devices [76, 77].
Defects in the gate oxide can act as carrier traps and scattering centres and under-
standing their properties is key to controlling the quality and functionality of these

oxides.

The bulk of cubic LAO can be represented as a sequence of positively and
negatively charged atomic planes [LaO]" and [AlO,] ™, respectively, oriented per-
pendicularly to the [001] direction. Such polar structure makes LAO thin films

a functional building block which, for example, can be used as source of electric
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field in perovskite hetero-structures. A well-known example utilizing this princi-
ple is the LaAlO3/SrTiO3 (LAO/STO) interface, in which mismatch of the SrTiO3
and LaAlO3 polarities results in the formation of two-dimensional electron gas
(2DEG) [12]. This phenomenon was originally attributed to the polar catastro-
phe [8,9, 13-15] and defects in the STO [21]. Recent studies highlighted the im-
portance of the cation intermixing [10, 11, 16], the LAO stoichiometry [17, 18] and
oxygen vacancies (Vg) in LAO on the electronic properties [78] of the LAO/STO
interfaces. Zunger et al. [19] suggest that the conductivity is a result of an interplay
between surface oxygen vacancies in LAO and cation antisite defects at the inter-
face, whilst Huijben et al. [20] have shown that a layer of SrCuQO, at the LAO/STO
interface suppresses oxygen defects and increases mobility, allowing control over

the electronic properties through defect engineering.

LAO has a perovskite lattice structure. It has a rhombohedral (R3c) structure
at room temperature and undergoes a phase transition to a cubic (Pm3m) structure
at ~839 K [79,80]. When grown as a thin supported film, rhombohedral LAO is
considered to be pseudocubic [81], with oxygen octahedra rotations in an antiphase
order. However, in order to achieve a crystalline, as opposed to amorphous, thin
film of LAO, annealing at or above 650°C is required [80, 82, 83], which is above
the rhombohedral to cubic phase transition temperature. It is understood that details
of the LAO structure in thin films and multi-layered hetero-structures depend on the

lattice and polarity mismatch with the substrate and over-layers.

Experimentally, defects in LAO have been probed using photoluminescence
(PL) spectroscopy [84, 85] and electron spin resonance (ESR) [43, 86]. Kawabe et
al. [84] excited LAO using a 266 nm pulsed laser and observed slow emission at
2.5 eV (490 nm), which they attributed to oxygen vacancies, due to its sensitivity
to the oxygen content. In order to more directly probe defect states in the band
gap, Chen et al. [85] used sub-bandgap excitation (400 nm) PL spectroscopy. They
observed sharp emissions at 1.7 and 1.8 eV and a broad emission band at 1.9-2.2 eV.
They suggested that the excitations occur from the O 2p valence band to states

within the gap, and therefore PL is a result of decay from these levels. In the ESR
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experiments [43, 86] a broad signal is attributed to an F like centre, which was
cautiously associated with a charged oxygen vacancy (Vgr). Accurate modeling
of the neutral and charged oxygen vacancies in LAO will allow more confident
assignment of these transitions and will help to predict their behavior in the presence

of external stimuli.

Previous computational studies of defects in LAO include calculations of oxy-
gen vacancies in cubic LAO using density functional theory (DFT) and general-
ized gradient approximation (GGA) functionals [87, 88] and well as more recent
studies [89-91] performed using the hybrid density functional HSE06 [60]. Due
to well-known deficiencies of GGA density functionals, the band gap obtained in
these studies (3.1-3.8 eV) was underestimated, while the hybrid density functional
predicted the band gaps in the interval of 5.0-5.9 eV, which is in a good agreement
with experiment, though the higher value of 5.9 eV was only achieved through in-

creasing the percentage of exact exchange to 32% [91].

Predicted positions of the occupied vacancy levels vary significantly, depend-
ing on the types of the density functional and the size of the simulation supercell.
Choi et al. [91] found the V% one-electron energy level to lie 3.27 eV above the
valence band maximum (VBM), with the occupied V(lf level lying lower in en-
ergy at 2.96 eV, whereas El-Mellouhi et al. [90] predicted the neutral level to be at
2.8 eV with the V%)’L level lying higher at 3.56 eV above the VBM. Thus, there is
lack of consensus not only on the positions of the energy levels of the neutral and
charged oxygen vacancies with respect to the valence band maximum (VBM) and

conduction band minimum (CBM) but also on the ordering of these levels.

In this chapter, the electronic and geometric structure of the neutral and
charged oxygen vacancies in the band gap of LAO are calculated using DFT with
hybrid functionals and periodic and embedded cluster methods. Time dependent
density functional theory [69,70] (TDDFT) and an embedded cluster approach are
used to calculate the excitation energies of both neutral and charged oxygen vacan-
cies, improving on the one electron energy levels previously calculated. The ESR

parameters are also calculated and compared to the available experimental data. To
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compare the results presented in this chapter to the previous computational studies,
and evaluate the difference between bulk and supported thin-film LAO, calculations

were performed for both rhombohedral and cubic lattice structures.

3.2 Methodology

In order to predict experimentally measurable properties of oxygen vacancies, such
as the EPR and optical absorption spectra, it is necessary to use more advanced
electronic structure methods than DFT which are capable of dealing with excited
states. Due to the implementation of TDDFT in the Gaussian09 package [92], an
embedded cluster approach was adopted. The embedded cluster calculations were
benchmarked against periodic calculations, carried out using CP2K [44]. This sec-
tion starts with the theoretical background of embedded cluster calculations and
its relative advantages and disadvantages when compared to periodic calculations.

This is followed by the specifics of the calculation setups.

3.2.1 Embedded cluster method theoretical background

In the embedded cluster method, a ‘region of interest’ treated quantum mechanically
(the QM region in Fig. 3.1) is embedded into an electrostatic potential produced by
the rest of a lattice, which is composed of pseudopotentials and point charges [93].
The embedded cluster method allows DFT calculations of defects in crystals, in-
cluding local relaxations, without the issue of image charges that are present in
periodic calculations. Also of interest is the well established implementation of
TDDFT in finite system quantum chemistry codes, such as Gaussian09 [92], allow-
ing more accurate treatment of electron transitions to excited states. However, in
order to accurately model the crystal system, the electrostatic potential of the in-
finite crystal has to be reproduced at the centre of the finite cluster, the details of
which are given in [94,95] and are breifly outlined here.

First a unit cell has to be selected (which can be a supercell of primitive cells),
equivalent to the repeated cell in a periodic system. In order to recreate the crys-
tal potential at the centre of the cluster, which is composed of the unit cells, point

charges are positioned at lattice positions, defined by the lattice vectors of the crys-
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Figure 3.1: Schematic setup for the embedded cluster calculations. The central region is
treated quantum mechanically (QM region shown is a cross section of that used
in the calculations). It is embedded into the long-range electrostatic potential
of the infinite lattice, represented by a finite number of point charges, and the
short-range potential modeled using large radius effective core pseudopoten-
tials (ECPs) at the interface between the QM region and the point charges.

tal, so as to minimize the multipole moments of the system. By eliminating mul-
tipole moments, up to some multipole M, the Ewald potential at the centre of the
cluster converges to the Ewald potential of the infinite lattice, as the system size

increases.

Although the ability to perform TDDFT calculations was the primary reason
for using an embedded cluster approach, it also has some advantages over periodic
codes when calculating defects. The embedded cluster method eliminates interac-
tions between charged defects and prevents ion relaxations being confined by sym-
metry, which occurs in calculations with periodic boundary conditions. However,
the number of ions able to be relaxed is still limited by considerations of computa-
tional time and the size of the quantum region, and the formation energy of charged

defects still requires a correction due to lattice polarization (see section 2.3).

Here a rigid ion model has been adopted, where ions outside of the quan-

tum mechanical region and pseudopotential region are not allowed to relax, and are
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treated as point particles in order to produce the embedding potential. QM/MM em-
bedding models define a second region surrounding the quantum region where ions
are treated using classical potentials, which goes some way to correcting for the
polarization energy of the surrounding lattice when a charged defect is introduced.
Use of a rigid ion model for all ions has been shown to affect the calculated opti-
cal absorption energies when compared to treating the polarization via relaxation
of the ions [96], though in [96] a smaller quantum region was used, and optical
transition energies were approximated by one electron energy levels. In this work
use of the rigid ion model outside the quantum region was seen as sufficient, as pre-
dicting the optical absorption spectra relies more on calculating accurate electronic
structure, with less interest in the formation energies of oxygen vacancies. Instead
it was found that the use of larger quantum regions was required to prevent con-
finement of the wavefunction widening the Kohn-Sham energy levels and leading
to spurious energies for the optical transitions, though it also allows a greater region
of polarization response. The stability of the calculated band gap energies (the dif-
ference in energies between the valence and conduction band Kohn-Sham energy
levels) between systems of differently charged oxygen vacancies, which deviate by
less than 0.05 eV, suggests that the use of a rigid ion model will not greatly affect
the optical absorption energies. The comparison with the relative Kohn-Sham lev-
els of the neutral and charged oxygen vacancies calculated using a periodic model
also demonstrates good agreement with the embedded cluster model, showing the

approximation is reasonable.

3.2.2 Embedded cluster method calculation setup

Here, the bulk LAO was represented using a spherical nano-scale cluster con-
structed of the crystal unit cells. Each unit cell was modified so that their multipole
moments, M, were zero up to M=4 (hexadecapole), as described above [94, 95].
This approach guarantees that the electrostatic potential inside a finite nano-scale
cluster converges absolutely to the Ewald potential in the infinite crystalline lattice
as the size of the cluster increases. In this work, the nano-cluster radius was chosen

to be 30 A, which provides the convergence of the electrostatic potential to within
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0.02 V of the Ewald potential inside the sphere of 11 A in the central part of the

nano-cluster.

The QM region at the center of the nano-cluster contains 197 atoms and has
the chemical composition LazyAl33013;. The QM region is chosen so that it is
symmetrical, as close to stoichiometry as possible whilst still fully coordinating all
lattice atoms in the 1st and 2nd atomic shells near the vacancy site and large enough
to minimize wavefunction confinement, which noticeably affects the value of the
band gap for small QM regions. In order to confine the electron density to the QM
region all cations also have to be capped with oxygens. Although it is desirable
to build as small a quantum region as possible in order to reduce calculation time,
when smaller cells were tested confinement of the wavefunction increased the size
of the band gap by approximately 2 eV above the experimental band gap. Smaller
quantum regions also decreased the number of atoms able to relax after the addition
of defects to the system, leading to unrealistic relaxation energies and polarization

of the system.

The QM region is surrounded by the shell of the interface atoms represented by
large core effective pseudo-potentials (ECP) in order to confine the electron density
within the QM region (see Fig. 3.1). The width of this shell is ~10 A, which allows
one to use diffuse basis set functions for the atoms of the QM cluster and, yet, avoid
spurious effects associated with electron transfer outside the QM region. All other

atoms of the nano-cluster are represented by point charges.

All oxygens species in the QM region are treated using the full electron 6-311G
basis set [97] as are the Al [98]. The La inside the QM region were described by
a contracted version of the LANLOS basis set [99] and the LANL2DZ ECP [100]
from the EMSL basis set exchange [101].

Outside the QM region, the La and Al ions were described by ECPs, as they
both have a formal charge of +3 |e| and, thus, require ECPs in order to prevent the
artificial polarisation of the QM region electron density. The Al ions are modeled
using the LANL2 ECP [100], and the La ions are modeled using the LANL2DZ
ECP [100] from the ESML basis set exchange [101].
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The geometrical structure of the material in the electronic ground state was
determined by minimizing the total energy of the system with respect to the coor-
dinates of atoms out to 5.72 A from the central Al in the cluster. This allows all
nearest neighbour La, Al and O to the vacancy site to relax. TDDFT calculations
and the Frank-Condon approximation were used to calculated the excitation ener-
gies and relative intensities. All calculations were carried out using the Gaussian09

package [92].

For all calculations using the embedded cluster method the HSE06 [102] func-
tional was used, which was shown to accurately predict the band gap and, as such,
allow comparison with previous results. The self-consistent field (SCF) conver-
gence criterion is set to an energy difference of 10~7 Hartree. For the geometrical
relaxations the convergence criterion is set to a force of 1.7 x 10~ Hartree/Bohr on

the atoms being relaxed.

3.2.3 Periodic calculations

The bulk properties of the cubic and rhombohedral LAO were calculated in the
I'-point using the 135 and 270 atoms super cells, respectively, and the CP2K [44]
package. The PBEO-TC-LRC [40] functional (see section 2.2.5) was used, with a
cutoff radius of 5.5 A, due to the computational expense of running calculations us-
ing HSEO6 [102] on the larger rhombohedral system. The form of truncation used
means that the calculations ran faster in CP2K using PBEO-TC-LRC than HSEQ6.
However, the energy level ordering and molecular orbitals agreed well with calcu-
lations performed using the HSEO6 functional for the cubic system, and the 2 func-
tionals are similar in form. The DZVP-MOLOPT-SR-GTH [103] basis sets were
used for both O and Al, along with the Goedecker-Teter-Hutter (GTH) pseudopo-
tentials [55,56]. The converged plane wave energy cutoff was set to 400 Ry and the
SCF convergence criteria was set to a maximum energy difference of 10~® Hartree
between steps. All calculations were performed at the I'-point. All geometry re-
laxations were performed using the conjugate gradient optimizer with a maximum

force convergence criterion of 0.001 Hartree/Bohr for each atom.
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Figure 3.2: The one electron energy levels for the neutral and charged oxygen vacancies
from the periodic calculations of the rhombohedral and cubic phases. The num-
bers show the positions of the Kohn-Sham energy levels calculated with respect
to the top of the valence band for each system, which have been aligned at 0.0
eV. The band gaps shown in larger font are from the defect free calculations.
The o and 8 symbols refer to the electron spin state of the V10+, in this diagram
the o state in the gap is occupied while the 3 is unoccupied.

3.3 Results and discussion
3.3.1 Ground state calculations

3.3.1.1 The perfect lattice

Cell optimizations of the perfect lattice for the cubic phase were performed using
PBEO-TC-LRC. The calculated lattice parameter of a = 3.79 A agrees well with
the experimental lattice parameter of a = 3.8108 A [79], measured at 830 K after
its transition from the rhombohedral phase. Due to the computational expense of
performing cell optimizations on larger systems using hybrid functionals, the ex-

perimental lattice parameters were used for the larger rhombohedral supercell.

The one electron band gaps calculated using both the periodic and embedded
cluster methods are shown in Fig. 3.2 and Fig. 3.3. The optical band gap of rhom-
bohedral LAO is 5.6 eV, as measured by Lim et al. [74] using UV spectroscopic
ellipsometry. The reported absorption spectra show a sharp absorption edge, as ex-
pected for a direct band gap material and no sharp peaks associated with d-state to
d-state transitions were observed, suggesting that the VBM is composed of O 2p

orbitals. The band gaps of amorphous thin films of LAO grown by molecular beam
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Figure 3.3: The one electron energy levels and band gaps from the embedded cluster cal-
culations for the cubic and rhombohedral LAO phases (energies not to scale).
Arrows show the optical transitions, labeled using Roman numerals and further
described in the text. The o and B symbols refer to the electron spin state, in
this diagram the o state in the gap is occupied while the 8 is unoccupied.

deposition (MBD) have been measured by Cicerella et al. [75] to be 5.84-6.33 eV
depending on film thickness. It is possible that these films have a pseudo-cubic
crystalline structure as they were annealed at 900°C, i.e., well above the 650°C,

which other groups have determined is necessary for amorphous films to become

crystalline [80, 82, 83].

The calculated one electron band gaps of rhombohedral LAO (5.74 and 5.98 eV
for the periodic and embedded cluster calculations, respectively) are both within the
range set by the experimental measurements, and only differ by ~0.2 eV showing
good agreement between these methodologies. As can be seen in Fig. 3.4, the main
orbital contributions to the VBM and CBM are consistent with experiment [74] with
the VBM being constructed from O 2p orbitals and the CBM being made of La d
orbitals. This was found to be the case for both the periodic and embedded cluster

calculations.

The band gap of the cubic LAO (5.45 and 5.62 eV for the periodic and embed-
ded cluster calculations, respectively) is smaller than that of the rhombohedral LAO
by ~0.3 eV, consistent across both the periodic and embedded cluster calculations.
The band gap values are close to those of Choi et al. [91], who predict 5.92 eV for

the rhombohedral and 5.30 eV for the cubic phases. Choi et al. also show a similar
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Figure 3.4: The projected densities of states (PDOS) for the defect free bulk system of
cubic LAO calculated using the periodic method. The character of the VBM is
dominated by the O p and the CBM by the La d orbitals. The energies are with
respect to the top of the valence band. The black dashed line indicates the Fermi
energy position at the top of the valence band.

band gap shift relationship between cubic and rhombohedral structures to the results

given in this paper.

3.3.1.2 The oxygen vacancy

According to these calculations the two electrons associated with a neutral oxygen
vacancy in LAO, both cubic and rhombohedral, localize on the vacancy site (see
Fig. 3.5a). The corresponding doubly occupied energy level lies approximately in
the middle of the band gap. This localization character suggests that the vacancy
can be classified as an F-center. Similar charge localization is seen in other non-
reduceable metal oxides including Al,O3 and other perovskites [104]. The largest
atomic orbital contributions to the vacancy state are from the nearest neighbor Al
p orbitals, the lobes of which point towards the vacancy, with the second largest
contribution being from the nearest neighbor La d orbitals.

The formation energies of the neutral and charged oxygen vacancies were cal-

culated using the method outlined in section 2.3, using both periodic and embedded
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(b)

Figure 3.5: (a) The directions of the ion displacements induced by a positively charged va-
cancy are shown by the arrows. The Lal-La2, Al1-Al2, and O1-02 distances
are given as La-La, Al-Al, and O-O distances, respectively, in Table 3.1. (b)
The one-electron state of the neutral oxygen vacancy calculated using the pe-
riodic method in cubic LAO. Characteristically of a F-center vacancy type,
electrons are trapped on the vacancy site.

cluster methods, though the charge correction term does not apply to the embedded
cluster calculations. The chemical potential of oxygen was taken as half of the total
energy of the O, molecule in the triplet state. For the embedded cluster calculations,
the total energy of an isolated O, molecule was calculated using Gaussian09 and the
same oxygen basis sets, functional, and convergence criteria as for the LAO cluster.
In the periodic method calculations, the energy of the molecule was calculated us-
ing an orthorhombic 20 x 22 x 25 A3 cell, with the same calculations parameters as
those used for the bulk LAO. Due to the large size of the cell and the high dielectric
constant of LAO the energy correction due to the interaction between periodically

translated charged defects is negligible (<0.1 eV).

For rhombohedral LAO, the V% formation energy was calculated to be 6.5 eV
from the periodic calculations and 7.2 eV from the cluster calculations. The dif-
ference of 0.7 eV between the formation energies calculated by the two methods
is largely due to the difference in the oxygen chemical potential reference energy.
As stated earlier, the oxygen chemical potential is taken as half the energy of an

O, molecule, which is used to model the typical oxygen environment of LAO dur-
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ing growth. However, the binding energy of the molecule is different in the two
methods. If instead, the energy of a single atomic oxygen is taken as the chemi-
cal potential, the difference in formation energies between the 2 methods drops to
0.3 eV. In the end, the oxygen chemical potential of half an O, molecule is chosen

so as to make comparisons with previous studies.

The values for the V% formation energies in rhombohedral LAO presented here
are lower than the formation energy of 8.3 eV reported by Mitra et al. [89]. The ref-
erenced calculations were performed using the HSEO6 functional, however, only an
80 atom supercell was used, which would limit the relaxation around the defect site
compared to the larger cell of 270 atoms used in this work. In the same paper, using
the PBE functional, it is shown that supercell size has a large impact on formation
energies, even for neutral vacancies. This suggests the formation energies calcu-
lated for the larger cells are more reliable. The formation energies of the oxygen
vacancies as a function of Fermi energy are shown in Fig. 3.6. (It must be clarified
that this picture is only valid when the LAO bulk is attached to an idealized Fermi
sea of electrons, generally provided by a metal or semiconductor electrode.) Even
S0, it can be seen that thermodynamically either V% or V20+ are the most stable de-
fects at various Fermi energies within the band gap, with V%)+ having the lowest
formation energy if the Fermi level is near the top of the valence band. If the Fermi

level exceeds 3.6 eV above the VBM, VOO has the lowest formation energy.

This is relevant to the LAQO/Si transistor devices, where valence band offsets of
2.86 eV have been measured using x-ray photoelectron spectroscopy [77], suggest-
ing that charged oxygen vacancies will form upon contact with undoped silicon. In
turn, if the Si channel is n-doped, i.e., the Fermi level is 3.8 eV or more above the

LAO VBM, the vacancies can trap electrons, which would affect device operation.

The direction of vacancy-induced atomic displacements (see Fig. 3.5) are as
expected for the ionic system, and the magnitudes of these displacements are in
good agreement between the cluster and periodic calculations. The small displace-
ments of ions around the neutral vacancy are consistent with those reported ear-

lier for LAO [91] and is consistent with calculations of similar perovskites such as
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Figure 3.6: Formation energies of VOO, Vgr, Vzo+ as a functions of Fermi energy above the
VBM for the periodic method calculations of thombohedral LAO.

SrTiO3 [105]. The larger displacements, especially those of the Al species, induced
by the positively charged vacancies, are consistent with other DFT studies of oxygen
vacancies in LAO [91]. This also explains the higher formation energies reported
by Mitra et al. [89]: in a smaller supercell lattice relaxation is constrained by the
periodic boundary conditions and the final energy of the system is correspondingly
higher.

Both the periodic and cluster methods (see Fig.3.2 and Fig.3.3) agree on the
ordering of the one electron energy levels, with the V(l)jL level lying below the VOO
level and the unoccupied V(Z;r level lying the closest to the CBM. These results are
consistent with those reported by Choi et al. [91], but disagree with those published
by Mitra et al. [89] who calculate the VlojL level to lie 1.34 eV above that of the
VOO. This difference could be attributed to a smaller super cell used in Ref. [89]
(an 80 atom supercell) meaning stronger defect-defect interactions for the charged

vacancies. In all calculations reported in this chapter, the one-electron band gap
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Table 3.1: Interatomic distances (in A) and magnitude of vacancy-induced displacements
(as % change in interatomic distance from bulk) in LAO. Negative and positive
values of the displacements indicate relaxation towards and away from the va-
cancy site, respectively. A diagram defining the nearest neighbor distances is
shown in Fig.3.5a.

Embedded cluster Periodic
Pm3m R3c Pm3m  R3c
Inter-atomic Al-Al  3.82 3.79 379  3.79
nearest neighbor La-La 5.42 5.38 536  5.36
distances (A) 0-0 540 535-537 536 5.36
V) ALAl 25 2.0 02 -0.0
La-La 0.7 0.2 -0.2 -0.8
Maximum 0-0 -0.8 -0.7 -0.2 -0.9
displacements V}f Al-Al 2.7 2.8 4.5 54
from perfect La-La 2.8 24 1.9 1.7
lattice (%) 0-0 -2.7 -2.3 -2.6 -2.8
V?f Al-Al 7.9 7.4 8.0 9.5
La-La 4.3 4.5 4.2 4.2
0-0 -6.0 -6.5 -6.1 -6.2

does not change with respect to the charge of the defect by more than 0.05 eV as
a result of large enough cluster and cell sizes to mitigate confinement and defect-

defect interactions.

The possibility of a stable Vé)* state existing in LAO was also investigated.
The extra electron was not found to localize at the vacancy site but, instead, oc-
cupied delocalized states at the bottom of the conduction band. For comparison,
V%)* and V(z)* were shown to exist in HfO,, which has band gap and dielectric con-
stant similar to those of LAO [106]. These vacancy charge states are stabilized by
displacements of Hf ions near the vacancy site by 4% and 8% of bulk separation
distance, for Vé’ and Vé’, respectively. The polarization of the lattice creates a

potential well for the electrons, i.e., these localized states are polaronic in nature.

In order to rationalise this difference between HfO, and LaAlOs, the follow-
ing can be considered. In HfO,, the oxygen vacancy is surrounded by four Hf**
ions. The electrons in the negatively charged vacancy can be attributed to the Hf
atomic d-orbitals, which contribute to the bottom of the conduction band but, due

to the vacancy-induced atom displacements, form localized gap states. Similarly,
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in LaAlOs, the La d orbitals form the bottom of the conduction band. However,
their displacements pattern near an oxygen vacancy is very different from that of
Hf in HfO,. In particular, each Hf** in HfO, is coordinated by eight O?~ ions,
which can be considered as vertices of a distorted cube; in fact, HfO, adopts a
monoclinic structure at low temperatures. Once an oxygen vacancy is formed, the
Hf coordination number reduces to seven and an already low-symmetry potential
energy surface becomes even more distorted, which makes large displacements of
Hf atoms possible. This effect is assisted by the fact that formation of an oxygen
vacancy in HfO,, as well as in ZrO;, induces a significant charge redistribution at
the vacancy site [107, 108].

In contrast, the La** ion in LAO is confined by 12 O®~ ions and eight AI**
ions, which create a symmetric, compact and rigid coordination shell. Formation
of a neutral vacancy does not change the character of the charge distribution and,
while it affects the symmetry and rigidity of the La environment, the effect is not
strong enough to promote significant displacements of La’* from its ideal lattice
site. Hence, the perturbation exerted on the electronic states at the bottom of the
conduction band is not significant enough to induce localization of these states at

the vacancy site and subsequent formation of V(l)*.
3.3.2 Defect properties

3.3.2.1 Optical absorption spectra
Optical absorption spectra for V% and V(lf have been calculated using the embed-
ded cluster method and TDDFT, as implemented in Gaussian 09 [92]. The natures
of the transition states and the orbitals have also been identified. The relative inten-
sities of the peaks are determined by the oscillator strengths of the transitions, the
lines are then broadened using a Gaussian function with a full width at half maxima
of 0.2 eV. TDDFT calculations of transitions in the V20Jr case did not demonstrate
any sub-band-gap excitations with non-zero oscillator strengths, and as such ab-
sorption spectra are not shown.

The vacancies do not perturb the valence band states as strongly as they do

the conduction band states. Hence, the VBM states remain delocalized and the
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Figure 3.7: The calculated absorption spectra for V% in the cubic (a) and rhombohedral (b)
phases. The transitions have been broadened using Gaussian functions with a
FWHM of 0.2 eV. The black lines show the total spectra, while the colored lines
show the contributions due to the individual transition types. Dashed lines are
used for visibility of degenerate transitions. All labels are defined in Fig. 3.3.
The label I refers to the first, or lowest energy transition in the cubic system,
Ia and Ib refer to the 2 lowest energy transitions of the rhombohedral system,
which unlike the cubic system are non-degenerate. This is repeated for the 2nd
(IT) and 3rd (III) transitions.
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Cubic

Figure 3.8: The molecular orbitals involoved in optical transitions from the vacancy state
to states in the conduction band of cubic (left) and rhombohedral (right) LAO.
The same molecular orbital of the vacancy can be seen in Fig. 3.5b, here the
vacancy lies behind the Al as viewed along the 001 crystal axis. The Dy, point
symmetry of the defect can clearly be seen. The symmetry forbidden transitions
(top) are to unperturbed e, states at the bottom of the conduction band. The
highest intensity transitions (bottom), I for cubic and Ia for rhombohedral, are
allowed dipole transitions from an A, to an E, state.

transitions between them and the localized vacancy states have low intensities. It is
also evident that the transitions from the O p-orbitals at the top of the valence band
to the vacancy state are prohibited by symmetry considerations.

The optical absorption spectra calculated for the neutral oxygen vacancies in
the cubic and rhombohedral phases are shown in Fig. 3.7. Each spectrum is com-
posed of several absorption peaks corresponding to transitions from the doubly oc-
cupied vacancy state (shown in Fig. 3.5b) to semi-localized states in the conduction
band consisting primarily of La d orbitals. The spectrum for the rhombohedral
lattice has a larger number of non-degenerate excited states, as expected for the
lower-symmetry system. This spectrum is also shifted to the higher absorption en-
ergies by ~0.2 eV. This shift can be attributed to the increased splitting of the e,
and 7, manifold of the La d-states caused by the lattice distortions, which shifts
the e, states, forming the bottom of the conduction band, up and increases the band
gap (see Figs. 3.3 and 3.4). In order to ensure that the composition of the molec-
ular orbitals obtained in the cluster calculations is not affected by the finite size of
the quantum region, they were compared to the molecular orbitals obtained in the

periodic method calculations and were found to be in good agreement.
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As discussed above, the projected density of states (PDOS) of bulk LAO, cal-
culated using the periodic method, shows that the bottom of the conduction band
of cubic LAO is composed of ¢, states, with equal contributions from the d. and
d,>_,» atomic orbitals, which are degenerate (see Fig. 3.4). The 1, states are ~2.5
eV higher in energy than the e, states. This is consistent with the crystal field
splitting for a 12-coordinated La site, where the 12 nearest neighbor O~ ions are
located along the 7, lobes. The bottom of the conduction band of rhombohedral
LAO is also composed of e,-like states, though in this case the e,-like states lie 0.2
eV higher in energy and there is a small splitting between the d,» and d,»_» atomic
orbitals. This is due to the difference in crystal field: the rhombohedral system can
be produced by a slight distortion of the cubic lattice along with rotations of the
oxygen octahedra. There is still a significant splitting between the e, and 75, states
as the local environment of the La ions is similar between the cubic and rhombohe-
dral cases. The rotation of the oxygen octahedra has a larger effect on the energies
of the 1, states, as the lobes of these orbitals no longer point directly towards the O

sites, which causes the energies of the d,y, dy; and d,, orbitals to split.

The inclusion of the neutral vacancy perturbs certain states within the conduc-
tion band and, though the e,-15, splitting remains dominant, there is some mixing of
the states. In the cubic system, a contribution from the d,, orbital to some states at
the bottom of the conduction band (~7.2 eV) is observed. These states are localised
in the vicinity of the vacancy, as shown in Fig. 3.8. The point symmetry of the
defect is Dy, with the irreducible symmetry of the vacancy state orbital being Ay,
in character. This means the only symmetry allowed dipole transitions are to states
with an irreducible representation of E, or Ay,. Where the perturbation of the states
in the conduction band are small, the molecular orbitals display gerade symmetry
(see Fig. 3.8) and transitions are forbidden to these levels, resulting in the gaps in

the absorption spectra.

The lowest energy absorption peak at 3.3 eV (transition I) in the cubic phase
consists of two transitions to states where the majority of the wavefunction is com-

posed of the d orbitals of the nearest neighbor La ions to the vacancy (see Fig. 3.8).
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These orbitals display E, symmetry and are therefore dipole operator allowed tran-
sitions. The second peak (transition II) with excitation energies of 3.5 eV involves
states with a significantly smaller contribution from the d,, orbital and are subse-
quently lower in intensity. The third set of peaks (transition III) with the onset at
4.06 eV involve more delocalized states with stronger contributions from the next

nearest neighbor La ions.

In rhombohedral LAO, due to the lower symmetry of the defect site, the tran-
sition of type I splits into types Ia and Ib, as the unoccupied one-electron states
involved in these transitions are no longer degenerate. However, as the perturbation
to the local environment of the vacancy is small, the overall character of the absorp-
tion spectra remains the same, with the addition of some low intensity transitions to
states that are no longer strictly symmetry forbidden. The same applies to the tran-
sitions of types II and III. The increased splitting of the individual 75, states (dyy, dy;
and d,;) can be seen by the increased splitting of the transitions II and III compared

to L.

The main absorption peak of the rhombohedral LAO at 3.5 eV (the peak ex-
tends from 3.2-4.0 eV) agrees well with the results of Kawabe et al. [84] who ob-
serve an absorption peak at 3.5-4.1 eV that is suppressed after oxidation of the

sample, which they suggest is due to oxygen deficiency.

The absorption spectra for Vlo+ differ from those of the neutral vacancy. In
particular, they exhibit a single large peak and no significant second peak at higher
energy (see Fig. 3.9). Similarly to the case of the neutral vacancy, the energy of the
maximum of the absorption peak obtained for the rhombohedral lattice is ~0.2 eV
higher than that for the cubic lattice. The transitions from the valence band to the
unoccupied Vé)+ level in the band gap are calculated to have a negligible oscillator
strength, as such only transitions from the occupied vacancy level to the conduction
band can be seen in the absorption spectra. This is most likely because, like in the
V(Zf case, the O p states that compose the valence band are not significantly per-
turbed by the defect to create resonant states with appropriate symmetry. The states

involved in transition IV (see Fig. 3.9) are similar to those involved in transition I
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Figure 3.9: The TDDFT calculated absorption spectra for Vg in both the (a) cubic and

(b) rhombohedral phases. The transitions have been widened using Gaussian
functions with a FWHM of 0.2 eV.
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Table 3.2: The calculated g-tensor values of Vgr for both the cubic and rhombohedral LAO
structures. The Al3+—V(1)+—Al3Jr complex is oriented along the x axis of the cubic
cell.

Calculated g-tensor
_ 8xx 8yy 8zz
Pm3m 1999338 2.005083 2.005083
R3¢ 2.004025 2.000608 2.003056

in the neutral case. This is expected as the Vé,* defect shares the same point sym-
metry as V%. The rhombohedral system demonstrates a non-zero transition below
transition IV not seen in the cubic case. In the rhombohedral case there is weak
localization of the molecular orbital composed of a mixing of the 7, states with
the predominantly e, states at the bottom of the conduction band. In the cubic case
both of these orbitals are delocalized pure e, states and so there are no transitions

to these states.

3.3.2.2 The g-tensor and hyperfine splittings of Vg‘f

Electron spin resonance (ESR) studies can allow measurements of the V};L defect
in LAO. Indeed, ESR studies of LAO [43,86] have attributed certain signals in their
measured spectra to this defect. In order to confirm the prediction that these signals
are due to the Vgr defect the g-tensor and hyperfine values of the defect can be
calculated and compared to the experimental values.

The g-tensor components for the +1 charged oxygen vacancy, calculated using
Gaussian 09 [92] and the embedded cluster method, are shown in Table 3.2. The
calculated hyperfine splittings show the main contribution to the ESR signal comes
from the nearest neighbor Al ions. This is most likely because the defect orbital is
mainly composed of the p orbitals of these Al ions. The calculated value of the split-
ting is small at 0.53-0.69 mT, dependent on the local structure. The contributions
of the nearest-neighbor O ions are smaller at approximately 0.1 mT and only apply
if grown in 30 as naturally abundant '°O has zero nuclear spin. The contributions
of even the nearest neighbor La are negligible.

The calculated g values agree closely with the ESR results of Yamasaka et

al. [43] and Singh et al. [86]. The former work assigns a broad ESR signal at
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approximately 328 mT to the +1 charged oxygen vacancy in LAO. Using their re-
ported X-band frequency of 9.2 GHz, the corresponding g value can be calculated to
be 2.004022, which is in good agreement with the calculated values. The width of
the signal reported by Yamasaka et al. [43] is approximately 4.0 mT, which can be
explained by the calculated hyperfine splittings. Al has a nuclear spin of 5/3, which
means the hyperfine interaction leads to 6 peaks split by approximately 0.6 mT, this
would lead to a total broadening of at least 3.0 mT, assuming that the broadening of
each line was large enough that the individual lines could not be resolved. This also
agrees well with the results of Singh et al. [86] who measured the line width of the
V(l)jL signal to be 2.9 mT. They also suggest hyperfine interaction with the nearest
neighbor cations are the main contribution to the linewidth, in agreement with the

calculations presented here.

Also of interest are the absorption spectra measured by Yamasaka et al. [43].
The ESR signal for the charged vacancy only appears as the number of incident
photons (with photon energy peak at 5.03 eV) increases on the LAO sample while
it is under UV irradiation. This corresponds to an increase in the absorption coeffi-
cient at approximately 3.3 eV and 4.0 eV. These energies lie close to the transition
energies for the neutral and charged oxygen vacancies calculated using TDDFT and

could well explain the increase in both these signals.

3.4 Conclusion

The calculations presented in this chapter provide the absorption spectra and ESR
signatures for oxygen vacancies in LaAlO3 that can be used to identify these defects
experimentally. The electronic and geometric structure of the neutral and charged
oxygen vacancies in the band gap of LAO were calculated using periodic and em-
bedded cluster methods and hybrid density functionals. The optical absorption spec-
tra of V% and Vg“ were calculated using TDDFT. The optical absorption spectra of
Vé;L in thombohedral LAO, which has an intensity maximum at 3.5 eV and a peak
that extends from 3.2 eV to 4.0 eV, agrees well with the experimental results of

Kawabe et al. [84] who see an absorption tail at 3.5-4.1 eV that they attribute to
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oxygen deficiency. The optical absorption spectrum for the neutral vacancy in cu-
bic LAO, which shows an intensity maximum at 3.3 eV, has also been calculated.
Both the cubic and rhombohedral absorption spectra exhibit a second absorption
peak at 4.0 eV and 4.2 eV, respectively. The V(l)+ only exhibits one peak at 3.4 eV
(cubic) and 3.6 eV (rhombohedral) which potentially allows identification of the
two different charge states of the defect.

Also presented are the calculated ESR parameters of V(l;r in LAO. The
isotropic g-value was calculated to be 2.004026, and, due to hyperfine splitting
of the nearest neighbour Al ions to the vacancy, a signal broadening of 3.0 mT
is predicted. These calculations agree well with reported ESR experimental re-
sults. [43, 86]. The calculated absorption spectra of the VIO+ can also be used to
explain the absorption peaks observed by Yamasaka et al. [43] that appear with

increased ESR signal assigned to Vg“.

This chapter is adapted from O. A. Dicks, A. L. Shluger, P. V. Sushko and P. B.
Littlewood, “Spectroscopic properties of oxygen vacancies in LaAlOs3,” Physical
Review B, vol. 93, p.134114, 2016. Copyright 2016 by the American Physical

Society.



Chapter 4

The bulk properties of amorphous

AL Os

4.1 Introduction

4.1.1 The importance of amorphous films

In the previous chapter, the experimentally measurable spectral properties of differ-
ent charge states of oxygen vacancies in crystalline LaAlO3 were calculated in order
to give an insight into the role of defects in the formation of the 2 dimensional elec-
tron gas in LAO/STO heterostructures, by identifying whether their energy levels
will allow donation of electrons at the interface. However, in the case of LAO/STO
devices [12] and its use as a gate dielectric [76,77], it is thin films of LAO that are of
interest. This means that the surface morphology, interface and bulk structure of the
nanometre thin films have a significant impact on device operation. Many models of
heterojunctions assume that the deposited materials are crystalline and have abrupt
interfaces, or that there is some limited surface reconstruction. In fact, many thin
films are not even crystalline, but are instead amorphous. This means their struc-
tures display only short and medium range order, rather than being periodic, and
generally have reduced ion coordination and a larger distribution of bond lengths
and angles. It is therefore of vital importance to consider amorphous structures

when modelling thin films.

Unlike natural glass formers, such as SiO,, many metal oxides (e.g.
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LaAlO3 [83], HfO; [28] and Al,O3 [109]) can only form amorphous phases when
deposited as thin films. It has been shown that amorphous metal oxide thin films
can be more thermodynamically stable than crystalline films [110] when grown on
a substrate. As described in [110], although the Gibbs free energy per mol of an
amorphous material is higher than that of a crystalline, this is compensated by the
large reduction in interface and surface energies. Crystalline interface energies are
generally higher due to strain effects if there is a lattice mismatch, or because of
dislocations within the material. This means that amorphous films are stable up to
a critical thickness, at which point the energy difference of the bulk material begins

to dominate and crystallization occurs.

Films of amorphous LAO (a-LAO) have been grown by pulsed laser deposition
(PLD) [82], with the structure conformed via X-ray reflectivity measurements. PLD
is a common growth technique and was even used to deposit the original LAO/STO
conducting interface [12]. Other deposition techniques such as molecular beam epi-
taxy (MBE) [75], and spray pyrolysis [83] also produce a-LAO films, with the latter
showing they are stable even when grown at temperatures above 920 K [83]. These
studies demonstrate that the amorphous phase of LAO is common, and stable up to
high temperatures. In order to control the properties of LAO devices, an understand-
ing of the amorphous phase is crucial. For instance, the change in LAO structure
increases the measured optical band gap from 5.6 eV [74] when crystalline, to 6.33

eV [75] in the amorphous phase.

However, LaAlOs proves difficult to model as an amorphous material. Little
is known of its geometric structure and as a ternary oxide its configurational space
is very large. That, coupled with a lack of experimental results to compare to, sug-
gested that investigation of a simpler binary metal oxide would prove more initially
fruitful. Like LAO, Al,Oj3 is another wide band gap, high k dielectric metal oxide,
but it has been more widely studied in the amorphous phase and is being investi-
gated for use in a variety of technological devices [22-24]. The next 3 chapters
cover amorphous Al,O3 (a-Al,03), specifically its bulk geometric and electronic

structure, intrinsic charge trapping and the defects responsible for electron trapping.
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4.1.2 Amorphous Al;O3

Thin films of amorphous alumina (a-Al,O3) play a key role in the development of
a wide range of applications, notably non-volatile memory [22,23] and amorphous
indium gallium zinc oxide (a-IGZO) thin film transistors [24]. With its wide band
gap and dielectric constant double that of Si0,, Al,O3 is a suitable replacement as
the blocking dielectric in these devices. It has also been investigated as both a gate
dielectric and a charge trapping layer [23] in charge trap (CT) flash memory, mak-
ing device fabrication easier. There are still, however, some properties of a-Al,O3
that must be better understood if it is to replace SiO, as a gate dielectric mate-
rial, including charge trapping and band gap reduction. Trapped charges can act
as scattering centres in the conducting channel of transistor semiconductor layers,
impeding mobility, but can also act as sources of charge in CT flash memory [23].
Though recently studied [111] it is still not well understood what the exact nature
of the charge traps in a-Al,O3 are. Intrinsic charge trapping, and, the role of defects
in explaining the negative charging of a-Al,O3 films [22], are addressed in later

chapters.

Before coming to the mechanisms for charge trapping, first the electronic struc-
ture of a-Al,O3 must be understood. Just as in LAO [75], there is a change in the
band gap between the crystalline and amorphous phases of alumina, though in this
case there is a significant decrease in the size of the gap. Whilst &-Al,O3 has an
optical band gap of 8.8 eV [112], measurements of the amorphous band gap vary
between 6.0-7.1 eV [35,113-117]. The reduction in band gap has been attributed
to the decrease in Al coordination, with theoretical work suggesting this causes a
change in the electrostatic potential profile around the ions [118], shifting the bands.
However, there is no consensus on whether the reduction in band gap is predomi-
nantly due to a shift of the valence [119] or conduction band [35], or whether in-gap

defect states are responsible for the reduction in the optical gap [111].

Contrary experimental data and lack of a agreement on the electronic properties
of a-Al,O3 pose significant problems for theoretical predictions of the behaviour

of the band gap, band edge states and trapping of excess electrons and holes in
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this system. Whilst predicting electron or hole localization is a well-recognized
challenge for DFT (see e.g. [120-123]), there are currently no complete models for

a-Al,Oj3 structures.

In order to overcome the first problem, a range separated hybrid functional
PBEO-TC-LRC [40] was tuned to satisfy the Koopmans’ condition and then tested
against the experimental properties of crystalline alumina. An ensemble of ten
amorphous structures was generated using classical molecular dynamics and a melt
and quench method and their structural characteristics compared with the exper-
imental data. Analysis of the electronic structure of crystalline and amorphous
alumina then demonstrates that the band gap reduction is due to a shift in both
the valence and conduction bands. This is explained by the change in Al and O
coordination leading to shifts in the electrostatic potentials and different bonding

characteristics.

4.2 Methodology

The first challenge in accurately modelling the electronic properties of a-Al,O3 us-
ing DFT is generating representative geometric structures of the material. Here
a molecular dynamics melt and quench approach is adopted. This is a computa-
tionally inexpensive way of producing the large number of structures necessary to
provide an accurate sample of potential amorphous configurations, provided a suit-
able potential is used. The theoretical background of molecular dynamics (MD) is
covered in section 2.1 and its application to the melt and quench method is covered

in this chapter in section 4.2.1.

Due to the uncertain nature of the band gap and band edge states, choosing the
correct DFT setup and functional is also important. The functional must be able to
accurately predict the behaviour of the amorphous electronic structure, which often
involve localized states, and be suitable for modelling intrinsic charge trapping and

defects.

It is also important to consider the size of the system. Amorphous materials

are non-periodic, and so larger cells are preferred. Unlike in the bulk crystalline
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phase where localization of a small radius polaron may take place at all equivalent
lattice sites with equal probability, in amorphous structures all sites are different and
charge trapping takes place at intrinsic structural precursor sites. The concentration
of such sites is system specific and is difficult to predict a priori. At some of these
sites carriers can trap spontaneously, whereas at others trapping requires overcom-
ing an energy barrier. For example, the number of trapping sites where electrons can
localize spontaneously in a-SiO, has been shown to be around 4x10" cm™3 [124].
Therefore finding one such site in a periodic cell of SiO, requires a cell size of
around 1000 atoms. Using periodic cells is required in order to avoid border effects
which may affect the characteristics of trapped charges in finite systems. However,
this makes the amorphous structures quasi-periodic and induces constraints on the
structural relaxation accompanying charge trapping. Taken together these factors
imply that simulations should be performed in the largest periodic cells feasible
for DFT calculations. However, variations in density and atomic coordination can
affect the bulk electronic properties [35], and for localized charges different site
configurations will change the profile and spectroscopic properties of traps and de-
fects [111]. To credibly predict distributions of properties, calculations in many

models are required.

4.2.1 Generation of the amorphous structure

In order to create sufficient statistics, 10 sample structures of amorphous Al,O3
have been generated using an MD melt and quench approach run using the
LAMMPS code [125] and then fully relaxed using a DFT calculation described
later in section 4.2.2.

The MD simulation uses a 360 atom supercell of @-Al,O3 as the initial struc-
ture. This cell size represents a compromise between the size of the cell and com-
puter time required to achieve representative distributions of densities, ion coordi-
nation numbers and charge trap properties. The NPT (constant particle number,
pressure and temperature) ensemble is used with a time-step of 0.1 fs. There are
2 approaches to this method, regarding whether to hold the pressure or the volume

constant. Holding the volume constant allows experimentally measured densities to
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Atom  g(e) A(A) B(A) C(A’ev!/2) DA 'ev)
Al 14175 0.7852 0034 03816 0.04336
O -09450 1.8215 0.138  0.9391 0.04336

Table 4.1: Parameters for the potential [45] used to generate the amorphous Al,O3 struc-
tures.

be achieved, but may artificially confine the system to some symmetry or configu-
ration. Allowing the volume to vary and fixing the pressure at 1 atmosphere was
deemed to produce a more representative distribution of densities, within experi-
mental ranges, and coordination profiles.

The MD melt and quench process itself is carried out as follows. The initial
structure is first equilibrated at 300 K for 10 ps. The temperature is then increased
to 5000 K over 20 ps. This is then followed by an equilibration at 5000 K for
20 ps. The structure is then cooled to 1 K to generate the final structure, with
cooling rates of 1 Kps~!, 10 Kps~! and 100 Kps~! being investigated. Different
structures are generated by using a different random number seed for the initial
velocity distribution.

The structural properties of the amorphous samples produced are mainly de-
pendent on the potential used and the cooling rate of the MD simulation. The po-
tential selected for this study has been previously used to model a-Al,O3 [45,46].

It is a Born-Mayer potential with an added van der Waals term:

qiqj GC; Ai+Aj—rij
Virg) = 24 9% | p(B, 4 B;)exp (— , @.1)
rij r?j Bi—l—Bj

where the parameters for the potential are given in Table 4.1. The selection of the

cooling rate and analysis of the structures is covered in section 4.3.2.

4.2.2 DFT calculations
The electronic structure of crystalline and amorphous Al,O3; was calculated us-
ing the CP2K package [44]. CP2K makes use of hybrid Gaussian and plane wave

type basis sets. All calculations are run at the I" point of the Brillouin zone. The
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DZVP-MOLOPT-SR-GTH [103] basis sets were used for both O and Al, along
with the Goedecker-Teter-Hutter (GTH) pseudopotentials [55,56]. The converged
plane wave energy cutoff was set to 500 Ry and the SCF convergence criterion was
set to a maximum energy difference of 107® a.u. between steps. All final geom-
etry relaxations were performed using the PBEO-TC-LRC [40] hybrid functional
described below and used the conjugate gradient optimizer with a maximum force
convergence criterion of 0.05 eV/A for each atom. The auxiliary density matrix
method [126] (ADMM) was used to reduce the computational cost associated with
using the range separated hybrid functional, allowing the calculation of relatively

large 360 atom systems.

4.2.2.1 Tuning the functional

Self-trapped polarons in crystals usually have small trapping energies of the or-
der of 0.1-0.3 eV. This means that even qualitative predictions of their stability are
greatly affected by the choice of the Hamiltonian. The early many-electron calcu-
lations of polarons and excitons in insulators were carried out using the Hartree-
Fock method (e.g. [127, 128]) and semi-empirical quantum chemistry techniques
(e.g. [129, 130]), which tend to over-localize electronic states. This is not a big
problem for e.g. calculating the spectroscopic properties of well localized polarons.
However, predicting the formation and stability of polaronic states remains a chal-
lenge. It was realized early on that in DFT the LDA and GGA approximations tend
to delocalize electrons and fail to predict exciton [121] and hole polaron [120] lo-
calization in well-established cases. This has been attributed to the self-interaction
error [120, 121] and a quick fix of adjusting the amount of Hartree-Fock exchange
in hybrid density functionals has been widely implemented to provide the electron
localization in known cases (e.g. [120, 131, 132]). A cheaper and more targeted ap-
proach is to adjust the U parameter in LDA+U or GGA+U calculations of polaron
states. Several flavours of this approach have been suggested over the years, as
discussed in refs. [133—-136], and it is still very widely used. The predictive power
of these two approaches is again limited but they can be used very effectively in

‘test and predict’ mode where the parameters (e.g. the amount of HF exchange or
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the U value) are first fitted to reproduce the established data and then the same pa-
rameters are used for predictive calculations. However, the transferability of these

parameters between materials is quite limited.

It has been noted more generally [123, 137] that failures of DFT to correctly
predict localization of electronic states and charge transfer spectra are associated
with a wrong asymptotic behaviour of approximate exchange-correlation (XC) po-
tentials for isolated molecules, 'nearsightedness’ of XC response kernels, and lack
of the integer discontinuity [137]. Therefore significant recent efforts have focused
on creating so called Koopman’s-compliant exchange-correlation functionals with
piecewise linearity with respect to fractional particle occupations and developing
range-separated hybrid functionals for molecular systems [135,138-140]. A com-
monly used method is to correct the non-piecewise linearity of the total energy
(E) with respect to (the continuous) electron particle number (N) in DFT sys-
tems [135, 138]. The linearity condition, where d*E /a’N2 =0, is shown to be a
property of the exact exchange-correlation functional by Perdew et al. [141]. Local
and semi local functionals deviate from the straight line behaviour, instead show-
ing curvature where d?E /dN? > 0, while in HF theory the opposite behaviour is
observed and d’E/dN? < 0. Lany and Zunger [135] proposed that, by enforcing
the linearity condition, the energy of the self-interaction of the electron or hole after
addition is canceled by the energy of the wavefunction relaxation, allowing a more
accurate description of localized states. Thus by either applying DFT+U [135] or
the use of hybrid functionals [138], the linearity condition can be enforced. It has
not been demonstrated that satisfying this condition is necessary for a correct de-
scription of electron localization. However, it has been observed that localization
can indeed be achieved by tuning the parameters of the effective localizing poten-

tial [135] to satisfy the linearity condition.

In an alternative approach [139, 142], range separated hybrid functionals are
investigated, with parameters optimally tuned so that the generalized Koopmans’
condition is enforced, equivalent to ensuring the linearity condition as in the meth-

ods mentioned above. This enables quantitative predictions of band gaps and energy
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levels in molecules to be made without the need for empirical matching. This ap-

proach, however, cannot be easily generalized for infinite solids [143].

In this work a similar approach is tested where the range separated hybrid func-
tional PBEO-TC-LRC [40] is used with a tuned cutoff radius. This functional has
been introduced to allow efficient calculation of exact exchange in I' point codes,
such as CP2K, and provides large speedup of the calculations without loss of accu-

racy. The exchange-correlation part of the PBEO-TC-LRC functional has the form
Eye = aEMFTC L gpPBELRC | (1 _ 4 )EPBE | pPBE 4.2)

PBEQ is the standard PBE hybrid functional [57, 58] with a = 0.25. EHFTC s the
truncated Hartree-Fock exchange, EYBELRC ig the long range PBE exchange with
a truncated Coulomb potential, EFBE is the PBE exchange and EFBE is the PBE
correlation. The truncated Coulomb (TC) version of the Hartree-Fock exchange

takes the form
1
EHETC —52//%("1)‘I/j("1)gzc(r1z) X Yi(r2)yj(r)d>nd’ry (4.3)
i,j

where the operator
1
— forrjp <R
ge(r2) =4 " 4.4)

0 for r;o > R

where R is the cutoff parameter. The long-range correction (LRC) is based on the
PBE exchange hole [40]. This functional is similar to HSE06 [60—62] in that, unlike
many other range-separated hybrid functionals, it uses short-range exact exchange

and a long-range semi-local functional.

Here the cutoff radius R is used as a variational parameter which is tuned to
minimize a deviation of the functional from straight line behaviour, unlike e.g. in
previous work [138], where the proportion of exact exchange, a was varied, though

both change the contribution of the exact exchange to the energy (see also [140]).

To find the cutoff parameter, R, the same method as in refs. [139, 140] is used.



66 Chapter 4. The bulk properties of amorphous Al O3

0.05 T T T T T T

oy 0.041 7

e
o
@
I
|

+
o
o
N
I
|

J(r)crystal J(r)amorphous eV

o
o
-
I
|

Cutoff radius / A

Figure 4.1: The total of the J(R) functions of both the amorphous and crystalline structures
plotted against the PBEOQ-TC-LRC cutoff radius. It can be seen that the error is
at a minimum when R=3.0 A.

The exact form of Koopmans’ Theorem in Kohn-Sham theory is given by the ex-

pression:

EHOMO (N) = —I(N) R (4.5)

where egomo(N) is the energy of the K-S highest occupied molecular orbital
(HOMO) and I(N) is the ionization potential of the N electron system. The ion-

ization potential of the N electron system can also be defined;

I(N) = Eg(N —1) — Eg(N), (4.6)

the difference between the energy of the ground state of the N — 1 electron, Eys(N —
1), and N electron, Egs(N) system, or the energy to remove an electron from the
system. A similar condition can be imposed for the addition of an electron to the

system, where the lowest unoccupied molecular orbital (LUMO) energy is equated
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Lattice ~ Theory Experiment Error

parameter (A) (A)
a 4.7555 4.7605 -0.1%
b 8.2370 8.2454 -0.1%
c 12.9730 12.9956 -0.2%

Table 4.2: Comparison of the calculated lattice parameters for corundum ¢-Al,O3 with
the experimental data [144].

with the electron affinity. From these equations R can then be tuned so that the

function [142]
J(R) = [efiomo(N) +I*(N)]® -
+ [l omo(N + 1) +I¥ (N +1))?
is minimized. This equation also accounts for the error in the LUMO level,
or the N + 1 system, important when investigating the possible localization of elec-
trons. This functional is applied in a ’test and predict” manner, the functional is
first tested using the data available for crystalline alumina and then used to make
predictions for the amorphous structure.
As one can see in Fig. 4.1, the deviation of straight line error (DSLE) is min-
imized when R=3.0 A. At this cutoff the largest absolute error in fulfilling the
Koopman’s condition is 0.04 eV. It is significantly smaller than the trapping ener-

gies and therefore may allow qualitatively accurate predictions of the properties of

trapped holes and electrons in both crystalline and amorphous alumina.

4.3 Results and Discussion

4.3.1 Properties of o-Al,03

In order to test the tuned PBEO-TC-LRC [40] functional, it was benchmarked
against known structural and electronic properties of the crystalline system. The
calculated lattice parameters of the 360 atom o-Al,O3 cell were in good agreement
with x-ray crystallography data [144] (see Table 4.2), with the lengths of all lattice
vectors within 0.2% of the experimental values after a full cell relaxation, and no

change to the angles of orthorhombic cell.
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Figure 4.2: The projected density of states (PDOS) of a-Al,Os3.

The functional also accurately reproduces the bulk electronic as well as geo-
metric structure. The K-S band gap was calculated to be 8.6 eV (see Table 4.3),
which is close to the experimental optical band gap of 8.8 eV [112]. It should be
noted that the functional was tuned to obey the Koopmans’ condition, rather than
fit to empirically match the experimental optical band gap. For comparison, the
electronic structure was also calculated using the HSE06 [60,61] functional and the
PBEO-TC-LRC functional with a larger cutoff of 5.0 A (see Table 4.3). It can be
seen that HSEO6, whilst having a similar DSLE, underestimates the band gap by
approximately 0.8 eV, and a larger cutoff radius increases the DSLE with only a

small change in band gap of 0.1 eV.

Structurally, a-Al,O3 is composed of edge and corner sharing Al centred oc-
tahedra, meaning all Al are 6 coordinated with O, denoted 6] Al (see Fig. 4.3a).
Conversely all O are 4 coordinated with Al ([4} 0), forming O centred distorted tetra-

hedra as can be seen in Fig 4.3b. The wide band gap and overall electronic structure
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Figure 4.3: The building blocks of ¢-Al,O3 a) Al centred octahedra and b) O centred
tetrahedra.

of a-Al,O3 can be understood by considering the geometric structure of the mate-
rial and the atomic orbitals responsible for the bands. From the projected density of
states (PDOS) (see Fig.4.2), it can be seen that the valence band edge is predomi-
nantly composed of O 2p orbitals. The valence band maximum is very flat, which
can be understood by considering the tetrahedral configuration of O, which allows
hybridization of the more covalent sp type orbitals [145]. There is a small contribu-
tion to the valence band from Al d orbitals which could be as a result of distortion
of the O tetrahedra towards a square planar formation which allows spd hybridiza-
tion. The conduction band minimum (CBM) on the other hand is almost entirely
composed of Al 3s states, and has a very high dispersion as a result. Even though
the Al octahedra are distorted, they are less distorted than the O centred tetrahedra
and the inversion centre symmetry prevents significant sp mixing, resulting in the
CBM being 99% pure s character.

Other crystalline phases, such as 0 and y-Al, O3, have lower band gaps than -
Al O3, 6.2-6.5 eV [146] and 7.6 eV [35] respectively. The decrease in band gap of
these phases is correlated with an increase in the number of 4 coordinated Al. This
has been explained in theoretical work by an increase of sp mixing in the conduction
band edge due to the tetrahedral units [147], though also observed is an increase in

the width of the valence band in y-Al;O3. That aluminium in Al,O3 can form
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Functional Maximum  Kohn-Sham Hole
DSLE (eV) Bandgap (V) Eyap(eV)

HSEO06 [60,61] 0.04 8.1 0.13

PBEO-TC-LRCR =3.0 0.04 8.6 0.38

PBEO-TC-LRCR =5.0 0.10 8.7 0.42

Table 4.3: Comparison of the properties of the crystalline, a-Al,O3, system calculated
using the HSEO06 [60, 61] functional and PBEO-TC-LRC [40] functionals with a
varied cutoff.

2 different structural units has been attributed to its definition as an ’intermediate
glass former’. Merely by consideration of ion size and Pauling’s packing rules Al
has the possibility of forming both octahedral and tetrahedral units. These phases
of mixed coordination could help explain the shift in band gap and band offsets in

a—A1203.

4.3.2 The geometric structure of a-Al,03

To study the band structure and the trapping of polarons in amorphous alumina, the
geometric structures used for calculations have to accurately reproduce the overall
topology and local features of the material. The geometric properties of the 10 a-
Al,Oj3 structures generated in this study through MD melt-quench show excellent
agreement with experimentally measured densities, coordination numbers and x-
ray diffraction data of lab grown thin films. After the structures were generated
using MD melt-quench procedure, a full cell optimization was performed using the
PBE functional. A final geometry optimization was then performed using the tuned
PBEO-TC-LRC [40] functional.

The density of a-Al,O3 (a crystalline phase) is 3.95 gcm™3, but when thin
films of amorphous alumina are grown, large changes in the density of the ma-
terial are detected (see Table 4.5). Groner et al. [33] deposited thin films of alu-
mina at varying low temperatures using ALD on n-type silicon wafers and Quartz
Crystal Microbalance (QCM) substrates. The QCM was used to measure the mass
of a film whilst various other measurement techniques were used to determine the

thickness including AFM and spectroscopic ellipsometry. X-ray Reflectivity (XRR)
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Cooling rate Average Coordination number (%)
density (gem?)  [“4IAl SIAL Oy
Experimental 2.46-3.25 55 42 3
100 Kps~! 3.09 58 35 7
10 Kps~! 3.14 53 37 10
1 Kps™! 3.31 45 25 30

Table 4.4: Average densities and coordination numbers of a-Al,O3 produced by the 3 dif-
ferent cooling rates during the MD melt and quench compared to experimental
densities [33, 148] and coordination numbers [39].

was also used independently to determine the density. These different measure-
ment techniques gave a range of values for the density but most methods were
within 0.1 gcm™> of each other. The average reported densities were 3.0 gem™>
for films grown at 177°C and 2.5gcm ™ for those grown at 33°C. Measurements
of alumina film density performed by Ilic et al. [148] on ALD ultrathin films using
nano-mechanical oscillators give a value of 3.240.1 gcm™3. The densities of the
melt-quench generated structures of a-Al,O3 that were cooled at 10 Kps~! agree

very well with the experimental values, with the densities lying within the range of

3.06-3.25 gcm 3 (see Table 4.5), with an average density of 3.14 gcm?.

Lee et al. [39] use 2D 3QMAS NMR to measure coordination numbers of ions
in thin films of Al,O3 deposited on Si(100) wafers by RF magnetron sputtering at
low temperatures. They measured the distribution of coordination numbers of Al
with O to be A1 55% + 3%; PIAL 42% + 3%; 1)A1 3% + 2% (see Table 4.4). This
is a large change in coordination number from o-Al,O3 where all Al are 6 coordi-
nated. Instead, the amorphous phase is primarily composed of Al tetrahedra with

51Al, and a very small percentage of [9/Al octahedra. As can be seen from

some
Table 4.4 slower cooling rates resulted in higher densities and a increase in pro-
portion of bJAL After annealing at high temperatures alumina thin films undergo
a phase change from a- to y-Al,O3 [149], corresponding to an increase in density,
and an upward shift of the conduction band which has been associated with an in-

crease in the number of Al octahedra. Other work sees an increase of density after
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Figure 4.4: Comparison of the calculated and experimental [38] radial correlation function
G(r;;) for Al-O coordination.

annealing, but does not ascribe this to a large re-organizing of the Al coordination
but to an increase in long range ordering [150]. Either way this suggests that some
films could have a similar structure to those produced by the 1 Kps~! cooling rate,
after annealing, as they undergo transition from the amorphous to crystalline phase.

However, overall the structures generated using the 10 Kps™!

cooling rate show
the best and most consistent agreement with the experimental values for coordina-
tion number and the densities all fall within the experimental range. The following
results presented were calculated using these structures.

The Al-O radial correlation function of the amorphous structures, shown in
Fig. 4.4, agrees well with the x-ray and neutron diffraction studies performed by
Lamparter [38], with the peak maxima within 0.05A of the experimental results,
though there is a small difference variation in peak width. This is evidence that the

generated structures, aside from having good agreement with experimental densities

and coordination numbers, also recreate the correct short and medium range order
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Authors Growth Substrate Measuring  Density
technique technique  / gcm_3
Groner et al. [33] ALD(306K) n-type Si XRR 2.46
ALD(450K) n-type Si XRR 3.06
Ilic et al. [148] ALD Si NEMS 3.20
Ok et al. [24] ALD SiN, XRR 2.97-3.14
PBEO-TC-LRC 3.14

Table 4.5: Densities of a-Al,O3 measured using a variety of experimental techniques and
compared to the average density calculated using DFT in this work.

of a—A1203 .

4.3.3 The electronic structure of a-Al,O;

Having demonstrated that the tuned density functional gives good agreement with
the experimental data for a-Al,O3 and that the generated structures of a-Al,O3 are
representative of real films, the electronic structure of a-Al,O3 can now be consid-
ered. The average Kohn-Sham band gap is calculated to be 5.48 eV from the 10
a-Al, O3 structures, with a range of 5.21-5.89 eV. Experimentally the band gap has
been measured to be 6.0-7.1 eV [35, 113-117], though often tails are observed in
the spectra which are most likely due to localized states at band edges. In order to
interpret the experimental results in comparison to the DFT calculations the nature
of the band edges has to be carefully considered.

To visualize localized states the electronic structure of amorphous solids can be
further characterized using the inverse participation ratio (IPR). This method takes
advantage of the atom centered basis set used in CP2K to quantify the degree of
localization of each eigenvector. It has often been used to characterize localization
of vibrational and electronic states in amorphous solids [151-155]. The IPR is
defined as:

(4.8)

where

Y = Z ani i (4.9)
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is the nth Kohn-Sham eigenvector (MO), N is the number of atomic orbitals, ¢; is
the ith atomic orbital and a,,; is the coefficient of MO n and atomic orbital i. The
IPR is 1/N for completely delocalized MOs, and 1 for MOs that are localized on a

single atomic basis orbital.

The IPR analysis of a-Al,Os3, shown in Fig. 4.5b, demonstrates that there are
many localized states at the top of the valence band, but the bottom of the con-
duction band is formed by delocalized states. Crucially, the states in the valence
band only become completely delocalized approximately 1.0 eV below the HOMO,
which can be attributed to the onset of the mobility edge. The mobility edge is
usually defined as a transition between localized states, which do not contribute to
the electrical conductivity of the system, and extended states, which can contribute
to the electrical conductivity in disordered materials [156]. Using the IPR analysis,
one can approximately define the mobility edge as the onset of states with an IPR

corresponding to delocalized states [153, 155, 157].

The position of the mobility edge could explain the discrepancy between the
calculated HOMO-LUMO gaps (the difference in energy between the HOMO and
LUMO levels), which are approximately 5.5 eV, and the experimentally measured
band gaps of 6.0-7.1 eV [35,113-117]. The majority of the experimental band gaps
are measured using electron energy loss spectroscopy (EELS) [111] or x-ray pho-
toemission spectroscopy (XPS) [35,114,117], and it is likely that the localized band
edge states will have different interaction cross sections than the delocalized states
at the mobility edge, and could account for the tails observed in the spectra. For ex-
ample a recent paper [111] reports a band gap of 7.1 eV from EELS measurements,
but also shows a non-zero scattering intensity to below 6 eV, in agreement with
the calculations presented in this chapter. The density of states is also larger at the
mobility edge, which would increase the intensity of any interactions. If measured
from the mobility edge, the average calculated band gap becomes 6.5 eV, which is

within the range measured experimentally.

Unlike the valence band, the IPR analysis of the conduction band shows it to

be composed of delocalized states (see Fig. 4.5b). The lack of electron localization
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Figure 4.5: (a) The projected density of states (PDOS) and (b) inverse participation ratio
(IPR) of one structure of a-Al,O3, showing strong localization of the top of the
valence band.
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at the conduction band edge when compared to the valence band is most likely due
to their respective orbital character. As the density of states in Fig. 4.5a shows,
the top of the valence band is composed of O 2p orbitals, whereas the bottom of
the conduction band is composed predominantly of Al 3s orbitals. These states
demonstrate a very high dispersion in crystalline corundum structures [158] which
projects into the a-Al,Os3 states in terms of band unfolding procedure [159]. High
electron mobilities have been measured experimentally in amorphous Al,O3 [42],
with electron effective masses of 0.4 mg. The high electron mobility measured can
be explained by the high dispersion of the conduction band, which results in the

small IPR values and a lack of localization at the band edge.

That the band gap narrows between the o and amorphous phases of Al,O3
is not controversial, however, there is disagreement as to whether the valence or
conduction band is most responsible for the shift. X-ray photoelectron spectroscopy
(XPS) measurements [35] suggest that there is only a small shift of the valence band
downwards (with respect to the vacuum level) of approximately 0.3 eV, though
a tail possibly due to higher lying states can be observed. Instead the majority
of the band gap change is due to a shift of the conduction band downwards by
2.14 eV between o and a-Al,Os3, or 0.77 eV between Yy and a-Al,O3. The shift
in conduction band is accompanied by an increase in peaks associated with p-p
transitions in the XPS spectra that would be symmetrically forbidden if the Al were
all 6 coordinated octahedra, but can be explained by an increase in the number
of Al centred tetrahedral units. Thus it is suggested [35] that the decrease in the
conduction band is due to under coordinated Al structural units that allowing greater

hybridization of the Al and O atomic orbitals.

The DFT calculations presented here support this interpretation. The density
of states projected onto O and Al ions with different coordination, displayed in Fig.
4.6, shows that [ A1 contribute the most to the bottom of the conduction band, with
[ Al contributing the least. It can be observed from Fig. 4.6 that there is an increase
in the contribution of the [l Al approximately 2 eV into the conduction band. There

i1s mixing observed, but it is to be expected, especially as all the structural units
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Figure 4.6: The projected density of states (PDOS) showing the contribution from each of
the different coordinations of O and Al which has adjusted to account for their
proportion within the sample.
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Figure 4.7: An example of the wavefunction of a molecular orbital from the top of the
valence band in a-Al,O3 showing the Gz*p anti-bonding type orbitals formed

between 2 nearest neighbour 2/O.

will be distorted from perfect symmetry in the amorphous phase, but the evidence
suggests that the increase in the number of Al tetrahedral sites lowers the conduction
band. Unlike ®/Al octahedra, the tetrahedral symmetry allows sp hybridization.
That this occurs is backed up by an increase in the contribution of p- and d-type
orbitals to the bottom of the conduction band, so that in the amorphous case it is

only approximately 90% s character, reduced from 99% in the crystalline case.

Other experimental work [119] suggests it is a shift in the valence band rather
than the conduction band that narrows the band gap. In [119] only the conduction
band offset between Si and y-Al,O3, and Si and a-Al, O3, are measured. The relative
valence band shift is then estimated from previous measurements of the band gap.
However, a band gap of 8.7 eV is used for y-Al,03, very close to the a-Al,O3 band
gap of 8.8 eV, where other measurements report lower band gaps of 7.6 eV [35] for
Y-Al;O3. In fact the conduction band shift of 0.5 eV [119] measured between a- and
Y-Al,O3 is not much smaller than the 0.77 eV measured in [35]. If this is taken into
account it would suggest that there would be a further increase in the conduction
band offset if there was a phase change to a-Al,0O3, and that it is the conduction

band that lowers between the 2 phases.
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The approximate 2 eV shift observed in the conduction band does not account
for the 3.3 eV decrease in the DFT calculated band gap between crystalline and
amorphous Al,O3. The reason why the HOMO-LUMO gap underestimates the
band gap when compared to experiment has already been attributed to the onset of
the mobility edge. It seems likely that the same 1-1.5 eV wide localized region
at the edge of the valence band observed in the IPR spectra, and responsible for
tails in EELS and optical spectra, is also responsible for the decrease in the DFT
HOMO-LUMO gap. In Fig. 4.6 it can be clearly seen that states associated with
2 coordinated oxygen ions contribute strongly to the top of the valence band. The

under coordinated 2

O form (72*p anti-bonding type orbitals (See Fig. 4.7) resulting
in their higher energies than the rest of the valence band states, and an increase
in localization. The data as a whole suggests there is a shift in the HOMO level
upwards of approximately 1.5 eV due to these localized states, when compared to
the position of the density of states of the 4 coordinated O, which are more similar
to the O in crystalline Al,O3

It is important to see if the change in bonding character between Al and O as
a result in the change of geometric structure also affects the electrostatic potential
profile around the ions. Previous DFT calculations [118], using LDA functionals,
suggest that the change in electrostatic potential at the maximum electron distribu-
tion radius (0.4 A and 1.0 A for O and Al respectively) shifts the position of the
a-Al, O3 valence band down 1 eV from that of -Al,O3, and the conduction band
3.5 eV down. They assume that that the change in potential directly lowers the KS
levels at the I'" point and so accounts for the 2.5 eV lowering of the band gap they
observe, and that the potential shift of O is responsible for the valence band shift
and Al for the conduction band shift. However, it is difficult to directly compare
absolute values of potentials between separate DFT calculations as there is no well
defined vacuum or reference level.

To address this the electrostatic potentials presented here! have been spheri-

cally averaged around each ion and then, individually for both amorphous and crys-

'With thanks to Dr. Al-Moatasem El-Sayed who wrote the program to calculate potentials from
CUBE files, and Rasmus Jakobsen for adapting it to analyze specific atoms.
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Figure 4.8: All graphs show properties of the spherically averaged electrostatic potentials
of Al and O in a-Al,O3 and o-Al,O3, where for each phase the potentials have
been zeroed with respect to the maximum value of the O potential which occurs
at 0.95 A. a) The electrostatic potential as a function of radial distance of Al
and O in both phases, with dotted lines showing the maximum and minimum
potentials. b) The same as in a) but with a scale so that the maximum and
minimum can be distinguished. c¢) The average shift of the potential around Al,
and the shift in the minimum potential at each radial distance, which affects
the CBM. d) The average shift of the potential around O, and the shift in the
maximum potential at each radial distance, as it will affect the VBM.
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talline structures, shifted so that the maximum of the average electrostatic potential
of O is at 0 V, which occurs for both structures at a radial distance of 0.95 A, which
will be referred to as ‘zeroing’. This means that variations in potential between both
phases, and the shifts between the O and Al potentials for each phase, can be com-
pared. As can be seen in Fig. 4.8a and Fig. 4.8b the potential profiles between the
amorphous and crystalline phase are very similar, with the O potential profile being
much deeper and narrower as a result of its smaller ion size compared to Al, which
has a shallower profile. An overall shift of less than 0.1 V is observed between
the average crystalline and amorphous O potentials, meaning the average potentials
after ‘zeroing’ have a very similar profile. However, the average Al potential of the
amorphous system is 0.7 V (averaged over all radial positions) lower than that of
the a-Al,O3 system after ‘zeroing’, which suggests the conduction band will shift
downwards in energy. Keep in mind that the shift of the Al potential is effectively
measured with respect to the O potential in each system and so the absolute shift
will still change the band gap, even if the oxygen maximum is not a good reference

point between the 2 systems.

However, as can also be seen in Fig.4.8a and Fig.4.8b, there is a much wider
range of electrostatic potentials in the amorphous, rather than the crystalline, struc-
tures. The range of potentials at each radial point vary by less than 0.2 V in the
a-Al,O3 system, but the variations of the potentials in the amorphous system are
an order of magnitude greater. First, examining the Al potential, which is respon-
sible for the position of the conduction band minimum, Fig. 4.8c shows that the
minimum values of the electrostatic potentials lie, on average, 1.6 V lower in the
amorphous systems than in the crystalline. This would suggest there is a lowering of
the conduction band of approximately 1.6 V due to the change in the electrostatic
potential environment as a result of the decrease in the Al coordination number.
Fig. 4.8d shows a change of approximately 1-1.5 V in the highest O potential at the
maximum electron distribution radius of O (at approximately 0.4 A) between the
amorphous and crystalline systems,which will shift the position of the valence band

upwards. The maximum potentials correspond to the highly localized 2 coordinated
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sites responsible for the top of the valence band, and when combined with the Al
potential shift downwards, explains the 3.3 eV reduction in the HOMO-LUMO gap.
Thus the data suggests that the change in coordination and bonding character of Al
and O also affects the electrostatic potential environment and causes the conduction
band to shift down by approximately 1.6 eV and the valence band to shift upwards
by 1.5 eV. However, experimentally the valence band shift is not as easily observed
as the states are more highly localized at the VBM than at the CBM, which is due

to the difference in localization between the O 2p orbitals and the Al 3s orbitals.

4.4 Conclusion

Using an MD melt and quench approach, amorphous alumina structures have been
generated that reproduce experimental densities [24, 33, 148], NMR measurements
of coordination numbers [39] and the radial distribution functions from X-ray
diffraction experiments [38]. Producing credible geometric structures of a-Al,O3
is a crucial step to understanding its electronic structure, and, for later chapters,

investigating intrinsic charge trapping and the role of defects in the material.

To accurately model the electronic structure the functional was tuned so as to
minimize deviation from straight line error, important for calculating not only the
correct band gap, but also for minimizing over delocalization when studying po-
larons and defects. The functional was shown to reproduce the electronic structure

of -Al,O3 accurately, calculating the band gap as 8.6 eV.

DFT calculations of the a-Al,O3 structures showed that the HOMO-LUMO
gap decreases to an average of 5.48 eV, with IPR analysis showing the valence
band edge is highly localized, with the mobility edge lying approximately 1 eV be-
low the HOMO. Analysis of the electronic structure showed that the reduction in
Al coordination, from 100% °/Al in a-ALO3 to 55% Al in a-Al,03, shifts the
electrostatic potential of the Al ions down approximately 1.6 eV, leading to the ob-
served decrease in the band gap. There is also a shift of 1-1.5 eV upwards observed
in the O electrostatic potential, though the highest potentials correspond with the

highly localized Gékp states, which are not as easily observed experimentally. This
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chapter provides theoretical support for the findings in ref. [35] that a shift in the

conduction band leads to the decrease in the band gap of a-Al,0O3.






Chapter 5

Intrinsic charge trapping in

crystalline and amorphous Al,O;

5.1 Introduction

As stated earlier, a-Al,O3 1s an important high-k gate dielectric in a variety of tran-
sistor devices [22-24,109]. Performance of the dielectric in gate stacks is dependent
on properties such as the band offset, which was covered in the previous chapter,
and the trapping of charge. Trapped charges can affect device mobility or shift tran-
sistor threshold voltages [109]. Both positive [160] and negative [22] charging have
been measured in a-Al, O3 films, though the exact nature of the charge traps remains
unknown. Whilst charge trapping in dielectrics can be both advantageous and detri-
mental, either way it significantly affects the performance of devices and must be
controlled. However, surprisingly little is still known about intrinsic electron and
hole trapping in amorphous oxides, especially a-Al,O3. This chapter investigates
whether intrinsic electron and hole polaron trapping is present in crystalline and

amorphous alumina, and whether it is responsible for the observed charging.

Self-trapped hole (STH) polarons have already been theoretically predicted
in crystalline a-Al,O3 using both intermediate neglect of differential overlap
(INDO) [161] and DFT methods [162]. The hole polaron self-trapping energy (the
energy difference between the fully delocalized and localized hole states) has been

predicted using the hybrid functional HSE06 [60—62] at 0.13 eV [162]. Similarly
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small hole trapping energies have been predicted for many crystalline oxides, such
as monoclinic ZrO, and HfO, [163,164], BaZrO, [165] and several others (see
e.g. [162,166]). Unfortunately experimental verification of these predictions is often
challenging and there are no reliable experimental data demonstrating hole polaron

formation in a-Al,Os3.

However, experimental data [167, 168] and recent calculations suggest that
structural disorder in amorphous oxides, such as a-SiO, [124, 131, 169] and a-
HfO, [28], facilitates intrinsic electron and hole trapping in much deeper states
than in the corresponding crystalline phases with trapping energies of about 1.0
eV. The wide applications of amorphous Al,O3 films prompted consideration of
whether this is also the case in these films. They have a similar O 2p nature of the
top of the valence band but a different character of disorder to the amorphous SiO;
formed by a continuous random network of SiO4 tetrahedra. Recent spectroscopic
measurements of charge trapping in thin alumina films [111] have attributed states
in the band gap to intrinsic hole polaron trapping and suggested that localized O 2p°
states are spread throughout the band gap rather than forming a relatively narrow

band discussed in amorphous SiO; [131,169] and HfO, [28].

First, in order to test the DFT setup from the previous chapter, including the
PBEO-TC-LRC [40] functional with the tuned cutoff, the properties of the Mga
defect in -Al,O3 were calculated and compared to experiment. Then, using the
geometries from the previous chapter, polarons and bipolarons were studied by in-
troducing electrons and holes into both crystalline and amorphous alumina struc-
tures, and their properties calculated. These calculations demonstrate that there are
no intrinsic electron traps in both crystalline and amorphous alumina. However,
holes self-trap in crystalline o-alumina with trapping energies of 0.38 eV and trap
at intrinsic precursor sites in amorphous alumina with an average trapping energy
of about 1.3 eV. The energy barriers for hole hopping were calculated using the
nudged elastic band (NEB) method. Finally, hole bipolarons are shown to trap in

a-Al, O3, though their barriers for formation are over 1 eV in height.
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5.2 Methodology

Intrinsic hole and electron trapping was investigated with the same 10 amorphous
geometries that were used in chapter 4 for the analysis of the electronic structure
of a-Al,O3. Electrons or holes were introduced to the crystalline and amorphous
systems and then full geometry relaxations were performed using DFT. The DFT
calculations were carried out using the same parameters as outlined in section 4.2.2,
most crucially using the PBEO-TC-LRC [40] functional with a cutoff radius of 3.0
A. As has already been discussed, tuning the functional so that DSLE is minimized
also corrects for over or under delocalization and so better describes localized po-
laron states (section 4.2.2.1) . Calculations of the barriers for hole hopping and bipo-
laron formation were carried out using the nudged elastic band (NEB) method [68],

whose theory is outlined in section 2.4.

5.3 Results

5.3.1 Properties of the Mgy, defect

Due to low trapping energies, it is difficult to measure the properties of self-trapped
hole polarons in ¢-Al,O3 experimentally. Instead the DFT setup and tuned func-
tional can be benchmarked against the optical absorption [170] properties of the
Mg, defect, and local structural information determined from EPR [171,172] mea-
surements. Originally it was assumed that Mg acts as an acceptor [173], with the
hole localizing on the nearest neighbour oxygen and becoming O™, which makes it a
good test system for hole trapping. However there is disagreement on the geometry
of the defect, previous INDO calculations [161] suggested that the hole localizing
over two O ions is more energetically favourable.

The calculations presented here show that the compensating hole localizes pre-
dominantly on one O ion (a spin of 0.76 from Mulliken analysis), as can be seen in
Fig. 5.1. This localization is accompanied by a large elongation of the Mg-O bonds
by 0.4 A from the original perfect lattice positions. The three nearest neighbour Al
ions that lie in the same plane as the O™ displace away from the O atom by less than

0.1 A (see Table 5.1).
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Figure 5.1: The spin density of the Mga; defect, where the hole is predominantly localized
on one O ion. Mg is brown, O red and Al blue. The arrows show the direction
of cation relaxation.

Using the relaxed geometry calculated with the PBEO-TC-LRC [40] func-
tional, calculations of the hyperfine splitting are then used to confirm the defect
geometry by comparison with EPR experiments [171, 172]. Calculation of the hy-
perfine splitting was performed using the PBE functional, due to convergence is-
sues with PBEO-TC-LRC [40]. The PC-1 [174,175] all electron basis set was used
for the hyperfine calculations. These are also compared to hyperfine calculations

performed using the HSE06 [60, 61] hybrid functional and the PCJ-0 [175-177]
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Atom Isotropic 0-X
X hyperfine (MHz) distance (A)
PBE HSEO06 Exp.[172] Calc. Ref.[173]

Al, 1527 18091 19.03  1.888  1.834
AL 1159 13.85 1418  1.942 1917
Al; 431  9.12 729 2062 2.104
Mg 121  2.06 - 2.353 -

Table 5.1: The calculated isotropic hyperfine parameters of the Mga; defect as well and
the experimental ENDOR values [172]. It also shows the nearest neighbour dis-
tances to the oxygen where the hole localizes and compares them to the original
predictions from theory [173]. The atom labels are from Fig. 5.1.

all electron basis sets!. The calculated isotropic hyperfine splitting for the nearest
neighbour Al to the hole centre are shown in Table 5.1 and are compared to the
experimental ENDOR measurements [172]. These results agree well with the ex-
perimental results, confirming the defect geometry and that a single O traps a hole
when an Mgy, defect is introduced, and that the PBEO-TC-LRC functional is able
to accurately predict the structural relaxation of the site. The difference in the val-
ues of the calculated hyperfine splitting between PBE and HSEQ6 is most likely due
to the over delocalization of the PBE functional, where the spin on the oxygen is
only 0.54 (from Mulliken analysis). The EPR calculations also agree qualitatively
with Adrian et al. [173] whose semi-empirical model of the defect predicts a strong

dependence of the hyperfine constant on the O-Al distance.

The unoccupied K-S LUMO energy level of the Mga; defect, calculated using
the tuned PBEO-TC-LRC functional, lies 2.15 eV above the VBM. Time-dependent
DFT (TDDFT) calculations [178] of the optical absorption of this defect demon-
strate a broad spectrum with the maximum at 2.4 eV as a result of transitions from
the valence band states into the LUMO state. This can be compared with the op-
tical absorption spectrum reported by Wang et al. [170] which has a maximum at

2.6 eV with a full width half maximum of 1.3 eV that they associate with the Mg

I'With thanks to Dr. Jonathon Cottom, who collaborated with me on the hyperfine calculations,
and who performed the calculations using the HSE06 functional.
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defect. The presence of the Mgy defect in the samples was confirmed by ESR
measurements.

These results demonstrate that the tuned PBEO-TC-LRC functional performs
well in predicting the correct geometries and defect levels for perfect crystalline
alumina and also allows positive identification of the Mgy defect in a¢-Al,O3. This
gives confidence when considering intrinsic polarons in crystalline and amorphous

alumina.

5.3.2 The hole polaron in -Al,O3

Intrinsic hole polarons in crystalline a-Al,O3 have been studied theoretically using
classical and INDO methods [161]. Zhukovskii et al. [161] investigated whether self
trapped hole (STH) polarons are more stable when localized on a single O or over
two O ions, concluding that two-site holes are more stable. They calculated trapping
energies to characterize the stability of the holes, however, the INDO method leads
to a large over-estimation of these energies, in the order of 3-5 eV. The trapping

energy, Eyap, 18 defined as

Etrap = Epeutral (N - 1) - Epolaron(N - 1) (5.1)

where Epeyea (N — 1) is the total energy of the unrelaxed cell in the neutral geometry
with a delocalized hole in the valence band and Epojaron(N — 1) is the total energy of
the fully relaxed cell with a hole polaron. The definition of the trapping energy in
equation 5.1 is directly comparable to the trapping energies calculated in previous
papers [161, 162].

More recently, DFT calculations using HSE06 [60,61] have calculated the trap-
ping energy of hole polarons to be 0.13 eV [162], with the majority of the spin
density located on a single oxygen. This result is reproduced here using the HSE06

functional (see Table.4.3).

The tuned PBEO-TC-LRC functional predicts that the introduction of a hole to
the system also results in self-trapping, with 0.8 of the spin (from Mulliken anal-

ysis) localized on a single O ion (see Fig. 5.2). The calculated trapping energy of
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Figure 5.2: The spin density of the hole polaron in a-Al,O3, and the direction of relaxation
of the ions. The Al ions are coloured blue and the O are red.

the hole polaron in a-Al,O3 is 0.38 eV. Hole localization is accompanied by dis-
placements of the surrounding ions, with three of the four Al-O bonds elongating by
approximately 0.1 A, and the elongation of one Al-O bond by 0.3 A. As the top of
the valence band of a-Al,O3 is composed O 2p orbitals, the dispersion of the band
is small, meaning that the increase in kinetic energy of the hole upon localization
is smaller than the energy of the lattice relaxation, resulting in the high trapping
energies. The calculated trapping energy is larger than that using HSEO6 calcu-
lated both here and in previous papers [162], likely because the functional more
strongly localizes the hole, and includes a larger contribution of exact exchange
than HSEOQG. It can be seen from Table 4.3 that HSEO6 does not perform as well as
PBEO-TC-LRC in reproducing the correct band gap, which could be as a result of

over delocalization.
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Figure 5.3: The spin density of the hole polaron in a-Al,O3, and the direction of relaxation
of the ions. The Al ions are coloured blue and the O are red.

5.3.3 Hole polarons in a-Al,O3

The states with high localization at the top of the valence band (Fig. 4.5b) in the
charge neutral systems correspond with local structural features that result in hole
trapping, defined as ‘precursor sites’ for the purposes of this work. When a hole is
introduced to the system it will spontaneously localize at one of the precursor sites
predicted from the IPR. In all 10 amorphous structures of Al,O3 strong intrinsic
hole trapping is observed, with an average trapping energy of 1.26 eV. The range
of trapping energies is calculated to be 1.0-1.5 eV (see Table 5.2). The much larger
trapping energies observed in the amorphous structures when compared to the crys-
talline is most likely due to the under-coordination of the O atoms, where over 80%
are 3-coordinated with Al, rather than 4-coordinated as in o-Al;O3. Many of the
precursor sites where the hole polarons are able to localize include a 2 coordinated

O ion (see Table 5.2), which account for approximately 5% of oxygens in the amor-
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Sample  Trapping  Unrelaxed O-O Relaxed O-O O coordin-
energy (eV)  distance (A) distance (A) ation number

1 1.16 2.61 2.23 2
2 1.00 2.61 2.39 3
3 1.39 2.55 2.37 3
4 1.49 2.68 2.12 2
5 1.32 2.46 247 2
6 1.10 291 2.61 2
7 1.34 241 2.10 3
8 1.42 2.65 2.53 2
9 1.08 2.69 2.59 2
10 1.29 2.69 2.39 2

Table 5.2: The properties of different hole trapping sites in the 10 geometry samples of a-
Al,O3, including the coordination number of the oxygen where the majority of
the spin is localized.

phous structure, but whose G;p like states disproportionately contribute to the top
of the valence band, as discussed in section 4.3.3. However not all precursor sites
include a 2 coordinated oxygen, with the hole occasionally localizing on 3 coordi-

nated O sites.

Although the precursor sites are most easily identified from the IPR data, there
are stuctural similarities between the hole traps. Unlike in a-Al,O3 where the hole
localizes on one O ion, in a-Al,O3 over 90% of the spin density localizes on 2 near-
est neigbour O ions (see Fig. 5.3) with an average O-O separation of 2.6 A before
relaxation (see Table 5.2). This means the hole traps have a local structure involving
multiple ions. The spin density is not, however, evenly distributed between the 2
oxygens, one normally accounts for 0.7 of the spin (from Mulliken analysis) with
the other approximately 0.2. This is due to the filling of only one of the unoccu-
pied Gikp anti-bonding type orbitals with a hole, which results in an asymmetry of
the wavefunction and unequal charge distribution between the 2 oxygens, as can be
seen in Fig. 5.3. The asymmetry results in breaking the degeneracy of the Gz*p lev-
els, with the hole state being pushed into the band gap. Between the 2 O ions, where

the hole is localized, there is a large contraction of the O-O bond of 0.3-0.4 A, much
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larger than the relaxation of the O-O bonds in the crystalline system which are less
than 0.1 A, and most likely due to the removal of an electron from an anti-bonding
orbital and the decrease in Coulomb repulsion. The O-Al-O bond angle also de-
creases by an average of 10°. Accompanying this is also a small displacement of

the Al ions, which move approximately 0.1 A.

Due to the large distribution of bond angles and bond distances in a-Al,O3
there are multiple precursor sites where the local structural configuration of the
ions allows for hole trapping. These precursor sites are identified using the IPR
data, and hole polarons can be localized at different sites within the cell. In a-
Al,Os3 there are an average of 3-4 precursor sites per 360 atom cell where hole
polarons are able to trap, with an average separation of 8 A between sites. This
leads to a maximum density of precursor sites of approximately 2.6x 10?0 ¢cm—3.

The variation of trapping energies of the precursor sites within the cell is similar to

that between different samples, with a typical variation of 0.3 eV.

To prove that there are a number of precursor sites within a single cell, pre-
dicted using IPR, that can also trap holes, one of the 360 atom geometries was
selected at random, and the trapping energies of different precursor sites calculated.
This was achieved by identifying the oxygen ions contributing to the majority of the
IPR of the 4 highest energy molecular orbitals at the top of the valence band (see
Fig. 5.4), and then fixing all the atoms in the cell but those surrounding the target O
and allowing the atoms to relax. After the initial localization of the hole on the target
ion, all atoms were then un-fixed and allowed to fully relax so the correct trapping
energy could be calculated. Hole polarons were successfully trapped at each precur-
sor site identified from the IPR, with trapping energies ranging from 1.00-1.32 eV,
similar to the distribution of trapping energies seen across the 10 different samples.
This demonstrates the effectiveness of using IPR analysis to identify precursor sites
in amorphous materials, and increases the confidence with which we can predict the

density of precursor sites.
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Figure 5.4: The IPR of the top of the valence band in a single amorphous geometry. The
4 highest energy molecular orbitals in the valence band have been labelled A,
B, C and D. Hole polarons have been localized at each of the precursor sites
identified from the molecular orbitals.

MO  Trapping Unrelaxed O-O Relaxed O-O O coordin-
energy (eV)  distance (A) distance (A) ation number

A 1.32 2.82 2.21 2
B 1.00 2.61 2.39 3
C 1.08 2.64 2.37 3
D 1.09 2.36 2.26 2

Table 5.3: The properties of 4 different hole trapping sites (labels correspond to MOs in
Fig. 5.4) in the same geometry sample of a-Al,Os, including the coordination
number of the oxygen where the majority of the spin is localized.
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Figure 5.5: The energy barrier for a hole to hope from one precursor site to another, cal-
culated using NEB.

5.3.3.1 The barrier to hole hopping

Having established that there are multiple hole trapping sites per cell, it is possible
to investigate whether hole polarons in a-Al,O3 are mobile. Using a nudged elas-
tic band calculation (NEB), with 10 images, the thermal barrier to a hole hopping
between two hole trapping sites in the same cell can be calculated. The activation
energy for hole hopping between sites A and B, defined in Fig. 5.4, was calculated
to be 0.3-0.6 €V, as can be seen in Fig. 5.5. However, unlike in crystalline Al,O3
where adjacent hole trapping sites are equivalent, in the amorphous material pre-
cursor sites are separated by average distances of 8.0 A, which would suggest that
transport is more likely to be through a tunneling process. The activation energy
for hole hopping is lower than the energy required to promote a hole into the delo-
calized region of the valence band past the mobility edge, suggesting there might

be a transition from a hopping transport mechanism to conventional conduction at



5.3. Results 97

higher temperatures. The high trapping energies of hole polarons and barriers to
hopping also suggest that there is likely to be stronger positive charging in a-Al, O3
than in the crystalline material, and that this charging could be due to intrinsic hole

trapping rather than impurities in the material.

5.3.4 Electron trapping in Al,O3

Self trapped electron polarons in crystalline a-Al,O3 were not found to be stable.
This is most likely, as stated earlier, due to the large dispersion of the conduction
band at the I'-point of a-Al,O3 [158], the small relaxation of the lattice cannot
compensate for the large increase in kinetic energy of the electron as it is localized

and so the polaron is not self trapped.

Although deep electron traps in a-Al,O3z have been observed experimen-
tally [22], after examining 30 different geometric structures (20 of them 120 atom
models) no significant evidence for intrinsic electron trapping was observed. Extra
electrons are delocalized at the bottom of the conduction band. The IPR of a-Al, 03
in Fig. 4.5b suggests the reason for the much lower density of electron traps when
compared to hole traps is there are no localized precursor sites at the bottom of the
conduction band. In materials which show strong intrinsic electron trapping, the
bottom of the conduction band generally has lower dispersion and is composed of
orbitals that are more directional. In the case of HfO, [28], the CBM is composed
of d orbitals and demonstrates electron trapping energies of 1.4 eV, and even the
formation of electron bipolarons. In a-Se photodetectors [179] it is reported that
an a-HfO, blocking layer is more effective at suppressing both electron and hole
injection than an a-Al,O3 layer. The greater number of charge traps in HfO, could

suggest that while pure alumina does trap charge, it only traps holes.

5.3.5 Hole bipolarons

Having established that single hole polarons have high trapping energies in a-Al, O3,
it is interesting to consider whether 2 holes can trap at the same site and form a hole
bipolaron. As there are a high density of hole precursor sites, the stability of a hole

bipolaron has to be compared to the stability of 2 holes occupying separate sites in
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W

Figure 5.6: The local geometry of the bipolaron and the isosurface of the unoccupied
molecular orbital associated with the bipolaron. The arrows display relaxation
direction of the Al ions.

the system. The binding energy of the hole bipolaron, Eg, is therefore defined [180]

EBinding = 2EPolaron (N - 1) - [EBipolaron (N - 2) + ENeutral (N )] ) (5 2)

where N is the number of electrons in the neutral system, Epojaron(N — 1) is the en-
ergy of the fully relaxed system with a single trapped hole polaron (N — 1 electrons),
ERipolaron (N —2) is the fully relaxed system with the hole bipolaron and Eneural (V)
is the energy of the neutral system. The binding energy is therefore the difference in
energy between a system with two infinitely separated hole polarons, and a system

where the two holes have combined to form a bipolaron.

When 2 holes are introduced to the a-Al,O3 system they do not immediately
localize on the same site, but instead occupy different hole precursor sites. This
is a result of the energy barrier that must be overcome for hole bipolarons to form.
Trapping 2 holes at the same site is achieved by decreasing the bond length between

2 oxygen ions at a hole precursor site to approximately 1.5 A, and then allowing the
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Figure 5.7: The projected density of states (PDOS) of the bipolaron in a-Al,O3, with the
black peaks showing the states of the O-O dimer. The density of states projected
onto the 2 nearest neighbour oxygen where the bipolaron localizes has been
normalized to O density.

system to relax. The binding energy of hole bipolarons is not always positive, with
binding energies ranging from -0.71 to 0.37 eV, with the average binding energy
over 8 samples being negative. This means that having 2 holes occupying separate
trapping sites is often a lower energy configuration than that of a bipolaron. This
differs from amorphous HfO, where hole bipolarons form spontaneously [180] with
no energy barrier to overcome, and have positive binding energies.

After the 2 nearest neighbour oxygen ions in the precursor site relax towards
each other the bipolaron takes the form of an O-O dimer (see Fig. 5.6). The decrease
in the bond length is significant, with the average O-O bond length contracting from
2.36 A, for the single hole polaron, to 1.49 A for the bipolaron. The hole bipolaron
state, seen in Fig. 5.6, is similar to the unoccupied O 62*p antibonding orbital of
an O%_ molecule. As discussed in section 5.3.3, the single hole polaron has the
majority of its spin density sitting on a single oxygen in the O-O dimer, breaking the
degeneracy of the Gfp unoccupied orbitals. The removal of another electron at the
bipolaron site means both 62*p orbitals are unoccupied, and the O-O bond distance

contracts towards the bond length of an O%‘ molecule. The density of states, shown
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in Fig. 5.7, show that the states of the O-O dimer are highly localized, and resemble
the states of an O, molecule. The large relaxation of the O-O bond generally pushes
the unoccupied bipolaron state into the conduction band, and there is very little
mixing of the O 62*p orbitals and the Al 3s orbitals that form the bottom of the
conduction band. Sometimes however, the unoccupied bipolaron states sits in the
band gap, just below the conduction band minimum. This differs from bipolarons in
other metal oxides. In amorphous HfO, [180] some mixing of the 62*p antibonding
orbital and the Hf 5d orbitals at the conduction band minimum is observed, whilst
in amorphous TiO; [181] almost complete hybridization of the bipolaron state with
the Ti 3d orbitals occur so that no localization of the O-O antibonding state in the
conduction band is observed. The hybridization of the O p type orbitals with the d
orbitals of the transition metals that form the CBM means the bipolaron state is not

as localized as it is in a-Al; O3, and therefore will never appear in the band gap.

5.3.5.1 The barrier for hole bipolaron formation

Using the nudged elastic band method, the energy barrier for bipolaron formation
was calculated. A system with 2 hole polarons trapped at different precursor sites
was used as the initial state, with the final state consisting of the 2 holes forming a
bipolaron on one of the initial hole sites. The hole sites were chosen so that their
individual trapping energies were within 0.1 eV of each other. 10 images were used
in the calculation.

As can be seen in Fig. 5.8 the barrier height for bipolaron formation is 1.26 eV.
The image corresponding to the transition state, at image 5, (see Fig. 5.9) clearly
shows the hole occupying both the initial hole site and the bipolaron site, meaning
that we can be confident that the maximum of the energy barrier is a good repre-
sentation of the transition state. The 1.26 eV barrier for hole bipolaron formation
is much higher than the 0.3-0.6 eV barrier height for hole hopping, meaning hole
bipolarons are much more likely to form through a tunneling process. This is dif-
ferent to a-HfO, where bipolarons are likely to be a significant source of positive
charge as there is no barrier to their formation [180].

That bipolaron formation has such a high energy barrier suggests that bipo-
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Figure 5.8: The energy barrier for a bipolaron to form from 2 separated hole polarons,
where image 1 is the 2 separated hole polarons, and image 10 is the bipoalron.

larons are unlikely to significantly contribute to the positive charging of a-Al,03,
and that intrinsic single hole polarons are far more likely to be the cause of positive

charging and hole trapping in the material.

5.4 Conclusions

Intrinsic charge trapping in amorphous alumina has been studied through the use
of DFT simulations with the range-separated hybrid functional PBEO-TC-LRC.
The truncation radius was tuned to provide the piece-wise linearity of the energy,
as demonstrated in chapter 4. Satisfying this condition led to qualitatively cor-
rect predictions of electron and hole localization at impurities in other calcula-
tions [135, 138]. The performance of PBEO-TC-LRC with R=3.0 A was tested by
reproducing the spectroscopic properties of the Mg defect in at-Al,O3. The sub-
stitution of Al by Mg in a-Al,O3 creates a local negative charge which is known

to be compensated by a positive hole trapped on a nearby O ion. This defect has
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Figure 5.9: The molecular orbital isosurface of the hole in its transition state occupying
both the single hole site (A) and the bipolaron site (B). This is from image 5 of
the nudged elastic band calculation, the maximum of the energy barrier in Fig.
5.8.

been studied by EPR [171, 172] and optical spectroscopy [170] and the calculations
reproduce the spectroscopic properties of the Mgy defect in good agreement with

experiment.

Using the tuned functional, it was shown that holes can trap spontaneously in
amorphous alumina on two nearest neighbour oxygen sites, with an average trap-
ping energy of 1.26 eV. It is also demonstrated that there is a high density of hole
trapping precursor sites in a-Al,O3z. These are typically low-coordinated O sites
which are separated on average by about 8.0 A. The binding energies of bipolarons

were also calculated, and some bipolarons were shown to have positive binding en-
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ergies. However, a nudged elastic band calculation predicted the activation barrier
to formation to be greater than 1.2 eV, meaning they are unlikely to be a signifi-
cant source of positive charging in a-Al,O3. Unlike in other oxides, such as Si0;
and HfO,, no electron trapping was observed in both crystalline and amorphous
alumina. This is attributed to the orbital nature of the bands, with the CBM being
composed of highly dispersed 3s states. This suggests that the nature of intrinsic
trapping in metal oxides could be predicted by examining the fundamental orbital
character of the ions in the system and the composition of the bands. These results
predict that the trapping of positive charge can be much more severe and stable in
amorphous alumina than in crystalline samples, and that they are more likely to be

single hole polarons rather than bipolarons.






Chapter 6

Defects in a-Al,O;

6.1 Introduction

Significant negative charging of a-Al, O3 films is observed experimentally [22,23,
41,42], but, the defect, or defects, responsible have not yet been identified. In this
chapter the characteristics of a variety of defects are investigated using DFT, in

order to identify the defect responsible for electron trapping in amorphous Al,O3.

The experimental data [22, 23, 33, 41,42, 182, 183] in conjunction with the
computational results presented in this chapter will enable the positive identification
of defects present in a-Al,O3. Measurements of the shifts in threshold voltage in
a-IGZO thin film transistors estimate the density of defects that trap electrons to be
1x10'3/cm? in a 30 nm a-Al,O3 ‘charge trapping’ layer [23] in the device.

Another detailed examination of electron trapping in Al,Os3 thin films [22],
measures the trap density at various depths within the film and the position of their
energy levels below the conduction band minimum (CBM) using photodepopulation
spectroscopy (PDS). PDS measures the energy levels of the defects by observing the
current in the film after the photoexcitation of electrons into the Al,O3 conduction
band. After significant charging of the alumina films by electron injection, PDS
measurements show a broad range of electron trap energy levels 2.9-3.7 eV below
the CBM (see Fig. 6.1), with a trap density of 1.3 x 10! /cm?, near the Si0,/A1,03
interface [22]. As can be seen in Fig. 6.1, before electron injection the film is

uncharged and much lower PDS signal intensities are exhibited, suggesting a much
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Figure 6.1: The energy distribution of the electron traps with respect to the conduction
band minimum in an a-Al,O3 thin film, measured by PDS, for a charge neutral
film before electron injection (black squares) and a negatively charged film after
electron injection (white squares). ©2010 IEEE. Reprinted, with permission,
from [22]

lower density of occupied gap states.

To identify these traps, as a first approximation of the photoexcitation energy,
the energy difference between the Kohn-Sham energy levels of the defects and the
conduction band can be compared to the PDS trap levels. TDDFT calculations have
demonstrated that the excitation energies of transitions from localized defect states
into delocalized band states in amorphous materials can be well approximated by
the Kohn-Sham energy eigenvalue differences of the states [184]. In chapter 4 it
is shown that the conduction band minimum of a-Al,O3 is a delocalized state, and
does not exhibit the localization seen in other oxides [28]. High electron mobilities
in a-Al,O3 have also been measured experimentally [42]. As PDS detects transi-
tions by measuring a current, it is important that the energy reference is taken from
the mobility edge, which in a-Al,O3 corresponds to the CBM [42].

The PDS measurements are confirmed by ‘gate side trap spectroscopy by
charge injection and sensing’ (GS-TSCIS) measurements which show a peak de-

fect density of 1.6 x 10'° / cm? at approximately 3.4 eV below the Al,O3 CBM,
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with a significant distribution of traps from 3.0 eV below the CBM [22]. A shallow
band of traps is also identified at 1.6-1.8 eV below the CBM, with a trap density of
approximately 1.6 x 10'° /cm? in the bulk of the Al,O5 films [22].

As discussed in chapter 5, intrinsic trapping of electron polarons through struc-
tural distortion of stoichiometric a-Al, O3 is not observed, and it is therefore unlikely
to be responsible for the negative charging seen in experiment [22,23]. However, a-
Al, O3 films also contain defects where the structure deviates from the stoichiomet-
ric ‘pure’ amorphous topology, analagous to intrinsic and extrinsic defects in crys-
talline Al,O3. The interest in alumina’s potential as a gate dielectric means defects
in the crystalline material have been widely studied computationally [185-189].
When building metal-oxide-semiconductor devices it is important to understand
whether various defects will introduce in-gap states that can act as charge traps at
the semiconductor interface, or as shallow donors which will contribute to leakage

current.

In this chapter the structural and electronic properties of interstitial hydrogen
(H;), oxygen vacancies (Vp), oxygen interstitials (O;), aluminium vacancies (V a1)
and aluminium interstitials (Al;j) in a-Al,O3 are discussed. Of particular interest
are the charge transition levels and Kohn-Sham energy levels of the defects. This
is to enable identification of the defects responsible for the negative charging of
a-Al,Os3 films by comparing the computational results with the experimental trap

spectroscopy data [22].

6.2 Methodology

A range of defects in a-Al,O3 were investigated with the same 10 amorphous ge-
ometries used previously (see chapter 4). Defects were then created in the 360
atoms cells of both a-Al,O3 and o-Al,O3 by the addition or removal of an ion at
a variety of sites, in order to sample the effect of different densities, band gaps and
local atom coordination numbers. The structures were then allowed to undergo full
geometry optimization and the electronic structure calculated using the DFT pa-

rameters described in section 4.2.2, most crucially using the PBEO-TC-LRC [40]



108 Chapter 6. Deftects in a-AlL O3

functional with a cutoff radius of 3.0 A.

6.2.1 Sampling defects in amorphous material

In all crystals there is a finite number of non-equivalent defect sites within the prim-
itive unit cell. It is therefore possible to calculate all configurations of a single type
of defect in crystalline systems. In amorphous structures the lack of periodicity
means no sites are exactly equivalent, and so any defect properties will fall within
arange of values, dependent on local geometric structure and the bulk properties of
the specific amorphous cell.

Different methods have been employed to sample defects in amorphous ma-
terials. One method involves sampling a variety of defect sites within a single
amorphous cell [190]. This allows defect sites with different nearest neighbour
configurations and bond lengths to be investigated, without having to generate a
large number of amorphous geometries. However, this does mean that the range of
values of the defect properties are dependent on the geometry of one cell, which
may not be representative of a true amorphous material. The coordination num-
ber distribution, density, average bond length and band gap can all vary between
amorphous cells, which can affect the relaxation and stable charge states of defects.

The other approach is to calculate the properties of defects in a range of differ-
ent cells [191, 192]. This allows a variety of local defect geometries to be sampled,
which have different bond lengths and local coordination numbers, whilst also al-
lowing for variation in bulk properties that can affect the stability of certain defect
configurations and charge states. It is also less likely to be affected by anomalous
cell geometries. This is the approach applied in this work, with a single defect
studied in each of the 10 different amorphous geometries that were generated (see
chapter 4). To create vacancies, atoms are removed at random, but so the distribu-
tion of the atom coordination numbers matches that of the distribution across the
10 cell geometries. Interstitial defects are created by adding an atom at a random
position in the cell, with a consideration of minimum inter-atomic distances, and
then performing a geometry relaxation.

This approach is still able to give a range of the defect charge transfer levels,
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Kohn-Sham levels and defect geometries, whilst also allowing any impact of the
bulk properties to be investigated. Thus the general characteristics can be studied
whilst also allowing the chance for less likely configurations to be discovered. Lim-
ited computational time means that only a finite number of configurations can be
calculated, and so the properties observed are not a complete picture. However,
even with 10 examples per defect, general patterns begin to appear and the distribu-

tion of properties observed.

6.2.2 Defect formation energies

The formation energies and charge transition levels of the defects investigated in
this chapter were calculated using the method described in section 2.3. The chem-
ical potential of hydrogen that is used in the calculation of the formation energies
is given by the expression, uy = Ey, /2, where Ep, is the total energy of an Hj
molecule. The chemical potential of oxygen was taken to be to = Eo,/2, where
Eo, is the total energy of an O, molecule in the triplet state.

The aluminium chemical potential was calculated from a 256 atom cell of bulk
Al in the cubic phase, after a full cell relaxation. The DFT calculation used the
same functional and basis sets described in section 4.2.2.

Charge corrections to the energy, as a result of the interactions between point
charges in periodic supercells [63, 65] (see section 2.3) were included in the cal-
culations of the defect formation energies. The corrections led to small shifts in
the positions of the charge transfer levels by no more than 0.4 eV, due to the high

dielectric constant of amorphous Al,O3 (9.6 [193]) and the large size of the cells.

6.3 Results

6.3.1 Interstitial hydrogen

Due to its ubiquity and presence in almost every growth environment, hydro-
gen is a common impurity in most metal oxides and semiconductors, including
Al,O3 [33, 182, 183]. Therefore it is not surprising that the negative charging ob-
served experimentally [23,183] in a-Al,Oj3 thin films has been attributed to intersti-

tial hydrogen (Hj). An increase in tunneling conductivity via a mid-band gap state
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was observed to increase after an increase in the H content of alumina films [183].
DFT studies of H;j in crystalline Al,Os3, using LDA [185], GGA [183] and hy-
brid [187-189] functionals, confirm that interstitial hydrogen has a mid-band gap
energy level in alumina, close to its band offset with Si. Due to the lack of compu-
tational data on interstitial hydrogen in amorphous alumina, DFT studies of crys-
talline Al,O3 are used for comparison in this section.

To create the defects, neutral hydrogen atoms were positioned at random po-
sitions within the 10 amorphous Al,O3 geometries, while ensuring initial O-H dis-
tances were greater than 1.6 A, and then allowed to relax. This allowed the H to be
positioned close to O ions with a range of coordination numbers during relaxation.
After calculating the properties of the H?, the different charge states were inves-
tigated by the addition or removal of an electron to the system followed by a full

geometry relaxation.

6.3.1.1 H;

In crystalline alumina there 3 are possible charge states of interstitial hydrogen,
each of which has different structural and bonding characteristics. Previous DFT
calculations predict that Hl+ forms an OH bond with a nearest neighbour oxygen in
a-Al,O3 [187-189] and 6-Al,03 [189], with O-H bond lengths of approximately
1.0 and 1.1 A respectively. As can be seen in Fig 6.2a, the H;r defect demonstrates
similar behaviour in a-Al,O3 , with the proton forming an OH bond with a nearest
neighbour oxygen. The average O-H bond length over the 10 amorphous samples
is 1.00 A, with a range of 0.96-1.07 A.

Out of the 10 HIJr configurations in a-Al,O3, 7 formed an OH bond with
a 2-coordinated O ion ([2}0), and 3 with a 3-coordinated O ([3}0). The under-
coordination of the O ions means no Al-O bonds have to be broken to form the
lowest energy configurations of the defect. This can be compared to hybrid func-
tional calculations of a-Al,O3 [189], where 2 of the 4 oxygen ion’s Al-O bonds are
broken to form the OH configuration, whilst in 6-Al,O3 the proton bonds with a
3-coordinated O and no O-Al bonds are broken. The HIJr defects in a-Al,O3 where

the OH bond includes a 2O have an average formation energy that is 0.9 eV lower
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Figure 6.2: The structural configurations of the 3 H; charge states, similar to those seen in
crystalline Al,O3, with Al coloured grey, O red and H white. The arrows show
the direction of relaxation, with the labels showing the length of the bond. a)
the HIJr defect which forms an OH bond. b) H? which lies between 2 Al ions as
atomic hydrogen. ¢) H;" also sits between 2 Al ions, though they relax towards
the negatively charged ion.

than those with a [3JO. This could be due to the addition of the proton significantly
lowering the energy of the localized O G;p type orbitals observed at the top of the
valence band in bulk a-Al,O3 (see section 4.3.3), which are a direct result of the O

under-coordination.

6.3.1.2 H? and the [HiJr + ecpm] defect

The neutral hydrogen interstital, H?, behaves like an isolated hydrogen atom in
crystalline Al,O3 and is 2 coordinated with Al [189]. It causes minimal relaxation
of the surrounding lattice due to the charge neutrality [189]. The H? defect can

display similar characteristics in a-Al,O3, where the OH bond of the H;L is broken
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and the electron localizes on the proton, forming an isolated hydrogen atom (see

Fig 6.2b).

However, the neutral hydrogen interstitial defect in amorphous Al,O3 can dif-
fer significantly from that in the crystalline material. In a-Al,Oj3 there are 2 possible
configurations of the H? and, occasionally, the H;” defects. When an H atom or H™
ion is introduced into amorphous Al,O3, it is possible for it to donate its electrons
into the conduction band whilst forming an OH bond with a nearest neighbour oxy-
gen (similar to the configuration seen in Fig 6.2a). This can be considered as an
[H;L + ecpm] or an [H;r + 2ecpm] defect, where ecgy denotes a delocalized elec-
tron in the conduction band. DFT calculations using LDA functionals observed that
for some oxides the H(+/-) charge transition level lies above the CBM [194]. This
is attributed to a pinning of the H? energy level at approximately 4.5 eV below the
vacuum level [194], meaning in oxides with a larger electron affinity, the energy
needed to break the OH bond is greater than that required to place an electron in the

conduction band.

In a review of hydrogen and muonium data [195], and their role as shallow or
deep donors and acceptors, it is predicted that Hi0 in materials with electron affinities
greater than 4 eV will auto-ionize and donate an electron into the conduction band,
which is confirmed by ESR data [195]. Later studies, using HSE06, demonstrate
that crystalline TiO, and SnO; show similar behaviour [189], both of which have
electron affinities greater than 4 eV [195] and band gaps smaller than 5 eV [189].
Amorphous HfO, also has a [H;r + ecam] like defect, though the donated electron
localizes at an intrinsic trap site, rather than delocalizing in the conduction band
minimum. This lowers its formation energy and allows it to become energetically
favourable [191]. The trapping energy of an electron polaron in a-HfO, is approxi-
mately 1 eV, and so this compensates for the higher band gap of approximately 6.0

eV [191] (and a lower electron affinity of approximately 3 eV [195]).

The [Hi+ +ecpm] defect is most likely observed in a-Al,O3 due to the lowering
of the conduction band in a-Al,O3 (see section 4.3.3) when compared to a-Al;Os.

The lowering of the conduction band corresponds to an increase in the electron
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affinity towards the 4 eV suggested as the H? pinning level, and when the local
structural relaxation lowers the energy surrounding the defect sufficiently, [Hi‘L +
ecm] can be more energetically stable than H? in the amorphous material. The
[H;L + ecpMm] defect can be considered a meta-stable state in a-Al, O3, which is not
observed in the crystalline material where the conduction band is higher, and the

energy gained from structural relaxations is smaller.

6.3.13 H

In 7 out of the 10 interstitial hydrogen defects calculated, the negatively charged
hydrogen interstitial forms an isolated H™ ion, as shown in Fig. 6.2c. This is similar
to the structural geometry of the defect observed in -Al,O3 and 6-Al, O3 [189].
In the other 3 configurations an [H;r + 2ecpm] defect is formed.

In the formation of the H;~ defect, the electron that is introduced to the system
localizes on the hydrogen, giving the ion an average Bader charge of -0.9]e|. The
negative charge of the hydrogen ion causes significant relaxation of the 2 nearest
neighbour Al ions, which are attracted to the interstitial hydrogen due to their for-
mal +3 positive charge. An example of this relaxation can be seen in Fig. 6.2. Dur-
ing this relaxation the Al-H bond contracts by 0.19 to 0.36 A, when compared to the
bond lengths in the neutral charge state. Similar relaxation of the 2 nearest neigh-
bour Al towards the H;” defect is observed in crystalline Al,O3 [188, 189], with
the hydrogen sitting equidistant between the aluminium ions with a bond length of
1.67 A. Relaxation of multiple cations towards the defect also occurs in amorphous
HfO; [191], and crystalline MgO and La;O3 [189]. This differs from the relaxation
observed in more covalent oxides, like amorphous S10, [196] and crystalline Si0;
and GeO; [189], where the negatively charged hydrogen bonds to a single cation,
causing large relaxation of the surrounding oxygens. This would suggest that the
ionicity of the material strongly affects the configuration and bonding character of

the H defect.

6.3.1.4 The charge transfer level and energy levels of H;
It is widely accepted that interstitial hydrogen in crystalline Al,O3 exhibits

‘negative-U’ behaviour, meaning its +1 (Hi+ ) or -1 (H;") charge states are more
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Figure 6.3: The formation energy of the different charge states of interstitial hydrogen
against the Fermi energy with respect to the valence band. The dashed vertical
line shows the position of the CBM. a) The formation energy of the H1+ , H? and
H;” where the OH bond is broken in the neutral and negative charge state, as
seen in Fig. 6.2b and Fig. 6.2c. b) The formation energy of H;r s [H;r + ecaml
and [Hi+ + 2ecsm, here the (+/-) charge transfer level is at the CBM.
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Figure 6.4: The average (solid line) charge transfer levels of H;j, Vo, Oj, Va1 and Al;
with respect to the a-Al,O3 CBM, with the y axis the energy in units of eV.
The dashed lines represent the calculated range of the levels in the different
samples. The Si/a-Al,O3; conduction band offset is taken from internal electron
photoemission measurements [113].

thermodynamically stable than its neutral state (H?) for all values of the Fermi en-
ergy [185,187-189]. The calculations presented here show that this holds true for
interstitial hydrogen in a-Al,O3. As can be seen from Fig. 6.3, there is only a (4/-)
charge transition level for the H;™ defect, and the [Hi+ + 2ecpMm] defect necessarily
has the charge transition level when the Fermi energy is aligned with the CBM. The
formation energy of the neutral defect is never lower than that of H:“ or H;” at any
value of the Fermi energy.

When only including the 7 H;” configurations which have a charge transition
level in the band gap, the average (+/-) charge transition level lies 1.43 eV below
the CBM, as can be seen in Fig. 6.4. The charge transition levels are shown with
respect to the CBM in order to compare with experimentally measured conduction

band offsets of a-Al,O3 with Si [119].
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Figure 6.5: The average (solid black line) and range (dotted lines) of the Kohn-Sham en-
ergy levels of the Al;j, Vo or H; defects with respect to the a-Al,O3 conduction
band, compared to the experimental PDS trap energy level range [22]. For the
PDS data the solid black line shows the energy of at the maximum density of
states seen in Fig. 6.1.

In Fig. 6.4 it can be seen that the (+/-) charge transition level lies above the Si
conduction band, but only by an average of 0.6 eV, with the lowest (+/-) level within
0.2 eV of the Si CBM. The voltage applied across the gate dielectric during tran-
sistor device operation would lower these levels with respect to the Si conduction
band, which could lead to electron trapping via a tunneling mechanism.

In [22], the negative charge traps in a-Al,O3 can be populated via the same
tunneling mechanism. By varying the charging potential, traps at a range of energy
levels in the alumina gap can be populated when they are aligned with the injection
level. Therefore H;™ could be responsible for the negative charging observed [22].
However, the Kohn-Sham energy levels of H.™ lie an average of 4.8 eV below the
CBM, approximately 1 eV lower than the extreme range of the trap levels measured

by photodepopulation spectroscopy [22]. So whilst it is possible for interstitial
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Figure 6.6: The formation energy of the different charge states of oxygen vacancies in
a-Al,O3 against the Fermi energy with respect to the valence band.

hydrogen to trap electrons in a-Al,O3 [22,23,41], it is unlikely to be responsible

for the defects observed by the spectroscopic measurements [22].

6.3.2 Oxygen vacancies

6.3.2.1 Vg in a-Al,O3
There is a large body of existing literature on oxygen vacancies in crystalline Al,O3,
both computational [146, 186, 197] and experimental [198, 199]. This allows cal-
culations of Vg in a-Al;O3 to be used to benchmark the DFT setup and hybrid
functional parameters with respect to existing studies, and to act as a point of com-
parison to the amorphous system.

Fig. 6.6 shows the formation energy of various charge states of oxygen vacan-
cies in &-Al,O3. It shows that oxygen vacancies have a (+2/+1) charge transition
level at 3.8 eV above the VBM, with the (+1/0) level at 4.0 eV above the VBM,

meaning that for most Fermi energies in the band gap the V(Z)Jr and VOO are the most
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Figure 6.7: An energy level diagram for VOO in a-Al,O3 showing the symmetry forbid-
den and allowed transitions, and the molecular orbitals of the A; and T, states
involved in the symmetry allowed excitations.

thermodynamically stable charge states of the oxygen vacancy. During the geome-
try relaxation of the neutrally charged oxygen vacancy, the 4 nearest neighbour Al
move 0.01-0.10 A towards the defect site with respect to the perfect lattice. For
V(Zf they relax 0.19-0.30 A away from the vacancy site with respect to the perfect
lattice. These relaxation distances are in good agreement with Choi et al. [197].
However, whilst the nearest neighbour relaxations are similar, they calculate the
(+2/+1) charge transition level to be 3.2 eV above the VBM, with the (+1/0) level at
4.1 eV [197]. This difference is likely due to the smaller cell size used in their pa-
per (160 atoms), which would constrain the relaxation of the next nearest neighbour
ions, increasing the energy of the V%;“ defect. Over estimation of the V(Z;r formation

energy is also observed in other calculations using smaller cell sizes [146].

Luminescence spectra measurements [199] of a-Al,O3 assign an absorption
peak at 6.4 eV to the neutral oxygen vacancy. This is greater than the 5.6 eV energy

difference calculated between the VOO Kohn-Sham energy level and the conduction
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Figure 6.8: The molecular orbitals of the A and T, like states of 3 and 4 coordinated V%
in a-Al, O3, and difference in energy between their Kohn-Sham levels.

band minimum. However, as oxygen in &-Al,O3 is 4 coordinated and has tetrahe-
dral like symmetry with point group Ty, the A; like character of the neutral state
(see Fig. 6.7) has minimal wavefunction overlap with the delocalized CBM in a-
Al,O3 as it is composed of Al 3s orbitals. Instead, as can be seen in Fig. 6.7, the
defect causes a localized state in the conduction band with T, like character. A to
T, excitations are symmetry allowed dipole transitions and are most likely respon-
sible for the sharp peak observed experimentally [199]. The T, like state (see Fig.
6.7) lies 6.3 eV above the neutral vacancy level, and although the energy difference
between Kohn-Sham levels is only a first approximation for excitation energies, the

calculated transition energy is in very good agreement with the experimental results.

6.3.2.2 Vg in a-Al,05

Oxygen vacancies in amorphous Al,O3 have also been investigated using DFT

methods [190,200]. However, these studies only model vacancies in a single cell of
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80 [200] and 160 [190] atoms respectively, which may not capture the full range of
properties of Vg. In order to improve understanding of these defects in a-Al,Os, the
properties of oxygen vacancies at 11 defect sites in 10 geometry samples have been
calculated and are presented here. The distribution of the O coordination numbers
has been taken into consideration, with 7 [3}0, 2 2lo and 2 4O being removed in

order to create the oxygen vacancies.

In amorphous Al,O3 only the +2 or neutral charge states of the oxygen vacancy
are thermodynamically stable. The same behaviour is observed by Guo et al. [190].
The (+2/0) charge transition level lies, on average, 3.5 eV above the VBM and 2.0
eV below the CBM (see Fig. 6.4). In the neutral charge state 2 electrons localize on
the vacancy site, forming an F-centre, similar to the defect in the crystalline system.
As V% has a doubly occupied state in the band gap it could be responsible for the
transitions seen experimentally [22], after charge injection. The high (+2/0) charge
transition level suggests that before charge injection, whilst the Fermi level lies at
the VBM, V%;r is the most stable configuration, which has no occupied states in the
band gap. In a-Al,O3 there is no stable V(lj_ state and so it cannot be responsible
for the negative charging observed in amorphous alumina films, unless it acts to

compensate the negative charge of another defect.

The calculated VOO Kohn-Sham energy levels lie an average of 4.0 eV below
the CBM (see Fig. 6.5). The defects in the amorphous material create similar states
to those observed in -Al,03. The 3 and 4-coordinated vacancy sites cause a lo-
calized state, similar to the A state, to form in the band gap, and T, like states to
appear within the conduction band (see Fig. 6.8). The further distortion of the tetra-
hedral symmetry means there is greater mixing of the states, and in 3 coordinated
sites, there is significant relaxation from the next nearest neighbour Al ions, but the
presence of the T, like state suggests there could be high oscillator strength transi-
tions at larger excitation energies. On average the energy levels of the T, like states
lie 4.8 eV above the energy level of V%. Whilst this level lies deep into the band
gap, close to the valence band in a-Al,Os3, this is still significantly lower than the

6.5 eV excitation assigned to the neutral oxygen vacancy measured using electron
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Figure 6.9: The formation energy of the different charge states of interstitial oxygen in
a-Al,O3 against the Fermi energy with respect to the valence band, and the
Kohn-Sham energy level position of the doubly occupied Oiz_ defect.

energy loss spectroscopy (EELS) [201]. However, it is not clear that the excitation
observed is not instead the onset of inter band transitions [201]. Due to the shift
in band gap of a-Al,Os, the neutral vacancy will not have the same excitation en-
ergy in o and a-Al, O3, especially when the amorphous alumina band gap has been

measured to be 6.2 eV [113].

6.3.3 Interstitial oxygen

6.3.3.1 O;in a-Al;,0O3

Neutrally charged oxygen interstitials in -Al;O3 form an O-O dimer at the defect
site, centred on the original lattice position of the O ion. In this configuration both
oxygens are 3 coordinated with Al, and the O-O bond length is 1.44 A. It has 3
thermodynamically stable charge states, as can be seen from the formation energy
diagram in Fig. 6.9. Importantly, it traps electrons and becomes Oiz_ when the
Fermi energy is 4.5 eV above the VBM. This is close to the 4.7 eV (0/-2) charge
transition level calculated by Choi et al. [197], using the HSE06 functional.

When the oxygen interstitial captures 2 electrons to become Oiz_ , the O-O bond
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length increases to 2.15 A. This large displacement results in both O ions becoming
4 coordinated with Al, forming tetrahedral configurations. Due to this relaxation
the Kohn-Sham energy level of Oiz_ lies only 0.4 eV above the valence band (see
Fig. 6.9), as both O are fully coordinated. Its role as a deep acceptor is in good

agreement with previous calculations [202].

6.3.32 O in a-Al,05

To model the oxygen interstitial in the amorphous structure, single oxygen atoms
were added to the 10 different geometry samples and placed within 1.6 A of an O
ion, with 4 near [310, 3 near 210 and 3 next to [4O. Similar to the crystalline case,
oxygen interstitials in a-Al,O3 have a deep (0/-2) charge transfer level. The average
charge transfer energy lies 3.4 eV below the CBM, and 2.1 eV above the VBM.
Guo et al. [190] calculate the average charge transfer level to be 2.5 eV above the
VBM and similarly show there is no Fermi Energy where the O;" charge state is
thermodynamically stable.

When the neutral charge state of the oxygen interstitial is relaxed it forms an O-
O peroxy bond with the nearest neighbour oxygen. The average O-O bond length of
the 10 defect configurations is 1.46 A for the neutral charge state. When 2 electrons
are added to the system, forming Oiz_, the O-O bond length relaxes to an average of
2.40 A. This large relaxation significantly lowers the energy of the defect induced
(Yz*p like orbitals in the conduction band, down towards the valence band. These
states become occupied meaning the Oiz_ Kohn-Sham energy levels lie within the
valence band, with no states existing in the band gap. This can be compared to
the formation of hole bipolarons in reverse. In the case of bipolaron formation, the
contraction of an O-O bond to approximately 1.5 A, after the removal of 2 electrons,
pushes the now unoccupied Gikp orbitals that form the top of the valence band (see
section 5.3.5) into the conduction band.

The low lying charge transition level of interstitial oxygen means it is likely to
be a source of electron trapping in a-Al,O3, but, the lack of states in the band gap
mean it cannot explain the trap spectroscopy data [22]. Instead, it is possible that it

can act as a store of negative charge which compensates for positively charged de-
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Figure 6.10: The formation energy of the different charge states of aluminium vacancies
in a-Al, O3 plotted against the Fermi energy with respect to the valence band.

fects with unoccupied states in the gap. This could explain why experimentally the
system is observed to be charge neutral before electron injection, with no transitions
observed from gap states into the conduction band [22]. The transitions seen after
electron injection (with the Fermi energy raised to the alumina conduction band)
would then be due to the trapping of electrons in the unoccupied gap states, and the
overall charging observed due to the mismatch between the number of positively
and negatively charged defects [22]. Thus, whilst oxygen vacancies cannot trap
negative charge in isolation, and oxygen interstitials don’t have states in the gap, an
oxygen Frenkel pair, for example Oiz_+VOO, can have an overall negative charge and

states lying in the band gap.
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6.3.4 Aluminium vacancies

6.34.1 Vai n OC—A1203

The formation energy diagram for VA; in &-Al, O3 (see Fig. 6.10) shows that the -3
charge state of the vacancy becomes stable at 2.4 eV above the VBM. This means
the aluminium vacancy (0/-3) charge transition level lies even lower in the band
gap than the interstitial oxygen (0/-2) level, and is therefore a likely source of fixed
negative charge in amorphous alumina. This agrees with previous studies that show
aluminium vacancies in -Al,O3 [197] and k-Al,O3 [186, 197] are very deep ac-

ceptors, with charge transition levels close to the valence band.

The formation energies presented here are calculated using an Al chemical
potential derived from DFT calculations of pure Al metal. This is equivalent to
an Al-rich environment, which explains the high formation energies of the neutral
vacancy, and of the charged vacancies at Fermi energies close to the valence band
(see Fig. 6.10). However, the low formation energies at Fermi levels nearer to the
conduction band suggest that it will be the dominant negatively charged defect in

crystalline alumina, even in Al-rich conditions.

6.3.4.2 VA] in a—A1203

As can be seen in Fig 6.4, the -3 charge state of aluminium vacancies in a-Al,O3
becomes stable when Fermi energies are on average 3.5 eV below the conduction
band (2.0 eV above the valence band), which is the lowest lying charge transition
level of all the defects presented in this chapter, though is very close to the O; (0/-2)
level. 10 vacancy sites were examined with 4 AL 3 “Al and 3 # Al removed to
create the defects. However, little dependence on coordination was observed, with

a deviation in the average (-2/-3) charge transfer level of less than 0.3 eV.

It is likely that aluminium vacancies will acts as deep electron traps in a-Al, O3,
but, the highest occupied Kohn-Sham energy level of Vif (across all the samples)
lies 4.7 eV below the CBM, with most of the defect states lying within the valence
band. This suggests it is unlikely to be the charge trap measured by Zahid et al. [22].

It is more likely to act as a source of negative charge that compensates for positively
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Figure 6.11: The formation energy of interstitial aluminium and its various charge states in
a-Al, O3, plotted against the Fermi energy with respect to the valence band.

charged defects before electron injection, similar to the mechanism described in

section 6.3.3.2.

6.3.5 Interstitial aluminium

6.3.5.1 Ali n OC—A1203

On a first examination of aluminium interstitials in @-Al,O3, they do not appear to
be a good candidate for the negative charging observed experimentally. The formal
charge of Al in Al;Os3 is 3+, and Bader analysis shows the system is highly ionic.
Thus, the addition of an Al atom donates 3 electrons into the system without in-
troducing any unoccupied states in the predominantly O 2p valence band, meaning
the defect is most likely to act as a donor in &-Al,O3. This is demonstrated by the
formation energy diagram shown in Fig. 6.11 where the (+3/+1) level is only 1.6
eV below the CBM. Ali3+ has the lowest formation energy for a wide range of the
Fermi energy, and no occupied states in the band gap available for excitations into
the conduction band. There are no thermodynamically stable negative charge states

of Al; observed at any Fermi energy, to act as independent electron traps.
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Figure 6.12: The isosurface of the Ali1+ HOMO, in 2 orientations so as to see the Dsy,
point symmetry. The interstitial Al and its nearest neighbour Al are both 6
coordinated with O, though some Al-O bonds are extended to 2.6 A.

However, Ali1+ has a doubly occupied Kohn-Sham energy level in the middle
of the band gap, 3.5 eV below the CBM (see Fig. 6.10). Optical absorption spectra
measurements on sapphire attribute a peak at 4.1 eV to aluminium interstitial de-
fects, and while there is a discrepancy of 0.6 eV, this gives some justification for the
positive identification of this defect [198].
The D3, like point symmetry of the Ali1+ highest occupied molecular orbital
(HOMO), can be seen in Fig. 6.12. The symmetry is a result of the triangle of oxy-
gen ions whose atomic orbitals point into the defect centre between the 2 Al ions.
The electrons localize between the 2 positively charged Al ions which lowers its
energy. This symmetry means that an excitation into the conduction band minimum
is a dipole allowed transition (A; to E). Thus, at least for the crystalline system,
there exists a mid gap state in the same energy range as the levels seen experimen-
tally [22], and, unlike the oxygen vacancy, the defect state perturbs the CBM state
and an occupying electron can be excited straight into the bottom of the conduction

band.

6.3.5.2 Aljin a-Al,O3
In a-Al;O3 the average Kohn-Sham energy level of Ali1+ lies 3.3 eV below the

conduction band, with a range of 2.7-3.8 eV (see Fig. 6.5), in very good agreement

with both the PDS and GS-TSCIS measurements [22]. The average (+3/+1) charge
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transfer level is 2.1 eV below the CBM (see Fig. 6.4). This means that for a large
range of the Fermi energy interstitial aluminium is most stable in the 3+ charge
state, which has no occupied states in the gap. However, after electron injection,
the unoccupied states of the AI>* will trap electrons and become Al' ™. ALl* has
a doubly occupied state in the gap, meaning the now filled gap states can then be

excited into the conduction band and detected.

6.3.6 Matching the spectroscopy data

The findings in this chapter suggest that O; and Va; will be the dominant electron
traps in a-Al,03. Both defects become negatively charged when the Fermi energy
is approximately in the middle of the band gap, and, as can be seen in Fig. 6.4,
their average charge transfer levels lie below the Si VBM. This means that they are
likely to be in their negative charge state for most values of the Fermi energy, but,
their lack of occupied levels in the band gap mean they cannot be responsible for
the traps seen by Zahid et al. [22].

The mechanism proposed here is that pairs of compensating defects are respon-
sible for the behaviour seen experimentally, and that no single defect can be used
to explain the spectroscopic data [22]. This explains why, before electron injec-
tion, no states are observed in the gap (see Fig. 6.1) and the charge is measured as
neutral [22]. Negatively charged O; or Va; are compensated by positively charged
Al;j, Vo or Hj defects, leaving the system charge neutral with no states in the gap.
Then, when the Fermi level is raised to the a-Al,O3 conduction band, electrons can
occupy the Al;j, Vo or H; states in the gap, which can then be observed spectroscop-
ically (see Fig. 6.1) after excitation into the conduction band. This filling of states
also leads to an overall negative charge being observed.

As was discussed in section 6.1, in a-Al,O3 the difference in Kohn-Sham en-
ergies between the defect state and the CBM can be taken as a good approximation
for transition energies calculated by TDDFT [184], due to the delocalized nature of
the CBM [42] and the lack of localized states near the band edge (see chapter 4).
With this in mind, the Kohn-Sham energy levels of Al;, Vo or H;, with respect to

the CBM, are shown in Fig. 6.5, all have levels within the range measured experi-
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mentally [22]. This means more than one type of defect could be responsible for the
trap states. However, experimental measurements could determine the defect type
more confidently by adjusting the growth conditions of alumina thin films so as to

control the oxygen and aluminium chemical potentials.

6.4 Conclusion

In order to understand the source of negative charging in a-Al,Oj3 films [22,23,41,
42], the electronic properties of the defects Hj, Vg, O;, Va1 and Al; were calculated
using DFT.

O; and V; were both found to have deep acceptor levels, with the average O;
(0/-2) charge transfer level lying 3.4 eV below the a-Al,O3 CBM, and the average
Va1 (-2/-3) charge transfer level lying 3.5 eV below the CBM. However, their lack
of occupied energy levels in the band gap means that they are not responsible for
the transitions seen in the PDS and GS-TSCIS measurements [22].

To explain the transitions seen experimentally [22] (see Fig. 6.1) a mechanism
is proposed whereby the negatively charged O; and V) defects are compensated
by the positively charged H;, Vo and Al; defects when the system has zero overall
charge. Following electron injection, the states of Alj, Vo or H;j in the band gap
become occupied and transitions are observed into the conduction band. The Kohn-
Sham energy levels of these defects, with respect to the conduction band (see Fig

6.5), overlap with the PDS and GS-TSCIS measurements [22].



Chapter 7

General Conclusions

7.1 Summary

Through the use of electronic structure methods, defects and charge trapping have
been modeled in both LaAlO3 and amorphous Al;Os. The results have offered new
theoretical insights into the behaviour of defects and polarons in these materials,
confirmed experimental results, and given predictions that can be tested in lab grown
thin films. These findings will hopefully contribute to the development of new

nanoelectronic devices.

In chapter 3 the absorption spectra of V% and Vg in LaAlO3 were presented
and compared to experiment, along with the ESR parameters predicted for the para-
magnetic defect, V(J-S. The structural and electronic properties of cubic and rhombo-
hedral LaAlO3 were also calculated with DFT using both periodic and embedded

cluster methods, and hybrid density functionals.

TDDFT calculations of Vzg in thombohedral LaAlO3 predicted the intensity
maximum of the photoexcitation energies to be at 3.6 eV, with the single peak ex-
tending from 3.2 eV to 4.0 eV. These predictions agreed well with the measurements
of Kawabe et al. [84], who see an absorption tail at 3.5-4.1 eV, which they attribute
to oxygen deficiency. The isotropic g-value of Vg in thombohedral LaAlO3 was
calculated to be 2.004026. The hyperfine calculations predict a 3.0 mT broadening
of the ESR signal due to hyperfine splitting of the vacancy’s nearest neighbour Al.
These match reported ESR experimental results [43,86], and, with the TDDFT data,
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explain the absorption peaks that appear with an increase of the V(Jg ESR signal [43].

The next chapter discussed the bulk properties of amorphous Al,O3, and the
cause of its band gap reduction that is observed experimentally [35,113-117]. Using
a molecular dynamics melt and quench method, a-Al,O3 structures were generated
that reproduced not only experimental densities [24,33, 148], but also NMR mea-
surements of ion coordination numbers [39] and radial distribution functions from
X-ray diffraction experiments [38]. To accurately model the electronic structure of
a-Al, O3 the PBEO-TC-LRC [40] functional was tuned to obey Koopmans’ condi-
tion. This ensured that DFT calculations would predict the correct band gap for a-
Al, O3 and minimize the over and under delocalization of holes and electrons when
modeling polarons and defects. The tuned functional was benchmarked against the
properties of crystalline a-Al,O3, reproducing its electronic structure and the ex-

perimental band gap of 8.6 eV [112].

DFT calculations of 10 geometry samples, using the tuned hybrid functional,
predicted the average HOMO-LUMO gap of a-Al,03 to be 5.48 eV. Inverse par-
ticipation ratio (IPR) analysis showed the edge of the valence band to be highly
localized, with the mobility edge lying approximately 1 eV below the valence band
maximum. The localization at the edge of the band is attributed to 2 coordinated O
62*p states, a result of the under coordination of O ions in the amorphous phase. IPR
analysis of the conduction band showed it to be delocalized. The electrostatic po-
tential of Al ions was observed to shift downwards 1.6 V relative to the crystalline
phase, as a result of the reduction in Al-O coordination number and thus change in
the bonding character. This causes the conduction band, which is predominantly
composed of Al 3s states, to shift downwards, providing a theoretical explanation

for the conduction band shift observed experimentally [35].

The localized states at the valence band maximum were shown to result in the
spontaneous trapping of hole polarons in a-Al,O3, which have an average trapping
energy of 1.26 eV. This is higher than the 0.38 eV hole trapping energy calculated
in a-Al,O3. The holes preferentially localized on 2 nearest-neighbour oxygen ions,

associated with the Gz*p states at the top valence band, described as ‘precursor sites’.
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The locations of these sites were able to be predicted using IPR analysis, which also
gives an estimate of the density of precursors to be 2.6x 102° cm~3. Hole bipolarons
were also modeled, though nudged elastic band calculations showed they had very
high barriers to formation of approximately 1.6 eV. Electrons were shown not to
localize in either a-Al, O3 or a-Al, O3, which is attributed to the delocalized nature

of the conduction band minimum and its high dispersion.

In the final chapter H;, Vo, Oj, Va; and Al; defects were investigated in or-
der to find the source of negative charging observed experimentally in a-Al,O3 thin
films [22,23,41,42]. Understanding the cause of this electron trapping is important
for the development of non-volatile charge trap flash memory devices [22, 23], a-
IGZO (amorphous indium gallium zinc oxide) thin film transistors [24], and solar
cells [25-27]. In order to explain the charge trap spectroscopy measurements per-
formed by Zahid et al. [22] a mechanism is proposed whereby O; and V 41 defects,
which have deep acceptor levels, compensate the positively charged H;, Vo and Al;
defects before the film becomes charged. Then, after electron injection, empty states
of Hj, Vo and Al; in the band gap become occupied, causing the overall charge to
become negative. The Kohn-Sham levels of these defects match the position of the
levels measured by PDS and GS-TSCIS measurements [22], with Al; matching the
distribution most closely, with its average level 3.3 ev below the conduction band
minimum. This suggests it could be possible to control charging in the thin films via
adjustment of growth temperatures and oxygen partial pressures, which would be
able to determine whether oxygen or aluminium defects were the dominant cause

of electron trapping.

7.2 Future work

Defects and charge trapping in LaAlO3 and amorphous Al,O3 have been exten-
sively characterized in this thesis, but the results themselves open up opportunities
for future investigation. There is also interest in novel device applications for amor-
phous alumina films, and improvements in computing power and added functional-

ity of codes means new and more complex phenomena can be investigated.
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Although not suitable as the active layer in resistive RAM (ReRAM) technol-
ogy, thin layers of Al,O3 are used as a blocking layer in HfO, and other metal oxide
ReRAM devices [203-205]. The thin amorphous Al,O3 layer is assumed to act as
an oxygen diffusion barrier, and so, prevents the depletion of oxygen in the HfO,
layer and lateral migration of oxygen away from the conducting filament [205].
Building on the results discussed in chapter 6, nudged elastic band calculations of
oxygen vacancies and oxygen interstitials could be performed to predict the activa-
tion barriers for oxygen diffusion through alumina, and so improve understanding
of ReRAM device operation.

There is also growing interest in the use of amorphous Al,O3 in neuromorphic
memristor devices [206, 207], which have multiple switching states designed to
mimic neurons in the brain. Development of these devices would require modeling
of charge trapping at a-Al,Os/metal oxide interfaces and similar calculations of the
oxygen diffusion barriers that were suggested for ReRAM devices.

Amorphous Al,O3 will continue to be a material of great interest in the field
of nanoelectronics. The work presented in this thesis has developed our theoretical
understanding of defects and charge trapping on the atomic scale and will hopefully

contribute to future applications using LaAlO3 and Al,Os3.
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