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Abstract
We provide approximate analytic expressions for above-threshold ionization (ATI) transition
probabilities and photoelectron angular distributions. These analytic expressions are more
general than those existing in the literature and include the residual binding potential in the
electron continuum propagation. They successfully reproduce the ATI side lobes and specific
holographic structures such as the near-threshold fan-shaped pattern and the spider-like structure
that extends up to relatively high photoelectron energies. We compare such expressions with the
Coulomb quantum orbit strong-field approximation (CQSFA) and the full solution of the time-
dependent Schrödinger equation for different driving-field frequencies and intensities, and
provide an in-depth analysis of the physical mechanisms behind specific holographic structures.
Our results shed additional light on what aspects of the CQSFA must be prioritized in order to
obtain the key holographic features, and highlight the importance of forward scattered
trajectories. Furthermore, we find that the holographic patterns change considerably for different
field parameters, even if the Keldysh parameter is kept roughly the same.

Keywords: photoelectron holography, strong-field physics, quantum trajectories, Coulomb
corrections

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum interference in above-threshold ionization (ATI)
photoelectron angular distributions (PADs) plays an impor-
tant role in attosecond imaging and photoelectron holography.
The physical picture that associates ionization events with

electron trajectories [1] provides a very intuitive explanation,
which can be used to disentangle how specific holographic
patterns form. For a given final momentum, there are many
pathways that the electron can follow, so that the corresp-
onding transition amplitudes interfere. Photoelectron holo-
graphy requires a probe and a reference signal, which are
associated with two distinct types of orbits. These trajectories
are either classical, or have a classical counterpart. For other
types of trajectories, see, e.g., [2–5].

There are several types of holographic structures, among
them the fork- or spider-like pattern that forms near the
polarization axis and extends up to high photoelectron ener-
gies, and a fishbone-like structure observed for molecular
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targets (for examples of such structures see [6]). To the present
date, most expressions provided for the maxima and minima in
holographic structures either rely on drastic simplifications, or
have a limited range of validity. Classical models, in which the
influence of the binding potential is considered upon rescatter-
ing, but neglected in the continuum propagation, have been
widely used. Coulomb-corrected conditions are only provided
for specific scattering angles, and consider mainly sub-barrier
corrections [7]. Still, such models have been able to reproduce
key features. For instance, simplified models have shown that
the spider-like structure stems from the interference between
different types of deflected trajectories leaving within the same
half cycle [8–11].

Nonetheless, the combined effect of the long-range
binding potential and the external driving field on the electron
trajectories is important. For instance, we have shown, using
the Coulomb-quantum orbit strong-field approximation
(CQSFA) [19], that the fan-shaped structure that forms near
the ionization threshold results from the interference of tra-
jectories that reach the detector directly with those that are
forward-deflected by the core without undergoing hard col-
lisions [12]. The fan-like fringes are caused by the fact that
the Coulomb potential distorts the deflected trajectories
unequally for different scattering angles and electron
momenta [12, 13]. Whilst this structure is widely studied and
known to occur for long-range potentials, in most cases
methods have been used that hinder a direct statement about
how these patterns form. These include the numerical solution
of the time-dependent Schrödinger equation (TDSE) for
short- and long-range potentials, for which specific sets of
orbits cannot be disentangled, or classical-trajectory methods,
for which quantum interference does not occur [14–16].
Additionally, we have found that side lobes are already pre-
sent in Coulomb corrected, single-orbit probability distribu-
tions [13], even if they are enhanced by constructive intra-
cycle interference. This shows that the interference mech-
anism that leads to the spider is not the sole cause of the ATI
side lobes. In fact, they are also due to the Coulomb potential
modifying the electron’s tunneling probability.

The above-stated examples show that Coulomb effects
are underestimated and poorly understood within photoelec-
tron holography. However, oversimplifications do have the
advantage of leading to intuitive analytic conditions that
describe the key features in several holographic patterns. This
invites the following questions: Is it possible to derive more
general expressions than in previous models, which account
for the Coulomb potential, but are transparent enough to
highlight the key features? If so, what is their range of
validity?

These questions will be addressed in the present work. In
this publication, we will seek analytic expressions so that the
fan- and spider-like holographic patterns are reproduced for a
wide range of driving-field parameters. We will keep the same
Keldysh parameter I U2p pg = ( ) , where Ip and Up denote
the ionization potential and the ponderomotive energy, as,
traditionally, it is a good indicator of the ionization dynamics.
Furthermore, there is experimental evidence that, for

approximately the same γ, the spider-shaped structure becomes
more important with increasing wavelength, in detriment of the
fan-shaped pattern, and that the number of maxima in the fan
changes [17]. As much as possible, we will justify the beha-
viors encountered in terms of interfering trajectories.
Throughout, we will use the orbit classification introduced in
[7, 18], where a closely related Coulomb-corrected strong-field
approximation (SFA) is employed. This classification is based
on the initial and final momentum components parallel and
perpendicular to the driving-field polarization, and has been
used in our previous publications [12, 13, 19]. It singles out
four types of orbits, three of which were found to be relevant to
the parameter range in [12, 13]. Our results will be compared
with the outcome of the CQSFA, and with the TDSE, which is
solved using the freely available software Qprop [20]. Atomic
units are used throughout,unless stated otherwise.

This work will complement and extend previous studies,
in which we have provided a general expression encom-
passing inter- and intra-cycle interference [13], which could
be factorized for monochromatic fields. We have also derived
analytic expressions for inter-cycle interference valid in the
presence of the Coulomb potential, and for single-orbit
transition amplitudes that justify the presence of side lobes.
Intra-cycle interference, however, has mainly been discussed
numerically and qualitatively [12, 13]. We have also limited
our investigation to near-infrared fields.

This article is organized as follows. In section 2 we state
the full CQSFA expressions in this work. In section 3, using
the CQSFA as a starting point, we derive analytic expressions
that will be subsequently used to model ATI PADs and to
describe several types of interference. In section 4 we perform
a detailed analysis of such expressions. This includes a
comparison with the CQSFA and solutions of the TDSE, and
an in-depth study of the physical causes of key features in
several types of holographic structures, including the fan and
the spider. Finally, in section 5, we provide the main con-
clusions to be taken from this work.

2. Background

2.1. General CQSFA expressions

The CQSFA ATI transition amplitude from the bound-state
t I texp i0 p 0y y¢ ñ = ¢ ñ∣ ( ) [ ]∣ , where Ip is the ionization potential,

to a continuum state tpf ñ∣ ( ) with final momentum pf may be
obtained from the formally exact expression

M t t U t t H t tp pi lim d , , 1f
t

t

f I 0ò y= - ¢á ¢ ¢ ¢ ñ
¥ -¥

( ) ( )∣ ( ) ( )∣ ( ) ( )

where

U t t H t t, exp i d , 2
t

t
 ò¢ = ¢ ¢

¢

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

with  denoting time ordering, gives the time evolution
operator related to the full Hamiltonian

H t H H t 3a I= +( ) ( ) ( )
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evolving from an initial time t¢ to a final time t. In
equation (3),

H V
p

r
2

4a

2
= +

ˆ (ˆ) ( )

gives the field-free one-electron atomic Hamiltonian, where r̂
and p̂ yield the position and momentum operators, respec-
tively, andV r(ˆ) is the binding potential, which is chosen to be
of Coulomb type. The Hamiltonian

H t tr E 5I = -( ) ˆ · ( ) ( )

gives the interaction with the external field tE( ) in the length
gauge. Note that the SFA transition amplitude for the direct
electrons, which do not undergo collisions with the core after
ionization, can be obtained by replacing the full time evol-
ution operator (2) by its Volkov counterpart, in which the
influence of the binding potential is neglected.

Employing a closure relation in the initial momentum
and a path-integral formulation from an initial velocity

t tp p A0 0= ¢ + ¢˜ ( ) ( ) to a final velocity t t tp p Af f= +˜ ( ) ( ) ( )
in equation (1) [13, 19], where A t( ), t t,t = ¢ is the vector
potential, one obtains

M t

H t

p p p
r

p

i lim d d
2

e , 6

f
t

t t

S t t
I

p

p

p r

0 3
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f

0




ò ò ò ò p
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˜

˜ ( )

(˜ )

where p̃ and r give the intermediate velocity and coordinate,
respectively, the symbols p¢ and r denote the integration
measures for the path integrals [19, 24], and the prime indi-
cates a restriction. The action is given by

S t t I t

H

p r p r

r p

, , ,

, , d , 7

p
t

t

ò t t

t t t t

¢ = ¢ -

+
¢
( ˜ ) [ ( ) · ( )

( ( ) ( ) )] ( )

where

H Vr p p A r, ,
1

2
82t t t t t t= + +( ( ) ( ) ) [ ( ) ( )] ( ( )) ( )

is the parameterized Hamiltonian. The binding potential reads

V
C

r
r r

, 9t
t t

= -( ( ))
( ) · ( )

( )

where C0 1  is an effective coupling. One should note
that equation (6) excludes transitions between bound-states,
such as excitation or relaxation.

The above-stated integrals are performed using the sta-
tionary phase method. We seek solutions for t¢, r t( ) and p t( )
so that the action is stationary. This leads to the saddle-point
equations

t t
V t I

p A
r

2
, 10

2

p
¢ + ¢

+ ¢ = -
[ ( ) ( )] ( ( )) ( )

Vp r , 11rt t= -˙ ( ) ( ( )) ( )

and

r p A . 12t t t= +˙( ) ( ) ( ) ( )

Equation (10) describes the conservation of energy upon tunnel
ionization, and the remaining equations give the electron motion

in the continuum. We employ a two-pronged contour [7,
25–27], whose first arm is parallel to the imaginary-time axis,
from t t tir i¢ = ¢ + ¢ to tr¢, and whose second arm is taken to be
along the real time axis, from tr¢ to t, respectively. This yields

S t t S t t S t tp r p r p r, , , , , , , , , , 13r r
tun prop¢ = ¢ ¢ + ¢( ˜ ) ( ˜ ) ( ˜ ) ( )

where S t tp r, , ,r
tun ¢ ¢( ˜ ) and S t tp r, , , r

prop ¢( ˜ ) give the action
along the first and second part of the contour, respectively.
These expressions are associated with the electron’s tunnel
ionization and continuum propagation, respectively.

We assume the electron momentum to be approximately
constant during tunnel ionization, so that

S t t I t

V

p r p A

r

, , , i
1

2
d

d , 14

r p i
t
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where the tunnel trajectory r0 is defined by

r p A d . 15
t

0 0òt t t= + ¢ ¢
t

¢
( ) ( ( )) ( )

Consequently, the binding potential may be neglected in
equation (10), which becomes

t Ip A
1

2
0. 16p0

2+ ¢ + =[ ( )] ( )

The contour for S t tp r, , ,r
tun ¢ ¢( ˜ ) is calculated from the origin

up to the tunnel exit, which is

z r tRe , 17r0 0= ¢[ ( )] ( )

where r0 is the component of the tunnel trajectory parallel to
the laser-field polarization [28]. The action related to the
continuum propagation reads

S t t I t

V

p r p A

r

, , ,
1

2
d

2 d , 18

r p r
t
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t
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r
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where the factor 2 multiplying the binding potential comes from

V r V rr p r , 19r= -  =· ˙ · ( ) ( ) ( )

as discussed in [13, 29], and

r p A d 20
tr
òt t t t= ¢ + ¢ ¢

t

¢
( ) ( ( ) ( )) ( )

gives the spatial coordinate related to the continuum
propagation.

The potential is included in equations (11) and (12) and in
the action (18), which are solved for a specific final momentum
pf , and for t  ¥. The solutions from the first and the second
arm of the contour are then matched at the tunnel exit.

Within the saddle-point approximation, the Coulomb
corrected transition amplitude reads as

M
t

t

t

p
p

r
i lim det

e , 21

f
t s
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where ts, ps and rs are given by equations (11), (12) and (16)
and

t
S t t t

t H t
p r

p A
2 i

, , ,
. 22s

s s s s
s I s2 2 0

p
=

¶ ¶
á + Y ñ( )

( ˜ )
( )∣ ( )∣ ( )

In practice, we use the stability factor t tp ps s s¶ ¶( ) ( ) instead
of that given in equation (21), which may be obtained
applying a Legendre transformation. This transformation
will lead to an extra phase r ps s· in the action, which will
vanish if the electron starts from r 0s = . This is the case
for the contour considered in this work. We have however
verified that the original stability factor given in
equation (21) leads to practically the same results, but is
numerically slightly more involved (not shown). We nor-
malize equation (21) so that in the limit of vanishing binding
potential the SFA is recovered. Note that the Coulomb
potential’s divergence is treated numerically in the CQSFA
by not integrating fully up to singularity. We leave a small
enough distance such that it does not affect the shape of the
distributions. This is discussed in more detail in [13].
Throughout, we refer to the product of equation (22) with
the stability factor as ‘the prefactors’.

2.2. Model

For simplicity, in the results that follow, we will consider a
linearly polarized monochromatic field

t E t eE sin . 230 w= ( ) ( ) ˆ ( )

This corresponds to the vector potential

t U t eA 2 cos , 24p w= ( ) ( ) ˆ ( )

where eˆ gives the unit vector in the direction of the driving-
field polarization and Up is the ponderomotive energy.

This leads to the action

S t t I U t V

U p
t t

U
t t

p r p r, , , i
1

2
d

2 sin sin

2
sin 2 sin 2

25

r i
t

t

r

r

tun
p 0

2
p 0

p 0

p

r

ò t t

w
w w

w
w w

¢ ¢ = + + ¢ -

+ ¢ - ¢

+ ¢ - ¢

¢

¢



⎜ ⎟⎛
⎝

⎞
⎠( ˜ ) ( ( ))

[ ( ) ( )]

[ ( ) ( )]
( )

and

S t t I U t

U p
t

U
t

V

p r p

p A

r

, , ,
1

2

2
sin

2
sin 2

1

2
2 2 d

2 d , 26

r f r

f
r

r
t

t

f

t

t

prop
p

2
p

p

p

r

r

 ò

ò

w
w

w
w t t

t t

t t

¢ = + + ¢

+ ¢

+ ¢ -

+ +

-

¢

¢

¢



⎜ ⎟⎛
⎝

⎞
⎠( ˜ )

( )

( ) ( ) · ( ( )

( ))

( ( )) ( )

in the first and second part of the contour, respectively, where
pjP, with j f0,= , yield the electron momentum components

parallel to the laser-field polarization and p pft t= +( ) ( ) .
Equations (25) and (26) can be combined in such a way that
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In the limit C 0 , V r 0( ) , p p pf 0  and 0  , so
that the standard SFA action for direct ATI electrons is
recovered.

The ionization time tec¢ associated with an event e occurring
in a cycle c is obtained analytically by solving the saddle-point
equation (16). For clarity, we will employ this notation instead of
the index s used in the transition amplitude (21). This yields

t
n p I p

U

2 1
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i 2

2
, 28ec

e e0 p 0
2

p

p
w w

¢ = 
- + ^

⎛
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⎠
⎟⎟ ( )

where pe0^ denotes the component of the initial momentum
perpendicular to the laser-field polarization. Within a field cycle,
each event e may be associated with a specific type of orbit.
In this work, we employ the same orbit classification as in
[12, 13, 19], which has been first introduced in [18], where there
are four types of orbits for a given final momentum. For orbit 1,
the electron reaches the detector directly without undergoing a
deflection. Consequently, the final and initial momenta point in
the same direction. For orbits 2 and 3, the electron is freed on the
opposite side, so that, in order to reach the detector, it must
change its parallel momentum component. The main difference
is that, for orbit 2, the perpendicular momentum component does
not change sign, while for orbit 3 it does. Finally, if the electron
is freed along orbit 4, it leaves from the same side as the detector,
but its transverse momentum component changes. Physically,
this means that the electron goes around the core before reaching
the detector at a later time. Our previous work indicates that the
transition amplitude associated with orbit 4 is much smaller than
those related to the remaining orbits. Hence, the contribution of
this orbit can be neglected. If the Coulomb potential is neglected
in the continuum, which is the case for the SFA, only orbits type
1 and 2 exist. The latter exhibits a degeneracy that is lifted in the
presence of the Coulomb potential, leading to orbits 2 and 3 [19].

The specific solutions for orbits 1, 2 and 3 within a
particular field cycle c and parallel momentum component
p 0e0 > are

t
p I p

U

1
arccos

i 2

2
, 29c

e e
1

0 p 0
2
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¢ =

- - + ^
⎛

⎝
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⎠
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with e = 2, 3. One should note that t2c and t3c differ, due
to the distinct initial momenta for orbits 2 and 3. For
p 0e0 < , the situation reverses, so that t1c is given by
equation (30) and the remaining times by equation (29). In the
implementation of our model, we solve the inverse problem,
i.e., for a given final momentum pf , we seek the matching
initial momentum p .e0 This is performed by defining the final
momenta p pf e0( ) as a function of the initial momenta, given a
fixed initial position at the origin and using the coupled
differential equations (11) and (12). Then, pe0 is sought
iteratively to give the correct final momentum pf . Initial
conditions can be found by recursively increasing the Cou-
lomb coupling, using the SFA as a starting point. We also
impose that the initial conditions must satisfy equation (16) at
the tunnel exit (17). This approach has the advantage of only
requiring a few contributed trajectories, each of which is
associated to the trajectory types 1–3. In contrast, solving the
direct problem requires around 10 108 9– trajectories for clear
interference patterns, as these trajectories are forward propa-
gated and subsequently binned in specific final momentum
intervals. On the other hand, for the inverse problem, pre-
knowledge of the type of trajectories to be employed is
required, which is not necessary when solving the direct
problem. For more detailed discussions of both types of
implementation see, e.g., [7, 12, 13, 18, 19].

Our previous publications show that the fan- and the
spider-like patterns result from the intra-cycle interference of
orbits 1 and 2, and of orbits 2 and 3, respectively [12, 13]. An
additional restriction required for the fan-shaped structure to
form is that the difference between the real parts of t1c and t2c
should not exceed half a cycle in absolute value. Relaxing this
restriction will lead to other interference structures that are
commonly overlooked (for details see [13]).

The dominant contributors to the overall shape of the
electron-momentum distributions and to the interference
patterns are the imaginary and real parts of the action,
respectively. The imaginary part of the action is directly
related to the tunneling probability density, and it is a good
indicator of the width of the barrier. Specifically for
equation (27), SIm[ ] reads
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where e 1, 2, 3= . The real parts give the phase differences
between different types of trajectories. For the action (27) and

a specific orbit e, SRe[ ] is given by
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where fe et t=( ) ( ) · p A2 2e f t t+ +( ( ) ( )) and pe t =( )
pe f t +( ) . Prefactors will introduce additional biases, which

do influence the shape of the PADS. They will however play
a secondary role in quantum-interference effects as they vary
much more slowly than the action.

If the prefactors are neglected, one may write the ATI
photoelectron probability density for Nc cycles of the driving
field and a number ne of relevant events per cycle as

Sp exp i , 33f
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1 1

2
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ååW =
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where Sec is the action related to the eth event in the cth cycle.
If the field is monochromatic, the intra and inter-cycle con-
tributions to the interference pattern are factorizable and may
be reduced to
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gives the inter-cycle rings and pn feW ( ) is associated with
intra-cycle interference. In pn feW ( ), we will consider pairs of
orbits within a cycle, as these are sufficient for describing
holographic structures. For detailed derivations and further
discussions see our publication [13].

3. Analytic expressions

We will now provide analytic approximations for the sub-
barrier dynamics and the continuum propagation. In order to
make equation (32) analytically solvable, we employ the
low-frequency approximation and several simplifying
assumptions upon the final and intermediate momenta. The
low-frequency approximation has been used in [7] to derive
sub-barrier corrections, and in our previous publication [13]
for computing analytical single-orbit probability distributions
from equation (31).
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The quantities of interest are the under-the-barrier
potential integral

V r d , 36V
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¢
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( ( )) ( )

the potential integral

V r d 37V
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related to the continuum propagation, and the phase differ-
ence

p A
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2
2 2 d 38

t

t

e e fe
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  ò t t t t= - + +
¢

( ) · ( ( ) ( )) ( )

due to the electron’s final and intermediate momentum being
different, as it is accelerated by the residual binding potential.

3.1. The under-the-barrier integral and single-orbit distributions

An analytic expression for equation (36) has been computed
in [13] and reads

where

p A t t A ti , 40r i r0c = + ¢ - ¢ ¢
( ( )) ( ) ( )

p A t t A ti
1

2
, 41i r i i r0h t t= + ¢ - ¢ + ¢

( ) ( ( )) ( ) ( ) ( )

C0 1  is the effective Coulomb coupling and the
subscripts e have been dropped for simplicity. Here the long
wavelength approximation has been applied to the imaginary
part of time to first order, more details can be found in [13].
One should note that the lower integration limit has been
slightly modified in order to avoid a logarithmic divergence,
and that itD can be chosen to be arbitrarily small. This
divergence can be removed by a regularization procedure.
Equation (39) can be split into a non-divergent and a
divergent part, which can be treated separately. This gives

, 42V V divT T  = +
~ ( )

with

and

C pi ln . 44idiv 0
2 2 c t= - - + D^ ( ) ( )

In equation (43), 0itD  leads to ti ih t c¢ - D ( ) , while
equation (44), when added into the action, will act like a
prefactor. Explicitly,
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To remove this factor from the expression we can use the
freedom that we may tend itD to zero via any route. We can

set i
Cp0

2 2t dD = c- +^ , where δ is a parameter that can used
for all orbits to tend itD to zero. This will lead to a common
factor δ, which will affect the overall yield but not the
interference patterns. Hence, it can be removed.

The regularized expression for equation (39) then reads
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In figure 1, we plot single-orbit distributions computed for
orbits 1 and 2 using the full CQSFA, and the analytic approx-
imation given by equation (46). In order to facilitate a compar-
ison, the prefactors have not been included. Overall, there is little
discrepancy between the analytical approximation and the full
CQSFA. This is because the single-orbit plots will vary only
with the imaginary part of the action, which occurs exclusively
along the tunnel trajectory. The momentum along the tunnel
trajectory is already taken to be constant. Thus, the only differ-
ence between both models is the long wavelength approximation
used to integrate the potential. This additional approximation is
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quite accurate along the tunnel trajectory, partly because the path
along the imaginary time axis is relatively short, typically well
under half a cycle. Furthermore, the trigonometric functions turn
into hyperbolic functions, which are easily approximated. For
both orbits, there is a double peaked structure in the analytic and
full CQSFA solutions, and the yield becomes suppressed at the
origin (see upper panels in figures 1(a)–(f)). This indicates that,
in the presence of the Coulomb potential, the electron must have
a non-vanishing momentum to reach the continuum with a high
probability [13]. For orbit 2, this structure is particularly visible
and spreads to a larger momentum region as the driving-field
frequency increases (see upper rows in figures 1(b), (d) and (f)).
Both the analytic and full CQSFA exhibit sharply focused spots
in the PADs computed with orbit 2, which become more pro-
minent as the laser frequency increases. The analytic expressions
overestimate these spots. This can be seen by comparing panels
F2 and A2 in figures 1(b), (d) and (f).

Using the analytic model we can break down these
effects to find their origin. The single-orbit distributions are
entirely governed by the imaginary part of the action, which
can be written as

S t
U C

p r
p

, , i Re ln ,

47

Im p

0
2 2

 
w

x
c

= -
- +^
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⎣
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⎦
⎥⎥( ) ( ) ( )
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1 2 arccos 4 Im 1

Im 1 , 48

r
2 2

2

 x x x x x

x x

= + - -

+ -

( ) ( ∣ ∣ ) ( ) [ ]

[ ] ( )

where  is equal to the argument of the logarithm in
equation (46), related to the binding potential, x( ) is the unit-
less SFA-like part of the action, associated with the laser-
induced dynamics, and tcos ex w= ¢( ) is a unit-less variable
that has been used to replace initial momentum and time. We

Figure 1. Single-orbit ATI photoelectron angle-resolved distributions (PADs) computed without prefactors for hydrogen (Ip = 0.5 a.u.) and
orbits 1 and 2. The lower case letters on the top left corner correspond to the field parameters I , 7.5 10 W cm , 1300 nm13 2l = ´ -( ) ( )
(panels (a) and (b)), I , 2.0 10 W cm , 800 nm14 2l = ´ -( ) ( ) (panels (c) and (d)) and I , 3.75 10 W cm , 590 nm14 2l = ´ -( ) ( ) (panels (e) and
(f)), where I and λ give the field intensity and wavelength, respectively. This yields a Keldysh parameter 0.75g » . The acronyms nF
n 1, 2=( ), nA n 1, 2=( ) on the right top corner indicate the full and analytic CQSFA solution for orbits 1 or 2, while nL n 1, 2=( ) and nC
n 1, 2=( ) give the laser and Coulomb terms of the analytic expressions as defined in equations (48) and (49), respectively. The numbers on
the top left corner of each panel give the driving-field wavelengths. The density plots have been represented in a logarithmic scale and
normalized to the highest yield in each panel. The thick horizontal lines separate panels with different field parameters.
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can separate these parts when we consider the single-orbit
probability distribution, so that

S t S t
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p r p rexp i , , exp 2 , ,
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2
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The SFA-like part has a clear ω dependence and con-
tributes the most to the final shape, hence the apparent overall
scaling with ω seen in the upper parts of figures 1(a)–(f)
(panels An and Fn n 1, 2=( )). The potential-dependent
prefactor scales in a non-trivial way. The figure also shows
that the contributions from the SFA-like terms and the
potential integrals VT , plotted in panels Ln and Cn
n 1, 2=( ), respectively, mostly occupy different momentum
regions. The SFA-like part of the action is more located near
the pfP axis, while the Coulomb contribution leads to an
elongated structure near the pf⊥ axis. For orbit 1, this structure
is single peaked, but for orbit 2 it exhibits a clear suppression

at p 0f = , with two distinct maxima around this axis. This
happens because there is a cusp at p 0e0 =∣∣ for both orbits 1
and 2. However, an electron along orbit 2 is accelerated by
the Coulomb potential to a non-zero final momentum value,
leading to the double maxima.

There is also a lower momentum bound for this structure,
which decreases for higher frequencies. This will increase the
overlap between the Coulomb and laser-field contributions for
a shorter wavelength. This means that features such as the two
spots in orbit 2, most visible for 590 nm, are due to an
increasing overlap of these two parts. In table 1 we list the
peak values for the SFA-like and Coulomb terms. The Cou-
lomb part is many orders of magnitude larger than the SFA-
like part, which is expected as it involves the Coulomb sin-
gularity. Despite this difference, both will play a role as they
are multiplied in equation (49). The Coulomb term’s peak
value actually increases with the wavelength, despite the
doubly peaked structure being more visible for shorter

Table 1. Maximum signal for the laser and Coulomb related parts of the amplitude Ln and Cn for orbits 1 and 2.

L1 Max C1 Max L2 Max C2 Max

1300 nm 3.45×10−4 1.44×107 3.11×10−4 3.23×107

800 nm 1.02×10−3 5.18×104 8.19×10−4 1.20×105

590 nm 2.06×10−3 4.38×103 7.25×10−4 5.70×103

Figure 2. Single-orbit ATI PADs computed without prefactors for hydrogen (Ip = 0.5 a.u.) and orbit 3. The top, middle and bottom panels have
been calculated for the field parameters I , 7.5 10 W cm , 1300 nm13 2l = ´ -( ) ( ) (panels (a) and (b)), I , 2.0 10 W cm , 800 nm14 2l = ´ -( ) ( )
(panels (c) and (d)) and I , 3.75 10 W cm , 590 nm14 2l = ´ -( ) ( ) (panels (e) and (f)), where I and λ give the field intensity and wavelength,
respectively. The upper-case letters F and A on the right top corner of each panel indicate the full and analytic CQSFA solutions and the
numbers on the top left corners give the driving-field wavelength. The density plots have been represented in a linear scale and normalized to the
highest yield in each panel.
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wavelengths in the full distributions. This shows that the
overlap between the two terms is the most important factor in
determining whether this structure shows up in the final
distribution.

For orbit 3, we also find a very good agreement between
the numeric and analytic results, as shown in figure 2. In
particular, we observe that the single-orbit PADs occupy a
broader momentum region for decreasing driving-field
wavelength. One should note that the shape of the distribu-
tions remains similar. However, they scale with increasing
frequencies. Hence, for the region of interest, longer wave-
lengths favor the signal along the p⊥ axis, and reduce the
region along the pP axis for which the probability density is
significant. Inclusion of the prefactor (figure 3) locates the
distributions along the pP axis for orbit 3 and reduces the off
axis probability density. The effect of the prefactor is less
dramatic for orbits 1 and 2, and the previously discussed
features remain. However, it introduces a suppression in the
yield around the origin for such orbits. Examples are the
widening of the PADs in the p⊥ direction with increasing
frequency and the sharp spots caused by VT that exist for
orbit 2 (see the left and middle columns in figure 3).

The under-the-barrier integral VT does also contribute
with a phase. Nonetheless, we have verified that this phase
plays a secondary role and does not strongly alter the holo-
graphic patterns of interest. It does however cause dis-
continuities in the fringes due to branch cuts. For a detailed
discussion of these problems see [21–23].

3.2. The continuum propagation

We will now approximate the continuum propagation in order
to obtain analytic expressions for equations (37) and (38). The

key idea is to use approximate functions for the intermediate
momenta in conjunction with the low-frequency approx-
imation applied around a physically relevant, specific time.

In the potential integral VC , we will assume that the
momentum in equation (20) is either constant or piecewise
constant. This leads to the approximate expression

V r d , 50V
j

n

t

t

j
1

1

C

j

j

j 1

 òå t t» -
=

-
+

( ( )) ( )

r p A cd , 51j
t

j j
j

òt t t» + ¢ ¢ +
t

( ) ( ( )) ( )

where n 1j - is the number of subintervals for which the
momentum pj is assumed to be constant, tj is the lower bound
for these intervals and the constants cj account for initial
conditions that may be introduced in each subinterval. These
intervals start at the real part of the ionization time, i.e., t tr1 = ¢
and finish at the time t tnj = , t  ¥. Depending on the
specific orbit and on the integration interval, the times tj will
carry different physical meanings, such as the time of ioniz-
ation, recollision, etc. Using the long wavelength approx-
imation to zeroth order on the integrand of equation (51), one
may write tA At¢ = ( ) ( ) in equation (51), where t is the orbit-
specific time for which the potential integral is the most
significant. In general, we take t to be the time of closest
approach between the electron and the core. However, if more
than one orbit is taken into consideration, we must ensure that
a common time t is taken so that both orbits are in the con-
tinuum. This yields

tr k c , 52j j j jt t» - +( ) ( ) ( )

where tk p Aj j= + ( ( )). The indefinite integral related to
each term in equation (50) reads

Figure 3. Single-orbit PADs for hydrogen (Ip = 0.5 a.u.), including all prefactors and using the full CQSFA, for orbits 1, 2 and 3
(left, middle and right columns, respectively). The top, middle and bottom panel have been calculated for the field parameters
I , 7.5 10 W cm , 1300 nm13 2l = ´ -( ) ( ), I , 2.0 10 W cm , 800 nm14 2l = ´ -( ) ( ) and I , 3.75 10 W cm , 590 nm14 2l = ´ -( ) ( ), respec-
tively. The PADs have been plotted in a logarithmic scale. The numbers on the left top corner of each panel give the driving-field
wavelength, and the letters F in the top right corner indicate that this is the full CQSFA solution. All panels have been normalized with
regard to their counterparts computed for orbit 1.
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where tj jt tD = - .

A different approximation is employed to compute the
momentum correction (38). Thereby, we assume that, starting
from a given initial time t whose physical meaning is orbit
dependent, the difference  between a generic initial
momentum pj and a final momentum pf is exponentially
decaying. This means that the variable intermediate momen-
tum p t( ) is replaced by a fixed momentum pj, such that

p p a texp , 54f j t t= - -    ( ) ( ) ( ( )) ( )

p p a texp , 55f j t t= - -^ ^ ^ ^ ( ) ( ) ( ( )) ( )

where the coefficients aP and a⊥ are computed using the
assumptions specific to the problem at hand. For a mono-
chromatic field, this yields
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We will now apply the approximations discussed above
to the three main orbits that lead to intra-cycle interference.
For interference to occur, they must reach the detector with
the same momentum, i.e., p p p pf f f f1 2 3= = = . In all cases,
we extract the tunnel exits ze0 from equation (17) and the
ionization times ter¢ from the full CQSFA according to
equations (29), (30). For orbits 1 and 2, it suffices to assume
that (i) p pf= during the continuum propagation in order to
calculate the potential integral ;VC (ii) from the ionization
time tr¢ to the end of the pulse, the momentum will tend
monotonically to its final value in order to compute the
momentum correction  . In contrast, for orbit 3, one must
incorporate a soft collision with the core in order to reproduce
the spider-like structure4. Specifically, we assume that the
electron will follow a constant-momentum trajectory with a
momentum p p c3= up to the recollision, and that it will
undergo a laser driven soft collision with the core at a time tc.
Immediately after the collision, the electron has a momentum
p3, which is related to the collision momentum p c3 and the
final momentum pf using several approximations. A sche-
matic representation of the approximations used in order to
compute the integrals and phase differences for orbits is
plotted in figure 4. More details are provided below.

3.2.1. Orbits 1 and 2. Using a monochromatic driving field,
and assumptions (i) and (ii), the actions Se e 1, 2=( )
associated with orbits 1 and 2 read

S t t I U t t

t
U

t

U
p t p p t

V

V

p r p

p

r

p A

r

, , ,
1

2
i

2 2
sin 2

2
sin sin

d

1

2
2 2 d

d . 57

e e e f er

e ei e

e e e f er

t

t

e

t

t

e e f

t

t

e

p p
2

0
2 p

p
0 0

0

c

e

er

VT

e

er

e

er

VC

e

 









ò

ò

ò

w
w

w
w w

t t

t t t t

t t

¢ = + ¢ + ¢

+ ¢ + ¢

+ ¢ - - ¢

-

- + +

-

¢

¢

¢

¢

  

  

  

  

( ˜ ) ( )

( )

[ ( ) ( ) ( )]

( ( ))

( ) · ( ( ) ( ))

( ( )) ( )

( )

( )

The integrals V
e
T

 ( ), V
e
C

 ( ) and
e are computed as stated below.

Note that making pe piecewise constant eliminates the term
r p· ˙ as given by equation (19), so that there is no longer a
factor 2 multiplying V

e
C

 ( ).

For V
e
C

 ( ), there will be only one interval, i.e., the lower

and upper limit are t tReer e¢ = ¢[ ] and t in equation (50). In the
approximated expression (52) we take tk p Ae f= + ( ),

Figure 4. Schematic representation of the approximations employed
in the analytic model for orbits 2 and 3. The first part of the path in
green is the tunnel trajectory, which is modeled as a constant-
momentum region as in the CQSFA. Then for orbit 2 the field
dressed momentum is modeled by exponential decay to the final
momentum, the fading black line. For orbit 3 the next segment in
blue refers to the also constant momentum p c3 and is chosen such
that a soft recollision (z t 0c =( ) ) will occur at the same time as in the
CQSFA denoted tc. Then orbit 3 is also described by an exponential
decay from momentum p3 to the final momentum pf . Here, p3 is

calculated by assuming an elastic collision, in which the electron is
scattered towards the direction of the final momentum pf .

4 We have verified that the approximations employed for orbits 1 and 2 leads
to the correct behavior for orbit 3 for high photoelectron momenta but fails to
reproduce the spider-like patterns in the intermediate momentum regions. An
example will be provided in figure 10.
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z ece e0= ˆ and t tj er= ¢ , where ze0 e 1, 2=( ) are the tunnel
exits for orbits 1 and 2. The time t is chosen as common to
orbits 1 and 2. Since it must guarantee that the Coulomb
effects are significant and that both orbits are in the
continuum, we consider the times of closest approach for
orbits 1 and 2 and take the largest of the two.

One must then compute t t 0e r e - ¢ -( ) ( ), with t  ¥,
where Ie is the indefinite integral given by equation (53) for
e=1, 2. The lower limit reads
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while the upper limit diverges. This divergence will however
cancel out for the difference V
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the quantity of interest. The general expression for this
difference is
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where te ert tD = - ¢ . Specifically, the upper limit reads
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which, together with the lower limit as stated in equation (58),
is the dominant contribution to intra-cycle interference.

The momentum corrections
e are computed by taking

t ter= ¢ and p pe e0= e 1, 2=( ) in equations (54) and (55).
This is justified by the fact that, for orbits 1 and 2,
the intermediate momentum tends monotonically towards
the final momentum from the ionization time to the end of the
pulse (see figure 5).

The coefficient ae is evaluated at the tunnel exit and in
the parallel direction using the saddle-point equation (11) and
the approximate action (57). This gives
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. 61e
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In order to compute ae⊥, one must bear in mind that the
electron starts on the parallel axis. Thus, the right-hand side of
equation (11) ( V err 0 ^ ⋅ ^( ) ) is zero as x t 0r¢ =( ) . Hence, we

take the derivative with respect to time of both sides instead.
This yields
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These coefficients are then used in equation (56) and in the
phase difference

. 6312 1 2    D = - ( )

3.2.2. Orbit 3 and rescattering. Below we discuss the
approximations performed for orbit 3. The initial
momentum, used in the under-the-barrier trajectories and in

V
3
T

 ( ), is p30, and the final (given) momentum is pf . The
continuum propagation will require two subintervals: (i) from
the ionization time t tRer3 3¢ = ¢[ ] to a time tc for which a soft
collision with the core occurs, and (ii) from the recollision
time tc to the final time t, t  ¥. The time tc is calculated by
solving z t 0c =( ) for the CQSFA, and, in agreement with the
approximations in this work, is the time t of closest approach
from the core for orbit 3. The collision being soft implies that
x t 0c ¹( ) . We consider that, from t r3¢ to tc, the perpendicular
momentum component remains the same, i.e., p pc3 30=^ ^
and the parallel component p c3  is given by

p A zd 0. 64
t

t

c3 30
r

c

ò t t+ + =
¢

( ( )) ( )

One should note that the initial parallel momentum p30
cannot be chosen for this segment. Although the laser is the
main driving force for the collision, some electron trajectories
additionally require the attraction of the core to collide.
Furthermore, the momentum p c3  described by equation (64)
ensures that scattering off the core occurs at the correct time tc
as determined by the CQSFA.

Upon recollision, we assume that the electron momentum
changes instantaneously from p c3 to p3. The latter can be fully
determined using the following simplifications: (i) elastic
scattering at tc, i.e., t tp A p A ;c c c3

2
3

2+ = +∣ ( )∣ ∣ ( )∣ (ii) the
scattering angle remains the same until the end of the pulse,
i.e., p p p pf f3 3 =^ ^  . Physically, assumption (ii) implies
that most of the angular changes occur during the collision
and not subsequently. The intermediate momentum p3

Figure 5. Exact and analytic intermediate momenta pn, n 1, 2=( ) for orbits one and two over two field cycles considering a field of intensity
I 2.0 10 W cm14 2= ´ - and wavelength 800 nml = . Panels (a) and (b) give the parallel and perpendicular momentum components pP and
p⊥, respectively. The capital letters F and A refer to the full CQSFA and the analytic approximation, respectively.
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computed as stated above will be employed in the momentum
corrections

3 , but will not be used in the potential
integrals V

3
C

 ( ).
The approximate expression for the action along orbit 3

reads
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where the first two lines give a SFA-like action, and the
remaining terms yield the corrections. One should note that
the above-stated equation differs from equation (32) in the
sense that the change of momentum at the scattering time tc
has been incorporated. This is consistent with the fact that
orbit 3 lies beyond the scope of the SFA transition amplitude
for direct ATI electrons [18, 19].

The tunnel integral

V r d 66V
t

t
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30T
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3
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is approximated by equation (46). The Coulomb integral V
3
C

 ( )

in the continuum must be considered within two subintervals:
(i) from the ionization time tr¢ to the collision time tc, and (ii)
from the collision time tc to the final time t, t  ¥.
Explicitly,
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and
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For both integrals we take A A tct¢ »( ) ( ), as the collision time
is when the contributions of the binding potential are expected
to be most relevant. This is again using the long wavelength
approximation to zeroth order, and gives tk p Af f c3 = + ( )
for equation (69). In order to compute the continuum phase
differences, it is convenient to rewrite equation (68) using the
assumptions stated above. Equation (64) provides us with the
tunnel exit z30, which, if combined with the parallel
component of r c3 t( ) gives

r p A p A t td .

70

c
t

c c c c3 3 3
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Constant p3^ between ionization and recollision times, i.e.,

p pc3 30=^ ^, then yields

p A t t e p t er , 71c c c c r3 3 0t t t= + - + - ¢^ ^ ( ) [ ( )]( ) ˆ ( ) ˆ ( )

which can be rewritten as

tr k c , 72c c c3 3 3t t= - +( ) ( ) ( )

with tk p Ac c c3 3= + ( ) and p t t ec c r3 30 3= - ¢^ ^( ) ˆ . Similarly,

tr k c , 73f f c3 3t t= - +( ) ( ) ( )

with tk p Af f c= + ( ). We will now use equation (53) to
solve the two integrals in equation (67). For the first
subinterval, we have
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which can be simplified further to
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The second integral is computed in a similar way as those in
section 3.2.1, with the difference that the common time will
be the recollision time tc for orbit 3. Explicitly, the upper limit
for the Coulomb phase difference between orbit 3 and one of
the other two orbits, as discussed in section 3.2.1, will be
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with e = 1, 2. The lower limit can be computed from
equation (58) directly. The momentum integral

3 is
computed assuming an exponential decay from the recollision
time tc to the final time t  ¥. Prior to that, the momentum
p3 is assumed to be constant and equal to
p p p p, ,c3 3 3 30=^ ^ ( ) ( ) and the resulting phase shift is
incorporated in the SFA-like part of the action. This means
that, in equations (54)–(56), p pj 3= , which is determined
according to the simplification (ii) specified above, and the
closest approach time is taken as t tc= . A further subtlety is
that, in order to obtain the coefficient a3 from the action (65),
one must use the derivative of equation (11) as z t 0c =( ) , so
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that
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Finally, for the perpendicular direction,
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One should note that, in the above-stated equation, it was not
necessary to take the time derivative of equation (11) as the
transverse component x t 0c ¹( ) . Phase differences due to the
momentum changes are then computed by taking

e3D =
e 3  - , with e = 1, 2.

4. Holographic structures

4.1. Full comparison

In figure 6, we compare PADs computed using different
means over four driving-field cycles. This includes the full
CQSFA spectra with and without prefactors, the full solution
of the TDSE, computed with the freely available software
Qprop [20], and the analytic expressions derived in the pre-
vious sections. All PADs exhibit a myriad of patterns,
including the rings caused by inter-cycle interference, the
spider-like patterns near the polarization axis that result from
the interference of orbits 2 and 3, and the near-threshold, fan-
shaped structures caused by the interference of orbits 1 and 2.

In general, the full CQSFA and TDSE solutions, shown
in the second right (panels (c), (g) and (k)) and right (panels
(d), (h) and (l)) columns, exhibit a very good agreement.

However, the CQSFA underestimates the signal near the
origin and the polarization axis, differs from the full TSDE
solution around the p⊥ axis and leads to different slopes for
the spider. The discrepancy near the origin may be attributed
to several approximations made in the CQSFA, such as
neglecting bound-state depletion and ionization pathways
involving excited states. Furthermore, one assumes that the
main ionization mechanism is tunnel ionization. For that
reason, the Keldysh parameter I U2p pg = ( ) has been kept
fixed and is well within the tunneling regime. However, this
only indicates the prevalent ionization mechanism, but it does
not rule out above-the-barrier or multiphoton ionization. The
agreement between the slopes of the spider-like patterns
worsens for decreasing driving-field wavelength. It is quite
good for 1300 nml = (panels (c), and (d)), reasonable for

800 nml = (panels (g) and (h)) and poor for 590 nml = .
As the wavelength decreases, the TDSE slope moves away
from the polarization axis, while its CQSFA counterpart
remains nearly horizontal. This is likely to be caused by the
longer electron excursion amplitudes in the mid-IR regime,
which increase the influence of the driving field and reduce
the role of the Coulomb potential. Finally, orbit 4 has not
been included in our computations and could start to play a
small, but non-negligible role near the p⊥ axis.

In the two left panels of figure 6, we compare the full
CQSFA and the analytic approximation as derived in
section 3. This comparison can only be performed if one
leaves out the prefactors, as they have not been included in
the approximate expressions. They play a secondary, but
important role in the PADs, by determining the relative
weight between the orbits, their stability and wave-packet
spreading. This makes all PADs more uniformly distributed

Figure 6. ATI PADs computed with the analytic condition (left column, denoted by A), the CQSFA solution without prefactors (second left
column, denoted by NP), the full CQSFA solution (second right column, denoted by F) and the TDSE (right column, denoted by TDSE) for
hydrogen (Ip = 0.5 a.u.) over four driving-field cycles. A trapezium envelope was used for the TDSE results, where the flat top part was four
cycles with a half-cycle ramp on and off. The lower case letters on the top left corner (panels (a)–(l)) correspond to the field parameters
I , 7.5 10 W cm , 1300 nm13 2l = ´ -( ) ( ) (panels (a)–(d)), I , 2.0 10 W cm , 800 nm14 2l = ´ -( ) ( ) (panels (e)–(h)) and
I , 3.75 10 W cm , 590 nm14 2l = ´ -( ) ( ) (panels (i)–(l)), where I and λ give the field intensity and wavelength, respectively. The density
plots have been plotted in a logarithmic scale and normalized to the highest yield in each panel. The numbers on the top left corner of each
panel give the driving-field wavelength.
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in momentum space, instead of concentrated around the
polarization axis, and modifies the interference patterns. In the
absence of prefactors, the CQSFA fringes appear more blur-
red and blotched, and there is good agreement with the ana-
lytic expressions for a wide range of driving-field parameters.
Thus, the additional approximations carried out in the pre-
vious section can be used in analyzing specific holographic
patterns more closely.

4.2. Coulomb effects in intra-cycle interference

We will next employ the analytic approximations to assess
what influence the propagation integrals VC and  , in
addition to the SFA-like terms, have on intra-cycle inter-
ference patterns. Figure 7 displays the fan-shaped structure,
which, in previous work, was shown to result from the intra-
cycle interference of types 1 and 2 orbits [12, 13], provided
that t tRe c c2 1  p w-[ ] . The figure shows that the analytic
model overestimates the diverging behavior of this structure
due to the Coulomb phase, in comparison to the full CQSFA
for a wide range of field parameters. This is expected, as it has
been constructed around the times t for which the Coulomb
potential is most important, whose long tail causes the fringes
to diverge. A legitimate question is where this influence is the
most critical: is it via the Coulomb phase difference (60) or
via the momentum corrections (63)? In figures 7(c), (g) and
(k), we remove the Coulomb phase difference from the ana-
lytic expressions, and find that the slope of the distributions
changes considerably. Furthermore, the Coulomb phase cau-
ses a narrowing of the fringes near the origin, where the affect
of the Coulomb potential is the largest, which is lost when this
term is removed. This can be observed to lesser extent in the

full CQSFA plots, figures 7(a), (e) and (i). Still, both the
momentum and Coulomb integrals contribute as the PAD
computed using equation (57) without such integrals, dis-
played in the far right panels of the figure, are markedly
different. This shows that all corrections are important in
forming the fan, but that V

12
C

D ( ) is the most important
contribution.

This situation persists if the restriction t tRe c c2 1 -[ ]
p w is relaxed and other types of intra-cycle interference
between orbit 1 and 2 are present. This can be seen in figure 8,
which shows that the absence of the Coulomb phase V

12
C

D ( )

causes the interference patterns to become much closer to
those obtained with the SFA. Overall, we also see that the
fringes become thicker as the driving-field wavelength
decreases. Physically, this is consistent with the fact that, for
longer wavelengths, the electron excursion lengths in the
continuum are larger. This clearly plays a role in increasing
the phase difference as orbits 1 and 2 start in different half
cycles of the field.

Figure 9 shows the spider-like structures computed with
the full and analytic CQSFA. Overall, we see that the slope of
the full solution is nearly horizontal, while the slope of the
analytic solution bends slightly upwards. This is consistent
with the fact that the upward bending is caused by the Cou-
lomb phases in the continuum, which are overestimated in the
analytic model. The figure also shows a series of features,
which are in agreement with existing experiments [9]. For
instance, the fringes broaden for increasing frequency. There
is also a scaling behavior, which gives the impression that the
spider-like fringes are ‘zoomed’ out for increasing
wavelength.

Figure 7. Fan-shaped holographic structures computed for hydrogen using orbits 1 and 2 and symmetrizing upon p 0= so that t tRe 1 2-[ ]
is smaller than or at most equal to half a field cycle. The left columns (panels (a), (e) and (i)) provide the numerical CQSFA solution without
prefactor, the second left column (panels (b), (f) and (j)) show the analytical approximations, the second right column (panels (c), (g) and (k))
display the analytical model without the Coulomb phases VC , and the far right column (panels (d), (h) and (l)) show the equivalent patterns
for the SFA-like term in the action. The field parameters for the first, second and third row are the same as in figure 6. The probability
densities have been normalized to the maximum yield in each panel and plotted in a logarithmic scale. The upper-case letters F, A, NC and
SFA on the top right corners of each panel mean full CQSFA, analytic CQSFA, CQSFA with no Coulomb integral and the SFA-like part of
the transition amplitude, where the integral corrections are not included, respectively. The numbers on the top left corner of each panel
indicate the driving-field wavelength.
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Interestingly, the fringe spacing in figure 9 changes by
half the amount of the remaining holographic patterns with
the driving-field wavelength. In fact, if the wavelength is
changed from 1300 to 590 nm, the fringe spacing doubles for
the fan and for the interference patterns stemming from orbits
1 and 3. This is due to the fact that orbits 2 and 3 start in the

same half cycle of the field. However, the change in fringe
spacing for the spider-like structure is still comparable to the
experimental findings. An example can seen in [9], where the
spider fringe spacing changes by around 60% when the fre-
quency is doubled, compared to a change of around 50% in
the CQSFA as the frequency is increased by a factor of 2.2.

Figure 8. Holographic structures stemming from the interference of orbits 1 and 2 computed without symmetrization and relaxing the
restriction upon the ionization times t1 and t2. We use the same field and atomic parameters, and the same notation as in figure 7. The
probability densities have been normalized to the maximum yield in each panel and plotted in a logarithmic scale.

Figure 9. Spider-like structures stemming from the interference computed for the same field and atomic parameters, no prefactors, and using
the same notation as in figures 7 and 8. The left and the right column have been computed using the full CQSFA and its analytical
counterpart, respectively. This is indicated by the capital letters F and A in the top right corner of each panel. The probability densities have
been normalized to the maximum yield in each panel and plotted in a linear scale.
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The difference may be due to the fact that [9] uses a much
longer wavelength 8–16 μm, which leads to a much lower
Keldysh parameter.

Another noteworthy feature is that, near the origin, there
are secondary spider-like structures in the full CQSFA, which
are associated with multiple scattering events. They are par-
ticularly clear in figure 9(a) for a wavelength of 1300 nm.
This can be associated with the number of field cycles before
rescattering; 1, 3 and 5 cycles relate to the outer, inner and
‘inner-inner’ spider patterns, respectively [10, 22, 32]. The
splitting is partially recovered in the analytic model, but
cannot be fully accounted for as it only allows one ‘soft
scattering’/close return of the electron. Such soft scattering
trajectories have been directly related to the low energy
structure [22, 30, 31]. In the full CQSFA, the splitting is
clearly visible. There is however room for improvement in the
treatment of orbits with multiple passes, whose nature is
irregular. In addition to that, there are discontinuities in the
fringes near the transverse momentum axis, which are more
prominent in the high-frequency regime. These are artefacts
of the model due to branch cuts in our contour. We have
verified this by removing the under-the-barrier Coulomb int-
egral in the analytic model, which removes the dis-
continuities. These discontinuities play only a secondary role
in the full CQSFA PADs, as the yield related to orbits 2 and 3
is strongly suppressed near the perpendicular momentum axis
when the prefactor is included.

Figure 10 provides additional insight on how the Cou-
lomb potential affects the spider. Its influence occurs in three
main ways: (i) It contributes to the Coulomb phases and to the
phase difference ;V

23
C

D ( ) (ii) it accelerates the electron, which
within our model is taken into account in the momentum
integral  and the phase difference ;23D (iii) it causes the
electron along orbit 3 to rescatter with the core. The main
effect of the Coulomb phase in (i) is to bring the fringes of the
spider upwards. This can be readily seen by comparing
figures 10(b) and (d), for which these integrals are present and
absent, respectively. If the influence of the Coulomb potential

is accounted for only as (ii) and (iii) the spider fringes bend
downwards, and even cross the pP axis. Figure 10(c) models
orbit 3 within the CQSFA in a similar way as for orbits 1 and
2, i.e., incorporating the Coulomb potential but without
rescattering. In this case, the fringes near the axis and the
central part of the spider vanish. This shows that considering
the binding potential only via (i) and (ii) does not suffice for a
correct description of orbit 3. Furthermore, the spider will
only extend towards high photoelectron momenta if the
acceleration by the potential as described in (ii) is incorpo-
rated. This is clearly seen in figure 10(e), for which both the
Coulomb and the momentum integral are absent. In this case,
only the central part of the spider is present, and the photo-
electron energy extends to roughly U2 0.88p = a.u., which is
the direct ATI cutoff as given by the SFA. Finally, if neither
rescattering for orbit 3 nor the corrections VC and  are
present, the distribution resembles what is obtained for a
single-orbit direct ATI PAD in the standard SFA, i.e., a single
peak around p p, 0, 0=^( ) ( ), which extends to the max-
imum energy of around 2Up. Physically, this could be
understood as an SFA-like model with two long orbits, which
carry slightly different ionization times and momenta. This
very small difference would lead to very thick interference
fringes, which may lie beyond the cutoff energy.

5. Conclusions

In this work, we provide analytic expressions for Coulomb
corrected ATI dynamics based on the previously developed
CQSFA [12, 13, 19], which allow a direct computation of
quantum-interference patterns in PADs. This approach is
more refined than the analytic methods existing in the lit-
erature, as it includes the Coulomb potential in the ionization
and continuum propagation dynamics. The former is impor-
tant in determining the shapes of the electron-momentum
distributions, and the latter allow us to reproduce patterns
commonly encountered in photoelectron holography, such as

Figure 10. Spider-like structures computed for hydrogen in a field of intensity I 2.0 10 W cm14 2= ´ - and wavelength 800 nml = using
the full CQSFA (panel (a); indicated by F), the analytic CQSFA model with and without rescattering (panels (b) and (c); indicated by A1 and
A2, respectively), the CQSFA without the Coulomb phases VC (panel (d); indicated by NC), the SFA-like part of the action, for which the
potential and momentum integrals have been neglected in the continuum propagation (panel (e); indicated by SFA) and the SFA-like part of
the action without rescattering (panel (f); indicated by NR). The probability densities have been normalized to the maximum yield in each
panel and plotted in a logarithmic scale.
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the fan- and spider-like structures. In the ionization dynamics,
the main piece of information is the times and the momenta
with which the electron reaches the continuum, and how this
alters the electron momentum distribution. In the continuum
dynamics, the influence of the Coulomb potential manifests
itself as (a) a Coulomb phase, which is accumulated during
the electron propagation; (b) phase differences due to changes
in the electron momentum caused by the residual potential,
from the instance of ionization to the time at which it reaches
the detector; (c) in some cases, rescattering does play a role
and must be incorporated. This goes beyond most analytic
models for holographic photoelectron structures, which are
fully classical [8, 10, 32] and/or are SFA-based include at
most hard collisions [31, 33]. More sophisticated models
focus on the low energy structures, but do not aim at repro-
ducing holographic patterns [22, 30].

In contrast, we incorporate the effects (a)–(c) in the
semiclassical action, which is directly used to computed the
PADs and photoelectron patterns. Key approximations con-
sist in assuming that the intermediate electron momenta are
piecewise constant when computing the Coulomb phase (a),
and monotonically decaying towards its final value when
computing the momentum corrections (b). We also expand
the external field around the times for which the electron is
closest to the core, which are determined from the numerical
solution of the CQSFA.

Overall, we reproduce key features observed in intra- and
inter-cycle interference, and obtain a good agreement with the
CQSFA, provided the prefactors are neglected. The latter
include further momentum bias due to the shapes of the initial
bound-states, wave-packet spreading and modify the stability
of each type of orbit. We employ a direct orbit, and two types
of forward deflected electron orbits, which have been first
identified in [18] within Coulomb corrected strong-field
models. These orbits have also been used in our previous
work to construct the CQSFA transition amplitudes
[12, 13, 19]. However, in contrast to [18], in which 10 108 9–
contributed trajectories are needed to reproduce quantum
interference features, in our model it suffices to consider one
trajectory of each type. These three trajectories are also used
in the analytic model. Orbits 1 and 2 exist in the standard
SFA, for which the influence of the Coulomb potential is
neglected in the continuum, while orbit 3 requires the residual
Coulomb potential to be present [18, 19]. It behaves in a
similar way to the forward scattered orbit present in the SFA
model of high-order ATI [31, 33].

Apart from considerably decreasing the numerical effort,
the analytic model allows a closer look at how the holo-
graphic structures form. For instance, in previous work, we
have shown that the fan-shaped structure that forms near the
ionization threshold stems from the interference of types 1
and 2 orbits. The fan arises due to an angle- and momentum
dependent distortion caused by the Coulomb potential, which
is maximal close to the polarization axis [12, 13]. An open
question was, however, whether this distortion occurred due
to the Coulomb phase or the momentum changes caused by
the Coulomb potential. In the present work, we find that all
Coulomb corrections contribute to the fan. However, the most

dramatic effect is caused by the Coulomb phase given by the
integrals VC , which acts to both straighten and narrow (near
the origin) the fringes to give the characteristic fan shape.
This is also the case for other types of intra-cycle interference
involving orbits 1 and 2, which are less prominent and thus
mostly overlooked in experiments. Our analytic computations
also show that, when modeling orbits 1 and 2, it suffices to
include corrections around a model which, in the limit of
vanishing Coulomb potential, tends to the SFA without
rescattering. This is consistent with the fact that orbits 1 and 2
have well-known SFA counterparts [18, 19] and tend to the
SFA in the limit of very large photoelectron momenta [13].

Another widely studied holographic structure is the spi-
der-like pattern that forms near the polarization axis and
extends to very high momenta. This structure is caused by the
interference of orbits 2 and 3. The present results show that
the spider requires an appreciable acceleration of the electron
in the continuum, the Coulomb phase and, above all, rescat-
tering for orbit 3. In fact, analytical Coulomb corrected
models similar to those developed by us for orbits 1 and 2 fail
to reproduce this structure (see figure 10). It was necessary to
assume an abrupt momentum change at a rescattering time tc,
which led to a very distinct transition amplitude
(equation (65)). In the limit of vanishing binding potential,
equation (65) does not tend to the direct SFA. This is sup-
ported by the fact that an electron along orbit 3 gets much
closer to the core and is accelerated for a longer time than for
the remaining orbits. Furthermore, orbit 3 does not have an
SFA counterpart in direct ATI nor exhibits any high-energy
limit that can be traced back to the direct SFA [13]. However,
there is some evidence that it could be approximated by a
forward scattered SFA orbit in high-order ATI [31]. It is
indeed noteworthy that, in the full CQSFA, the distinction
between direct and rescattered electrons is blurred. In con-
trast, the assumptions made upon the intermediate momenta
in order to compute the corrections used in this work provide
a higher degree of control over the presence, absence or
nature of the rescattering events taking place. Hence, we can
extract the importance of soft rescattering in orbit 3, despite
the fact that this orbit can exhibit behavior that varies between
deflection and hard scattering.

Interestingly, the full CQSFA takes into account multiple
scattering, which is left out in the analytic model. This causes
the spider-like fringes to split in the low momentum region,
leading to several inner spiders. These structures have been
reported in [10], and are more visible for longer wavelengths.
Our results also indicate that the Coulomb phase in the con-
tinuum is underestimated in the full CQSFA, especially for
shorter driving-field wavelengths. This can be seen in the
slope of the spider-like structure, which is strongly influenced
by the Coulomb phase. For the CQSFA, the fringes forming
the spider are nearly horizontal for all the parameters used,
while in their TDSE counterparts the slopes in the mid-IR
regime are in agreement with the CQSFA, but increase with
the driving-field frequency. Physically, this is related to the
fact that, the higher the frequency is, the smaller the electron
excursion amplitude in the continuum will be. This means
that the electron will spend more time near the core. An
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increase in the slope is also observed for the analytical
CQSFA model, which clearly overestimates the Coulomb
phase by expanding around the times of closest approach to
the core (see figures 9 and 10).

A shortcoming of our approach is that, in its current
form, it is not a stand-alone model, as it uses the closest
approach times and initial momenta determined from the
CQSFA. It is hence desirable to find an alternative, consistent
criterium for determining such times and momenta. Another
shortcoming is that the regularization procedure allows from
some freedom in the normalization of the orbits due to the
improper limit. A preferable regularization procedure would
not have this freedom. It should also be noted that the
approximation taken on the electron trajectory during recol-
lision favors high energy collisions. Despite this, it works
well for the fan-shaped structure near the threshold and for the
central part of the spider. These regions exhibit relatively low
final momenta. This is due to the fact that, in both cases, the
final momentum is low, but the momentum at the collision/
closest approach time is often high enough. Further important
issues are how to incorporate multiple rescattering, improve
the integration contours in order to avoid branch cuts and to
establish a direct connection between the CQSFA, the ana-
lytic model and the rescattered ATI transition amplitude
computed using the SFA. Nonetheless, the analytic approach
discussed in this work provides deeper insight into how
holographic structures form, and yields a consistent and
numerically much cheaper way of computing ATI PADs in
the presence of the residual binding potential. This may be
useful for computing Coulomb corrected probability dis-
tributions for more complex systems, with many degrees of
freedom and more than one electron.
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