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SYNOPSIS

This article gives an overview of microstructure imaging of the brain with diffusion
MRI and reviews the state of the art. The microstructure-imaging paradigm aims to
estimate and map microscopic properties of tissue using a model that links those
properties to the voxel scale MR signal. Imaging techniques of this type are just
starting to make the transition from the technical research domain to wide application
in biomedical studies. We focus here on the practicalities of both implementing such
techniques and using them in applications. Specifically, the article summarises the
relevant aspects of brain microanatomy and the range of diffusion weighted MR
measurements that provide sensitivity to them. It then reviews the evolution of
mathematical and computational models that relate the diffusion MR signal to brain
tissue microstructure, as well as the expanding areas of application. Next we focus on
practicalities of designing a working microstructure imaging technique: model
selection, experiment design, parameter estimation, validation, and the pipeline of
development of this class of technique. The article concludes with some future
perspectives on opportunities in this topic and expectations on how the field will
evolve in the short-to-medium term.

DOI:



1. INTRODUCTION

The central vision in microstructure imaging is of virtual histology: estimating and
mapping histological features of tissue using non-invasive imaging techniques, such
as MRI. This virtual histology has several advantages over classical histology: 1) it is
non-invasive, avoiding the need for tissue samples, e.g. from biopsy; ii) it views intact
in-situ tissue avoiding disruptions that arise from tissue extraction and preparation; iii)
it is non-destructive so enables repeat measurements for monitoring; iv) it provides a
wide field of view, typically showing a whole organ or body, rather than the small
samples often used in classical histology; and v) data acquisition is relatively fast,
cheap, and automated compared to classical histology.

Classical histology has been a lynchpin in the development of modern neuroscience
including understanding the brain’s macroscopic organisation e.g. [1], the
mechanisms of connectivity and communication [2], and the pathologies
underpinning neurodegeneration [3]. Such work primarily uses sliced post-mortem
tissue. Clinical applications in the brain are mostly for post-mortem confirmation of
diagnosis, as in-vivo brain biopsy is normally justified only in aggressive diseases
such as grading brain tumours. The non-invasive, non-destructive nature of virtual
histology offers the potential to study the live brain in situ in healthy volunteers or
patients. The relative ease of data acquisition allows population studies that provide
insight into anatomical variability. Furthermore, its non-destructive nature allows
repeat measurements to monitor changes during normal development or pathological
processes. Clinically, virtual histology avoids biopsy and the potential side effects of
the invasive procedure, and provides a window on tissue changes when the risk of
side effects prohibits biopsy. Moreover, the wide field of view that virtual histology
provides potentially reduces false negatives that may arise from, say, poor targeting of
a biopsy.

Figure 1 compares typical images from classical histology and microstructure
imaging. The clear advantage of classical histology is its level of anatomical detail; its
submicron image resolution provides vivid insight into the cellular architecture of
tissue, whereas microstructure imaging provides only statistical descriptions of the
tissue over the extent of millimetre-sized image voxels. In some applications, rich and
specific content of classical histological images is important; for example, in enabling
a cancer histopathologist to identify the presence of minute fractions of mitotic cells.
However, many tasks that histologists perform seek broader statistical changes over a
relatively wide extent of tissue. For example: the density and diameter distribution of
axons in a white matter pathway determine its information-bearing capacity; different
density, shape, and configuration of cells discriminate different types of brain tumour;
widespread protein deposits are hallmarks of Alzheimer’s disease. In such
applications, the precise detail of cellular architecture is less important and the
benefits of microstructure imaging can significantly outweigh those of traditional
histology.



Classical histology Microstructure imaging by MRI

Density

Ori

B asiHiST OVERLAP

Axon di

Cell shape

Myelin

Myelin water map

Figure 1. Comparison of classical histology and microstructure imaging showing a range of
microstructure imaging techniques in the current literature organised by target tissue feature. A-D:
Imaging indices of neurite (axon or dendrite) density with (A) classical histology from [4] and (B—D)
by model-based dMRI. Maps show (B) the cylinder fraction from [4], (C) orientation dispersion (OD),
neurite density index (vi) and isotropic fraction (vi,) from NODDI [5], and (D) isotropic fraction,
‘stick density’, and tissue mean diffusion from CODIVIDE [6]. (E-G): Imaging fibre orientation
distribution. (E) Estimation of fiber directions from histology and corresponding estimates from dMRI
[7]. (F) In vivo fiber orientation mapping using constrained spherical convolution [8]. (G) Combined
mapping of microstructure and orientation by the spherical mean technique [9]. (H-L): Imaging indices
of axon diameter. (H) Histology provides high-resolution maps enabling measurements of individual
axon diameters; images from [10]. (I) Estimated axon diameter distributions from diffusion MRI using
AxCaliber in [10] of the in-vivo rat-brain cluster into groups reflecting corresponding diameter
histograms from histology. (J) Axon diameter indices from the monkey brain using ActiveAx [11] and
(K) those from ex-vivo spinal-cord [12] and (L) in-vivo spinal cord using 300 mT/m gradients [13].
(M-P): Imaging cell shape indices. (M) Classical histology reveals elongated cells in a meningioma to
the left and rounder cells in a glioma to the right; from [14]. (N) Fractional anisotropy from DTI is low
in both meningioma and glioma tumours, but the microscopic anisotropy (LFA) from DIVIDE is more
specific to cell shape and shows high value in the meningioma only [14]. (O) A similar measure of the
microscopic anisotropy from double diffusion encoding in a rat brain [15] and (P) a healthy human
brain [16]. (Q-T): Imaging myelin density. (Q) Classical histology by luxol fast blue shows reduced
myelin density in the brain of a multiple sclerosis patient and (R) MRI-derived maps using quantitative
relaxometry show similar features [17]. (S) MRI used to track the myelination in infants [18]. Finally,
(T) an early example of the myelin water fraction from relaxation-weighted MRI [19].

Microstructure imaging relies on a model that relates microscopic features of tissue
architecture to MR signals. In general, the approach acquires a set of images with



different sensitivities and fits a model in each voxel to the set of signals obtained from
the corresponding voxel in each image. The process yields a set of model parameters
in each image voxel, which constitute parameter maps of microscopic tissue features.
Figure 2 illustrates with an example based on diffusion MRI.

Imaging

Figure 2. Illustration of the microstructure imaging paradigm, which fits a model relating microscopic
tissue features to MR signals in each voxel to produce microstructure maps. For example, various
techniques to map indices of axon diameter [10-12, 20, 21] use a simple geometric model of white
matter microstructure, consisting of parallel non-abutting impermeable cylinders that represent axons.
The methods acquire a set of images with varying diffusion-weighting and fit the model in each voxel
to recover estimates of cylinder size and packing density, which provide maps of indices of axon
diameter and axon density. MRI maps from [11]. Electron microscopy courtesy of Mark Burke.

Diffusion MRI is a key modality for microstructure imaging, because of its unique
sensitivity to cellular architecture. The technique sensitizes the MR signal to the
random dispersion of signal-bearing particles, typically water molecules, over
diffusion times in the millisecond range up to around one second. The mean free-path
over this time at room or body temperature is in the micrometer range, i.e. the cellular
scale, so that the cellular architecture of the tissue strongly influences the dispersion
pattern of the molecules. Thus diffusion MR measurements support inferences on
tissue microstructure.

This article reviews the current state of the art in microstructure imaging of the brain
using diffusion MRI. We thus focus on diffusion MRI techniques that aim to estimate
and map tissue properties via biophysical models and mention only in passing
diffusion MRI techniques based on signal models, which other parts of this special
issue cover in more detail [22]. This kind of technique has reached an important
turning point in recent years with its transformation from largely a technical research
topic to widespread application in biomedical studies. With this in mind, the review
aims to emphasise practicalities of developing microstructure-imaging techniques



designed for front-line application while giving a critical review of the state of the art.
Thus section 2 provides some background information on brain anatomy at the scale
we are sensitive to with diffusion MRI together with the nature of the measurements
we make. Section 3 then reviews the state of the art in models underpinning current
microstructure imaging techniques and the range of current applications. Section 4
focuses on practical issues in the development of microstructure imaging techniques;
specifically: model selection, experiment design, parameter estimation, and
validation. That section concludes with an outline of the microstructure-imaging
development pipeline. Finally, section 5 discusses the future of diffusion MRI
microstructure imaging of the brain highlighting opportunities for future research,
development, and application, and considers the wider perspective of applications
outside the brain and exploiting contrasts other than diffusion MRI.
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Figure 3. The neuron and the glial cells in brain tissue. (A) Cells have a cell body or “soma”. All cells
have processes that extend from their soma, but only the neuron has an axon. Glial cells - astrocytes,
oligodendrocytes, and microglia - support neuronal function. Oliogodendrocytes associate with several
axons to wrap around each a segment, called an “internode”, of the thin layer of fatty myelin to boost
saltatory conduction. The Nodes of Ranvier are the gaps between internodes. (B) The thickness of the
myelin around axons in normal conditions has a roughly constant ratio with the axon diameter. That
ratio is called the g-ratio (defined in fact as the inner diameter divided by the outer diameter). The
space encapsulated by the axolemma, the cell membrane surrounding the axon, is the intra axonal
space. The illustration is reproduced from [23].

2. BACKGROUND

This section provides some background context for the rest of the article. First it
provides information on the anatomy of brain tissue at the cellular scale — the primary
targets for diffusion MRI and microstructure imaging. Second it reviews the range of
diffusion MR measurements available to probe that anatomy.



2.1 Brain microanatomy

Brain tissue contains neurons and glial cells and separates into two types: grey matter
(GM) and the white matter (WM). The GM contains the cell bodies, i.e. somas of
neurons and glial cells, as well as neuronal dendrites, short-range intra-cortical axons,
and the stems of long-range axons extending into the white matter. The WM is
dominated by densely packed and often myelinated axons that emanate from the soma
of neurons in GM, and project to distal GM areas or other parts of the body. Glial
cells are also found in WM. Figure 3 illustrates the neuron and its environment, which
in combination provide the basic mechanisms for brain function via communication
between brain regions [24].

Dendrites

In gray matter, the dendrites range from 0.2 to 3 um in diameter for dendrites both
proximal and distal to the soma of the neuron [25]. The dendrites branch from the
soma membrane in a formation like a tree-crown; see figure 4.

The structure of the dendritic tree and its branches, their extent and architectural
outline depends on the type of neuron [25]. In general, relatively few (typically 1-5)
dendrites extend from the soma body itself, but the total number of branches varies
from 4 to >400. The cerebellar Purkinje cells have the most branches. The spatial
extent of the dendrite tree ranges from 15 to 1800 pum radial distance from the soma to
the tip of the most distal dendrite. Dendrites from each neuron strongly intermingle
with those from other neurons in their neighbourhood to form a dense and complex
dendritic network [25]. The Golgi-Cox stain, as shown in figure 4, visualizes just a
fraction of neurons so does not reveal the full complexity of the dendritic network, but
does highlight the variety of shapes of the dendritic tree. Figure 4F also shows small
protrusions from the main shaft of the dendrites, which are called dendritic spines; see
[26] for a review of their structure and function. For neurons in the cerebral cortex,
the dendritic trees are mostly isotropic, extending and branching evenly in all
directions, whereas elsewhere, e.g. in the layers of the hippocampus, the trees can be
highly anisotropic to support inter-layer connectivity [25, 27].

Axons

The connecting distances of axons range from a few millimeters, e.g. for intra-cortical
connections, to over 1 m, e.g. for the corticospinal connections in humans [28]. In
WM the axon diameter ranges from 0.1 um to >10 wm in vertebrates, with myelinated
axon diameters rarely less than about 0.2 um. A small number of “giant” axons (> 3
um) arise in the vertebrate brain and they have been observed for example in the
corpus callosum (CC) [29, 30] and cortico-spinal tracts [31]. Larger axons transmit
signals more quickly, as saltatory conduction, i.e. the signal propagation along the
axon, increases in speed approximately linearly with axon diameter [32]. However,
space constraints within the brain make giant axons “expensive” to host [33].



Moreover, energy consumption increases super-linearly with axon diameter further
favouring small axons [33].

Figure 4. Golgi-Cox staining of the adult mouse brain to highlight neuronal and dendritic structures in
grey matter. (A) Neurons in all brain regions are evenly and reliably stained with a Golgi-Cox protocol.
Magnified images of (B,C) cerebral cortex, (D) hippocampus and (E) cerebellar cortex. (F) Dendritic
spines are visible at high magnification. (Golgi staining, differential interference contrast (DIC)
images, scale bars 500 um in (A,B), 50 pm in (E) and 5 pm in (F)). Figure and modified text from [27],
figure 5.



A brain connection is formed by a bundle of axons in WM that share a trajectory from
emanation to target region. The axon diameter distribution (ADD) of a brain
connection largely depends on the target region [34, 35], and varies among species for
the same connection [36]. However, the ADD often has shape similar to a Gamma
distribution, as often assumed in mathematical models e.g. [20, 37], i.e. a single-mode
single-sided (positive only) distribution with a heavy tail extending into the range of
“giant” axons. The mean of an ADD that contains myelinated axons is typically 0.5 -
0.8 um. Most ADD measurements are reported in the mid-sagittal CC. There, the
mid-body of CC has a larger mean ADD than the genu, and the splenium has the
smallest mean ADD (even though occasional giant axons do appear) [29, 30, 36, 38].
In mammals, brain connections that project through the mid-body tend to include the
largest diameter axons [36]. These connections are associated with the motor system,
which is one of the fastest conducting systems in the central nervous system and also
includes the longest axons in the brain. Since the need for speed of a brain connection,
and thus its ADD, is determined by its target [34, 35], projections with different target
but emanating from the same cortical region [39] can contain quite different ADDs.
For example the corticostriatal projections (ipsi- as well as contra laterally) typically
contain smaller axons compared with the corresponding contralateral corticocortical
projections [34, 40]. Interestingly, the size of the neuronal soma varies among neuron
type in the range 7 - 58 um, and for some neurons a positive correlation with axon
diameter has been found [41, 42].

Myelin

The myelin sheath consists of 80% lipids and 20% proteins and wraps around the
axon in layers about 10 nm thick, as illustrated in figure 3. The myelin sheath divides
into segments along the axon with regularly spaced gaps called “nodes of Ranvier” or
just “nodes”. The internodal distance is approximately proportional to the outer axon
diameter (i.e. myelin and axon) with a coefficient of proportionality of about 100.
Thus the segments are 0.2-2 mm long [43], whereas the nodes of Ranvier themselves
are 1-2 um long [44].

The myelin insulates the axon, which boosts the conduction speed along axons by a
factor of about 5.5 [32]. The outer diameter of a myelinated axon has an optimal ratio
to the inner axon diameter (i.e. without the myelin). The ratio (inner diameter divided
by outer diameter) is known as the g-ratio and, in normal CNS, simulations suggest
the g-ratio that optimises conduction speed is about 0.7 [45].

In the primate CC, the fraction of unmyelinated axons as observed with EM is small
compared with myelinated axons. Across the mid-sagittal CC, the largest fraction of
unmyelinated axons can be found in the genu (16-20%), which includes the prefrontal
corticocortical projections [29, 30]. The function of unmyelinated axons is still not
clearly understood, but [35] provides some thoughts.



Intra-axonal structure

The intra-axonal space shown in figure 3b is the space encapsulated by the cell
membrane of axons and contains macromolecules and proteins, as well as solid
filaments and mitochondria. In axons, the cytoskeleton consists of filaments that
maintain the axon’s shape and internal organization, and acts as mechanical support
for the intra-axonal transportation system i.e. the microtubules. The microtubules
have diameter of about 25 nm and are the intra-axonal railway transporting substances
to and from the cell body, both retrograde and anterograde; they are easily seen with
EM. The density of microtubules relates to axon diameter but not length [46].

Glial cells

Besides neurons, the central nervous system also contains different types of glial cell.
In contrast to neurons, glial cells have no axon and retain the ability to undergo cell
division in adulthood. In adult human neocortex, [47, 48] find the proportion of glial
cells (by cell count) to be 76.6% oligodendrocytes, 17.3% astrocytes and 6.5%
microglia. Moreover, in adults, the glia/neuron ratio is 1.32 and 1.40 for males and
females respectively. Aquaporin-4 (AQP-4) water channels in the cell membrane,
which make the membrane highly permeable to water, are a feature of glial cells [49].

Oligodendrocytes create the myelin sheaths around axons as shown in Figure 3; see
[50]. The soma is ~13 um in diameter and extends up to 30 processes each like an arm
that embraces a different axon providing the myelin for one internode segment. The
processes extend to distances of 80-120 um [51].

Astrocytes have somas of ~10 um in diameter from which many processes extend in a
star-shaped formation with an overall diameter of about 150 pm [52]. They perform a
plethora of functions e.g. have a role in tissue repair and scarring, as well as
maintenance of extracellular ion balance likely in relation to sleep [53]. The list is
constantly growing; see [54] for a review of current understanding. The astrocytes are
territorial meaning that their processes intermingle very little with the processes of
neighbouring astrocytes.

Microglia are macrophages that provide the first reaction for many CNS injuries [55].
Their soma is 10 um in diameter and total coverage (with processes) is about 15-30
um. Like astrocytes, microglia are territorial cells [56].

Interstitial space.

The interstitial, or extracellular, space (ECS) is the space that surrounds anatomical
structures such as cells, axons and dendrites. Invasive microscopy techniques suggest
that the fraction of ECS in adult brain of various non-human species is 15-35% [57].
However, neither electron nor light microscopy can provide reliable measurements of
ECS fraction, because chemicals used in the processing of the tissue for the display



introduce dehydration. The resulting shrinkage effects have been reported as low as
<1% and as high as 65% [29, 30, 38, 58].
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Figure 5 Macroscopic effects arise from (A) differences in the trajectory of multiple axons across a
single voxel and (B) from non-straight axonal trajectories across a voxel. Macroscopic configurations
of axons like fanning, bending and crossing are often found in brain tissue. Panel (A) from [59] and
panel (B) from [60] are both schematic drawings. Micrographs showing axonal undulation can be
found in [61].

Macroscopic configurations

The image resolution of MRI typically provides voxels of a few mm” in volume, from
which we aim to draw statistics of microanatomy such as anisotropy, cell sizes and
axon diameters — features in the micrometer lengthscale. Axons often extend across
many voxels and each voxel can contain hundreds of thousands of axons, which can
adopt a wide variety of configurations, e.g. bending, fanning, crossing, etc [7, 62, 63]
as illustrated in figure 5a. Moreover, axons are not straight even within a single voxel,
as figure 5b illustrates, which further complicates the task of modelling the geometry
of axons at the millimetre scale.

Vascular system

The brain contains three vessel systems for blood perfusion: arteries, veins and
capillaries. The capillaries contain the smallest vessels and ensure perfusion in brain
tissue. They range in diameters between about 5 and 10 pm, and capillary density in
cortical layers is high compared to WM [64]. Macroscopically, the capillaries
generally appear randomly organised [64] and, when perfused, produce a water-



dispersion effect, called intra voxel incoherent motion (IVIM) [65], similar to water
diffusion through Brownian motion although dispersion is more rapid and has
different time dependence.

2.2 Sequences

Diffusion is encoded into the MR signal by time-varying magnetic field gradients.
Here, we focus on the most common type of pulse sequence for dAMRI [66], which
yields so-called single diffusion encoding (SDE) [67]. We will also briefly cover
other encodings that can overcome some of the limitations inherent to SDE; figure 6
illustrates the various pulse sequences we consider.

Single diffusion encoding (SDE)

SDE sensitizes the MR signal to diffusion using a pair of gradient pulses (figure 6A),
which encode and decode the positions of spins. The sequence maintains a magnetic
field gradient, defined by the gradient vector g, during each pulse of length 6. The
onsets of the two pulses have separation A, which determines the diffusion time.
Diffusion during and between the pulses leads to an attenuation of the MR signal, and
this attenuation increases (i.e. signal decreases) monotonically with the variation in
the distance traversed by the spins, i.e. their dispersion, between the two pulses. The
mechanism that attenuates the signal is phase dispersion: the phase of each spin
corresponds to the distance it moves in the direction of the gradient; a wider range of
distances (i.e. greater dispersion) leads to a wider range of magnetisation phases
contributing to the signal; with greater phase dispersion, the magnetisations have a
lower sum, so we observe greater attenuation of the net signal.

For free diffusion, the diffusion coefficient alone determines the range of distances for
a particular 6 and A. The degree of attenuation thus provides a direct estimate of the
diffusion coefficient. However, in restricted diffusion, the maximal distance any spin
can travel between encoding and decoding is limited, which in turn limits the signal
attenuation. The attenuation depends on the restriction distance and, in multiple
dimensions, the shape of a restricting pore. Thus, multiple SDE (or other)
measurements obtained by varying the different parameters of the sequence, i.e. 6, A
and g inform estimates of size and shape of restricting pores; see [68-70] for
examples.

The b-value summarises the overall diffusion weighting of a sequence and, for the
SDE sequence, b = (y6|g|)?(A — g), where y is the gyromagnetic ratio. This formula

assumes negligible ramp time in the pulses. For free diffusion, the b-value alone
determines the signal attenuation, even though different combinations of |g|, & and A
can make the same b. Specifically, S(b) = S(0)exp (—bd), where S is the signal and
d is the diffusivity. However, in the presence of restricted or hindered diffusion the



attenuation depends separately on |g|, d and A. Other variables of diffusion encoding
sequences include the echo time (TE) and repetition time (TR). These are often fixed
in measurement protocols with multiple sequence-parameter combinations to ensure
constant relaxation weighting.

Some unconventional implementations of SDE can offer distinct practical benefits.
For example, the level of eddy currents can be reduced by implementing SDE in a
double spin-echo sequence or with asymmetric gradients [71, 72]. While SDE is often
implemented as a pulsed gradient spin-echo (PGSE) sequence (Fig. 6B), the pulsed-
gradient stimulated-echo sequence (PGSTE) can provide longer diffusion times than
standard PGSE (Fig. 6C). In PGSE, the diffusion time is limited by T2 relaxation,
since the SNR decays with TE as exp(—TE/T2). PGSTE comprises three 90° pulses
(rather than one 90° and one 180° pulse in PGSE) that excite, store and recall the
magnetization [73, 74] (compare figure 6 panels B and C). In PGSTE, only TI
relaxation, which is slower than the T2 relaxation pertinent in PGSE, takes place
between the second and third 90° pulses, PGSTE thus retains more signal at longer
diffusion times. However, in PGSTE half of the signal is lost in the storage and recall
process compared to PGSE [75]. Thus, PGSTE has an SNR advantage over PGSE
only when the time between the gradient pulses exceeds In(1/2) (T1'-T2™), where T1
and T2 are the longitudinal and transversal relaxation times (disregarding
imperfections of the RF pulses). In general in PGSTE, care must be taken to account
for both the T1 weighting and diffusion weighting from crusher and imaging
gradients, which can confound both experiment design and subsequent analysis [76].
Another unconventional implementation of SDE has gradient pulses of different
lengths — the “long-short” sequence, which provides particular sensitivity to pore
shape [77].

Common targets for SDE acquisitions in the brain are, in addition to cell size and
shape mentioned above, properties such as anisotropy, fibre density, exchange and
IVIM. Quantification of anisotropic diffusion for fibre direction estimation and
tractography is covered elsewhere in this special issue. The degree of anisotropy of
distinct compartments, such as axons, and the density of those compartments, can be
estimated from experiments with multiple diffusion weightings, see e.g. [78, 79].
Compartment sizes, e.g., axon diameters, can be probed by SDE with variable
diffusion times [80, 81]. Restriction manifests as a reduced signal attenuation,
compared to free diffusion, as the diffusion time increases and the smaller the
compartment the more marked the reduction of attenuation. Exchange between
compartments [82, 83] manifests as increased signal attenuation, compared to full
restriction, as diffusion time increases. The similar effects of increasing restriction
length and exchange on the signal amplitude make them challenging to disentangle in
practice with SDE [84]. Finally, for low b-values the SDE signal also captures effects
of pseudorandom flow (the IVIM effect) [65], which can inform on capillary blood
volumes, although quantification can be sensitive to noise [85].



Alternative waveforms

Double diffusion encoding (DDE) (figure 6D) consists of two successive SDE blocks,
separated by a so-called mixing time [80, 86]. DDE has also been referred to as the
double pulsed-field gradient spin-echo sequence [87] or the double wave-vector
experiment [88]. Five distinct usages of DDE target various microstructural features
in different ways [67]. The first varies the relative gradient directions of the two SDE
blocks to quantify microscopic anisotropy e.g. [89-92]. The second utilizes parallel
gradients but a variable mixing time to measure exchange rates e.g. [23, 70, 93-95]. In
this experiment, the first encoding block perturbs the signal fractions of different
components, which then gradually restore to equilibrium. Exchange is measured by
gradually increasing the mixing times while using the second encoding block to
monitor this equilibration process. The third usage of DDE employs parallel and
antiparallel gradients and a short mixing time to vary the degree of flow compensation
and thereby improve estimation of blood volumes e.g. [85, 96, 97]. The fourth uses
parallel and antiparallel gradients and short mixing time to estimate compartment
sizes e.g. [88, 98]. Finally, the fifth usage targets pore size and shape distributions in
heterogeneous media by noting the retention of diffusion diffraction patterns [99-
102].

Oscillating diffusion encoding (ODE) can be achieved with the oscillating gradient
spin echo (OGSE) sequence, which replaces the constant gradient pulses in SDE with
pulses that have oscillating gradient amplitude [103]. Oscillating waveforms may
follow smooth sine or cosine functions (Fig. 6E) [103, 104], from square waves (Fig.
6F) [103, 105, 106], or even irregular square waves [107]. With SDE, estimation of
the diffusivity in small compartments requires short diffusion times, which limits the
achievable b-value and thus the sensitivity to microscopic features. ODE can maintain
b-value at short diffusion times by repeating multiple pulses. This can enhance the
sensitivity to the diffusion coefficient in small pores and thus facilitate estimation of
small sizes [108, 109]. However, recent work [110, 111] suggests the primary benefit
of ODE for the estimation of axon diameters (or cylindrical pores in general) arises in
the presence of orientation dispersion or uncertainty, because ODE retains sensitivity
to size while avoiding high b-values that lead to low signal from free-diffusion along
cylinders that are not perfectly perpendicular to the encoding gradients.

Although SDE, DDE, and ODE have been most commonly used to date, there are no
theoretical reasons for limiting the gradient waveform to such designs. Benefits may
arise from using irregular waveforms [112, 113] (figure 6G). Specific examples
include the combination of ODE with DDE into a double oscillating diffusion
encoding (DODE) sequence, which may improve size and shape estimation [114].
Other approaches utilize multidimensional waveforms to disentangle microscopic
anisotropy from variation in isotropic diffusion, which is not possible with SDE alone
[115]. Examples include triple diffusion encoding (TDE) [116], circularly polarized
gradients [117], magic angle spinning of the g-vector [118, 119], and g-trajectory
encoding (QTE) [120, 121].
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Figure 6. Illustration of gradient waveforms and sequences used for diffusion encoding. (A) The single
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diffusion encoding (SDE) sequence consists of a pair of pulsed gradients defined by three parameters 9J,
A and g that together define the b-value. The encoding gradients must be implemented in a pulse
sequence. (B) The spin echo (SE) sequence is composed of an excitation pulse (90°) and a refocusing
pulse (180°). (C) The stimulated echo (STE) sequence replaces PGSE’s 180° pulse with two 90° pulses
that store and recall the magnetization. The effective sign of the gradient is reversed by the 180° pulse
in PGSE or by the last two 180° pulses in the PGSTE sequence, explaining the difference between the
effective waveform in (A) and the actual waveform in (B) and (C). Panels (A, D—G) show the effective
waveform. (D) The double diffusion encoding (DDE) sequence has two pairs of pulsed gradients,
separated by a mixing time t,,. The gradient directions of the two blocks may differ. Oscillating
gradients, either with smooth (E) or square (F) waveforms, can provide short encoding times when
performed with high frequency f. (G) Irregular gradient waveforms can also be used, for example, to
obtain isotropic diffusion encoding.

3. STATE OF THE ART

This section summarises the current state of the art in models relating the diffusion
MR signal to features of brain tissue through a historical review. It then reviews
current applications in biomedicine of imaging techniques based on these models.

3.1 Models for quantitative diffusion MRI

Using biophysical models of diffusion to estimate tissue microstructure follows a
longstanding tradition in the field of physical chemistry which applies models of this
kind to determine microstructure of inanimate samples [122]. For example, Packer
and Rees [81] quantified the size distribution of oil droplets using a model of spheres
with log-normal distributed radii. Pioneering works such as this have inspired the
adoption of this approach in biomedical imaging. Early days of diffusion tensor
imaging (DTI) [123] hoped that simple indices such as the eigenvalues of the
diffusion tensor, or combinations of them such as the mean diffusivity or fractional
anisotropy, would reflect WM tissue properties such as myelination or fibre density.
In regions of approximately parallel fibres, such as the CC, contrast in those



parameters may arise from such tissue properties and has been used in that way in the
literature, e.g. [124]. However, in general, the effects of orientation dispersion
dominate such contrast and more sophisticated models are necessary to separate the
effects [5]. This section reviews such models in the context of assessing brain tissue
microstructure.

In this article, we focus on models that exhibit the following two key features. First,
the models consider the signal in a voxel as the sum of contributions from several
compartments. Each compartment is posited to correspond to certain cellular
components and exhibit a distinct pattern of diffusion. Often known as compartment
models, they provide a natural way to describe the heterogeneity within a voxel and a
mechanism to infer compartment-specific properties. This is in contrast to signal
models, such as DTI, diffusion kurtosis imaging (DKI) [125], g-space imaging [80,
126], diffusion spectrum imaging (DSI) [127], and mean apparent propagator (MAP)-
MRI [128] for SDE, and extensions to DDE [15, 91, 129] [130, 131], which
effectively treat each voxel as a single homogeneous compartment, thus providing
only a composite view. Such signal models are reviewed elsewhere in this special
issue [22]. Second, the models relate the signal directly to salient microscopic
features of each compartment, typically by modelling them as simple, idealised,
geometric objects. For example, models often represent axons as cylinders. Such
simple geometries provide close analytical or simple numerical approximations of the
signal, which enable estimation of specific microscopic features via numerical fitting.
This is in contrast to, for example, bi-exponential decay models [132] [12], which,
although compartmental in nature, do not explicitly associate diffusion characteristics
with microstructural features.

The first compartment model of neuronal tissue, pioneered by Stanisz et al [69],
models nerve-tissue microstructure. It designates individual compartments for glial
cells, axons, and extra-cellular space, and aims to estimate the volume fraction of
each compartment and the spatial dimensions of the cells. The glial cells are
represented as identical spheres and the axons as identical prolate ellipsoids, giving
rise to restricted diffusion characterised by their respective geometry. The diffusion in
the extra-cellular space, hindered by the presence of glial cells and axons, is
approximated with a tortuosity model. Tortuosity refers to the reduction of the
apparent diffusivity, relative to the bulk diffusivity, in an environment with hindrance,
1.e. obstacles that increase the path length of a diffusing particle [133-136]. Evidence
suggests this is a key factor determining the particle mobility in biological tissue
[136]. Stanisz employs standard approximations of the tortuosity factor, see e.g.
[137], for simple geometries that relate packing density to reduced apparent
diffusivity as a function of the volume fractions of impeding objects — higher volume
fraction leads to lower extracellular diffusivity. The model additionally accounts for
the exchange of water between the intra-cellular compartments and the extra-cellular
space, via the Kdrger model [138], enabling estimation of the exchange rate.



More recent models of WM microstructure represent axons as straight, impermeable,
cylinders. The ball-and-stick model [139] represents the axons as parallel cylinders of
zero radius (the “stick™), so that water diffuses only along the cylinder axis, and
dispersion in the extra-axonal space follows an isotropic diffusion tensor model (the
“ball”). The model assumes that the intra- and extra-axonal spaces have a common
intrinsic diffusivity. The later and more general composite hindered and restricted
models of diffusion (CHARMED) [140, 141] model assumes cylinders to have radii
following a Gamma distribution [20] and to form one or more (crossing) bundles with
distinct orientations. The intra-axonal signal is determined analytically by the cylinder
radius and the intrinsic diffusivities parallel and perpendicular to the cylinder. The
extra-axonal diffusion is modelled with a general diffusion tensor unconstrained by
any tortuosity model. In [142] and [143], this two-compartment CHARMED model
is simplified, by adopting the stick model of axons, to explain the DKI metrics. 