

1 **Aging-associated Renal Disease in Mice is Fructokinase Dependent**

2

3 Carlos A. Roncal-Jimenez^{1*}, Takuji Ishimoto^{1,2*}, Miguel A Lanaspa¹, Tamara Milagres¹, Ana
4 Andres Hernando¹, Thomas Jensen¹, Makoto Miyazaki¹, Tomohito Doke², Takahiro Hayasaki²,
5 Takahiko Nakagawa³, Shoichi Marumaya², David A. Long⁴, Masanari Kuwabara¹, Laura G.
6 Sánchez-Lozada⁵, Duk-Hee Kang⁶, Richard J Johnson^{1,7}

7 *equal contribution

8 From the ¹Division of Renal Diseases and Hypertension, University of Colorado, Aurora,
9 Colorado; ²Department of Nephrology, Nagoya University Graduate School of Medicine,
10 Nagoya, Japan; ³TMK Project, Medical Innovation Center, Kyoto University, Kyoto, Japan;
11 ⁴Developmental Biology and Cancer Programme, UCL Institute of Child Health, London,
12 UK; ⁵Laboratory of Renal Physiopathology and Department of Nephrology, Instituto Nacional de
13 Cardiología I.Ch., Mexico City, Mexico; ⁶Department of Internal Medicine, Ewha Womans
14 University School of Medicine, Ewha Medical Research Center, Seoul, Republic of Korea;
15 ⁷Division of Nephrology, Eastern Colorado Health Care System, Department of Veteran Affairs,
16 Denver, Colorado;

17

18 **Correspondence:** Carlos Roncal-Jimenez, Division of Renal Diseases and Hypertension,
19 University of Colorado, Aurora, Colorado, email carlos.roncal@ucdenver.edu, phone 303-724-
20 4852

21

22 **Running Title:** Fructose Metabolism and Aging

23 **Supported** by Veteran's Health Merit Grant from the National Institutes of Health
24 (BXI01BX002586-01)

25

26 **Text:** Abstract 222 words; Text 3032 words; Figures 7; Tables 1; References 36

27 **Abstract**

28 Aging-associated kidney disease is usually considered a degenerative process associated
29 with aging. Recently, it has been shown that animals can produce fructose endogenously, and
30 that this can be a mechanism for causing kidney damage in diabetic nephropathy and in
31 association with recurrent dehydration. We therefore hypothesized that low level metabolism of
32 endogenous fructose might play a role in aging-associated kidney disease. Wild-type and
33 fructokinase knockout mice were fed a normal diet for 2 years that had minimal (<5%) fructose
34 content. At the end of two years, wild-type mice showed elevations in systolic blood pressure,
35 mild albuminuria, and glomerular changes with mesangial matrix expansion, variable
36 mesangiolysis, and segmental thrombi. The renal injury was amplified by provision of high salt
37 diet for 3 weeks, as noted by the presence of glomerular hypertrophy, mesangial matrix
38 expansion and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase
39 knockout mice were protected from renal injury both at baseline and after high salt intake (3
40 week) compared with wild-type mice. This was associated with higher levels of active
41 (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies
42 suggest that aging-associated renal disease might be due to activation of specific metabolic
43 pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-
44 associated renal injury may represent a disease process as opposed to normal age-related
45 degeneration.

46 **Key words: Chronic Kidney Disease; Aging; Fructose**

47

48 **Introduction**

49 Aging is associated with the development of glomerulosclerosis and tubulointerstitial
50 disease in humans and rodents (12, 23, 35). Interestingly, aging-associated renal injury can vary
51 greatly, and some individuals may show minimal reduction in kidney function and relatively
52 preserved kidney histology with age. This raises the possibility that some of the “normal”
53 deterioration in renal function during the aging process observed in western cultures may be
54 subtle renal injury driven by diet or other mechanisms.

55 The ingestion of sugar has been associated with albuminuria in humans (3, 4, 31). Sugar
56 contains fructose and glucose, and evidence suggests that the fructose component may be
57 responsible for the renal injury. Specifically, fructose is metabolized in the proximal tubule by
58 fructokinase, and this results in transient ATP depletion with the generation of oxidative stress
59 and inflammatory mediators such as monocyte chemoattractant protein-1 (MCP-1) (5). The
60 administration of fructose to rats results in modest proximal tubular injury, and has also been
61 shown to accelerate pre-existent kidney disease (9, 26). Fructose metabolism also results in the
62 generation of uric acid, and this is associated with the development of afferent arteriolar disease
63 with loss of autoregulation, resulting in glomerular hypertension (29, 30). While most studies
64 have focused on dietary fructose, fructose can also be generated in the kidney and liver by the
65 aldose reductase-sorbitol dehydrogenase polyol pathway, and modest fructose levels can be
66 detected even in fasting animals (13, 21). Indeed, fructose can be generated in the kidney in
67 diabetes or with dehydration, and in both situations may lead to local renal damage.(20, 28)

68 We hypothesized that some of the renal damage associated with aging could be due to
69 fructose-dependent renal injury, even in the absence of dietary fructose. To investigate this
70 hypothesis, we studied aging wild-type mice and aging mice that could not metabolize fructose
71 via the fructokinase-dependent pathway (fructokinase knockout, also known as ketohexokinase
72 knockout (KHK-A/C KO mice). KHK-A/C KO mice have a normal phenotype when young (6),
73 but have not been examined in the aging state.

74

75 **Materials and Methods**

76 **Experimental Protocol and Animals.** Keto hexokinase-A and -C knockout (KHK-A/C
77 KO) mice of C57BL/6 background and lacking both keto hexokinase-A and keto hexokinase-C,
78 were originally provided by David Bonthron at Leeds University (6). KHK-A/C knockout
79 homozygous mice and wild-type (WT) litter mates (male, 24 to 25 month old) were used. They
80 were maintained in temperature- and humidity-controlled specific pathogen-free conditions on a
81 14-hour dark/10-hour light cycle. Both WT and KHK-A/C KO mice were fed regular diet *ad*
82 *libitum* (Harlan Teklad; no. 2918, containing 58 percent carbohydrate, 24 percent protein, and 18
83 percent fat and containing minimal (<5%) of fructose or sugar), with free access to tap water.

84 Two experimental studies were performed. In the first set of experiments, WT and KHK-
85 A/C KO mice ($n = 7$ per group) underwent urine collection using a metabolic chamber
86 (Techniplast, Philadelphia) at 24 months of age, and were sacrificed at 25 months with collection
87 of kidney tissues and serum. A second set of studies were done in which 24 month old WT and
88 KHK A/C KO mice ($n = 5-6$ per group) were challenged for 3 weeks with a high salt load (1%
89 NaCl in water with 0.04% sucralose). Systolic and diastolic blood pressure was assessed weekly
90 during the period of high salt intake by tail cuff sphygomanometry (Visitech BP2000; Visitech
91 Systems, Apex, NC); mice underwent conditioning prior to any measurements being taken.
92 Urine was collected from metabolic cages at 18 to 20 months of age, and again both before and
93 after high salt intake. Mice were sacrificed at 25 months of age by anesthesia and cardiac
94 exsanguination with serum and kidney tissues collected for analyses.

95 All experiments were conducted with adherence to the NIH Guide for the Care and Use
96 of Laboratory Animals. The animal protocol was approved by the Animal Care and Use
97 Committee of the University of Colorado.

98 **Biochemical analysis.** Biochemical analysis for serum alanine aminotransferase,
99 aspartate aminotransferase, total cholesterol, triglycerides, glucose, and urinary creatinine were
100 done with an automated chemistry analyzer (VetACE Clinical Chemistry System, Alfa
101 Wassermann Diagnostic Technologies). Urinary albumin concentration was determined by
102 Albuwell M (Exocell, Philadelphia, PA) and urine NGAL was measured using the Mouse

103 Lipocalin-2/NGAL Quantikine ELISA Kit (R&D Systems, Inc., Minneapolis, MN). Serum
104 creatinine concentration was analyzed by the high-performance liquid chromatography–tandem
105 mass spectrometry method (33). Urinary nitrites and nitrates were measured using a Colorimetric
106 Assay Kit from Cayman Chemical Company (Ann Arbor, Michigan). Serum fructose was
107 measured using the EnzyChrom Fructose Assay Kit (Bioassay Systems, Hayward, CA) and
108 serum uric acid was measured using QuantiChrom Uric Acid assay kit (BioAssay Systems).
109 Kidney tissue samples were homogenized in a buffer containing 2 mM MgCl₂, 1 mM EGTA, 1
110 mM DTT, and 0.5% (v/v) Triton X-100. Homogenates were centrifuged at 13,000 rpm for 10
111 minutes (4 °C) and protein in the collected supernatant quantified. Intrarenal fructose and uric
112 acid levels were assessed by utilizing the Bioassay Systems kits (see above); values were
113 normalized to protein concentration in the lysate determined by the BCA assay (Pierce).

114 **Histology.** Tissues were fixed in 10% formalin or methyl Carnoy's and embedded in
115 paraffin. Three µm sections were stained with periodic acid-Schiff reagent (PAS). On coronal
116 sections of each kidney, the area of 50–100 individual glomeruli was determined by outlining the
117 glomerular tuft using Aperio software (Aperio Technologies, Vista, CA). Mesangial matrix
118 expansion was determined by measuring the glomerular area containing type IV collagen on
119 tissue sections stained with rabbit anti-type IV collagen antibody (Chemicon International,
120 Temecula, CA) as described elsewhere (18, 34). Specifically, the relative mesangial area
121 (proportion of type IV collagen positive area per glomerular tuft area was calculated using
122 Aperio Software. Mesangial cell activation (15) was measured using a rabbit anti-smooth
123 muscle actin antibody, (RB-9010-P, Thermo Fisher Scientific, Fremont, CA) and determining
124 the ratio of actin positive staining to overall glomerular tuft area in all glomeruli in the tissue
125 section.

126 **Western blotting.** Kidney lysates from wild type and KHK-A/C KO mice were
127 homogenized in mitogen-activated protein kinase lysis buffer as previously described (19).
128 Briefly, tissues (~50 mg) were homogenized in 500 μ l of buffer containing 0.5% triton X-100,
129 2 mM MgCl₂, 1 mM EGTA and 1 mM dithiothreitol supplemented with protease and
130 phosphatase inhibitors (Roche); samples were then incubated on ice for 30 min with occasional
131 vortex and centrifuged at 13,000 r.p.m. for 15 min at 4 °C. Supernatant was collected and protein
132 content determined by the BCA assay (Pierce). Fifty micrograms of total protein was loaded per
133 lane for SDS-PAGE (10% w/v) analysis and then transferred to polyvinylidene difluoride
134 membranes. Membranes were incubated with primary antibodies (all at a 1:1,000 dilution;
135 peNOS (S1177), (Cell Signaling, 9571S); eNOS, (Cell Signaling, 9572S); β -Actin, (Cell
136 Signaling, 4967S); KHK, (Sigma, HPA007040) followed by appropriate horseradish peroxidase
137 secondary antibodies (1:2,000). Blots were visualized using the HRP Supersignal West Pico
138 Chemiluminescent Substrate (ThermoFisher Scientific). Chemiluminescence was recorded with
139 an Image Station 440CF and results were analysed with the 1D Image Software (Kodak Digital
140 Science, Rochester, NY).

141 **Statistical analysis.** All data are presented as the mean \pm s.e.m. Data graphics and
142 statistical analysis were performed using Prism 5 (GraphPad). Data was analyzed by t-test, or
143 Mann-Whitney U test when normality could not be assumed. 2-way ANOVA with Bonferroni
144 was used to compare urinary nitrite excretion pre and post salt challenge. $P < 0.05$ was regarded
145 as statistically significant.

147 **Results**

148 General Characteristics of Aging (Two year old) Mice. Both KHK A/C KO and WT
149 littermate mice showed normal behavior at 24 months with similar levels of activity. There were
150 no differences in body weight or amount of epididymal fat. Similarly, no differences were noted
151 in serum lipids (cholesterol, triglycerides), liver function tests (aspartate and alanine
152 aminotransferase), or serum glucose or insulin in blood samples obtained after 6 hours of fasting
153 (**Table 1**).

154 C57BL6 mice are known to develop some aging-associated kidney damage, with
155 mesangial expansion, low grade interstitial fibrosis, and albuminuria (22). We confirmed that
156 aging WT mice showed mild mesangial cell proliferation and matrix expansion (**Figure 1**).
157 Interestingly, low grade mesangiolytic injury was also present, in association with focal
158 glomerular thrombi in 6 of 7 WT mice. In contrast, KHK A/C KO mice showed no histologic
159 abnormalities in their kidneys. Quantification revealed the presence of thrombi in nearly 20
160 percent of glomeruli of WT mice compared to <1% of glomeruli in KHK A/C KO mice (**Figure**
161 **1**). Mesangial matrix expansion, determined by measuring glomerular type IV collagen, was
162 significantly higher in WT mice compared with KHK A/C KO mice, and glomeruli also tended
163 to be larger in the WT mice compared with the KHK A/C KO mice although this was not
164 significant (**Figure 1**). KHK A/C KO mice also showed significantly less albuminuria than WT
165 mice. However, serum creatinine (measured by HPLC) and urinary NGAL levels were not
166 different (**Figure 2**). Furthermore, no tubulointerstitial disease was noted in either group.

167 Effect of High Salt Diet on Aging Mice. Aging-associated renal disease is known to be
168 associated with decreased functional reserve and increase susceptibility to salt-sensitive
169 hypertension. We therefore performed a second set of studies to determine if aging mice lacking
170 fructokinase might be protected from high salt intake. In these studies 2 year old aging WT and
171 KHK A/C KO mice were administered a high salt diet (1 percent NaCl with 0.04% sucralose to
172 stimulate drinking) for 3 weeks. Baseline systolic blood pressure and pulse prior to salt loading
173 were lower in the KHK A/C KO mice (**Figure 3**). During the three weeks of high salt intake, the
174 mean intake of salt water was equivalent between two groups (**Figure 3**). At the end of the 3
175 weeks, the animals were sacrificed and assessed for blood pressure, renal function and injury.
176 Renal function (as noted by HPLC-determined serum creatinine) were not different between WT

177 and KHK A/C KO mice. However, albuminuria was markedly higher with salt loading in both
178 WT mice and KHK A/C KO mice compared with baseline levels, with WT mice showing more
179 than twice the level of proteinuria as KHK A/C KO, although this was not significant due to the
180 wide range of values in the WT mice (**Figure 4**). In addition, there remained a difference in
181 systolic BP (Fig 4D), although both groups showed an increase in blood pressure at a similar
182 degree over the three week period (**Figure 4**).

183 Despite no differences in measured renal function, marked differences in renal injury
184 were present, with 5 of 5 WT mice showing focal glomerular thrombi with fibrin deposits
185 whereas only rare thrombi were present in the KHK A/C KO mice (**Figure 5**). In addition,
186 glomeruli in WT mice showed evidence of glomerular hypertrophy and increased mesangial
187 matrix expansion with hypercellularity, whereas this was not noted in KHK A/C KO mice
188 (**Figure 5**). Quantification of type IV collagen documented increased mesangial matrix in the
189 WT mice compared with KHK A/C KO mice (**Figure 5**). Similarly, alpha smooth muscle actin,
190 which is known to reflect activation of mesangial cells (15), was also increased in the WT mice
191 compared with the KHK-A/C KO mice (**Figure 5**).

192 Endothelial Nitric Oxide Synthase Expression. Aging kidneys show evidence for
193 endothelial dysfunction and impaired angiogenesis (16, 24). Urinary nitrites/nitrates, which are a
194 general reflection of both endothelial and non-endothelial nitric oxide were significantly lower in
195 WT mice compared with KHK A/C KO mice both before and after saline challenge (**Figure 6**).
196 Western blotting of KHK A/C KO mice performed after salt loading showed significant higher
197 levels of activated endothelial nitric oxide synthase (phosphorylated at the serine 1177 site)
198 compared with WT mice, especially when factored for total eNOS expression (**Figure 6**). These
199 studies suggest that the KHK A/C KO mice had preserved endothelial function.

200 Fructose and Uric acid Levels. We also measured both serum and renal fructose and
201 uric acid levels in the first set of aging mice. As shown in **Figure 7**, fructokinase knockout mice
202 had higher serum fructose levels consistent with their reduced ability to metabolize fructose (13).
203 However, there was no difference in renal fructose or serum or renal uric acid levels.

204

205

206 **Discussion**

207 Aging is associated with the development of kidney disease in mice, rats and humans (17,
208 22). While several mediator systems are involved in aging-associated renal disease, including
209 the renin angiotensin system, endothelial nitric oxide, and oxidative stress (1, 7, 8), the role of
210 fructose metabolism is not known. Dietary fructose is known to cause renal injury in rats, even
211 with as little as 20 percent of the diet as fructose (9, 10, 26), so it would not be particularly
212 insightful to evaluate the role of high fructose diet on aging-associated renal disease. However,
213 stealth amounts of fructose are generated daily from glucose via the endogenous aldose
214 reductase-sorbitol dehydrogenase pathway (13), and this pathway can be enhanced if aldose
215 reductase is activated by glucose, salt, or dehydration (20, 21, 28). Hence, we tested the
216 hypothesis that blocking fructose metabolism might reduce aging associated kidney disease even
217 when the diet is very low in fructose.

218 The first observation was that fructokinase knockout mice appeared healthy and there
219 were no apparent toxicity from lacking fructokinase observed. The observation that the
220 fructokinase knockout mice are healthy are consistent with the clinical literature, in which
221 humans lacking fructokinase (a condition known as essential fructosuria) are clinically healthy
222 throughout their lives (32). Importantly, we observed no benefit in mice lacking fructokinase as
223 evaluated by a large number of metabolic tests (liver function, lipid profile and glucose-insulin
224 level). However, these mice were on a standard mouse diet and not one high in sugar and fat
225 where a lack of fructokinase has been shown to have a benefit on fatty liver and metabolic
226 syndrome (14). We did observe a slightly lower body weight in the second set of aging
227 fructokinase knockout animals compared to wild type littermates, but since this difference was
228 not observed in the first set of mice, it remains unclear if a lack of fructokinase might be
229 associated with slightly lower body mass with aging.

230 The primary finding from our study was that mice lacking fructokinase were relatively
231 protected from developing aging-associated kidney damage. Aging wild-type littermates
232 developed slightly elevated systolic blood pressure, a higher pulse, and variable albuminuria that
233 were significantly greater than that observed in the fructokinase knockout mice. While we could
234 not document differences in renal function, histologically there were substantial differences.
235 First, the wild-type mice had mild mesangial expansion (noted by type IV collagen staining),

236 mild glomerular hypertrophy, and focal thrombi observed in the majority (85%) of mice. In
237 contrast, the fructokinase knockout mice showed less glomerular matrix expansion and almost no
238 thrombi that was statistically significant. Indeed, glomeruli generally appeared normal in the
239 fructokinase knockout mice.

240 We also performed a second study in which aging mice were challenged for three weeks
241 with a high salt diet. High salt intake is known to increase glomerular filtration rate,
242 hypertrophy, and proteinuria in subjects, especially those who are salt-sensitive including the
243 elderly (2). Perhaps not surprisingly, we found that high salt diet dramatically increased
244 albuminuria in wild-type mice, and this was associated with an amplification of renal injury, with
245 marked glomerular hypertrophy, mesangial matrix expansion, alpha smooth muscle actin
246 expression in the mesangium (which marks mesangial activation), and segmental glomerular
247 thrombi. In contrast, fructokinase knockout mice showed significantly less glomerular
248 hypertrophy, mesangial actin and collagen expression, and glomerular thrombi. Interestingly,
249 the fructokinase KO mice still showed some evidence for salt-mediated effects, as the level of
250 albuminuria and glomerular size were higher than that observed in fructokinase knockout mice
251 on a normal diet, consistent with the concept that the high salt diet might still be inducing mild
252 glomerular hyperfiltration and hypertension in these mice.

253 We further investigated possible mechanisms underlying the renal protection in aging
254 fructokinase KO mice. Both mice and rats are known to have impairment in endothelial function
255 with age, with reduced renal levels of nitric oxide, altered eNOS expression, and with some
256 impairment in expression of vascular endothelial growth factor-A and endothelial
257 hyperpolarizing factor (11, 16, 24, 27, 35). Fructose is also known to mediate endothelial
258 dysfunction, reduce endothelial nitric oxide levels, transiently reduce eNOS protein, and block
259 acetylcholine-induced dilation of aortic rings (10, 25). It was thus of interest that the fructokinase
260 KO mice showed higher expression of phosphorylated eNOS with higher urinary nitrate/nitrite
261 excretion. That preservation of eNOS may account for protection is supported by a study in
262 eNOS knock-out mice who also develop glomerular injury and thromboses at age 13 months
263 (approximately a year younger than wild type mice) (27).

264 A limitation of the study is that we could not specifically show evidence for fructose
265 metabolism in the aging mice. Specifically, we found similar levels of fructose and uric acid in

266 the kidneys of aging WT and KHK A/C KO mice. However, it is likely that the blockade of
267 fructokinase acted by preventing fructose metabolism, as fructose is the only common sugar
268 metabolized through the fructokinase pathway. A second limitation of the study was that it was
269 only performed in male animals (1), which are known to be more susceptible to kidney damage,
270 and whether similar protection would be observed in female mice is not known.

271 In summary, these studies raise the possibility that some aging-associated renal changes
272 may not represent the consequences of age-related degeneration, but rather may involve active
273 metabolic processes that can be potentially interrupted. Second, these studies alert one to
274 consider that one might not simply consider dietary fructose as a potential nephrotoxin, but
275 rather that generation of endogenous fructose may have a stealth role in driving kidney disease.
276 Indeed, endogenous fructose has already been implicated in both diabetic nephropathy and in
277 dehydration-mediated chronic kidney disease (20, 28). Finally, these studies emphasize a
278 linkage between endothelial dysfunction, thrombosis and fructose metabolism that warrant
279 further study. It has been reported that overexpression of eNOS can prevent fructose-induced
280 metabolic syndrome in rats (36). Thus, studies to improve endothelial function might be an
281 approach for preventing aging associated renal disease that could have a significant impact on
282 human health and aging.

283

284

285 **Table 1 General Characteristics of Aging WT and KHK-A/C KO mice**

	WT	KHK-A/C KO	p value
287 Body weight (g)	36.9 ± 1.7	37.1 ± 1.5	NS
288 Kidney weight (g)	0.20 ± 0.01	0.20 ± 0.01	NS
289 Liver weight (g)	1.40 ± 0.09	1.52 ± 0.20	NS
290 Epididymal fat weight (g)	1.12 ± 0.23	1.41 ± 0.33	NS
291 AST (IU/l)	28.6 ± 4.6	25.0 ± 1.7	NS
292 Serum uric acid (mg/dl)	2.6 ± 0.2	2.6 ± 0.2	NS
293 Total cholesterol (mg/dl)	106.6 ± 10.7	117.0 ± 16.0	NS
294 Triglyceride (mg/dl)	41.3 ± 5.1	49.5 ± 8.0	NS
295 Blood urea nitrogen (mg/dl)	19.1 ± 1.7	22.5 ± 2.9	NS
296 Serum glucose (mg/dl)	191.6 ± 11.0	186.8 ± 19.3	NS
297 Insulin (pg/ml)	1404 ± 66.5	1318 ± 131.7	NS
298 Serum fructose (μmol/l)	335.1 ± 19.3	403.9 ± 22.4	P < 0.05

299

300

301 **Acknowledgments**

302 Supported in part by VA Merit BX101BX002585. Dr Jensen is supported by NIDDK
303 5T32DK007446-34. DAL is supported by project grants from Diabetes UK (13/0004763 and
304 15/0005283), Kidney Research UK (RP36/2015), a Medical Research Council New Investigator
305 Award (MR/J003638/1) and by the National Institute for Health Research Biomedical Research
306 Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University
307 College London.

308

309 **Financial Disclosure**

310 RJJ and MAL have a patent application with the University of Colorado to block fructose
311 metabolism as a means for blocking sugar craving and acute kidney injury. RJJ, MAL, CR and
312 LGL are members of Colorado Research Partners, LLC, that is trying to develop an inhibitor of
313 fructose metabolism. RJJ is also on the Scientific Board for Amway and Amway also has interest
314 in developing nutraceuticals to block fructose metabolism.

315

316 References

317 1. **Baylis C.** Sexual dimorphism: the aging kidney, involvement of nitric oxide deficiency, and
318 angiotensin II overactivity. *J Gerontol A Biol Sci Med Sci* 67: 1365-1372, 2012.

319 2. **Boero R, Pignataro A, and Quarello F.** Salt intake and kidney disease. *Journal of nephrology* 15:
320 225-229, 2002.

321 3. **Bomback AS, Derebail VK, Shoham DA, Anderson CA, Steffen LM, Rosamond WD, and
322 Kshirsagar AV.** Sugar-sweetened soda consumption, hyperuricemia, and kidney disease. *Kidney
323 international* 77: 609-616, 2010.

324 4. **Bomback AS, Katz R, He K, Shoham DA, Burke GL, and Klemmer PJ.** Sugar-sweetened beverage
325 consumption and the progression of chronic kidney disease in the Multi-Ethnic Study of Atherosclerosis
326 (MESA). *The American journal of clinical nutrition* 90: 1172-1178, 2009.

327 5. **Cirillo P, Gersch MS, Mu W, Scherer PM, Kim KM, Gesualdo L, Henderson GN, Johnson RJ, and
328 Sautin YY.** Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in
329 proximal tubular cells. *Journal of the American Society of Nephrology : JASN* 20: 545-553, 2009.

330 6. **Diggle CP, Shires M, McRae C, Crellin D, Fisher J, Carr IM, Markham AF, Hayward BE, Asipu A,
331 and Bonthron DT.** Both isoforms of ketohexokinase are dispensable for normal growth and
332 development. *Physiol Genomics* 42A: 235-243, 2010.

333 7. **Erdely A, Greenfeld Z, Wagner L, and Baylis C.** Sexual dimorphism in the aging kidney: Effects on
334 injury and nitric oxide system. *Kidney international* 63: 1021-1026, 2003.

335 8. **Ferder LF, Inserra F, and Basso N.** Effects of renin-angiotensin system blockade in the aging
336 kidney. *Exp Gerontol* 38: 237-244, 2003.

337 9. **Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Sautin YY, Johnson RJ, and
338 Nakagawa T.** Fructose, but not dextrose, accelerates the progression of chronic kidney disease.
339 *American journal of physiology Renal physiology* 293: F1256-1261, 2007.

340 10. **Glushakova O, Kosugi T, Roncal C, Mu W, Heinig M, Cirillo P, Sanchez-Lozada LG, Johnson RJ,
341 and Nakagawa T.** Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. *Journal of the
342 American Society of Nephrology : JASN* 19: 1712-1720, 2008.

343 11. **Hill C, Lateef AM, Engels K, Samsell L, and Baylis C.** Basal and stimulated nitric oxide in control
344 of kidney function in the aging rat. *The American journal of physiology* 272: R1747-1753, 1997.

345 12. **Hill GS, Heudes D, and Bariety J.** Morphometric study of arterioles and glomeruli in the aging
346 kidney suggests focal loss of autoregulation. *Kidney international* 63: 1027-1036, 2003.

347 13. **Ishimoto T, Lanaspa MA, Le MT, Garcia GE, Diggle CP, Maclean PS, Jackman MR, Asipu A,
348 Roncal-Jimenez CA, Kosugi T, Rivard CJ, Maruyama S, Rodriguez-Iturbe B, Sanchez-Lozada LG,
349 Bonthron DT, Sautin YY, and Johnson RJ.** Opposing effects of fructokinase C and A isoforms on fructose-
350 induced metabolic syndrome in mice. *Proceedings of the National Academy of Sciences of the United
351 States of America* 109: 4320-4325, 2012.

352 14. **Ishimoto T, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Orlicky DJ, Cicerchi C, McMahan RH,
353 Abdelmalek MF, Rosen HR, Jackman MR, MacLean PS, Diggle CP, Asipu A, Inaba S, Kosugi T, Sato W,
354 Maruyama S, Sanchez-Lozada LG, Sautin YY, Hill JO, Bonthron DT, and Johnson RJ.** High-fat and high-
355 sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. *Hepatology* 58: 1632-
356 1643, 2013.

357 15. **Johnson RJ, Iida H, Alpers CE, Majesky MW, Schwartz SM, Pritzi P, Gordon K, and Gown AM.**
358 Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-
359 smooth muscle actin is a marker of mesangial cell proliferation. *The Journal of clinical investigation* 87:
360 847-858, 1991.

361 16. **Kang DH, Anderson S, Kim YG, Mazzalli M, Suga S, Jefferson JA, Gordon KL, Oyama TT, Hughes
362 J, Hugo C, Kerjaschki D, Schreiner GF, and Johnson RJ.** Impaired angiogenesis in the aging kidney:

363 vascular endothelial growth factor and thrombospondin-1 in renal disease. *American journal of kidney*
364 *diseases : the official journal of the National Kidney Foundation* 37: 601-611, 2001.

365 17. **Karam Z, and Tuazon J.** Anatomic and physiologic changes of the aging kidney. *Clin Geriatr Med*
366 29: 555-564, 2013.

367 18. **Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi**
368 **A, Ways DK, King GL, and Kikkawa R.** Amelioration of accelerated diabetic mesangial expansion by
369 treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. *FASEB J*
370 14: 439-447, 2000.

371 19. **Lanaspa MA, Almeida NE, Andres-Hernando A, Rivard CJ, Capasso JM, and Berl T.** The tight
372 junction protein, MUPP1, is up-regulated by hypertonicity and is important in the osmotic stress
373 response in kidney cells. *Proceedings of the National Academy of Sciences of the United States of*
374 *America* 104: 13672-13677, 2007.

375 20. **Lanaspa MA, Ishimoto T, Cicerchi C, Tamura Y, Roncal-Jimenez CA, Chen W, Tanabe K, Andres-**
376 **Hernando A, Orlicky DJ, Finol E, Inaba S, Li N, Rivard CJ, Kosugi T, Sanchez-Lozada LG, Pettrash JM,**
377 **Sautin YY, Ejaz AA, Kitagawa W, Garcia GE, Bonthron DT, Asipu A, Diggle CP, Rodriguez-Iturbe B,**
378 **Nakagawa T, and Johnson RJ.** Endogenous fructose production and fructokinase activation mediate
379 renal injury in diabetic nephropathy. *Journal of the American Society of Nephrology : JASN* 25: 2526-
380 2538, 2014.

381 21. **Lanaspa MA, Ishimoto T, Li N, Cicerchi C, Orlicky DJ, Ruzicky P, Rivard C, Inaba S, Roncal-**
382 **Jimenez CA, Bales ES, Diggle CP, Asipu A, Pettrash JM, Kosugi T, Maruyama S, Sanchez-Lozada LG,**
383 **McManaman JL, Bonthron DT, Sautin YY, and Johnson RJ.** Endogenous fructose production and
384 metabolism in the liver contributes to the development of metabolic syndrome. *Nat Commun* 4: 2434,
385 2013.

386 22. **Lim JH, Kim EN, Kim MY, Chung S, Shin SJ, Kim HW, Yang CW, Kim YS, Chang YS, Park CW, and**
387 **Choi BS.** Age-associated molecular changes in the kidney in aged mice. *Oxid Med Cell Longev* 2012:
388 171383, 2012.

389 23. **Long DA, Mu W, Price KL, and Johnson RJ.** Blood vessels and the aging kidney. *Nephron Exp*
390 *Nephrol* 101: e95-99, 2005.

391 24. **Long DA, Newaz MA, Prabhakar SS, Price KL, Truong LD, Feng L, Mu W, Oyekan AO, and**
392 **Johnson RJ.** Loss of nitric oxide and endothelial-derived hyperpolarizing factor-mediated responses in
393 aging. *Kidney international* 68: 2154-2163, 2005.

394 25. **Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER,**
395 **Herrera-Acosta J, Patel JM, and Johnson RJ.** A causal role for uric acid in fructose-induced metabolic
396 syndrome. *American journal of physiology Renal physiology* 290: F625-631, 2006.

397 26. **Nakayama T, Kosugi T, Gersch M, Connor T, Sanchez-Lozada LG, Lanaspa MA, Roncal C, Perez-**
398 **Pozo SE, Johnson RJ, and Nakagawa T.** Dietary fructose causes tubulointerstitial injury in the normal rat
399 kidney. *American journal of physiology Renal physiology* 298: F712-720, 2010.

400 27. **Nakayama T, Sato W, Kosugi T, Zhang L, Campbell-Thompson M, Yoshimura A, Croker BP,**
401 **Johnson RJ, and Nakagawa T.** Endothelial injury due to eNOS deficiency accelerates the progression of
402 chronic renal disease in the mouse. *American journal of physiology Renal physiology* 296: F317-327,
403 2009.

404 28. **Roncal Jimenez CA, Ishimoto T, Lanaspa MA, Rivard CJ, Nakagawa T, Ejaz AA, Cicerchi C, Inaba**
405 **S, Le M, Miyazaki M, Glaser J, Correa-Rotter R, Gonzalez MA, Aragon A, Wesseling C, Sanchez-Lozada**
406 **LG, and Johnson RJ.** Fructokinase activity mediates dehydration-induced renal injury. *Kidney*
407 *international* 86: 294-302, 2014.

408 29. **Sanchez-Lozada LG, Tapia E, Bautista-Garcia P, Soto V, Avila-Casado C, Vega-Campos IP,**
409 **Nakagawa T, Zhao L, Franco M, and Johnson RJ.** Effects of febuxostat on metabolic and renal alterations

410 in rats with fructose-induced metabolic syndrome. *American journal of physiology Renal physiology* 294:
411 F710-718, 2008.

412 30. **Sanchez-Lozada LG, Tapia E, Jimenez A, Bautista P, Cristobal M, Nepomuceno T, Soto V, Avila-**
413 **Casado C, Nakagawa T, Johnson RJ, Herrera-Acosta J, and Franco M.** Fructose-induced metabolic
414 syndrome is associated with glomerular hypertension and renal microvascular damage in rats. *American*
415 *journal of physiology Renal physiology* 292: F423-429, 2007.

416 31. **Shoham DA, Durazo-Arvizu R, Kramer H, Luke A, Vupputuri S, Kshirsagar A, and Cooper RS.**
417 Sugary soda consumption and albuminuria: results from the National Health and Nutrition Examination
418 Survey, 1999-2004. *PLoS one* 3: e3431, 2008.

419 32. **Steinmann B, Gitzelmann R, and Van den Berghe G.** Disorders of Fructose Metabolism. In: *The*
420 *Metabolic and Molecular Basis of Inherited Disease*, edited by Scriver C, Beaudet A, Sly W, and Valle D.
421 New York: McGraw-Hill, 2001, p. 1489-1520.

422 33. **Takahashi N, Boysen G, Li F, Li Y, and Swenberg JA.** Tandem mass spectrometry measurements
423 of creatinine in mouse plasma and urine for determining glomerular filtration rate. *Kidney international*
424 71: 266-271, 2007.

425 34. **Tanabe K, Lanaspa MA, Kitagawa W, Rivard CJ, Miyazaki M, Klawitter J, Schreiner GF, Saleem**
426 **MA, Mathieson PW, Makino H, Johnson RJ, and Nakagawa T.** Nicorandil as a novel therapy for
427 advanced diabetic nephropathy in the eNOS-deficient mouse. *American journal of physiology Renal*
428 *physiology* 302: F1151-1160, 2012.

429 35. **Thomas SE, Anderson S, Gordon KL, Oyama TT, Shankland SJ, and Johnson RJ.** Tubulointerstitial
430 disease in aging: evidence for underlying peritubular capillary damage, a potential role for renal
431 ischemia. *Journal of the American Society of Nephrology : JASN* 9: 231-242, 1998.

432 36. **Zhao CX, Xu X, Cui Y, Wang P, Wei X, Yang S, Edin ML, Zeldin DC, and Wang DW.** Increased
433 endothelial nitric-oxide synthase expression reduces hypertension and hyperinsulinemia in fructose-
434 treated rats. *J Pharmacol Exp Ther* 328: 610-620, 2009.

435

436

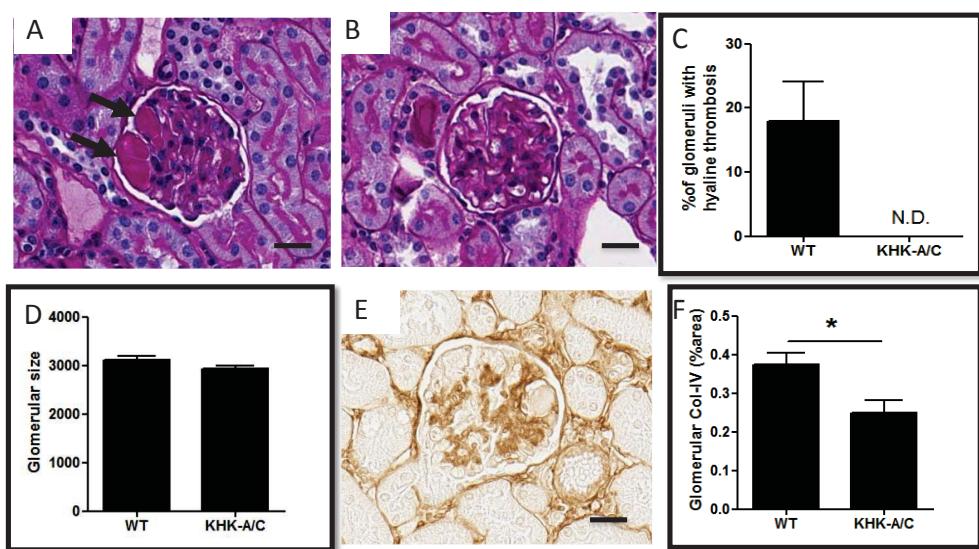
437 **Figure Legends**

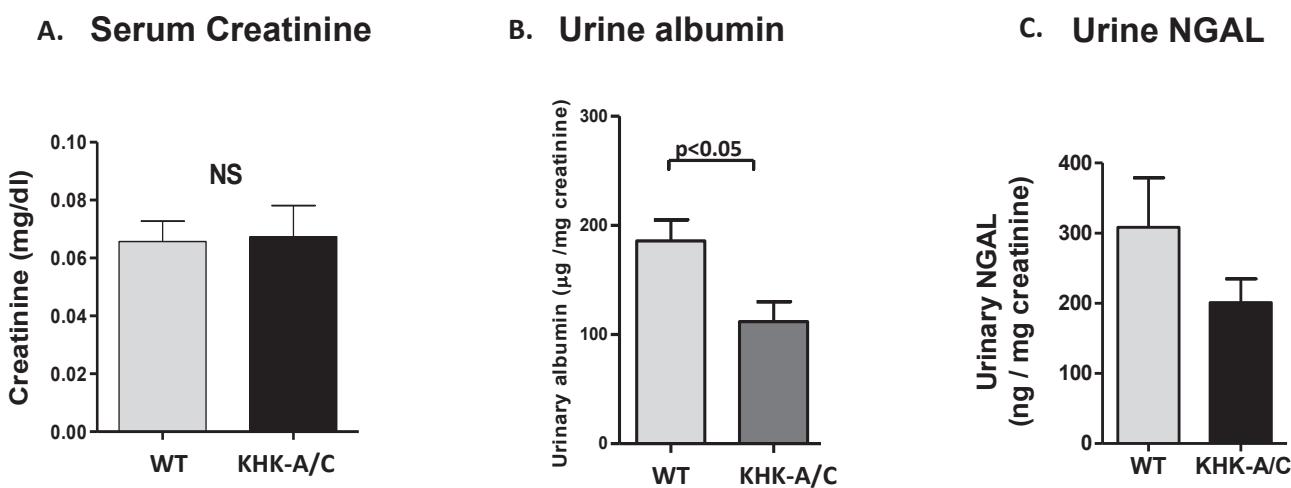
438 **Figure 1. Focal glomerular thrombi in Aging WT Mice but not KHK A/C KO mice.** Shown are representative glomeruli from WT mice (A) and KHK-A/C KO mice (B). WT mice
439 showed focal glomerular thrombi (Fig A, arrows) whereas thrombi are absent in KHK A/C KO
440 mice. Glomerular thrombi were present in 6 of 7 aging WT mice and involved 20 percent of the
441 glomeruli (C). Glomerular size was no different between groups (D). Mild mesangial matrix
442 expansion (based on type IV collagen staining) was present in WT aging mice (E) compared to
443 KHK-A/C KO mice and was significantly different when quantified (F). Sample size: (n=7 in
444 WT and n = 6 in KHK A/C KO mice) (A-C, E; 400x).N.D., not detected.

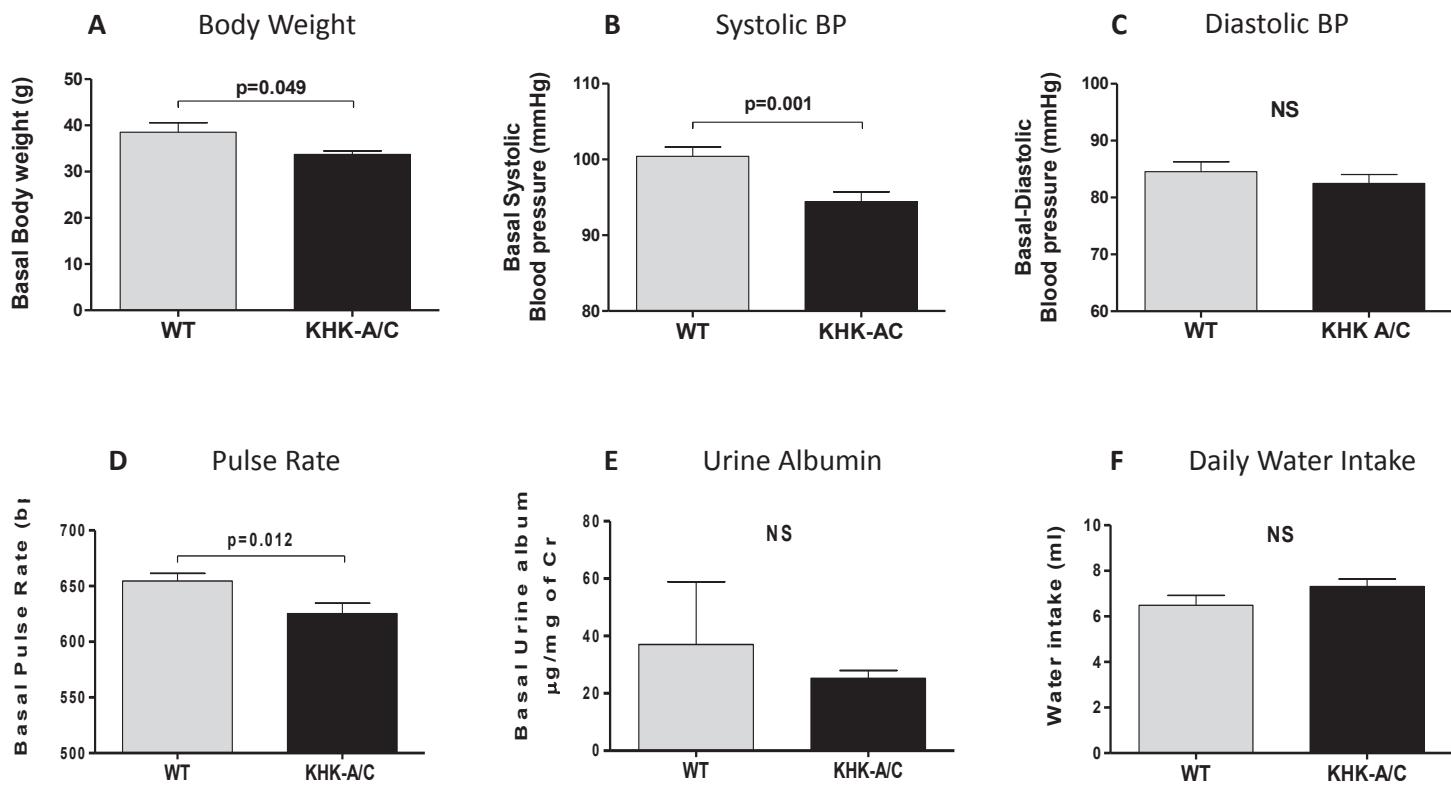
446 **Figure 2 Renal Functional Injury in WT Mice Compared with KHK A/C KO mice.** We
447 observed no differences in serum creatinine (A) or urinary NGAL excretion (C) between 2 year
448 old WT and KHK A/C KO mice. However, urinary albumin/creatinine ratios were higher in 2
449 year old WT mice compared with KHK A/C KO mice (B).

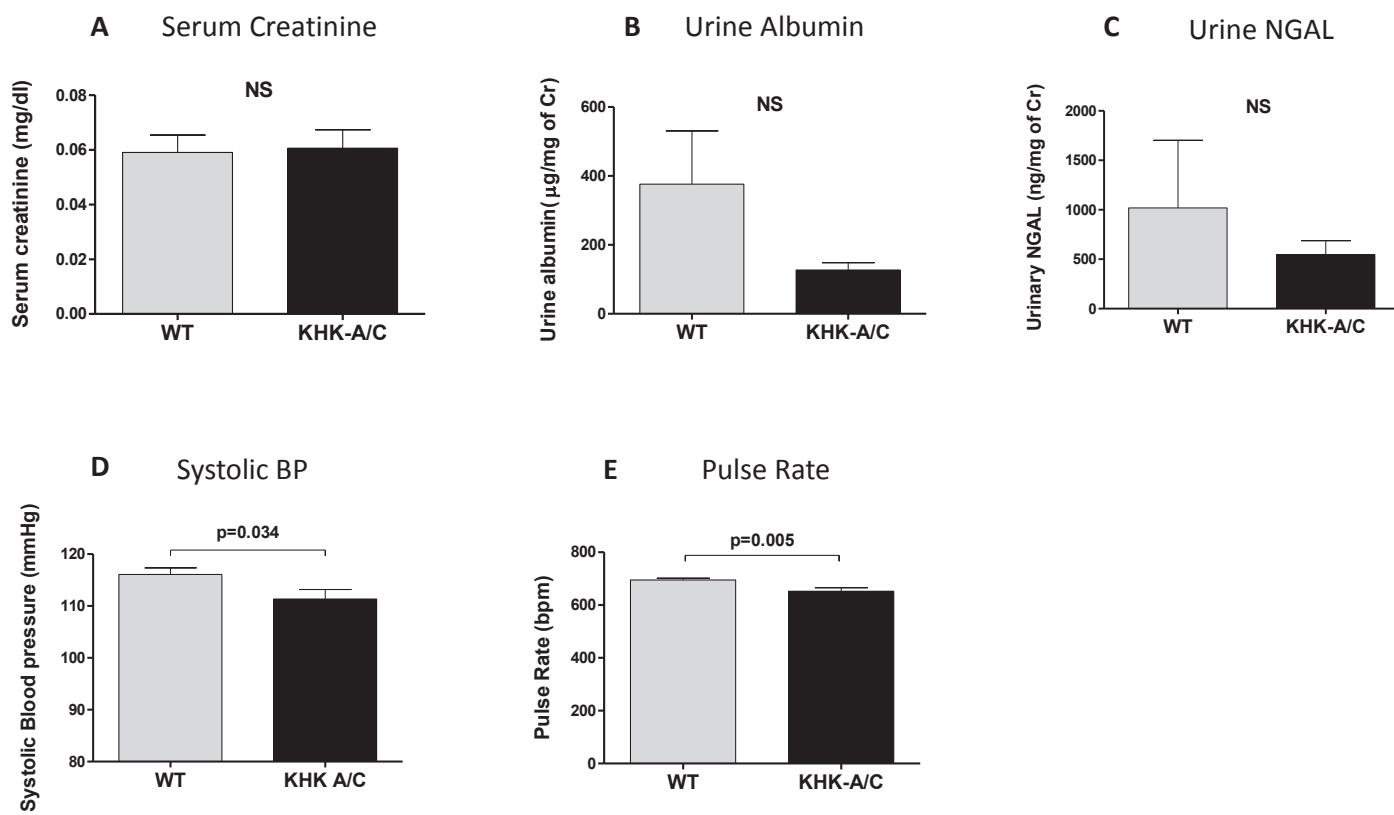
450 **Figure 3. Baseline Studies Prior to Salt Loading in Aged Mice.** Baseline weights were
451 slightly higher in WT compared with KHK A/C KO mice (A). Similarly systolic BP and pulse
452 rate were also higher in WT mice (B-D). In contrast, in this set of animals no difference in urine
453 albumin/creatinine excretion was observed. During the subsequent three weeks of salt loading,
454 the daily intake of salt (1%) water were similar between both groups (F, p=NS).

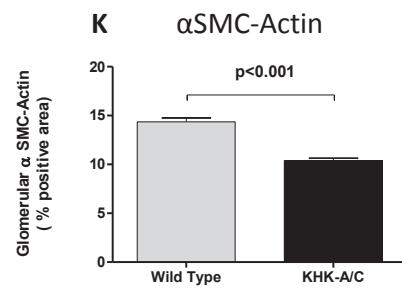
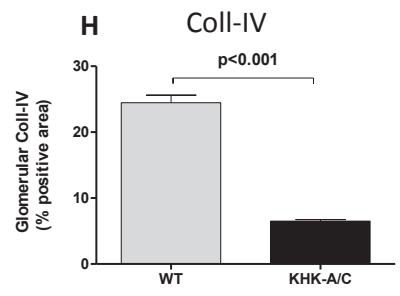
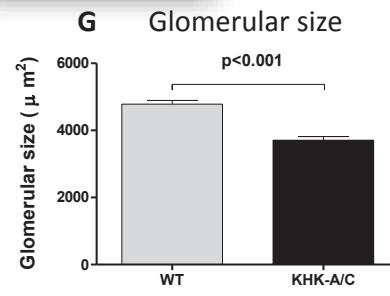
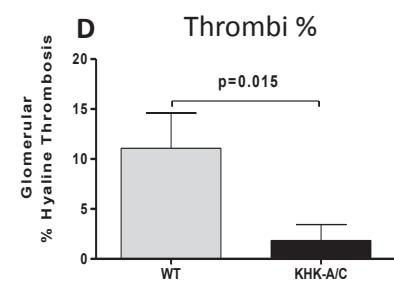
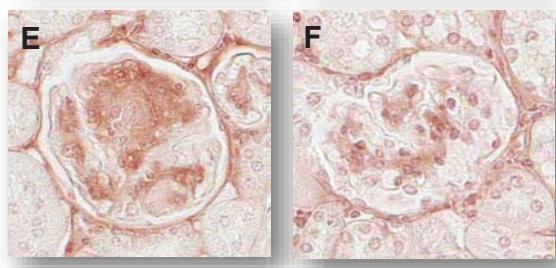
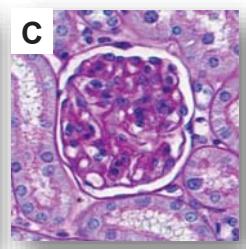
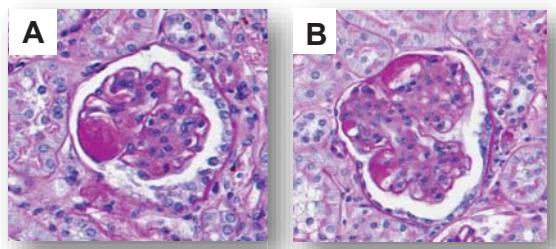
455 **Figure 4 Effect of High Salt Loading on Renal Function.** At the end of three weeks of high
456 salt loading, no differences were observed in either serum creatinine or urine NGAL, but urinary
457 albumin/creatinine ratio tended to be higher in WT mice compared with KHK A/C KO mice (Fig
458 A-C). However, after three weeks of salt treatment there remained significant differences in
459 systolic BP (Fig D) and pulse rate (Fig E).


460 **Figure 5 Renal Histology following High Salt loading.** WT mice showed significant renal
461 injury, with segmental thrombosis present in 5 of 5 WT mice (Fig A, B, PAS stain), involving
462 approximately 10 percent of glomeruli (Fig D, PAS stain), whereas thrombi were minimally
463 present in the KHK A/C KO mice (Fig C, PAS). Wild-type mice showed greater mesangial
464 hypercellularity (Fig B), mesangial matrix expansion (as noted by type IV collagen
465 immunostaining, Fig D), and mesangial alpha smooth muscle actin expression (Figure I) than
466 KHK A/C KO mice (Fig F and J, respectively). Quantitation of the histologic changes confirmed
467 increased glomerular tuft area (Fig G), mesangial type IV collagen deposition (Fig H), and
468 expression of alpha smooth muscle actin in the mesangium in wild-type mice on salt compared
469 with KHK-A/C knockout mice. Magnification 400x.


470 **Figure 6 Effect of High Salt Diet on Endothelial Function in Aging Mice.** Urinary
471 nitrites/nitrates were significantly higher in KHK A/C KO mice compared with WT Mice at 18-
472 20 months of age (Figure A, p<0.05) and at 24 months following salt loading (Figure B). Renal
473 tissue obtained after salt loading also showed a significantly higher level of p-eNOS in renal
474 tissue by Western blotting although total eNOS protein was lower in KHK A/C KO mice
475 compared with WT mice (Figure C). Quantification of p-eNOS/total eNOS by densitometry
476 showed a significantly higher ratio in KHK A/C KO mice compared with WT mice, consistent
477 with better endothelial function in mice lacking fructokinase.


478 **Figure 7 Serum and Renal Fructose and Uric acid Levels.** Serum fructose (Figure A), renal
479 Fructose (Figure B), serum uric acid (Figure C) and renal uric acid (Figure D) were measured in
480 wild-type and fructokinase knockout mice at 2 years. Serum fructose levels were higher in the
481 fructokinase knockout mice (KHK KO). Otherwise no differences were observed between these
482 two groups of mice. *, P < 0.05. N.S., not statistically significant.


483








Figure 1

