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Abstract. An element of a Coxeter group is fully commutative if any two of
its reduced decompositions are related by a series of transpositions of adjacent

commuting generators. An element of a Coxeter group is cyclically fully com-

mutative if any of its cyclic shifts remains fully commutative. These elements
were studied by Boothby et al. In particular the authors precisely identified

the Coxeter groups having a finite number of cyclically fully commutative el-

ements and enumerated them. In this work we characterize and enumerate
those elements according to their Coxeter length in all finite and all affine

Coxeter groups by using an operation on heaps, the cylindric closure. In finite

types, this refines the work of Boothby et al., by adding a new parameter.
In affine type, all the results are new. In particular, we prove that there is a

finite number of cyclically fully commutative logarithmic elements in all affine
Coxeter groups. We also study the cyclically fully commutative involutions

and prove that their number is finite in all Coxeter groups.

Introduction

Let W be a Coxeter group. An element w ∈ W is said to be fully commuta-
tive (FC) if two reduced words representing w can be transformed into each other
only using commutation relations, that is relations of the form st = ts. These ele-
ments were introduced and studied independently by Fan in [5], Graham in [7] and
Stembridge in [13, 14, 15]. In particular, Stembridge classified the Coxeter groups
with a finite number of fully commutative elements and enumerated them in each
case. Fully commutative elements appear naturally in the context of (generalized)
Temperley–Lieb algebras, as they index a linear basis of those objects. Recently,
in [1], Biagioli, Jouhet and Nadeau refined Stembridge’s enumeration by counting
fully commutative elements according to their Coxeter length in any finite or affine
Coxeter group.

In this paper, we focus on a certain subset of fully commutative elements, the
cyclically fully commutative (CFC) elements. These are elements w for which every
cyclic shift of any reduced expression of w is a reduced expression of some FC
element (not necessarily the same as w). They were introduced by Boothby et al.
in [3], where the authors classified the Coxeter groups with a finite number of CFC
elements (they showed that they are exactly the groups with a finite number of FC
elements) and enumerated them. The main goal of [3] was to establish necessary
and sufficient conditions for a CFC element w ∈ W to be logarithmic, that is to
satisfy `(wk) = k`(w) for any positive integer k. This is the first step towards
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studying a cyclic version of Matsumoto’s theorem, which says that two reduced
words representing the same element in W can be transformed into each other only
using braid relations. Here we will focus on the combinatorics of CFC elements. We
introduce an operation on heaps which we will call cylindric closures and which,
roughly speaking, adds relations between some maximal and minimal points in a
heap H, as was done in a more general setting in [4]. This will allow us to give
a new characterization of CFC elements in all Coxeter groups (see Theorem 1.14).
For finite or affine Coxeter groups, this characterization can be reformulated in
terms of words by using the work from [1]. From this, we will be able to enumerate
the CFC elements by taking into account their Coxeter length. We will also prove
that the number of CFC involutions is finite in all Coxeter groups.

This paper is organized as follows. We recall in Section 1 some definitions and
properties of Coxeter groups. Then we introduce the aforementioned cylindric clo-
sure of heaps, and deduce a new characterization of CFC elements in terms of
pattern-avoidance for these cylindric closures. In Section 2, we use this charac-
terization to obtain a complete classification (in terms of words) of CFC elements

in the affine type Ãn−1. We also deduce a classification of CFC elements in type
An−1, and use this to enumerate CFC elements according to their Coxeter length

in both types. The same work is done for the types C̃n, Bn, Dn+1, B̃n+1, and

D̃n+2 in Section 3. In Section 4, we will focus on CFC involutions. The main result
is that there is a finite number of CFC involutions in all Coxeter groups. We also
give a characterization of CFC involutions for all Coxeter groups and enumerate
them according to their Coxeter length in finite and affine types. We end the paper
in Section 5 by a few questions.

1. Cyclically fully commutative elements and heaps

1.1. Cyclically fully commutative elements. Let W be a Coxeter group with
finite generating set S and Coxeter matrix M = (mst)s,t∈S . Recall (see [2]) that
this notation means that the defining relations between generators are of the form
(st)mst = 1 for mst 6= ∞, where the matrix M is symmetric with mss = 1 and
mst ∈ {2, 3, . . .} ∪ {∞}. The pair (W,S) is called a Coxeter system. We can write,
for any pair (s, t) of distinct generators, the relations as sts · · · = tst · · · , each side
having length mst; these are usually called braid relations when mst ≥ 3. When
mst = 2, this is a commutation relation or a short braid relation. We define the
Coxeter diagram Γ associated with (W,S) as the graph with vertex set S, and edges
labelled mst between s and t for each mst ≥ 3. As is customary, edge labels equal
to 3 are usually omitted.

For w ∈W , the Coxeter length `(w) is the minimal length of any expression (or
word) w = s1 . . . sn with si ∈ S such that the element corresponding to w is w. For
clarity, we will write w for elements in W , and w for expressions. An expression
is called reduced if it has minimal length. The set of all reduced expressions of
w will be denoted by R(w). A classical result in Coxeter group theory, known as
Matsumoto’s theorem (see [2, Theorem 3.3.1]), is that any expression in R(w) can
be obtained from any other one using only braid relations. An element w is said
to be fully commutative if any expression in R(w) can be obtained from any other
one using only commutation relations. We will often abbreviate the term fully
commutative by FC in the rest of the paper.
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Definition 1.1. ([3, Definition 3.4]) , The left (respectively right) cyclic shift of
the word sa1 . . . san is sa2 . . . sansa1 (respectively sansa1 . . . san−1). A cyclic shift of
sa1 . . . san is either sa1 . . . san itself or sak . . . sak−1

for k ∈ {2, . . . , n}. An element
w ∈W is cyclically fully commutative if every cyclic shift of any expression in R(w)
is a reduced expression for a FC element (which can be different from w).

For short, we will from now on often write CFC for cyclically fully commutative.
We denote the set of CFC elements of W by WCFC .

1.2. Heaps and FC elements. We follow Stembridge [13] in this section. Fix a
word w = sa1 . . . sa` in S∗, the free monoid generated by S (note that the word
need not be reduced). We define a partial ordering of the indices {1, . . . , `} by i ≺ j
if i < j and msaisaj

≥ 3 or if i < j and ai = aj , and extend by transitivity and

reflexivity. We denote by Hw this poset together with the labelling i 7→ sai , and
we will call Hw the heap of w. We will also often call the elements of Hw points.
In the Hasse diagram of Hw, elements with the same labels will be drawn in the
same column. The size |H| of a heap H := Hw is the cardinality of the underlying
poset. Given any subset I ⊂ S, let HI be the subposet induced by all elements
of H with labels in I. In particular Hs := H{s} for s ∈ S is a chain of the form

Hs = s(1) ≺ s(2) ≺ · · · ≺ s(k) where k = |Hs|. We also denote by |ws| the number
|Hs| (note that this also counts the number of occurrences of s in w). In H, there is
a chain covering relation between two different integers i and j, denoted by i ≺c j,
if i ≺ j and one of the two following conditions is satisfied:

(i) msaisaj
≥ 3 and there is no element z with the same label as i or j such

that i ≺ z ≺ j, or
(ii) sai = saj and there is no element z such that i ≺ z ≺ j.

Note that the set of chain covering relations corresponds to the set of edges in
the corresponding Hasse diagram. In Figure 1, we fix a Coxeter diagram on the
left, and we give two examples of words with the corresponding heaps.

s0s1s2s3s4s5s6

Hw1 =
s0 s1 s2 s3 s4 s5 s6

44

w1 = s2s1s0s6s5s3s2s4s5s3s6

s0s1s2s3s4s5s6
w2 = s2s3s0s6s5s4s4s3

Hw2 =

Figure 1. Two different heaps. The higher row names the column labels.

If we consider heaps up to poset isomorphisms that preserve the labels, then
heaps encode precisely commutativity classes. That is, if the word w′ is obtained
from w by transposing commuting generators then there exists a poset isomorphism
between Hw and Hw′ (see [13, Proposition 2.2]). In particular, if w is FC, the
heaps of its reduced words are all isomorphic, and thus we can define the heap of
w, denoted Hw.

Let w = sa1
. . . sa` be a word. A linear extension of the poset Hw is a linear

ordering π of {1, . . . , `} such that π(i) < π(j) implies i ≺ j. Now let L(Hw) be the
set of words saπ(1)

. . . saπ(`)
where π ranges over all linear extensions of Hw.

Proposition 1.2. [13, Proposition 1.2] Let w be a fully commutative element. Then
L(Hw) is equal to R(w) for some (equivalently, any) w ∈ R(w).
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This proposition is not true for non FC elements. For example, in the Coxeter
group of type A2 (see Figure 6 for the corresponding Coxeter diagram), the ele-
ment w having w = s1s2s1 as a reduced expression is not FC. Indeed, we have
L(Hs1s2s1) = {s1s2s1} while R(w) = {s1s2s1, s2s1s2}.

A chain i1 ≺ · · · ≺ im in a poset H is convex if the only points u satisfying
i1 � u � im are the points ij of the chain. Notice that if a chain i1 ≺ · · · ≺ im
is convex, then we have i1 ≺c · · · ≺c im. The next result characterizes FC heaps,
namely the heaps representing the commutativity classes of FC elements.

Proposition 1.3. [13, Proposition 3.3] A heap H is the heap of some FC element
if and only if the two following conditions are satisfied:

(i) there is no convex chain i1 ≺c · · · ≺c imst
in H such that si1 = si3 = · · · = s

and si2 = si4 = · · · = t where 3 ≤ mst <∞, and
(ii) there is no chain covering relation i ≺c j in H such that si = sj.

1.3. Cylindric closure of heaps and CFC elements. In this section, we fix
a Coxeter system (W,S). Now, we will focus on CFC elements. Before this, we
need to define an operation on heaps, which we call the cylindric closure. Roughly
speaking, the underlying idea is to add relations between some maximal and mini-
mal points in a heap H, as was done in [4] in the more general context of hyperplane
arrangements. Nevertheless, our approach in terms of cylindric closures fits more
with our enumerative purpose, as we will encode the whole set of cyclic shifts of a
reduced word by a unique diagram.

Definition 1.4. Let H := Hw be a heap of a word w = sa1
. . . sa` . The cylindric

closure Hc of H is the labelling i 7→ sai and a relation on the indices {1, . . . , `},
made of the chain covering relations ≺c of H, together with some new chain covering
relations defined as follows:

• for each generator s, consider the minimal point a and the maximal point b
in the chain Hs (for the partial order ≺). If a is minimal and b is maximal
in the poset H, and a 6= b, then add a new relation b ≺c a.

• for each pair of generators (s, t) such that mst ≥ 3, consider the minimal
point a and the maximal point b in the chain H{s,t} (for the partial order
≺). If these points have different labels (one is labelled s and the other is
labelled t), then add a new relation b ≺c a.

Example 1.5. For the simply laced linear Coxeter diagram with 7 generators,
consider the word w = s2s1s0s6s5s3s2s4s5s3s6. The heap Hw and its cylindric
closure Hc

w are represented in Figure 2.

Remark 1.6. The cylindric closure Hc is not a poset, even if we extend the relation
≺c by transitivity. Indeed, each point in Hc would otherwise be in relation with
itself.

The following definition naturally extends the definition of poset isomorphisms
to cylindric closures.

Definition 1.7. Let Hc
1 and Hc

2 be two cylindric closures. They are isomorphic if
there is a bijective map f : Hc

1 → Hc
2 which preserves the labelling and the relation

≺c. In other words, if we denote by ai (respectively bi) the label of the point i in
Hc

1 (respectively Hc
2), then ai = bf(i); and if i and j are two points of Hc

1 , then
i ≺c j ⇔ f(i) ≺c f(j).
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s0s1s2s3s4s5s6

Hc
w =Hw =

j

i

Figure 2. A heap and its cylindric closure. The dotted oriented
edges correspond to the new relations we add in the definition of
Hc

w. The orientation indicates that each point i on the bottom
and each point j on the top connected by a dotted edge satisfy
j ≺c i.

Lemma 1.8. Let H1 and H2 be two heaps. If ϕ : H1 → H2 is a poset isomorphism
preserving the labelling, then ϕ is also an isomorphism between Hc

1 and Hc
2.

Proof. The poset isomorphism ϕ preserves the maximality and the minimality of a
point, as well as the labelling and the chain covering relations. It then follows from
Definition 1.4 that ϕ, considered as a bijective map from Hc

1 to Hc
2 , also preserves

the relation ≺c. �

As Hc is not a poset, we can not draw its Hasse diagram. Nevertheless, we
define the diagram of Hc as the Hasse diagram of H, together with oriented edges
representing the new relations described in Definition 1.4.

Let us explain the name “cylindric closure”. Consider the Coxeter system (W,S)
corresponding to the linear Coxeter diagram Γn of Figure 3. The diagram of Hc

should be considered on a cylinder as opposed to planar Hasse diagrams of heaps.
On this cylinder, each chain Hs for a generator s can be seen as a circle.

0 1 n2

m01 m12 mn−1n

n− 1

Figure 3. The linear Coxeter diagram.

If Hc is a cylindric closure of a heap, then the size |Hc| is its cardinality. Given
any subset I ⊂ S, we write Hc

I for the set of points in Hc with labels in I. Unlike
in the definition of HI , the set Hc

I does not include the relations ≺c between those
points.

Proposition 1.9. Let w1 and w2 be two words. If w2 is commutation equivalent
to some cyclic shift of w1, then Hc

w1
and Hc

w2
are isomorphic.

Proof. Let w3 be a word which is commutation equivalent to w2 and such that w3

is a cyclic shift of w1. According to [13, Proposition 2.2], the heaps Hw3 and Hw2

are isomorphic. Then Lemma 1.8 ensures that there is an isomorphism between
Hc

w2
and Hc

w3
preserving the labelling and the relation ≺c. Therefore to finish the

proof, it remains to prove that Hc
w1

and Hc
w3

are isomorphic.
First, we assume that w3 is the left cyclic shift of w1, and we write w1 = sw

and w3 = ws, with a generator s ∈ S and w an expression involving ` − 1 > 0
generators. We will show that the cyclic permutation f := (`, `− 1, . . . , 2, 1) is an
isomorphism between Hc

w1
= Hc

sw and Hc
w3

= Hc
ws.
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The fact that f is bijective is immediate. We first show that f preserves the
labelling. Let i be an integer between 1 and `, and denote by ai the labelling of the
point i in Hc

w1
and by bi the labelling of the point i in Hc

w3
. We want to show that

bf(i) = ai. We consider two cases. First, if i = 1, then ai = s. By definition of f ,
we have f(i) = `, and by definition of w3, we have bf(i) = b` = s. Second, if i 6= 1,
then we have f(i) = i − 1. As Hc

w1
= Hc

sw and Hc
w3

= Hc
ws, we have ai = bi−1,

and thus bf(i) = ai.
Now we show that f preserves the relation ≺c, that is if 1 ≤ i, j ≤ ` are two

points of Hc
w1

, we have i ≺c j ⇔ f(i) ≺c f(j). If i = j, the relation i ≺c i is not
satisfied in Hc

w1
, and the relation f(i) ≺c f(i) is not satisfied in Hc

w3
. Otherwise,

we have i 6= j, and we first show the direct implication. Let 1 ≤ i, j ≤ ` be two
distinct points in Hc

w1
such that i ≺c j.

Assume that i = 1. The relation 1 ≺c j is necessarily also satisfied in Hw1 , as
during the construction of Hc

w1
, we only add relations of the form j′ ≺c i

′ with
i′ < j′. Recall that we have f(1) = ` and f(j) = j − 1. We now have to examine
whether 1 and j have the same label or not.

• If 1 and j have the same label, then this label must be s. Moreover, 1 ≺c j
implies by definition that j corresponds to the first occurrence of s in w,
and before this occurrence, all generator of w commute with s. Thus the
point j − 1 of Hw3 has label s and is minimal in the poset Hw3 . As the
point ` has label s and is maximal in Hw3 , the step (i) of Definition 1.4
ensures that the relation ` ≺c j − 1 is satisfied in Hc

w3
. Thus we have

f(1) ≺c f(j).
• If j has label t 6= s, then 1 ≺c j implies that j is minimal in Hw1 among

all the points having label t. So j− 1 is also minimal in Hw3 among all the
points having label t. As ` is maximal in Hw3 among all the points having
label s, the step (ii) of Definition 1.4 ensures that the relation ` ≺c j− 1 is
satisfied in Hc

w3
. We then have f(1) ≺c f(j).

Assume now that j = 1. As i > 1, the relation i ≺c 1 is not satisfied in Hw1 . So
this relation is added in Hc

w1
during the step (i) or (ii) of Definition 1.4. We have

f(i) = i− 1 and f(1) = `. We consider two cases according to the label of i.

• If i has label s, we deduce that i is maximal in Hw1 , and so i − 1 is
maximal in Hw. So there is a chain covering relation between the two last
occurrences of s in Hw3 . In other words, we have f(i) = i− 1 ≺c ` = f(1)
in Hws = Hw3 . This relation is also satisfied in Hc

w3
.

• If i has label t 6= s, then i is maximal in Hsw among the points having
label t. Therefore the relation f(i) ≺c f(1) is satisfied in Hws, and also in
Hc

ws = Hc
w3

.

Finally, if i, j 6= 1, we immediately check that the relation i − 1 ≺c j − 1 is
satisfied in Hc

w3
. This concludes the proof of i ≺c j ⇒ f(i) ≺c f(j).

Conversely, by comparing this time the values of f(i) and f(j) with `, the same
discussion holds. This shows that f is an isomorphism between Hc

w1
and Hc

w3
.

To conclude, if w3 is a general cyclic shift of w1, we write w1 = sa1sa2 · · · sa`
and w3 = saksak+1

· · · sak−1
with k ∈ {2, . . . , `}. By using the above result, we

successively prove that all the cyclindric closures Hc
w1

= Hc
sa1sa2 ···sa` , H

c
sa2sa3 ···sa1 ,

. . . , Hc
sak ···sak−1

= Hc
w3

are isomorphic.

�
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Now we aim to characterize CFC elements in terms of cylindric closures of heaps.
For this we need to define the analogues of a chain and a convex chain in a heap
for cylindric closures.

Definition 1.10. Let H be a heap and let Hc be its cylindric closure. Let m be
a positive integer and let i1, i2, . . . , im be integers. We say that i1 ≺c · · · ≺c im
is a c-chain in Hc if and only if the relations ik ≺c ik+1 hold in Hc for all k ∈
{1, . . . ,m − 1}. The length of this c-chain is m. The c-chain is proper if all the
integers ij are distinct.

An illustration is given in Figure 4.

1
2

34
5

w = s1s2s3s1s2

Hc
w =

Figure 4. In Hc
w, 1 ≺c 2 ≺c 4 ≺c 5 and 4 ≺c 5 ≺c 1 ≺c 2 are two

differents distinct proper c-chains of length 4, although they have
the same points.

Definition 1.11. Let H be a heap and let s, t be two generators such that mst ≥ 3.
Consider a proper c-chain i1 ≺c · · · ≺c im in Hc with m ≥ 3 such that sai1 = sai3 =

· · · = s and sai2 = sai4 = · · · = t (here m is not necessarily equal to mst). Such
a c-chain is called cylindric convex if the only proper c-chains i1 ≺c u1 ≺c · · · ≺c

ud ≺c im in Hc are such that for all ` ∈ {1, . . . , d} we have u` ∈ {i2, . . . , im−1}.
Example 1.12. In the cylindric heap of Figure 4, the proper c-chain 1 ≺c 2 ≺c

4 ≺c 5 is not cylindric convex as we have 1 ≺c 2 ≺c 3 ≺c 5. The proper c-chain
4 ≺c 5 ≺c 1 ≺c 2 is cylindric convex.

Next, we prove the following lemma, which shows that cylindric convex c-chains
naturally extend to cylindric closures the notion of convex chains in a heap.

Lemma 1.13. Assume there exists a convex chain i1 ≺c · · · ≺c im of length m ≥ 3
in a heap H, such that all points ij are distinct and sai1 = sai3 = · · · = s and

sai2 = sai4 = · · · = t. Then this chain, considered as a (proper) c-chain, is also
cylindric convex in the cylindric closure Hc.

Proof. Let i1 ≺c · · · ≺c im be such a convex chain in H. Assume for the sake of
contradiction that there is a proper c-chain i1 ≺c · · · ≺c ik ≺c u1 ≺c · · · ≺c ud ≺c

im in Hc, for an integer k ∈ {1, . . . ,m− 1}, with u1 6= ik+1. Two cases can occur:

Case 1. ik 6= im−1: as ik is not a maximal point among the points with label aik
(that is, ik is not maximal in Hsaik

), the relation ik ≺c u1 holds in H.

Consequently, the relation ik ≺c u1 ≺ ik+2 holds in H. So i1 ≺c · · · ≺c im
is not a convex chain in H, which is a contradiction.

Case 2. ik = im−1: as im is not a minimal point among the points with label aim
(that is, im is not maximal in Hsaim

), the relation ud ≺c im holds in H.

Consequently, the relation im−2 ≺ ud ≺c im holds in H. As the c-chain
i1 ≺c · · · ≺c ik ≺c u1 ≺c · · · ≺c ud ≺c im is proper, we have ud 6= im−1. So
i1 ≺c · · · ≺c im is not a convex chain in H, which is a contradiction.
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�

The following result now extend Stembridge’s characterization of Proposition 1.3
to CFC elements in terms of cylindric closures. This theorem is the main goal of
this section, and will be useful for our enumerative purposes in the next sections.

Theorem 1.14. A heap H is the heap of some word w corresponding to a CFC
element w if and only if the two following conditions are satisfied:

(i) there is no cylindric convex c-chain i1 ≺c · · · ≺c imst
in the cylindric

closure Hc such that sai1 = sai3 = · · · = s and sai2 = sai4 = · · · = t, where
3 ≤ mst <∞;

(ii) there is no chain covering relation i ≺c j in the cylindric closure Hc such
that sai = saj .

Proof. Let w be a word and let H := Hw be its heap. Assume that w is a reduced
word of a non CFC element. There exists by Definition 1.1 a cyclic shift of w that
is commutation equivalent to w′ = w1ssw2 or w′ = w1 st · · · st︸ ︷︷ ︸

mst

w2.

Let H1 be the heap of w′. In the first case, by Proposition 1.3, H1 contains a
chain covering relation i ≺c j such that sai = saj = s, and in the second case,
H1 contains a convex chain i1 ≺c · · · ≺c imst such that sai1 = sai3 = · · · = s and
sai2 = sai4 = · · · = t, where 3 ≤ mst < ∞. By Lemma 1.13, these two cases give
respectively a chain covering relation and a cylindric convex c-chain in Hc

1 . But
w′ is commutation equivalent to a cyclic shift of w, so there is an isomorphism
between Hc and Hc

1 by Proposition 1.9. This isomorphism preserves the cylindric
convex c-chains, and this concludes the proof.

Conversely, if Hc contains the cylindric convex c-chain i1 ≺c · · · ≺c imst , let w′

be the cyclic shift of w beginning by sai1 , and let H1 be its heap. As all elements in
the cylindric convex c-chain are distinct, H1 contains the convex chain i1 ≺c · · · ≺c

imst
. Therefore H1 does not correspond to a FC element by Proposition 1.3 and H

is not the heap of a CFC element. The same argument also holds if Hc contains a
relation i ≺c j such that sai = saj , by letting this time w′ be the cyclic shift of w
beginning by sai . �

For example, this theorem ensures that the heap H in Figure 2 does not cor-
respond to a CFC element, as its cylindric closure Hc contains a chain covering
relation i ≺c j such that sai = saj = s6. The example in Figure 5 corresponds to
a CFC element, according to Theorem 1.14.

Before ending this section, let us introduce a specific subset of CFC elements
and recall the definition of alternating words which was defined in [1], and will be
useful later.

Lemma 1.15. Let W be a Coxeter group. The words in which each generator
occurs at most once are reduced expressions of CFC elements of W .

Proof. As each generator occurs at most once, we can not use any braid relation of
length at least 3. �

This lemma justifies why this subset will be treated separately from other CFC
elements in the rest of the article.

Definition 1.16. In a Coxeter group with linear Coxeter diagram Γn, a reduced
word is called alternating if for i = 0, 1, . . . , n − 1, the occurrences of si alternate
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w = s0s2s1s0s3s5s4s2s1s3s6s5s4s6

s1 s5s2 s3 s4 s6s0

4 4

Figure 5. A reduced expression of a CFC element in C̃6, and the
cylindric closure of its heap.

with those of si+1. A heap is called alternating if it is the heap of an alternating

word. If the Coxeter group is of type Ãn−1 (see Figure 6 for the Coxeter diagram),
the diagram is not linear but we define the alternating word in the same way by
setting s0 = sn.

2. CFC elements in types Ã and A

In this section, we will give a characterization and the enumeration of CFC
elements in both types An−1 and Ãn−1. The corresponding Coxeter diagrams are
given in Figure 6.

s1 sn−1

An−1

s2
s1 sn−1

s0

Ãn−1

Figure 6. Coxeter diagrams of types An−1 and Ãn−1.

The elements of ACFC
n−1 were enumerated in [3] by using recurrence relations. Our

characterization in terms of heaps allows us to take into account the Coxeter length.
Actually, we can compute the generating functions WCFC(q) =

∑
w∈WCFC q`(w) for

W = An−1 and W = Ãn−1. In particular, when q = 1 and W = An−1, we get back

the enumeration from [3] (recall that the number of CFC elements in type Ãn−1 is
infinite). Our strategy is the following: first, we obtain a characterization of CFC

elements in type Ãn−1, we deduce from it a characterization of CFC elements in
type An−1, then we derive the enumeration of CFC elements in type An−1 and

deduce from it the enumeration in type Ãn−1.

2.1. Characterization in type Ãn−1. Note that, in this type, the diagram of a
cylindric closure of a heap can be seen as drawn on a torus.

Theorem 2.1. Let n ≥ 3 be an integer. An element w of the Coxeter group of
type Ãn−1 is CFC if and only if one (equivalently, any) of its reduced expressions
w satisfies one of these conditions:
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(a) each generator occurs at most once in w, or
(b) w is an alternating word and |ws0 | = |ws1 | = · · · = |wsn−1 | ≥ 2.

Proof. As said in Lemma 1.15, if each generator occurs at most once in w, then w
is a CFC element. So let w be a reduced expression of a CFC element w having a
generator occuring at least twice in w. Recall that according to [1, Proposition 2.1],

w ∈ Ãn−1 is fully commutative if and only if w is an alternating word. Let sj be
a generator that occurs at least twice in w and such that for all k ∈ {0, 1, . . . , n−
1}, |wsj | ≥ |wsk |. We will prove that |wsj | = |wsj+1

| where we set sn = s0, which
is sufficient to show that each generator occurs the same number of times. As w is
alternating, there are three possibilities:

Case 1. |wsj | = |wsj+1
| − 1. This contradicts the maximality of |wsj |.

Case 2. |wsj | = |wsj+1
|+ 1. By maximality of |wsj |, there are two possibilities for

Hc
w: |wsj | = |wsj−1

| or |wsj | = |wsj−1
| + 1. We obtain either a cylindric

convex c-chain x ≺c y ≺c z where x and z have label sj and y has label
sj−1, or a chain covering relation between two indices p and q with label sj .
Therefore w is not a CFC element by Theorem 1.14 (see Figure 7, where
we have circled the points x, y, z, and p, q, respectively).

sj−1 sj sj+1sj−1 sj sj+1

Figure 7. The two possible cylindric closures.

Case 3. |wsj | = |wsj+1
| which is the expected condition.

Conversely, let w be an alternating word such that |ws0 | = |ws1 | = · · · =
|wsn−1 | ≥ 2. The cylindric closure Hc

w can not contain a cylindric convex c-chain
x ≺c y ≺c z of length 3 such that sax = saz = sm and say = sm+1 (respectively
sm−1): indeed, the required condition on w implies that there exists an index ` such
that x ≺c ` ≺c z with sa` = sm−1 (respectively sm+1), which is a contradiction
with the cylindric convexity of the c-chain. The same argument holds for chain
covering relations involving indices with the same labellings. �

2.2. Characterization and enumeration in type An−1. In this case, we will
both characterize the CFC elements and compute the generating function

ACFC(x) :=
∑

n≥1

ACFC
n−1 (q)xn.

We begin with a lemma which is a consequence of Corollary 5.6 in [3]. Never-
theless, we will give an alternative proof using Theorem 2.1.
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Lemma 2.2. Let n ≥ 3 be an integer. The CFC elements in type An−1 are those
having reduced expressions in which each generator occurs at most once.

Proof. Let w be a reduced word of a CFC element in type An−1. By definition
of the Coxeter diagram (see Figure 6), it is a reduced word of a CFC element in

type Ãn−1 in which the generator s0 does not occur. According to Theorem 2.1,

the only such CFC elements in type Ãn−1 are those in which each generator occurs
at most once. Conversely, if all generators occur at most once in w, Lemma 1.15
ensures that w is a reduced expression of a CFC element. �

Theorem 2.3. We have ACFC
0 (q) = 1, ACFC

1 (q) = 1 + q and for n ≥ 2,

ACFC
n−1 (q) = (2q + 1)ACFC

n−2 (q)− qACFC
n−3 (q). (1)

Equivalently, we have the generating function:

ACFC(x) = x
1− qx

1− (2q + 1)x+ qx2
.

Proof. According to [1, Proposition 2.7], FC elements of type An−1 are in bijection
with Motzkin type paths of length n, with starting and ending points at height 0,
where the horizontal steps are labeled either L or R (and horizontal steps at height
0 are always labeled R). We recall the bijection, which is defined as follows: let w
be a FC element in An−1, set w one of its reduced expressions and set H its heap.
To each si ∈ S, we associate a point Pi = (i, |Hsi |). As w is alternating, three cases
can occur:

Case 1. |Hsi | = |Hsi+1
| − 1, corresponding to an ascending step.

Case 2. |Hsi | = |Hsi+1
|+ 1, corresponding to a descending step.

Case 3. |Hsi | = |Hsi+1
|, corresponding to an horizontal step, labelled by R if si

occurs before si+1 in w, and by L otherwise.

According to Lemma 2.2, the restriction of this bijection to CFC elements is a
bijection between CFC elements and the previous Motzkin paths, having length
n, whose height does not exceed 1. By taking into account the first return to the
x-axis (see Figure 8 for an example), we obtain the following recurrence relation
for n ≥ 3:

ACFC
n−1 (q) = ACFC

n−2 (q) +

n∑

m=2

2m−2qm−1ACFC
n−1−m(q), (2)

where we write ACFC
−1 (q) = 1 (which fits with ACFC

0 (q) = 1, ACFC
1 (q) = 1 + q and

the expected recurrence relation).

0

R L R R

R

m n

Figure 8. Motzkin path corresponding to the reduced expression
s1s2s6s5s7s9s11s12 in type A12.
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Rewriting (2) with n replaced by n− 1 gives:

ACFC
n−2 (q) = ACFC

n−3 (q) +

n−1∑

m=2

2m−2qm−1ACFC
n−2−m(q). (3)

Multiplying this by 2q and substracting the result to (2) allows us to eliminate the
sum over m, and leads to

ACFC
n−1 (q)− 2qACFC

n−2 (q) = ACFC
n−2 (q)− qACFC

n−3 (q), (4)

which is equivalent to (1).
Classical techniques in generating function theory and the values ACFC

0 (q) = 1,
ACFC

1 (q) = 1 + q enable us to derive from (1) the desired generating function. �

Notice that, as expected, if q → 1, we find the odd-index Fibonacci numbers
generating function of [3]. This q-analog was already known: the sequence A105306
in [12] counts permutations that avoid the patterns 321 and 3412, which are exactly
permutations such that in a reduced expression, all the generators occur at most
once.

2.3. Enumeration in type Ãn−1. We enumerate here the CFC elements in type

Ãn−1 according to their length. As for FC elements (see [1, 8]), the coefficients of
the corresponding generating series are ultimately periodic.

Proposition 2.4. We have for n ≥ 3

ÃCFC
n−1 (q) = Pn−1(q) +

2n − 2

1− qn q2n, (5)

where Pn−1(q) is a polynomial of degree n satisfying for n ≥ 4

Pn(q) = (3q + 1)Pn−1(q)− (2q + 2q2)Pn−2(q) + q2Pn−3(q), (6)

with P1(q) = 1 + 2q+ 2q2, P2(q) = 1 + 3q+ 6q2 + 6q3, and P3(q) = 1 + 4q+ 10q2 +
16q3 + 14q4. Moreover, we can compute the generating function:

P (x) :=

∞∑

n=1

Pn(q)xn =
x(1 + 2q + 2q2 − (2q + 2q2)x+ q2x2)

(1− qx)(1− (2q + 1)x+ qx2)
.

Therefore the coefficients of ÃCFC
n−1 (q) are ultimately periodic of exact period n,

and the periodicity starts at length n.

Proof. In the same way as for the finite type An−1 (see [1, Proposition 2.1]), FC

elements of type Ãn−1 are in bijection with Motzkin type paths of length n satisfying
the following conditions:

(i) the starting point P0 = (0, |Hs0 |) and the ending point Pn = (n, |Hsn | =
|Hs0 |) have the same height,

(ii) horizontal steps at height 0 are always labeled R,
(iii) if the path contains only horizontal steps at height ≥ 1, the steps must have

not all the same labelling.

The construction of the path corresponding to a FC element is the same as in
type A if we set sn = s0. In Theorem 2.1, the alternating CFC elements in which
all generators occur at least twice and in the same number correspond to Motzkin
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type paths which have only horizontal steps. Therefore there are 2n− 2 such paths
for all fixed starting height h ≥ 2. This leads to the generating function

+∞∑

h=2

(2n − 2)(qn)h,

which can be summed to obtain the second term on the right hand side of (5).
In Theorem 2.1, the CFC elements which correspond to reduced expressions with

at most one occurrence of each generator correspond to Motzkin type paths which
stay at height ≤ 1, starting and ending at the same height. We denote by Pn−1(q)
the generating function of such elements. The computation of P1(q), P2(q) and
P3(q) can be done by enumerating exhaustively these particular Motzkin paths.
Let i (respectively j) be the first (respectively last) eventual return to the x-axis
(see Figure 9 for an example).

0

L R

i j n

L R R L

R

Figure 9. Motzkin path corresponding to the element
s14s1s0s2s6s5s7s9s11s12 in type Ã14.

We get

Pn−1(q) =(2n − 2)qn + nqn−12n−2

+

n−2∑

i=0
i6=0 or

n−1∑

j=i+1
j 6=n−1

qn−1+i−j2n−2+i−jACFC
j−i−1(q) +ACFC

n−2 (q), (7)

where the first term counts paths that stay at height 1, the second term counts paths
such that i = j, and the last term counts paths such that i = 0 and j = n − 1.
Rewriting (7) with n− 1 replaced by n− 2 gives

Pn−2(q) =(2n−1 − 2)qn−1 + (n− 1)qn−22n−3

+

n−3∑

i=0
i6=0 or

n−2∑

j=i+1
j 6=n−2

qn−2+i−j2n−3+i−jACFC
j−i−1(q) +ACFC

n−3 (q). (8)

Multiplying (8) by 2q and substracting the result to (7) allows us to simplify the
double sum:

Pn−1(q)− 2qPn−2(q) = 2qn + 2n−2qn−1 +ACFC
n−2 (q) +

n−2∑

i=2

2i−1qiACFC
n−2−i(q). (9)
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The relation (2) in Theorem 2.3 allows us to rewrite the sum on the right hand
side of (9) in the following way:

n−2∑

i=2

2i−1qiACFC
n−2−i(q) = 2q

(
ACFC

n−2 (q)−ACFC
n−3 (q)− 2n−3qn−2

)
. (10)

Combining (9) and (10) gives

Pn−1(q)− 2qPn−2(q) = 2qn + (2q + 1)ACFC
n−2 (q)− 2qACFC

n−3 (q), (11)

which can be rewritten through (1) in the following way:

Pn−1(q) = 2qPn−2(q) + 2qn +ACFC
n−1 (q)− qACFC

n−3 (q). (12)

Next, we multiply (12) by xn−1. We sum over n ≥ 5 and use the generating
function ACFC(x) obtained in Theorem 2.3 and the values of P1(q), P2(q), P3(q)
to derive the expected generating function P (x). As P (x) is a rational fraction, the
recurrence relation (6) for Pn comes directly from its denominator.

Next, we prove by induction on n that Pn−1(q) is a polynomial in q of degree
n with leading coefficient (2n − 2). This is true for P1(q), P2(q) and P3(q). If
Pn−1(q), Pn−2(q), Pn−3(q) satisfy the induction hypothesis, then by (6), Pn(q) is a
polynomial of degree n with leading coefficient 3(2n− 2)− 2(2n−1− 2) = 2n+1− 2.

Finally, we prove our claims about periodicity. The second term on the right
hand side of (5) is periodic of exact period n: starting at length n+1, the sequence
of coefficients is of the form:

(0, . . . , 0︸ ︷︷ ︸
n−1

, 2n − 2, 0, . . . , 0, 2n − 2, 0, . . .).

As Pn−1(q) is a polynomial in q of degree n with leading coefficient (2n − 2),

the periodicity of the coefficients of ÃCFC
n−1 (q) starts at length at least n. Since

[qn−1]Pn−1(q) is the number of CFC elements of length n − 1, it is not zero, and
the periodicity starts exactly at length n. �

The situation in type Ãn−1 is very different from all other types that we study,
as we will see later: this is the only case where the generating series Pn(q) of CFC
elements whose reduced expressions have at most one occurrence of each generator
do not satisfy the recurrence relation fn(q) = (2q + 1)fn−1(q)− qfn−2(q).

3. Types C̃, B̃, D̃, B and D.

There are three other infinite families of affine Coxeter groups, they correspond
to types B̃, C̃, D̃. All these groups contain an infinite number of CFC elements. In
any of these cases, we can use Theorem 1.14 to derive a characterization of CFC
elements and to compute the generating function WCFC(q) =

∑
w∈WCFC q`(w).

We also show that this series is always ultimately periodic. The remaining classical
finite types B and D are treated as consequences of the types C̃ and B̃, respectively.

3.1. Types C̃n and Bn. The Coxeter diagram of type C̃n is represented below.

4 4

t s1 usn−1C̃n

Figure 10. Coxeter diagram of type C̃n.
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According to [1, Theorem 3.4], the heaps of FC elements in type C̃ are classified
in five families, the alternating heaps, the zigzags, the left-peaks, the right-peaks
and the left-right-peaks. As the definitions of the three last families are very close
(and so the proofs involving these elements are similar), we only recall here the
definition of left-peaks (and we refer to [1, Definition 3.1] for the others, examples
being given in Figure 11 below).

Definition 3.1. Let H be a heap in type C̃n. We say that H is a left-peak if
there exists an integer j ∈ {1, . . . , n− 1} such that all the following conditions are
satisfied:

(i) The heap H{t,s1,...,sj} is the heap of the word sjsj−1 . . . s1ts1 . . . sj−1sj .
(ii) If j 6= n − 1, then there is no point labelled sj+1 between the two points

labelled sj and if j = n − 1, then there is no point labelled u between the
two points labelled sn−1.

(iii) The heap H{sj ,sj+1,...,sn−1,u} is alternating when we delete a point labelled
sj .

ts1s2s3s4s5s6s7u ts1s2s3s4s5s6s7u ts1s2s3 s9s10u. . .

(left-peak) (right-peak) (left-right-peak)

Figure 11. A left-peak, a right-peak and a left-right-peak. In
the left-peak, we have j = 3.

Theorem 3.2. Let n ≥ 2 be an integer. An element w of the Coxeter group of
type C̃n is CFC if and only if one (equivalently, any) of its reduced expressions w
satisfies one of the three following conditions:

(a) each generator occurs at most once in w, or
(b) w is an alternating word and |wt| = |ws1 | = · · · = |wsn−1 | = |wu| ≥ 2, or
(c) w is a subword of the infinite periodic word (ts1s2 · · · sn−1usn−1 · · · s2s1)∞,

where |ws1 | = · · · = |wsn−1
| ≥ 2 and |wt| = |wu| = |ws1 |/2 (that is we have

w = sisi+1 · · · si−2si−1 or w = sisi−1 . . . si+2si+1, for a i ∈ {0, . . . , n},
where s0 = t and sn = u).

Proof. Let w be a CFC element in the Coxeter group of type C̃n and let w be one
of its reduced expressions. We denote by H the heap of w and by Hc its cylindric
closure. In [1, Theorem 3.4], heaps of FC elements are classified in five families, the
first corresponding to alternating elements. As before, we distinguish two cases for
elements in this first family:

Case 1. each generator occurs at most once in w. According to Lemma 1.15, w is
CFC as no long braid relations can be applied. These elements satisfy (a).
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Case 2. w is an alternating word in which a generator occurs at least twice. In this
case, the proof will essentially be the same as for alternating words in type
Ãn−1. Recall that we write t = s0 and u = sn. Let {ik, ik + 1, . . . , i`} be a
maximal interval such that |wsik

| = · · · = |wsi`
| ≥ 2 and ∀j ∈ {0, 1, . . . , n},

|wsj | ≤ |wsi`
|. Assume i` ≤ n − 1. By maximality of |wsi`

| and the fact

that w is alternating, we have |wsi`
| = |wsi`+1

| + 1 and there are two

possibilities in Hc: |Hc
si`
| = |Hc

si`−1
| or |Hc

si`
| = |Hc

si`−1
| + 1. We obtain

either a cylindric convex c-chain v ≺c x ≺c y ≺c z of length 4 where v,
y both have label si` and x, z both have label si`−1

, or a chain covering
relation between two indices p and q with label si` . This allows us to
conclude that w is not CFC by Theorem 1.14 (see Figure 12 below; in each
case, we have circled the points v, x, y, z and q, r respectively).

si`−1si` si`+1
si`−1si` si`+1

Figure 12. The two possible cylindric closures.

So, i` has to be equal to n for w to be CFC. The same argument for ik
will lead to ik = 0, and so |ws0 | = |ws1 | = · · · = |wsn−1 | ≥ 2. Such a word
w satisfies (b).

Next, we will show that among the four remaining families from [1], the CFC
elements must satisfy (c).

First, we assume that H belongs to the family called zigzag in [1], that is w is a
subword of the infinite periodic word (ts1s2 . . . sn−1usn−1 . . . s2s1)∞ with at least
one generator that occurs more than three times (actually, this condition will not
be used in this proof). Denote by si (respectively sj) the first (respectively last)
letter of w. We assume that the second letter is si−1, and therefore i ≥ 1 (the case
where the second letter is si+1 is symmetric and can be treated similarly).

If sj /∈ {si−1, si+1}, Hc necessarily contains either a cylindric convex c-chain
of length 3 involving points in Hc

{si−1,si} or a chain covering relation between two

points with label si.
If sj = si−1, then the last but one letter in w is either si or si−2, so Hc takes

one of the two forms I and II of Figure 13.
In case I, Hc contains a cylindric convex c-chain of length 4 involving points in

Hc
{si−1,si} , given by the two first and the two last letters of w (the corresponding

points are circled in Figure 13, left). By Theorem 1.14, w is not CFC. In case II, Hc

contains a cylindric convex c-chain of length 3 involving points in Hc
{si−1,si}, given
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si

si−1

si

si−1

w = sisi−1 · · · sisi−1 w = sisi−1 · · · si−2si−1

(form I) (form II)

Figure 13. The two possible cylindric closures for sj = si−1.

by the two first letters of w and the last one (they are circled points in Figure 13,
right). By Theorem 1.14, w is not CFC unless si = u, and therefore w satisfies (c).

If sj = si+1, then the last but one letter in w is either si or si+2, so Hc takes
one of the two forms III and IV of Figure 14.

si

w = sisi−1 · · · sisi+1

si

si+1

w = sisi−1 · · · si+2si+1

(form III) (form IV)

Figure 14. The two possible cylindric closures for sj = si+1.

In case III, Hc contains a cylindric convex c-chain of length 3 involving points in
Hc
{si,si+1}, given by the first and the two last letters of w (the corresponding points

are circled in Figure 14, left). By Theorem 1.14, w is not CFC unless si = s0 = t
or si+1 = sn = u. The first possibility is not satisfied as i ≥ 1. For the second
possibility, w satisfies (c). In case IV, w satisfies (c).

Finally, we assume that H belongs to one of the three remaining families, that is
the left-peaks, right-peaks and left-right-peaks defined in [1, Definition 3.1]. First,
if H is a left-peak, there exists a unique integer j ∈ {1, . . . , n − 1} satisfying the
conditions of Definition 3.1. Three cases can occur for |wsj+1

|.
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Case 1. If |wsj+1
| = 0, then Hc contains a relation k ≺c ` such that k and ` have

label sj (as illustrated in form V of Figure 15 below). Therefore w is not
CFC.

Case 2. If |wsj+1
| = 1, then Hc contains a cylindric convex c-chain of length 3

involving the points with labels sj and sj+1 (see form VI of Figure 15
below, where involved points are circled). Consequently, w is not CFC
unless j = n − 1. But if j = n − 1, then the condition (c) is satisfied, and
w is of the form usn−1sn−2 . . . s1ts1 . . . sn−1 or sn−1sn−2 . . . s1ts1 . . . sn−1u
(this is illustrated in Figure 15, form VII).

Case 3. If |wsj+1
| = 2, then, as the word remaining after the deletion of the occur-

rences of t, s1, . . . , sj−1 and one occurrence of sj in w is alternating, the
same reasoning as for alternating words allows us to prove that all the gen-
erators sj+2, sj+3, . . . , sn−1, u occur twice in w. Both occurrences of sj+1

and the last occurrence of sj+2 form a convex c-chain of length 3 (see form
VIII in Figure 15 below, where involved points are circled), which prevents
w from being CFC, unless j+ 1 = n− 1. But if j+ 1 = n− 1, then the two
occurrences of sn−1 and the two occurrences of u form a convex c-chain of
length 4 starting at the first occurrence of u. Therefore w is not CFC.

sjt s1 sj+1

(form V)

sjt s1 sj+1

(form VI)

sn−1t s1 u

(form VII)

sjt s1 sj+1

(form VIII)

Figure 15. The different left-peak cylindric closures.

If H is a right-peak, the same reasoning as for left-peaks applies to show that w
is not CFC unless w has one of the two following forms: ts1s2 . . . sn−1usn−1 . . . s1

or s1s2 . . . sn−1usn−1 . . . s1t, and so satisfies (c).
If H is a left-right-peak, let j, k ∈ {1, . . . , n − 1} be the two corresponding

unique integers in [1, Definition 3.1]. Two cases can occur for j and k. If j 6= k−1,
the same discussion as in the case of left-peaks about |wsj+1 | allows us to prove
that w is not CFC (as the case j = n − 1 is impossible). If j = k − 1, then w
satisfies (c), and takes one of the two following forms: sjsj−1 . . . t . . . sjsk . . . u . . . sk
or sksk+1 . . . u . . . sksj . . . t . . . sj .
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Conversely, any w satisfying one of the three conditions (a), (b), or (c) is a
reduced expression for a CFC element. Indeed, the corresponding cylindric clo-
sure Hc can not contain a relation i ≺c j such that i and j have the same label.
Moreover, Hc contains a cylindric convex c-chain of length 3 only if the involved
points belong to Hc

{t,s1} or Hc
{sn−1,u}. Finally, Hc does not contain any cylindric

convex c-chain of length 4: this comes from the definition of (a) and (c), and for

w satisfying (b), the same proof as in type Ã holds (see the end of the proof of
Theorem 2.1). �

Corollary 3.3. For n ≥ 2, we have the generating function:

C̃CFC
n (q) = ACFC

n+1 (q) +
2n

1− qn+1
q2(n+1) +

2n

1− q2n
q2n. (13)

The coefficients of C̃CFC
n (q) are ultimately periodic of exact period n(n+ 1) if n is

odd, and 2n(n+ 1) if n is even. Moreover, periodicity starts at length n+ 1.

Proof. Notice that the sets of elements whose reduced expressions satisfy condition
(a), (b) or (c) of Theorem 3.2 are disjoint. The first term in (13) corresponds to
CFC elements satisfying (a). Indeed, they are in bijection with ACFC

n+1 according to

the Coxeter diagrams of types An+1 and C̃n.
Now we show that the second term in (13) corresponds to CFC elements whose

reduced expressions satisfy (b). If we fix an integer h ≥ 2, there are 2n such
elements with h = |wt| = |ws1 | = · · · = |wsn−1

| = |wu|. Indeed, for each generator
t, s1, . . . , sn−1 in w, there are two possibilities: si appears before or after si+1 for
i = 0, 1, . . . , n − 1, where s0 = t and sn = u. The generating function of elements
satisfying (b) is then equal to

∑

h≥2

2nqh(n+1) =
2n

1− qn+1
q2(n+1).

With the condition on the number of occurrences of each generator, we can
see that the length of an element whose reduced expressions satisfy (c) must be a
multiple of 2n, and there are 2n such elements for each possible length (the first
two letters in w can be sisi+1 or sisi−1 for all i ∈ {1, . . . , n− 1} or ts1 or usn−1).
This gives the term ∑

h≥1

2nq2nh =
2n

1− q2n
q2n,

and establishes (13).
Now, we prove the periodicity. The coefficients of

2n

1− qn+1
q2(n+1) +

2n

1− q2n
q2n

are ultimately periodic; starting at length n + 2, the sequence of coefficients is of
the form:

(0, . . . , 0︸ ︷︷ ︸
n−2

, 2n, 0, 2n, 0, . . .).

The period is the least common multiple of n+1 and 2n, which is n(n+1) if n is
odd, and 2n(n+ 1) if n is even. In the same way as in the proof of Proposition 2.4,
we can use (1) to do an induction on n to prove that ACFC

n+1 (q) is a polynomial in q
of degree n+ 1 with leading coefficient 2n . According to this and (13), periodicity
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starts at length at least n+ 1. As [qn]ACFC
n+1 (q) is the number of CFC elements of

length n in type An+1, it is non-zero according to Lemma 2.2. So the periodicity
starts exactly at length n+ 1. �

We can deduce the characterization in type Bn, whose corresponding Coxeter
diagram is recalled below.

4

t s1 sn−1

Bn

s2

Figure 16. Coxeter diagram of type Bn.

Corollary 3.4. Let n ≥ 3 be an integer. The CFC elements in type Bn are those
having reduced expressions in which each generator occurs at most once. Moreover,

BCFC
n (q) = ACFC

n (q).

Proof. Let w be a CFC element in type Bn, and let w be one of its reduced
expressions. By comparing the Coxeter diagrams, w is a CFC element of type C̃n

such that the generator u does not occur in w. But, according to Theorem 2.1, the
only such CFC elements are those for which w satisfies (a) (and has no u): indeed,
if w satisfies (b) (respectively (c)), all generators appear the same number of times
(respectively u must appear in w). Conversely, if all generators occur at most once
in w, we already saw in lemma 1.15 that w is a CFC element. �

3.2. Types B̃n+1 and Dn+1. We will first obtain a characterization of CFC el-

ements in type B̃n+1, we deduce a characterization and the enumeration in type

Dn+1, and we finally deduce the enumeration in type B̃n+1.
In what follows, by “w is an alternating word”, we mean that if we replace t1

and t2 by s0, and u by sn, w is an alternating word in the sense of Definition 1.16,
and t1 and t2 alternate in w.

s1 sn−1

t1

t2
B̃n+1

s2 u

4

s1 sn−1

t1

t2
Dn+1

s2

Figure 17. Coxeter diagrams of types B̃n+1 and Dn+1.

Theorem 3.5. Let n ≥ 3 be an integer. An element w of the Coxeter group of
type B̃n+1 is CFC if and only if one (equivalently, any) of its reduced expressions
w satisfies one of these conditions:

(a) each generator occurs at most once in w, or
(b) w is an alternating word, |ws1 | = · · · = |wsn−1

| = |wu| ≥ 2, and |wt1 | =
|wt2 | = |ws1 |/2 (in particular, |ws1 | is even), or
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(c) w is a subword of (t1t2s1s2 . . . sn−1usn−1 . . . s2s1)∞, which is an infinite
periodic word, where t1 and t2 are allowed to commute, such that |ws1 | =
· · · = |wsn−1 | ≥ 2, and |wt2 | = |wt1 | = |wu| = |ws1 |/2 (that is w takes one
of the five forms: sisi+1 . . . si−2si−1 or sisi−1 . . . si+2si+1 or t1s1 . . . s1t2 or
t2s1 . . . t1 or t1t2s1 . . . s1 for a i ∈ {1, . . . , n− 1}).

Proof. The steps of this proof are the same as for Theorem 3.2. Let w be a CFC
element in type B̃n+1 and let w be one of its reduced expressions. We denote by H
the heap of w and by Hc its cylindric closure. In [1, Theorem 3.10], FC elements
are classified in five families. The first corresponds to alternating elements. As
before, we distinguish two cases:

Case 1. each generator occurs at most once in w. These elements satisfy (a).

Case 2. w comes from an alternating word of type C̃n, where we applied the re-
placements (t, t, . . . , t) → (t1, t2, t1, . . .) or (t2, t1, . . .). The same proof as

for type C̃ gives |wt| = |ws1 | = · · · = |wsn−1
| = |wu| (here, t is ei-

ther t1 or t2). If |wt| is odd, assume that we applied the replacement
(t, t, . . . , t) → (t1, t2, t1, . . .) (the other case is symmetric). We can distin-
guish four cases: t1 occurs before or after s1 in w and s1 occurs before or
after s2 in w. In all these cases, we find a cylindric convex c-chain of length
3 involving three of the four following points: the first and the last occur-
rence of t1, and the first and the last occurrence of s1. (For example, if t1
occurs before s1 and s1 occurs before s2, the first and the last occurrence
of s1 and the first occurrence of t1 form a cylindric convex c-chain.) So |wt|
is even, and as w is alternating, |wt2 | = |wt1 | = |ws1 |/2. Such a word w
satisfies (b).

Next, we will show that among the four remaining families from [1], the CFC
elements must satisfy (c). There are two possibilities:

Case 1. w is a subword of (t1t2s1s2 . . . sn−1usn−1 . . . s2s1)∞, which is an infinite
periodic word, where t1 and t2 are allowed to commute, such that a genera-
tor occurs more than twice. The same cases distinction as in type C̃ yields
the required condition (c).

Case 2. Hw is a heap among special cases analoguous to the ones in type C̃n which
are non CFC, except for those which satisfy (c) (and are of length 2(n+2)).

We omit the details here, as the proof is very similar to type C̃n.

Conversely, all elements w whose reduced expressions w satisfy one of the three
conditions (a), (b) or (c) are CFC. Indeed, Hc

w does not contain relations i ≺ j
such that i and j have the same label. The cylindric closure Hc

w contains cylindric
convex c-chains of length 3 only if the involved points have labels sn−1 or u and
Hc

w does not contain cylindric convex c-chain of length 4 (the same proof as for
Theorem 3.2 applies). �

Proposition 3.6. Let n ≥ 3 be an integer. The CFC elements in type Dn+1

are those having reduced expressions in which each generator occurs at most once.
Moreover, we have DCFC

1 (q) = 1 + q, DCFC
2 (q) = 1 + 2q+ q2, DCFC

3 (q) = 1 + 3q+
5q2 + 4q3 and for n ≥ 3:

DCFC
n+1 (q) = (2q + 1)DCFC

n (q)− qDCFC
n−1 (q). (14)
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In other words, we have

DCFC(x) :=

∞∑

n=0

DCFC
n+1 (q)xn =

(1 + q)− xq(1 + q) + x2q2(1 + 2q)

1− (2q + 1)x+ qx2
.

Proof. Let w be a CFC element of type Dn+1 and let w be one of its reduced

expressions. By checking the Coxeter diagrams, w is a CFC element of type B̃n+1

such that the generator u does not occur in w. But, according to Theorem 3.5, the
only such CFC elements are those having reduced expressions satisfying condition
(a) (and having no u): indeed, if w satisfies (b) or (c), u must appear in w.
Conversely, if all generators occur at most once in w, we already saw that w is
CFC.

Using this characterization of CFC elements of type Dn+1 allows us to compute
the polynomials DCFC

1 (q), DCFC
2 (q) and DCFC

3 (q) by an exhaustive enumeration.
If n ≥ 3, any CFC element of type Dn+1 can be uniquely otained from a CFC

element w′ in An−1 by adding to a reduced expression w′ of w′ either nothing, or
one occurrence of t1 (with two choices: before or after s1), or one occurrence of t2
(with two choices), or one occurrence of t1 and t2 (with four choices). However, if
s1 does not occur in w′, we have no choice for adding t1 or/and t2, as t1 and t2
commute with all other generators. This leads to the following recurrence relation:

DCFC
n+1 (q) = (1 + 4q + 4q2)ACFC

n−1 (q)− (2q + 3q2)ACFC
n−2 (q).

Next, we multiply this relation by xn−1 and we sum over n ≥ 3. We compute
the generating function DCFC(x) by using DCFC

1 (q), DCFC
2 (q), DCFC

3 (q) and the
generating function ACFC(x) in Theorem 2.3. As DCFC(x) is a rational fraction,
the recurrence relation (14) is extracted directly from the denominator of DCFC(x).

�

Corollary 3.7. We have for n ≥ 3:

B̃CFC
n+1 (q) = DCFC

n+2 (q) +
2n+1

1− q2(n+1)
q2(n+1) +

2(n+ 1)

1− q2n+1
q2n+1. (15)

Furthermore, the coefficients of B̃CFC
n+1 (q) are ultimately periodic of exact period

2(n+1)(2n+1) and the periodicity starts at length n+ 3.

Proof. Notice that the sets of elements whose reduced expressions satisfy condition
(a), (b) or (c) of Theorem 3.5 are disjoint. The first term in (15) corresponds to
the set of CFC elements whose reduced words satisfy (a). By Proposition 3.6, this
set is in bijection with DCFC

n+2 .
The second term in (15) corresponds to CFC elements whose reduced expressions

satisfy (b): these have length a multiple of 2(n+ 1), and there are 2n+1 of them for
each possible length.

With the condition on the number of occurrences of each generator, we can see
that the length of elements satisfying (c) must be a multiple of 2n + 1, and there
are 2n+2 such elements for each possible length (the first two letters can be sisi+1,
sisi−1, usn−1, t1t2, t1s1 or t2s1). This establishes (15).

Now, we prove the periodicity. The coefficients of

2n+1

1− q2(n+1)
q2(n+1) +

2(n+ 1)

1− q2n+1
q2n+1
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are ultimately periodic; starting at length n + 3, the sequence of coefficients is of
the form:

(0, . . . , 0︸ ︷︷ ︸
n−2

, 2(n+ 1), 2n+1, 0, . . .).

The period is the least common multiple of 2(n+ 1) and 2n+ 1, which is 2(n+
1)(2n + 1). Using (14), an induction on n allows us to prove that DCFC

n+2 (q) is a
polynomial in q with degree n + 2 and leading coefficient 2n+1. So, the beginning
of the periodicity is exactly n+ 3. �

3.3. Type D̃n+2. The situation is very similar to the previous one in type D̃n+2

for the characterization, but the generating function takes a slightly different form,
due to the specificity of the Coxeter diagram.

s1

t1

t2

u1

u2

sn−1D̃n+2

Figure 18. Coxeter diagram of type D̃n+2.

In what follows, by “w is an alternating word”, we mean that if we replace t1
and t2 by s0, and u1 and u2 by sn, the image of w is an alternating word in the
sense of Definition 1.16, t1 and t2 alternate in w, and u1 and u2 alternate in w.

Theorem 3.8. Let n ≥ 2 be an integer. An element w of the Coxeter group of
type D̃n+2 is CFC if and only if one (equivalently, any) of its reduced expressions
w satisfies one of these conditions:

(a) each generator occurs at most once in w, or
(b) w is an alternating word, |ws1 | = · · · = |wsn−1

| ≥ 2, and |wt1 | = |wt2 | =
|wu1

| = |wu2
| = |ws1 |/2 (in particular, |ws1 | is even), or

(c) w is a subword of (t1t2s1s2 . . . sn−1u1u2sn−1 . . . s2s1)∞, which is an infinite
periodic word, where t1 and t2, u1 and u2 are allowed to commute, such that
|ws1 | = · · · = |wsn−1

| ≥ 2, and |wt2 | = |wt1 | = |wu1
| = |wu2

| = |ws1 |/2.

Proof. The same proof as for Theorem 3.5 holds, one only needs to add the replace-
ments (u, u, . . . u) → (u1, u2, . . .) or (u2, u1, . . .) and to use [1]. Therefore we omit
the details. �

Again, we can compute the corresponding generating function.

Proposition 3.9. We have for n ≥ 2:

D̃CFC
n+2 (q) = Qn+2(q) +

2n+2 + 2(n+ 2)

1− q2(n+1)
q2(n+1), (16)

where Qn+2(q) is a polynomial in q of degree n + 3 such that Q4(q) = 1 + 5q +
14q2 + 28q3 + 33q4 + 16q5, Q5(q) = 1 + 6q+ 20q2 + 46q3 + 73q4 + 72q5 + 32q6, and
for n ≥ 4:

Qn+2(q) = (2q + 1)Qn+1(q)− qQn(q). (17)

Moreover, the coefficients of D̃CFC
n+2 (q) are ultimately periodic of exact period 2(n+1),

and the periodicity starts at length n+ 4.
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Proof. Notice that the sets of elements whose reduced expressions satisfy condition
(a), (b) or (c) of Theorem 3.8 are disjoint. The first term in (16) corresponds to the
set of CFC elements whose reduced expressions satisfy (a). Any such element can
be uniquely otained from a CFC element w of type Dn+1 having w as a reduced
expression by adding either nothing to w, or one occurrence of u1 (with two choices:
before or after sn−1), or one occurrence of u2 (with two choices), or one occurrence
of u1 and u2 (with four choices). However, if sn−1 does not occur in w, we have no
choice for adding u1 or/and u2, as u1 and u2 commute with all other generators.
This leads to the following recurrence relation:

Qn+2(q) = (1 + 4q + 4q2)DCFC
n+1 (q)− (2q + 3q2)DCFC

n (q).

Using this, the expected recurrence relation (17) for the polynomials Qn(q) is
equivalent to the following recurrence relation involving the polynomials DCFC

n (q):

(1 + 4q + 4q2)DCFC
n+1 (q)− (2q + 3q2)DCFC

n (q)

= (2q + 1)
[
(1 + 4q + 4q2)DCFC

n (q)− (2q + 3q2)DCFC
n−1 (q)

]

− q
[
(1 + 4q + 4q2)DCFC

n−1 (q)− (2q + 3q2)DCFC
n−2 (q)

]
.

This is true by gathering on one side the terms with common factor (1+4q+4q2)
and on the other side the terms with common factor (2q + 3q2), and noticing that
both sides vanish thanks to (14).

Elements satisfying (b) have length a multiple of 2(n+ 1) and there are 2n+2 of
them. Elements satisfying (c) have also length a multiple of 2(n+ 1), and there are
2(n+ 2) of them (by inspecting the first two letters). This establishes (16).

The second term on the right hand side of (16) is periodic of exact period 2(n+1):
starting at length n+ 4, the sequence of coefficients is of the form:

(0, . . . , 0︸ ︷︷ ︸
n−2

, 2n+2 + 2(n+ 2), 0, . . . , 0, 2n+2 + 2(n+ 2), . . .).

An induction on n using (17) allows us to show that Qn+2(q) is a polynomial
in q of degree n + 3 with leading coefficient 2n+2. According to this property and
(16), the periodicity starts at length n+ 4. �

Note that the generating function Q(x) of the polynomials Qn(q) is computable
through classical techniques. However it does not have a nice expression.

3.4. Exceptional types. Exceptional finite types are E6, E7, E8, F4, H2, H3,
H4, G2, and I2(m). Enumerating CFC elements according to the length in these
two last types is trivial, while other groups are special cases of the families En

(n ≥ 6), Fn (n ≥ 4), Hn (n ≥ 3). It is shown in [3] that these families contain a
finite number of CFC elements. It is possible to apply our method to characterize
them in terms of cylindric closure of heaps and obtain recurrence relations for their
generating functions according to the length. However, as the parameter q can be
inserted directly in the recurrences of [3], we leave this to the interested reader.

For exceptional affine types having a finite number of CFC elements (Ẽ8 and

F̃4), generating functions of CFC elements are polynomials recursively computable

as in type A, because Ẽ8 = E9 and F̃4 = F5.
It remains to study three exceptional affine types having an infinite number of

CFC elements. Their Coxeter diagrams are represented below. For these types, we
only give the result without detailing the proof, but only sketching it: as for other
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affine types, we look at the classification of FC elements in [1, Lemmas 5.2–5.4],
and see that there exists CFC elements only for some explicit length, which must
be either bounded or an integer multiple of a constant depending on the considered
type.

s t u

6

G̃2

s′1 s1 t s2 s′2

s3

s′3

Ẽ6

s′1 s1 t s2 s′2

s0

Ẽ7

s′′1 s′′2

Figure 19. Coxeter diagrams of types G̃2, Ẽ6 and Ẽ7.

Theorem 3.10. Let W be a Coxeter group of exceptional affine type G̃2 (respec-

tively Ẽ6, respectively Ẽ7).
We define in W the element w2 as the one which admits utsut (respectively

s1ts
′
1s1s2ts

′
2s2s3ts

′
3s3, respectively s1ts

′
1s0s1s

′′
1 ts
′
1s1s2ts

′
2s0s2s

′′
2 ts
′
2s2) as a reduced

expression. An element w ∈W is CFC if and only if one (equivalently, any) of its
reduced expressions w satisfies one of these conditions:

(i) w belongs to a finite set depending on W , or
(ii) w = w1w

n
2 w3, where n is a non-negative integer, w2 ∈ R(w2) and w3w1 =

w2.

Consequently, the following generating functions hold:

G̃CFC
2 (q) = R1(q) +

6q5

1− q5
,

ẼCFC
6 (q) = R2(q) +

23q12

1− q12
,

ẼCFC
7 (q) = R3(q) +

45q18

1− q18
,

where R1(q), R2(q) and R3(q) are polynomials.

3.5. Logarithmic CFC elements. Here we study some particular elements of a
general Coxeter group W . Recall that for w ∈WCFC , the support supp(w) of w is
the set of generators that appear in a (equivalently, any) reduced expression of w.
It is well known that if w ∈ W and k is a positive integer, then `(wk) ≤ k`(w). If
equality holds for all k ∈ N∗ (that is wk is reduced for all k, where w is a reduced
expression of w), then w is logarithmic (see [3] for more information about loga-
rithmic elements). For example, there is no logarithmic element in finite Coxeter
groups, because there is a finite number of reduced expressions. By using our char-
acterizations for affine types in Theorems 2.1, 3.5, 3.2, 3.8, we derive the following
consequence. A generalization of this result was proved for all Coxeter groups in
[10, Corollary E], by using geometric group theoretic methods. Nevertheless, as our
approach is different and more combinatorial, we find interesting to give our proof,
although it only works for affine types.
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Theorem 3.11. For W a Coxeter group of type Ã, B̃, C̃, or D̃, if w ∈W is a CFC
element, w is logarithmic if and only if a (equivalently, any) reduced expression w
of w has full support (that is all generators occur in w). In particular, there is a
finite number of CFC elements which are not logarithmic.

Proof. Let w ∈ WCFC and let w be one of its reduced expressions. Assume that
w has not full support. In this case, w belongs to a proper parabolic subgroup of
W , which is a finite Coxeter group by a classical property of affine Coxeter groups
(see [9, Section 5.5]). So w is not logarithmic, and there is a finite number of such
elements, which correspond to elements satisfying (a) in Theorems 2.1, 3.5, 3.2, 3.8
and such that at least one generator does not occur in w.

Conversely, assume that w is a CFC element with full support. According to
Theorems 2.1, 3.5, 3.2, 3.8, w must satisfy (b) or (c) or has to be a Coxeter element
(which means that each generator occurs exactly once in w). If w is a Coxeter
element, w is logarithmic (see [16]). If w satisfies (b) (respectively (c)), we check
that wk also satisfies (b) (respectively (c)) and is therefore reduced. It follows that
w is logarithmic. �

We can also notice that the powers of Coxeter elements are always CFC in affine
types Ãn−1 and C̃n because they satisfy the alternating word condition, but are

never CFC elements in types B̃n+1 and D̃n+2 (because they satisfy neither the
alternating word condition nor condition (c)).

4. CFC involutions

A natural question that arises in the study of FC elements is to compute the
number of FC involutions in finite and affine Coxeter groups. For instance, this
number is for some groups (including types A, B, D and E) the sum of the di-
mensions of irreducible representations of a natural quotient of the Iwahori-Hecke
algebra associated to the group, see [6]. Similarly, we now focus on CFC elements
which are involutions. The main result is that there is always a finite number of
such elements in all Coxeter groups, and we are able to characterize them in terms
of words. We also use the characterization of CFC elements to enumerate CFC
involutions according to their length in finite and affine Coxeter groups.

4.1. Finiteness and characterization of CFC involutions.

Theorem 4.1. Let W be a Coxeter group and let I(W ) be its subset of involutions.
The set WCFC∩I(W ) is finite. Moreover an element w belongs to WCFC∩I(W ) if
and only if one (equivalently, any) of its reduced expressions w satisfies, for any
generator s in supp(w), |ws| = 1, and for all t such that mst ≥ 3, |wt| = 0 (which
means that two non commuting generators can not occur in w).

Proof. Let w be a CFC involution, let s be a generator in supp(w) and w be a
reduced expression of w. Assume that |ws| ≥ 2. Consider a cyclic shift w′ = sw1

of w which begins with s. As w and s are involutions, w′ is an expression of an
involution. Moreover as w is CFC, w′ corresponds to a FC element w′. According
to [13], a FC element w is an involution if and only if R(w) is palindromic, which
means R(w) includes the reverse of all of its members. Applying this to w′ allows
us to say that w′ is commutation equivalent to a word sw2s. So a cyclic shift
of w is commutation equivalent to ssw2, which is in contradiction with the CFC
property of w. Therefore we have |ws| = 1. We consider w′ as before. As R(w′)
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is palindromic, we can conclude that all generators in supp(w′)=supp(w) commute
with s.

Conversely, any element of W with reduced expression without two non com-
muting generators is an involution. �

Remark 4.2. As a consequence, the number of CFC involutions in a Coxeter group
W depends only on the edges of the Coxeter diagram, without taking into account
the values mst.

4.2. CFC involutions in classical types. Let us enumerate the CFC involutions
in classical types, according to their Coxeter length. If W is a Coxeter group, we
define WCFCI(q) :=

∑
w∈WCFC∩I(W ) q

`(w).

Theorem 4.3. In types A, B, and C̃ the following relations hold for all n ≥ 2:

ACFCI
n (q) = BCFCI

n (q) = ACFCI
n−1 (q) + qACFCI

n−2 (q), (18)

C̃CFCI
n (q) = ACFCI

n+1 (q),

and ACFCI
0 (q) = 1, ACFCI

1 (q) = 1 + q. Moreover, we can compute the generating
function

ACFCI(x) :=

∞∑

n=1

ACFCI
n−1 (q)xn = x

1 + qx

1− x− qx2
.

Proof. The equality ACFCI
n (q) = BCFCI

n (q) = C̃CFCI
n−1 (q) comes from Remark 4.2.

Let w be a CFC involution in type An and let w be one of its reduced expressions.
If sn belongs to supp(w), by Theorem 4.1, sn−1 does not belong to supp(w), and
w is equal to sn concatenated to a CFC involution of type An−2. If sn does not
belong to supp(w), w is a CFC involution of type An−1. This yields the expected
relation (18). The generating function is computed through classical techniques,
by using (18) and the initial values. �

In particular, if q → 1, we obtain the number of CFC involutions in type An−1,
which is the (n+ 1)th Fibonacci number.

Theorem 4.4. In types D and B̃, the following relations hold for all n ≥ 3:

B̃CFCI
n−1 (q) = DCFCI

n (q) = DCFCI
n−1 (q) + qDCFCI

n−2 (q), (19)

DCFCI
n+1 (q) = qACFCI

n−3 (q) + (1 + 2q + q2)ACFCI
n−2 (q), (20)

and DCFCI
1 (q) := 1, DCFCI

2 (q) = 1 + 2q + q2, DCFCI
3 (q) = 1 + 3q + q2. Moreover,

we can compute the generating function

DCFCI(x) :=

∞∑

n=0

DCFCI
n+1 (q)xn =

1 + (2q + q2)x

1− x− qx2
.

Proof. The equality B̃CFCI
n−1 (q) = DCFCI

n (q) comes directly from Remark 4.2. To
prove (20), let w be a CFC involution in type Dn+1 and let w be one of its reduced
expressions. If s1 belongs to supp(w), by Theorem 4.1, s2, t1, t2 do not belong to
supp(w), and w is equal to s1 concatenated to a CFC involution of type An−3. If
s1 does not belong to supp(w), w is a CFC involution of type An−1 concatenated
to t1, t2, t1t2 or nothing. This shows (20).

By using this, we can rewrite the expected recurrence relation in Equation (19)
for the polynomials DCFCI

n (q) into a recurrence relation involving the polynomials
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ACFCI
n (q) that we can check by using (18) (in the same way as we did for the

proof of Proposition 3.9). The generating function comes from classical techniques,
by using the recurrence in the second equality of (19), together with the initial
values. �

If q → 1, we obtain the number of CFC involutions in type Dn+1, which leads
to a Fibonacci-type sequence with starting numbers 1 and 4.

Theorem 4.5. In type Ã, the following relation holds for n ≥ 2:

ÃCFCI
n (q) = ÃCFCI

n−1 (q) + qÃCFCI
n−2 (q), (21)

where ÃCFCI
0 (q) := 1, ÃCFCI

1 (q) = 1 + 2q. Therefore, we can compute the gener-
ating function

ÃCFCI(x) :=
∞∑

n=1

ÃCFCI
n−1 (q)xn = x

1 + 2qx

1− x− qx2
.

Proof. Let w be a CFC involution in type Ãn−1 and let w be one of its reduced
expressions. If s0 belongs to supp(w), by Theorem 4.1, sn−1 and s1 do not belong
to supp(w), and w is equal to s0 concatenated to a CFC involution of type An−3.
If s0 does not belong to supp(w), w is a CFC involution of type An−1. This leads
to the relation:

ÃCFCI
n−1 (q) = qACFCI

n−3 (q) +ACFCI
n−1 (q).

Using this, we are able to compute the generating function ÃCFCI(x) by multiplying
by xn, summing over n ≥ 2 and using the generating function ACFCI(x) obtained
in Theorem 4.3. The recurrence relation (21) follows directly from the rational

expression of ÃCFCI(x). �

Remark 4.6. We also have

qnÃCFCI
n−1 (1/q2) = Ln(q),

where Ln(q) is the nth Lucas polynomials, defined explicitly (see sequence A114525

in [12]) by Ln(q) = 2−n[(q −
√
q2 + 4)n + (q +

√
q2 + 4)n]. This equality can be

proved by using generating functions.

Theorem 4.7. In type D̃, the following relation holds for n ≥ 4:

D̃CFCI
n+2 (q) = D̃CFCI

n+1 (q) + qD̃CFCI
n (q), (22)

with D̃CFCI
4 (q) = 1 + 5q+ 6q2 + 4q3 + q4 and D̃CFCI

5 (q) = 1 + 6q+ 10q2 + 6q3 + q4.
We can therefore compute the generating function:

D̃CFCI(x) :=

∞∑

n=2

D̃CFCI
n+2 (q)xn = x2 1 + 5q + 6q2 + 4q3 + q4 + x(q + 4q2 + 2q3)

1− x− qx2
.

Proof. Let w be a CFC involution in type D̃n+2 and let w be one of its reduced
expressions. If s1 belongs to supp(w), by Theorem 4.1, s2, t1 and t2 do not belong
to supp(w), and w is equal to s1 concatenated to a CFC involution of type Dn−1.
If s1 does not belong to supp(w), w is a CFC involution of type Dn concatenated
to t1, t2, t1t2 or nothing. This leads to the relation:

D̃CFCI
n+2 (q) = qDCFCI

n−1 (q) + (1 + 2q + q2)DCFCI
n (q).
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One can then use this and (19) to check that (22) is satisfied. Finally, D̃CFCI(x)
is computed by summing (22) over n ≥ 4 and using the initial values. �

If q → 1, we obtain the number of involutions in type D̃n+2, which is a Fibonacci-
type sequence with starting numbers 10 and 7.

5. Other questions

In Sections 2 and 3, we obtained two q-analogs of the number of CFC elements
in finite types. The first, in type A, corresponds to permutations avoiding 321 and
3412, taking into account their Coxeter length (see [17]). The second, in type D, is
apparently new. One may wonder if it corresponds to another combinatorial object.

We can notice that ifW is a finite or affine Coxeter group, the generating function
of CFC elements is a rational fraction. This is in fact true for all Coxeter groups,
as will be proved in the forthcoming work [11].
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