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Objectives   This study aimed to develop and validate a risk prediction model for long-term sickness absence.
Methods   Survey responses on work- and lifestyle-related questions from 65 775 public-sector employees were 
linked to sickness absence records to develop a prediction score for medically-certified sickness absence lasting 
>9 days and ≥90 days. The score was externally validated using data from an independent population-based 
cohort of 13 527 employees. For both sickness absence outcomes, a full model including 46 candidate predictors 
was reduced to a parsimonious model using least-absolute-shrinkage-and-selection-operator (LASSO) regres-
sion. Predictive performance of the model was evaluated using C-index and calibration plots.
Results   Variance explained in ≥90-day sickness absence by the full model was 12.5%. In the parsimonious 
model, the predictors included self-rated health (linear and quadratic term), depression, sex, age (linear and qua-
dratic), socioeconomic position, previous sickness absences, number of chronic diseases, smoking, shift work, 
working night shift, and quadratic terms for body mass index and Jenkins sleep scale. The discriminative ability 
of the score was good (C-index 0.74 in internal and 0.73 in external validation). Calibration plots confirmed high 
correspondence between the predicted and observed risk. In >9-day sickness absence, the full model explained 
15.2% of the variance explained, but the C-index of the parsimonious model was poor (<0.65).
Conclusions   Individuals’ risk of a long-term sickness absence that lasts ≥90 days can be estimated using a brief 
risk score. The predictive performance of this score is comparable to those for established multifactorial risk 
algorithms for cardiovascular disease, such as the Framingham risk score.

Key terms   LASSO regression; prediction model; long-term sickness absence; sick leave; sickness absence; 
work disability.
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Sickness absence constitutes a major burden for com-
panies and organizations in terms of lost productivity 
(1). Sickness absence is also a predictor of adverse 
health outcomes, such as premature mortality (2). Early 
identification of individuals at risk of long-term sick-
ness absence would be beneficial for employees and the 
employer to enable targeted interventions to delay and 
possibly prevent work disability.

A number of predictors for sickness absence have 
already been identified. Psychological problems (3, 
4), unfavorable workplace characteristics (5, 6), and 

adverse health behaviors (7) have been shown to be 
associated with an increased risk of sickness absence. By 
combining this information, attempts have been made to 
develop multifactorial prediction models for sickness 
absence (8–16). To date, however, the study samples 
used in developing these prediction models have often 
included only a limited number of occupations (8, 9, 
11, 16, 17), which may limit the generalizability of the 
results. Furthermore, while some of these studies used 
official records to assess sickness absence (8, 9, 11, 14, 
16), others have relied only on self-reported sickness 
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absence (10, 12, 13, 15). The methods used to develop 
prediction models have also been heterogeneous. One 
study set out to examine a single indicator as a predic-
tor for sickness absence (18), while others have used 
varying ways to reduce the number of predictors in 
developing a parsimonious multifactorial model (11, 13, 
16, 19). Few prediction models to date demonstrate the 
ability to discriminate individuals at high risk of sick-
ness absence accurately (8, 11, 15, 16).

To address some of these limitations, we developed 
and validated separate parsimonious prediction scores 
for medically-certified sickness absence lasting >9 days 
and ≥90 days, respectively, using two large indepen-
dent cohort studies that included several demographic, 
lifestyle, and job characteristic variables as candidate 
predictors of sickness absence.

Methods

Study design and participants

Data for this study were obtained from the Finnish 
Public Sector (FPS) study and the Health and Social 
Support (HeSSup) study, Finland. Both studies are 
described in detail elsewhere (20–22). Briefly, the FPS 
study population was employees in the municipal ser-
vice of 10 Finnish towns and 21 public hospitals with 
survey data collected from employees at work during 
2000–2002 or 2004. The study population of HeS-
Sup was a population-based sample of Finns surveyed 
in 1998 in four age groups (20–24, 30–34, 40–44, 
and 50–54 years). Participants from both cohorts were 
excluded if they were on a sickness absence (≥90 days), 
disability pension, or retired at the time of responding. 
Further, participants from the FPS second survey (2004) 
were excluded if they had taken part in the first survey 
(2000–2002). Thus, the final sample was 65 775 munici-
pal employees from FPS and 13 527 employed adults 
from HeSSup. We used FPS to develop the prediction 
score and HeSSup for external validation in an indepen-
dent population-based sample. Local ethic committees 
approved both studies.

Measurements of predictors

In the FPS survey, participants were asked a total of 82 
questions on their sociodemographic characteristics, 
health status, lifestyle habits, as well as working con-
ditions. These questions were grouper into 30 single- 
or multi-item candidate predictors of which 14 were 
dichotomous and 16 multilevel/multicategorical (for a 
full list of items see supplementary file 1, www.sjweh.
fi/show_abstract.php?abstract_id=3713).

Sociodemographic factors. These were derived from 
employers’ registers and included sex, age, and socio-
economic position. We used the International Stan-
dard Classification of Occupations (ISCO) to derive 
the socioeconomic position for the participants’ job 
titles. The ISCO has 10 categories ranging from 1 
(managers) to 9 (elementary occupations) with a 
separate category for armed force occupations. Only 
few participants fell into categories 6-8 (skilled agri-
cultural workers, craft and trade workers, plant and 
machine operations); and, as those categories refer to 
similar skill level occupations, we combined them to 
form a single “process worker” category. As none of 
the participants were employed by the armed forces, 
our final measure for socioeconomic was (1–7): 
1=manager/higher official, 2=senior specialist, 3=spe-
cialist, 4=office worker, 5=service worker, 6=process 
worker, and 7=other.

Health status and sleep. Participants rated their health 
using a 5-point scale (1=good, 2=rather good, 3=mod-
erate, 4=rather poor, 5=poor). Self-reported height and 
weight were used to calculate body mass index (BMI). 
The 12-item general health questionnaire (GHQ) was 
used to assess psychological distress (23). Responses 
for GHQ were given on a 4-point Likert scale (1=bet-
ter than usual, 2=same as usual, 3=worse than usual, 
4=much worse than usual). Mean response for the GHQ 
questions were used in the analysis. The Jenkins sleep 
scale was used to assess sleep problems (24). Answers 
for the scale were given on a 6-point Likert scale (ie, 
1=never, 6=almost every night).

Health behaviors. Alcohol consumption was assessed 
with questions on how much beer, wine, and spirits 
participants consumed in a week. Answers were trans-
formed into units of alcohol per week. Participants also 
reported on their smoking status (0=non-smoker/for-
mer smoker, 1=current smoker). Participants assessed 
their weekly leisure time activity on four scales: walk-
ing, brisk walking, jogging, and running. Answers to 
each scale were given on 5-point scale (1=0, 2=<0.5, 
3=1, 4=2–3, and 5=≥4 hours). Participants were scored 
as inactive if they reported <1 hour/week of at least 
walking briskly.

Sickness absence history. Participants were linked with 
their sickness absence records from the year preceding 
the surveys. The records, including all sickness absence 
spells lasting >9 days, were obtained from the Social 
Insurance Institution of Finland. The number of sickness 
absences had a range from 0–5 with only 68 individuals 
reporting 4 or 5 spells of absence. Thus, participants 
with 4 or 5 spells were recoded as 3 sickness absences, 
resulting in a range from 0–3.
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Chronic diseases. Participants reported physician-diag-
nosed diseases from a list of common ailments. We 
matched the diseases with the top 30 causes of global 
disability-adjusted life years (25). Diseases matched 
included bronchial asthma, myocardial infarction, angina 
pectoris, cerebrovascular diseases, migraine, depression, 
and diabetes. Diseases on the top 30 list that were not 
queried in the survey included sense organ diseases, lung 
cancer, and a range of severe communicable diseases. 
In addition, we formed a new variable that summed 
together the reported diseases that were included in the 
matched list. The number of diseases ranged from 0–7 
with only 66 participants reporting >3 diseases. Thus, 
participants with ≥4 diseases were recoded as having 3 
diseases, resulting in a final range of 0–3. Measures for 
individual diseases and number of diseases were used 
in the models simultaneously.

Work-related characteristics. Participants of the FPS survey 
were asked about: shift work in general (0=no, 1=yes) and 
whether the shift included night work (0=no, 1=yes), job 
demands (a 3-item scale), job control (a 6-item scale), job 
efforts (1 item), and job rewards (a 3-item scale). Answers 
were on a 5-point Likert scale. The mean scores for the 
scales were used to form new measures: job strain (26) 
and effort–reward imbalance (ERI) (27). Job strain was 
scored as 1 if job demand was the median and job control 
under the median, and 0 otherwise. ERI was defined as 1 
if the ratio of job effort to reward was >1, and 0 otherwise.

Team work and management. Team work was assessed with 
a short version of team climate inventory (TCI) (28). TCI 
includes four subscales: participatory safety (4 items), 
support for innovation (3 items), vision (4 items), and 
task orientation (3 items). Management was assessed 
with scales measuring procedural (7 items) and relational 
justice (6 items) (29). Responses to these items were 
given using a 5-point Likert scale, and the mean of the 
responses on each scale were used in the analysis.

The HeSSup survey included all those questions 
that were included in the risk score developed using 
data from FPS.

Ascertainment of sickness absence at follow-up

Survey responses were linked to electronic records of 
sickness absence lasting >9 days obtained from the 
national register kept by the Social Insurance Institu-
tion of Finland. Linkage was performed using personal 
identification numbers. Residents in Finland aged 16−67 
years are entitled to receive daily allowances due to 
medically certified sickness absence (30). After a quali-
fying period of 9 days from the day of falling ill, com-
pensation is paid for a maximum of one year. All these 

sickness absence periods must be medically certified and 
they are encoded in the register with the beginning and 
end dates. In Finland, employees receive compensation 
based on their salary during their sickness absence up to 
300 weekdays. If a sickness absence lasts ≥90 days, the 
employee needs to provide the Finnish Social Insurance 
Institution a broader certificate from an occupational 
healthcare physician of his/her inability to work to be 
entitled for compensations.

We identified individuals with ≥1 long (>9 days) 
absence as well as those with ≥1 very long (≥90 days) 
periods of sickness absence during the follow-up. These 
cut-off points represent official, reliable records. The 
linkage data were available for all respondents in both 
cohorts for the full follow-up. The linkage data were 
available for all respondents in the FPS cohort until 
31 December 2011 and the HeSSup cohort until 31 
December 2013.

Statistical analysis

We combined the two FPS subsamples (surveys from 
2000–2002 and 2004) to form the development cohort 
(N=65 775). Missing predictor data were imputed using 
single imputation with predictive mean matching (31).

To develop a parsimonious prediction model, we 
used Cox proportional hazard models together with 
least absolute shrinkage and selection operator (LASSO) 
regression. LASSO forces the sum of the absolute 
value of regression coefficients to be less than a fixed 
value that is dependent on a parameter lambda. As 
lambda increases, LASSO reduces certain regression 
coefficients to zero, leaving only the most important 
predictors in the model. First, we defined a full model 
using all 30 single- or multi-item predictors, as well as 
quadratic terms for all 16 non-dichotomous predictors 
to allow for non-linear associations. As such, the full 
model included 46 predictors. Then, using LASSO with 
20-fold cross validation, we chose a lambda value so 
that the mean cross validated error of the final model 
was within one standard error of the full model. This 
allowed us to derive a model that was close to full model 
in terms of fit, but had fewer predictors. For comparison, 
we built the models using more traditional techniques as 
described by Airaksinen et al (32).

We used R2 to quantify variance explained by the 
predictors. We evaluated the predictive performance 
of the final parsimonious model using Harrell’s con-
cordance index (C-index) (31). In the context of this 
study, the C-index gives the probability that a randomly 
selected individual who had ≥1 very long sickness 
absence during the follow-up has a higher risk score 
than an individual who was not on a sickness absence 
during follow-up. The C-index is equal to the area 
under the curve (AUC) and has a range from 0.5 (no 
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predictive ability) to 1 (maximum predictive ability). 
C-index under 0.7 represents poor, 0.7–0.8 good, and 
>0.8 strong discrimination ability. Internal validation 
was tested using the bootstrapping method, after which 
we validated the model externally in the HeSSup cohort. 
Furthermore, we calculated sensitivity and specificity 
of model at various cut-points in both cohorts. Finally, 
model calibration was assessed with calibration plots for 
both FPS and HeSSup data. All analyses were performed 
using R 3.2.2 (packages: mice, glmnet, hdnom, Hmisc, 
and leaps).

Results

Descriptive characteristics for both cohorts, and bivari-
ate associations between all items and both outcomes, 
are provided in supplementary file 2, www.sjweh.fi/
show_abstract.php?abstract_id=3713. In the develop-
ment cohort (FPS, N=65 775, mean age 43.7 years), 
80% of the participants were women, corresponding to 
the gender distribution in the Finnish public sector. Of 
the participants, 43 247 individuals (66%, mean follow-
up time of 4.9 year) were ≥1 times on sickness absence 
lasting >9 days, and 11 858 people (18%, mean follow-
up of 8.1 years) had ≥1 sickness absence lasting ≥90 
days. In the validation cohort, gender distribution was 
more equal (HeSSup, N=13 527, mean age 39.5 years, 
57% women); 7499 people (55%, mean follow-up time 
of 6.4 years), and 2045 people (15%, mean follow-up 
time of 9.0 years) were on sickness absence lasting >9 

days and ≥90 days, respectively. Follow-up times for 
both outcomes and cohorts are illustrated in figure 1.

Development of prediction score

The full model with all the candidate predictors, includ-
ing quadratic terms for all but dichotomic predictors, 
explained R2=15.2% of variance in sickness absence 
lasting >9 days and R2=12.5% of variance in sickness 
absence lasting ≥90 days. With LASSO, we were able to 
reduce the number of predictors down to 17 for sickness 
absence lasting >9 days: self-rated health, depression, 
BMI, sex, socioeconomic position, previous sickness 
absences, relational justice, procedural justice, number 
of chronic diseases, job strain, smoking, shift work, 
working night shift, and quadratic terms for self-rated 
health, age, Jenkins sleep scale, and GHQ. For sick-
ness absences lasting ≥90 days, 14 predictors were left 
in the model: self-rated health, depression, sex, age, 
socioeconomic position, previous sickness absences, 
number of chronic diseases, smoking, shift work, work-
ing night shift, and quadratic terms for self-rated health, 
BMI, age, and Jenkins sleep scale (table 1). The models 
developed using more traditional statistical techniques 
were very similar (supplementary file 3, www.sjweh.fi/
show_abstract.php?abstract_id=3713).

Validation of prediction score

In internal validation, the C-index of the final model 
was poor, 0.647 (95% confidence interval: 0.644–0.650) 
for >9-day sickness absence and good, 0.735 (95% CI 

Figure 1. Distribution of follow-up times for >9 day sickness absences (left) and >90 day sickness absences (right).
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0.731–0.740) for ≥90-day sickness absence. Thus, fur-
ther analyses were only conducted for sickness absence 
lasting ≥90 days. Sensitivity analysis with follow-up 
time varying from 1–5 years replicated these results 
(table 2). As expected, for both outcomes, the C-indices 
were higher when follow-up time was short and lowered 
gradually with increasing follow-up time.

External validation of the model for ≥90-day sick-
ness absence was undertaken using the HeSSup data, 
although there were minor differences between the 
development and validation cohorts in the way the 
predictors were assessed (see supplementary file 1 for 
the exact wordings of the questions in both cohorts). In 
spite of these differences, the C-index was close to that 
observed in the development cohort: 0.727 (95% CI: 
0.716–0.738) for ≥90-day sickness absence. In figure 
2, the performance of the model for ≥90-day sickness 
absence is illustrated using receiver operating charac-
teristic (ROC) curves. For details on the sensitivity and 
specificity of the model, see supplementary file 4, www.
sjweh.fi/show_abstract.php?abstract_id=3713.

We used calibration plots to evaluate the perfor-
mance of the prediction score at different levels of 
risk. Figure 3 shows the calibration plots of the pre-
diction score in the two cohorts. The predicted risk 
corresponded very well with the observed risks in the 
development cohort. A close match was also observed 
in the validation cohort although the predictions for the 
top two deciles were underestimate by 2.4% and 6.6%. 

A nomogram that visualizes the weight of each factor in 
the model is shown in supplementary file 5, www.sjweh.
fi/show_abstract.php?abstract_id=3713.

Discussion

We developed and validated externally a multifactorial 
prediction model for sickness absence lasting ≥90 days. 
The model had a good discriminative ability (C-statistic 
0.73) and included the following factors: self-rated 
health, depression, sex, age, socioeconomic position, 
previous sickness absences, number of chronic diseases, 
smoking, shift work, working night shift, BMI, and 
Jenkins sleep scale. Calibration plots confirmed high 
correspondence between predicted and observed risk for 
this prediction tool. These results suggest that long-term 
sickness absence lasting ≥90 days can be predicted with 
accuracy that equals those used in primary prevention 
of common chronic conditions, such as cardiovascular 
disease (C-index 0.76 with the Framingham score) (33, 
34) and type 2 diabetes (C-index 0.80) (35).

Many prediction models have already been devel-
oped for sickness absence. Compared to those models, 
our model was based on data that covered a wide range 
of occupations of all occupational statuses in both sexes, 
instead of just one industry (16, 17) or occupation (10, 
12, 36, 37), and our study is the first to develop and 
validate a multifactorial predictive algorithm for ≥90-
day sickness absence. An advantage over many of the 
previous models was that we were able to use an inde-
pendent cohort for external validation. The predictors 
found are in agreement with previous studies suggest-
ing that poor self-rated health is a robust predictor for 
sickness absence (38, 39). Similarly, age (17), sex (40), 
smoking (41), obesity (42), previous sickness absences 
(16, 38), presence of chronic diseases (39) and socio-
economic position (43) have been associated with sick-
ness absences in previous studies. It is noteworthy that 
none of the work-related factors improved prediction 
after the inclusion of demographic and lifestyle variables 

Table 1. Hazard ratios (HR) and confidence intervals (CI) for predicting 
sickness absence (≥90 days).

Predictor Sickness absence ≥90 days

HR 95% CI

Self-rated health a 1.1007 1.0124–1.1967
Depression

No 1
Yes 1.1466 1.0804–1.2169

Sex
Male 1
Female 1.0015 0.9564–1.0487

Age a 1.0005 0.9815–1.0199
Socioeconomic status a 1.1316 1.1195–1.1438
Previous sickness absences a 1.5572 1.5136–1.6021
Chronic diseases a 1.1519 1.1202–1.1845
Smoking

No 1
Yes 1.1089 1.0608–1.1593

Shift work
No 1
Yes 1.0881 1.0366–1.1422

Night shift
No 1
Yes 1.0153 0.9551–1.0792

Self-ra   ted health (squared) a 1.0444 1.0272–1.0619
Body mass index (squared) a 1.0002 1.0002–1.0003
Age (squared) a 1.0004 1.0002–1.0007
Jenkins sleep scale (squared) a 1.0038 1.0022–1.0055
a Per 1 point increase.

Table 2. C-indices for both outcomes with varying follow-up times 
[CI=confidence interval]

Follow-up time (years) Sickness absence  
>9 days

Sickness absence  
≥90 days

C-index (95% CI) C-index (95% CI)

1 0.682 (0.677–0.687) 0.776 (0.763–0.788)
2 0.669 (0.665–0.672) 0.774 (0.765–0.783)
3 0.661 (0.657–0.664) 0.763 (0.756–0.771)
4 0.656 (0.653–0.659) 0.754 (0.747–0.760)
5 0.653 (0.650–0.656) 0.747 (0.741–0.753)
10 0.647 (0.644–0.650) 0.735 (0.731–0.740)
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although most of them were associated with sickness 
absence in bivariate analyses (supplementary file 2).

Developing a parsimonious prediction model that 
performs well in discriminating those at greater risk of 
sickness absence is challenging. The few studies that 
use the total number of sickness absence days (including 
absence spells with variable length) during the previous 
year as a predictor were not successful in accurately 

predicting the total number sickness absence days in 
follow-up (12, 14, 44). The models with good discrimi-
native ability with C-statistics >0.70 typically relate to 
long-term sickness absence. For example, the Dutch 
“Balansmeter” (8), predicting sickness absence last-
ing >28 days, has a good discriminative performance, 
although the model consists of as many as 34 items, 
compared to 14 in our model. Our model for sickness 

Figure 2. Receiver operating characteristics (ROC) curves for the prediction of sickness absences lasting >90 days in two cohort studies, the development 
(FPS) and validation (HESSUP) cohorts. The diagonal line indicates no discrimination above chance.

Figure 3. Calibration plots for development (FPS) and validation (HeSSup) cohort for sickness absences lasting >90 days. The diagonal line is the ideal 
calibration, and the dots are decile risk groups and their 95% confidence intervals.
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absence lasting ≥90 days performed well, both in inter-
nal and external validation, while the model for sick-
ness absence lasting >9 days had poor discrimination 
in internal validation. It is likely that very long sickness 
absences are caused by more severe health issues with 
stable determinants, whereas shorter sickness absences 
could be a result of a wider range of reasons that could 
be episodic and not have a lasting impact on health, thus 
making their prediction difficult.

The model we developed included relatively few 
predictors that people have direct control over. We 
believe that our model is more useful for risk prediction 
than as a guide for treatment. Unlike in risk estimators 
for cardiovascular disease and diabetes, we did not set 
specific risk cut-off points that should be used as a basis 
for clinical decision making. Rather, the risk prediction 
score for ≥90-day sickness absence could be seen as a 
tool for selecting target groups for a range of preventive 
interventions using sensitivity and specificity estimates 
that are appropriate given the features of each specific 
treatment. More research is needed to identify cost-
effective measures to reduce the occurrence of work 
disability for people at different levels of risk.

The present study has some limitations. First, it 
remains unclear whether the present results are general-
izable across different settings and countries or whether 
they are valid only to the Nordic welfare state model 
with a universal social security and employee protection. 
The development and validation cohort studies did not 
have identical measurement on 2 of the 14 predictors, 
namely, socioeconomic position and sleep. This means 
that the highest achieved academic degree and current 
occupational status as well as the two alternative mea-
sures of sleep disturbance might reflect slightly different 
underlying concepts. However, the developed models 
performed equally well in the two cohort studies sug-
gesting that this is not a critical difference.

Our findings have implications for future research 
because good discriminative abilities for ≥90-day sick-
ness absence justify further intervention studies on the 
benefits of using the predictive score in practice. These 
studies should determine whether applying predictive 
tools for long-term sickness absence offer benefit in 
particular for people in the "grey zone", that is those 
with a medium-level risk, because accurate assessment 
of the risk of prolonged sickness absence could inform 
the healthcare personnel to target them with timely 
interventions. Predictive tools may provide less benefit 
in studying high-risk people with known health prob-
lems who already participate in preventive interventions 
implemented by healthcare professionals.

Concluding remarks

Using data from two cohorts and almost 80 000 partici-

pants, we developed and validated a prediction score for 
sickness absences lasting ≥90 days. The score performed 
accurately in Finnish settings. As a quick-to-administer 
score, it could be of use for healthcare professionals in 
identifying individuals at risk of prolonged sickness 
absence. Further research is needed to assess the poten-
tial benefits of using this score in relation to targeted 
interventions, as indicated by reduced long-term sick-
ness absence rates, and to determine whether this score 
also identifies groups at risk in other countries with 
different sickness absence policies.
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