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Abstract 

Large scale continuous cell-line cultures promise greater reproducibility and efficacy for the 
production of influenza vaccines, and adenovirus for gene therapy.   This paper seeks to use an 
existing validated ultra scale-down tool, which is designed to mimic the commercial scale process 
environment using only millilitres of material, to provide some initial insight into the performance of 
the harvest step for these processes.  The performance of industrial scale centrifugation and 
subsequent downstream process units is significantly affected by shear.  The properties of these 
cells, in particular their shear sensitivity, may be changed considerably by production of a viral 
product, but literature on this is limited to date.  In addition, the scale-down tool used here has not 
previously been applied to the clarification of virus production processes.  The results indicate that 
virus infected cells do not actually show any increase in sensitivity to shear, and may indeed become 
less shear sensitive, in a similar manner to that previously observed in old or dead cell cultures.  
Clarification may be most significantly dependent on the virus release mechanism, with the budding 
influenza virus producing a much greater decrease in clarification than the lytic, non-enveloped 
adenovirus. A good match was also demonstrated to the industrial scale performance in terms of 
clarification, protein release and impurity profile. This article is protected by copyright. All rights 

reserved 
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Introduction 

Viral products have been successfully used as both prophylactic and therapeutic vaccines, yet have 

unique processing challenges depending on the choice of enveloped or non-enveloped virus utilised.  

This paper uses ultra scale-down studies to explore the harvest by continuous centrifugation of a 

non-enveloped adenovirus and an enveloped influenza virus, both of which are increasingly 

important viral products.  Adenovirus is one of the leading candidates currently being studied for use 

as a vector in both prophylactic vaccine design and in gene therapy (Silva et al. (2010), Waehler et al. 

(2007), Zhang and Godbey (2006)), with particular potential in oncology, and therapeutic  vaccines 

(Kotterman et al., 2015).  526 reported trials are currently ongoing (Edelstein, 2016) and licenced 

products include Gendicine in China for head and neck cancer (Kotterman et al. (2015), Kasala et al. 

(2016)).   Meanwhile, in addition to seasonal influenza, the continuing potential for pandemic 

influenza also remains a high profile, public health priority (Kamps et al. (2006),Osterhaus et al. 

(2011)).  The most successful and widely used strategy for combating influenza has been prevention 

via vaccination (Hedlund et al. (2010), Salomon and Webster (2009), Muennig and Khan (2001)). 

Scale up of production is set to pose a major challenge in the future for both these products.  

Adenovirus production is shifting from traditional adherent culture to larger scale bioreactor based 

systems, potentially introducing complexities, in particular the challenges associated with factors 

such as shear (Pettitt et al., 2016), which is of particular significance in downstream processing, and 

needs to be understood. For influenza vaccine production too, there is an urgent need for more 

efficient and cost-effective processes than the current egg-based system with its numerous 

shortcomings (Feng et al., 2011), to meet the requirement for billions of doses in stock piles, and 

rapid response to emergence of new pandemic strains, alongside the large annual seasonal influenza 

vaccine production (Chua and Chen (2010) ,Osterhaus et al. (2011)). The demand is such that there 

are several continuous cell-line based candidates and processes in development, supported by both 

commercial and public funded ventures (Genzel and Reichl, 2009). These continuous cell-line 

candidates and processes must be well characterised. 
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Boychyn et al. (2004) have developed an ultra scale-down technique which accounts for the impact 

of shear in large scale continuous centrifugation on the harvest from mammalian cell based 

bioreactor cultures.   Ultra scale-down uses millilitres of material to imitate the effects of industrial 

processes, with the aim of facilitating rapid scale-up of new products (Wolff and Reichl 

(2011),Titchener-Hooker et al. (2008)), troubleshooting and broadening product and process 

understanding; all with lower cost and reduced biosafety risks through minimised volume 

requirements (Rathore and Sofer, 2005).  The centrifuge ultra scale-down model has previously been 

used successfully to predict the performance of various centrifuges for mammalian cell cultures 

(Hutchinson et al. (2006), Zaman et al. (2009)), protein precipitates (Boychyn et al., 2004) and 

flocculants (Berrill et al., 2008), including comparison to large scale of clarification (Boychyn et al., 

2004), solids remaining, fragment antibody recovery and process impurity concentrations (Lau et al., 

2013), and impact on subsequent filtration performance (Zaman et al., 2009).  No literature has been 

published, however, on the use of the ultra scale-down mimic in predicting the performance on virus 

infected cell harvests.  Nor are the authors aware of any literature on the effects of shear on virus 

infected cells.  This paper therefore aims to address this and gain insights into the performance of 

these important processes using this well characterised and already successfully demonstrated 

laboratory mimic. 

Theoretical Considerations 

The cell and the virus life cycle 

In this paper, two contrasting viruses are considered.  Adenovirus is a non-enveloped, icosahedral 

virus with a double strand of DNA at its core, of approximately 70-100nm in size (Waehler et al., 

2007), with 52 identified serotypes (Harrison, 2010), of which we concentrate here on serotype 5, 

and made up of approximately 13 structural proteins (Russell, 2009).  Influenza, on the other hand, is 

a pleomorphic enveloped virus, varying in size between 80 and 120nm (The Rapid Reference to 

Influenza Resource Center Team. Adapted from Wilschut, 2006), with segmented negative-sense, 
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single RNA strands (Chang et al., 2015), and 9 viral proteins (Shaw et al., 2008), of which HA and NA 

are deemed to be the main antigens in the viral vaccine (Osterhaus et al., 2011). 

There are a number of mechanisms by which viruses may initiate release of mature virions from the 

host cell, which will vary chiefly as a function of the virus type, with non-enveloped icosahedral 

viruses being released by a different mechanism than enveloped viruses, which only becomes 

infective once it acquires its lipid envelope from the cell membrane upon egress from the cell (Garoff 

et al., 1998).  It may be anticipated that the mechanism by which the virus initiates release from the 

host cell will have significant implications for the subsequent clarification.  Whilst influenza buds 

from the plasma cell membrane (Roberts et al., 2015), adenovirus accelerates the death and lysis of 

the cell and ultimately the disruption of the cell membrane (Murali et al., 2014).  The membrane 

penetration of non-enveloped viruses is also distinctly different from that of enveloped viruses 

(Wiethoff et al., 2005).  There are a large number of permeations with respect to the modifications 

which viruses may induce in cell structure and physiology, both during propagation and at virus 

release. The following concentrates therefore on the broad release mechanism for these two virus 

types, as it is currently understood, and its impact on process clarification. 

Influenza viruses modify the plasma cell membrane of infected cells by insertion of the membrane 

proteins and destruction of the receptors for haemagglutinin prior to budding (Skehel and Wiley, 

1995). The capsid and core are assembled at the membrane at the point of budding, at lipid rafts 

where cholesterol/lipid compositions differ from that of the standard cell membrane and viral 

membrane proteins are concentrated, and which may remain dispersed over the cell surface or 

coalesce to form a large lipid raft zone from which multiple viruses bud.  Other viruses which bud in 

this fashion include HIV-1 and Ebola virus.  In other enveloped viruses the assembly of the core 

occurs in the cell cytoplasm before transport to the membrane.  To form an envelope around the 

virus the membrane must deform, and eventually separate from the host cell membrane, to achieve 

which the local chemical and physical membrane properties must be modified (Perlmutter and 

Hagan (2015), Rossman and Lamb (2011)).   
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Adenoviruses by contrast are transcribed, replicated and assembled in the infected cell nucleus and 

released by cell lysis (McLean et al., 2008).  According to Hulo et al. (2011) cell membrane disruption 

is achieved via addition of virus encoded viroporins to the cell membrane.  According to Gros and 

Guedan (2010) adenovirus release is generally inefficient with large amounts of the virus retained 

inside the cell. It is for this reason that a cell lysis step is not uncommon with adenovirus processing. 

Properties of viruses themselves may vary depending on the cell type which produces them, 

particularly enveloped viruses (Shaw et al. (2008), Schaap et al. (2012), Shigematsu et al. (2014)), but 

the quality of the virus itself is not considered in this study. 

Many viruses display a degree of tropism, meaning that they propagate better in some cells than 

others.  Although numerous continuous cell lines are available for the propagation of both influenza 

and adenovirus the work presented here uses EB66 (Valneva), a relatively new duck cell line, and 

HEK, a well-established human cell line. 

Although it is not widely discussed it has been stated in the literature that infected cells are more 

‘fragile’ and thus more susceptible to damage by shear stress (Silva et al. (2010)).  This seems 

intuitively a logical assumption, and this paper therefore seeks to test this as a starting hypothesis.  

It should be noted that virus behaviour and cell destruction mechanisms may vary not just between 

viruses, but between the cell types they infect (Lynch et al. (2011), Murali et al. (2014)).  Hence the 

interest in examining side-by-side two such different cells and viruses.  Equally, however, it would 

not be wise to draw too general a set of conclusions from the outcomes of this work alone. 

Ultra Scale-Down of continuous centrifugation  

This system has been extensively used and validated over the last 15 years, and is discussed 

extensively in the literature.  In summary scaling of solids settling between large scale and small 

scale laboratory centrifuges is discussed by Maybury et al. (2000) who follows on from work by 

Mannweiler and Hoare (1992).  Maybury et al. (2000) also demonstrated the importance of shear for 

clarification at large scale.  CFD has been used by Boychyn et al. (2001) in discussion of the 

difference between high and low shear centrifuges, to locate the shear in the feedzone of the 
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centrifuge and to demonstrate comparability in shear levels between this feedzone shear and that at 

the disc tip in the rotating shear device.  The authors went on to use a combination of pre-shearing 

in the rotating shear device and laboratory scale centrifugation to replicate the clarification of 

protein precipitates in industrial and pilot scale continuous centrifuges of various designs. 

Materials and Methods 

The overall experimental flow scheme is summarised in Figure 1. 

Cell culture 

HEK293 cells (85120602-1VL SIGMA293 Cell Line, European Cell Bank) were grown as adherent cell 

cultures in T-175 flasks (660160, Greiner Bio-one, UK), using defined DMEM media (21969-035, 

Gibco, Life technologies, UK) with 10%FBS (10270-106, Gibco, Life technologies, UK) and 5.5ml L-

glutamine (25030-024, Gibco, Life technologies, UK), and in a Sanyo incubator at 37°C and 5%CO2.  

Cell culture and virus replication conditions are summarised in Table 1.  For non-virus infected runs 

the cell culture conditions were similar in range to those seen in virus infected runs at the time of 

infection.  In order to remove the samples from the T-flasks and prepare them for shearing the 

following steps were undertaken:  (i) free liquid was removed from the T-flask, (ii) any remaining 

attached cells were washed with PBS, then trypsin added for a maximum of 3 minutes at 37°C, the 

trypsin neutralised by addition of fresh media and the cells spun down, and the pellet re-suspended 

in the free liquid removed in step (i).   

EB66 cells (Valneva, France) were grown and infected by GSK in a 50-litre single use bioreactor. The 

cells were grown to a high cell density before dilution in fresh media and other constituents for viral 

propagation, and infected.  Sample volumes were taken at 4 and 5 days after infection, and 

subjected to the shear conditions of interest (within 2 hours), and then clarified, and OD measured 

(within the same day).  For the non-virus infected culture a small volume was taken from the main 

bioreactor and diluted in the same material as for infection, except without the addition of the virus 

seed.  As with the virus infected samples the non-virus infected sample volume was subjected to a 
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range of shear conditions within 2 hours of being extracted from the bioreactor / diluted, and then 

clarified and OD measured within the same day.   

Virus seed 

The Adenovirus kit used was supplied by Clinical BioManufacturing Facility (Oxford, UK).  It was an 

ad5 control stock (D419, p53). 

The influenza virus runs used three separate influenza strains:  A/Shanghai/2/2013 (H7N9), 

A/Gyrfalcon/Washington (H5N8) from the CDC and A/Duck/Bangladesh/19097/2013(H5N1) from St 

Jude Children’s Research Hospital. 

Rotating Disc Device 

The rotating disc shear device consists of an aluminium alloy disc of 0.1 cm thickness and 4 cm 

diameter, contained within a chamber of 1 cm height and 5 cm diameter.  This rotating disc, which is 

detailed elsewhere (Boychyn et al., 2001, Boychyn et al., 2004, Hutchinson et al., 2006, Levy et al., 

1999, Zaman et al., 2009, Boychyn et al., 2000), was designed and constructed at UCL.  

The disc was rotated for a fixed period at a fixed speed via a shaft and motor.  To fill the rotating 

shear device chamber requires approximately 15-20ml of sample, such that all air bubbles are 

cleared from the chamber.  Samples were subjected in quadruplicate to the following six conditions: 

sheared at one of the following speeds, 0, 6, 8, 10 and 12krpm, for 20 seconds, or at a speed of 

18krpm for 1 minute, in that order.  These speeds are equivalent to a maximum energy dissipation 

rate of 0, 27, 90, 210 and 420kW/kg respectively.   It is anticipated that a low shear continuous 

centrifuge may be well represented by a speed of 6krpm and the feed zone shear of a high shear 

continuous centrifuge by a rotating shear device speed of 12krpm. 

Centrifugation 

The influenza process harvest was conducted using a PSC-5 disc stack centrifuge (GEA, Milton Keynes, 

UK), at a speed of 8.5krpm and a flowrate of 200l/h. 

 
 

  
 A

cc
ep

te
d

 

 

 

 

 

 

 

 

 

  

 
 
 

  P
re

pr
in

t



This article is protected by copyright. All rights reserved 
 

Clarification 

For uninfected HEK cells, uninfected EB66 cells, adenovirus infected HEK cells and influenza infected 

EB66 cells the cells were first subjected to shear then clarified in an Eppendorf centrifuge using the 

following conditions: 1ml, 1.5ml and 2ml spun down for 5 minutes at 3000rpm and the same 

volumes spun down for 5 minutes at 6000rpm.  For well spun supernatant 2ml was spun down for 30 

minutes at 6000rpm.  For HEK cells (adenovirus infected, and uninfected) the Eppendorf 5430 

centrifuge was used with rotor FA-45-30-11 (Eppendorf, UK), whilst for EB66 (influenza infected, and 

uninfected) cells the 5427R Eppendorf centrifuge with rotor FA-45-48-11 (Eppendorf, UK), using only 

the upper row.  In the Eppendorf 5430 centrifuge the centrifuge conditions listed are equivalent to a 

V/tΣ of 9.0, 13.2, 17.1, 2.2, 3.3 and 4.3 x10-8m/s respectively, and in the 5427R Eppendorf centrifuge 

to 5.3, 7.7, 9.8, 1.3, 1.9 and 2.45 x10-8m/s respectively. 

For HEK cells (adenovirus infected, and uninfected) the absorbance (OD) of the supernatant, feed 

and well spun supernatant was measured at 600nm, as being close enough to the desired OD of 

650nm, by transferring 200µl of the supernatant to a translucent 96 well plate (82.1581, Sarstedt, 

UK), which was kept agitated until measurement, and measured on an InfiniTe 200 plate reader 

(Tecan, UK), using a rotationally symmetric layout of replicate samples.  By comparing the 

absorbance of the supernatant to that seen in the feed stock, and in the supernatant of a well spun 

sample, the clarification was derived, as outlined elsewhere by Maybury et al. (2000).  Maybury et al. 

(2000) also describe how to match the performance at pilot and industrial scale to that at laboratory 

scale, based on sigma theory. 

For EB66 cells (influenza infected and uninfected) sheared cells were also clarified using a larger 

laboratory scale centrifuge, Allegra X-15R, rotor SX4750A (Beckmann), using 14ml falcon tubes.  The 

conditions used were as follows:  7ml and 14ml spun down for 7minutes at 3000rpm, and the same 

volumes spun down for 10minutes at 4000rpm, as well as 13, 10, 7, 5 and 2ml spun down for 

5minutes at 4000rpm.  These centrifuge conditions are equivalent to a V/tΣ of 6.7, 1.5, 2.8, 5.7, 10.5, 

7.8, 5.3, 3.7 and 1.4 x10-8m/s respectively.  The absorbance (OD) was measured at 650nm by using 
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an UltraSpec 2000 (Pharmacia Biotech, Uppsala, Sweden).  For biosafety reasons influenza infected 

samples were pipetted into the cuvettes under a flow hood and stoppered with a cap.  The samples 

were then agitated just before measurement, by inverting several times, to ensure that particle 

settling did not affect the accuracy of measurements. 

The conditions listed above for the larger laboratory scale centrifuge are designed to match the Q/ 

conditions in the PSC-5 centrifuge (6.3x10-8m/s).  However, it should be noted that the g-forces will 

also differ between this centrifuge, the smaller laboratory centrifuge and the PSC-5.  It has been 

shown elsewhere that for certain cell types, specifically algal, the g-forces may also be of interest 

with respect to the clarification and settling (Xu et al., 2015b).  The g-forces for the various 

centrifuges are therefore summarised as follows: the small Eppendorf centrifuge has a g-force 

ranging from 1,600 to 14,000xg, the larger laboratory centrifuge has a g-force ranging from 5,900 to 

41,000xg and the PSC-5 has a g-force ranging from 7,000 to 20,000xg, over the operating ranges 

used. 

For EB66 (influenza infected, and uninfected) the supernatant samples used for western blots and 

protein assays were produced by spinning down 7ml of the sheared sample at 3000rpm for 

7minutes, conditions which should roughly match the Q/ of the PSC-5 centrifuge at the run 

conditions used in this process. 

Cell count 

The HEK cells (adenovirus infected, and uninfected) were counted using a haemocytometer.  Trypan 

blue was used to confirm the relative viability of HEK cells infected with adenovirus 3 and 6 days 

post infection for runs 7, 8, 9 and 10 as listed in Table 1. 

The EB66 cells (influenza infected, and uninfected) were counted using a ViCell XR Series (Beckmann 

Coulter, UK). The pre-prepared cell type EB66 and EB66PI were selected, for which the 

parameters are a minimum diameter of 6 and 9um, a cell brightness of 82 and 85%, a cell 

sharpness of 85 and 100, a viable spot brightness of 66 and 70%, and a viable cell spot area of 5 

and 8% respectively, and a maximum diameter of 35um. The analysis software version was 2.03. 
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Western Blot 

The presence of adenovirus for HEK cell cultures was confirmed by western blot against a rabbit 

adeno coat proteins primary antibody (ab6982, Abcam, Cambridge, UK), and a goat anti-rabbit HRP 

secondary (ab6721, Abcam, Cambridge, UK), and also, on another blot, against a mouse hexon 

protein primary antibody (10R-8460, Fitzgerald, Acton, USA) and a rabbit anti-mouse HRP secondary 

(ab6728, Abcam, Cambridge, UK).  The samples were prepared by dilution 1:1 in NP40 buffer, then 

dilution 1:1 of the diluted sample in STB.  Equal quantities of protein were added to each well.  The 

gel was a BOLT 4-12% bis-tris 10 well mini gel (Invitrogen, Thermo Fisher scientific, UK) using a mini 

gel tank (Invitrogen, Thermo Fisher scientific, UK) run at 200V, transferred to a PVDF membrane 

(IB24001, Invitrogen, Thermo Fisher scientific, UK) using the iBlot 2 Dry transfer (Thermo Fisher 

scientific, UK).  Molecular weight markers were SeeBlue pre-stained protein standard (LC5625, 

Thermo Fisher scientific, UK).  The chemiluminesence substrate used was Supersignal West Pico 

(34080, Thermo Fisher scientific, UK).   Imaging was completed using a ChemiDoc MP (Bio-rad, UK).  

Image Lab version 5.2.1. (Bio-Rad, UK) was used for band position and strength identification. 

For the virus infected EB66 cells the concentration of EB66 host proteins in the supernatant was 

quantified using a rabbit primary antibody against EB66 host cell proteins developed by GSK  and a 

rabbit anti-sheep IgG HRP secondary (P0448, Dako).  For both the western blot and SDS-PAGE equal 

sample volumes were added per well.  The gel was a Criterion XT precast 4-12% bis-tris 18 well comb 

gel (bio-rad, Ca) using a bio-rad criterion cell gel tankrun at 200V, transferred to a nitrocellulose 

membrane (162-0145, Bio-Rad, UK)  using the wet blotting method, with a criterion blotter unit (Bio-

Rad, UK).  Molecular weight markers were Precision Plus Protein WesternC Blotting Standards (161 

0376, Bio-Rad, UK), against Precision Protein StepTactin-HRP Conjugate (161 0380, Bio-Rad, UK).   A 

gel was run, using the same samples, and stained with Sypro Ruby protein stain (S21900, Invitrogen).  

Molecular weight markers for the gel were Precision Plus Protein unstained Protein Standards, step-

tagged recombinant (161 0363, Bio-Rad, UK).  The chemiluminesence substrate used was 

Supersignal West Pico (34080, Thermo Fisher scientific, UK) which was added drop-wise across the 
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membrane surface directly before imaging.   Imaging was completed using an Image Quant LAS4000 

(GE).  GelAnalyzer version 2010a (GelAnalyzer.com, Lazar and Lazar) was used for band position and 

strength identification. 

Particle Size Distribution Analysis 

The particle count and size distribution was measured for the supernatant following shear and 

clarification in a laboratory centrifuge of 2ml, at a speed of 6000rpm for 5minutes (as detailed above, 

under clarification).  This supernatant was diluted 10x in PBS before being measured using a 

Nanosight tracker LM10 (Nanosight Ltd, UK), the software version 3.1 and the camera type CCD. 

Virus identification 

In addition to western blot (described above) TEM and β-Galactosidase Reporter Gene Staining Kit 

(GALS, Sigma Aldrich, Saint Louis, USA) were used to confirm identity and presence of adenovirus in 

HEK cultures. 

Influenza virus was identified by GSK by testing against HA antibodies.  Western blots were also 

performed against HA anti-bodies, demonstrating the presence of influenza virus. 

Protein Concentration 

For HEK cells (infected with adenovirus, and uninfected) the protein concentration was measured for 

the purposes of the Western blot.   The protein concentration was measured using the modified 

Lowry method (reagents 500-0114, 500-0113 and 500-0115, Bio-rad, UK) in acrylic semi-micro 

cuvettes (67.740, Sarstedt, UK), with the OD at 750nm measured on a biomate3s spectrophotometer 

(thermo scientific, UK). For the EB66 cells (infected with influenza, and uninfected) the sample was 

diluted to three different dilutions, and chemicals added to denature and precipitate the protein.  It 

was then spun down, and the supernatant removed, leaving the protein pellet.  This procedure was 

followed for biosafety reasons.  The protein concentration was then measured in duplicates, using a 

Lowry reaction, with a maximum variance accepted across the three different dilutions..  
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Infectivity Assay 

 Infective adenovirus in the supernatant was quantified using the blue forming units (BFU) assay, 

which involved the identification of cells which had been transfected with the LACz gene (Mittereder 

et al. (1996), Cell_Biolabs_Inc (2004)), using the Beta-galactosidase staining kit (GALS, Sigma Aldrich, 

Saint Louis, USA), and their quantification. 

A 96 well plate was coated with Poly L Lysine (PLL) (P4832, Sigma) by incubating with 30ul per well 

for 5 minutes, removing the PLL and leaving for a further 2 hours to dry, all at room temperature. 

100ul of HEK293T cells at a concentration of 105cells/ml were added per well, and left overnight in 

an incubator. 

The frozen sample was thawed on ice, and dilutions, in cell media, prepared with dilution factors of 

2x103, 2.5x104, 5.1x104, 7.2x104, 2.1x105, 4.3x105, 8.5x105 and 1.7x106.  The media in each well was 

removed and replaced with 100ul of diluted sample.  Each dilution was prepared in triplicate, with 

fresh media added to 3 of the columns, acting as a blank.  The plate with infected sample was left in 

the incubator for 1 hour, then the adenovirus containing media was removed and replaced with 

100ul of fresh media, and the plate incubated overnight. 

Wells were washed twice with 30ul of PBS, left in 30ul 0.5% gluteraldehyde fixation solution for 

5minutes, washed twice again with 30ul of PBS, and left in the incubator overnight in 30ul of staining 

solution. 

The total number of cells which stain blue was counted for each well at a magnification of 5x and, 

where this number was between 50 and 200, corrected for dilution and averaged, to give the 

BFU/100ul.  

Results & Discussion 

Clarification of HEK cells infected with Adenovirus serotype 5  

HEK cells grown in an adherent culture were sheared either a number of days following infection, or 

without being infected with adenovirus, and clarification measured at lab scale.  It was anticipated 

that the cells might show increased sensitivity to shear following infection that could lead to the 
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generation of fine debris which might impact on clarification (Silva et al., 2010), but as can be seen in 

Figure 2 and Figure 3 this was not the case.  No significant decrease in clarification was seen in the 

first 3 days following infection, and following longer infection periods the clarification improved 

significantly.  This is in agreement with the cell count data, which shows no difference in cell 

destruction relative to initial cell numbers for the first 3 days following infection, and no impact of 

shear on cell count following a longer period of infection, i.e. a significant decrease in shear 

sensitivity.  Trypan blue was used to demonstrate that this change is likely to be due to cell death 

which occurs somewhere between the 3rd and 4th day of infection.   It has been shown elsewhere 

(Tait et al., 2009) that older or dead cells in non-virus infected cultures may be less shear sensitive, 

possibly due to the flaccid and weakened cell structure of the dead cell in the shear velocity 

gradients. 

Within the first 3 days following infection there is evidence that shear may cause release of virus 

from cells.  Immunoblots (Figure 4) were conducted showing that the viral protein concentrations in 

the supernatant increase with increasing shear, as shown in Figure 5.  Although the proteins selected 

for plotting are nominally identified, it should be noted that these identifications are designed for 

illustrative purposes only and may not be completely unambiguous, this has no bearing on the 

conclusions drawn.  Overall measures of protein concentration in the supernatant show an increase 

with increasing shear, with each lane on the blots run at equal protein concentration. From which it 

appears that viruses or viral proteins are released at a greater rate than host cell proteins.   This is 

supported by an increase of more than a log in infective units in the supernatant, based on a 

duplicate measurement using a blue forming units assay for quantification of virus by counting 

transfected cells.  This has implications for the best approach to harvesting of adenovirus at large 

scale where, as standard, because so much of the virus is inside the cell, a detergent lysis process or 

homogenisation is conducted to release the adenovirus from the cell mass.   Standard small scale 

processes, which rely on low shear pelleting followed by freeze-thaw to lyse cells and release the 

virus product will not accurately reflect what happens in such large scale processes, and therefore 
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will give limited insight into the challenges and opportunities.  In particular, the addition of a higher-

shear disc stack centrifugation step prior to lysis will clearly have implications for the product 

location and yield, and potentially for the relative importance placed on the processing of the 

supernatant.  This is further complicated by the uncertainty respecting the relative quality of viral 

particles in the supernatant and in the cells which would also need to be taken into account (Altaras 

et al., 2005). 

Taken together, the evidence for virus release, whilst the infected cells appear no more likely to be 

destroyed by shear than uninfected cells probably simply implies that the virus production processes 

are efficient, with cells producing more protein as virus production factories than they do for normal 

metabolic activities.  Indeed this agrees well with evidence that adenovirus production is highly 

metabolically demanding (Silva et al., 2010), and with the high burst volumes shown for adenovirus 

in HEK (Xu et al., 2015a), and also with evidence that adenoviruses may induce autophagy (Balvers et 

al., 2011).  It may also be noted that the evidence gathered to date does not preclude the possibility 

that the additional virus release is due to detachment of virus which was bound to the external cell 

membrane, as oppose to destruction of virus infected cells.  Further work is required to verify the 

source of the additional virus in the supernatant following shear. 

Interestingly the cell lysis by this virus does not appear to significantly decrease the clarification.  

Visually the cells appear to remain largely whole and intact, with the population increasing 

substantially over the post-infection period.  The debris count, as measured in the size range ~60 to 

600nm, does not appear to increase substantially, reinforcing the impression given by visual 

inspection.  The virus induced lysis takes the form of an increased permeable cell membrane, as 

oppose to the absolute destruction of the cell, under these culture conditions.   

Although these results would need to be confirm for suspension cultures they potentially provide 

some valuable insights for the numerous large scale production processes being developed, or 

coming on-line for adenovirus, particularly with respect to harvest windows and decisions regarding 

harvesting product from the supernatant, cell mass, or both. 
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Clarification of EB66 cells infected with Influenza  

EB66 cells infected with influenza show a distinctly different clarification to uninfected EB66 cells. In 

contrast to the above result, with HEK cells infected with adenovirus, Figure 6 (A-D) shows that the 

clarification efficiency for influenza virus infected cells is significantly below that of non-virus 

infected cells based on a 95% confidence interval (n=3).  It also appears to show an increase in the 

impact of shear. As shear increases, the clarification efficiency decreases and is worsened with 

increased viral infection duration.  

Again, as for HEK cells and adenovirus, the cell count was measured for different shear levels, for 

both influenza virus infected and uninfected EB66 cells.  Figure 7, however, by contrast with the 

clarification data discussed above, shows a similar pattern to that seen in adenovirus infected HEK: 

the number of cells destroyed by shear decreases following infection, particularly for the highest 

shear level.  Application of the same explanation, of a greater number of dead cells, is supported by 

the decrease in viability from 96+/-4.5% (95% CI, student t-test, n=3), to 73+/-9.2% and 77+/-10.8% 

(95% CI, student t-tests, n=2) for uninfected EB66 cells, and 4 and 5 days post infection respectively.   

The viability of sheared cells is marginally but consistently greater than for unsheared cells in the 

virus infected cells, whilst in the non-virus infected cells it is less.  For cells subjected to shear in the 

rotating shear device at a speed of 12krpm, for example, the viabilities of the uninfected EB66 cells 

was 92%, and cell viabilities of influenza infected cell at 4 and 5 days post infection were 78% and 

81% respectively.  As a percentage of the original number in the sample therefore the non-viable cell 

count decreased more than the viable cell count.  This may imply that cells deemed to be non-viable 

are marginally more likely to be destroyed by shear, possibly including infected cells.  This could not 

be confirmed by infectivity assays, as with adenovirus, because influenza virus released by shear 

would not be enveloped, and therefore not mature, viable or infective.   

Taken together the decrease in clarification between uninfected and virus infected cells, and the 

increasing shear insensibility indicated by the cell count, implies that clarification is being impacted 

by the debris formed by virus induced cell lysis during or following budding; the Vi-Cell images 
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certainly show a noisier background after a number of days of infection which may be membrane 

components which form during virus egress from the cell.  It may be noted that whilst the slope of 

the curves in Figure 6 (A-D) increase with virus infection, the distance between the slopes, 

representing different shear levels, only shows a clear visible increase after 5 days of infection.  This 

may represent a combined effect of the impact of virus infection on the cells and the subsequent 

increasing sensitivity of the clarification to shear. 

The influenza virus was cultured at pilot scale (50litres), and clarified using a disc stack centrifuge 

(PSC-5).  Prior to these influenza based studies this disc stack centrifuge was run with both HEK and 

CHO cells at the same flow rate and rotational speed as used for the clarification of the influenza 

harvest.  The clarification of these HEK and CHO cell cultures were measured both for the disc stack 

centrifuge and using the ultra scale-down mimic (consisting of rotating disc and laboratory 

centrifuge), which has been used extensively for the prediction of clarification in mammalian cell 

cultures.  This work confirmed that the centrifuge in question is a low shear centrifuge, with rotating 

shear device speeds of the order of 4.6 and 6 krpm (HEK and CHO respectively)  giving a good 

prediction of clarification and protein release levels (Melinek et al., 2017).  As this scale-down mimic 

has not yet been validated for use with virus infected continuous cell line harvest it was deemed 

important to include validation at scale, in discussing the implications of the presented results.  

Figure 6E therefore includes the clarification as measured for the disc stack supernatant.  The 

equivalent rotating shear device speed required to accurately match the disc stack centrifuge 

clarification, overall protein release  and relative concentration for a number of host cell proteins 

(Figure 8 and Figure 9) is approximately 4.5krpm.  This result is therefore consistent with 

expectations. 

It was noted that there was an unexpected discrepancy between the small and large lab scale 

centrifuges (compare Figure 6D and Figure 6E).  Clarification from the larger lab scale centrifuge was 

consistently below that of the smaller lab scale centrifuge.  Given the costs and industrial setting of 

this work it was not possible to complete sufficient repeats to verify the significance of this 
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difference.  However, it was noted that this effect was less visible in the non-infected EB66 cells.  It 

has been hypothesised that this difference may be due to differences in the g-forces or head present 

in these different systems, but again it was not possible to fully verify this hypothesis.  It may also be 

observed that the infected EB66 cells give a less consistent measure of clarification.  This may be due 

to (i) differences in the way the debris or cells pellet, or (ii) difference in the supernatant make up, 

such that there is a tendency to form solid impurities, which manifest as a floating ‘scum-film layer’ 

following virus infection, or (iii) differences in methodology, as noted in the materials and methods, 

clarification section. 

Conclusions 

Studies were conducted on the impact of shear on HEK and EB66 cells before and after infection 

with adenovirus and influenza respectively.  The interest of these studies was in the implications for 

the harvest and subsequent processing of adenovirus and influenza for therapeutic and prophylactic 

viral vaccines. These are both areas of major importance, in which continuous cell line production of 

a viral product is involved and where scale may play a major role in cost and availability of sufficient 

product.   Although it cannot be said definitively from the data that virus infected cells are not more 

sensitive to shear at some point in the infection process, the evidence strongly suggests that cells 

used to propagate enveloped influenza virus in cell culture may be more shear sensitive and more 

difficult to clarify in comparison to non-enveloped adenovirus.  The clarification may be worse for 

cells where the virus produces a significant amount of lysis debris, and unchanged, or even improved 

for cells where the virus leaves the cell structure largely intact.  Further work is required before any 

definite patterns can be drawn for clarification and shear sensitivity for different cell types, virus 

types and culture conditions.  Further it has been demonstrated that the ultra scale-down laboratory 

mimic previously developed for use with mammalian cells gives a good prediction on a range of 

parameters for the harvest by continuous centrifugation of EB66 cells producing influenza virus.  

Particularly with respect to viral vectors, where substantial expense, expertise and biosafety issues 
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may also play a role, this represents demonstration of a highly promising tool for timely and robust 

process development. 
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Table 1.  Summary of culture conditions for adenovirus / HEK cell runs 

Figure 1.  Experimental Flowsheet 

Figure 2.  Normalised clarification of  (A) uninfected HEK cells,  (B), infected HEK cells with adenovirus for less than 3 

days, and  (C) infected HEK cells with Adenovirus for between 4 and 6 days.  Cells have been subjected to disruption by a 

rotating shear device at varying shear rates prior to clarification in a laboratory centrifuge, with rotating shear device 

speeds of 0krpm (squares), 6krpm (triangles), 8krpm (crosses), 10krpm (circles) and 12krpm (diamonds) respectively.  

Error bars represent 95% confidence intervals using student t-test (n=6, 3 and 5 for 8 and 10krpm, and n=6, 4 and 6 for 0, 

6 and 12krpm, for figures A, B and C respectively).   

Figure 3.  Normalised cell counts for HEK cells, not infected with adenovirus (diamonds), infected with adenovirus for 

less than 3 days (squares) and infected with adenovirus for between 4 and 6 days (crosses).  Cells have been subjected to 

disruption by a rotating shear device at varying shear rates, and then counted using a haemocytometer.  Error bars 

represent 95% confidence intervals using student t-test (n=4).   

Figure 4.  Sample immunoblot, tagged with antibodies against Adenovirus type 5 coat proteins.  Lanes are, in order, 

molecular weight markers, adenovirus type 5 kit virus, lysate of HEK cells infected with adenovirus and subjected to 

rotating shear device speeds of 0, 18 and 12krpm, a reference of adenovirus infected HEK cells, lysate of uninfected HEK 

cells, and supernatant of HEK cells infected with adenovirus and subjected to rotating shear device speeds of 0, 18 and 

12krpm.    N.B. Equal mass of protein in each lane. 

Figure 5.  Graphs show relative concentrations for selected viral proteins (identified on the immunoblot in Figure 4).  

Graphs on the top are of lysate concentrations, and on the bottom are of concentration in the supernatant.  Striped is 

unsheared, dotted has been subjected to an intermediate level of shear (12krpm in the rotating shear device) and filled 

has been subjected to a high level of shear (18krpm in the rotating shear device). 

Figure 6.  Normalised clarification of EB66 cells, (A) uninfected with influenza virus, (B,C) infected with influenza virus for 

4 days and (D) infected with influenza virus for 5 days.  Cells have been subjected to disruption by a rotating shear 

device at varying shear rates prior to clarification in a laboratory centrifuge, with rotating shear device speeds of 0krpm 

(squares), 6krpm (triangles), 8krpm (crosses), 10krpm (circles) and 12krpm (diamonds) respectively.    Measurements 

shown are for a single representative run (as all influenza runs used different viral strains), with the exception of (A), 

where triplicate results are shown.   Normalised clarification of EB66 cells, infected with flu virus for 5 days, where cells 

have been subjected to disruption by a rotating shear device at varying shear rates prior to clarification in a Beckmann 

laboratory centrifuge, using 15ml falcon tubes, with rotating shear device speeds of 0krpm (squares), 6krpm (triangles), 

8krpm  (crosses), 10krpm (circles) and 12krpm (diamonds) respectively (E).  Measurements shown in E are for two 

separate runs, each using a different viral strain of influenza.  In addition red circles give the clarification measured on 

the PSC-5 centrifuge. 
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Figure 7.  Cell counts for EB66 cells, not infected with influenza virus (triangles), infected with influenza virus for 4 days 

(squares) and infected with influenza virus for 5 days (diamonds).  Cell have been subjected to disruption by a rotating 

shear device at varying shear rates, and then counted using a Vi-Cell.  In (A) measurements shown are for three separate 

runs each using a different influenza A viral strain (A/Gyrafalcon/Washington H5N8, A/Shanghai/2/2013 H7N9 and 

A/Duck/Bangladesh/19097/2013(H5N1)).  In (B) average normalised measurements are shown for pre-infection and the 

two post-infection time points. 

Figure 8.   Sample Immunoblot, tagged with antibodies against EB66 host cell proteins.  Lanes are, in order, molecular 

weight markers, supernatant of influenza virus infected EB66 cells subjected to rotating shear device speeds of 6 and 

12krpm respectively, supernatant of EB66 cells not infected with virus subjected to a rotating shear device speed of 

6krpm, supernatant of influenza virus infected EB66 cells subjected to rotating shear device speeds of 6, 12, 6, 0 and 

0krpm, the supernatant from PSC-5 and the same virus run as in the other lanes, lysate from influenza virus infected 

EB66 cells subjected to rotating shear device speeds of 0, 6 and 12krpm and a reference virus infected supernatant 

sample (the supernatant from the PSC-5 on the first virus run). N.B. Equal volume of sample was loaded in each lane.   

Figure 9.  Graphs show relative concentrations for selected host cell proteins (identified on the immunoblot in Figure 8).  

Graphs show average concentrations for two separate run (with different viral strains) and from the day before harvest 

for the second run.  Cells have been subjected to disruption by a rotating shear device at varying shear rates prior to 

clarification in a Beckmann laboratory centrifuge, using 15ml falcon tubes.  The protein concentrations for each run have 

been normalised such that the concentration for the PSC-5 centrifuge supernatant for that run is 100. In the bar charts 

striped is unsheared, dotted has been subjected to a low level of shear (6krpm in the rotating shear device) and filled 

has been subjected to a high level of shear (12krpm in the rotating shear device).  Error bars are standard deviation of 

duplicate measurement (n.b. ‘run 1 – 1 day’ has duplicates for the mid shear level only). 
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Normalised clarification of  (A) uninfected HEK cells,  (B), infected HEK cells with adenovirus for less than 3 
days, and  (C) infected HEK cells with Adenovirus for between 4 and 6 days.  Cells have been subjected to 
disruption by a rotating shear device at varying shear rates prior to clarification in a laboratory centrifuge, 

with rotating shear device speeds of 0krpm (squares), 6krpm (triangles), 8krpm (crosses), 10krpm (circles) 
and 12krpm (diamonds) respectively.  Error bars represent 95% confidence intervals using student t-test 

(n=6, 3 and 5 for 8 and 10krpm, and n=6, 4 and 6 for 0, 6 and 12krpm, for figures A, B and C 
respectively).    
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Normalised cell counts for HEK cells, not infected with adenovirus (diamonds), infected with adenovirus for 
less than 3 days (squares) and infected with adenovirus for between 4 and 6 days (crosses).  Cells have 
been subjected to disruption by a rotating shear device at varying shear rates, and then counted using a 

haemocytometer.  Error bars represent 95% confidence intervals using student t-test (n=4).    
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Sample immunoblot, tagged with antibodies against Adenovirus type 5 coat proteins.  Lanes are, in order, 
molecular weight markers, adenovirus type 5 kit virus, lysate of HEK cells infected with adenovirus and 

subjected to rotating shear device speeds of 0, 18 and 12krpm, a reference of adenovirus infected HEK cells, 
lysate of uninfected HEK cells, and supernatant of HEK cells infected with adenovirus and subjected to 

rotating shear device speeds of 0, 18 and 12krpm.    N.B. Equal mass of protein in each lane.  
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Graphs show relative concentrations for selected viral proteins (identified on the immunoblot in Figure 
4).  Graphs on the top are of lysate concentrations, and on the bottom are of concentration in the 

supernatant.  Striped is unsheared, dotted has been subjected to an intermediate level of shear (12krpm in 

the rotating shear device) and filled has been subjected to a high level of shear (18krpm in the rotating 
shear device).  
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Normalised clarification of EB66 cells, (A) uninfected with influenza virus, (B,C) infected with influenza virus 
for 4 days and (D) infected with influenza virus for 5 days.  Cells have been subjected to disruption by a 
rotating shear device at varying shear rates prior to clarification in a laboratory centrifuge, with rotating 

shear device speeds of 0krpm (squares), 6krpm (triangles), 8krpm (crosses), 10krpm (circles) and 12krpm 
(diamonds) respectively.    Measurements shown are for a single representative run (as all influenza runs 
used different viral strains), with the exception of (A), where triplicate results are shown.   Normalised 

clarification of EB66 cells, infected with flu virus for 5 days, where cells have been subjected to disruption by 
a rotating shear device at varying shear rates prior to clarification in a Beckmann laboratory centrifuge, 

using 15ml falcon tubes, with rotating shear device speeds of 0krpm (squares), 6krpm (triangles), 
8krpm  (crosses), 10krpm (circles) and 12krpm (diamonds) respectively (E).  Measurements shown in E are 

for two separate runs, each using a different viral strain of influenza.  In addition red circles give the 
clarification measured on the PSC-5 centrifuge.  
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Cell counts for EB66 cells, not infected with influenza virus (triangles), infected with influenza virus for 4 
days (squares) and infected with influenza virus for 5 days (diamonds).  Cell have been subjected to 
disruption by a rotating shear device at varying shear rates, and then counted using a Vi-Cell.  In (A) 

measurements shown are for three separate runs each using a different influenza A viral strain 
(A/Gyrafalcon/Washington H5N8, A/Shanghai/2/2013 H7N9 and 

A/Duck/Bangladesh/19097/2013(H5N1)).  In (B) average normalised measurements are shown for pre-
infection and the two post-infection time points.  
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Sample Immunoblot, tagged with antibodies against EB66 host cell proteins.  Lanes are, in order, molecular 
weight markers, supernatant of influenza virus infected EB66 cells subjected to rotating shear device speeds 
of 6 and 12krpm respectively, supernatant of EB66 cells not infected with virus subjected to a rotating shear 

device speed of 6krpm, supernatant of influenza virus infected EB66 cells subjected to rotating shear device 
speeds of 6, 12, 6, 0 and 0krpm, the supernatant from PSC-5 and the same virus run as in the other lanes, 
lysate from influenza virus infected EB66 cells subjected to rotating shear device speeds of 0, 6 and 12krpm 
and a reference virus infected supernatant sample (the supernatant from the PSC-5 on the first virus run). 

N.B. Equal volume of sample was loaded in each lane.    
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Graphs show relative concentrations for selected host cell proteins (identified on the immunoblot in Figure 
9).  Graphs show average concentrations for two separate run (with different viral strains) and from the day 
before harvest for the second run.  Cells have been subjected to disruption by a rotating shear device at 

varying shear rates prior to clarification in a Beckmann laboratory centrifuge, using 15ml falcon tubes.  The 
protein concentrations for each run have been normalised such that the concentration for the PSC-5 

centrifuge supernatant for that run is 100. In the bar charts striped is unsheared, dotted has been subjected 
to a low level of shear (6krpm in the rotating shear device) and filled has been subjected to a high level of 
shear (12krpm in the rotating shear device).  Error bars are standard deviation of duplicate measurement 

(n.b. ‘run 1 – 1 day’ has duplicates for the mid shear level only).  
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