
Big data from electronic health records for

early and late translational cardiovascular

research: challenges and potential

Harry Hemingway1,2*, Folkert W. Asselbergs1,2,3, John Danesh4,

Richard Dobson1,2,5, Nikolaos Maniadakis6, Aldo Maggioni6,

Ghislaine J.M. van Thiel3, Maureen Cronin7, Gunnar Brobert8, Panos Vardas6,

Stefan D. Anker9,10, Diederick E. Grobbee11, and Spiros Denaxas1,2; On behalf of the

Innovative Medicines Initiative 2nd programme, Big Data for Better Outcomes,

BigData@Heart Consortium of 20 academic and industry partners including ESC†

1Research Department of Clinical Epidemiology, The Farr Institute of Health Informatics Research, University College London, 222 Euston Road, London NW1 2DA, UK; 2The
National Institute for Health Research, Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, University College London, 222 Euston Road,
London NW1 2DA, UK; 3Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands; 4MRC/BHF Cardiovascular
Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK; 5NIHR Biomedical Research Centre
for Mental Health (IOP), King‘s College London, De Crespigny Park, London SE5 8AF, UK; 6European Society of Cardiology (ESC), 2035 Route des Colles, Les Templiers - CS
80179 Biot, 06903 Sophia Antipolis, France; 7Vifor Pharma Ltd, lughofstrasse 61, 8152 Glattbrugg, Zurich, Switzerland; 8Department of Epidemiology, Bayer Pharma AG,
Müllerstrasse 178, 13353 Berlin, Germany; 9Division of Cardiology and Metabolism—Heart Failure, Cachexia & Sarcopenia; Department of Cardiology (CVK), Berlin-
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Aims Cohorts of millions of people’s health records, whole genome sequencing, imaging, sensor, societal and publicly
available data present a rapidly expanding digital trace of health. We aimed to critically review, for the first time,
the challenges and potential of big data across early and late stages of translational cardiovascular disease research.

...................................................................................................................................................................................................
Methods
and results

We sought exemplars based on literature reviews and expertise across the BigData@Heart Consortium. We identi-
fied formidable challenges including: data quality, knowing what data exist, the legal and ethical framework for their
use, data sharing, building and maintaining public trust, developing standards for defining disease, developing tools for
scalable, replicable science and equipping the clinical and scientific work force with new inter-disciplinary skills.
Opportunities claimed for big health record data include: richer profiles of health and disease from birth to death and
from the molecular to the societal scale; accelerated understanding of disease causation and progression, discovery of
new mechanisms and treatment-relevant disease sub-phenotypes, understanding health and diseases in whole popula-
tions and whole health systems and returning actionable feedback loops to improve (and potentially disrupt) existing
models of research and care, with greater efficiency. In early translational research we identified exemplars including:
discovery of fundamental biological processes e.g. linking exome sequences to lifelong electronic health records
(EHR) (e.g. human knockout experiments); drug development: genomic approaches to drug target validation; preci-
sion medicine: e.g. DNA integrated into hospital EHR for pre-emptive pharmacogenomics. In late translational
research we identified exemplars including: learning health systems with outcome trials integrated into clinical care;
citizen driven health with 24/7 multi-parameter patient monitoring to improve outcomes and population-based link-
ages of multiple EHR sources for higher resolution clinical epidemiology and public health.

...................................................................................................................................................................................................
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Conclusion High volumes of inherently diverse (‘big’) EHR data are beginning to disrupt the nature of cardiovascular research
and care. Such big data have the potential to improve our understanding of disease causation and classification rele-
vant for early translation and to contribute actionable analytics to improve health and healthcare.
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Introduction

Electronic records relevant to the understanding of health and disease
are found in diverse sources including not only the formal electronic
health records (EHR) used in a growing number of healthcare organ-
izations but also in omic, imaging, wearable and other data. These
record data are increasingly being used for research, beyond the pri-
mary purpose for which they were collected. ‘A new era of data-based
and more precise medical treatment’1 is envisaged in which the prac-
tice of medicine becomes ‘evidence generating’.2 One emerging pros-
pect is the use of big record data to traverse the translational pathways
from early discovery phases of translation to later implementation
phases. Previous reviews on mining EHR have not had a focus on cardi-
ovascular disease3 or have focused on cardiovascular care4,5 without a
consideration of the translational pathways. We provide, for the first
time, a critical review of big health record data for cardiovascular dis-
ease research across the translational spectrum, including early phases
of discovery science, drug development and repurposing, and precision
medicine, and later translational phases of learning health care systems,
real world evidence, citizen-centred, and public health.

We review four areas in relation to big health record data:

(i) What data resources exist for cardiovascular disease research?
(ii) What are the challenges and barriers to realizing these

opportunities?
(iii) What is the potential of such data in early translational research

including discovery science, drug development and repurposing,
precision medicine?

(iv) What is the potential of such data in late translational research
including learning health care systems, real world evidence,
citizen-centred and public health?

Big health record data resources
‘Big data’ are usefully characterized by ‘variety, volume, velocity, and
value’ (a fifth V, veracity, relating to data quality is dealt with below in
the challenges section). EHR are intrinsically ‘big’ due to their com-
plexity (‘variety’) and numbers of patients and amount of information
on each patient (‘volume’) and are collected for a variety of purposes
(such as clinical care, billing, auditing, and quality monitoring).6–9

Tradeoffs between scale and depth

Figure 1 illustrates the variety and volume of data showing the relation
between scale (number of people) and depth of phenotypic and omics
information in different settings: national population-based, hospital-
based, and disease or procedure based registries. The amount of

phenotypic information in hospital EHR is much greater than any single
registry; but such deeper hospital EHR data, has been challenging for
researchers to access at scale.10 Hospital EHR potentially provide
phenotypically detailed data on all diseases including clinical blood
laboratory values, imaging, clinically used device data, and text.11–14

EHR comprise both structured and unstructured electronic data gener-
ated and captured during routine clinical care. Structured EHR data are
recorded using controlled clinical terminologies [such as Systematized
Nomenclature of Medicine - Clinical terms (SMOMED-CT)] or statisti-
cal classification systems (such as ICD-9, ICD-9-CM, or ICD-10).
Unstructured clinical data such as patient medical histories, discharge
summaries, handover notes, and imaging reports are captured and
recorded in patient’s health records as raw unformatted text. Such var-
ied data, from different sources, has been likened to a tapestry15 which
can be woven together using data linkage and integration techniques
into a fine-grained longitudinal picture of health over time (the ‘human
phenome sequence’). Such diverse data may offer higher resolution of
clinically relevant clusters of diseases, causes, and classifiers.

Figure 1 makes an important distinction between those record
resources with, and without genomic information. Boxes 1 and 2
provide further details of these resources which may be accessed for
translational collaborative research. Biobanks and genomics consor-
tia increasingly rely on EHR linkages for the ascertainment, validation,
and phenotyping of not only specific disease outcomes but also the
entire longitudinal phenome, as captured by an growing array of digi-
tal sources.16 Thus any one data resource may include combinations
of researcher-generated data (such as omics) and researcher-
harnessed data from EHR. Recent initiatives, such as the Innovative
Medicines Initiative Big Data for Better Outcomes ‘Big
Data@Heart’,17,18 and the American Heart Association (AHA) Verily
AstraZeneca ‘One Brave Idea’ initiative.19 seek to exploit different
sources of records and omics data, across multiple consented and
anonymized sources—using the human as the ‘new model organism’.

Digital trace of health, outwith healthcare

The resources illustrated in Boxes 1 and 2 are making increasing use
of such data sources including the physical environment, consumer
information, socioeconomic and behavioural factors20,21 and user-
generated data from mobile health apps, wearables, sensors and
social media.22–24 In particular the ‘always on’ aspects of mobile and
wearables provides major opportunities.

In order to exploit these resources for translational research there
is an increasing use of computer science approaches to harness pub-
licly available curated knowledge in different fields including: the
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medical literature (e.g. PubMed), catalogues of genetic variant-
phenotype associations (PhenoScanner25,26), disease-agnostic drug
targets (e.g. DrugBank27), drug compounds (CHEMBL,28 and adverse
drug reactions (e.g. IMI PROTECT29).

Volume: scale with cohorts of millions of participants

Higher resolution enquiry of common and rare diseases (or rare out-
comes of common diseases, including drug side effects), demands
higher sample sizes: 5000 people in the Framingham cohort, 500 000 in
UK Biobank,16 15 000 000 in curated, linked EHR cohorts such as
CALIBER,30–32 (Figure 3) and cross-national collections of EHR cohorts
in 100 000 000.33–35 An individual’s interactions with the healthcare
system may also generate big data; in the general population on aver-
age one person accumulates 1000 health events over 3 years in
national coded data; a single cardiac MR scan has 108 voxels and a clini-
cal grade (�30) whole genome sequence provides 15 Gb of data.36,37

Value: opportunity to disrupt current models of research

and care

The value of diverse, high volume data is already changing the way
that health care is delivered and is yielding insights in early and late
translation (see Potential for early translational research section).
There are many sources of value in big data, beyond the immedi-
ate scientific dimensions of scale and longitudinal phenotypic reso-
lution. These include the whole-system relevance when population
and healthcare system records are used: for example, in countries

with nationwide health record systems, EHR are the only way of
obtaining large scale representative samples. The velocity of big
data is an opportunity for real time analytics with intelligent feed-
back loops to improve healthcare systems and individual decision
making. The exploitation of such rich big record data sources is
more efficient and cost-effective compared with traditional
researcher-led approaches since for example, in EHR cohorts the
cost to research funders of baseline and follow up data collection is
zero (the data exist as part of healthcare systems). The costs how-
ever of collating, cleaning and curating these data and meeting the
challenges outlined below are substantial and are further elabo-
rated below.

Big health data challenges
In realizing the opportunities of such diverse, large volume data there
are formidable challenges. These include: knowing what data are
potentially available, information governance, models of data access
(responsible data sharing), building and maintaining public trust,
developing standards for defining disease, and developing tools for
scalable, replicable science and equipping the clinical and scientific
work force with new inter-disciplinary skills.

Are the data of sufficient quality for a given research

question?

Challenge: The quality of EHR data can be said to be ‘in the eye of the
researcher’. In any given dataset the amount of missing data, often not

Figure 1 Scale (N people), phenotypic and omic resolution of population-based, hospital-based and disease-based exemplar data resources rele-
vant to cardiovascular disease research (for further details see Boxes 1 and 2). AF, atrial fibrillation; AFGen, AF Consortium; CHD, coronary heart dis-
ease; ESC, European Society of Cardiology; EPIC, European Prospective Investigation into Cancer and Nutrition; ERFC, Emerging Risk Factors
Collaboration; eMERGE, Electronic Medical Records and Genomics; HF, heart failure; PMI, precision medicine initiative; MVP, Million Veterans
Programme; NICOR, National Institute for Cardiovascular Outcomes Research; NIHR, National Institute for Health Research; RPGEH, Research
Programme on Genes, Environment, and Health; UCLEB, University College, London School of Hygiene and Tropical Medicine, Edinburgh, Bristol.
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Box 1 Examples of large scale genomic—electronic health record resources

A. Population-based
UK-Biobank (UK, n = 500 000) Custom exome array, and exome sequencing, panel of 32 biomarkers, activity monitors and behaviours in 500k
and cardiac MR underway in 100k, linkage to hospital and primary care EHR (http://www.ukbiobank.ac.uk/).36

UCLEB (UK, n = 30 000) 14 consented British cohorts (12 population-based and 2 randomized trials) including �30k participants Genomics,
quantitative NMR metabolomics (�18k), Somalogic-Proteomics (2k), digitalized ECGs at baseline and in some studies with multiple follow-
ups, and imaging (cardiac, carotid and brain) in a sub-set and linkage to hospital EHR (http://datacompass.lshtm.ac.uk/40/).

INTERVAL (UK, n = 50 000) ‘multi-omics’ bioresource, includes whole-genome sequencing (�20 depth), genome- wide genotypes, lipidomics,
proteomics, metabolomics, accelerometry (100 Hz, 7 days). Participants are linked to electronic health records and are aged 18–80 years. This
study involves the largest experiment to date using SomaLogic’s proteomics assay. (http://www.intervalstudy.org.uk/)

EPIC-CVD (EU, n = 520 000) case-cohort study, embedded in the 10-country, 22-centre pan-European EPIC cohort, involving >25 000 incident
CVD cases. Multiple gene arrays (GWAS, exomechip, metabochip), >75 circulating biomarkers, extensive lifestyle profiling, and large subsets
with serial measurements and linkage with electronic health records.(http://www.epiccvd.eu/)

China Kadoorie Biobank (China, n = 510 000) large Biobanked cohort investigating genetic and environmental causes of common chronic dis-
eases in the Chinese population across 10 geographic regions (http://www.ckbiobank.org/site/).

B. Hospital-based
DiscovEHR project of the Regeneron Genetics Center and the Geisinger Health System (US, n = 42k): enrolees with whole exome sequencing and
linkage to electronic health records over 15 years of clinical care (http://www.discovehrshare.com).78,165,166

US Department of Veteran Affairs—Million Veteran Program (US, n = 500k): aiming to recruit 1 million users of the VA healthcare system and col-
lect DNA specimens, tissue samples, electronic health records from VA and survey data (https://www.research.va.gov/mvp/)

Kaiser Permanente—Research Program on Genes, Environment and Health (US, n = 500k): Based on the over six million-member Kaiser
Permanente Medical Care Plan of Northern California (KPNC) and Southern California (KPSC), the completed resource will link together
comprehensive electronic medical records, data on relevant behavioural and environmental factors, and biobank data (genetic information
from saliva and blood) from 500 000 consenting health plan members (http://www.rpgeh.kaiser.org/).

Vanderbilt BioVU (US): BioVU is Vanderbilt’s biorepository of DNA extracted from discarded blood collected during routine clinical testing and
linked to de-identified medical records in the Synthetic Derivative. The goal of BioVU is to provide a resource to Vanderbilt investigators for
studies of genotype-phenotype associations (https://victr.vanderbilt.edu/pub/biovu/).

eMERGE (US, n = 105k): consists of nine study sites, two central sequencing and genotyping facilities, and a coordinating centre. eMERGE aims
to continue to develop and validate electronic phenotyping algorithms for large-scale, high-throughput genomics research; to discover genetic
variants related to complex traits; to disseminate results and lessons learned to the scientific community; and to deliver state-of-the-art
genomic knowledge, methods, and approaches to clinical decision support and clinical care. Specifically: (i) sequence and assess the phenotypic
implication of rare variants in �100 clinically relevant genes presumed to affect gene function in about 25 000 individuals; (ii) assess the pheno-
typic implications of these variants, (iii) integrate genetic variants into EMRs for clinical care; and (iv) create community resources. (https://
emerge.mc.vanderbilt.edu/)

Precision Medicine Initiative Cohort Program (US): longitudinal research effort that aims to engage one million or more US participants to enable
research that will, over time, improve the ability to prevent and treat disease based on individual differences in lifestyle, environment and
genetics. Participants will be invited to contribute a range of data about themselves by completing questionnaires, granting access to their elec-
tronic health records, providing blood and urine samples, undergoing physical evaluations and sharing real-time information via smartphones
or wearable devices.(https://allofus.nih.gov/)

C. Disease-based
GENIUS-CHD (global, n = 250k) Coronary Heart Disease (CHD) patients (of which 129k are Acute Coronary Syndrome, ACS patients) with
genotyping and biobanked samples and longitudinal follow up, from over 60 studies (including observational and randomized trials); central
goal is to identify genetic and non-genetic determinants of subsequent or recurrent event risk, to facilitate discovery and validation of novel
molecular pathways and drug targets for CHD secondary prevention. (http://www.genius-chd.com/)

HERMES Consortium (global, n = 11k) International consortium whose main aim is to identify the genetic determinants for incident HF and
recurrent events with over 11 000 heart failure cases. (http://www.hermesconsortium.org/)

AFGen Consortium (US & EU) 30 studies with Exome-chips and GWAS array. Further phenotyping underway for 40k AF cases. (https://www.
afgen.org/)
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..missing at random, or inaccurate data, may prohibit valid inference for
some but not all research questions. Linked EHR, subject to robust
pre-processing and cleaning, have been shown to provide valid meas-
ures of risk factors and a wide range of diseases, and therefore offer a
common scaffold on which to build specific research questions.30

Solution: A data mantra is ‘collect once, use many times’: and there are
calls to make good quality clinical record keeping, as ‘research grade
data’. It should be noted that accurate and complete recording, though
desirable, does not replace appropriate study design or resolve limita-
tions such as confounding by indication. Validity and data quality may
be assessed in multiple ways including:

• Cross referencing multiple sources of data in the same individuals (each
with their own strengths and limitations): e.g. for acute myocardial
infarction linking four national population based sources (primary
care, hospital, heart attack and death registries) (CALIBER) shows
the positive predictive value and prognostic validity of cases
defined in different sources, and allows development and sharing
of phenotypic algorithms.38,39 Comparisons of trial adjudicated and
medical claims data have been shown to be poor for some end-
points (e.g. bleeding40), a comparison of adjudicated endpoints and
administrative data showed good agreement.41

• International comparisons: for example, EHR cohorts in heart attack
survivors using ICD codes from different versions (ICD-9-CM,
ICD-9, ICD-10) and different countries (US, Sweden, France and

England) demonstrated for 12 risk factors consistent relative risks
associations with fatal and non-fatal long term outcomes.42 In gen-
eral populations the Emerging Risk Factors Collaboration (ERFC)
has shown consistency across continents of risk factor associations
with CHD incidence.43

• Genomic approaches to validating case definitions: across 1000s of
hospital ICD codes (‘phenome-wide’), reproduce associations
from genome wide association studies obtained one phenotype at
a time25,44,45 (Table 1, Denny et al.44 Figure 2).

What data exist?

Challenge: ‘Genome browsers’ facilitate discovery in biological sci-
ences, but currently the contents of the big data tapestry and
whether they are suitable for a particular research purpose are
hard to uncover within a researcher’s own country, let alone
across different countries (see Figure 1 and Boxes 1 and 2).
Solution: If big data are to disrupt current research models then
there is a need for searchable catalogues of data, metadata, feasi-
bility counts (and ideally sample data) and access arrangements.
The creation of public, standards-driven metadata and data portals
can assist researchers in locating the right dataset for their
research question and obtaining up to date details on data avail-
ability and accessibility. For example, the IMI-funded European
Medical Information Framework (EMIF) data catalogue contains

Box 2 Examples of large scale electronic health record resources without genomic information

A. Population-based:
CALIBER (UK, n = 10 M) CALIBER is a population based research platform of linked EHR and administrative health data from primary care
(Clinical Practice Research Datalink), secondary care (Hospital Episode Statistics), disease (Myocardial Ischaemia National Audit Project) and
death (Office for National Statistics) registries with longitudinal data on all prescribed medicines, diagnoses and blood values (>300k cases of
AF, HF, and ACS) and a set of computational tools and research-ready phenotyping algorithms. (https://www.caliberresearch.org)

ABUCASIS (ES, n = 5M) EHR of entire Valencia population, including SIA (whole data from �5.100.000 subjects when they attend the physi-
cians�office in primary care; hospital morbidity, CMBD diagnostics of all the hospital admissions; mortality; GAIA (all prescriptions); vaccina-
tion; visits to the Health Care Centre (in 2014 >60M); laboratory tests; Clinical Risk Groups (CRG) classification in each subject.

Mondriaan (NL, n = 15M) Pharmacy and claims data, harmonized with >500k GP data and subset with genetics data. 15 years follow-up.
(http://mondriaanfoundation.org/)

B. Hospital-based:
National Institute for Health Research Health Informatics Collaborative (HIC) (UK): platform for extracting phenotypically rich clinical data for
research from hospital care across give major NHS trusts (Oxford, Cambridge, UCLH, Guy‘s and Imperial) and five disease areas (acute coro-
nary syndrome, viral hepatitis, critical care, ovarian cancer, renal transplantation). (http://www.hic.nihr.ac.uk/)

C. Disease-based: National quality of care and outcome registries
SWEDEHEART (SE, n = 2M) SWEDEHEART is a national registry, including all patients undergoing coronary angiography, percutaneous coro-
nary intervention, heart surgery and TAVI since 1990 s, and almost all patients with acute myocardial infarction. Patients with MI, <75 years of
age, are also followed for 1 year regarding secondary prevention. SWEDEHEART collects more than 500 variables. The database is regularly
validated and the agreement between the registry and the electronic health records is 95–96%. (http://www.ucr.uu.se/swedeheart/)

European Society of Cardiology European Research Programme (EOPR) AF (multinational) Multinational (31 countries) observational study including
patients with atrial fibrillation since 2012 (https://www.escardio.org/Research/Registries-&-surveys/Observational-registry-programme)

National Institute for Cardiovascular Outcomes Research (NCOR) (UK) National cardiovascular disease and procedure registries, with data on >2 m
individuals; ACS- through the Myocardial Ischaemia National Audit Project registry (MINAP) >1 m patients; HF Registry >100k patients;
Arrhythmia registry. (https://www.ucl.ac.uk/nicor)
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..information on over 300 data sources ranging from EHR, con-
sented cohort studies, and surveillance datasets.

What is the legal and ethical framework for using such

data?

Challenge: The information governance of big health data resources
presents major challenges. The need for protecting privacy, confiden-
tiality, discrimination and other potential harms is vital. However
how the regulatory environment proportionately balances these
concerns with the potential benefits of data sharing (or, indeed, the
harms by not sharing) is evolving.
Solution: Broad consent models, such as those in UK Biobank, have an
important role, recognizing that it is not possible to stipulate all the

potential research uses of data, nor how they will change. Some have
argued that a new social contract is required with trusted use of data
under innovative, proportionate governance delivering benefits to
patients and public.46–48

How are data shared?

Challenge: Despite exhortation from funders, journals and the public
to share data, all too often this does not happen. Once researchers
have permissions to access data, the mode of data sharing may pose
challenges to the researcher.
Solution: Data sharing may involve: (i) material transfer agreements
with data being physically shared e.g. UK Biobank; (ii) role-based
secure remote access; (iii) distributed analyses where data remain

Figure 2 Electronic health record (EHR) Phenome Wide association studies (PheWAS). Source: Denny et al.44 (reproduced by kind permission).
Each point represents the –log10(P) of a single SNP-phenotype association tested with PheWAS. This study is restricted to SNP-phenotype associa-
tions that achieved genome-wide significance (P <_ 5� 10-8) in at least one prior genome wide association study (GWAS) study that included individ-
uals of European ancestry. Numbers in parentheses beside each phenotype represent the sample size within the PheWAS data set. The vertical blue
line represents P = 0.05. Binary traits refer to all adequately powered, binary traits in the NHGRI Catalog with exact matches to a PheWAS pheno-
type. For example, 5/5 catalog SNPs associated with rheumatoid arthritis were replicated at P < 0.05 in PheWAS, and 9/15 SNPs associated with
type 2 diabetes were replicated. Continuous traits are those numerically defined traits in the NHGRI Catalog that are related to PheWAS diseases
(e.g. ‘iron deficiency anaemia’ was the PheWAS trait paired with the ‘serum iron level’ catalog trait).
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stored in individual sources. The Global Alliance for Genomics and
Health49 is establishing a common framework for harmonized sharing
of genomic and clinical data. Distributed analytical tools (e.g.
DataSHIELD, i2b2) and common data models [e.g. Observational
Medical Outcomes Partnership Common Data Model (OMOP
CDM)] can facilitate the remote and sequestered processing of com-
plex datasets without the direct need to transfer data directly.

How are disease and trait phenotypes defined and

shared?

Challenge: There is a lack of an international framework for defining,
phenotyping, sub-phenotyping and discovering disease phenotypes in
the context of health records. There are multiple controlled clinical
terminologies and ontologies (including SNOMED-CT, ICD-10, and
the Human Phenotype Ontology), but how these terms should be
combined to define meaningful entities, let alone how they should be
combined with research data is unclear. Currently many diseases lack
internationally agreed criteria (preferably in a machine-readable for-
mat) for defining cases and non-cases; acute myocardial infarction,
type 2 diabetes are exceptions. Current definitions of many diseases
such as HF, AF and ACS span heterogeneous groups of patients and
describe syndromes only rather than definitions based on under-
standing of molecular mechanism.
Solution: Sharing, validating and refining replicable, scalable EHR phe-
notypic algorithms requires international efforts.50 e.g. PheKB in hos-
pital EHR (codes and text) and national structured records e.g.
CALIBER. For example, defining atrial fibrillation using structured
national health records may involve several hundred codes for diagno-
ses, drugs, procedures in a phenotyping algorithm. Clinical information
standards such as openEHR51 or semantic web technologies52,53 can
enable researchers to create computational representations of

phenotyping algorithms which facilitate their sharing across the
research community.

What are the tools, methods and analytic approaches?

Challenge: There is a wide array of relevant approaches from quantita-
tive disciplines (mathematics, computer science, statistics, software
engineering) and from biological disciplines: until recently these have
seldom been focused on big health record data.
Solution: While there are 7 million hits per day on the European
Bioinformatics Institute website; such national and international
resources for health informatics are lacking. There is a need for
organizations to be established which provide the analogous refer-
ence data, tools and methods in health informatics in general54 as
well as integration across cardiovascular efforts55,56 in order to scale
the science.

What skills and training are required?

Challenge: Few clinicians and health care professionals have had for-
mal training in informatics, data science, (computer) coding, software
development or other increasingly relevant skills. In many countries
there are large shortfalls in the number of data scientists that have
been trained.
Solution: National efforts are likely to be important to substantially
increase the number, and change the kind, of people required to
deliver data-based medicine: hybrid professionals,(for example sub-
specialty physician accreditation in informatics), data scientists, data
wranglers, and data-savvy health care professionals.57 The 10�10
(‘ten by ten’) program was launched in 2005 by the American
Medical Informatics Association (AMIA) and Oregon Health &
Science University (OHSU). The genesis for the program came when
then-President of AMIA, Dr Charles Safran, called for at least one

Figure 3 Resolution across a range of risk factor levels (systolic and diastolic blood pressure) and range of different initial presentations of cardio-
vascular disease (abdominal aortic aneurysm and heart failure only shown here): discovery of heterogeneous associations in a cohort of >1m adults
initially free from diagnosed cardiovascular disease using national structured linked electronic health records from the CALIBER resource, in which
EHR phenotyping algorithms are created, validated and shared using a robust methodology.32,50
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.
physician and one nurse in each of the 6000 hospitals in the US to
have some training in medical informatics. The National Academy of
Science has recommended the importance of agile assembly and
rewarding of scientific teams across diverse disciplines including
genomics, basic biology, mathematics, computer science, statistics,
engineering.

Potential for early translational research
In this section we provide selected exemplars of the potential of big
health record data arising from the variety, volume and value of the data
being realized and how big data are contributing to scientific advance in
cardiovascular medicine from discovery of underlying disease mecha-
nisms, disease taxonomy, of treatment relevant sub-types of disease
which underpin drug development, and precision medicine.58,59

Discovery in genetic and EHR data

It is important to note that it is challenging to provide deep mechanis-
tic insight in large scale EHR data resources given the limited availabil-
ity of genetic information in sufficient depth. Bespoke, recallable
investigator-led studies such as East London Genes & Health
(ELGH60) and the NIHR BioResource61 enable the coupling of EHR
data with extreme genotypes (or phenotypes) and enable their in-
depth study using bespoke experimental protocols.62,63 Complete
gene knockouts are highly informative about gene function with a
recent study of 3222 British Pakistani-heritage exome-sequenced
adults with high parental relatedness, discovered 1111 rare-variant
homozygous likely loss of function (rhLOF) genotypes predicted to
disrupt (knockout) 781 genes. Linking to EHR, investigators observed
no association of rhLOF genotypes with prescription- or doctor-
consultation rate, and no disease-related phenotypes in 33 of 42 indi-
viduals with rhLOF genotypes in recessive Mendelian disease genes.
Phased genome sequencing of a healthy PRDM9 knockout mother,
her child and controls, showed meiotic recombination sites localized
away from PRDM9-dependent hotspots, demonstrating PRDM9
redundancy in humans. Genomic approaches to validating case defini-
tions: across 1000 s of hospital ICD codes (‘phenome-wide’), repro-
duce associations from genome wide association studies obtained
one phenotype at a time (Table 1, Denny et al.,44 Figure 2).

Discovery in larger scale epidemiology

Big health record data can contribute to the discovery of new associ-
ations, which would be hard to generate from traditional consented
cohorts without record linkage. For example, Figure 3 and Table 1,
Rapsomaniki et al.32 illustrates how the power of large scale health
records allows enquiry into less common cardiovascular diseases
such as abdominal aortic aneurysm: Here there is a marked discord-
ance between the strong association of diastolic blood pressure with
abdominal aortic aneurysm compared with the lack of association
with systolic blood pressure. These findings have implications for
understanding the aetiology of abdominal aortic aneurysms, screen-
ing and prevention and understanding the underlying molecular
mechanisms of disease for creating interventions.

A key prerequisite for precision medicine is the estimation of disease
progression from the current patient state. Disease correlations and
temporal disease progression (trajectories) have mainly been analysed
with focus on a small number of diseases or using large-scale approaches

without time consideration, exceeding a few years. Investigators per-
formed a discovery-driven analysis of temporal disease progression pat-
terns using data from an electronic health registry covering the whole
population of Denmark. Utilizing the entire spectrum of diseases, they
convert 14.9 years of registry data on 6.2 million patients into 1171 sig-
nificant trajectories. Key diagnoses such as gout and chronic obstructive
pulmonary disease (COPD) were identified as central to disease
progression across many of these trajectories and hence important to
diagnose earlier. Such data-driven trajectory analyses may be useful for
predicting and preventing future diseases of individual patients.

Discovery with deep phenotypic data

Most cardiovascular diseases (including acute myocardial infarction)
have syndromic descriptions and labels, which may span multiple
underlying pathological disease processes.64 One approach to discov-
ering mechanistically relevant disease types is to phenomap disease.
For example, Table 1, Shah et al.,65 in heart failure with preserved
ejection fraction machine learning on 46 continuous clinical, labora-
tory, electrocardiographic, and echocardiographic findings has been
used to define mutually exclusive groups, which relate to subsequent
outcomes.65–67 The cardiac atlas project (of normal and diseased
hearts) is an example of large scale collaborations on feature extrac-
tion in imaging68,69 using data sharing in standard formats Digital
Imaging and Communications in Medicine (DICOM) of pixel and
non-pixel data.70 Personalization using physiological simulations71 for
example for cardiac resynchronization therapy71,72 is proposed.
Unstructured free-text data in EHR may add further resolution for
patient stratification and disease co-occurrence estimation, which
subsequently can be mapped to systems biology frameworks.67

Drug development and repurposing

More drugs are required to prevent and treat cardiovascular diseases.
Since 2000, the FDA has approved only two new classes of cardiac
drugs with widespread application: P2Y12 receptor inhibitors (such
as clopidogrel, ticagrelor, prasugrel) and novel oral anti-coagulants
(such as dagibatran, apixaban, rivaroxaban, edoxaban). Costly, late
drug failures occurring within phase III trials have been recently seen
for CETP inhibitors which raise HDL-cholesterol (HDL-C),73–75 ivab-
radine which lowers the heart rate76 and darapladib, a selective oral
inhibitor of lipoprotein-associated phospholipase A2.

77

Discovering and validating drug targets

EHR-DNA resources may play an increasingly important role in drug
discovery, genomic drug target validation, marker validation and in
drug repurposing. For example, NPC1L1 (Table 1, Stitziel et al.78)
demonstrates the strategy that human mutations that inactivate a
gene encoding a drug target can mimic the action of an inhibitory
drug—here ezetemibe—and thus can be used to infer potential
effects of that drug. Ezetemibe is known to affect the marker (LDL
cholesterol) but, until recently, not the disease (myocardial infarction).
Among the largest sources of cases of MI and controls in this study
was a DNA resource integrated into a health system with rich EHR.78

The discovery of PCSK9 as a drug target to lower cholesterol,79 which
could in principle have been made in EHR-DNA resources, illustrates
the importance of rare variants in identification of pathways relevant
to the whole population. Mendelian randomization studies are
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important in evaluating whether markers—such as heart rate and
HDL cholesterol—are causal for the disease of interest. Such genetic
studies have questioned the role of heart rate80,81 and HDL
cholesterol82 in the aetiology of heart attack.

Drug repurposing and PheWAS

Identifying novel disease indications for already approved drugs
(repositioning or repurposing) has been successful for sildenafil,83

and beta blockers (repurposed for heart failure). The discovery that
IL-6 is causally related to myocardial infarction43 has led to proposals
for repurposing tocilizumab, which is currently licensed for rheuma-
toid arthritis. Here the question is what other phenotypes are associ-
ated with the drug-relevant genetic variant?’ (Figure 2) For example,
examining 778 disease phenotypes based on ICD codes in the EHR84

identified potential novel pleiotropic associations with a variant in the
sodium channel gene SCN10A. This variant is associated not only with
the anticipated arrhythmias, but (possibly) also with unanticipated
diseases, here cholecystitis. Recent interest has been to scale this
approach to systematically evaluate drugs against a wide range of
untested diseases. To be successful this would require substantially
larger EHR-DNA resources incorporating longitudinal disease trajec-
tories from big record data85 and might aid drug repurposing efforts.

Trial endpoint optimization

Drugs may fail in phase III trials because of the composition of primary
endpoints. For example, the inclusion of myocardial infarction—which is
not causally related to heart rate—in the trial of the heart rate lowering
drug ivabradine. In trials of treatments in type 2 diabetes the primary
endpoint often includes non-fatal MI, non-fatal stroke and death from
cardiovascular diseases. Large scale record cohorts however demon-
strate that the initial presentation of cardiovascular disease is commonly
heart failure and peripheral arterial disease86—neither of which are
prominent components of primary trial endpoints. Moreover, inclusion
of some diseases might dilute the trial endpoint since type 2 diabetes is
associated with a lower risk of aneurysms.86 In CALIBER, the ability to
reliably resolve 12 different CVDs demonstrates that the majority of
incident cases of CVD are neither heart attack nor stroke86 and that risk
factor associations are heterogeneous across different diseases.86–89

Trials of new drugs

Once the ‘right drug, the right target and right endpoints’ have been
evaluated, the next and most costly hurdle is to carry out the defini-
tive experiment—the phase III trial. Twenty years ago the West of
Scotland Coronary Prevention Study (WOSCOPS) statin trial study
demonstrated the value of EHR linkage for long-term follow-up of
clinical outcomes.41,90 Underpinning regulatory and data standards
and interoperability issues91 are the focus of international initia-
tives,92–94 but in cardiovascular disease there has not yet been a prag-
matic phase III trial of a pre-licence drug. The Salford Lung Study
(GSK, relovair) is the world‘s first such trial and is set in a regional
‘whole health system’ EHR.95,96

Integrating pharmacogenomics

Multi-scale biological data, when combined with these deeper pheno-
types, underpin further dissection of disease. Whole genome
sequencing is beginning to be implemented in clinical care, for

molecular diagnosis, identification of risk of subsequent wide range of
diseases, reproductive considerations and drug response.36,97 It is in
drug response that precision medicine is finding early application.
Here the goal is to identify biologically relevant subgroups in which
either the benefit is greater, or, more commonly, the harms are fewer
(interaction on the relative risk scale). Pre-emptive genomic testing,
in which actionable genetic variants have already been assessed prior
to drug exposure, is beginning to be implemented in the EHR for the
care of patients98 (Table 1, Van Driest et al.99).

Personalized estimates of benefits and harms

One example of the need to individualize risk comes from prolonged
dual anti-platelet therapy among patients who have survived 1 year
after acute myocardial infarction. For example, Table 1, Pasea et al.,100

in prognostic models for risk of atherothrombotic and bleeding
events have recently been developed and validated and allow an
updatable estimation of net clinical benefits for each patient to guide
the decision for prolonged dual anti-platelet therapy.

Clinical record data are highly effective in distinguishing risk groups,
for diverse diseases and in diverse settings101–103 and higher risk
patients usually have more absolute benefit than those in lower risk
groups (i.e. without biologic interaction). Clinical risk prediction algo-
rithms and decision support are rapidly proliferating in CVD and
many tools can be envisaged in the management of a single patient,
spanning benefits and harms at different time points. Clinical data can
outperform the Framingham risk score,102 and can flexibly model
start point populations and endpoints and be easily updated in the
light of new imaging, genetic information, and implemented in clinical
practice. Predictions may be improved by incorporating clinical
trajectories.103 For example patients in whom blood pressure
declines over time, without diagnosed heart failure, have a worse sur-
vival than those whose blood pressure remains stable.104 Using all
available data points across data modalities combined with machine
learning or Bayesian network models may further add to pre-
diction.105–107

Potential for late translational research
Learning health care systems

Increasing costs, complexity of patients and fragmentation of health-
care systems are challenges to delivering high quality care with better
outcomes and value. Far from a data-based health care system, all
too often there is a largely data free (or data silo‘d) approach where
the benefits of science and evidence, and experience of care are
characterized by missed opportunities, waste and harm.108–110 The
state of ‘digital maturity’ in hospitals and health eco-systems, varies
hugely. Arguably, more people die from lack of use of data than mis-
use of any other technology.111 The concept of learning health sys-
tems puts informatics and big data as a central driver of quality, not
only seeking to put what is known to work into practice (closing the
‘second translational gap’) but also contributing in new ways to
understanding what is effective.112–114 It is worth noting that however
‘big’ the data are observational analyses will not replace the need for
randomized intervention studies due to the inherent limitations of
observational studies to evaluate reliably any modest effect of
interventions.

Big data for translational CVD research 1491
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Building trials into health systems

A trial of thrombus aspiration demonstrated the feasibility of
randomizing a high proportion of patients at point of care in the
setting of a national quality registry115,116 (Table 2, Fröbert
and James115). These findings and the growing evidence that EHR
can provide a platform for assessing feasibility, refining protocols
and recruiting patients41,90,117 have stimulated major interest
because of the lower cost and higher speed of trial delivery.
Pragmatic point-of-care EHR based trials are underway e.g. of
high vs. low dose aspirin trial among people with stable coronary
disease.118–120

Building quality into healthcare delivery: decision support

and data based medicine

Early examples of data-based medicine are already here, with clinical
data providing both the ‘brain’ to understand what needs fixing
and the ‘spinal cord’ to help fix it. For example, analysis of health
record cohorts provides understanding of the patient journey
and cumulative missed opportunities of cardiovascular care over
time121,122 and may provide risk prediction tools which are derived
from clinical data, and used in practice to support healthcare decision
making.102,123

A small but growing number of hospitals have a suite of readily
modifiable information feedback loops to improve care.124 There
is a need for more empirical demonstration of the impact on out-
comes of these systems. A key challenge lies in intelligent real time
systems.125–127 Practice-based medicine128,129 involves large-
scale, real time studies (based on a health system‘s own data) to
generate evidence directly relevant to the patient in front of the
clinician. Sometimes this observation is sufficient, sometimes it
allows systematic identification of the need for trials. These trials
may exploit the efficiency of big data in point-of-care individual
patient randomized trials embedded in a learning health system or
may involve randomizing clusters of health care professionals, for
example to evaluate complex interventions, such as decision
support.130,131

Big data for safety vigilance

Mining EHR in real time with both coded and text data is an impor-
tant source of safety information. For example, Table 2, Lependu
et al.,13 the excess myocardial infarction risk associated with
rofecoxib (Vioxx) could have been detected 1–2 years earlier had
records. There are international initiatives to achieve the vast
scale required to evaluate drug safety in up to 150 million
patients.34,132–135 Using the Medicare Patient Safety Monitoring
System there was a decline in adverse events following heart
attack and heart failure, but not for pneumonia or conditions
requiring surgery,136 possibly as a result of more organized quality
initiatives in the cardiovascular diseases.

International comparisons of whole system care and

outcomes

Nationwide, policy relevant comparisons of care and outcomes
among people with CVDs across health systems have only recently
been reported. For example, Table 2, Chung et al.,137 using data from
ongoing quality registries from all hospitals in Sweden and the UK,
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including more than half a million patients, demonstrates that 30-day
MI mortality was higher in the UK than in Sweden. Politicians, policy
makers and health care professionals seek to make claims that their
health systems deliver world class care and outcomes—ongoing,
even semi-automated comparisons across countries might be used
to evaluate whether such claims are ‘data-based’.

Cost effectiveness of innovation

Big data provide new opportunities in understanding the cost effective-
ness of existing and new interventions. Because of the ability to assess
baseline risks in unselected general populations (commonly higher risk
than those reported in trials), such ‘real world evidence’ is increasingly
required by payers and the regulators. As more data sources are linked,
greater granularity of the care data (e.g. 67 different types of primary
care ‘consultation’) may provide more accurate and more complete
resource use data. For example, Table 2, Asaria et al.,138 cost-effective-
ness decision models can be developed before trials report to estimate
the willingness to pay and pricing of a drug according to different trial
benefits (relative risk reductions) applied to patients at different strata
of risk.

Citizen-centred health

People increasingly have more and different information than their
doctor or researcher raising new possibilities of ‘disintermediation’,
potentially disrupting current models of health care and research.139

The heart and circulation are increasingly observable as a ‘sensed
self’ with novel wireless devices for mobile monitoring, with huge
new data streams.22,140 Smartphone apps and sensors are available to
record and transmit to physician, electrocardiograms (e.g. to screen
for atrial fibrillation), heart rate, blood pressure, radial artery wave-
forms, respiratory rate, oxygen saturation, temperature, even ultra-
sound.22 These may provide deeper, naturalistic phenotyping in areas
often lacking in the clinical record, including: physical activity, weight,
diet, sleep, quality of life, and symptoms and medication compliance.
For accelerometry questions remain about how best to analyse and
present such data.

Implantable devices such as pacemakers provide tele-monitoring
data which might reduce the risk of fatal and non-fatal outcomes in
patients with heart failure (Table 2, Hindricks et al.141). Interventions
can be delivered through mobile means and text messaging may
increase smoking cessation rates (Table 2, Free et al.142). Apple
ResearchKit provides new ways to recruit people rapidly into studies.

Open, publicly available data donated and shared by citizens is
becoming increasingly available. User generated content in social media
are inherently public and the language used in twitter can be used to
predict community heart disease rates (Table 2, Eichstaedt et al.23) and it
is plausible that Google searches24 might give clues to environmental
pollution triggers of acute cardiovascular events. As patients increasingly
access, own and control their health records143 they may share their
clinical records, genetic and other data through initiatives like ‘Patients
like me’ and ‘23 And Me’, offering networks of individuals to develop
communities of interest e.g. in rare diseases for orphan drugs. Citizens
may do their own science; with schoolchildren exploiting publically avail-
able data to develop diagnostic tools using artificial neural networks.144

Public health

There are major gaps in our ability to prevent the onset of and pro-
long life in, many of the most common cardiovascular diseases in the
21st century including atrial fibrillation, heart failure, peripheral arte-
rial disease. There are also gaps in our ability to measure disease and
model the impact of interventions in populations. Clinicians diagnose
more specific entities than ‘heart attack’, ‘CHD’ or ‘CVD’ yet conven-
tional consented cohorts have lacked the statistical size or the phe-
notypic resolution to measure clinically relevant sub-types of disease.
Big data can study the diseases that clinicians diagnose to provide
scalable, population based, updatable measurements of modern dis-
ease burden vital for the evaluation of alternative strategies of pre-
vention. For example, big data can be used to estimate the incidence
and survival of the treatment-relevant sub-types of MI (ST elevation
and non-ST elevation) (Table 2, Exemplar Yeh et al.145 or stable
angina).146

Meaningfully complex models of public health

Existing models of disease prevention are simple and often focus on
one disease or one risk factor at a time. Big data invite a richer under-
standing of the importance of: multiple diseases co-occurring147; net-
works of risk factors (obesity20 and smoking148 and diseases149; fine-
grained geospatial resolution; rare150 Table 2, Pujades-Rodriguez
et al.151 and common diseases; diseases as causes or triggers of cardio-
vascular events152; diseases of developing101 and developed countries,
and across multiple biological scales through to societal influences on
health). In order to understand weather and climate big data, with
appropriately complex mathematical models, are used in national
institutes,153 but no such analogue exists for public health.

Big socio-economic data

Unlike many technological advances, big data may have a role in action-
able understanding of, and reductions in, inequalities in health and
healthcare in rich and poor countries. The opportunity to move to a
neighbourhood with lower poverty may reduce obesity and dia-
betes.154 The data in this trial were collected through traditional
means, but such data could have been captured in part with cross-
government record linkages. Big data are important for achieving sus-
tainable development goals155 and recommendations have been made
for the recording social and behavioural determinants in the clinical
record.156 Linking health record data to an individual‘s lifelong tax con-
tributions may provide new policy relevant insights into the relations
between wealth and health.157,158 Cross-government approaches to
big data might open up enquiry into neglected populations with insights
to improve the cardiovascular health of those on social welfare bene-
fits, the homeless, refugee, and prison populations.

Population impact of interventions

Big data can be used to evaluate the population impact of healthcare
or public health interventions.159 For example, Table 2, Sims et al.,160

shows how health records have been used to demonstrate the
impact of the public smoking ban on hospital admissions for heart
attack.160–162 Importantly, big health data are a means to evaluate the
impact on population health of primary care163 the state of digital
maturity of a hospital or health system164 or the existence of quality
and outcome registries.
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Conclusion

Big health record data are beginning to disrupt the nature of cardio-
vascular research as well as models of care. Exploiting such data is
beginning to improve understanding of cardiovascular disease causa-
tion and classification, and contributing actionable analytics to
improve health and healthcare, but major challenges need to be
addressed to realize more fully their potential.
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Keskimäki I. Incidence and prognostic implications of stable angina pectoris
among women and men. JAMA 2006;295:1404–1411.

147. Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology
of multimorbidity and implications for health care, research, and medical educa-
tion: a cross-sectional study. Lancet 2012;380:37–43.

148. Christakis NA, Fowler JH. The collective dynamics of smoking in a large social
network. N Engl J Med 2008;358:2249–2258.

149. Jensen AB, Moseley PL, Oprea TI, Gade Ellesøe S, Eriksson R, Schmock H.
ARTICLE Temporal disease trajectories condensed from population-wide regis-
try data covering 6.2 million patients. Nat Commun 2014;5:4022.

150. Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PKA, Melbye M. Recurrence
of congenital heart defects in families. Circulation 2009;120:295–301.

151. Pujades-Rodriguez M, Guttmann OP, Gonzalez-Izquierdo A, Duyx B, O’Mahony
C, Elliott P, Hemingway H. Prognosis of patients with hypertrophic cardiomiop-
athy: a contemporary population record linkage cohort in England. European
Heart Journal 2016;37(Abstract Suppl),162.

152. Smeeth L, Thomas S, Hall A, Hubbard R, Farrington P, Vallance P. Risk of myo-
cardial infarction and stroke after acute infection or vaccination. N Engl J Med
2004;351:2611–2618.

153. Met Office Hadley Centre for Climate Science and Services [Internet]. Met
Office, FitzRoy Road, Exeter, Devon, EX1 3PB, United Kingdom. http://www.metof
fice.gov.uk/publicsector/climate-programme (26 August 2016).

154. Ludwig J, Sanbonmatsu L, Gennetian L, Adam E, Duncan GJ, Katz LF, Kessler
RC, Kling JR, Lindau ST, Whitaker RC, McDade TW. Neighborhoods, obesity,
and diabetes—a randomized social experiment. N Engl J Med 2011;365:
1509–1519.

155. Wyber R, Vaillancourt S, Perry W, Mannava P, Folaranmi T, Celi LA. Big data in
global health: improving health in low- and middle-income countries. Bull World
Heal Organ 2015;93:203–208.

156. Adler NE, Stead WW. Patients in context—EHR capture of social and behavio-
ral determinants of health. N Engl J Med 2015;372:698–701.

157. Bozio A, Crawford R, Emmerson C, Tetlow G. Retirement Outcomes and Lifetime
Earnings: Descriptive Evidence from Linked ELSA—NI Data. 2010.

158. Administrative Data Research Network (ADRN) [Internet]. https://adrn.ac.uk/
(11 August 2017).

159. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, Giles WH,
Capewell S. Explaining the Decrease in U.S. Deaths from Coronary Disease,
1980–2000. N Engl J Med 2007;356:2388–2398.

160. Sims M, Maxwell R, Bauld L, Gilmore A. Short term impact of smoke-free legis-
lation in England: retrospective analysis of hospital admissions for myocardial
infarction. BMJ 2010;340:c2161.

161. Juster HR, Loomis BR, Hinman TM, Farrelly MC, Hyland A, Bauer UE, Birkhead
GS. Declines in hospital admissions for acute myocardial infarction in New
York state after implementation of a comprehensive smoking ban. Am J Public
Health 2007;97:2035–2039.

162. Pell JP, Haw S, Cobbe S, Newby DE, Pell ACH, Fischbacher C, McConnachie A,
Pringle S, Murdoch D, Dunn F, Oldroyd K, Macintyre P, O’Rourke B, Borland
W. Smoke-free legislation and hospitalizations for acute coronary syndrome.
N Engl J Med 2008;359:482–491.

163. Rasella D, Harhay MO, Pamponet ML, Aquino R, Barreto ML. Impact of primary
health care on mortality from heart and cerebrovascular diseases in Brazil: a
nationwide. BMJ 2014;349:g4014.

164. HIMSS Europe [Internet]. http://www.himss.eu/ (11 August 2017).
165. Dewey FE, Murray MF, Overton JD, Habegger L, Leader JB, Fetterolf SN,

O’Dushlaine C, Van Hout CV, Staples J, Gonzaga-Jauregui C, Metpally R,
Pendergrass SA, Giovanni MA, Kirchner HL, Balasubramanian S, Abul-Husn NS,
Hartzel DN, Lavage DR, Kost KA, Packer JS, Lopez AE, Penn J, Mukherjee S,
Gosalia N, Kanagaraj M, Li AH, Mitnaul LJ, Adams LJ, Person TN, Praveen K,
Marcketta A, Lebo MS, Austin-Tse CA, Mason-Suares HM, Bruse S, Mellis S,
Phillips R, Stahl N, Murphy A, Economides A, Skelding KA, Still CD, Elmore JR,
Borecki IB, Yancopoulos GD, Davis FD, Faucett WA, Gottesman O, Ritchie
MD, Shuldiner AR, Reid JG, Ledbetter DH, Baras A, Carey DJ. Distribution and
clinical impact of functional variants in 50,726 whole-exome sequences from
the DiscovEHR Study. Science 2016;354:aaf6814.

166. Abul-Husn NS, Manickam K, Jones LK, Wright EA, Hartzel DN, Gonzaga-
Jauregui C, O’Dushlaine C, Leader JB, Lester Kirchner H, Lindbuchler DAndra.
M, Barr ML, Giovanni MA, Ritchie MD, Overton JD, Reid JG, Metpally RPR,
Wardeh AH, Borecki IB, Yancopoulos GD, Baras A, Shuldiner AR, Gottesman
O, Ledbetter DH, Carey DJ, Dewey FE, Murray MF. Genetic identification of
familial hypercholesterolemia within a single U.S. health care system. Science
2016;354:aaf7000.

Big data for translational CVD research 1495d
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/article-abstract/39/16/1481/4096831 by U
niversity C

ollege London user on 10 M
arch 2020

http://creativedestructionofmedicine.com/
http://creativedestructionofmedicine.com/
https://www.health-eheartstudy.org/
https://www.healthvault.com/gb/en
http://cloud4cancer.appspot.com/
http://cloud4cancer.appspot.com/
http://www.metoffice.gov.uk/publicsector/climate-programme
http://www.metoffice.gov.uk/publicsector/climate-programme
https://adrn.ac.uk/
http://www.himss.eu/

	ehx487-TF1
	ehx487-TF2

