
*For correspondence:

um1@sanger.ac.uk (UMD);

s.janes@ucl.ac.uk (SMJ)

†These authors contributed

equally to this work

Competing interest: See

page 20

Funding: See page 19

Received: 07 July 2017

Accepted: 13 December 2017

Published: 18 January 2018

Reviewing editor: Joaquı́n M

Espinosa, University of Colorado

School of Medicine, United

States

Copyright Kolluri et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Loss of functional BAP1 augments
sensitivity to TRAIL in cancer cells
Krishna Kalyan Kolluri1†, Constantine Alifrangis2†, Neelam Kumar1†, Yuki Ishii1†,
Stacey Price2, Magali Michaut3, Steven Williams2, Syd Barthorpe2,
Howard Lightfoot2, Sara Busacca4, Annabel Sharkey4, Zhenqiang Yuan1,
Elizabeth K Sage1, Sabarinath Vallath1, John Le Quesne4, David A Tice5,
Doraid Alrifai1, Sylvia von Karstedt6, Antonella Montinaro6, Naomi Guppy7,
David A Waller8, Apostolos Nakas8, Robert Good9, Alan Holmes9,
Henning Walczak6, Dean A Fennell4, Mathew Garnett2, Francesco Iorio10,
Lodewyk Wessels3, Ultan McDermott2*, Samuel M Janes1*

1Lungs for Living Research Centre, UCL Respiratory, University College London,
London, United Kingdom; 2Wellcome Trust Sanger Institute, Cambridge, United
Kingdom; 3The Netherlands Cancer Institute, Amsterdam, Netherlands; 4CRUK
Leicester Centre, Department of Cancer studies, University of Leicester, Leicester,
United Kingdom; 5Oncology Research, MedImmune, Inc., Gaithersburg, United
States; 6Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute,
University College London, London, United Kingdom; 7UCL Advanced Diagnostics,
University College London, London, United Kingdom; 8Department of Thoracic
Surgery, Glenfield Hospital, University Hospitals of Leicester, Leicester, United
Kingdom; 9UCL School of Pharmacy, University College London, London, United
Kingdom; 10European Molecular Biology Laboratory, European Bioinformatics
Institute, Cambridge, United Kingdom

Abstract Malignant mesothelioma (MM) is poorly responsive to systemic cytotoxic

chemotherapy and invariably fatal. Here we describe a screen of 94 drugs in 15 exome-sequenced

MM lines and the discovery of a subset defined by loss of function of the nuclear deubiquitinase

BRCA associated protein-1 (BAP1) that demonstrate heightened sensitivity to TRAIL (tumour

necrosis factor-related apoptosis-inducing ligand). This association is observed across human early

passage MM cultures, mouse xenografts and human tumour explants. We demonstrate that BAP1

deubiquitinase activity and its association with ASXL1 to form the Polycomb repressive

deubiquitinase complex (PR-DUB) impacts TRAIL sensitivity implicating transcriptional modulation

as an underlying mechanism. Death receptor agonists are well-tolerated anti-cancer agents

demonstrating limited therapeutic benefit in trials without a targeting biomarker. We identify BAP1

loss-of-function mutations, which are frequent in MM, as a potential genomic stratification tool for

TRAIL sensitivity with immediate and actionable therapeutic implications.

DOI: https://doi.org/10.7554/eLife.30224.001

Introduction
Amongst the most significant therapeutic breakthroughs in cancer has been the discovery of drug-

sensitising genomic alterations. Drugs such as the tyrosine kinase inhibitors (TKIs) developed against

the BCR-ABL fusion product in chronic myeloid leukaemia (CML) and the receptor products of HER2

mutations in breast cancer have transformed the prognosis of these cancers (Druker et al., 2006).

Malignant mesothelioma (MM) currently has no biomarker-driven therapies in routine clinical use.
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The mainstay of medical therapy for all patients remains systemic cytotoxic chemotherapy that offers

only limited survival benefit in unselected populations; as such the disease remains invariably

fatal (Vogelzang et al., 2003). A plethora of genomic studies in MM has identified recurrent muta-

tions in several genes considered to be tumour drivers. CDKN2A, NF2, BAP1 and TP53 are the most

frequently mutated (Guo et al., 2015; Bueno et al., 2016) and there has been increased focus on

these genes and their associated signaling pathways as potential therapeutic targets (LaFave et al.,

2015).

We aimed to determine if the mutational status of these tumour driver genes could predict

response to a range of existing anti-cancer compounds with a view to identifying genomic bio-

markers for responsive subsets of MM. We have previously reported on the ability of such unbiased

high-throughput chemical screens in cancer cell lines to identify drug-sensitising mutations in other

cancer types (Garnett et al., 2012). To this end, we conducted a high-throughput chemical screen

of molecularly characterised MM cell lines seeking associations between MM driver gene mutations

and compound response. This strategy led to the discovery of a subset of MM cell lines defined by

loss-of-function (LOF) mutations in BRCA associated protein-1 (BAP1) that demonstrated heightened

sensitivity to the death receptor agonist recombinant tumour necrosis factor (TNF)-related apopto-

sis-inducing ligand (rTRAIL). We validated this finding using in vitro, in vivo and ex vivo models sup-

porting the use of BAP1 as a genomic biomarker to identify TRAIL-sensitive MM tumours and a

novel stratified approach to treat MM.

eLife digest Two patients with the same disease who receive the same treatment may respond

in different ways. This variation often arises from differences in each patient’s genetic code. Genes

encode proteins, and proteins are the targets of most medical drugs and thus determine the

patient’s response to treatment.

A major advance in the 21st century is that doctors recognise that patients can respond

differently to the same treatment and now try to predict which patients will respond best to which

drug – an approach known as personalised medicine. Cancer treatment has been at the forefront of

personalised medicine because mutations in different genes underlie each different cancer. By

analysing which mutations are present in a cancer, doctors can thus predict which drug (or

combination of drugs) will be most effective. This approach has been used successfully in several

cancers, including breast and lung cancer, leading to fewer patients being exposed to ineffective

treatments and their associated side effects and costs.

Mesothelioma is a cancer of the lining of the lung that is associated with exposure to the mineral

asbestos. Current treatment options for mesothelioma are unfortunately limited and not very

effective. No personalised treatments are currently in use and new treatment approaches are

desperately needed.

Kolluri, Alifrangis, Kumar, Ishii et al. set out to determine if any of the mutations commonly seen

in mesothelioma affected how the cancer would respond to 94 anticancer drugs that are either in

use or in development. In the laboratory, mesothelioma cells that have mutations in the gene that

codes for a protein known as BRCA associated protein-1 (or BAP1 for short) were killed much more

effectively by a drug known as TNF-related apoptosis-inducing ligand (TRAIL). The same link was

seen in experiments with tumours of mesothelioma cells that had been transplanted into mice, and

for fragments of mesothelioma tumours taken from patients. When Kolluri et al. studied why these

tumours might be killed more effectively with TRAIL, they found that mutations in the gene for BAP1

result in a change in the levels of proteins that transmit the signal from the receptors targeted by

the TRAIL drug.

These findings may one day result in a new approach to treating patients with mesothelioma. But

first, the next step would be to conduct a clinical trial of TRAIL in patients with mesothelioma and

assess if those with tumours that have mutations in the gene for BAP1 do indeed respond better. If

this proves to be the case, this would result in a new personalised treatment option for patients that

suffer from this disease.

DOI: https://doi.org/10.7554/eLife.30224.002
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rTRAIL and other death receptor agonists selectively induce apoptosis in cancer cells and have

long held promise as anti-cancer agents owing to their broad clinical utility and minimal off-target

effects (Wiley et al., 1995; Pitti et al., 1996; Ashkenazi et al., 1999). Despite this, successful pre-

clinical studies have not translated to clinical efficacy in trials of unselected

populations (Herbst et al., 2010; Wainberg et al., 2013; Soria et al., 2010; Lemke et al., 2014a);

there have been no trials to date in MM. However, within these trials some patients showed signs of

therapeutic benefit and differential sensitivity within cell lines is well known. Retrospective biomarker

identification has led to the stratified use of other anti-cancer therapies that initially failed in unse-

lected trials such as activating EGFR mutations and EGFR TKIs (Lynch et al., 2004). We propose

that BAP1 could potentially act as such a biomarker for the death receptor agonists. BAP1 is a

nuclear deubiquitinase and forms multi-protein complexes that regulate the transcription of genes

involved in key cellular functions including cell cycle regulation and DNA repair (Ismail et al., 2014;

Machida et al., 2009). We investigated which BAP1 protein-binding partners, and thus which regula-

tory complexes, mediate TRAIL sensitivity identifying the BAP1-ASXL1 complex, the Polycomb

repressive deubiquitinase (PR-DUB), as key. We further found that loss of BAP1 function modulates

mRNA and protein expression of components of the extrinsic apoptotic pathway.

Results

A chemical screen uncovers genetic modifiers of drug response in
mesothelioma
A 6 day viability screen using 94 drugs including small molecule inhibitors and cytotoxic chemothera-

peutics (Supplementary file 1) was performed on 15 MM cell lines (Supplementary file 2) that had

been characterised using whole-exome sequencing, copy number analysis and gene expression

arrays. We generated 1425 single agent activity data profiles across the 15 cell lines (Figure 1A and

Supplementary file 3). To detect novel markers of drug sensitivity, we sought statistical associations

between drug response and the mutational status of the cell lines based on five genes identified as

candidate drivers of tumourigenesis in MM (Guo et al., 2015) (Figure 1—figure supplement 1).

There were 24 significant associations (false discovery rate (FDR) < 0.2) between single agent

response and the presence of a genomic alteration. The most statistically significant sensitising asso-

ciation seen was between BAP1 LOF mutations (mt BAP1) and treatment with recombinant TRAIL

(rTRAIL; FDR = 0.18, effect size �0.48) (Figure 1B,C and Supplementary file 4). No significant effect

on cell viability was observed in BAP1 wild-type (wt BAP1) lines when treated with rTRAIL. We subse-

quently confirmed this association in a larger panel of MM cell lines (Figure 1D and

Supplementary file 5). Strikingly, 6 of the 8 cell lines (75%) harbouring a BAP1 LOF mutation were

sensitive or partially sensitive to a dose range of rTRAIL while 7 of the 9 cell lines (78%) harbouring

wild-type BAP1 were resistant. BAP1 LOF mutations correlated with a loss of BAP1 protein expres-

sion in the majority of cell lines (Figure 1E). No sensitising association with BAP1 was observed for

pemetrexed or cisplatin, which are current first line agents for the treatment of MM (Figure 1—fig-

ure supplement 2A and B). A marginal trend towards increased sensitivity in BAP1 mutant MM lines

in response to treatment with the agonistic FAS receptor antibody CH11 and a TNF-a/IAP inhibitor

combination was observed. However, this was not as pronounced as that observed with rTRAIL or

the multivalent death receptor five superagonist MEDI3039 (Figure 1—figure supplement 2C,D

and E). Thus, while the significant sensitising association observed in the screen appears most spe-

cific to death receptor agonists, the trend observed with other TNF superfamily agonists indicates

the BAP1-rTRAIL association to be mediated by an underlying mechanism common to this family

such as the cytoplasmic extrinsic apoptotic machinery.

The association of loss of BAP1 function with TRAIL sensitivity extends
to other tumour types
To determine if knockdown of BAP1 in wild-type MM cells led to TRAIL sensitivity, we silenced BAP1

expression in four wt BAP1 MM cell lines using a lentiviral shRNA construct. Knockdown of BAP1

resulted in increased cell death following rTRAIL treatment compared with empty vector (EV) control

shRNA and the parental cell line in all four MM cell lines (Figure 2A and Figure 2—figure supple-

ment 1B and C ). Loss of BAP1 expression has also been identified in several other tumour types
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Figure 1. A chemical screen in mesothelioma cell lines identifies a BAP1-mutant population sensitised to the death receptor ligand rTRAIL. (A) Area

under the curve (AUC) values for 15 malignant mesothelioma (MM) cells treated for 6 days with 94 compounds. Each dot indicates the AUC value for an

individual cell line treated. AUC <0.7 is indicated by the red dotted line — only those compounds with �2 cell lines below this value were analysed for

statistically significant associations with gene mutations. The AUC values for rTRAIL are indicated by the red asterisk. (B) A Welch t-test was used to test

for significant pharmacogenomics interactions between the 94 single agents in the screen and the presence of driver mutations in any of 5 MM cancer

genes. Each volcano plot circle corresponds to a significant gene–drug interaction whose position on the x-axis indicates the corresponding effect size.

Both half-axes are positive; the right side (green circles) indicates the effect sizes of sensitivity associations, whereas the left side (red circles)

corresponds with the effect sizes of resistance associations. The position on the y-axis indicates the statistical significance of the identified interaction.

The size of a given circle is proportional to the number of samples in which the selected functional event involved in the corresponding interaction

occurs. Specific examples of associations are indicated where the effect size is large (rTRAIL and BAP1 mutations) or highly significant (cisplatin and

CDKN2A mutations). (C) Cell viability between wild-type BAP1 (wt BAP1) (n = 10) and mutant BAP1 (mt BAP1) (n = 5) MM lines following 6 days of

treatment with rTRAIL (t-test; *p=0.015). (D) Cell viability data for 17 MM lines treated for 6 days with a concentration range of rTRAIL (0.4–50 ng/ml).

Figure 1 continued on next page
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including uveal melanoma (47%) (Harbour et al., 2010), clear cell renal carcinoma (CCRC)

(14%) (Peña-Llopis et al., 2012) and cholangiocarcinoma (7%) (Fujimoto et al., 2015). Notably,

knockdown of BAP1 in two CCRC lines resulted in increased sensitivity to rTRAIL in addition to the

MDAMB-231 breast cancer line (Figure 2B and Figure 2—figure supplements 2 and 3). We also

analysed a panel of 1001 cancer cell lines submitted for whole exome and copy number analysis as

part of the COSMIC cell lines project (Forbes et al., 2015) and identified nine additional non-meso-

thelioma cell lines harbouring truncating mutations in BAP1 (http://cancer.sanger.ac.uk/cancerge-

nome/projects/cell_lines/). These include CCRC, bladder and breast cancer lines. Treatment of

cancer cell lines harbouring nonsense mutations in BAP1 with rTRAIL resulted in markedly reduced

cell viability compared with cancer cell lines harbouring missense mutations (Figure 2—figure sup-

plement 4).

BAP1 modulates TRAIL sensitivity through PR-DUB activity
BAP1 is a nuclear deubiquitinase that forms multi-protein complexes with transcription factors to

regulate gene transcription (Jensen et al., 1998; Ventii et al., 2008). To elucidate the mechanism

by which BAP1 modulates sensitivity to TRAIL we generated expression vectors containing wild-type

or mutant forms of BAP1, each with an inactive functional site or protein-binding domain. These

included C91A (mutation in the deubiquitination catalytic site) (Jensen et al., 1998; Ventii et al.,

2008), DHBM (deletion of the HCF-1-binding site) (Misaghi et al., 2009), T493A (mutation in the

FOXK2-binding site) (Ji et al., 2014), DASXL (deletion of the ASXL1/2 protein-binding

site) (Daou et al., 2015) and DCTD (deletion of the C-terminal domain containing the nuclear local-

isation signal) (Ventii et al., 2008). H226 MM cells, which harbour a homozygous deletion of BAP1

and demonstrate complete loss of BAP1 expression, were transduced with a GFP (vector control), a

wild-type BAP1 expression vector or one of these five mutant BAP1 expression vectors. rTRAIL sensi-

tivity of the parental BAP1-null H226 MM line was significantly diminished following expression of

wild-type BAP1 and each of the mutant constructs except those with an inactive deubiquitinating or

ASXL protein-binding site (Figure 2C), implicating the function of these sites in BAP1-induced TRAIL

resistance. These effects were replicated using MEDI3039 (Figure 2D). Transduction of two further

BAP1-mutant rTRAIL-sensitive cell lines, H28 and H2804, with wild-type BAP1 also induced resis-

tance to rTRAIL while sensitivity was maintained with transduction of the deubiquitinase mutant (Fig-

ure 2—figure supplement 5).

The BAP1 deubiquitinase and ASXL-binding sites are key to the function of the PR-DUB, an epi-

genetic transcriptional regulatory complex composed of BAP1 and ASXL1. Deubiquitination of the

main substrate of the PR-DUB, H2AK119Ub, alters chromatin architecture to modulate gene tran-

scription (Scheuermann et al., 2010). This led us to hypothesise that PR-DUB, rather than exclusively

BAP1, function might underlie rTRAIL sensitivity. Consistent with this shRNA silencing of ASXL1, but

not ASXL2, induced sensitivity to MEDI3039 and rTRAIL in the BAP1/ASXL1/ASXL2-wild-type MM

line MPP-89 (Figure 2E and Figure 2—figure supplement 6). Furthermore, H2AK119Ub expression

was unaltered in the rTRAIL-sensitive H226 cells transduced with mutant constructs that disrupt PR-

DUB activity, while the rTRAIL-resistant H226 cells transduced with a wild-type BAP1 construct

exhibited lower H2AK119Ub levels (Figure 2—figure supplement 7). Thus, as the PR-DUB complex

is implicated in transcriptional regulation, differential modulation of specific transcriptional pro-

grammes by BAP1 may determine rTRAIL sensitivity. We therefore compared differential gene

expression data from BAP1-null H226 cells transduced with the C91A BAP1 mutant or with wild-type

Figure 1 continued

MM lines are coloured according to their sensitivity pattern (green = sensitive (S); orange = partially sensitive (PS); red = resistant (R)). *Indicates cell

lines harbouring BAP1 mutations. (E) Immunoblot of BAP1 protein expression in BAP1-mutant versus BAP1-wild-type MM cell lines. Sensitivity to rTRAIL

treatment is indicated as font colour: green (S); orange (PS); red (R).

DOI: https://doi.org/10.7554/eLife.30224.003

The following figure supplements are available for figure 1:

Figure supplement 1. Mutation status of 5 candidate tumour driver genes in the 15 MM lines used in the combinatorial chemical inhibitor screen.

DOI: https://doi.org/10.7554/eLife.30224.004

Figure supplement 2. BAP1 and the response to alternative apoptotic stimuli in MM cells.

DOI: https://doi.org/10.7554/eLife.30224.005
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Figure 2. BAP1-induced TRAIL resistance extends to other cancer subtypes and is dependent upon functional deubiquitinase and ASXL-binding sites.

(A) BAP1-wild-type H2818, MPP-89, H2373 and H2869 MM lines were transduced with BAP1 (shBAP1) or empty vector (EV) shRNA. Immunoblot

confirmed BAP1 knockdown in the BAP1 shRNA-transduced cells. Parental and transduced cells were treated with rTRAIL (1000 ng/ml) and cell viability

assessed after 72 hr by MTT assay (t-test; ****p<0.0001). (B) The BAP1-wild-type breast cancer line MDAMB-231 and the renal cell carcinoma (RCC) lines

Figure 2 continued on next page
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BAP1 and carried out a signalling pathway impact analysis (SPIA) ((Figure 2—figure supplements 8

and 9 [SPIA_H226 C91A mutant vs WT]) (http://www.genome.jp/dbget-bin/www_bget?path:

map04210). Among those pathways significantly altered when comparing wild-type versus C91A

BAP1 (FDR < 0.2) was that of apoptosis. In particular, there was altered mRNA expression of compo-

nents of the extrinsic death pathway (Figure 2F and Supplementary file 6). This manifested as an

imbalance in levels of pro- and anti-apoptotic mRNA expression with, for example, significantly

decreased levels of the anti-apoptotic cIAP1/2 (p=2.32E-10) and increased levels of the pro-apopto-

tic death receptor 5 (p=7.79E-10) in the rTRAIL sensitive C91A BAP1-transduced cells relative to the

rTRAIL resistant BAP1-wild-type transduced cells. Immunoblot analysis confirmed reduced protein

expression of cIAP1/2 and c-FLIP in both C91A and DASXL BAP1-transduced cells relative to BAP1-

wild-type transduced cells (Figure 2G). Flow cytometry analysis confirmed reduced DR4 and DR5

expression in C91A BAP1 transduced relative to BAP1-wild-type-transduced cells. Knockdown of

BAP1 in the BAP1 wild-type H2818 line resulted in a significant increase in DR4 expression only

(Figure 2H).

Figure 2 continued

Caki-1 and BB65 were transduced with BAP1 (shBAP1) or empty vector (EV) shRNA. Immunoblot confirmed BAP1 knockdown in the BAP1 shRNA

transduced cells. Parental and transduced cells were treated with rTRAIL (1000 ng/ml) and cell viability assessed after 72 hr by MTT assay (t-test;

****p<0.0001). (C) The rTRAIL-sensitive H226 MM line, which harbours a homozygous deletion of BAP1, was transduced with either a GFP control, wild-

type BAP1 or a mutant BAP1 containing an inactive functional domain: C91A — inactivating mutation of deubiquitinase catalytic site; DHBM — deletion

of HCF-1-binding motif; T493A — inactivating mutation of FOXK2-binding site; DASXL — deletion of ASXL1/2 protein-binding site; DCTD — deletion of

C-terminal domain containing nuclear localisation signal. These transduced lines were treated with 50 ng/ml rTRAIL and cell death assessed with XTT

assay (one-way ANOVA; **p<0.01). (D) The parental and transduced H226 MM lines were treated with a concentration range (1–100 pM) of the small

molecule death receptor agonist MEDI3039 and cell viability assessed with XTT assay. (E) The BAP1-wild-type MPP-89 MM line was transduced with

ASXL1 (shASXL1), ASXL2 (shASXL2) or empty vector (EV) shRNA. qPCR confirmed a decrease in ASXL1 and ASXL2 mRNA expression in the ASXL1

shRNA and ASXL2 shRNA-transduced cells, respectively (Figure 2—figure supplement 6). Parental and transduced cells were treated with a

concentration range (1–100 pM) of MEDI3039 and cell viability assessed with XTT assay. (F) Differential gene expression of apoptosis regulator genes in

the catalytically inactive BAP1-mutant (C91A) relative to the wild-type BAP1-transduced (wt BAP1) H226 cells. (G) Immunoblot of apoptosis regulator

proteins in the catalytically inactive BAP1-mutant (C91A), inactive ASXL1/2-binding site BAP1-mutant (DASXL) or wild-type BAP1-transduced (wt BAP1)

H226 cells. (H) Flow cytometry analysis of death receptor 4 (DR4) and 5 (DR5) cell surface expression in H226 cells transduced with the catalytically

inactive BAP1-mutant (C91A) or wild-type BAP1 (wt BAP1) and of BAP1-wild-type H2818 MM cells transduced with BAP1 (KD) or empty vector (EV)

shRNA. The values represent the median fluorescence intensity (MFI).

DOI: https://doi.org/10.7554/eLife.30224.006

The following figure supplements are available for figure 2:

Figure supplement 1. shRNA knockdown of BAP1 increases sensitivity to rTRAIL in MM cells.

DOI: https://doi.org/10.7554/eLife.30224.007

Figure supplement 2. shRNA knockdown of BAP1 increases sensitivity to DR agonists in breast cancer cells.

DOI: https://doi.org/10.7554/eLife.30224.008

Figure supplement 3. shRNA knockdown of BAP1 increases sensitivity to DR agonists in clear cell renal carcinoma cells.

DOI: https://doi.org/10.7554/eLife.30224.009

Figure supplement 4. Cell viability of non-mesothelioma BAP1-mutant cell lines following rTRAIL treatment.

DOI: https://doi.org/10.7554/eLife.30224.010

Figure supplement 5. Overexpression of wild-type BAP1 induces resistance to rTRAIL in BAP1 mutant MM cells.

DOI: https://doi.org/10.7554/eLife.30224.011

Figure supplement 6. shRNA knockdown of ASXL1 increases sensitivity of MM cells to rTRAIL.

DOI: https://doi.org/10.7554/eLife.30224.012

Figure supplement 7. Ubiquitinated histone 2A at K119 (H2AK119Ub) expression and BAP1 function.

DOI: https://doi.org/10.7554/eLife.30224.013

Figure supplement 8. Differential gene expression data from H226 MM cells expressing C91A-mutant (mt BAP1) or wild-type BAP1 (wt BAP1).

DOI: https://doi.org/10.7554/eLife.30224.014

Figure supplement 9. Signalling pathway impact analysis of gene expression data from H226 MM cells expressing C91A-mutant (mt BAP1) or wild-type

BAP1 (wt BAP1).

DOI: https://doi.org/10.7554/eLife.30224.015
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BAP1 loss-of-function sensitises human early passage mesothelial cell
lines, human tumour explants and mouse mesothelioma xenograft
models to rTRAIL
To support the clinical relevance of our finding we extended our assays to two further models

derived from primary tumour tissue. 25 human early passage MM lines from the UK

Mesobank (Rintoul et al., 2016) were assessed for BAP1 expression by immunohistochemistry, a

technique known to correlate strongly with BAP1 LOF mutations in the absence of strong nuclear

staining (Nasu et al., 2015). When treated with rTRAIL, those without strong nuclear staining were

significantly more sensitive than those with strong nuclear staining (p=0.0067). Of the 12 lines that

did not express nuclear BAP1 9 were sensitive, 2 partially sensitive and only one resistant to rTRAIL

(Table 1, Figure 3A and Figure 3—figure supplement 1). Remarkably, rTRAIL treatment of tumour

explants derived from three patients with MM also revealed increased levels of apoptosis (as mea-

sured by poly (ADP-ribose) polymerase (PARP) cleavage) in explants with low BAP1 expression com-

pared with those with high BAP1 expression (Figure 3B and C, Figure 3—figure supplement 2).

To test the in vivo efficacy of TRAIL in inducing apoptosis in BAP1-mutant MM cells, we trans-

duced the H226 BAP1-wild-type and the H226 C91A BAP1-mutant cell lines with luciferase and

injected equal numbers of wild-type and mutant cells into the opposite flanks of mice (Figure 3—fig-

ure supplement 3A). On day 14 after injection the mice were divided into two groups and injected

intraperitoneally with rTRAIL or vehicle for 6 days per week until day 40. At sacrifice rTRAIL-treated

Table 1. BAP1 immunoblot status, nuclear BAP1 staining and rTRAIL sensitivity (50 ng/ml) of the 25

human early passage MM cultures.

Sample name Western blot Nuclear BAP1-IHC Sensitivity

7T � � Sensitive

8T � � Sensitive

45 � � Sensitive

19 � � Sensitive

14T � � Sensitive

12 � � Sensitive

23T � � Sensitive

40 � � Sensitive

36 Low Expression � Sensitive

26 + + Sensitive

12T + + Sensitive

3T + + Sensitive

52 � � Partially Sensitive

2 � � Partially Sensitive

30 Low Expression + Partially Sensitive

15 Low Expression + Partially Sensitive

35 + + Partially Sensitive

24 + + Partially Sensitive

43 � � Resistant

34 + + Resistant

50T + + Resistant

33T + + Resistant

18 + + Resistant

53T + + Resistant

38 + + Resistant

DOI: https://doi.org/10.7554/eLife.30224.016
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Figure 3. Loss of functional BAP1 leads to TRAIL sensitivity in early passage mesothelioma cell lines, human tumour explants and mouse xenograft

models. (A) Mean cell viability effect between human early passage MM cell lines (positive nuclear BAP1 staining; n = 13 and negative nuclear BAP1

staining; n = 12) as assessed by immunohistochemistry following 3 days of treatment with rTRAIL (50 ng/ml) (t-test, p=0.0067). (B) Immunohistochemical

images of tumour explants derived from three MM patients treated with either vehicle or rTRAIL for 24 hr. Explants were stained with anti-BAP1 and

anti-cleaved PARP (marker for apoptosis) antibodies. (C) The percentage of cleaved PARP-positive cells in tumour explants derived from three patients

and treated with either vehicle or 0, 50, 100 and 200 ng/ml of rTRAIL for 24 hr was scored based on the percentage of cells with nuclear cleaved PARP-

positive staining. (D) Weights of tumour xenografts derived from BAP1-wild-type (wt BAP1) versus catalytically inactive BAP1-mutant (C91A mt BAP1)

transduced MM cells following treatment with either vehicle or TRAIL (600 mg per mouse) at the time of sacrifice (day 42) (t-test). (E) Serial

bioluminescence imaging of BAP1-wild-type (wt BAP1) and catalytically inactive BAP1-mutant (C91A) MM xenografts in mice treated with either vehicle

or TRAIL. Mice were imaged on day 0 (after tumour inoculation), day 13 (before TRAIL administration) and day 41 (time of sacrifice). The intensity of

luminescence is denoted by colour: red - high luciferase signal (high tumour burden) and blue - low luciferase signal (low tumour burden). (F) A time-

course of bioluminescence scores in BAP1-wild-type (wt BAP1) versus catalytically inactive BAP1-mutant (C91A) MM tumour xenografts.

Bioluminescence was measured on days 0, 13, 19, 26 and 41, 15 min after injecting the mice with 0.2 ml luciferin intraperitoneally. The number of

photons emitted per second indicates the tumour burden (two way ANOVA).

DOI: https://doi.org/10.7554/eLife.30224.017

The following figure supplements are available for figure 3:

Figure 3 continued on next page
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BAP1-mutant tumours weighed significantly less than rTRAIL-treated BAP1-wild-type tumours

(p=0.020) and vehicle-treated BAP1-mutant tumours (p=0.019) (Figure 3D and Figure 3—figure

supplement 3B). BAP1-wild-type tumours showed no response to rTRAIL compared with vehicle.

The growth rate of rTRAIL-treated BAP1-mutant tumours was also significantly suppressed com-

pared with rTRAIL-treated BAP1-wild-type and vehicle-treated tumours (p<0.05) as assessed by lon-

gitudinal bioluminescence intensity (Figure 3E and F).

Discussion
Malignant mesothelioma remains a devastating disease with limited systemic treatment

options (Vogelzang et al., 2003). Biomarker-driven therapies have significantly improved the prog-

nosis for subsets of patients within other cancer types however this strategy has yet to impact MM.

Our data support the use of loss of function of BAP1 as a genomic stratification tool to identify

rTRAIL-sensitive MM tumours, an approach that may extend to other cancer subtypes. We propose

the underlying mechanism involves the transcriptional regulation of expression of components of the

apoptotic pathway by the PR-DUB. Our finding has potentially significant and immediately action-

able clinical implications for both MM treatment and for the death receptor agonist field.

BAP1 has emerged as a key driver of tumorigenesis in MM (Bueno et al., 2016). As such, there

has been increased focus on this nuclear deubiquitinase and its associated pathways (LaFave et al.,

2015). While next-generation sequencing reveals MM BAP1 mutation rates in the order of 20–

30% (Guo et al., 2015; Bueno et al., 2016; Bott et al., 2011), immunohistochemical analysis has

identified loss of BAP1 function in up to 67% of MM tumours (Nasu et al., 2015) opening our bio-

marker-driven approach to a significant proportion of MM patients. BAP1 immunohistochemistry

accurately identifies loss of BAP1 function as a consequence of genetic and non-genetic

mechanisms (Nasu et al., 2015) and is already in clinical use as a diagnostic tool; hence the clinical

tools for our proposed approach are validated and ready. Our data indicate the BAP1-TRAIL associa-

tion extends beyond MM to other tumours with loss of BAP1 function. Chromosomal deletions and

somatic inactivating mutations have been identified at high frequency in uveal

melanoma (Harbour et al., 2010), clear cell renal carcinoma (Peña-Llopis et al., 2012) and

cholangiocarcinoma (Fujimoto et al., 2015), increasing the potential clinical impact of our discovery.

Although loss of BAP1 function is seen at far lower rates in breast carcinoma (1%) (Stephens et al.,

2012) and non-small cell lung carcinoma (1%) (Owen et al., 2017), the high incidence of these can-

cers translates to a large cohort of patients.

Focus on death receptor agonists as anti-cancer agents has generated two decades of preclinical

studies and the development of numerous clinically tested compounds, all of which have demon-

strated limited therapeutic efficacy at phase I/II trials (Herbst et al., 2010; von Pawel et al., 2014;

Paz-Ares et al., 2013; Forero-Torres et al., 2013). Strategies to overcome this have included the

development of increasingly potent death receptor agonists and combination therapies to address

resistance factors within the apoptosis pathway (Holland, 2013; Lemke et al., 2014b). As differen-

tial sensitivity has been observed in trials, it has been accepted that identification of a biomarker

predicting the therapeutic outcome is of paramount importance (Ashkenazi, 2015; von Karstedt

et al., 2017). There have been previous attempts to identify predictive biomarkers largely focused

on molecular expression panels (Passante et al., 2013). Ours is the first unbiased approach to

address how the genetic make-up of tumours predicts response to rTRAIL treatment. The identifica-

tion of BAP1 as a potential genomic biomarker has the potential to reignite the death receptor ago-

nist field of research into which significant investment has already been made. The value of

retrospective analysis of clinical trials based on the genomic landscape has clearly been

Figure 3 continued

Figure supplement 1. BAP1 expression in early passage MM cultures.

DOI: https://doi.org/10.7554/eLife.30224.018

Figure supplement 2. Ex vivo experimental protocol.

DOI: https://doi.org/10.7554/eLife.30224.019

Figure supplement 3. In vivo experimental protocol.

DOI: https://doi.org/10.7554/eLife.30224.020
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demonstrated in the past (Lynch et al., 2004) and we wait with interest whether this will be per-

formed on archived tumour tissue, in the context of BAP1 status, from previous trials. Notably there

have been no trials of any death receptor agonists in MM or indeed any cancer with a high propor-

tion of BAP1 mutations. We suspect a significantly higher proportion of responders would have

been identified in such trials.

Our findings also have implications for death receptor agonists as a therapy for BAP1-wild-type

tumours as delineation of the underlying mechanism would offer a novel avenue by which to sensi-

tise these tumours. Our mechanistic data implicate transcriptional regulation by the PR-DUB as key

to the capacity of BAP1 to modulate death receptor agonist sensitivity. BAP1 is a master genetic

regulator and is known to influence the transcription of thousands of genes as supported by our and

others’ gene expression data (Dey et al., 2012). While we highlight the extrinsic apoptotic pathway

and proteins as being significantly altered by BAP1 status, identifying a single factor to explain

BAP1-induced TRAIL resistance is extremely challenging. Of more direct clinical significance is our

finding that loss of function of either component of the PR-DUB, BAP1 or ASXL1, results in an

increase in death receptor agonist sensitivity. ASXL1 mutations have an important role in the patho-

genesis of myeloid neoplasms primarily consisting of nonsense, missense and frameshift mutations

resulting in a truncated ASXL1 protein that retains the BAP1-binding domain (Boultwood et al.,

2010). It has yet to be clarified if this truncated protein possesses dominant-negative or gain-of-

function properties in the context of PR-DUB activity (Balasubramani et al., 2015). In the case of the

former, ASXL1 could potentially predict death receptor agonist sensitivity in myeloid neoplasms. Fur-

ther research is needed in these malignancies to determine this.

Confirmation of the clinical value of BAP1 as a targeting biomarker for death receptor agonists in

early phase clinical trials of mesothelioma is the first priority. The clinical tools for this approach are

already validated and established facilitating the translation of our discovery into a desperately

needed new therapy for this fatal thoracic cancer.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

gene

BRCA associated
protein-1 (human)

BAP1 Entrez Gene NCBI Gene ID: 8314

Additional sex
combs like 1 (human)

ASXL1 Entrez Gene NCBI Gene ID: 171023

strain, strain
background

NOD.CB17-Prkdcscid/NcrCrl NOD SCID mice Charles River
Laboratories, UK

RRID:IMSR_CRL:394

cell line

Early passage
mesothelioma
cell cultures

7T, 8T, 45, 19, 14T,
23T, 40, 36, 26, 12T
, 3T, 52, 2, 30, 15, 35
, 24, 43, 34, 50T
, 33T, 18, 53T, 38

MesobanK,
Mesothelioma UK

www.mesobank.com
Mesothelioma
Tissue Bank,
Papworth Hospital NHS
Trust, UK

NCI-H2373 H2373 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_A533

NCI-H2803 H2803 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_U997

NCI-H2452 H2452 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_1553

NCI-H2722 H2722 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_U994

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

NCI-H2369 H2369 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_A532

NCI-H2795 H2795 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_U996

NCI-H2869 H2869 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_V001

NCI-H2591 H2591 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_A543

MPP 89 MPP-89 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_1427

NCI-H2810 H2810 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_U999

NCI-H2818 H2818 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_V000

NCI-H513 H513 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_A570

NCI-H2595 H2595 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_A545

NCI-H2461 H2461 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_A536

NCI-H2731 H2731 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_U995

NCI-H2804 H2804 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_U998

NCI-H28 H28 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_1555

NCI-H226 H226 Szlosarek lab, Barts Cancer
Institute, UK

RRID:CVCL_1544

MDA-MB-231 MDAMB-231 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_0062

Caki-1 Caki-1 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_0234

BB65 BB65 Wellcome Trust Sanger
Institute, UK

RRID:CVCL_1078

antibody

BAP1 (C-4) mouse mAb anti-BAP1 Santa Cruz Biotechnology,
Santa Cruz, CA

Cat# sc-28383
RRID:AB_626723

1:500 in milk; 1:50 for
flow cytometry

Caspase-8 (1C12) mouse mAb anti-caspase 8 Cell Signaling Technology,
Danvers, MA

Cat# 9746
RRID:AB_2275120

1:1000 in BSA

FLIP (7F10) mouse mAb anti c-FLIP Enzo Life Sciences,
Farmingdale, NY

Cat# ALX-804-961-
0100 RRID:AB_271
3915

1:1000 in milk

c-IAP1 (D5G9) rabbit mAb anti-cIAP1 Cell Signaling Technology,
Danvers, MA

Cat# 7065S
RRID:AB_10890862

1:1000 in BSA

c-IAP2 (58C7) rabbit mAb anti-cIAP2 Cell Signaling Technology,
Danvers, MA

Cat# 3130S
RRID:AB_10693298

1:1000 in BSA

FADD rabbit pAb anti-FADD Cell Signaling Technology,
Danvers MA

Cat# 2782
RRID:AB_2100484

1:1000 in BSA

XIAP (3B6) rabbit mAb anti-XIAP Cell Signaling Technology,
Danvers, MA

Cat# 2045
RRID:AB_2214866

1:1000 in milk

survivin rabbit pAb anti-survivin Cell Signaling Technology,
Danvers, MA

Cat# 2803
RRID:AB_490807

1:1000 in BSA

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

a-Tubulin (11H10)
Rabbit mAb

anti-a-tubulin Cell Signaling Technology,
Danvers, MA

#2125 1:2000 in milk

Ubiquityl-Histone
H2A (Lys119)
(D27C4) XP
Rabbit mAb

anti-H2AK119Ub Cell Signaling Technology,
Danvers, MA

Cat# 8240P
RRID:AB_10891618

1:2000 in BSA

Histone H2A (D6O3A)
Rabbit mAb

anti-H2A Cell Signaling Technology,
Danvers, MA

Cat# 12349
RRID:AB_2687875

1:1000 in BSA

Anti-mouse IgG,
HRP-linked antibody

anti-mouse HRP Cell Signaling Technology,
Danvers, MA

Cat# 7076
RRID:AB_330924

1:2000 in milk

Anti-rabbit IgG,
HRP-linked antibody

anti-rabbit HRP Cell Signaling Technology,
Danvers, MA

Cat# 7074
RRID:AB_2099233

1:2000 in milk

Donkey anti-Mouse IgG
(H + L) Highly
Cross-Adsorbed
Secondary Antibody,
AlexaFluor 488

AlexaFluor 488-
conjugated anti-
mouse antibody

Thermo Fisher
Scientific, UK

Cat# A-21202
RRID:AB_141607

1:200 for flow
cytometry

Annexin V,
AlexaFluor 647 conjugate

Annexin V
AlexaFluor 647-
conjugated antibody

Thermo Fisher
Scientific, UK

Cat# A23204
RRID:AB_2341149

1:100 for flow
cytometry

PE anti-human CD261 (DR4,
TRAIL-R1) antibody

PE-conjugated antibody
to DR4

Biolegend, UK Cat# 307205
RRID:AB_314669

1:100 for flow
cytometry

PE anti-human CD262 (DR5,
TRAIL-R2) antibody

PE-conjugated antibody
to DR5

Biolegend, UK Cat# 307405
RRID:AB_314677

1:100 for flow
cytometry

PE Mouse IgG1,
k Isotype Ctrl
Antibody

PE isotype
control antibody

Biolegend, UK Cat# 400112 1:100 for flow
cytometry

Goat anti-Rabbit
IgG (H + L) Secondary
Antibody, AlexaFluor
488 conjugate

AlexaFluor 488-conjugated
anti-rabbit secondary
antibody

Thermo Fisher
Scientific, UK

Cat# R37116
RRID:AB_2556544

1:200 for flow
cytometry

Anti-Cleaved PARP1 (E51) mAb cleaved PARP primary
antibody; anti-cleaved
PARP

Abcam, UK Cat# ab32064
RRID:AB_777102

(1:6000) for
immunohistochemistry

recombinant DNA reagent

BAP1 (NM_004656) Human
cDNA Clone

pCMV6-AC BAP1
plasmid

Origene, Rockville, MD Cat# SC117256

pHIV-Luc-ZsGreen ZS-green luciferase
plasmid, pHIV-Luc-
ZsGreen

Bryan Welm Lab, University
of Utah, Addgene, Logan, UT

Cat# 39196

pCMVR8.74 pCMV-dR8.74 Thrasher lab, UCL, Addgene,
UK

Cat# 22036

pMD2.G pMD2.G Thrasher lab, UCL, Addgene,
UK

Cat# 12259

sequence based reagent

BAP1 GIPZ Lentiviral shRNA BAP1 shRNA UCL RNAi Library
(Dharmacon, Lafayett, CO)

V2LHS 41473

ASXL1 GIPZ Lentiviral shRNA ASXL1 shRNA UCL RNAi Library
(Dharmacon, Lafayett, CO)

V2LHS 78829

ASXL2 GIPZ Lentiviral shRNA ASXL2 shRNA UCL RNAi Library
(Dharmacon, Lafayette, CO)

V3LHS_313940

peptide, recombinant protein

Recombinant Human sTRAIL rTRAIL Peprotech, UK Cat# 310–04

commercial assay or kit

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Cell Proliferation Kit XTT XTT reagent Applichem, UK A8088

Q5 Site-Directed
Mutagenesis Kit

Site directed mutagenesis New England Biolabs,
Ipswich, MA

Cat# E0554

Rabbit specific HRP/DAB
(ABC) Detection IHC Kit

rabbit-specific HRP/DAB
(ABC) detection IHC kit

Abcam, UK Cat# ab64261

chemical compound, drug

MEDI3039 MEDI3039 MedImmune, UK

software, algorithm

GraphPad Prism software Graphpad Prism GraphPad Software, CA, USA

CaVEMan algorithm CaVEMan https://github.com/cancerit
/CaVEMan

Pindel algorithm Pindel https://github.com/genome/
pindel

Predicting Integral
Copy Numbers
In Cancer algorithm

PICNIC http://www.sanger.ac.uk/
science/tools/picnic

FlowJo software Flowjo FlowJo LLC

Other

RIPA buffer RIPA Sigma-Aldrich, St. Louis, MO Cat# R0278

SytoÔ 60 red fluorescent
nucleic acid stain

Syto 60 Thermo Fisher Scientific, UK Cat# S11342

Thiazolyl Blue Tetrazolium
Bromide (MTT)

MTT reagent Sigma-Aldrich, St. Louis, MO Cat# M2128

jetPEI DNA
transfection reagent

jetPEI Source Bioscience, UK Cat# 101–10

Polybrene Polybrene Sigma-Aldrich, St Louis, MO Cat# 107689 8 mg/ml

Hoechst 33342 Solution (20 mM) Hoechst 33342 Thermo Fisher Scientific, UK Cat# 62249

4’, 6-diamidino-2-phenylindole DAPI Sigma-Aldrich, St Louis, MO Cat# D9542 200 mg/ml

Drug screens
Drugs in the screen
Compounds were from academic collaborators or commercial vendors. Each compound, its thera-

peutically relevant target substrate and pathway and the minimum and maximum screening concen-

trations are listed in Supplementary file 1. Compounds were stored as 10 mM aliquots at �80˚C and

were subjected to a maximum of 5 freeze-thaw cycles. For the screen a fixed single 40 ng/ml con-

centration of rTRAIL was used, while each of the 94 agents was screened at a 5-point serial 4-fold

dilution to give a 256-fold range from the lowest to highest concentration. The concentrations

selected for each compound were based on in vitro data to cover the range of concentrations known

to inhibit relevant kinase activity and cell viability.

Genomic/transcriptomic characterization of mesothelioma cell lines
The genomic data is available in the COSMIC database (Forbes et al., 2015) (http://cancer.sanger.

ac.uk/cancergenome/projects/cell_lines/).

Substitution and insertion/deletion variant data
Exome sequencing was carried out using the Agilent SureSelectXT Human All Exon 50 Mb bait set

giving an average 7 Gb of unique mapped reads per sample with an average of 85% of base pairs

covered to >20 reads. Variants were identified by comparison to a reference single unmatched nor-

mal sample. Differences from the reference genome were identified using the CaVEMan and Pindel

algorithms identifying substitution and small insertions/deletions respectively (https://github.com/
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cancerit/CaVEMan; https://github.com/genome/pindel) (Ye et al., 2009). The resulting variants were

then screened against approximately 8000 normal samples to remove sequencing artefacts and

germline variants (428 in-house normal exomes, 6500 normal exomes (NHLBI GO Exome Sequencing

Project, June 20th 2012 release), 1000 genomes project (29th March 2012 release) and variants in

the dbSNP database that had an associated minor allele frequency.

Copy number data
Genome-wide copy number data were obtained for the cell lines using the Affymetrix SNP6 microar-

ray analysed using the ‘PICNIC’ algorithm, which segments the genome into integer value copy num-

ber segments (Greenman et al., 2010) (http://www.sanger.ac.uk/genetics/CGP/Software/PICNIC/).

All genes were mapped onto this segmentation data to give a gene level copy number analysis. For

genes to be classified as amplified the complete coding footprint of the gene had to map onto seg-

ment(s) present in eight or more copies. For genes to be classed as homozygously deleted a mini-

mum of 1 bp of coding sequence had to be present within a segment of copy number ‘0’.

Cell viability assay in compound screen
Cells were seeded in either 96-well or 384-well microplates in RPMI-1640 or DMEM/F12. The opti-

mal cell number for each cell line was determined to ensure that each was in growth phase at the

end of the assay (~70% confluency). Adherent cell lines in the screens were plated 1 day prior to

treatment with each compound using liquid handling robotics and assayed after 6 days of treatment

with either the single agent or in combination with rTRAIL. Cells were fixed in 4% formaldehyde for

30 min and then stained with 1 mM of the fluorescent nucleic acid stain Syto 60 (Thermo Fisher

Scientific, UK) for 1 hr. Quantitation of fluorescent signal intensity was performed using a fluorescent

plate reader at excitation and emission wavelengths of 630/695 nm. The sensitivity of each cell line

to various concentrations of compound was calculated as the fraction of viable cells relative to

DMSO-treated cells following a 6 day exposure. All screening plates were subjected to stringent

quality control measures and a Z-factor score comparing negative and positive control wells was cal-

culated across all screening plates (median = 0.70, upper quartile = 0.86, lower quartile = 0.47,

n = 4857 plates).

Calculation of AUC values from cell line viability data
We derived the area under the curve (AUC) parameter from the 6 day cell line viability data to iden-

tify cell lines that are sensitive to a specific compound, with decreasing AUC associated with increas-

ing sensitivity. The AUCs were computed using a trapezoid integration below the five measured

viability of the dose-response curve and scaled so that a constant viability of 1 gives AUC of 1.

Statistical analysis of the effect of genetic features on drug response
We used 15 mesothelioma cell lines with molecular and drug response data: H2369, H2373, H2461,

H2591, H2722, H2731, H2803, H2804, H2810, H2818, H2869, H513, MPP-89, NCI-H2452 and NCI-

H28. We selected five genes for inclusion in the analysis (BAP1, TAOK1, NF2, TP53 and CDKN2A).

We defined groups of cell lines based on mutations and copy number alterations (homozygous dele-

tions or amplifications) in these genes. This resulted in a set of input features of 4 genes altered in at

least 2 of the cell lines (CUL1, RDX and PIK3C2B were not mutated and TAOK1 was only mutated in

1 cell line). For the association of gene mutations with sensitivity to each compound we restricted

the set of drugs to test to those with �2 cell lines with AUC <0.7. This resulted in 45 drugs being

suitable for analysis (of the overall 94 drugs).

Cell lines
All cell lines were sourced from the Wellcome Trust Sanger Institute except the H226 line that was a

kind gift from Dr Peter Szlosarek, Barts Cancer Institute. All cell lines were authenticated by geno-

typing using Short Tandem Repeat (STR) and Sequenom profiling of a panel of 92 single nucleotide

polymorphisms for each cell line to ensure non-synonymous cell lines were not used. As a cell line

classified as mesothelioma, H513 (on the list of commonly misidentified cell lines) was included in

the drug screen of 15 mesothelioma cell lines conducted. Use of this cell line however was not car-

ried forward to further experiments in the paper. The 25 early passage MM cultures were purchased
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from MesobanK (Rintoul et al., 2016). All cell lines and cultures were tested for mycoplasma con-

tamination and confirmed to be negative.

Cell culture
Cell lines were cultured in RPMI-1640 or Dulbecco’s modified Eagle’s medium and nutrient mix 12

medium (DMEM:F12) supplemented with 10% fetal bovine serum (FBS), penicillin/streptavidin and

sodium pyruvate. Early passage human mesothelioma cultures were cultured in RPMI-1640 medium

supplemented with 5% FBS, 25 mM HEPES, penicillin/streptavidin and sodium pyruvate. 293 T cells

were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine

serum (FBS) and 2 mM L-glutamine. All cells were maintained in a humidified environment at 37˚C
and 5% CO2.

Immunoblotting and antibodies
Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (Sigma-Aldrich, St. Louis, MO) with

protease inhibitors (Complete-mini; Roche, Switzerland) on ice to extract protein. 20 mg of protein

samples were separated by SDS–PAGE and transferred onto nitrocellulose membranes. Membranes

were incubated with specific primary antibodies, washed, incubated with secondary antibodies and

visualised using an ImageQuant LAS 4000 imaging system (GE Healthcare, Little Chalfont, NY). Anti-

bodies used include BAP1 (Santa Cruz Biotechnology, Santa Cruz, CA) Cat# sc-28383, RRID:AB_

626723), caspase 8 (Cell Signaling Technology, Danvers, MA) Cat# 9746, RRID:AB_2275120), c-FLIP

(Enzo Life Sciences, Farmingdale, NY) Cat# ALX-804-961-0100 RRID:AB_2713915), cIAP1 (Cell Sig-

naling Technology Cat# 7065S, RRID:AB_10890862), cIAP2 (Cell Signaling Technology Cat# 3130S,

RRID:AB_10693298), FADD (Cell Signaling Technology Cat# 2782, RRID:AB_2100484), XIAP (Cell

Signaling Technology Cat# 2045, RRID:AB_2214866), survivin (Cell Signaling Technology Cat# 2803,

RRID:AB_490807), a-tubulin (Cell Signaling #2125), H2AK119Ub (Cell Signaling Technology Cat#

8240P, RRID:AB_10891618), H2A (Cell Signaling Technology Cat# 12349, RRID:AB_2687875), anti-

mouse HRP (Cell Signaling Technology Cat# 7076, RRID:AB_330924) and anti-rabbit HRP (Cell Sig-

naling Technology Cat# 7074, RRID:AB_2099233). To detect the ubiquitination status of the histo-

nes, the cells were lysed with TBS buffer containing 1% SDS, protease and phosphatase inhibitors.

The cell extract was denatured by heating up at 95˚C for 10 min and centrifuged at 13000 rpm for

10 min. The supernatant was collected and immunoblotted as described above.

XTT/MTT cell viability assay
Cells were seeded in 96-well plates in 100 ml media per well at a density of 40,000 cells/ml 1 day

prior to treatment with soluble recombinant TRAIL (rTRAIL; Peprotech, UK) or MEDI3039

(Medimmune, UK). XTT (Applichem, UK; A8088) or MTT (M-2128, Sigma-Aldrich) reagent was added

on day 3. The absorbance was measured with a spectrophotometer at a wavelength of 490 nm or

560 nm for XTT or MTT respectively. Relative cell viability was calculated as a fraction of viable cells

relative to untreated cells.

Plasmids
Full-length BAP1 cDNA was amplified by PCR from pCMV6-AC BAP1 plasmid (Origene (Rockville,

MD; SC117256) and cloned into the lentiviral plasmid pCCL-CMV-flT vector previously

described (Yuan et al., 2015) in place of flT via BamHI and SalI sites, creating the BAP1 vector desig-

nated pCCL-CMV-BAP1. Vectors expressing mutant BAP1 constructs were generated by site-

directed mutagenesis (New England Biolabs) of the pCCL-CMV-BAP1 vector. The primers used are

listed below. All mutations were confirmed by sequencing.

BAP1-F CGTGGATCCGCCACCATGAATAAGGGCTGGCTGGA

BAP1-R GTCGGTCGACTCACTGGCGCTTGGCCTTGTA

C91A-F ATACCCAACTCTGCTGCAACTCATGCCTTGCTG

C91A-R CAGCTGGTGGGCAAAGAACATGTTATTCACAATATCATC

HBM-F CGCTGCTGCCAAGTCCCCCATGCAGGAGGA

HBM-R GCAGCGTCTAGAAAGGCCGGCAGCCGCT

CTD-F CGTGGATCCGCCACCATGAATAAGGGCTGGCTGGA

CTD-R GTCGTTCGAATCAGTCAGGCTTCCGCTGCTTGTGG
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T493A-F GCAGACACGGCCTCTGAGATCGGCAGTGCT

T493A-R ACTCTCATTGCTGGGGGTGGGTGA

ASXL-F AACTACGATGAGTTCATCTGCACCT

ASXL-R CTGGTCATCAATCTTGAACTTCTTCCTC

The ZS-green luciferase plasmid, pHIV-Luc-ZsGreen (a gift from Bryan Welm, Addgene plasmid

#39196) was used for generating ZS-Green luciferase-expressing lentivirus to transduce the H226

cells used in animal experiments.

RNA interference
Short hairpin RNAs (shRNAs) were expressed as part of a mir30-based GIPZ lentiviral vector

(Dharmacon, Lafayette, CO). The clones used in this study include BAP1 (V2LHS_41473), ASXL1

(V2LHS_78829), ASXL2 (V3LHS_313940) and the empty GIPZ control vector.

Lentivirus production and cell transfection
Lentiviral vectors were produced by co-transfection of 293 T cells with construct plasmids together

with the packaging plasmids pCMV-dR8.74 and pMD2.G (kind gifts from Dr Adrian Thrasher, UCL,

Addgene plasmid #22036 and #12259) in the presence of a DNA transfection reagent jetPEI (Source

Bioscience UK Ltd). Lentiviruses were concentrated by ultracentrifugation at 17,000 rpm (SW28

rotor, Optima LE80K Ultracentrifuge, Beckman Coulter, Brea, CA) for 2 hr at 4˚C. To determine the

titres of prepared lentiviruses 293 T cells were transduced with serial dilutions of viruses in the pres-

ence of 8 mg/ml Polybrene (Sigma-Aldrich) and BAP1 expression was assessed by flow cytometry.

shRNA- and luciferase-expressing vectors were assessed by analysis of GFP expression. Cell lines

were transduced in the presence of 8 mg/ml Polybrene at a range of MOIs and transduction efficacy

was assessed by flow cytometry for BAP1 expression.

Gene expression analyses
We pre-processed and normalised raw CEL files from Affymetrix Human Genome U219 array plate

hybridisations with the Multi-Array Average (RMA) method (Irizarry et al., 2003). We discarded tran-

scripts with low sample variance and consolidated duplicated genes by averaging their expression

values across duplicates. The resulting data were subsequently normalised (m = 0, s = 1) sample-

wise and gene-median centred. Gene expression was averaged across three biological replicates of

H226 transduced cells with either a C91A mutant or a wild-type BAP1 construct. SPIA pathway analy-

sis as described in Tarca et al (Tarca et al., 2009) was performed on those genes with an adjusted

p<0.05 and a fold change of >1.

Flow cytometry
All flow cytometry analysis was performed on a LSR Fortessa analyser (Becton Dickinson, Franklin

Lakes, NJ). For analysis of BAP1 expression cells were stained with primary antibody to BAP1 (Santa

Cruz Biotechnology Cat# sc-28383, RRID:AB_626723; 1:50) and then with an AlexaFluor 488-conju-

gated anti-mouse antibody (Thermo Fisher Scientific Cat# A-21202, RRID:AB_141607; 1:200). For

analysis of apoptosis and cell death all floating and adherent cells were harvested and stained with

an Annexin V AlexaFluor 647-conjugated antibody (Thermo Fisher Scientific Cat# A23204, RRID:AB_

2341149) and 4’, 6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, 200 mg/ml). For analysis of DR4

and DR5 expression on cell surface cells were stained with PE-conjugated antibody (DR4 - BioLe-

gend, San Diego, CA) Cat# 307205, RRID:AB_314669, DR5 - BioLegend Cat# 307405, RRID:AB_

314677, Isotype control - Biolegend #400112; 1:100). FlowJo software was used to analyse all data.

Immunofluorescence
H226 cells were seeded at 2.5 � 103 cells per well into 96-well Greiner micro-clear imaging plates in

DMEM 10% FBS. After 48 hr, cells were fixed in 4% PFA for 10 min at room temperature and per-

meabilised in 0.3% NP-40 in PBS for 10 min. Cells were blocked in 1% BSA in 0.1% PBS tween for 1

hr at room temperature. Ubiquityl-histone H2A (Lys119) primary antibody (Cell Signaling, #8240)

was incubated overnight at 4˚C, before incubating for 1 hr at room temperature with Alexafluor 488-

conjugated anti-rabbit secondary antibody. Nuclei were stained with Hoechst 33342 (Thermo Fisher

Scientific Cat# 62249). Images were acquired (n = 3) with a BioTek Cytation3 Multimode reader.
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Using a 10x objective 4 fields of view were acquired per well (n = 3) and the level of nuclear ubiqui-

tyl-histone H2A intensity was determined within the primary nuclear mask and normalised to total

cell number.

Immunohistochemical analysis of early passage cultures
BAP1 immunohistochemistry of human early passage cell lines was conducted on sections of cell pel-

lets mounted on slides. Automated staining on a Leica Bond III staining platform was used. Slides

were incubated with BAP1 primary antibody (Santa Cruz Biotechnology Cat# sc-28383, RRID:AB_

626723; 1:150) for 15 min at room temperature. Epitope retrieval was completed using HIER using

Leica Bond ER2 (high pH) for 30 min and a Leica Bond Polymer Refine with DAB chromogen detec-

tions system used.

Mesothelioma patient explants
Appropriate ethical approval was obtained from the NHS Health Research Authority National

Research Ethics Service to carry out this work (reference 14/LO/1527). Informed consent to conduct

research on samples collected and to publish results was obtained from patients. The diagnosis of

mesothelioma was confirmed histologically for all patients prior to consent and surgery. Patients

underwent pleurectomy, following which primary pleural tissue was sectioned into fragments mea-

suring approximately 2 mm3. These tissue explants were cultured in 50% neurobasal and 50%

DMEM:F12, supplemented with B27 (2%), EGF (20 ng/ml) and FGF (10 ng/ml). After 24 hr the

explants were treated with rTRAIL (vehicle, 50 ng/ml, 100 ng/ml or 200 ng/ml) for a further 24 hr, fol-

lowing which explants were either fixed for PARP immunohistochemistry. The explants were fixed in

10% neutral-buffered formalin (NBF) for 24 hr and then transferred into 70% ethanol followed by

paraffin embedding. Subsequently, 5 mm sections were used for immunohistochemistry, as previ-

ously described (Busacca et al., 2016).

Immunohistochemistry of patient explants
Cleaved PARP primary antibody (Abcam Cat# ab32064, RRID:AB_777102) was used at a 1:6000 dilu-

tion and the rabbit-specific HRP/DAB (ABC) detection IHC kit (Abcam) was used for immunohis-

tochemistry, according to the manufacturer’s instructions. Sections were counterstained with

haematoxylin and mounted using Vectamount permanent mounting media (Vector Labs, Peterbor-

ough, United Kingdom). Images were taken at 40x magnification on a Hamamatsu Nanozoomer Dig-

ital slide scanner. Cleaved PARP-positive cells were scored as the percentage of cells with nuclear

staining.

Animals
All animal studies were approved by the University College London Biological Services Ethical

Review Committee and licensed under the UK Home Office regulations and the Evidence for the

Operation of Animals (Scientific Procedures) Act 1986 (Home Office, London, UK). Mice were pur-

chased from Charles River, kept in individually ventilated cages under specific pathogen-free condi-

tions and had access to sterile irradiated food and autoclaved water ad libitum.

Xenograft mouse models
12 8 week old NOD.CB17-Prkdcscid/NcrCrl (NOD SCID) mice (Charles River, UK; RRID:IMSR_CRL:

394) were injected with 1 � 106 H226 cells transduced with a plasmid containing wild-type BAP1

and luciferase on the right flank and with a plasmid containing a catalytically inactive BAP1-mutant

(C91A) and luciferase on the left flank in a 1:1 mixture of Matrigel (Corning, Corning, NY) and

medium. Tumour size was assessed by bioluminescence in vivo imaging system (IVIS, PerkinElmer,

Waltham, MA) 15 min following intraperitoneal injection of 0.2 ml (2 mg) luciferin. Tumours were

allowed to establish for 2 weeks prior to baseline assessment of size at day 13. Mice were then

divided into two groups each of which received either 600 mg TRAIL or vehicle 6 days a week from

day 14 until day 40. Bioluminescence was measured on days 0, 13, 19, 26 and 41. Mice were sacri-

ficed on day 42 and tumours harvested for measurement. TRAIL used in the mouse experiment was

made in Henning Walczak’s laboratory as per the established protocol (Ganten et al., 2006).
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Statistical analysis
Statistical analysis was performed using GraphPad Prism (GraphPad Software, CA, USA). t-test was

used to analyse differences between two groups whilst the analysis of variance (ANOVA) test with a

Tukey post-hoc analysis was used to analyse differences between three groups. For multiple groups

measured over multiple time points repeated measures ANOVA was used. All in vitro tests were per-

formed in triplicate and all data are represented as mean values ± standard error of mean unless oth-

erwise stated.
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associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nature
Communications 6:7307. DOI: https://doi.org/10.1038/ncomms8307, PMID: 26095772

Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, Creaney J, Lake RA, Zakowski MF, Reva B, Sander C,
Delsite R, Powell S, Zhou Q, Shen R, Olshen A, Rusch V, Ladanyi M. 2011. The nuclear deubiquitinase BAP1 is
commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nature
Genetics 43:668–672. DOI: https://doi.org/10.1038/ng.855, PMID: 21642991

Boultwood J, Perry J, Pellagatti A, Fernandez-Mercado M, Fernandez-Santamaria C, Calasanz MJ, Larrayoz MJ,
Garcia-Delgado M, Giagounidis A, Malcovati L, Della Porta MG, Jädersten M, Killick S, Hellström-Lindberg E,
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