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We investigate the effect of cadmium (a toxic environmental pollutant)
on the correlation structure of a number of urinary metabolites using Gaussian
graphical models (GGMs). The inferred metabolic associations can provide
important information on the physiological state of a metabolic system and
insights on complex metabolic relationships. Using the fitted GGMs, we con-
struct differential networks, which highlight significant changes in metabolite
interactions under different experimental conditions. The analysis of such
metabolic association networks can reveal differences in the underlying bi-
ological reactions caused by cadmium exposure. We consider Bayesian in-
ference and propose using the multiplicative (or Chung–Lu random graph)
model as a prior on the graphical space. In the multiplicative model, each
edge is chosen independently with probability equal to the product of the
connectivities of the end nodes. This class of prior is parsimonious yet highly
flexible; it can be used to encourage sparsity or graphs with a pre-specified
degree distribution when such prior knowledge is available. We extend the
multiplicative model to multiple GGMs linking the probability of edge in-
clusion through logistic regression and demonstrate how this leads to joint
inference for multiple GGMs. A sequential Monte Carlo (SMC) algorithm is
developed for estimating the posterior distribution of the graphs.

1. Introduction. Technological advances have enabled quantitative measure-
ments and profiling of metabolites (products of metabolic reactions), which is im-
portant to the understanding of complex biological systems as well as the diagno-
sis and monitoring of disease states. A key feature of such data is that a significant
number of metabolite levels are often highly interrelated. Analysis of these asso-
ciations may provide further information about the physiological state of a system
and lend insights on complex metabolic relationships [Steuer (2006)]. In this arti-
cle, we analyze urinary metabolic data acquired using 1H NMR spectroscopy for
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127 individuals. These subjects live close to a lead and zinc smelter at Avonmouth
in Bristol, United Kingdom, that produces large quantities of airbourne cadmium
[Ellis et al. (2012)]. An extremely toxic metal, cadmium is commonly released
through industrial processes and acute exposure poses numerous health risks. Here,
we use Gaussian graphical models [GGMs, Dempster (1972)] to investigate the
correlation structure of 22 urinary metabolites for each individual in response to
cadmium exposure. Differential networks [Valcárcel et al. (2011)], which highlight
significant changes in metabolite interactions under different experimental condi-
tions, are inferred jointly with the GGM characterizing different levels of cadmium
exposure. This is a strength of our modelling framework as it allows borrowing of
strength across different biological conditions. Analysis of such metabolic asso-
ciation networks can point to differences in the underlying biological reactions
caused by cadmium exposure.

Gaussian graphical models [GGMs, Dempster (1972)] provide an important tool
for studying the dependence structure among a set of random variables. Under the
assumption that the variables have a joint Gaussian distribution, a zero in the pre-
cision matrix indicates conditional independence between the associated variables.
This corresponds to the absence of an edge in the underlying graph, where nodes
denote variables and edges represent conditional dependencies [Lauritzen (1996)].
GGMs are widely used, for instance, in biological networks to study the depen-
dence structure among genes from expression data [e.g., Dobra et al. (2004), Chun,
Zhang and Zhao (2015)] and financial time series for forecasting and predictive
portfolio analysis [e.g., Carvalho and West (2007), Wang, Reeson and Carvalho
(2011)]. In applications where the effect of different experimental conditions on
the dependence relationships among variables is of interest, multiple GGMs (one
for each condition) have to be estimated. Under such circumstances, joint infer-
ence can encourage sharing of information across graphs and allow for common
structure where appropriate [e.g., Guo et al. (2011), Peterson, Stingo and Vannucci
(2015)].

We focus on Bayesian inference for GGMs using the G-Wishart prior [Roverato
(2002), Atay-Kayis and Massam (2005)]. The G-Wishart is the family of conju-
gate distributions for the precision matrix, where entries corresponding to missing
edges in the underlying graph are constrained to be zero. The normalizing constant
of the G-Wishart can only be computed in closed form for decomposable graphs.
In this work, we consider the unrestricted graph space where nondecomposable
graphs are allowed. Where necessary, we use the Monte Carlo method of Atay-
Kayis and Massam (2005) and the Laplace approximation of Lenkoski and Dobra
(2011) to estimate the normalizing constant efficiently.

The main idea of this paper is to propose a prior for pij , the probability of a link
between nodes i and j , that is grounded in the network literature. We start with
one of the simplest random graph models; the multiplicative model where

pij = πiπj .
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This model is additive on a log scale: logpij = αi +αj where αi = logπi . Alterna-
tively, and without substantial difference in performance, we could have assumed
a logistic/probit model. Incorporating interaction can be achieved by including an
extra term. Extension to include more complex structures is in principle straight-
forward. For example, scale-free models can be achieved by placing a discrete
prior on πi such as the Barabási–Albert model so that the probability that node i

has k connections is proportional to A+kα . To incorporate a community structure,
we could assume

logit(pij ) = αi + αj + θgigj
,

where gi denotes the community i belongs to and θgigj
denotes an offset for node

i and j belonging to the same community, with θgigj
equal to 0 otherwise.

Here, we propose using the multiplicative model of Chung and Lu (2002) as
a prior on graphs for estimating GGMs. This prior is further extended to multi-
ple GGMs via logistic regression. To obtain joint posterior inference for multiple
GGMs, we develop a novel sequential Monte Carlo (SMC) algorithm [Del Moral,
Doucet and Jasra (2006)] which uses tempering techniques. We apply proposed
methods to simulated data in addition to the urinary metabolic dataset.

The rest of the paper is organized as follows. Section 2 provides the back-
ground and review of existing methods. In Section 3, we introduce the multiplica-
tive model and discuss its degree and clustering properties. Section 4 specifies
the model setup for multiple GGMs. Section 5 describes posterior inference and
a Laplace approximation for the prior probabilities of graphs. Proposed methods
are illustrated using simulations and an application to urinary metabolic data in
Section 6. In Section 7, we illustrate the proposed methods using simulations and
an application to urinary metabolic data. Conclusions are stated in Section 8.

2. Background. In the absence of any prior belief on the graphical structure,
a uniform prior over all graphs is often used in estimating GGMs [e.g., Lenkoski
and Dobra (2011), Wang and Li (2012)]. That is, given p nodes, it is assumed
that each of the 2r possible graphs, where r = p(p − 1)/2, has equal probabil-
ity of arising. This prior concentrates its mass on graphs with moderately large
number of edges and the expected number of edges as well as the mode is r/2
(see Figure 1). Thus, this prior may not be appropriate when sparse graphs are
desired. Several alternatives have been developed. To encourage sparse graphs,
Dobra et al. (2004) and Jones et al. (2005) propose a prior where every edge is
included independently with a small probability α so that a graph with x edges has
prior probability αx(1 − α)r−x . This prior is known as the Erdős–Rényi model in
random graph theory and it reduces to the uniform prior when α = 0.5. Jones et al.
(2005) recommend taking α = 2/(p − 1) so that the expected number of edges
is p. Carvalho and Scott (2009) treat α as a model parameter rather than a fixed
tuning constant. They place a Beta(a, b) prior on α so that a graph with x edges
has prior probability B(a + x, r + b − x)/B(a, b), where B(a, b) denotes the Beta
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FIG. 1. Plot shows the probability allocated to graphs with x edges by the uniform prior, the
Bernoulli prior [Jones et al. (2005)] with probability of inclusion of each edge: α = 2/(p − 1), the
size-based prior [Armstrong et al. (2009)] or equivalently the Bernoulli prior with α ∼ Uniform[0,1]
integrated out [Carvalho and Scott (2009)] and the multiplicative prior (MP) for different values of
a and b.

function. When a = b = 1, this probability simplifies to 1
r+1

(r
x

)−1. This prior is
equivalent to the size-based prior [Armstrong et al. (2009)] when the graph space
is unrestricted. Under the size-based prior, every size 0, . . . , r , has equal proba-
bility and every graph of the same size has equal probability. Carvalho and Scott
(2009) demonstrate that their proposed prior has strong control over the number of
spurious edges and corrects for multiple hypothesis testing automatically, where
each null hypothesis corresponds to the exclusion of one edge.

We propose using the multiplicative or Chung–Lu random graph model as a
prior on the graphical space of GGMs. Given a desired or expected degree se-
quence {d1, . . . , dp}, where di denotes the degree (number of neighbours) of node
i, the multiplicative model [Chung and Lu (2002)] assumes that the edge between
each pair of nodes i and j is formed independently with probability pij propor-
tional to the product didj . Allowing self-loops and provided (maxi di)

2 <
∑

i di ,
the expected degree of node i is exactly di . The multiplicative model is able to
capture degree distributions which are more diverse (e.g., right-skewed, U-shaped)
and closer to that of real-world networks than the Erdős–Rényi model. Notably, the
Erdős–Rényi model has a degree distribution that is binomial and can be viewed
as a special case of the multiplicative model with a constant expected degree se-
quence. We consider an alternative parametrization of the multiplicative model
introduced by Olhede and Wolfe (2013), which dispenses with self-loops and the
normalization constraint by taking pij = πiπj and 0 < πi < 1 for each i. They de-
rive degree characteristics and large-sample approximations of this model, which
lends insight on the variation attainable in degree structure. Adopting a Bayesian
approach, we treat each πi as a variable with a Beta(a, b) prior. We present degree
and clustering properties of the multiplicative model, showing how they depend on
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choices of a and b. In the context of GGMs, we show that the multiplicative model
provides an avenue to encourage sparsity or graphs that exhibit particular degree
patterns based on prior knowledge obtained through expert opinion or past data.
We further demonstrate how the multiplicative model can be extended to include
covariates and become a prior on joint graphs for multiple GGMs.

Several approaches for joint inference of multiple GGMs have been developed
recently. Guo et al. (2011) estimate precision matrices for different groups jointly
by parameterizing each entry as a product of two factors: one factor is common
across all groups while the other is group specific. A hierarchical l1 penalty is im-
posed and optimization is performed using graphical lasso [Friedman, Hastie and
Tibshirani (2008)]. Danaher, Wang and Witten (2014) formulate a more general
framework called joint graphical lasso and introduce two convex penalty func-
tions; the fused graphical lasso which encourages edge value on top of structural
similarity and the group lasso which only encourages a shared sparsity pattern.
Chun, Zhang and Zhao (2015) extend the approach of Guo et al. (2011) to a wider
class of nonconvex penalty functions. Mohan et al. (2014) consider a node-based
approach where multiple GGMs are estimated using a convex regularizer by as-
suming that the similarities between networks are due to the shared presence of
certain highly-connected nodes, which serve as hubs and the differences are due
to some nodes whose connectivity changes across conditions. Yajima et al. (2015)
compare the Gaussian directed acyclic graphs of two subgroups using Bayesian
inference via Gibbs sampling. The strength of association between two variables
in the differential group is modeled as the strength in the baseline group plus an
edge-specific parameter controlling the difference in association between the two
subgroups. They define a prior on the graphical space by centering on a prior graph
constructed from a database [Telesca et al. (2012)]. Peterson, Stingo and Vannucci
(2015) consider an alternative Bayesian approach, which links graphs from differ-
ent groups using a Markov random field. The probability of inclusion of each edge
in graphs 1, . . . ,K , is parameterized in terms of a K ×K symmetric matrix which
measures the pairwise similarity of groups and is common across all edges, and an
edge-specific K × 1 vector, which controls the inclusion probability in each group
independently of group relatedness. Priors are further placed on these parameters
and a block Gibbs sampler is used for inference.

The approach that we use to link multiple graphs is based on the multiplicative
model by expressing the connectivity of each node as a logistic regression function
of graph specific covariates. As the multiplicative model decouples the inclusion
probability of each edge into the product of the connectivities of the end nodes,
the resulting model is parsimonious and scales linearly in the number of variables
and graphs. For inference, we develop an SMC sampler for estimating the joint
posterior distribution of the graphs. Using tempering techniques [see Del Moral,
Doucet and Jasra (2006) and the references therein], we create a sequence of prob-
ability distributions from which to sample, moving gradually from a distribution
that is easy to sample from, through artificial intermediate distributions towards
the posterior distribution of interest.
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3. Multiplicative model. Here, we define our notation and present the multi-
plicative model, followed by a study of its properties. These properties lend insight
on the structure and range of networks that can be generated from the multiplica-
tive model. They are also useful in the determination of suitable hyperparame-
ters based on prior understanding of data obtained through expert opinion or a
database.

Let G = (V ,E) be a simple graph with vertex set V = {1,2, . . . , p} and edge set
E ⊆ {(i, j) ∈ V × V : i < j}. A simple graph is undirected and does not contain
self-loops or multiple edges. The adjacency matrix A = [Aij ] of G is a p × p

binary matrix where Aij is 1 if an edge is present between nodes i and j , and
0 otherwise for i, j ∈ V . As G is simple, A is symmetric and has zeros on its
diagonal.

In the multiplicative model, each edge is modeled independently as

Aij ∼ Bernoulli(pij ) for 1 ≤ i < j ≤ p,
(3.1)

pij = πiπj where 0 ≤ πi ≤ 1 for i = 1, . . . , p.

Thus, every edge Aij is formed independently with probability pij , where pij is
a product of the tendencies of nodes i and j to form edges with other nodes. The
parameter πi is characteristic of node i and reflects its activity level. We refer to πi

as the connectivity of i. The Erdős–Rényi random graph model arises as a special
case when πi is constant across all i, that is, every link is formed independently
with equal probability.

We adopt a Bayesian approach and place an independent Beta prior on each πi .
Let

(3.2) πi ∼ Beta(a, b) for i = 1, . . . , p,

where a, b > 0. We have p(πi) = πa−1
i (1 − πi)

b−1/B(a, b), where the Beta func-
tion B(a, b) = �(a+b)

�(a)�(b)
. Let π = (π1, . . . , πp)T and p(π) = ∏p

i=1 p(πi). Net-
works of highly varying densities and structures can be formed by choosing differ-
ent hyperparameters a and b.

3.1. Degree and clustering properties. The degree Di of a node i is the num-
ber of links that involve i or the number of neighbours of i, and is given by
Di = ∑

j �=i Aij . The properties below describe the degree distribution and cohe-
siveness of networks generated from the multiplicative model. Their implications
are discussed later in the section. We follow the framework in Rastelli, Friel and
Raftery (2015), which is based on probability generating functions [see Newman,
Strogatz and Watts (2001)]. Proofs are given in the Supplementary Material [Tan
et al. (2017)]. We note that some of these results have been discussed in Olhede
and Wolfe (2013) but not with regards to the Beta(a, b) prior. In the following,
let μ = a

a+b
and σ 2 = ab

(a+b)2(a+b+1)
denote the mean and variance of a Beta(a, b)

distribution, respectively.
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P1 The probability that a randomly chosen node is a neighbour of a node with
connectivity πi is μπi .

P2 The degree of a node with connectivity πi is distributed as Binomial(p −
1,μπi). Hence its average degree is (p − 1)μπi , which is proportional to πi .

P3 The probability generating function of the degree of a randomly chosen node
is given by

(3.3) GDi
(z) =

p−1∑
d=1

P(Di = d)zd =
∫ 1

0
(1 − μπi + μπiz)

p−1p(πi) dπi.

The kth factorial moment of Di , E{Di(Di − 1) · · · (Di − k + 1)}, is given by

E
(

Di !
(Di − k)!

)
= G

(k)
Di

(1) = (p − 1)!B(a + k, b)

(p − 1 − k)!B(a, b)
μk

for any positive integer k.
P4 The average degree of a randomly chosen node is E(Di) = (p − 1)μ2 and the

variance is Var(Di) = (p − 1)μ2{1 − μ2 + (p − 2)σ 2}.
P5 The degree distribution of a randomly chosen node is given by

P(Di = d) =
(
p − 1

d

)
μd

B(a, b)

∫ 1

0
πa+d−1

i (1 − μπi)
p−1−d(1 − πi)

b−1dπi

for d ∈ {0, . . . , p − 1}. When b = 1, P(Di = d) = (p−1
d

)
aB(μ,a + d,p −

d)/μa , where B(x;a, b) = ∫ x
0 ta−1(1 − t)b−1 dt is the incomplete Beta func-

tion.
P6 The dispersion index of the degree distribution is given by

1 − a{a2 + (b + 1)a − (p − 2)b}
(a + b)2(a + b + 1)

.

• When 0 < a < {
√

b2 + (4p − 6)p + 1 − b − 1}/2, the distribution has dis-
persion index greater than 1 and is over-dispersed.

• When a = {
√

b2 + (4p − 6)p + 1−b−1}/2, the distribution has dispersion
index 1 (equal to that of a Poisson distribution).

• When a > {
√

b2 + (4p − 6)p + 1−b−1}/2, the distribution has dispersion
index less than 1 (similar to that of a Binomial distribution) and is under-
dispersed.

P7 The skewness index or Pearson’s moment coefficient of skewness of the de-
gree distribution is {E(D3

i ) − 3E(Di)Var(Di) − E(Di)
3}/Var(Di)

1.5, where
E(D3

i ) = (p − 1)μ2{1 + 3(p − 2)(μ2 + σ 2) + (p − 2)(p − 3)μE(π3
i )} and

E(π3
i ) = (a+2)(a+1)a

(a+b+2)(a+b+1)(a+b)
.

P8 The average degree of the neighbours of a node is independent of the connec-
tivity or degree of that node, and is given by 1 + (p − 2)(μ2 + σ 2).



MULTIPLE GAUSSIAN GRAPHICAL MODELS 2229

FIG. 2. Beta densities (left) and degree distributions of the multiplicative model (right) correspond-
ing to different hyperparameter settings when p = 100.

P9 The global clustering coefficient, which measures the probability that nodes j

and k are linked given that both nodes are linked to i, is given by a+1
a+b+1 .

In the Erdős–Rényi model, Di is distributed as Binomial(p − 1, α), where α is
the probability of inclusion of each edge. When α = μ2, the mean degree of a ran-
domly chosen node in the multiplicative model is equal to that in the Erdős–Rényi
model from P4. However, the variance of the degree distribution in the multiplica-
tive model is greater than that in the Erdős–Rényi model by (p − 1)(p − 2)σ 2.
Thus, as the number of nodes increases, the multiplicative model can accommo-
date greater variation in the degree distribution than in the Erdős–Rényi model by
O(p2) given the same mean degree.

Figure 2 shows the degree distributions of the multiplicative model for graphs
with p = 100 nodes under different hyperparameter settings. When the degree dis-
tributions cannot be computed directly using P5, they are estimated via simulation
using 105 graphs. Degree distributions of a variety of shapes (e.g., right-skewed,
U-shaped) can be obtained from the multiplicative model by varying a and b.

The dispersion index measures how clustered a distribution is compared to stan-
dard statistical models. From P6, the degree distribution is over-dispersed when a

is small and under-dispersed when a is large. In fact, as a → ∞ (and/or b → ∞),
σ 2 → 0 and each πi reduces to a point mass. The multiplicative model thus degen-
erates and reduces to the Erdős–Rényi model with constant probability of inclu-
sion for every edge. As the degree distribution is over-dispersed for a wide range
of hyperparameter values, the multiplicative model is able to represent well het-
erogeneity in degree sequences.

The skewness index in P7 is useful for identifying asymmetries in degree dis-
tributions. Generally, the degree distribution is positively skewed when a is small
and b is large and negatively skewed vice versa (plots of the dispersion index and
skewness as a function of a and b can be found in the Supplementary Material
Figures S1 and S2).
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FIG. 3. Degree distributions for investigating power-law. Right plot is in log-scale.

Of particular interest are scale-free networks whose degree distributions follow
a power law [P(Di = d) ∝ d−γ where γ is a positive constant]. Olhede and Wolfe
(2013) show that the multiplicative model can lead to networks with power law
degree distributions when p is large, the elements of π are ordered such that π1 ≥
π2 ≥ · · · ≥ πp and a polynomial decay of πi with i is assumed; πi ∝ i−γ for
0 < γ < 1. We investigate via simulations the behavior of the degree distributions
when {πi} is modeled instead as a random sample from a Beta(a, b) prior. As
scale-free networks tend to have large positive values for the skewness index, we
consider a large b = 20 and some small values of a ∈ {0.1,0.25,0.5,1}. The left
plot in Figure 3 shows the degree distributions obtained via simulation and the
right plot shows the relationship between logP(Di = d) and logd , which should
be a straight line if the power-law is satisfied. We observe that the multiplicative
model (with a Beta prior) comes close to but does not quite induce power law
networks as the right tail is not sufficiently heavy. However, we find that these
points are well-fitted by a power law with an exponential cutoff [P(Di = d) ∝
d−γ exp(−τd), Newman (2001)]. Fits of these form are shown as dotted lines in
the right plot of Figure 3. In such networks, the power law dominates for small d

but turns into an exponential decay for large d . A broad range of empirical data
such as protein interaction networks [Jeong et al. (2001), Giot et al. (2003)] and
scientific collaboration networks [Fenner, Levene and Loizou (2007)] have been
found to exhibit power-laws with exponential cutoffs instead of pure power laws
due to finite-size effects such as the physical limitation of the binding sites in the
protein structure and the finite working lifetime of a scientist. D’Souza et al. (2007)
provides further examples.

4. Gaussian graphical models. Suppose we have a dataset with p variables
and K groups or classes. Let yh = (yh1, . . . , yhp) denote the hth observation of
the p variables for h = 1, . . . ,H , and Sk be an index set containing the indices of
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observations, which belong to group k for k = 1, . . . ,K . The number of observa-
tions in Sk is denoted by |Sk| and H = ∑K

k=1 |Sk|. Without loss of generality, we
assume that the observations in each group are centered at 0 along each variable.
We consider

(4.1) yh|	k ∼ N
(
0,	−1

k

)
for h ∈ Sk,

where 	k is a p × p precision matrix and k ∈ {1, . . . ,K}.
Let Gk = (V ,Ek) be a simple graph with vertex set V = {1,2, . . . , p} and edge

set Ek ⊆ {(i, j) ∈ V × V : i < j} for k = 1, . . . ,K . Node i ∈ V represents the ith
variable and each edge (i, j) ∈ Ek corresponds to 	k,ij �= 0. That is, yhi and yhj

are conditionally independent (in Gk) given the rest of the elements in yh if and
only if 	k,ij = 0, or equivalently (i, j) /∈ Ek . The conjugate prior for 	k is the G-
Wishart distribution [Atay-Kayis and Massam (2005)], WGk

(δk,Dk), which has
density

p(	k|Gk) = 1

IGk
(δk,Dk)

|	k|(δk−2)/2 exp
{
−1

2
tr(	kDk)

}
.

Here, 	k is constrained to the cone PGk
of positive definite matrices with entries

equal to zero for all (i, j) /∈ Ek and IGk
(δk,Dk) is a normalizing constant such that

IGk
(δk,Dk) =

∫
	k∈PGk

|	k|(δk−2)/2 exp
{
−1

2
tr(	kDk)

}
dK.

This normalizing constant is guaranteed to be finite if δk > 2 and D−1
k ∈ PGk

[Diaconis and Ylvisaker (1979)]. The G-Wishart distribution reduces to the
Wishart distribution when Gk is complete, and the normalizing constant can then
be evaluated in closed form as

(4.2) IGk
(δk,Dk) = 2(δk+p−1)p/2�p

{
(δk + p − 1)/2

}|Dk|−(δk+p−1)/2,

where �p(a) = πp(p−1)/4 ∏p−1
i=0 �(a − 1

2) for a > (p − 1)/2.

4.1. Priors over graphs. We use the multiplicative model to assign prior
probabilities to graphs. Let Ak = [Ak,ij ] be the adjacency matrix of Gk for
k = 1, . . . ,K . Consider

(4.3) Ak,ij |πk,iπk,j ∼ Bernoulli(πk,iπk,j ),

where 0 ≤ πk,i ≤ 1 for i = 1, . . . , p and k = 1, . . . ,K . As in Section 3, the proba-
bility that an edge (i, j) is present in Ek is πk,iπk,j , the product of the propensities
of nodes i and j to form edges with other nodes in Gk . Priors are further placed
on each πk,i . We consider the cases K = 1 and K > 1 separately.
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4.1.1. When K = 1. When K = 1, there is only one group and the subscript k

indicating different groups may be dropped so that G1 = G and π1,i = πi for i =
1, . . . , p. We place a Beta(a, b) prior on each πi as in (3.2). The prior probability
of G with adjacency matrix A is given by

p(G|a, b)

=
∫

p(G|π)p(π |a, b) dπ(4.4)

= 1

B(a, b)p

∫ ∏
i,j :i<j

(1 − πiπj )
(1−Aij )

p∏
i=1

π
(a+di−1)
i (1 − πi)

(b−1) dπ,

where di denotes the degree of node i.

4.1.2. When K > 1. We propose a joint prior for G1, . . . ,GK , which is al-
lowed to depend on covariates specific to each graph. First, we express πk,i in
terms of a logistic regression as

πk,i = exp(βT
i xk)

1 + exp(βT
i xk)

for i = 1, . . . , p, and k = 1, . . . ,K , where xk = (xk1, . . . , xkQ)T is a vector of
covariates for Gk and βi = (βi1, . . . , βiQ) is a vector of coefficients specific to
node i. Let x = (x1, . . . , xK) and β = (βT

1 , . . . , βT
p )T . We consider a normal prior

for each βiq such that

βiq |σ 2
q ∼ N

(
0, σ 2

q

)
for i = 1, . . . , p and q = 1, . . . ,Q. Let σ 2 = (σ 2

1 , . . . , σ 2
Q) be a hyperparameter

assumed to be known. The joint prior probability of G1, . . . ,GK , is given by

p
(
G1, . . . ,GK |x,σ 2)

=
∫

p
(
β|σ 2) K∏

k=1

p(Gk|xk,β) dβ(4.5)

=
∫ p∏

i=1

Q∏
q=1

{exp(− β2
iq

2σ 2
q
)√

(2πσ 2
q )

} K∏
k=1

{ p∏
i=1

π
dk,i

k,i

∏
i<j

(1 − πk,iπk,j )
1−Ak,ij

}
dβ,

where dk,i denotes the degree of node i in Gk for k = 1, . . . ,K .
As an example, in the application on urinary metabolic data, we consider K = 2

and the covariates xk to include an intercept and an indicator for level of expo-
sure to cadmium (1 if above the median and 0 otherwise). We take x1 = (1,0) and
x2 = (1,1) so that G1 and G2 represent the correlation structure of the groups
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FIG. 4. Prior degree distributions of G1 and G2 for p = 50 and different combinations of σ 2
1 and

σ 2
2 . Covariates for G1 and G2 are (1,0) and (1,1), respectively.

with cadmium exposure below or equal to the median, and above the median,
respectively. The connectivity of node i is π1,i = {1 + exp(−βi1)}−1 in G1 and
π2,i = {1+ exp(−βi1 −βi2)}−1 in G2. Thus βi1 determines the popularity of node
i in G1 while βi2 is a differential parameter, which controls the difference in pop-
ularity of node i between G1 and G2. If βi2 is close to zero, the connectivity of
node i in G1 and G2 is similar. As the magnitude of βi2 increases, the difference
in connectivity of node i between G1 and G2 becomes greater. See illustration in
Supplementary Material Figure S3.

Figure 4 shows the prior degree distributions of G1 and G2 for p = 50 and
different values of σ 2. These plots are obtained via simulation of 105 joint pairs
of graphs in each case. When σ 2

1 = σ 2
2 = 0.1, both βi1 and βi2 are close to zero,

and π1,i and π2,i are close to 0.5. Thus the degree distribution is shaped like a
Binomial curve, resembling the Erdős–Rényi model where each edge is formed
independently with constant probability 0.25. As σ 2

1 increases, there is greater
variation in the degree sequence of G1. When σ 2

1 is large, the connectivity of each
node tends to the extremes of 0 and 1 (each node has a high probability of being
either very connected or isolated). Thus the degree distribution resembles the case
where each πi is allocated a U-shaped Beta(0.1,0.1) prior as shown in Figure 2.
The distinction between the degree distribution of G1 and G2 becomes greater as
σ 2

2 increases.
We can also add a third covariate say for gender (1 if male and 0 if female) so

that K = 4 and take x1 = (1,0,0), x2 = (1,0,1), x3 = (1,1,0) and x4 = (1,1,1).
Then G1, for instance, will represent the correlation structure for the group of
females with cadmium exposure below or equal to the median level.

5. Posterior distribution. Let y = (y1, . . . , yH ). For K > 1, the joint distri-
bution of the model is

p
(
y,	1, . . . ,	K,G1, . . . ,GK,β|x,σ 2)

= p
(
β|σ 2) K∏

k=1

{
p(Gk|xk,β)p(	k|Gk)

∏
h∈Sk

p(yh|	k)

}
.
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Integrating out 	k , the marginal likelihood p({yh|h ∈ Sk}|Gk) can be shown [see,
e.g., Atay-Kayis and Massam (2005)] to be given by

p
({yh|h ∈ Sk}|Gk

) = (2π)−p|Sk |/2IGk

(
δk + |Sk|,Dk + ∑

h∈Sk

yhy
T
h

)/
IGk

(δk,Dk).

Integrating out β as well, we have

p
(
G1, . . . ,GK |y, x, σ 2)

∝ p
(
G1, . . . ,GK |x,σ 2)

(5.1)

×
K∏

k=1

IGk

(
δk + |Sk|,Dk + ∑

h∈Sk

yhy
T
h

)/
IGk

(δk,Dk).

When K = 1, the posterior distribution can be derived similarly. The only differ-
ence is that the dependence on x and σ 2 is replaced by the Beta prior hyperparam-
eters a and b. We have

(5.2) p(G|y, a, b) ∝ p(G|a, b)IG

(
δ + H,Dk +

H∑
h=1

yhy
T
h

)/
IG(δ,D).

For posterior inference, we propose a SMC algorithm to obtain samples from
the posterior distribution. To compute the right-hand side of (5.1) and (5.2), note
that for any graph G (not necessarily decomposable), normalizing constants of
the form IG(δ,D) can be evaluated by first factorizing G into its prime compo-
nents and their separators [see, e.g., Lauritzen (1996)]. Suppose (P1, . . . ,PL) is
a perfect sequence of the prime components of G and (S2, . . . ,SL) is the corre-
sponding set of separators. Then IG(δ,D) = ∏L

l=1 IGPl
(δ,D)/

∏L
l=2 IGSl

(δ,D),
where GPl

and GSl
denote the subgraphs induced by Pl and Sl , respectively. As

the separators are complete, IGSl
(δ,D) can be evaluated as in (4.2). The same

applies to IGPl
(δ,D) for any complete prime component Pl . Otherwise, we esti-

mate IGPl
(δ,D) using the Monte Carlo method of Atay-Kayis and Massam (2005)

when δ is small and the Laplace approximation of Lenkoski and Dobra (2011)
when δ is large. This combination of using Laplace approximation and Monte
Carlo integration to evaluate the normalizing constants is feasible as the size of the
graphs considered in this paper is moderately small (p ≤ 22). When p is large, the
size of the Monte Carlo sample has to be increased dramatically to control the vari-
ance and Monte Carlo integration becomes a computational bottleneck [see Jones
et al. (2005), Wang and Li (2012)]. At this point, techniques that avoid evaluation
of prior normalizing constants (and that explore the space of graphs and precision
matrices jointly) based on for instance, the exchange algorithm [Murray, Ghahra-
mani and MacKay (2006)] have to be integrated with SMC sampler. The priors on
graphs are estimated using Laplace approximation, which is described next.
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5.1. Laplace approximation for prior on graphs. Evaluating p(G|a, b) or
p(G1, . . . ,GK |x,σ 2) via Monte Carlo becomes more computationally intensive
as p increases and we estimate these quantities efficiently using Laplace approxi-
mation. We consider

(5.3)
∫

exp
{
f (u)

}
du ≈ (2π)

n
2
∣∣−H(u0)

∣∣− 1
2 exp

{
f (u0)

}
,

where u = (u1, . . . , ud)T , u0 is the mode of f (u) and H(u0) denotes the Hessian
of f evaluated at u0. The mode u0 can be found using numerical methods.

For K = 1, we estimate p(G|a, b) in (4.4) using (5.3) by first making a change
of variable and letting πi = exp(ui)

1+exp(ui)
. For K > 1, we estimate p(G1, . . . ,GK |

x,σ 2) in (4.5) using (5.3) by taking u = β . Detailed functional and Hessian ex-
pressions are given in the Supplementary Material.

6. Sequential Monte Carlo sampler. We use SMC samplers for posterior in-
ference. Suppose we are interested in sampling from a complex target λ(x). The
idea is to start with some distribution λ1 that is easy to sample from and move
via a sequence of intermediate distributions, λ2, . . . , λT −1, towards the distribu-
tion of interest λT = λ. At any time t , a large collection of weighted samples
{W(n)

t ,X
(n)
t |n = 1, . . . ,N} is maintained, and these particles are used to generate

samples from the target distribution at the next time point using sequential impor-
tance sampling (SIS) and resampling methods. The motivation is that it would be
easier to move the particles from one target to the next if λt is close to λt+1.

6.1. Review of methodology. We first review SIS and SMC briefly. Let
λ1, . . . , λT , be the target densities, γ1, . . . , γT , be unnormalized densities such
that λt (x1:t ) ∝ γt (x1:t ) and ηt be an arbitrary proposal density for t = 1, . . . , T . In
importance sampling, the unnormalized weights are given by

(6.1) wt(x1:t ) = γt (x1:t )/ηt (x1:t ).

Let {X(n)
1:t |n = 1, . . . ,N} be a sample from ηt (x1:t ) and w

(n)
t = wt(X

(n)
1:t ). Then

(6.2) W
(n)
t = w

(n)
t

/ N∑
n=1

w
(n)
t

are the normalized weights. Given {W(n)
1:t ,X

(n)
1:t |n = 1, . . . ,N} approximating

λt (x1:t ) at time t , samples {X(n)
1:t+1} approximating λt+1 at time t + 1 are obtained

in SIS by sampling from {X(n)
1:t } using a Markov kernel Kt+1(xt , xt+1). The pro-

posal density is ηt+1(x1:t+1) = ηt (x1:t )Kt+1(xt , xt+1). From (6.1), the correspond-
ing unnormalized weights can be computed recursively using

wt+1(x1:t+1) = γt+1(x1:t+1)

ηt+1(x1:t+1)
= γt+1(x1:t+1)

γt (xt )Kt+1(xt , xt+1)
wt (x1:t ).
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In SMC, artificial joint target distributions λ̃t (x1:t ) ∝ γ̃t (x1:t ) are introduced,
where γ̃t (x1:t ) = γt (xt )

∏t−1
l=1 Ll(xl+1, xl) and Ll(xl+1, xl) is an artificial backward

in time Markov kernel. Assume {W(n)
1:t ,X

(n)
1:t |n = 1, . . . ,N} is a weighted sam-

ple approximating λ̃t (x1:t ) at time t distributed according to η(x1:t ). Moving the
samples to {X(n)

1:t+1} using the Markov kernel Kt+1, the unnormalized importance
weights can be computed as

(6.3) wt+1(x1:t+1) = γ̃t+1(x1:t+1)/ηt+1(x1:t+1) = wt(x1:t )w̃t+1(xt , xt+1),

where w̃t+1(xt , xt+1) = γt+1(xt+1)Lt (xt+1, xt )/{γt (xt )Kt+1(xt , xt+1)} are unnor-
malized incremental weights. In the proposed algorithm, we take Kt+1 to be
an MCMC kernel of invariant distribution λt+1 and Lt(xt+1, xt ) = λt+1(xt ) ×
Kt+1(xt , xt+1)/λt+1(xt+1). See Del Moral, Doucet and Jasra (2006), Section
3.3.2.3. The unnormalized incremental weights then simplify to

(6.4) w̃t+1(xt , xt+1) = γt+1(xt )/γt (xt ).

6.2. Proposed algorithm. Our aim is to sample from p(G1, . . . ,GK |y, x, σ 2)

in (5.1) when K > 1 and p(G|y, a, b) in (5.2) when K = 1. Let p(G1, . . . ,GK |y)

denote the posterior density generally omitting dependence on covariates and hy-
perparameters. We have p(G1, . . . ,GK |y) ∝ γ (G1, . . . ,GK |y) where

γ (G1, . . . ,GK)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(G|a, b)IG

(
δ + H,D +

H∑
h=1

yhy
T
h

)/
IG(δ,D)

if K = 1,

p
(
G1, . . . ,GK |x,σ 2) K∏

k=1

IGk
(δk + |Sk|,Dk + ∑

h∈Sk
yhy

T
h )

IGk
(δk,Dk)

if K > 1.

For simplicity, we do not state the dependence of γ on other variables explicitly.
To construct the SMC sampler, we devise the following sequence of intermediate
target densities:

p(G1, . . . ,GK |y)φ1,p(G1, . . . ,GK |y)φ2, . . . , p(G1, . . . ,GK |y)φT ,

where 0 < φ1 < φ2 < · · · < φT = 1 is a sequence of user-specified temperatures
that can be set adaptively [see Jasra et al. (2011)]. For greater stability, we use
tempering to bridge the target densities so that they evolve smoothly. At each time
t , we maintain N weighted samples {W(n)

t , (G1, . . . ,GK)
(n)
t |n = 1, . . . ,N} ap-

proximating the target p(G1, . . . ,GK |y)φt ∝ γ (G1, . . . ,GK)φt and the annealing
temperature is raised gradually from 0 to 1.
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6.3. Initialization and computation of weights. To generate N samples from
the initial target p(G1, . . . ,GK |y)φ1 at time t = 1, we sample (G1, . . . ,GK) uni-
formly from the joint graphical space. This can be done by sampling each edge in
Gk independently with probability 0.5 for k = 1, . . . ,K . This process is performed
N times independently to obtain {(G1, . . . ,GK)

(n)
1 |n = 1, . . . ,N}. The weight of

each sample can be computed using importance sampling. Let r = p(p − 1)/2.
From (6.1),

(6.5) w
(n)
1 = γ

(
(G1, . . . ,GK)

(n)
1

)φ12rK.

Suppose we increase the temperature from φt−1 to φt at time t ≥ 2. From (6.3)
and (6.4), unnormalized weights for the nth sample can be computed as

(6.6) w
(n)
t = w

(n)
(t−1)γ

(
(G1, . . . ,GK)

(n)
t−1

)φt−φt−1 .

Normalized weights may be obtained using (6.2).

6.4. Resampling. To prevent degeneracy of the particle approximation, we
measure the effective sample size, ESS = {∑N

n=1(W
(n)
t )2}−1, at each time t and

resample when the ESS falls below a threshold, say Nthreshold = N/3. Resampling
is performed by drawing N new particles from the multinomial distribution with
parameters (W

(1)
t , . . . ,W

(N)
t ). In this way, particles with high weights are dupli-

cated multiple times while particles with low weights will be eliminated. Resam-
pled particles are then assigned equal weights.

6.5. MCMC steps. Suppose we have weighted samples {W(n)
t−1, (G1, . . . ,

GK)
(n)
t−1|n = 1, . . . ,N}. At time t , these samples are moved using an MCMC ker-

nel with invariant distribution pt(G1, . . . ,GK |y) by performing a small number
of MCMC steps. This improves mixing and helps to restore the heterogeneity
lost during resampling. In this step, candidates for each sample are generated by
selecting a small number, say M , of edges uniformly at random from the set of
all possible edges and proposing to flip each edge [a 1 (present) to 0 (absent)
and vice versa] in turn in each Gk for k = 1, . . . ,K . For the selected edge, let
(G1, . . . ,GK)

(n)
c denote the sample obtained after flipping this edge in one of the

K graphs in (G1, . . . ,GK)
(n)
t−1. As the proposal is symmetric, the candidate is ac-

cepted with probability given by

(6.7) min
[{

γ
(
(G1, . . . ,GK)(n)

c

)
/γ

(
(G1, . . . ,GK)

(n)
t

)}φt ,1
]
.

If the candidate is accepted, we update the nth sample as (G1, . . . ,GK)
(n)
t =

(G1, . . . ,GK)
(n)
c , otherwise it remains unchanged. The proposed SMC sampler is

summarized in Algorithm 1. Note that Algorithm 1 is easily parallelizable as com-
putation of weights as well as the MCMC steps can be performed independently
for the N samples.
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Algorithm 1 SMC Algorithm for multiple GGMs
At t = 1,

• draw (G1, . . . ,GK)
(n)
1 at random uniformly from the joint graphical space for

n = 1, . . . ,N .
• Compute weights {w(n)

1 } using (6.5) and obtain normalized weights {W(n)
1 } us-

ing (6.2).

For t = 2, . . . , T ,

• Update weights {w(n)
t } using (6.6) and obtain normalized weights {W(n)

t } using
(6.2).

• If ESS < Nthreshold, resample the particles and set W
(n)
t = 1/N for n = 1, . . . ,N .

• For n = 1, . . . ,N ,
− Randomly select M edges from the set of all possible edges.
− Set (G1, . . . ,GK)

(n)
t = (G1, . . . ,GK)

(n)
t−1.

− For m = 1, . . . ,M , and k = 1, . . . ,K , let (G1, . . . ,GK)
(n)
c be the sample

candidate obtained from (G1, . . . ,GK)
(n)
t by flipping the mth selected edge

in Gk . Accept sample candidate with probability in (6.7). If sample candidate
is accepted, set (G1, . . . ,GK)

(n)
t = (G1, . . . ,GK)

(n)
c .

Algorithm 1 can be fully automated to the extent that one only needs to set
the first temperature and MCMC proposal. The rest of the algorithm, such as in
[Del Moral, Doucet and Jasra (2012), Jasra et al. (2011), Schäfer and Chopin
(2013)] can be made entirely adaptive with stable and mathematically proven con-
vergence [Beskos et al. (2016)].

6.6. Scalability. The proposed algorithm scales linearly in K due to the
MCMC steps, which have to be performed for each graph. The algorithm does not
scale well with respect to the number of nodes p as the computation of the normal-
izing constants IGk

(δk,Dk) using Monte Carlo integration [Atay-Kayis and Mas-
sam (2005)] is computationally expensive when p is large (scales approximately
as the cube of p).

7. Results. We discuss the results obtained from simulations and application
of the proposed GGM to the urinary metabolic data.

To set the hyperparameters for the multiplicative prior, we suggest using prior
data or R packages such as GeneNet [Schaefer, Opgen-Rhein and Strimmer
(2015)] or GGMselect [Giraud, Huet and Verzelen (2012)] to obtain a quick pre-
liminary estimate of the degree distribution. The hyperparameters of the multi-
plicative prior can then be selected so that the shape of the prior degree distribution
matches the estimated one. For K = 1, one can compute (a, b) using the formu-
las in P4 so that the mean and variance of the prior degree distribution matches
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the estimated one. This procedure is implemented in Section 7.1. Note that the
estimated degree distribution may have a variance smaller than that in P4 for any
a > 0, b > 0. In this case, we set b to be large (e.g., 1000) so that the variance is
very small and then find a to match the mean degree.

In the following experiments, we take δk = 3 and Dk = Ip for k = 1, . . . ,K in
the G-Wishart prior. The number of samples used in SMC is N = 500. Our code is
written in Matlab and is available as part of the Supplementary Material. We run
the experiments on HPC (High Performance Computing) where each job is run in
parallel across 12 cores.

7.1. Simulations. We investigate the performance of the multiplicative model
as a prior on graphs for GGMs and compare it with the commonly used uniform
prior which assigns equal prior probability to every graph, and the size-based prior
[Armstrong et al. (2009)] or equivalently the prior that corrects for multiple hy-
pothesis testing proposed by Carvalho and West (2007) (see Section 2 for details).
First, we consider K = 1, p = 20 nodes and generate data from three different
types of networks:

Multiplicative model: Generate πi
i.i.d.∼ Beta(0.1,0.1) and simulate the edges

using Aij ∼ Bernoulli(πiπj ) for i < j .
Scale-free network: A scale-free network with p nodes is generated using the

Barabási–Albert model. Starting with a connected network with 2 nodes, new
nodes are added one at a time to the network. Each new node is connected to 2
existing nodes with a probability proportional to the degree of existing nodes.

Community network: The p nodes are divided into two communities of equal-
size and a network is generated by assuming that the within-community interaction
rate is 0.6 and across-community interaction rate to be 0.02.

The generated networks and their degree distributions are shown in Figure 5. For
each network we create a p × p symmetric matrix C where entries corresponding
to missing edges are set to zero and nonzero entries are simulated randomly from
the uniform distribution on [−0.6,−0.3] ∪ [0.3,0.6]. To ensure that the precision
matrix 	 is positive, we let c be the smallest eigenvalue of C and set 	 = C +
(0.1 + |c|)I , following Mohan et al. (2014). Ten datasets are simulated from the
GGM in (4.1) by setting the number of observations H = 100 and K = 1. The
underlying network is regarded as the “true” graph.

Using Algorithm 1, weighted samples from the posterior distribution are ob-
tained for each simulated dataset under the uniform, size-based and multiplicative
priors. For the multiplicative model, we consider two settings. For one setting,
we set the Beta hyperparameters as a = b = 1. For the second setting, we try to
find a and b such that the shape of the prior degree distribution resembles that of
the true graph. These prior degree distributions are superimposed on the true de-
gree distributions in Figure 5. For the SMC sampler, we set the number of edges
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FIG. 5. Generated networks (top) and corresponding degree distribution (bottom). The degree dis-
tributions of the multiplicative model with hyperparameters given by a and b are superimposed.

flipped at each iteration in the MCMC step, M = 3. The sequence {φt } is set as
(0.01,0.02, . . . ,1) with T = 100. The CPU time taken on average for each exper-
iment is (6.4 ± 0.5) hours.

Using the weighted samples, we compute the posterior probability of the occur-
rence of each edge and summarize the results using the area under the ROC curves
(AUC). The boxplots of the AUC values are shown in Figure 6. The multiplica-
tive priors performed better than the uniform and especially the size-based prior
for data simulated from the multiplicative model. While one may have expected
the prior with a = 0.14, b = 0.24 to perform better than a = b = 1, this may not
have happened because the proposed method of setting the hyperparameters uses
only the mean and variance and may not have captured the true degree distribution
well enough. In addition, the relationship between prior probability of a graph and
its degree distribution is not straightforward. Note that variability is also involved
in the generation of the precision matrix which may represent the underlying true
graph better in some cases than others. For data simulated from the scale-free and
community networks, the performance of the different priors are quite similar. For
these networks, the multiplicative prior performed better if the hyperparameters
were tuned to match the degree distribution of the true graph.

Next, we investigate the ability of the multiplicative prior to borrow information
across graphs when the nodes have similar connectivity. We simulate 10 datasets
each with H = 100 observations, p = 20 variables and K = 2 groups. We assume
that there are 50 observations in each group and set the covariates x1 = (1,0) and
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FIG. 6. Boxplots of AUC values for datasets simulated from different networks obtained using
different priors.

x2 = (1,1). The underlying graphs are generated from the multiplicative model
where the connectivities are simulated using the model in Section 4.1.2 and preci-
sion matrices for each graph are constructed in the same manner as before. Setting
σ 2

1 = 10 and σ 2
2 = 0.01, the connectivity of the nodes in G1 may vary over a wide

range (since βi1 has a large variance) and the connectivity of each node in G1 and
G2 are similar (since βi2 is close to zero). Figure 7 shows the simulated graphs
and their degree distributions.

We compare results obtained using (1) the uniform prior which assigns equal
prior probability to each pair of graphs, (2) the joint multiplicative prior with
σ 2

1 = 10, σ 2
2 = 0.01 and (3) independent multiplicative priors for G1 and G2 with

hyperparameters chosen to match the degree distributions of the true graphs. Using
Algorithm 1 with the same setting as before, the average CPU time for the joint
prior (K = 2) case is (12.4±0.5) hours and for the independent multiplicative pri-
ors case (K = 1) is (6.5 ± 0.4) hours. The results are summarized using boxplots
of the AUC values as shown in Figure 7. The joint multiplicative prior performs
better than the uniform prior and the independent multiplicative priors indicating
the ability of the multiplicative prior to encourage similarity in connectivity of
nodes across graphs.

In the Supplementary Material, we also provide details of a small experi-
ment which shows the significant improvement that SMC provides over standard
MCMC. In particular, SMC has a higher acceptance rate and achieves higher av-
erage log target density for the same number of MCMC steps.

7.2. Application to urinary metabolic data. We analyze urinary metabolic
data for H = 127 individuals acquired using 1H NMR spectroscopy [see Ellis et al.
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FIG. 7. Simulated networks (K = 2), corresponding degree distributions and boxplots of AUC
values obtained using different priors.

(2012) for details]. These individuals live close to a lead and zinc smelter at Avon-
mouth in Bristol, United Kingdom, which produces large quantities of airborne
cadmium (Cd). Here, we investigate the correlation structure of p = 22 urinary
metabolites listed in Table 1 in response to cadmium exposure through GGMs.
This dataset has also been studied by Salamanca, Ebbels and De Iorio (2014) us-
ing Bayesian hierarchical models. We perform two analyses. First, we consider the
individuals as a homogeneous group. In the second case, we divide the individuals
into two groups; S1 (a control group with cadmium exposure lower than or equal to
the median) and S2 (a diseased group with cadmium exposure higher than the me-
dian). In each case, we first use the R package GeneNet [Schaefer, Opgen-Rhein
and Strimmer (2015)] to obtain fast shrinkage estimators of partial correlation in
the network. The degree distributions obtained (see Figure 8) can be used as a ba-
sis for determining appropriate hyperparameters for the multiplicative model. The
observations of each variable are first normalized to have zero mean and standard
deviation of one in each group. For the SMC sampler, we set the number of sam-
ples N = 500, and the number of edges flipped at each iteration in the MCMC
step, M = 5. The sequence {φt } is set as (0.005,0.01, . . . ,1) with T = 200. The
CPU time taken on average for each experiment is (24.7 ± 3.0) hours for K = 1
and (48.0 ± 7.5) hours for K = 2.

7.3. Case: K = 1. We study the correlation structure of the metabolites by
treating the individuals as one homogeneous group. We compare the performance
of four priors on the graphical space. For the multiplicative prior, we obtain
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TABLE 1
List of 22 urinary metabolites and their abbreviations. Columns 3–6 and columns 7–10 show the

weighted mean degree and betweenness, respectively, under the multiplicative model with a = 461,
b = 1000 [MP(461,1000)] and a = b = 1 [MP(1,1)], the size-based prior (SB) and the uniform

prior (UF). The highest value in each column (3–10) is highlighted in bold

Degree Betweenness

MP MP MP MP
Metabolites Abbrev (461,1000) (1,1) SB UF (461,1000) (1,1) SB UF

Trimethylamine oxide TMAO 4.11 4.52 4.20 5.33 0.21 0.15 0.20 0.08
Dimethylamine DMA 3.47 3.81 3.47 5.68 0.14 0.10 0.12 0.07
P-cresol-sulphate PCS 3.37 4.33 3.72 6.39 0.09 0.10 0.11 0.09
Succinate Suc 3.33 3.95 3.79 5.71 0.16 0.10 0.17 0.07
Creatinine Creat 2.88 3.54 3.09 4.93 0.08 0.08 0.09 0.06
3-hydroxyisovalerate 3-HV 2.75 2.85 2.74 4.58 0.19 0.10 0.17 0.06
Citrate Cit 2.60 3.15 2.42 4.84 0.15 0.09 0.12 0.05
Glycine Gly 2.60 2.70 2.41 4.42 0.13 0.07 0.10 0.05
4-deoxyerythronic acid 4-DEA 2.59 3.52 2.63 5.23 0.12 0.09 0.11 0.08
Pyruvate Pyr 2.56 3.21 3.01 5.41 0.06 0.05 0.06 0.06
Alanine Ala 2.29 2.48 2.38 5.45 0.11 0.06 0.10 0.07
Urea Urea 2.09 2.62 2.09 6.17 0.08 0.07 0.06 0.09
Phenylacetylglutamine PAG 2.05 2.24 2.16 4.55 0.06 0.02 0.05 0.04
Hippurate Hip 1.63 1.55 1.76 4.86 0.05 0.02 0.04 0.06
Dimethylgycine DMG 1.46 1.49 1.44 4.70 0.05 0.02 0.04 0.06
Trimethylamine TMA 1.25 1.28 1.60 3.28 0.02 0.01 0.04 0.03
Acetate AcO 1.07 1.93 1.32 5.13 0.02 0.04 0.04 0.05
Lactate Lac 0.90 1.08 0.96 4.56 0.02 0.02 0.02 0.04
Proline-betaine PB 0.87 0.64 0.84 2.49 0.01 0.00 0.01 0.01
N-methyl-nicotinic acid NMNA 0.70 0.56 1.06 3.06 0.01 0.01 0.01 0.02
Formate For 0.54 0.36 0.43 2.85 0.01 0.00 0.01 0.02
Creatine Crea 0.25 0.12 0.28 1.94 0.00 0.00 0.00 0.01

FIG. 8. Degree distributions estimated using GeneNet for the case where the individuals are treated
as one heterogeneous group (left) and where they are divided into two groups S1 (middle) and S2
(right).
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FIG. 9. Graphs corresponding to different priors. Only edges with posterior weights greater than
0.5 are shown.

a = 461, b = 1000 by matching the degree distribution from GeneNet. Note that
such a prior is highly informative. We also consider for comparison a vague mul-
tiplicative prior with a = b = 1, the size-based prior and the uniform prior. We fit
a GGM to the data using Algorithm 1, obtaining N = 500 weighted samples from
the posterior distribution in each case. Using these weighted samples, we compute
the posterior probability of occurrence of each edge. Figure 9 shows the graphs
obtained under each prior. Only edges with posterior probability greater than 0.5
and associated nodes are shown and the width of each edge is proportional to its
posterior probability. Graphs showing the full set of nodes and all possible edges
are given in the Supplementary Material Figure S5. The graphs obtained under
the multiplicative priors and the size-based prior have a high degree of similarity
(especially a = 461, b = 1000) and are much sparser than that of the uniform prior.

Table 1 shows the weighted mean degree and betweenness centrality measures
for each metabolite. The metabolites have been sorted in terms of weighted mean
degree in decreasing order according to MP(461,1000). Under the multiplicative
and size-based priors, TMAO has the highest degree as well as betweenness. Under
the uniform prior, PCS has the highest degree with Urea close behind; these two
metabolites also have the highest betweenness.

For the multiplicative model, we can obtain uncertainty measures of the ten-
dency of each node to form connections with other nodes. Figure 10 shows the
posterior distributions of the connectivities πi of each metabolite obtained via sim-
ulations. The multiplicative prior with a = 461, b = 1000 is very informative and
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FIG. 10. Posterior distribution of the connectivity (πi ) of different metabolites under the multi-
plicative model with a = b = 1 (first 3 rows) and a = 461, b = 1000 (last 3 rows).

forces the posterior distribution of the connectivity of every node to be almost
identical. The multiplicative prior with a = b = 1 allows the data to determine
the connectivity and there is more distinction among nodes. The mean and 95%
credible interval of the connectivity of each metabolite, and the mean covariance
matrix corresponding to the multiplicative model with a = b = 1 are given in the
Supplementary Material Tables S1 and S2.

7.4. Case: K = 2. Next, we investigate the difference in correlation structure
of the urinary metabolites between the two groups of individuals S1 (with cadmium
exposure lower than or equal to the median) and S2 (cadmium exposure higher
than the median). We consider the covariates xk for the kth graph to include an
intercept and an indicator for level of exposure to cadmium (1 if above the median
and 0 otherwise) so that x1 = (1,0) and x2 = (1,1). The difference in graphical
structure between G1 and G2 due to exposure to urinary cadmium is of interest.
We fit a GGM with K = 2 to the data using the SMC algorithm under four priors.
The first three are the multiplicative model with σ 2

1 = σ 2
2 = 1, σ 2

1 = 1 and σ 2
2 =

10 and σ 2
1 = σ 2

2 = 10, and the last is the uniform prior. From Figure 4 and the
preliminary degree distributions obtained using GeneNet (Figure 8), taking σ 2

1 =
σ 2

2 = 1 seems appropriate but we wish to investigate if there is any benefit to be
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gained by allowing the structure of G2 to vary more significantly from that of G1
by taking σ 2

2 to be 10 and whether a prior, which assumes the tendencies to connect
are closer to the extremes of 0 and 1 is more appropriate (σ 2

1 = σ 2
2 = 10).

Using Algorithm 1, we obtain weighted samples from the posterior distribu-
tion under each of the four priors. The ESS and acceptance rate in the SMC sam-
pler are monitored at each iteration and these plots are given in the Supplemen-
tary Material Figure S6 for the multiplicative prior with σ 2

1 = σ 2
2 = 1. Typically,

the ESS decreases as the algorithm proceeds until it falls below the threshold,
Nthreshold = N/3, and it bounces back after resampling is performed. Due to bridg-
ing of target densities using tempering, the acceptance rate is usually high at the
beginning when the temperature φt is close to zero and proposals have a high
probability of being accepted [see (6.7)]. As the temperature increases, the sam-
ples becomes more concentrated in the regions of high posterior probability and
the acceptance rate falls.

To compare the differences in edges between G1 and G2, we construct differ-
ential networks which display only edges likely to appear in one graph but not the
other. Differential networks serve as powerful tools for exploring the changes in
correlation structures across different conditions and have been considered widely
in recent research. For instance, Valcárcel et al. (2011) define an edge as differ-
ential if the partial correlations estimated via linear shrinkage estimators differ
significantly between two graphs while Peterson, Stingo and Vannucci (2015) and
Mitra, Müller and Ji (2016) consider the posterior probability of an edge differing
across conditions. Here, we adopt another definition, which enables us to differ-
entiate more easily between the edges which are more likely to appear in G1 than
G2 and vice versa. Let ρk

ij denote the posterior marginal probability of inclusion

of edge (i, j) in Gk for k = 1,2. We estimate ρk
ij as the proportion of SMC sam-

ples for which (i, j) is included in Gk and consider an edge to be differential if
|ρ1

ij − ρ2
ij | > κ for some 0 < κ < 1. Figure 11 shows the differential network cor-

responding to the different priors for κ = 0.5. The estimates of ρ1
ij and ρ2

ij for
the edges in the differential networks are given in Table S3 in the Supplementary
Material. Due to space limitations, we have also included further detailed results
in the Supplementary Material. These include weighted graphs obtained from Al-
gorithm 1 under different priors (Figures S7 and S8), posterior distributions (Fig-
ures S9, S10 and S11), betweenness centrality measures, weighted means and 95%
credible intervals of the connectivities (πi,k) and regression coefficients (βiq ) of
each metabolite (Tables S4, S5 and S6) and the mean covariance matrices corre-
sponding to the multiplicative prior with σ 2

1 = σ 2
2 = 1 (Tables S7 and S8).

The full network in the K = 1 case and the differential network in the K = 2
case both show similar topological characteristics corresponding to sub-graphs of
metabolites. For the case of K = 2, the different prior hyperparameters only lead
to different levels of shrinkage, but there is a high degree of similarity in terms
of biological interpretation. For example, both Figures 9 and 11 show three dif-
ferent sub-graphs linking metabolites with shared metabolic origin. First, a group
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FIG. 11. Differential network corresponding to the different priors. Edges in blue are likely to
appear in G1 but not in G2 and pink edges are likely to appear in G2 but not in G1. The labels
indicate the estimate of |ρ1

ij − ρ2
ij | for each edge (i, j).

of organic acids including succinate, pyruvate, acetate and para-cresol sulphate
(PCS) are connected, sometimes also with phenylacetylglutamine (PAG). Several
of these metabolites (PCS and PAG) are known to be of gut bacterial origin, and
Cd stress is known to modulate gut microbiota populations in mice [Liu et al.
(2014)]. Increased acetate is a known consequence of renal damage, which could
be linked to high Cd levels in this population. The second group contains trimethy-
lamine (TMA) and its oxidation product trimethylamine-N-oxide (TMAO), both
part of choline metabolism, plus 3-HV and 4-DEA, which are products of amino
acid catabolism. Choline is an essential nutrient and is metabolised primarily in
the liver. Due to its long biological half-life, Cd accumulates in human tissues,
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especially the liver and kidney, so this observation may point towards a possible
mechanistic connection. Moreover, in their original study of this data set, Ellis
et al. (2012) reported a positive correlation between urinary Cd and both 4-DEA
and 3-HV, though this relationship did not survive correction for age and sex. The
third group links citrate and glycine, closely associated via malate and glyoxy-
late in central carbon metabolism (the network of metabolic reactions essential to
life). A strong correlation between Cd and citrate was found by Ellis et al. (2012),
while Valcárcel et al. (2011) found a significant deregulation of the dependency
network associated with dimethylglycine, a bi-product of the synthesis of glycine
from choline. Thus, it is plausible that several of the metabolites found in the net-
works of Figures 9 and 11 are involved in pathways disregulated due to Cd expo-
sure. However, metabolite associations derive from a variety of factors and many
may be indirect, and possibly nonbiochemical in origin, for example, change in ex-
pression of membrane transporters. Thus interpretation of dependency networks,
such as those generated here, is difficult. Nonetheless, they give us a novel view of
the data not exposed in conventional analyses, and may serve to help generate new
hypotheses to be investigated by future biochemical experiments.

8. Conclusion. This article proposes using the multiplicative or Chung–Lu
random graph model as a prior on the graphical space of GGMs, where the proba-
bility of inclusion of each edge is a product of the connectivities of the end nodes.
This model can be used to encourage sparsity or particular degree structures, when
such prior knowledge is available, say from a database or based on expert opinion.
A Bayesian approach is adopted and priors are further placed on the connectivity of
the nodes. We study the degree and clustering properties of the multiplicative prior
and note that this prior is able to accommodate a wider range of degree structures
than the Erdős–Rényi model. For example, we can use it to encourage shrinkage
towards the extremes of 0 and 1, or degree distributions that are right-skewed by
varying the hyperparameters, We illustrate how this prior can be applied to both
single and multiple GGMs and a SMC sampler is developed for posterior infer-
ence. We find the performance of this sampler to be stable and consistent in our
experiments and it can also be parallelized easily. The multiplicative prior also
yields rich posterior inference, enabling a study of the connectivity of each node
and how the propensity to connect varies across different experimental conditions
in the case of multiple GGMs. This allows deeper exploration into the structure of
dependency networks and may aid in the formulation of new scientific hypothesis
and in opening further lines of investigations.
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian inference for multiple Gaussian graphical mod-
els with application to metabolic association networks” (DOI: 10.1214/17-
AOAS1076SUPP; .pdf). We provide additional material to support the results in
this paper. This include Matlab code, further discussions, detailed derivations and
further results on the application to urinary metabolic data.
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